WO2014175164A1 - Fab型抗体の分泌量を増大できるFd鎖遺伝子又はL鎖遺伝子 - Google Patents
Fab型抗体の分泌量を増大できるFd鎖遺伝子又はL鎖遺伝子 Download PDFInfo
- Publication number
- WO2014175164A1 WO2014175164A1 PCT/JP2014/060941 JP2014060941W WO2014175164A1 WO 2014175164 A1 WO2014175164 A1 WO 2014175164A1 JP 2014060941 W JP2014060941 W JP 2014060941W WO 2014175164 A1 WO2014175164 A1 WO 2014175164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amino acid
- fab
- antibody
- chain
- thr
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/24—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
- C07K16/241—Tumor Necrosis Factors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6845—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a cytokine, e.g. growth factors, VEGF, TNF, a lymphokine or an interferon
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/10—Immunoglobulins specific features characterized by their source of isolation or production
- C07K2317/14—Specific host cells or culture conditions, e.g. components, pH or temperature
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/55—Fab or Fab'
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
Definitions
- the present invention relates to a gene containing a base sequence encoding an amino acid or an amino acid sequence capable of increasing the secretion amount of a Fab-type antibody at the 3 'end of the base sequence encoding the amino acid sequence of the Fd chain or L chain of the antibody.
- the present invention further includes a recombinant vector containing the chain gene, a transformant having the recombinant vector, a method for producing a Fab-type antibody using the transformant, and an amino acid sequence of the Fd chain and / or L chain of the antibody.
- the present invention relates to an Fab type antibody having an amino acid or an amino acid sequence capable of increasing the secretion amount of the Fab type antibody at the C-terminus.
- an appropriate host for the expression of the protein is used.
- animal cells such as CHO cells, insects and insect cells such as silkworms, animals such as chickens and cows, and microorganisms such as Escherichia coli or yeast are used.
- yeast is capable of large-scale high-density culture with an inexpensive medium, and can produce proteins at low cost.
- secretory signal peptide or the like is used, secretory production into the culture solution is possible, and thus protein purification becomes easy.
- low molecular weight antibodies such as scFv and Fab type antibodies, which are next-generation protein drugs, have attracted attention.
- these low molecular weight antibodies are expressed using yeast as a host, there is a problem that the productivity of the antibodies is low, and there is a concern that the product may be affected by the carbon source. .
- Non-patent Document 1 As means for solving the above problems, as a host for avoiding the influence of the carbon source on the product, yeasts of the genus Komagataella, yeasts of the genus Ogataea, yeasts of the genus Candida, etc. It is reported that the methanol-assimilating yeast of this type is used. Furthermore, in order to improve protein productivity, bases encoding Fab-type antibodies downstream of promoters such as methanol oxidase and alcohol oxidase, which have several times the activity of normal promoters. A method for producing a Fab-type antibody by arranging the sequences has been reported (Non-patent Document 1).
- the present invention has been made to solve the problem of providing a method for producing a low molecular weight antibody with high productivity in a method for producing a low molecular weight antibody such as an Fab type antibody using yeast as a host. Specifically, the present invention provides a method for producing a low-molecular-weight antibody such as an Fab-type antibody with high productivity using yeast as a host without using a highly active promoter. It was.
- the present inventors have determined that a base sequence encoding an amino acid of 1 to 10 residues at the 3 ′ end of the base sequence encoding the amino acid sequence of the Fd chain or L chain. By ligating and expressing this in yeast, it was found that the productivity of the Fab-type antibody was improved, and the present invention was completed.
- the amino acid or amino acid sequence capable of increasing the amount of secretion of the Fab antibody is Asp, Gly, Ala, Val, Leu, Ile, Cys, Met, Ser, Thr, Tyr, Phe, Trp, Pro, Glu, Asn.
- the recombinant vector according to (4) which is any of the following.
- B an L chain gene containing an amino acid capable of increasing the secretion amount of a Fab-type antibody or a base sequence encoding an amino acid sequence at the 3 ′ end of the base sequence encoding the amino acid sequence of the L chain of the antibody;
- a combination of recombinant vectors which is one of the following.
- A Recombinant vector containing an Fd chain gene containing an amino acid capable of increasing the secretion amount of a Fab-type antibody or a base sequence encoding an amino acid sequence at the 3 ′ end of the base sequence encoding the amino acid sequence of the Fd chain of the antibody And a recombinant vector containing the antibody L chain gene;
- B A recombinant vector containing, at the 3 ′ end of a base sequence encoding the amino acid sequence of the L chain of the antibody, an amino acid capable of increasing the secretion amount of the Fab-type antibody or an L chain gene containing a base sequence encoding the amino acid sequence And a recombinant vector containing the Fd chain gene of the antibody; and
- C an amino acid or amino acid capable of increasing the secretion amount of the Fab type antibody at the 3 ′ end of the base sequence encoding the amino acid sequence of the Fd chain of the antibody
- the amino acid or amino acid sequence capable of increasing the secretion amount of the Fab antibody is Asp, Gly, Ala, Val, Leu, Ile, Cys, Met, Ser, Thr, Tyr, Phe, Trp, Pro, Glu, Asn.
- a base sequence encoding an amino acid or an amino acid sequence capable of increasing the secretion amount of a Fab-type antibody is linked to the 3 ′ end of the base sequence encoding the amino acid sequence of the antibody Fd chain or L chain.
