WO2014175400A1 - ファインダー用接眼光学系、ファインダー装置及びそれを用いた撮像装置 - Google Patents

ファインダー用接眼光学系、ファインダー装置及びそれを用いた撮像装置 Download PDF

Info

Publication number
WO2014175400A1
WO2014175400A1 PCT/JP2014/061626 JP2014061626W WO2014175400A1 WO 2014175400 A1 WO2014175400 A1 WO 2014175400A1 JP 2014061626 W JP2014061626 W JP 2014061626W WO 2014175400 A1 WO2014175400 A1 WO 2014175400A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
eyepiece optical
finder
refractive power
Prior art date
Application number
PCT/JP2014/061626
Other languages
English (en)
French (fr)
Inventor
林 佑介
泰由 小川
Original Assignee
京セラ株式会社
京セラオプテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 京セラオプテック株式会社 filed Critical 京セラ株式会社
Publication of WO2014175400A1 publication Critical patent/WO2014175400A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses

Definitions

  • the present invention relates to an eyepiece optical system, a finder device, and an image pickup apparatus using the eyepiece system for magnifying and observing an object such as a small display panel with the naked eye.
  • the present invention relates to an eyepiece optical system used in an electronic view finder as a finder device used in a digital camera, a video camera, and the like, and an imaging device using the eyepiece optical system.
  • an electronic viewfinder using a small display panel such as a liquid crystal or an organic EL is incorporated in a main body or used as an external finder device in an imaging device such as a camera.
  • an eyepiece optical system used in a finder device used in such an image pickup apparatus such as a camera it is required to be thin and low in profile as the apparatus itself becomes smaller and thinner. Furthermore, it is necessary to ensure sufficient eye relief and to have good image performance so that the subject can be easily observed through the viewfinder.
  • Japanese Patent Publication No. 2002-082290 discloses a type composed of three lenses of a positive lens, a negative lens, and a positive lens in order from the object side (display surface side) to the exit side (exit pupil side).
  • the eyepiece optical system is disclosed.
  • Such a triplet-type eyepiece optical system having positive and negative refractive power arrangements is easy to correct aberrations such as spherical aberration while having a small number of lenses, and is advantageous for high performance.
  • the eyepiece optical system disclosed in Japanese Patent Publication No. 2002-082290 has a long focal length, which is disadvantageous in reducing the size of the entire optical system including the display surface and securing the viewing angle.
  • plastic resin
  • the lens has a large thickness, which makes it difficult to reduce the size.
  • a lens using plastic is more susceptible to scratches than a glass lens, and a cover glass is necessary. Therefore, it becomes difficult to ensure a long eye relief.
  • the present invention provides a viewfinder eyepiece optical system capable of observing a well-corrected image while ensuring sufficient eye relief while being thin and low-profile, and an imaging apparatus using the same One of the purposes.
  • An eyepiece optical system includes, in order from the object side to the exit side, a first lens having a positive refractive power with a convex surface facing the exit side and a shape with a concave surface facing the object side.
  • the second lens having a negative refractive power
  • the third lens having a positive refractive power
  • both of the first, second, and third lenses are aspheric surfaces.
  • the first, second, and third lenses move along the optical axis, the focal length of the entire eyepiece optical system is f, and the diagonal length of the video display surface that the eyepiece optical system is the subject is H.
  • the optical distance from the image display surface to the first lens object side apex where bf (min) is the shortest optical distance during diopter adjustment, the following conditional expression is satisfied: .
  • a viewfinder device includes the above-described eyepiece optical system for a viewfinder and a video display element having a display surface for displaying an image.
  • the eyepiece optical system for a viewfinder includes a display of a video display element. The image displayed on the screen is enlarged and visible.
  • An imaging device includes the above-described finder device, an imaging optical system, and an imaging device that converts an optical image formed by the imaging optical system into an electrical signal, and images the imaging device.
  • the obtained image is output to the image display element and can be visually recognized by the viewfinder eyepiece optical system.
  • FIG. 1 is a diagram illustrating a configuration of an eyepiece optical system for a finder employed in Example 1.
  • 6 is a diagram illustrating a configuration of a viewfinder eyepiece optical system employed in Example 2.
  • 6 is a diagram illustrating a configuration of an eyepiece optical system for a finder employed in Example 3.
  • Example 3 it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration.
  • 6 is a diagram illustrating a configuration of an eyepiece optical system for a finder employed in Example 4.
  • FIG. 4 it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration.
  • 10 is a diagram illustrating a configuration of a viewfinder eyepiece optical system employed in Example 5.
  • FIG. In Example 5 it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration.
  • FIG. 10 is a diagram illustrating a configuration of a viewfinder eyepiece optical system employed in Example 6; In Example 6, it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration.
  • FIG. 10 is a diagram illustrating a configuration of an eyepiece optical system for a finder employed in Example 7. In Example 7, it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration.
  • FIG. 10 is a diagram illustrating a configuration of an eyepiece optical system for a finder employed in Example 8.
  • FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion in Example 8.
  • FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion in Example 8.
  • FIG. 10 is a diagram illustrating a configuration of an eyepiece optical system for a finder employed in Example 9.
  • FIG. 10 is an aberration diagram showing spherical aberration, astigmatism, and distortion in Example 9.
  • FIG. 11 is a diagram illustrating a configuration of a viewfinder eyepiece optical system employed in Example 10.
  • Example 10 it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration.
  • FIG. 10 is a diagram illustrating a configuration of a viewfinder eyepiece optical system employed in Example 11.
  • Example 11 it is an aberrational figure which shows spherical aberration, astigmatism, and a distortion aberration.
  • It is a figure which shows the basic composition of the finder system of embodiment of this invention.
  • 1 is a diagram illustrating a basic configuration of an imaging apparatus according to an embodiment of the present invention.
  • FIG. 1 shows an optical cross section of the configuration of an eyepiece optical system 100 for a finder according to an embodiment.
  • the eyepiece optical system 100 for a finder according to this embodiment includes a display surface 110 of an image display element, a panel cover glass 120, a dustproof cover glass 130, a first lens 140, a second lens 150, a third lens 160, in order from the object side. It has a three-lens configuration in which a finder cover glass 170 is disposed.
  • the video display element is an element for displaying an image captured by the imaging apparatus, and a device such as a liquid crystal or an EL (Electroluminescence) is used, for example.
  • the finder eyepiece optical system 100 is an optical system for magnifying and observing the image display element 110 displaying an image. For this reason, for example, when dust or the like adheres to the display element 110 (more precisely, it adheres to the surface 2 of the panel cover glass 120), the dust is also enlarged and observed.
  • the dust-proof cover glass 130 is provided after ensuring a sufficient distance between the two surfaces of the panel cover glass 120 and the five surfaces of the first lens 130.
  • the lens system of the finder eyepiece optical system 100 has a first lens having a positive refractive power with a convex surface facing the exit side and a concave surface facing the object side in order from the object side to the exit side. It is composed of three single lenses, a second lens having a negative refractive power and a third lens having a positive refractive power, all using plastic materials.
  • the first lens is shaped to have a convex surface facing the exit side, and both surfaces are aspherical, which is advantageous for correction of coma and distortion.
  • the second lens has a shape in which the concave surface is directed toward the object side, and both surfaces are aspherical, which is advantageous for securing a sufficient viewing angle and securing the exit pupil size.
  • Various aberrations such as coma, curvature of field, astigmatism and the like can be corrected satisfactorily.
  • the third lens has a positive refractive power and is aspherical on both sides, which is advantageous for correcting spherical aberration.
  • first, second, and third lenses use plastic (resin) as the lens material, anything can be configured as an aspherical surface.
  • diopter adjustment is performed by moving the first, second, and third lenses together in the optical axis direction, and various aberrations are corrected well in any diopter regardless of the diopter of the observer. Yes.
  • the focal length of the entire eyepiece optical system is f
  • the diagonal length of the image display surface is H
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the focal length of the third lens is f3.
  • the eyepiece optical system is configured to satisfy the following conditional expressions (1) to (4).
  • Conditional expression (1) is an expression defining the ratio of the focal length of the entire eyepiece optical system and the diagonal length of the image display surface.
  • the upper limit value of conditional expression (1) is exceeded, it is difficult to correct coma.
  • the lower limit is exceeded, the observed size of the display image becomes small, which is not preferable.
  • Conditional expression (2) defines the ratio of the focal length of the first lens to the focal length of the entire eyepiece optical system.
  • the distance between the first lens and the second lens becomes large, which is disadvantageous for downsizing.
  • the refractive power of the first lens is increased, which is disadvantageous for correcting distortion.
  • Conditional expression (3) defines the ratio of the focal length of the second lens to the focal length of the entire eyepiece optical system. Even if the refractive power of the second lens becomes too large exceeding the upper limit value of conditional expression (3), conversely, even if the refractive power of the second lens becomes too small beyond the lower limit value, coma and astigmatism. Therefore, it becomes difficult to correct curvature of field.
  • Conditional expression (4) is an expression defining the ratio of the focal length of the third lens to the focal length of the entire eyepiece optical system.
  • the refractive power of the third lens becomes small, which is disadvantageous for making compact.
  • the refractive power of the third lens increases, making it difficult to correct spherical aberration, coma aberration, astigmatism, and field curvature.
  • the eyepiece optical system is configured to satisfy the following conditional expression (5).
  • Conditional expression (5) is an expression defining the ratio of the total length of the eyepiece optical system (the distance from the image display surface to the surface vertex on the third lens exit side) with respect to the focal length of the entire eyepiece optical system.
  • the eyepiece optical system has the following conditional expression (6 ).
  • Conditional expression (6) is an expression defining the back focus of the eyepiece optical system (the optical distance from the image display surface to the first lens object side vertex).
