WO2014175786A1 - Système de refroidissement liquide d'appareil informatique à processeurs multiples, assemblage et module de dissipation de chaleur - Google Patents

Système de refroidissement liquide d'appareil informatique à processeurs multiples, assemblage et module de dissipation de chaleur Download PDF

Info

Publication number
WO2014175786A1
WO2014175786A1 PCT/RU2014/000299 RU2014000299W WO2014175786A1 WO 2014175786 A1 WO2014175786 A1 WO 2014175786A1 RU 2014000299 W RU2014000299 W RU 2014000299W WO 2014175786 A1 WO2014175786 A1 WO 2014175786A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
module
sink module
heat
inlet
Prior art date
Application number
PCT/RU2014/000299
Other languages
English (en)
Russian (ru)
Inventor
Виталий Викторович АНАНЬЕВ
Николай Владимирович БОДУНОВ
Алексей Михайлович МАКАРУШКИН
Ксения Сергеевна МЕЩЕРЯКОВА
Андрей Феликсович СЛЕПУХИН
Антон Валериевич СМОЛЕНСКИЙ
Original Assignee
Открытое акционерное общество "Т-Платформы"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Т-Платформы" filed Critical Открытое акционерное общество "Т-Платформы"
Publication of WO2014175786A1 publication Critical patent/WO2014175786A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20763Liquid cooling without phase change
    • H05K7/20772Liquid cooling without phase change within server blades for removing heat from heat source
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the claimed group of inventions relates to the field of cooling devices used for digital computing and data processing devices and can be used in the design of server platforms designed for high-performance computing and computer simulation.
  • a cooling device for a printed circuit board in contact with the printed circuit board is made of a metal plate, on the surface of which there are holes for attachment to the printed circuit board, and fins, heat-removing pads in contact with the heat-generating elements of the printed circuit board, which are interfaced with cylindrical surfaces with each other friend and with fins.
  • holes for air inlet are made in the area of least heating of the cooling device and along the perimeter of the cooling device, and holes for air outlet are made in the region of the greatest heating of the cooling device, which are located at the places where the heat sinks go to the fins, where the sectional profile of the cooling device changes stepwise (RU 2361378 C2, class N05K 7/20, publ. 10.07.2009).
  • the disadvantage of this technical solution is the use of air as a refrigerant, which does not allow efficient cooling of the components of the printed circuit board.
  • a cabinet of electronic equipment comprising a housing, plates located one above the other and forming horizontal sections in which removable blocks of electronic equipment, a heat sink system are placed.
  • the heat sink system consists of plates connected to the rear wall of the cabinet.
  • the plates and the back wall of the cabinet are made of heat-conducting material.
  • fastening means for a heat sink plate with additional cooling means on its outer side are installed.
  • the end contact of each plate with the rear wall of the cabinet is carried out through heat-conducting paste (RU 17107 U1, class N05K 7/20, publ. 10.03.2001).
  • the disadvantage of this technical solution is the lack of effective cooling, since heat is removed by radiation from the rear wall of the cabinet. And additional cooling of the implementation by means of a plate with channels for supplying air or water, which is installed on the rear wall of the cabinet.
  • a cabinet with electronic equipment comprising plates of highly heat-conducting material, a closed heat pipe for removing heat, a fan for blowing the back cavity, a protective casing, a control unit and a temperature sensor
  • the cabinet body being hermetically tight
  • the front panel contains an indicator of temperature conditions, heat transfer plate in contact with the system heat pipe evaporation zones, heat pipe condensation zone in thermal contact with the high-conductivity plate and the cold bridges mounted on it by cold junctions in the staggered manner with thermal bridges
  • the control unit is electrically connected to the indicator, fan system, temperature sensor and power supply unit (RU 2399174 C1 , CL H05K 7/20, publ. 09/10/2010).
  • a heat sink module comprising a cover and a base is known in the art.
  • the channel is located on the outer surface of the base.
  • the lid is fixed on the base by soldering to close the channel.
  • the base is equipped with inputs and outputs that are connected to the channel.
  • the bottom surface of the base is firmly connected to the connectors of the inputs and outputs.
  • Zigzag fins and heat sink module are connected by soldering, the heat transfer surface is large, the coolant forms a turbulent flow in the ribs to improve heat transfer efficiency, the voltage drop is low, the connection between the ribs and the heat sink module is high, the fins and heat sink module are connected using a stainless steel connector (CN 202354023 U, H05K 7/20, published on July 25, 2012).
  • the disadvantage of this technical solution is the lack of effective cooling.
  • the closest analogue to the claimed group of inventions is a heat sink module, assembly and cooling system.
  • the heat-removing module contains a lid and a base, where the heat-emitting rib is located on the lid, the heat-emitting rib is made by extrusion of aluminum.
  • the base is provided with a channel connected to a heat-radiating rib.
  • the heat-emitting rib is centered in the channel and the lid is soldered to the base.
  • a cover including a heat-emitting rib on the heat-removing module is made by extrusion of aluminum.
  • the cost of the heat sink finned module is reduced.
  • the Cover and base of the heat sink module are connected with a high degree of reliability (CN 202352650 U, H01L 23/473, publ. 25.07.2012).
  • the disadvantage of this technical solution is that there is a difference in the heat transfer intensity between the lid with the extruded heat-emitting ribs and the base, with which the heat-emitting ribs are contacted by soldering due to the uneven thickness of the base and the lid, as well as the presence of a solder layer.
  • the heat-generating elements will function in different thermal conditions.
  • the technical result of the claimed group of inventions is to increase the efficiency of heat removal from the cabinet volume by improving the design of the heat sink module and ensuring optimal thermal conditions without changing the cabinet design system.
  • the objective of the claimed group of inventions is the development of a water cooling system for a multiprocessor computing complex.
  • thermal interface materials allows for the best heat transfer between the heat-generating elements (electronic components of the boards) and the heat-removing module.
  • the advantage of water cooling is more efficient cooling of electronic components of the boards, compactness compared to air-cooled systems, the possibility of cooling with "warm water” (temperature at the inlet of the distribution unit is 30-45 ° C), the ability to utilize the heat generated by supercomputers for heating or cooling using adsorption heat exchangers.
  • the task is achieved by the implementation of the heat sink module of a multiprocessor computer complex containing the upper and lower parts connected by vacuum soldering, on the surface of which rectangular recesses are made by milling in the form of electronic components of the board, which are installed in them to ensure optimal coupling with the possibility of achieving the best heat transfer, at this heat sink module equipped with internal inlet and outlet channels; flexible inlet and outlet hoses for inlet and outlet coolant; while some ends of the inlet and outlet flexible hoses are rigidly connected by means of a one-piece fitting to the heat sink module, while the other ends of the flexible hoses are connected to the inlet and outlet fittings located on the pipelines for supplying and discharging the coolant by means of a quick connector.