- the productivity of Fab-type antibodies can be improved.
- the present invention is useful for the development of antibody drugs.
- the Fd chain of the antibody in the present invention is a portion obtained by removing the hinge region and the Fc region from the H chain of the IgG antibody. From the N terminal of the H chain, the cysteine residue that is S—S bonded to the C terminal cysteine of the L chain. Refers to the part up to the base.
- the base sequence encoding the Fd chain or L chain amino acid sequence in the present invention is not particularly limited as long as it is a DNA fragment encoding the Fd chain or L chain amino acid sequence.
- the type of antibody from which the Fd chain or L chain is used in the present invention is not particularly limited.
- the antigen to which the antibody derived from the Fd chain or L chain used in the present invention is also not particularly limited, but preferably CD20, HER2, IL2R, CD33, CD52, EGFR, VEGF, CD3, CD25, which are known as drug targets, Examples include antigens such as TNF ⁇ , CD11, IgE, CD2, ⁇ 4integrin, CD80, CD86, IL6R, C5a, GPIIb / IIIa, RSVF protein, VEGF-A, and GM-CSF.
- antigens such as TNF ⁇ , CD11, IgE, CD2, ⁇ 4integrin, CD80, CD86, IL6R, C5a, GPIIb / IIIa, RSVF protein, VEGF-A, and GM-CSF.
- base sequence encoding the amino acid sequence of the Fd chain are the base sequences shown in SEQ ID NO: 16 or SEQ ID NO: 60.
- the L chain gene in the present invention may be any nucleotide sequence that can produce a Fab type antibody when expressed together with the Fd chain gene, and is a base sequence encoding the amino acid sequence of the IgG antibody L chain.
- a specific example of the L chain gene is the base sequence shown in SEQ ID NO: 17 or 59.
- the base sequence encoding the amino acid or amino acid sequence capable of increasing the secretion amount of the Fab-type antibody is contained at the 3 ′ end of the base sequence encoding the amino acid sequence of the Fd chain or L chain of the antibody.
- the amino acid or amino acid sequence that can increase the secretion amount of the Fab-type antibody is not particularly limited as long as it exhibits the effect of increasing the secretion amount of the Fab-type antibody, and the number of amino acids is not particularly limited, but preferably 1 to 30, more preferably 1 to 10 or 1 to 5.
- amino acids or amino acid sequences that can increase the secretion amount of Fab-type antibodies include Asp, Gly, Ala, Val, Leu, Ile, Cys, Met, Ser, Thr, Tyr, Phe, Trp, Pro, Glu, Asn , Gln, Lys, Arg, His, Asp-Lys, Asp-Lys-Thr, Asp-Lys-Thr-His (SEQ ID NO: 1), Asp-Lys-Thr-His-Thr (SEQ ID NO: 2), Asp-Lys -Thr-His-Thr-Asp-Lys-Thr-His-Thr (SEQ ID NO: 69) or Gly-Gly-Gly-Gly-Gly-Ser-Met-Val-Ser-Lys-Gly-Glu-Glu-Leu-Phe -Thr-Gly-Val-Val-Pro-Ile-Leu-Val-Glu-Leu Is either Asp-Gly-Asp-Val-
- a plurality of amino acids or amino acid sequences selected from the above may be combined.
- a base sequence encoding a plurality of His eg, about 6 to 10 histidine tags consisting of His is included at the 3 ′ end of the base sequence encoding the amino acid sequence of the Fd chain or L chain of the antibody is as follows: Excluded from the present invention.
- the base sequence encoding the amino acid or amino acid sequence capable of increasing the amount of secretion of the Fab antibody described above is a combination of base sequences encoding each amino acid codon, and each amino acid codon expresses an Fd chain gene or L chain gene. It can be arbitrarily selected from codons available in the host to be prepared.
- gac for Asp, gac, for Asp-Lys, gacaag, for Asp-Lys-Thr, gacaagagacc, for Asp-Lys-Thr-His (SEQ ID NO: 1), gacaagagcccc ( In the case of SEQ ID NO: 3), Asp-Lys-Thr-His-Thr (SEQ ID NO: 2), the base sequence of gacaagaccccaccaccacc (SEQ ID NO: 4), Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His In the case of -Thr (SEQ ID NO: 69), gacaagacccaccaccacacaagacccaccacc (SEQ ID NO: 70), Gly-Gly-Gly-Gly-Ser-Met-Val-Ser-Lys-Gly-Glu-Glu-Leu-Phe-Thr-Gly-Thr-Gly- Val-Val-P In the case of o-Ile-Leu-Val
- Asp, Gly, Ala, Val, Leu, Ile, Cys, Met, Ser, Thr, Tyr, Phe, Trp, Pro, Glu, Asn, Gln, Lys, Arg, and His are aspartic acid residue and glycine, respectively.
- T is thymine
- A is adenine
- G guanine
- C is cytosine.
- gacaag Containing at least 3 gac, gacaag, gacaagacc, gacaagaccccac (SEQ ID NO: 3) or gacaagaccccaccacc (SEQ ID NO: 4) at the 3 ′ end of the base sequence encoding the protein having the amino acid sequence of the Fd chain described above; You may contain the base sequence which consists of taa, tga, and tag as a stop codon in 3 'terminal.