  • the eyepiece optical system becomes large, which is not preferable.
  • the lower limit is exceeded, it is difficult to secure a space for the dust-proof cover glass to prevent the adhesion of dust.
  • the focal length of the entire eyepiece optical system, the diagonal length of the image display surface, the focal length of each lens unit, and the total length of the eyepiece optical system are as shown in Table 1 below.
  • the numerical data of the conditional expressions (1) to (6) and the eye relief thi12 are shown in the following Table 2. Value.
  • the radius of curvature of the i-th surface in order from the object side the distance between the i-th surface and the i + 1-th surface (lens thickness or air space), and the refractive index of the material of the i-th lens.
  • the Abbe number the pupil diameter is set to ⁇ 4 mm.
  • the aspherical shape is Y-axis in the optical axis direction, h-axis in the direction perpendicular to the optical axis, positive in the light traveling direction, R is the paraxial radius of curvature, and each aspherical coefficient is K, A, B, C, D Is expressed by the following formula.
  • an asterisk “*” attached to the right side of the surface number indicates that the lens surface is aspherical.
  • (a) is for adjusting the diopter of -1 diopter
  • (b) is for adjusting the diopter of -3 diopter
  • (c) is a spherical aberration (LONGITUDINAL SPHERICAL ABER. ), Astigmatism (ASTIGMATIC FIELD CURVES), and distortion (DISTORTION).
  • an eyepiece optical system for a finder that can reduce the thickness of the camera while ensuring sufficient eye relief, and can observe a large and well-corrected image. Can be realized.
  • FIG. 2 The basic configuration of the lens system in Embodiment 1 is shown in FIG. 2, and numerical data (setting values) are shown in Table 3, Table 4, and Table 5, and aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refractive power with a convex surface facing the exit side
  • the second lens has a negative refractive power with a concave surface facing the object side.
  • the three lenses have positive refractive power, and the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 3 shows the cover glass corresponding to each surface number of the eyepiece optical system for the finder, the curvature radius, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface (the same applies to the following examples).
  • Table 4 shows the aspheric coefficient of the predetermined surface.
  • Table 5 shows the values of the distances between the surfaces that are varied by diopter adjustment.
  • FIG. 3 shows spherical aberration, astigmatism and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis represents the pupil height
  • the horizontal axis represents the focus position
  • the vertical axis represents the panel height from the optical axis
  • the horizontal axis represents the focus position
  • the axis indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • Example 1 the distance between the first lens and the second lens becomes too large by preventing the upper limit of conditional expression (2) from being exceeded even though the focal length of the first lens is long. Accordingly, an imaging optical system that is excellent in imaging performance with various aberrations corrected favorably while achieving compactness is obtained.
  • the focal length of the third lens is short, the lower limit of conditional expression (4) is not exceeded, so that the refractive power of the third lens does not become too large, and particularly spherical aberration and coma aberration.
  • Various imaging aberrations such as astigmatism and curvature of field were corrected satisfactorily, and an imaging optical system excellent in imaging performance was obtained.
  • eye relief thi12 was able to ensure 15.000 mm.
  • FIG. 4 The basic configuration of the lens system in the second embodiment is shown in FIG. 4, and numerical data (setting values) are shown in Table 6, Table 7, and Table 8, and aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refractive power with a convex surface facing the exit side
  • the second lens has a negative refractive power with a concave surface facing the object side.
  • the three lenses have positive refractive power, and the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 6 shows the cover glass corresponding to each surface number of the eyepiece optical system for viewfinder, the radius of curvature, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface.
  • Table 7 shows the aspheric coefficient of the predetermined surface.
  • Table 8 shows the values of the distances between the surfaces that are varied by diopter adjustment.
  • FIG. 5 shows spherical aberration, astigmatism and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis represents the pupil height
  • the horizontal axis represents the focus position
  • the vertical axis represents the panel height from the optical axis
  • the horizontal axis represents the focus position
  • the axis indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • Example 2 various aberrations are favorably corrected by not exceeding the upper and lower limits of the conditional expressions (1) to (4), and the eye relief thi12 has a long distance of 17.000 mm. An imaging optical system that can be secured is obtained.
  • FIG. 6 The basic configuration of the lens system in the third embodiment is shown in FIG. 6, and numerical data (setting values) are shown in Table 9, Table 10, and Table 11, and aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refractive power with a convex surface facing the exit side
  • the second lens has a negative refractive power with a concave surface facing the object side.
  • the three lenses have positive refractive power, and the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 9 shows the cover glass corresponding to each surface number of the eyepiece optical system for viewfinder, the radius of curvature, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface.
  • Table 10 shows the aspheric coefficient of the predetermined surface.
  • Table 11 shows the value of each surface interval that can be changed by diopter adjustment.
  • FIG. 7 shows spherical aberration, astigmatism, and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis represents the pupil height
  • the horizontal axis represents the focus position
  • the vertical axis represents the panel height from the optical axis
  • the horizontal axis represents the focus position
  • the axis indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • Example 3 although the focal length of the third lens is short, the lower limit value of conditional expression (4) is not exceeded, so that the refractive power of the third lens does not become too large, and the compactness is achieved. On the other hand, an imaging optical system having excellent imaging performance can be obtained. Moreover, eye relief thi12 was also able to ensure 15.000 mm.
  • FIG. 8 The basic configuration of the lens system in Embodiment 4 is shown in FIG. 8, and numerical data (setting values) are shown in Tables 12, 13, and 14, and aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refractive power with a convex surface facing the exit side
  • the second lens has a negative refractive power with a concave surface facing the object side.
  • the three lenses have positive refractive power, and the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 12 shows the cover glass corresponding to each surface number of the eyepiece optical system for the viewfinder, the radius of curvature, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface.
  • Table 13 shows the aspheric coefficient of the predetermined surface.
  • Table 14 shows the value of each surface interval that is variable by diopter adjustment.
  • FIG. 9 shows spherical aberration, astigmatism, and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis represents the pupil height
  • the horizontal axis represents the focus position
  • the vertical axis represents the panel height from the optical axis
  • the horizontal axis represents the focus position
  • the axis indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • Example 4 although the focal length of the second lens is short, the upper limit of conditional expression (3) is not exceeded, so that the refractive power of the second lens does not become too large, and the coma. An imaging optical system excellent in imaging performance was obtained, with aberrations, astigmatism, and field curvature corrected satisfactorily. Moreover, eye relief thi12 was also able to ensure 15.000 mm.
  • FIG. 10 The basic configuration of the lens system in the fifth embodiment is shown in FIG. 10. Numerical data (setting values) are shown in Tables 15, 16, and 17, and aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refractive power with a convex surface facing the exit side
  • the second lens has a negative refractive power with a concave surface facing the object side.
  • the three lenses have positive refractive power, and the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 15 shows the cover glass corresponding to each surface number of the eyepiece optical system for viewfinder, the radius of curvature, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface.
  • Table 16 shows the aspheric coefficient of the predetermined surface.
  • Table 17 shows the value of each surface interval that can be changed by diopter adjustment.
  • FIG. 11 shows spherical aberration, astigmatism, and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis represents the pupil height
  • the horizontal axis represents the focus position
  • the vertical axis represents the panel height from the optical axis
  • the horizontal axis represents the focus position
  • the axis indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • Example 5 although the focal length of the first lens is short, the focal length of the second lens is long, and the focal length of the third lens is long, the lower limit value of the conditional expression (2) and the conditional expression ( By preventing the lower limit of 3) and the upper limit of conditional expression (4) from being exceeded, the refractive power of the first lens does not become too large, and distortion is corrected well, and the refractive power of the second lens. Does not become too small and the refractive power of the third lens does not become too small, it is possible to obtain an imaging optical system with excellent imaging performance while achieving compactness. Moreover, eye relief thi12 was also able to ensure 15.000 mm.
  • FIG. 12 The basic configuration of the lens system in Embodiment 6 is shown in FIG. 12, and numerical data (setting values) are shown in Table 18, Table 19, and Table 20, and aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refractive power with a convex surface facing the exit side
  • the second lens has a negative refractive power with a concave surface facing the object side
  • the three lenses have positive refractive power
  • the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 18 shows each cover glass corresponding to each surface number of the finder eyepiece optical system, the radius of curvature, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface.
  • Table 19 shows the aspheric coefficient of the predetermined surface.
  • Table 20 shows the values of the surface spacings that can be varied by diopter adjustment.
  • FIG. 13 shows spherical aberration, astigmatism, and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis represents the pupil height
  • the horizontal axis represents the focus position
  • the vertical axis represents the panel height from the optical axis
  • the horizontal axis represents the focus position
  • the axis indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • the distance between the first lens and the second lens becomes too large by not exceeding the upper limit value of the conditional expression (2) even though the focal length of the first lens is long. Accordingly, an imaging optical system that is excellent in imaging performance with various aberrations corrected favorably while achieving compactness is obtained.