  • the material of the upper and lower parts of the heat sink module is an aluminum alloy, preferably A1 6063 or A1 6082.
  • the electronic components of the board are the central processing unit (CPU), the voltage regulator module (CPU VRM) of the central processing unit, the memory module (DDR3 Ch p), the voltage regulator module (DDR VRM) of the DDR3 memory module, the input / output controller-hub (PCH), the converter DC voltage (DC / DC), memory module (DDR3), solid state drive (SSD), controller (Navy), Navy controller voltage regulator module (Navy VRM), controller (FDR InfiniBand), controller (1G Ethernet).
  • the method of manufacturing the inlet and outlet channels is the through drilling method.
  • the coolant for cooling the electronic components of the boards is water.
  • the task is achieved by assembling a multiprocessor computing complex, including a heat sink module of a multiprocessor computing a complex containing the upper and lower parts connected by vacuum soldering, on the surface of which rectangular recesses are made by the milling method in the form of electronic components of the board, which are installed in them to ensure optimal coupling with the possibility of achieving the best heat transfer, while the heat sink module is equipped with internal supply and exhaust channels flexible inlet and outlet hoses for inlet and outlet coolant; while some ends of the inlet and outlet flexible hoses are rigidly connected by means of a one-piece fitting to the heat sink module, and the other ends of the flexible hoses are connected to the inlet and outlet fittings located on the pipelines for supplying and discharging the coolant by means of a quick disconnect connector; as well as boards of electronic components mounted on each side of the heat sink module to ensure optimal coupling with the possibility of achieving the best heat transfer; thermal interface material located between the surface of the heat sink module and the electronic components of the board; at the same time,
  • the number of boards is from 2 to 4.
  • the thermal conductivity of the thermal interface material is at least 6 W / mK.
  • the thickness of the thermal interface material is from 0.1 to 2 mm.
  • the problem is achieved by performing a liquid cooling system of a multiprocessor computing a complex comprising at least one pipe for supplying coolant and at least one pipe for draining the coolant, located in the lateral compartments of the front of the computing rack and separated from the rest by hermetic housings connected to the drainage system in the hydraulic distribution unit, through which the coolant is supplied; a heat sink module of a multiprocessor computer complex containing upper and lower parts connected by vacuum soldering, on the surface of which rectangular recesses are made by the shape of the electronic components of the board, which are installed in them to ensure optimal coupling with the possibility of achieving the best heat transfer, while the heat sink module is equipped with internal inlet and outlet channels; flexible inlet and outlet hoses for inlet and outlet coolant; while some ends of the inlet and outlet flexible hoses are rigidly connected by means of a one-piece fitting to the heat sink module, and the other ends of the flexible hoses are connected to the inlet and outlet fittings located on the pipelines for supplying and discharging the cool
  • Permissible inlet water temperature range the distribution unit is 30-45 ° C, preferably 44 ° C.
  • the length of the flexible hoses is 10-20 cm.
  • the internal equivalent diameter of the pipeline is 48 mm.
  • the flow rate of the coolant inside each pipeline is at least 4 l / s.
  • the temperature difference at the inlet and at the outlet of the system is at least 5 ° C.
  • FIG. 1 Three-dimensional model of the heat sink module
  • FIG. 2 Three-dimensional model of the configuration of the arrangement of channels in the heat sink module
  • FIG. 3 Three-dimensional model of the assembly of the heat sink module with four boards of the computing node
  • FIG. 4 Layout of electronic components with the designation of heat dissipation (W) on the circuit board
  • FIG. 5 Temperature range of electronic components of the boards on both sides of the heat sink module
  • FIG. 6 Range of fluid pressure in the channel
  • the heat sink module (1) of the multiprocessor computing complex contains the upper (2) and lower (3) parts.
  • the connection of the upper (2) and lower (3) parts is carried out by vacuum soldering.
  • rectangular recesses (4) are made on the surface of the heat sink module by the milling method.
  • the shape of the recesses follows the design of the electronic components of the boards (5) installed on it with the possibility of ensuring optimal pairing.
  • the heat sink module contains flexible inlet and outlet hoses (not shown in the figures).
  • the coolant is fed through the flexible inlet hose to the channels (6) of the heat-removing module, and the coolant is diverted through the flexible outlet hose.
  • Water is used as a heat carrier.
  • one end of the flexible inlet and outlet hoses is rigidly connected by means of an integral fitting (7) to the heat sink module. And the other ends of the flexible hoses are connected to the inlet and outlet fittings located on the pipelines for supplying and discharging the coolant via a quick connector (not shown in the figures).
  • Water is used as a heat carrier with a nominal heat carrier temperature of 44 ° ⁇ at the inlet; the admissible temperature range at the inlet is 30-45 ° ⁇ .
  • a coolant with a temperature of 30-45 ° C, preferably 44 ° C enters the hydraulic distribution unit, then it enters the flexible supply hose through the pipe for supplying the coolant and then into the channels (6) of the heat-removing module (1). Having passed through the channels of the cooling module, the coolant with increased temperature returns through a flexible outlet (7) hose, then through the outlet pipe to the tank (not shown in the figures).
  • the temperature difference at the inlet and at the outlet of the system is at least 5 ° C.
  • signals from temperature sensors are used to control the temperature on the board, which are installed on the board and near the processors.
  • the thermal interface material which provides the best heat transfer between the heat-generating elements, namely, the electronic components of the boards, and the heat-removing module, is located
  • the liquid cooling system is used to cool most of the equipment of the computing rack, including the computing node, control and monitoring modules, InfiniBand switches for communication and auxiliary networks, Ethernet control and service network switches.
  • the rated heat dissipation power (W) of each of the electronic components of the board is presented in Table 1.
  • the highest heat dissipation power of the central processor (CPU) is 130 watts.
  • the number of electronic components on one board is 25 pieces.
  • the nominal heat dissipation power from one board is 461, 41 watts.
  • Length 503 mm (with block of inlet / outlet fittings);
  • Width 434 mm
  • Thickness 12 mm
  • Peak pressure ⁇ 6 * 10 5 Pa
  • the section of the inlet / outlet channels round, channel diameter: 10 mm;
  • the temperature distribution was simulated in the region representing the base of the heat sink module, the space between the boards of the computing unit and the module, as well as the flow of the coolant in the module (viscous heat-conducting incompressible fluid), and the distribution of thermal fields throughout the structure under consideration.
  • the calculations were performed without taking into account the air gap between the circuit board of the computing node and the base of the heat-removing module. Optimum results were obtained for the normal functioning of the device.
  • Maximum temperature for metal of the cooled board is 59.3375 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