- SEQ ID NO: 5 is a gene in which the base sequence of gac and the base sequence of the stop codon taa are linked to the 3 ′ end of the base sequence of SEQ ID NO: 16.
- SEQ ID NO: 6 is a gene in which the base sequence of gacaag and the base sequence of stop codon taa are linked to the 3 ′ end of the base sequence of SEQ ID NO: 16.
- SEQ ID NO: 7 is a gene in which the base sequence of gacaagacc and the base sequence of stop codon taa are linked to the 3 ′ end of the base sequence of SEQ ID NO: 16.
- SEQ ID NO: 8 is a gene in which the base sequence of gacaagaccccac (SEQ ID NO: 3) and the base sequence of stop codon taa are linked to the 3 ′ end of the base sequence of SEQ ID NO: 16.
- SEQ ID NO: 9 is a gene in which the base sequence of gacaagaccccacacc (SEQ ID NO: 4) and the base sequence of the stop codon taa are linked to the 3 ′ end of the base sequence of SEQ ID NO: 16.
- the recombinant vector in the present invention means a nucleic acid molecule having a function of expressing the above-mentioned Fd chain gene in a host cell after transformation.
- the recombinant vector may have an integration homologous region, a selection marker gene such as an auxotrophic complementary gene or a drug resistance gene, an autonomously replicating sequence, and the like.
- the vector after being transformed into the host may be incorporated in the chromosome of the transformant or may exist as an autonomously replicating type.
- autonomously replicating vectors include YEp vectors, YRp vectors, and YCp vectors.
- pPICHOLI, pHIP, pHRP, pHARS and the like can be mentioned, but not particularly limited thereto.
- the “expression cassette” in the present invention is composed of a promoter and a target protein gene to be expressed, and may include a terminator gene.
- a terminator gene for example, it can be constructed on a plasmid such as pUC19, or can also be prepared by a PCR method. Can do.
- the integration homologous region in the present invention refers to a region in which the recombinant vector of the present invention is integrated by homologous recombination on the chromosome of the host cell after transformation.
- a part of the chromosome of the host cell can be arbitrarily used, but an auxotrophic complementary gene, a promoter or a terminator in an expression cassette, etc. can also be used.
- the auxotrophic complementary gene in the present invention is not particularly limited as long as it is a gene that complements auxotrophy such as amino acids and nucleic acids of host cells.
- Specific examples include the URA3 gene, the LEU2 gene, the ADE1 gene, the HIS4 gene, etc., which can be selected by restoring the prototrophic phenotype in uracil, leucine, adenine, and histidine auxotrophic strains, respectively. .
- the selection mer gene such as a drug resistance gene in the present invention is not particularly limited as long as it is a gene imparting drug resistance not possessed by a host cell. Specific examples include a G418 resistance gene, a zeocin resistance gene, a hygromycin resistance gene, and the like, which can be selected based on resistance on a medium containing G418, zeocin, and hygromycin, respectively.
- the auxotrophic selection marker used when preparing the yeast host cannot be used when the selection marker is not destroyed. In this case, the selection marker may be recovered, and methods known to those skilled in the art can be used.
- the autonomously replicating sequence in the present invention refers to a sequence that acts as a replication origin of the recombinant vector of the present invention and enables autonomous replication in a host cell.
- the recombinant vector of the present invention is a recombinant vector containing the Fd chain gene or L chain gene of the present invention described in the present specification, but preferably contains both the Fd chain gene and the L chain gene.
- Specific examples of the recombinant vector of the present invention include: (A) an Fd chain gene containing an amino acid capable of increasing the secretion amount of an Fab-type antibody or a base sequence encoding an amino acid sequence at the 3 ′ end of the base sequence encoding the amino acid sequence of the antibody Fd chain; A recombinant vector containing a chain gene; (B) an L chain gene containing an amino acid capable of increasing the secretion amount of a Fab-type antibody or a base sequence encoding an amino acid sequence at the 3 ′ end of the base sequence encoding the amino acid sequence of the L chain of the antibody, and Fd of the antibody A recombinant vector containing a chain gene; and (c) a base sequence encoding an amino acid or amino
- first promoter sequence-first signal sequence-L chain gene-second promoter sequence-second signal sequence-Fd chain gene-terminator sequence (2) first promoter sequence-first signal sequence-Fd chain gene-second promoter sequence-second signal sequence-L chain gene-terminator sequence; (3) an expression vector containing (first promoter sequence-first signal sequence-L chain gene-first terminator sequence) and (second promoter sequence-second signal sequence-Fd chain gene-first In combination with an expression vector comprising 2 terminator sequences);
- the first promoter and the second promoter may be the same or different.
- the first and second promoters are preferably the MOX promoter or GAP promoter of Hansenula polymorpha (preferably the Hansenula polymorpha host).
- the first signal sequence and the second signal sequence may be the same or different.
- the first and second signal sequences are preferably Saccharomyces cerevisiae Mating Factor ⁇ (MF ⁇ ) prepro signal.
- the first terminator sequence and the second terminator sequence may be the same or different.
- the first and second terminator sequences are preferably terminator sequences of the MOX gene of Hansenula polymorpha.
- the host in the present invention is not particularly limited as long as the recombinant vector containing the Fd chain gene and / or L chain gene of the present invention can be introduced and a Fab type antibody can be produced, but preferably yeast, mold, animal cells, Examples include transgenic animals, Escherichia coli, and cell-free protein synthesis systems. Among them, yeast is preferable, methanol-assimilating yeast is more preferable, and methanol-assimilating yeast belonging to the genus Ogataea and Komagataella is further preferable.