  • the basic configuration of the lens system in the seventh embodiment is shown in FIG. 14, and numerical data (setting values) are shown in Table 21, Table 22, and Table 23.
  • the aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refractive power with a convex surface facing the exit side
  • the second lens has a negative refractive power with a concave surface facing the object side.
  • the three lenses have positive refractive power, and the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 21 shows each cover glass corresponding to each surface number of the finder eyepiece optical system, the radius of curvature, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface.
  • Table 22 shows the aspheric coefficient of the predetermined surface.
  • Table 23 shows the values of the distances between the surfaces that are varied by diopter adjustment.
  • FIG. 15 shows spherical aberration, astigmatism, and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis represents the pupil height
  • the horizontal axis represents the focus position
  • the vertical axis represents the panel height from the optical axis
  • the horizontal axis represents the focus position
  • the axis indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • Example 7 although the focal length of the second lens is short and the focal length of the third lens is short, the upper limit value of conditional expression (3) and the lower limit value of conditional expression (4) are not exceeded. As a result, the refractive power of the second lens is not excessively increased, and the refractive power of the third lens is not excessively increased, so that coma, astigmatism, and field curvature are corrected well, thereby improving the imaging performance. An excellent imaging optical system can be obtained. Moreover, eye relief thi12 was also able to ensure 15.000 mm.
  • the basic configuration of the lens system in Embodiment 8 is shown in FIG. 16, and numerical data (setting values) are shown in Table 24, Table 25, and Table 26.
  • the aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refractive power with a convex surface facing the exit side
  • the second lens has a negative refractive power with a concave surface facing the object side
  • the three lenses have positive refractive power
  • the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 24 shows the cover glass corresponding to each surface number of the eyepiece optical system for the finder, the curvature radius, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface.
  • Table 25 shows the aspheric coefficient of the predetermined surface.
  • Table 26 shows the value of each surface interval that is variable by diopter adjustment.
  • FIG. 17 shows spherical aberration, astigmatism and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis represents the pupil height
  • the horizontal axis represents the focus position
  • the vertical axis represents the panel height from the optical axis
  • the horizontal axis represents the focus position
  • the axis indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • various aberrations are favorably corrected by not exceeding the upper limit value and the lower limit value of conditional expressions (1) to (5), and the eye relief thi12 is as long as 16.200.
  • a system is obtained.
  • FIG. 18 The basic configuration of the lens system according to Embodiment 9 is shown in FIG. 18. Numerical data (setting values) are shown in Table 27, Table 28, and Table 29, and aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refracting power with a convex surface facing the exit side
  • the second lens has a negative refracting power with a concave surface facing the object side.
  • the three lenses have positive refractive power, and the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 27 shows the cover glass corresponding to each surface number of the eyepiece optical system for viewfinder, the curvature radius, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface.
  • Table 28 shows the aspheric coefficient of the predetermined surface.
  • Table 29 shows the values of the distances between the surfaces that are varied by diopter adjustment.
  • FIG. 19 shows spherical aberration, astigmatism, and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis represents the pupil height
  • the horizontal axis represents the focus position
  • the vertical axis represents the panel height from the optical axis
  • the horizontal axis represents the focus position
  • the axis indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • the ninth embodiment it is possible to obtain an imaging optical system in which various aberrations are favorably corrected by not exceeding the upper and lower limits of the conditional expressions (1) to (4). Moreover, eye relief thi12 was also able to ensure 15.000 mm.
  • the basic configuration of the lens system in the tenth embodiment is shown in FIG. 20, and numerical data (setting values) are shown in Table 30, Table 31, and Table 32.
  • the aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refractive power with a convex surface facing the exit side
  • the second lens has a negative refractive power with a concave surface facing the object side.
  • the three lenses have positive refractive power, and the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 30 shows each cover glass corresponding to each surface number of the finder eyepiece optical system, the radius of curvature, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface.
  • Table 31 shows the aspheric coefficient of the predetermined surface.
  • Table 32 shows the value of each surface interval that is variable by diopter adjustment.
  • FIG. 21 shows spherical aberration, astigmatism, and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis is the height of the pupil
  • the horizontal axis is the focus position
  • the vertical axis is the panel height from the optical axis
  • the horizontal axis is the focus position
  • the vertical axis in the distortion diagram indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • Example 10 although the focal length of the second lens is long, the refractive power of the second lens is not reduced too much by preventing the lower limit of conditional expression (4) from being exceeded. An imaging optical system in which aberrations, astigmatism, and field curvature were corrected satisfactorily was obtained.
  • the eye relief thi12 could also be secured at 15.500 mm.
  • the basic configuration of the lens system in the eleventh embodiment is shown in FIG. 22, and numerical data (setting values) are shown in Table 33, Table 34, and Table 35.
  • the aberration diagrams showing spherical aberration, astigmatism, and distortion are shown in FIG. Each is shown in FIG.
  • the first lens has a positive refractive power with a convex surface facing the exit side
  • the second lens has a negative refractive power with a concave surface facing the object side.
  • the three lenses have positive refractive power, and the first, second, and third lenses each form an aspheric surface on both sides.
  • Table 33 shows the cover glass corresponding to each surface number of the eyepiece optical system for the finder, the curvature radius, the surface interval, the refractive index, and the Abbe number of each lens.
  • the symbol * in the table represents an aspheric surface.
  • Table 34 shows the aspheric coefficient of the predetermined surface.
  • Table 35 shows the values of the distances between the surfaces which are varied by diopter adjustment.
  • FIG. 23 shows spherical aberration, astigmatism and distortion, respectively, (a) at -1 diopter, (b) at -3 diopter, and (c) at +1 diopter.
  • the vertical axis represents the pupil height
  • the horizontal axis represents the focus position
  • the vertical axis represents the panel height from the optical axis
  • the horizontal axis represents the focus position
  • the axis indicates the panel height from the optical axis
  • the horizontal axis indicates the amount of distortion.
  • Example 11 the lower limit value of conditional expression (2) and the upper limit value of conditional expression (4) are not exceeded even though the focal length of the first lens is short and the focal length of the third lens is long.
  • the refractive power of the first lens is not increased too much and the distortion is corrected well, and the refractive power of the third lens is not reduced too much, so that the image forming performance is improved while achieving compactness.
  • An excellent imaging optical system was obtained.
  • eye relief thi12 was also able to ensure 16.000 mm.
  • the eyepiece optical system for a finder of the present embodiment it is suitable for a finder device using an image display element and a camera equipped with the finder device, and an imaging device equipped with a small, thin and high optical performance finder can be realized. .
  • FIG. 24 shows a cross-sectional view of a finder apparatus 200 using the finder eyepiece optical system 100 according to an embodiment of the present invention.
  • the finder eyepiece optical system 100 and the image display element 210 such as liquid crystal or organic EL (Electroluminescence) are defined and held by a housing 220.
  • the image display element 210, the panel cover glass 120, the dustproof cover glass 130, and the finder cover glass 170 are held by the casing 220 itself, and the first lens 140, the second lens 150, and the third lens 160 are held by the lens frame 230.
  • Diopter adjustment is performed by moving along the optical axis in the housing 220.
  • An image signal input to the image display element 210 as an electric signal is converted into a visible light image by the image display element 210 and displayed on the display surface 110 of the image display element 210, and is sufficiently transmitted through the eyepiece optical system 100 for the viewfinder. It is possible to secure an eye relief and observe an image in which aberrations are corrected satisfactorily.
  • the eyepiece optical system 100 for a finder is thin and low-profile, a compact finder device 200 can be realized, and application to various imaging devices can be expected.
  • FIG. 25 is a cross-sectional view of an imaging apparatus 300 using a finder apparatus 200 configured by the finder eyepiece optical system 100 according to an embodiment of the present invention.
  • the subject image captured via the imaging optical system 310 and imaged on the imaging surface of the image sensor 320 such as a CCD (Charge Coupled Device) or CMOS (Complementary Mental-Oxide Semiconductor) device is converted by the photoelectric conversion function of the image sensor 320. It is converted into an electrical signal.
  • the image electrical signal output from the image sensor is subjected to various image processing by an image signal processing unit 330 configured by a DSP (Digital Signal Processor) or the like.
  • the processed image signal is output to the video display element 210 for monitoring the subject in addition to being recorded on the recording medium 340 and the like.
  • the image signal input to the video display element 210 can be observed as a visible light image in which sufficient eye relief is secured by the finder apparatus 200 and aberrations are corrected satisfactorily.
  • this finder device 200 can be realized in a compact manner, it contributes to the downsizing of the built-in imaging device. Therefore, since the imaging device itself is small and sufficient eye relief is secured and a good subject can be observed, a comfortable shooting environment can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 物体側から射出側へ順に、射出側に凸面を向けた形状の正の屈折力を有する第1レンズと、物体側に凹面を向けた形状の負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、カバーガラスより構成され、第1、第2、第3レンズにおいて両面が非球面である接眼光学系であって、視度調整のために、第1、第2、第3レンズが光軸に沿って移動し、接眼光学系全系の焦点距離をf、接眼光学系が被写体とする映像表示面の対角長をH、前記第1レンズの焦点距離をf1、第2レンズの焦点距離をf2、第3レンズの焦点距離をf3とするとき、下記の条件式を満足する接眼光学系を提供する。 【数1】 0.40<H/f<0.61 ・・・(1) 0.80<f1/f<1.30  ・・・(2) -0.80<f2/f<-0.50 ・・(3) 0.50<f3/f<0.90 ・・・(4)