L'invention se rapporte au domaine des dispositifs de réfrigération utilisés dans des dispositifs de calcul numérique et le traitement de données, et peut être utilisée lors de la projection de plateformes de serveurs servant à effectuer des calculs hautes performances et des modélisations informatiques. Le module de dissipation de chaleur du système de refroidissement liquide comprend des parties supérieure et inférieure connectées par un procédé de soudure sous vide. À la surface de ces parties sont formés par fraisage des renfoncements rectangulaires ayant la forme des composants électroniques d'une carte, lesquels viennent s'y loger afin d'assurer un contact optimal. Le module dissipateur de chaleur des canaux interne d'alimentation et d'évacuation parallèles. Les premières extrémités de tubes flexibles d'alimentation et d'évacuation sont fixées rigidement par un raccord inamovible au module dissipateur de chaleur. Les autres extrémités des tubes flexibles sont connectées à des raccords d'entrée et de sortie disposés sur des tubes d'alimentation et de refoulement de caloporteur par un connecteur rapide. L'assemblage comprend également des cartes de composants électroniques montées de chaque côté du module dissipateur de chaleur afin d'assurer un contact optimal, et un matériau d'interface thermique disposé entre la surface du module dissipateur de chaleur et les composants électroniques de la carte. L'invention permet d'augmenter l'efficacité d'évacuation de la chaleur de l'armoire grâce au perfectionnement de la structure du module dissipateur de chaleur et grâce à la possibilité d'ajuster l'évacuation de la chaleur sans changer le système de structure de l'armoire.
PCT/RU2014/000299 2013-04-25 2014-04-24 Système de refroidissement liquide d'appareil informatique à processeurs multiples, assemblage et module de dissipation de chaleur WO2014175786A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2013119187 2013-04-25
RU2013119187/07A RU2522937C1 (ru) 2013-04-25 2013-04-25 Система жидкостного охлаждения многопроцессорного вычислительного комплекса, сборка и теплоотводящий модуль