- the transformant in the present invention means a product obtained by introducing the recombinant vector of the present invention into a host.
- the transformant of the present invention can be selectively obtained using as an index the phenotype obtained by the auxotrophic complementary gene or drug resistance gene contained in the recombinant vector.
- the method for producing the Fab-type antibody of the present invention can be obtained by culturing the above-described transformant and collecting the produced Fab-type antibody.
- Examples of the production method include a secretion method in which the transformant is cultured and accumulated in the culture supernatant.
- Secretion production in the present invention refers to liquid culture of a transformant and accumulation of Fab-type antibody in the culture supernatant rather than inside the cell.
- Secretion production is performed by expressing the Fd chain and / or L chain of a Fab antibody as a protein fused with a secretion signal.
- Secretion signal fusion can be performed, for example, by introducing a base sequence encoding a signal sequence into the 5 'end of the base sequence encoding the Fd chain and / or L chain of the Fab antibody.
- the base sequence encoding the signal sequence in the present invention is not particularly limited as long as it is a signal sequence that allows the host cell to secrete and express the Fab-type antibody.
- SHO1 Saccharomyces cerevisiae's Matting Factor ⁇
- SUC2 Saccharomyces cerevisiae invertase
- Saccharomyces cerevisiae PLB1 Saccharomyces cerevisiae PLB1
- bovine serum albumin BSA
- HSA human serum albumin
- any medium can be used as the medium for the transformant in the present invention as long as it contains a nutrient source that is normally assimilated by the host cells.
- the nutrient source include sugars such as glucose, sucrose, and maltose, lactic acid, acetic acid, and citric acid.
- Carbon sources such as acids, organic acids such as propionic acid, alcohols such as methanol, ethanol and glycerol, hydrocarbons such as paraffin, oils and fats such as soybean oil and rapeseed oil, or mixtures thereof, ammonium sulfate, ammonium phosphate,
- a normal medium in which nitrogen sources such as urea, yeast extract, meat extract, peptone, corn steep liquor, and other nutrient sources such as other inorganic salts and vitamins are appropriately mixed and blended can be used. It is preferable to use methanol as the carbon source.
- the culture method can be any of batch culture, continuous culture, or dome culture.
- Cultivation can usually be performed under general conditions, for example, by aerobically culturing for 10 hours to 10 days at a pH of 2.5 to 10.0 and a temperature range of 10 ° C. to 48 ° C. .
- the production amount of Fab type antibody secreted in the culture supernatant when the transformant is cultured to produce Fab type antibody is 2.0 mg / mL or more (more preferably 2 .5 mg / mL or more).
- Transformant whose Fab-type antibody secretion production amount in the culture supernatant when the transformant is cultured to produce Fab-type antibody is 2.0 mg / mL or more (more preferably 2.5 mg / mL or more)
- the Fab-type antibody concentration was 2.0 mg / L or more (or 2.5 mg / mL or more). Is a transformant.
- the method for recovering the Fab-type antibody of the present invention includes, in the case of secretory production, a step of preparing a culture supernatant from a culture solution by centrifugation or the like, and a step of isolating and purifying the Fab-type antibody from the culture supernatant by any method including. Isolation and purification from the culture supernatant can be carried out by appropriately combining known protein purification methods.
- the transformant is cultured in an appropriate medium, the cells are removed from the culture supernatant by centrifugation or filtration, and the resulting culture supernatant is salted out (ammonium sulfate precipitate, sodium phosphate Precipitation, etc.), solvent precipitation (protein fraction precipitation with acetone or ethanol), dialysis, gel filtration chromatography, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, ultrafiltration, etc.
- Fab-type antibody can be recovered from the culture supernatant.
- the recovered Fab-type antibody can be used as it is, but it can also be used after adding a modification that causes pharmacological changes such as PEGylation and a function that adds a function such as an enzyme or an isotope. Various preparation processes may be used.
- the plasmids obtained in the following examples were amplified using the transformants obtained by using Escherichia coli E. coli DH5 ⁇ competent cells (manufactured by Takara Bio Inc.) under the conditions described herein. Yes.
- Prime STAR STAR HS DNA Polymerase manufactured by Takara Bio Inc. was used, and the reaction conditions were as described in the attached manual.
- Example 1 Construction of pUC-LEU2-PmMfTm
- MOX promoter SEQ ID NO: 18
- MOX terminator SEQ ID NO: 19
- LEU2 gene SEQ ID NO: 20
- the DNA was prepared by PCR using the genomic DNA as a template.
- the mating factor ⁇ prepro signal (MF ⁇ , SEQ ID NO: 21) was prepared by PCR using the genomic DNA of Saccharomyces cerevisiae S288c as a template.
- the antibody gene was chemically synthesized from the L chain (SEQ ID NO: 22) and H chain (SEQ ID NO: 23) based on the public sequence information of a fully humanized anti-TNF- ⁇ antibody (adalimumab; HUMIRA (registered trademark)) ( JP 2009-082033) was used as a template to prepare by PCR.
- a gene fragment having the site of HindIII-NotI-BamHI-SpeI-BglII-XbaI-EcoRI (SEQ ID NO: 24) was fully synthesized and inserted into the HindIII-EcoRI site of pUC19 to prepare pUC-1.