Description

ファインダー用接眼光学系、ファインダー装置及びそれを用いた撮像装置
 本発明は、小型表示パネルなどの物体を拡大して肉眼で観察する接眼光学系、ファインダー装置及びそれを用いた撮像装置に関する。例えばデジタルカメラやビデオカメラ等に用いられるファインダー装置としての電子ビューファインダーに用いられる接眼光学系およびそれを用いた撮像装置に関する。
 近年、カメラ等の撮像装置には、液晶や有機ELといった小型表示パネルを使用した電子ビューファインダーが本体に組み込まれて使用され、または、外付けのファインダー装置として取り付けられ使用されている。
 こうしたカメラ等の撮像装置に用いるファインダー装置に使用される接眼光学系として、装置自体の小型・薄型化に伴って薄型・低背であることが求められている。更に、ファインダーを介した被写体の観測がし易いように、十分なアイレリーフを確保し、且つ良好な像性能を有することが必要となる。
 例えば、日本国特許公開2002-082290号公報は、物体側(表示面側)から射出側(射出瞳側)に向かって順に、正レンズ、負レンズ、正レンズの3枚のレンズで構成したタイプの接眼光学系を開示している。このような正負正の屈折力配置としたトリプレットタイプの接眼光学系は、少ないレンズ枚数でありながら球面収差などの収差補正が行ないやすく、高性能化に有利となる。
 しかしながら、日本国特許公開2002-082290号公報に開示された接眼光学系は、全系の焦点距離が長く、表示面を含めた光学系全体の小型化や視野角の確保において不利となる。
 また、製造コストを抑制する観点から、光学系に使用するレンズ素材としてプラスチック(樹脂)を使用する場合には、光学ガラスを使用する場合に比べ高い屈折率の選択が難しい。この結果、レンズが大きな厚みとなってしまい、小型化が難しくなる。更にはプラスチックを使用したレンズはガラス製レンズに比べ擦り傷が入り易くカバーガラスが必用となる。そのため長いアイレリーフを確保することが難しくなる。
 本発明は、上述の課題に鑑み、薄型・低背でありながら、十分なアイレリーフを確保し、良好に補正された像を観測することが出来るファインダー用接眼光学系及びそれを用いた撮像装置の提供を一の目的とする。
 本発明の一の態様にかかる接眼光学系は、物体側から射出側へ順に、射出側に凸面を向けた形状の正の屈折力を有する第1レンズと、物体側に凹面を向けた形状の負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、カバーガラスより構成され、第1、第2、第3レンズはいずれも両面が非球面であって、視度調整のために、第1、第2、第3レンズが光軸に沿って移動し、接眼光学系全系の焦点距離をf、接眼光学系が被写体とする映像表示面の対角長をH、前記第1レンズの焦点距離をf1、第2レンズの焦点距離をf2、第3レンズの焦点距離をf3とするとき、以下の条件式を満足する。
Figure JPOXMLDOC01-appb-M000004
 好適には、映像表示面からカバーガラス射出側の面までの距離をLとするとき、以下の条件式を満足する。
Figure JPOXMLDOC01-appb-M000005
 更に好適には、映像表示面から第1レンズ物体側頂点までの光学的距離で、視度調整時に最も短くなるときの光学的距離をbf(min)とするとき、以下の条件式を満足する。
Figure JPOXMLDOC01-appb-M000006
 また、本発明の一の態様にかかるファインダー装置は、上述のファインダー用接眼光学系と、映像を表示する表示面を持つ映像表示素子を有し、ファインダー用接眼光学系は、映像表示素子の表示面に表示された映像を拡大して視認可能である。
 また、本発明の一の態様にかかる撮像装置は、上述のファインダー装置と、撮像光学系と、撮像光学系により形成される光学像を電気信号に変換する撮像素子とを備え、撮像素子で撮像した映像を映像表示素子に出力して、ファインダー用接眼光学系にて視認可能である。
 上述の構成によれば、薄型・低背でありながら、十分なアイレリーフを確保し、良好に補正された像を観測することが出来る。
本実施形態のファインダー用接眼光学系の基本構成、およびその各要素に対して付与した面番号を示す図である。 実施例1において採用したファインダー用接眼光学系の構成を示す図である。 実施例1において、球面収差、非点収差、および歪曲収差を示す収差図である。 実施例2において採用したファインダー用接眼光学系の構成を示す図である。 実施例2において、球面収差、非点収差、および歪曲収差を示す収差図である。 実施例3において採用したファインダー用接眼光学系の構成を示す図である。 実施例3において、球面収差、非点収差、および歪曲収差を示す収差図である。 実施例4において採用したファインダー用接眼光学系の構成を示す図である。 実施例4において、球面収差、非点収差、および歪曲収差を示す収差図である。 実施例5において採用したファインダー用接眼光学系の構成を示す図である。 実施例5において、球面収差、非点収差、および歪曲収差を示す収差図である。 実施例6において採用したファインダー用接眼光学系の構成を示す図である。 実施例6において、球面収差、非点収差、および歪曲収差を示す収差図である。 実施例7において採用したファインダー用接眼光学系の構成を示す図である。 実施例7において、球面収差、非点収差、および歪曲収差を示す収差図である。 実施例8において採用したファインダー用接眼光学系の構成を示す図である。 実施例8において、球面収差、非点収差、および歪曲収差を示す収差図である。 実施例9において採用したファインダー用接眼光学系の構成を示す図である。 実施例9において、球面収差、非点収差、および歪曲収差を示す収差図である。 実施例10において採用したファインダー用接眼光学系の構成を示す図である。 実施例10において、球面収差、非点収差、および歪曲収差を示す収差図である。 実施例11において採用したファインダー用接眼光学系の構成を示す図である。 実施例11において、球面収差、非点収差、および歪曲収差を示す収差図である。 本発明の実施形態のファインダーシステムの基本構成を示す図である。 本発明の実施形態の撮像装置の基本構成を示す図である。
 以下、図面を参照しながら、本発明の実施形態を詳細に説明する。図1に実施の形態のファインダー用接眼光学系100の構成を光学断面で示す。本実施形態のファインダー用接眼光学系100は、物体側から順に、映像表示素子の表示面110、パネルカバーガラス120、防塵カバーガラス130、第1レンズ140、第2レンズ150、第3レンズ160、ファインダーカバーガラス170が配置される3枚レンズ構成を有する。
 パネルカバーガラス120からアイポイント180まで順に各要素の面に対して記されている数字は面番号を示している。映像表示素子は、撮像装置が撮像した画像を表示するための素子で、例えば液晶やEL(Electroluminescence)等のデバイスが用いられる。
 ファインダー用接眼光学系100は、画像を表示した映像表示素子110を拡大して観察するための光学系である。このため、例えば表示素子110にゴミなどが付着(正確にはパネルカバーガラス120の面2に付着)している場合には、このゴミをも拡大して観察することとなる。本実施形態では、パネルカバーガラス120の2面と第1レンズ130の5面とのディスタンスを充分確保した上で、防塵用カバーガラス130が設けられている。
 本実施形態のファインダー用接眼光学系100のレンズ系は、物体側から射出側へ順に、射出側に凸面を向けた形状の正の屈折力を有する第1レンズと、物体側に凹面を向けた形状の負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズの3枚の単レンズより構成されており、全てプラスチック素材を使用している。
 第1レンズは射出側に凸面を向ける形状とし、かつ、両面を非球面で構成することにより、コマ収差および歪曲収差の補正に有利となる。
 第2レンズは物体側に凹面を向ける形状とし、かつ、両面を非球面で構成することにより、十分な視野角の確保や、射出瞳サイズの確保に有利となる。そして、コマ収差、像面湾曲、非点収差等の諸収差を良好に補正することが可能となる。
 第3レンズは正の屈折力とし、かつ、両面を非球面とすることにより、球面収差の補正に有利となる。
 このように、第1、第2、第3は、レンズ素材としてプラスチック(樹脂)を使用しているために、何も非球面で構成することができる。