Publications (1)

Publication Number Publication Date
WO2014175786A1 true WO2014175786A1 (fr) 2014-10-30

Family

ID=51217549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2014/000299 WO2014175786A1 (fr) 2013-04-25 2014-04-24 Système de refroidissement liquide d'appareil informatique à processeurs multiples, assemblage et module de dissipation de chaleur

Country Status (2)

Country Link
RU (1) RU2522937C1 (fr)
WO (1) WO2014175786A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110399426A (zh) * 2019-07-13 2019-11-01 广东一钛科技有限公司 用于区块链运算中心的小型集成式水冷换热器系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2638414C1 (ru) * 2017-01-11 2017-12-13 Общество с ограниченной ответственностью "Теркон-КТТ" (ООО "Теркон-КТТ") Комбинированная система охлаждения элементов серверной стойки (варианты)
RU173929U1 (ru) * 2017-01-12 2017-09-19 Общество с ограниченной ответственностью "Теркон-КТТ" (ООО "Теркон-КТТ") Устройство охлаждения тепловыделяющих электронных элементов
RU2696020C1 (ru) * 2018-09-04 2019-07-30 Антон Андреевич Румянцев Комбинированная система охлаждения электронных блоков
RU2765789C1 (ru) * 2021-04-26 2022-02-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ярославский государственный технический университет" ФГБОУВО "ЯГТУ" Комбинированная система охлаждения электронных блоков
RU2768258C1 (ru) * 2021-05-04 2022-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ярославский государственный технический университет" ФГБОУВО "ЯГТУ" Комбинированная система охлаждения
CN113204883B (zh) * 2021-05-10 2023-11-24 奇瑞汽车股份有限公司 汽车散热器目标进风量自动计算装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070289718A1 (en) * 2006-06-06 2007-12-20 Mccordic Craig H Heat sink and method of making same
DE102010043446B3 (de) * 2010-11-05 2012-01-12 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitersystem
US20120106071A1 (en) * 2010-11-02 2012-05-03 International Business Machines Corporation Fluid cooling system and associated fitting assembly for electronic component
CN202354023U (zh) 2012-03-02 2012-07-25 东莞爱美达电子有限公司 一种含有交错翅片的水冷板
CN202352650U (zh) 2012-03-02 2012-07-25 东莞爱美达电子有限公司 一种翅片式水冷板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1438533A1 (ru) * 1986-10-22 1990-09-23 Предприятие П/Я М-5629 Способ охлаждени тепловыдел ющих элементов электроаппаратуры и устройство дл его осуществлени
RU2301510C2 (ru) * 2005-07-21 2007-06-20 Государственное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ГОУВПО "КнАГТУ") Система охлаждения элементов радиоэлектронной аппаратуры
RU73765U1 (ru) * 2007-11-06 2008-05-27 Научно-исследовательский комплекс Киевского национального университета строительства и архитектуры Жидкостная система охлаждения мощного электронного компонента
RU73580U1 (ru) * 2008-01-09 2008-05-20 Общество С Ограниченной Ответственностью "Гравиконт" Система охлаждения персонального компьютера