- a gene fragment with a HindIII site on both sides of the LEU2 gene was prepared by PCR using primers 1 and 2 (SEQ ID NOs: 25 and 26) and inserted into the HindIII site of pUC-1 after HindIII treatment (pUC-LEU2) .
- a gene fragment with BamHI sites on both sides of the MOX promoter was prepared by PCR using primers 3 and 4 (SEQ ID NOs: 27 and 28), and inserted into the BamHI site of pUC-LEU2 after treatment with BamHI (pUC). -LEU2-Pm).
- a gene fragment having a SpeI site on the 5 ′ side of MF ⁇ and a BglII site on the 3 ′ side was prepared by PCR using primers 5 and 6 (SEQ ID NOs: 29 and 30). After treatment with SpeI and BglII, pUC-LEU2-Pm Was inserted into the SpeI-BglII site (pUC-LEU2-PMmf).
- a gene fragment having XbaI sites on both sides of the MOX terminator was prepared by PCR using primers 7 and 8 (SEQ ID NOs: 31 and 32), and inserted into the XbaI site of pUC-LEU2-PMmf after treatment with XbaI (pUC- LEU2-PmMfTm).
- This gene fragment was treated with BglII, and then inserted into the BglII site of pUC-LEU2-PMmfTm to construct pUC-LEU2-PMmfFTm.
- pUC-LEU2-PmMfLTm as a template, a gene fragment having EcoRI sites on both sides of a gene fragment to which a part of the MOX promoter, MF ⁇ , L chain, and MOX terminator was linked was added to primers 13 and 14 (SEQ ID NOs: 37 and 38). ).
- This gene fragment was treated with EcoRI and then inserted into the EcoRI site of pUC-LEU2-PMmfFTm to construct pUC-LEU2-PMmfFTm-PMmfLtm.
- This expression vector is designed so that the L chain and Fd chain of the Fab-type antibody are expressed under the control of separate MOX promoters.
- Comparative Example 2 (Comparative Example 2) Obtaining Transformant The Fab-type antibody expression vector constructed in Comparative Example 1 was cleaved at the EcoRV site in the MOX terminator to make it linear. This fragment was transformed with Ogata Air polymorpha using the method described in Example 3.
- Comparative Example 4 Quantification of Fab Type Antibody The secretory production amount of Fab type antibody in the culture supernatant obtained in Comparative Example 3 was analyzed by the sandwich ELISA (Enzyme-Linked Immunosorbent Assay) method as in Example 5.
- Each Fd chain gene (SEQ ID NOs: 5 to 9) of the present invention was prepared by PCR using the above pUC-LEU2-PmMfFTm as a template.
- Example 2 Construction of Recombinant Expression Vectors for Each Fab Type Antibody Base sequence encoding Fd chain, Asp, Asp-Lys, Asp-Lys-Thr, Asp-Lys-Thr-His and Asp-Lys-Thr-His A fragment in which a base sequence encoding any amino acid sequence of Thr and a base sequence encoding a stop codon were fused was prepared by PCR.
- the Fd chain gene fragment fused with the base sequence encoding Asp is primer 15 (SEQ ID NO: 10) and primer 16 (SEQ ID NO: 11), and the Fd chain gene fragment fused with the base sequence encoded Asp-Lys is primer 15
- the Fd chain gene fragment obtained by fusing primer 17 (SEQ ID NO: 12) with a base sequence encoding Asp-Lys-Thr is primer 1 and primer 18 (SEQ ID NO: 13), and Asp-Lys-Thr-His (SEQ ID NO: 1).
- the Fd chain gene fragment fused with the base sequence encoding is the Fd chain fused with primer 15 and primer 19 (SEQ ID NO: 14) and the base sequence encoding Asp-Lys-Thr-His-Thr (SEQ ID NO: 2).
- the gene fragment was subjected to PCR using primer 15 and primer 20 (SEQ ID NO: 15), respectively. Fragment was obtained.
- Each fragment was treated with BglII and inserted into the BglII site of pUC-LEU2-PmMfTm described in Example 1, and Asp, Asp-Lys, Asp-Lys-Thr, Asp-Lys-Thr-His (SEQ ID NO: 1) And each plasmid containing an Fd chain gene containing a base sequence encoding either Asp-Lys-Thr-His-Thr (SEQ ID NO: 2).
- pUC-LEU2-PmMfLTm a gene fragment having EcoRI sites on both sides of a gene fragment to which a part of the MOX promoter, MF ⁇ , L chain, and MOX terminator was linked was added to primers 13 and 14 (SEQ ID NOs: 37 and 38). ).
- Example 3 Acquisition of transformant Various Fab-type antibody expression recombinant vectors constructed in Example 2 were linearized by cleaving at the EcoRV site in the MOX terminator. This fragment was used to transform Ogata Air polymorpha. Specifically, Ogata Air Polymorph BY4329 (from NCYC495, leu1-1) is inoculated into 3 ml of YPD medium (1% yeast extract bacto (Difco), 2% tryptone bacto (Difco), 2% glucose) And precultured at 37 ° C. overnight with shaking. The obtained preculture solution (500 ⁇ l) was inoculated into 50 ml of YPD medium, cultured after shaking at 30 ° C.