 また、視度調整は第1、第2、第3レンズを一体として光軸方向に移動させて行ない、観察者の視度に拘わらず、何れの視度においても良好に諸収差を補正している。
 さらに、接眼光学系全系の焦点距離をf、映像表示面の対角長をH、前記第1レンズの焦点距離をf1、第2レンズの焦点距離をf2、第3レンズの焦点距離をf3とするとき、接眼光学系は、下記の条件式(1)乃至(4)を満足するように構成される。
Figure JPOXMLDOC01-appb-M000007
 条件式(1)は接眼光学系の全系の焦点距離と映像表示面の対角長の比を規定した式である。条件式(1)の上限値を超えた場合、コマ収差の補正が困難となる。逆に下限値を超えた場合、表示映像の観測される大きさが小さくなり好ましくない。
 条件式(2)は接眼光学系の全系の焦点距離に対する第1レンズの焦点距離の比を規定した式である。条件式(2)の上限値を超えた場合、第1レンズと第2レンズとの間隔が大きくなりコンパクト化に不利となる。逆に下限値を超えた場合、第1レンズの屈折力が大きくなり歪曲収差の補正に不利となる。
 条件式(3)は接眼光学系の全系の焦点距離に対する第2レンズの焦点距離の比を規定した式である。条件式(3)の上限値を超えて第2レンズの屈折力が大きくなりすぎても、逆に下限値を超えて第2レンズの屈折力が小さくなりすぎても、コマ収差、非点収差、像面湾曲の補正が困難となる。
 条件式(4)は接眼光学系の全系の焦点距離に対する第3レンズの焦点距離の比を規定した式である。条件式(4)の上限値を超えた場合、第3レンズの屈折力が小さくなるためコンパクト化に不利となる。逆に下限値を超えた場合、第3レンズの屈折力が大きくなるため球面収差、コマ収差、非点収差、像面湾曲の補正が困難となる。
 そしてこれら(1)乃至(4)式を満たすことで、充分なアイレリーフを確保することができる。さらに、視度補正による第1、第2、第3レンズを一体で光軸方向への移動を許容するカバーガラスを設けた場合においても、カバーガラス射出面から目までの距離を後述する数値実施例からも明らかなように15.000mm以上確保することができる。
 また、映像表示面からカバーガラス射出側の面までの距離をLとするとき、接眼光学系は下記の条件式(5)を満足するように構成される。
Figure JPOXMLDOC01-appb-M000008
 条件式(5)は接眼光学系の全系の焦点距離に対する接眼光学系の全長(映像表示面から第3レンズ射出側の面頂点までの距離)の比を規定した式である。条件式(5)の上限値を超えた場合、接眼光学系が大きくなり好ましくない。逆に下限値を超えた場合、アイレリ-フを確保することが困難となる。
 また、映像表示面から第1レンズ物体側頂点までの光学的距離で、視度調整時にもっとも短くなるときの光学的距離をbf(min)とするとき、接眼光学系は下記の条件式(6)を満足するように構成される。
Figure JPOXMLDOC01-appb-M000009
 条件式(6)は接眼光学系のバックフォーカス(映像表示面から第1レンズ物体側頂点までの光学的距離)を規定した式である。条件式(6)の上限値を超えた場合、接眼光学系が大きくなり好ましくない。逆に下限値を超えた場合、ゴミの付着を防ぐ防塵カバーガラスを入れるスペースを確保することが困難となる。
 以下に、本発明の実施の形態を、実施例1から5の数値実施例及び図面によって具体的に示す。
 1から11の数値実施例において、接眼光学系全系の焦点距離、映像表示面の対角長、各レンズ単体の焦点距離、接眼光学系の全長は次の表1に記載の通りである。また、同じく1から11の数値実施例において、条件式(1)乃至(6)の数値データならびにアイレリーフthi12(カバーガラス射出側の面よりアイポイントまでの距離)は、次の表2に記載の値になる。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 各数値実施例において、物体側より順に第i番目の面の曲率半径、第i番目の面と第i+1番目の面の間隔(レンズ厚あるいは空気間隔)、第i番目のレンズの材質の屈折率とアッベ数を記載する。また、各数値実施例において瞳径はφ4mmで設定する。
 非球面形状は、光軸方向にY軸、光軸と垂直方向にh軸、光の進行方向を正とし、Rを近軸曲率半径、各非球面係数をK、A、B、C、Dとしたとき、以下の式で表される。
Figure JPOXMLDOC01-appb-M000012
 データ中、面番号の右側に付されたアスタリスク“*”は、そのレンズ面が非球面形状であることを示している。
 また、収差図において(a)は-1ディオプターの視度調整時、(b)は-3ディオプターの視度調整時、(c)は+1ディオプターの視度調整時の球面収差(LONGITUDINAL SPHERICAL ABER.)、非点収差(ASTIGMATIC FIELD CURVES)、歪曲収差(DISTORTION)をそれぞれ示す。
 各実施例によれば、十分なアイレリーフを確保しつつ、カメラを薄型化することを可能とし、画像を大きく、かつ、良好に補正された像で観測することが出来るファインダー用接眼光学系を実現することができる。
 実施の形態1におけるレンズ系の基本構成は図2に示され、各数値データ(設定値)は表3、表4、表5に、球面収差、非点収差、および歪曲収差を示す収差図は図3にそれぞれ示される。
 図2に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表3は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している(以下の実施例においても同様)。表4は所定面の非球面係数を示している。
表5は視度調整によって可変する各面間隔の値を示している。
<数値実施例1>
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 図3は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図3の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例1によれば、第1レンズの焦点距離が長いにも関わらず、条件式(2)の上限値を超えないようにすることにより、第1レンズと第2レンズの間隔が大きくなりすぎず、コンパクト化を図りつつ、諸収差が良好に補正され、結像性能に優れた撮像光学系が得られる。また、第3レンズの焦点距離が短いにも関わらず、条件式(4)の下限値を超えないようにすることにより、第3レンズの屈折力が大きくなりすぎず、特に球面収差、コマ収差、非点収差、像面湾曲等の諸収差が良好に補正され、結像性能に優れた撮像光学系が得られた。またアイレリーフthi12は15.000mm確保することができた。
 実施の形態2におけるレンズ系の基本構成は図4に示され、各数値データ(設定値)は表6、表7、表8に、球面収差、非点収差、および歪曲収差を示す収差図は図5にそれぞれ示される。
 図2に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表6は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している。表7は所定面の非球面係数を示している。表8は視度調整によって可変する各面間隔の値を示している。
<数値実施例2>
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 図5は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図5の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例2によれば、条件式(1)から(4)の上限値および下限値を超えないようにすることにより諸収差が良好に補正され、さらにアイレリーフthi12を17.000mmという長いディスタンスを確保できた撮像光学系が得られる。
 実施の形態3におけるレンズ系の基本構成は図6に示され、各数値データ(設定値)は表9、表10、表11に、球面収差、非点収差、および歪曲収差を示す収差図は図7にそれぞれ示される。
 図6に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表9は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している。表10は所定面の非球面係数を示している。表11は視度調整によって可変する各面間隔の値を示している。
<数値実施例3>
 