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070289718A1 (en) * 2006-06-06 2007-12-20 Mccordic Craig H Heat sink and method of making same
US20120106071A1 (en) * 2010-11-02 2012-05-03 International Business Machines Corporation Fluid cooling system and associated fitting assembly for electronic component
DE102010043446B3 (de) * 2010-11-05 2012-01-12 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitersystem
CN202354023U (zh) 2012-03-02 2012-07-25 东莞爱美达电子有限公司 一种含有交错翅片的水冷板
CN202352650U (zh) 2012-03-02 2012-07-25 东莞爱美达电子有限公司 一种翅片式水冷板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110399426A (zh) * 2019-07-13 2019-11-01 广东一钛科技有限公司 用于区块链运算中心的小型集成式水冷换热器系统
CN110399426B (zh) * 2019-07-13 2024-01-26 广东一钛科技有限公司 用于区块链运算中心的小型集成式水冷换热器系统

Also Published As

Publication number Publication date
RU2522937C1 (ru) 2014-07-20

Similar Documents

Publication Publication Date Title
RU2522937C1 (ru) Система жидкостного охлаждения многопроцессорного вычислительного комплекса, сборка и теплоотводящий модуль
US9282678B2 (en) Field-replaceable bank of immersion-cooled electronic components and separable heat sinks
US9750159B2 (en) Pump-enhanced, immersion-cooling of electronic compnent(s)
US9686889B2 (en) Field-replaceable bank of immersion-cooled electronic components
US10070560B2 (en) Drawer-level immersion-cooling with hinged, liquid-cooled heat sink
US9313920B2 (en) Direct coolant contact vapor condensing
US9261308B2 (en) Pump-enhanced, sub-cooling of immersion-cooling fluid
US8941994B2 (en) Vapor condenser with three-dimensional folded structure
US8953320B2 (en) Coolant drip facilitating partial immersion-cooling of electronic components
TWI469728B (zh) 液冷式冷卻裝置、電子架及其製造方法
US8369091B2 (en) Interleaved, immersion-cooling apparatus and method for an electronic subsystem of an electronics rack
US8947873B2 (en) Immersion-cooled and conduction-cooled electronic system
WO2019015321A1 (fr) Appareil de refroidissement par liquide de type immergé, serveur de type lame et serveur de type châssis
US8385067B2 (en) In-line memory and circuit board cooling system
US20100328891A1 (en) Condenser block structures with cavities facilitating vapor condensation cooling of coolant
WO2017135992A1 (fr) Système de traitement d'informations comprenant un collecteur de fluide avec un système d'échangeur de chaleur incorporé
JP2023501829A (ja) 電子デバイスを冷却するためのコールドプレートおよびシステム
US11991856B2 (en) Liquid submersion cooled electronic systems
US9848515B1 (en) Multi-compartment computing device with shared cooling device
US9335800B2 (en) Cooler for computing modules of a computer
GB2571053A (en) Heat sink for immersion cooling
JP7346736B2 (ja) 液体冷却のためのヒートシンク
RU168792U1 (ru) Универсальная вычислительная платформа с отводом тепла от тепловыделяющих компонентов
EP3575919A1 (fr) Bloc de dlc destiné à être utilisé dans des composants électroniques et électriques
US11937407B2 (en) Photo-etched chassis cooling walls

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14742594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14742594

Country of ref document: EP

Kind code of ref document: A1