- YPD medium 1% yeast extract bacto (Difco), 2% tryptone bacto (Difco), 2% glucose
- the cells were suspended in 10 ml of 50 mM potassium phosphate buffer (containing 25 mM DTT, pH 7.5), and the suspension was incubated at 37 ° C. for 15 minutes. After collecting the cells (3000 ⁇ g, 10 minutes, 4 ° C.), the cells were resuspended in ice-cooled 50 ml of STM buffer (270 mM sucrose, 10 mM Tris-HCl, 1 mM magnesium chloride, pH 7.5).
- STM buffer 270 mM sucrose, 10 mM Tris-HCl, 1 mM magnesium chloride, pH 7.5.
- the cells were resuspended in 25 ml of ice-cooled STM buffer. After collecting the cells (3000 ⁇ g, 10 minutes, 4 ° C.), the cells were suspended in 250 ⁇ l of ice-cooled STM buffer to obtain a competent cell solution. Mix 60 ⁇ l of this competent cell solution and 3 ⁇ l of each linear plasmid solution (DNA amount 0.5-1 ⁇ g) and transfer to a cuvette for electroporation (dispos cuvette electrode, electrode spacing 2 mm; manufactured by BM Instruments). And 7.5 kV / cm, 10 ⁇ F, and 900 ⁇ .
- the cells were suspended in 1 ml of YPD medium and allowed to stand at 37 ° C. for 1 hour.
- the cells were collected (3000 ⁇ g, 5 minutes, room temperature), the cells were washed with 1 ml of physiological saline, and collected again (3000 ⁇ g, 5 minutes, room temperature).
- the cells are suspended in an appropriate amount of physiological saline, applied to an SD medium agar plate (0.67% yeast nitrogen base (Difco), 1% glucose), and grown in static culture at 30 ° C for 3 days. Strains were selected, and various Fab antibody expression strains were obtained.
- Example 4 Culture of transformant and preparation of culture supernatant The culture supernatant was prepared as follows. That is, each Fab type antibody expression strain obtained in Example 3 was added to 2 ml of BMGMY medium (1% yeast extract bacto, 2% peptone, 1.34% yeast nitrogen base, 0.4 mg / l Biotin, 100 mM potassium phosphate (pH 6. 0), 1% Glycerol, 1% Methanol), shaking culture at 30 ° C. for 72 hours, and then centrifuging (15,000 rpm, 1 minute, 4 ° C.) to prepare a culture supernatant.
- BMGMY medium 1% yeast extract bacto, 2% peptone, 1.34% yeast nitrogen base, 0.4 mg / l Biotin, 100 mM potassium phosphate (pH 6. 0), 1% Glycerol, 1% Methanol
- Example 5 Quantification of Fab-type antibody The secretory production amount of Fab-type antibody to the culture supernatant was analyzed by sandwich ELISA (Enzyme-Linked Immunosorbent Assay) method.
- the sandwich ELISA was prepared by anti-IgG (Fd), Human (Sheep) (The Binding Site) diluted 2500 times with an immobilization buffer (0.1 M sodium carbonate buffer, pH 9.6) on an ELISA plate (Maxisorp; manufactured by NUNC). Group) was added at 50 ⁇ l / well and incubated overnight at 4 ° C.
- sandwich ELISA Enzyme-Linked Immunosorbent Assay
- TMB Stop Solution manufactured by KPL
- KPL TMB Stop Solution
- the absorbance at 450 nm was measured with a microplate reader (BenchMark Plus; manufactured by Bio-Rad).
- Table 1 shows the results of quantification of the Fab-type antibody in the culture supernatant, using a standard protein calibration curve. As shown in Table 1, the production amount of Fab-type antibody in which any of Asp, Asp-Lys, Asp-Lys-Thr, Asp-Lys-Thr-His and Asp-Lys-Thr-His-Thr is fused It was revealed that the antibody was improved about 5 times that of the non-Fab type antibody.
- the Fd chain gene fragment fused with a base sequence encoding Gly is primer 15 and primer 21 (SEQ ID NO: 39), and the Fd chain gene fragment fused with a base sequence encoded Ala is primer 15 and primer 22 (SEQ ID NO: 40).
- Fd chain gene fragment fused with the base sequence encoding Val is primer 15 and primer 23 (SEQ ID NO: 41), and Fd chain gene fragment fused with the base sequence encoding Leu is primer 15 and primer 24 (SEQ ID NO: 42), the Fd chain gene fragment fused with the nucleotide sequence encoding Ile is primer 15 and primer 25 (SEQ ID NO: 43), and the Fd chain gene fragment fused with the nucleotide sequence encoding Cys is primer 15 and primer 26 ( SEQ ID NO: 44) and the Fd chain gene fragment fused with the base sequence encoding Met is The Fd chain gene fragment in which primer 15 and primer 27 (SEQ ID NO: 45) are fused with the nucleotide sequence encoding Ser is the Fd chain gene fragment in which primer 15 and primer 28 (SEQ ID NO: 46) are fused and the nucleotide sequence encoding Thr is fused.
- the fragment is the primer 15 and primer 29 (SEQ ID NO: 47), the Fd chain gene fragment fused with the base sequence encoding Tyr is the primer 15 and primer 30 (SEQ ID NO: 48), and the Fd chain is fused with the base sequence encoding Phe.