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 図7は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図7の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例3によれば、第3レンズの焦点距離が短いにも関わらず、条件式(4)の下限値を超えないことにより、第3レンズの屈折力が大きくなりすぎず、コンパクト化を図りつつ、結像性能に優れた撮像光学系が得られる。またアイレリーフthi12も15.000mm確保することができた。
 実施の形態4におけるレンズ系の基本構成は図8に示され、各数値データ(設定値)は表12、表13、表14に、球面収差、非点収差、および歪曲収差を示す収差図は図9にそれぞれ示される。
 図8に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表12は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している。表13は所定面の非球面係数を示している。表14は視度調整によって可変する各面間隔の値を示している。
<数値実施例4>
 
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 図9は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図9の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例4によれば、第2レンズの焦点距離が短いにも関わらず、条件式(3)の上限値を超えないようにすることにより、第2レンズの屈折力が大きくなりすぎず、コマ収差、非点収差、像面湾曲が良好に補正され、結像性能に優れた撮像光学系が得られた。またアイレリーフthi12も15.000mm確保することができた。
 実施の形態5におけるレンズ系の基本構成は図10に示され、各数値データ(設定値)は表15、表16、表17に、球面収差、非点収差、および歪曲収差を示す収差図は図11にそれぞれ示される。
 図10に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表15は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している。表16は所定面の非球面係数を示している。表17は視度調整によって可変する各面間隔の値を示している。
<数値実施例5>
 
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 図11は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図11の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例5によれば、第1レンズの焦点距離が短く、第2レンズの焦点距離が長く、第3レンズの焦点距離が長いにも関わらず、条件式(2)の下限値および条件式(3)の下限値および条件式(4)の上限値を超えないようにすることにより、第1レンズの屈折力が大きくなりすぎず歪曲収差が良好に補正され、また、第2レンズの屈折力が小さくなりすぎず、かつ、第3レンズの屈折力が小さくなりすぎないことにより、コンパクト化を図りつつ、結像性能に優れた撮像光学系が得られる。またアイレリーフthi12も15.000mm確保することができた。
 実施の形態6におけるレンズ系の基本構成は図12に示され、各数値データ(設定値)は表18、表19、表20に、球面収差、非点収差、および歪曲収差を示す収差図は図13にそれぞれ示される。
 図12に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表18は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している。表19は所定面の非球面係数を示している。表20は視度調整によって可変する各面間隔の値を示している。
<数値実施例6>
 
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 図13は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図13の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例6によれば、第1レンズの焦点距離が長いにも関わらず、条件式(2)の上限値を超えないようにすることにより、第1レンズと第2レンズの間隔が大きくなりすぎず、コンパクト化を図りつつ、諸収差が良好に補正され、結像性能に優れた撮像光学系が得られる。
 また、第3レンズの焦点距離が短いにも関わらず、条件式(4)の下限値を超えないようにすることにより、第3レンズの屈折力が大きくなりすぎず、特に球面収差、コマ収差、非点収差、像面湾曲等の諸収差が良好に補正され、結像性能に優れた撮像光学系が得られる。またアイレリーフthi12も16.200mm確保することができた。
 実施の形態7におけるレンズ系の基本構成は図14に示され、各数値データ(設定値)は表21、表22、表23に、球面収差、非点収差、および歪曲収差を示す収差図は図15にそれぞれ示される。
 図14に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表21は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している。表22は所定面の非球面係数を示している。表23は視度調整によって可変する各面間隔の値を示している。
<数値実施例7>
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 図15は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図15の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例7によれば、第2レンズの焦点距離が短く、第3レンズの焦点距離が短いにも関わらず、条件式(3)の上限値および条件式(4)の下限値を超えないようにすることにより、第2レンズの屈折力が大きくなりすぎず、第3レンズの屈折力が大きくなりすぎないことによりコマ収差、非点収差、像面湾曲が良好に補正され、結像性能に優れた撮像光学系が得られる。またアイレリーフthi12も15.000mm確保することができた。
 実施の形態8におけるレンズ系の基本構成は図16に示され、各数値データ(設定値)は表24、表25、表26に、球面収差、非点収差、および歪曲収差を示す収差図は図17にそれぞれ示される。
 図16に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表24は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している。表25は所定面の非球面係数を示している。表26は視度調整によって可変する各面間隔の値を示している。
<数値実施例8>
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 図17は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図17の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例8によれば、条件式(1)から(5)の上限値および下限値を超えないようにすることにより諸収差が良好に補正され、さらにアイレリーフthi12が16.200と長い撮像光学系が得られる。
 実施の形態9におけるレンズ系の基本構成は図18に示され、各数値データ(設定値)は表27、表28、表29に、球面収差、非点収差、および歪曲収差を示す収差図は図19にそれぞれ示される。
 図18に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表27は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している。表28は所定面の非球面係数を示している。表29は視度調整によって可変する各面間隔の値を示している。
<数値実施例9>
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 図19は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図19の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例9によれば、条件式(1)から(4)の上限値および下限値を超えないようにすることにより諸収差が良好に補正された撮像光学系が得られる。またアイレリーフthi12も15.000mm確保することができた。
 実施の形態10におけるレンズ系の基本構成は図20に示され、各数値データ(設定値)は表30、表31、表32に、球面収差、非点収差、および歪曲収差を示す収差図は図21にそれぞれ示される。
 図20に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表30は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している。表31は所定面の非球面係数を示している。表32は視度調整によって可変する各面間隔の値を示している。
<数値実施例10>
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
 図21は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図21の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例10によれば、第2レンズの焦点距離が長いのも関わらず、条件式(4)の下限値を超えないようにすることにより、第2レンズの屈折力が小さくなりすぎず、コマ収差、非点収差、像面湾曲が良好に補正された撮像光学系が得られた。またアイレリーフthi12も15.500mm確保することができた。
 実施の形態11におけるレンズ系の基本構成は図22に示され、各数値データ(設定値)は表33、表34、表35に、球面収差、非点収差、および歪曲収差を示す収差図は図23にそれぞれ示される。
 図22に示すように、第1レンズは射出側に凸面を向けた形状で正の屈折力を有し、第2レンズは物体側に凹面を向けた形状で負の屈折力を有し、第3レンズは正の屈折力を有して、第1、第2、第3レンズはそれぞれ両面に非球面を形成する。
 表33は、ファインダー用接眼光学系の各面番号に対応した各カバーガラス、各レンズの曲率半径、面間隔、屈折率、およびアッべ数を示している。表中の記号*は非球面の面を表している。表34は所定面の非球面係数を示している。表35は視度調整によって可変する各面間隔の値を示している
<数値実施例11>
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
 図23は球面収差、非点収差、歪曲収差を、それぞれ(a)は-1ディオプター時、(b)は-3ディオプター時、(c)は+1ディオプター時について示している。
 図23の球面収差図において縦軸は瞳の高さ、横軸はフォーカス位置を、非点収差図において縦軸は光軸からのパネル高さ、横軸はフォーカス位置を、歪曲収差図において縦軸は光軸からのパネル高さ、横軸は歪量をそれぞれ示している。
 実施例11によれば、第1レンズの焦点距離が短く、第3レンズの焦点距離が長いにも関わらず、条件式(2)の下限値および条件式(4)の上限値を超えないようにすることにより、第1レンズの屈折力が大きくなりすぎず歪曲収差が良好に補正され、また、第3レンズの屈折力が小さくなりすぎないことにより、コンパクト化を図りつつ、結像性能に優れた撮像光学系が得られた。またアイレリーフthi12も16.000mm確保することができた。
 以上、本実施形態のファインダー用接眼光学系について説明したが、本発明はこれらの実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変形が可能である。
 本実施形態のファインダー用接眼光学系によれば、映像表示素子を用いたファインダー装置およびそれを搭載するカメラ等に好適であり、小型、薄型で高い光学性能のファインダーを備えた撮像装置が実現できる。
 図24に本発明の実施形態によるファインダー用接眼光学系100を用いたファインダー装置200の断面図を示す。ファインダー用接眼光学系100および液晶や有機EL(Electroluminescence)等の映像表示素子210は筐体220によって位置関係を規定、保持される。
 映像表示素子210、パネルカバーガラス120、防塵カバーガラス130、ファインダーカバーガラス170は筐体220自体に保持され、第1レンズ140、第2レンズ150、第3レンズ160は鏡枠230に保持されて筐体220内で光軸に沿って移動することによって視度調整が行なわれる。
 電気信号として映像表示素子210に入力される画像信号が映像表示素子210によって可視光の映像に変換されて映像表示素子210の表示面110に表示され、ファインダー用接眼光学系100を介して十分なアイレリーフを確保し、収差を良好に補正した像を観測することが可能となる。
 また、ファインダー用接眼光学系100が薄型・低背であることから、コンパクトなファインダー装置200が実現可能となり、様々な撮像装置への応用が期待できる。
 図25に本発明の実施形態によるファインダー用接眼光学系100によって構成されるファインダー装置200を用いた撮像装置300の断面図を示す。撮像光学系310を介して取り込まれ、CCD(Charge Coupled Device)やCMOS(Complementary Mental-Oxide Semiconductor device)等の撮像素子320の撮像面に結像した被写体像は、撮像素子320の光電変換機能によって電気信号に変換される。撮像素子から出力された画像の電気信号は、DSP(Digital Signal Processor)等で構成される画像信号処理部330によって様々な画像処理が施される。処理が施された画像信号は記録媒体340に記録される等の他に、被写体のモニタ用として映像表示素子210に出力される。
 映像表示素子210に入力された画像信号はファインダー装置200によって十分なアイレリーフを確保し、収差を良好に補正した可視光像として観測することが可能となる。
 このファインダー装置200はコンパクトに実現可能であるため、組み込む撮像機器の小型可に貢献する。従って撮像機器自体も小型で十分なアイレリーフが確保されて良好な被写体を観測できることで、快適な撮影環境を提供可能となる。
 本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。
 本出願は、2013年4月25日出願の日本特許出願・出願番号2013―092883に基づくものであり、その内容はここに参照として取り込まれる。
100,100A~100K・・・ファインダー用接眼光学系
110 ・・・映像表示素子の表示面
120 ・・・パネルカバーガラス
130 ・・・防塵カバーガラス
140 ・・・第1レンズ
150 ・・・第2レンズ
160 ・・・第3レンズ
170 ・・・ファインダーカバーガラス
180 ・・・アイポイント
200 ・・・ファインダー装置
210 ・・・映像表示素子
220 ・・・筐体
230 ・・・鏡枠
300 ・・・撮像装置
310 ・・・撮像光学系
320 ・・・撮像素子
330 ・・・画像信号処理部
340 ・・・記録媒体