- the chain gene fragment is fused with primer 15 and primer 31 (SEQ ID NO: 49), the Fd chain gene fragment fused with the base sequence encoding Trp is fused with primer 15 and primer 32 (SEQ ID NO: 50), and the base sequence encoding Pro
- the Fd chain gene fragment was prepared by combining primer 15 and primer 33 (SEQ ID NO: 51) with Glu.
- the Fd chain gene fragment fused with the base sequence to be loaded is primer 15 and primer 34 (SEQ ID NO: 52), and the Fd chain gene fragment fused with the base sequence encoding Asn is primer 15 and primer 35 (SEQ ID NO: 53).
- Fd chain gene fragment fused with a base sequence encoding Gln is primer 15 and primer 36 (SEQ ID NO: 54), and Fd chain gene fragment fused with a base sequence encoding Lys is primer 15 and primer 37 (SEQ ID NO: 55).
- the Fd chain gene fragment fused with the base sequence encoding Arg is primer 15 and primer 38 (SEQ ID NO: 56), and the Fd chain gene fragment fused with the base sequence encoded His is primer 15 and primer 39 (sequence) PCR was performed using each of No. 57) to obtain each fragment.
- Each fragment was treated with BglII and inserted into the BglII site of pUC-LEU2-PmMfTm described in Example 1 to obtain Gly, Ala, Val, Leu, Ile, Cys, Met, Ser, Thr, Tyr, Phe, Trp,
- Each plasmid containing an Fd chain gene containing a base sequence encoding any of Pro, Glu, Asn, Gln, Lys, Arg, and His was constructed.
- pUC-LEU2-PmMfLTm a gene fragment having EcoRI sites on both sides of a gene fragment to which a part of the MOX promoter, MF ⁇ , L chain, and MOX terminator was linked was added to primers 13 and 14 (SEQ ID NOs: 37 and 38). ).
- each Fab type antibody expression vector A fragment in which a base sequence encoding the L chain, a base sequence encoding the amino acid of Asp, and a base sequence encoding the stop codon was prepared by PCR.
- the L chain gene fragment fused with the base sequence encoding Asp was subjected to PCR using primer 9 and primer 40 (SEQ ID NO: 58) to obtain a fragment.
- This fragment was treated with BglII, inserted into the BglII site of pUC-LEU2-PmMfTm described in Example 1, and a vector containing an L chain gene containing a base sequence encoding Asp was constructed.
- a gene fragment having an EcoRI site on both sides of a gene fragment to which a part of the MOX promoter, MF ⁇ , Asp-containing L chain and a part of the MOX terminator are linked was added to primers 13 and 14 Prepared by PCR using (SEQ ID NO: 37 and 38). After this gene fragment was treated with EcoRI, it was inserted into the EcoRI site of pUC-LEU2-PmMfFTm described in Example 2, and each Fab type antibody expression vector containing an L chain gene containing a base sequence encoding Asp was constructed.
- Example 8 Culture of transformant and preparation of culture supernatant Various Fab-type antibody expression recombinant vectors constructed in Examples 6 and 7 were cleaved at the EcoRV site in the MOX terminator to be linearized. . This fragment was transformed with Ogata Air polymorpha using the method described in Example 2 to obtain various Fab antibody expression strains.
- Example 9 Culture of transformant and preparation of culture supernatant Culture supernatants of various Fab antibody-expressing strains obtained in Example 8 were prepared and obtained in the same manner as in Example 3.
- Example 10 Quantification of Fab-type antibody The amount of secreted production of the Fab-type antibody obtained in Example 9 into the culture supernatant was analyzed by the method described in Example 4.
- the quantification of the Fab-type antibody in the culture supernatant is shown in Table 2 with the results of using a standard protein calibration curve. As shown in Table 2, any of Gly, Ala, Val, Leu, Ile, Cys, Met, Ser, Thr, Tyr, Phe, Trp, Pro, Glu, Asn, Gln, Lys, Arg, His is fused to the Fd chain. It was revealed that the production amount of the Fab-type antibody and the production amount of the Fab-type antibody in which Asp was fused to the L chain were improved about 4 to 6 times that of the non-fused Fab-type antibody.
- Remicade-derived Fab-type antibody gene is based on the public sequence information of Remicade (Infliximab; Remicade (registered trademark)), L chain (SEQ ID NO: 59), The Fd chain (SEQ ID NO: 60) was chemically synthesized and prepared by PCR using this as a template.
- a gene fragment with BglII sites on both sides of the remicade-derived L chain was prepared by PCR using primers 41 and 42 (SEQ ID NOs: 61 and 62). This gene fragment was treated with BglII and then inserted into the BglII site of pUC-LEU2-PMmfTm described in Example 1 to construct pUC-LEU2-PMmfrLTm.
- a gene fragment having a BglII site on both sides of the remicade-derived Fd chain was prepared by PCR using primers 43 and 44 (SEQ ID NOs: 63 and 64).
- This gene fragment was treated with BglII and then inserted into the BglII site of pUC-LEU2-PMmfTm to construct pUC-LEU2-PMmfrFTFTm.
- pUC-LEU2-PmMfrLTm as a template, a gene fragment having EcoRI sites on both sides of a gene fragment in which a MOX promoter, MF ⁇ , a remicade-derived L chain, and a part of the MOX terminator are ligated, was combined with primers 13 and 14 (SEQ ID NO: 37 And 38).