Claims (5)

  1.  物体側から射出側へ順に、射出側に凸面を向けた形状の正の屈折力を有する第1レンズと、物体側に凹面を向けた形状の負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、カバーガラスより構成され、前記第1、第2、第3レンズはいずれも両面が非球面である接眼光学系であって、
    視度調整のために、前記第1、第2、第3レンズが光軸に沿って移動し、
    前記接眼光学系全系の焦点距離をf、前記接眼光学系が被写体とする映像表示面の対角長をH、前記第1レンズの焦点距離をf1、第2レンズの焦点距離をf2、第3レンズの焦点距離をf3とするとき、下記の条件式(1)乃至(4)を満足する接眼光学系。
    Figure JPOXMLDOC01-appb-M000001
  2.  前記映像表示面から前記カバーガラス射出側の面までの距離をLとするとき、下記の条件式(5)を満足する請求項1に記載の前記接眼光学系。
    Figure JPOXMLDOC01-appb-M000002
  3.  前記映像表示面から前記第1レンズ物体側頂点までの光学的距離で、視度調整時にもっとも短くなるときの光学的距離をbf(min)とするとき、下記の条件式(6)を満足する請求項1に記載の前記接眼光学系。
    Figure JPOXMLDOC01-appb-M000003
  4.  請求項1に記載のファインダー用接眼光学系と、映像を表示する表示面を持つ映像表示素子を有し、前記ファインダー用接眼光学系は、前記映像表示素子の表示面に表示された映像を拡大して視認可能とするファインダー装置。
  5.  請求項4に記載のファインダー装置と、撮像光学系と、当該撮像光学系により形成される光学像を電気信号に変換する撮像素子とを備え、当該撮像素子で撮像した映像を前記映像表示素子に出力して、前記ファインダー用接眼光学系にて視認可能とする撮像装置。
PCT/JP2014/061626 2013-04-25 2014-04-24 ファインダー用接眼光学系、ファインダー装置及びそれを用いた撮像装置 WO2014175400A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-092883 2013-04-25
JP2013092883A JP2014215471A (ja) 2013-04-25 2013-04-25 ファインダー用接眼光学系、ファインダー装置及びそれを用いた撮像装置

Publications (1)

Publication Number Publication Date
WO2014175400A1 true WO2014175400A1 (ja) 2014-10-30

Family

ID=51791966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061626 WO2014175400A1 (ja) 2013-04-25 2014-04-24 ファインダー用接眼光学系、ファインダー装置及びそれを用いた撮像装置

Country Status (2)

Country Link
JP (1) JP2014215471A (ja)
WO (1) WO2014175400A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6257171B2 (ja) * 2013-05-20 2018-01-10 キヤノン株式会社 接眼光学系及びそれを有する撮像装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066342A (ja) * 2001-08-22 2003-03-05 Pentax Corp 内視鏡用接眼レンズ
JP2007058041A (ja) * 2005-08-26 2007-03-08 Canon Inc 接眼光学系及びそれを用いたファインダー系
JP2007264179A (ja) * 2006-03-28 2007-10-11 Fujinon Corp 接眼レンズ
JP2010134446A (ja) * 2008-10-29 2010-06-17 Panasonic Corp 撮像装置における接眼レンズ系、ファインダ光学系、電子ビューファインダ、および撮像装置
JP2011085872A (ja) * 2009-09-16 2011-04-28 Panasonic Corp 撮像装置における接眼レンズ系、ファインダ光学系、電子ビューファインダ、および撮像装置
JP2012042844A (ja) * 2010-08-23 2012-03-01 Olympus Imaging Corp 電子ビューファインダー
JP2012068302A (ja) * 2010-09-21 2012-04-05 Nikon Corp 観察光学系、当該観察光学系を備えたファインダ装置、および当該観察光学系の製造方法
JP2013152290A (ja) * 2012-01-24 2013-08-08 Sony Corp 接眼光学系及び撮像装置
JP2014074815A (ja) * 2012-10-04 2014-04-24 Nikon Corp 接眼光学系、光学機器及び観察方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009003105A (ja) * 2007-06-20 2009-01-08 Sony Corp ファインダー光学系及び撮像装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066342A (ja) * 2001-08-22 2003-03-05 Pentax Corp 内視鏡用接眼レンズ
JP2007058041A (ja) * 2005-08-26 2007-03-08 Canon Inc 接眼光学系及びそれを用いたファインダー系
JP2007264179A (ja) * 2006-03-28 2007-10-11 Fujinon Corp 接眼レンズ
JP2010134446A (ja) * 2008-10-29 2010-06-17 Panasonic Corp 撮像装置における接眼レンズ系、ファインダ光学系、電子ビューファインダ、および撮像装置
JP2011085872A (ja) * 2009-09-16 2011-04-28 Panasonic Corp 撮像装置における接眼レンズ系、ファインダ光学系、電子ビューファインダ、および撮像装置
JP2012042844A (ja) * 2010-08-23 2012-03-01 Olympus Imaging Corp 電子ビューファインダー
JP2012068302A (ja) * 2010-09-21 2012-04-05 Nikon Corp 観察光学系、当該観察光学系を備えたファインダ装置、および当該観察光学系の製造方法
JP2013152290A (ja) * 2012-01-24 2013-08-08 Sony Corp 接眼光学系及び撮像装置
JP2014074815A (ja) * 2012-10-04 2014-04-24 Nikon Corp 接眼光学系、光学機器及び観察方法

Also Published As

Publication number Publication date
JP2014215471A (ja) 2014-11-17

Similar Documents

Publication Publication Date Title
JP6478903B2 (ja) 撮像レンズ
JP6845484B2 (ja) 撮像光学系、レンズユニット及び撮像装置
WO2016092944A1 (ja) 撮像レンズおよび撮像装置
JPWO2017199633A1 (ja) 撮像レンズおよび撮像装置
JP6033658B2 (ja) 撮像レンズ
JP5644947B2 (ja) 広角レンズ,撮像光学装置及びデジタル機器
JP2017156570A (ja) 結像レンズ、カメラ装置、及びセンシング装置
US9651768B2 (en) Eyepiece lens and imaging apparatus
JP2006201674A (ja) 広角撮像レンズ
JP6001430B2 (ja) 撮像レンズ
TWM500897U (zh) 攝像透鏡及包括攝像透鏡的攝像裝置
JP2015176043A (ja) 撮像レンズおよび撮像レンズを備えた撮像装置
WO2014123136A1 (ja) 撮影光学系,撮像光学装置及びデジタル機器
JP6219183B2 (ja) 撮像レンズおよび撮像装置
TW202037956A (zh) 五片式廣角鏡片組
JP5886707B2 (ja) ファインダー用接眼光学系及びそれを用いた撮像装置
KR101724264B1 (ko) 촬영 렌즈계
US9477081B2 (en) Imaging lens and imaging apparatus
US20230114678A1 (en) Observation device and image pickup apparatus including the same
KR101724265B1 (ko) 촬영 렌즈계
JP6843697B2 (ja) 観察装置、撮像装置
WO2014175400A1 (ja) ファインダー用接眼光学系、ファインダー装置及びそれを用いた撮像装置
JP6736595B2 (ja) 接眼光学系及びそれを有する観察装置
JP6849452B2 (ja) 接眼光学系及びそれを有する観察装置、撮像装置
JP2009210656A (ja) ファインダー用接眼レンズ及びそれを用いた電子ビューファインダー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788595

Country of ref document: EP

Kind code of ref document: A1