- This gene fragment was treated with EcoRI and then inserted into the EcoRI site of pUC-LEU2-PMmfrFTm to construct pUC-LEU2-PMmfrFTm-PMmfrLtm.
- This expression vector is designed so that the L chain and the Fd chain of the Fabic antibody derived from Remicade are expressed under the control of separate MOX promoters.
- Comparative Example 6 Acquisition of Transformant The remicade-derived Fab type antibody expression vector constructed in Comparative Example 5 was cleaved at the EcoRV site in the MOX terminator to make it linear. This fragment was transformed with Ogata Air polymorpha using the method described in Example 3.
- Comparative Example 7 Culture of transformant and preparation of culture supernatant The culture supernatant of the remicade-derived Fab type antibody expression vector-introduced strain obtained in Comparative Example 6 was prepared in the same manner as described in Example 13. .
- Example 11 Construction of Remicade-derived Fab-type antibody expression vectors A Remicade-derived Fd chain gene fragment fused with a base sequence encoding Asp was subjected to PCR using primer 43 and primer 45 (SEQ ID NO: 65). Obtained. This fragment was treated with BglII and inserted into the BglII site of pUC-LEU2-PMmfTm described in Example 1 to construct a vector containing a remicade-derived Fd chain gene containing a base sequence encoding Asp.
- a remicade-derived Fab-type antibody expression recombinant vector was constructed.
- Example 12 Acquisition of transformant
- the remicade-derived Fab-type antibody expression recombinant vector constructed in Example 11 was cleaved at the EcoRV site in the MOX terminator to be linearized. This fragment was transformed with Ogata Air polymorpha using the method described in Example 2 to obtain a remicade-derived Fab-type antibody expression strain.
- Example 13 Culture of transformant and preparation of culture supernatant The culture supernatant was prepared as follows. That is, the Remicade-derived Fab type antibody expression strain obtained in Example 12 was added to 2 ml of BMGMY medium (1% yeast extract bacto, 2% peptone, 1.34% yeast nitrogen base, 0.4 mg / l Biotin, 100 mM potassium phosphate (pH 6 .0), 1% Glycerol, 1% Methanol), shaking culture at 30 ° C. for 60 hours, adding 20 mg of Methanol, and further shaking culture at 30 ° C. for 24 hours. Thereafter, the culture supernatant was prepared by centrifugation (15,000 rpm, 1 minute, 4 ° C.).
- Example 14 Quantification of Fab type antibody The amount of secreted production of Remicade-derived Fab type antibody obtained in Example 13 into the culture supernatant was analyzed by the method described in Example 4. Table 3 shows the results of quantification of Remicade-derived Fab antibody in the culture supernatant using a standard protein calibration curve. As shown in Table 3, the production amount of Remicade-derived Fab antibody in which Asp is fused to the Fd chain is improved about 5 times that of the unfused Remicade-derived Fab antibody, regardless of the type of Fab antibody. It became clear that there was an effect.
- Comparative Example 10 Acquisition of Pichia Transformant
- the vector constructed in Comparative Example 9 was transformed into the Pichia yeast wild strain Y-11430. The method was carried out as described in Example 16.
- Fab-type antibody vector for Pichia G418 resistance gene (SEQ ID NO: 66) designed to be expressed under the control of the GAP promoter of Ogata air polymorpha yeast was fully synthesized and used as a template for PCR.
- a gene fragment in which a HindIII site was added to both sides of this G418 resistance gene was prepared by PCR using primers 46 and 47 (SEQ ID NOs: 67 and 68) and treated with HindIII.
- Each Fab type antibody expression vector containing the Fd chain gene containing the base sequence encoding Asp described in Example 2 was treated with HindIII, and then the vector fragment containing the Fab type antibody gene was purified from an agarose gel.
- each Fab-type antibody expression vector containing an Fd chain gene containing a base sequence encoding Asp using the G418 resistance gene as a selection marker was constructed.
- Example 16 Acquisition of Pichia transformant
- Each Fab type antibody expression vector containing an Fd chain gene containing a base sequence encoding Asp using the G418 resistance gene constructed in Example 15 as a selectable marker was transformed into Pichia yeast.
- the wild strain Y-11430 was transformed.
- the method was carried out in the same manner as described in Example 3, except that Hansenula yeast was changed to Pichia yeast.
- a strain that grows by stationary culture at 30 ° C. for 3 days was selected to obtain a Fab-type antibody expression strain.
- Example 17 Culture of transformant and preparation of culture supernatant The culture supernatant of the Pichia yeast Fab-type antibody expression vector-introduced strain obtained in Example 16 was prepared in the same manner as described in Example 4. did.
- Example 18 Quantification of Fab type antibody The secretory production amount of the Fab type antibody in the culture supernatant obtained in Example 17 was analyzed by the sandwich ELISA (Enzyme-Linked Immunosorbent Assay) method in the same manner as in Example 5.
- Table 4 shows the results of quantification of the Fab-type antibody in the culture supernatant using a standard protein calibration curve. As shown in Table 4, the production amount of the Fab type antibody in which Asp is fused to the Fd chain is improved by about 2 times that of the non-fused Fab type antibody. It was.
- each Fab type antibody expression vector 3 Base sequence encoding Fd chain, base sequence encoding peptide of Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr (SEQ ID NO: 69), encoding stop codon The fragment fused with the base sequence was prepared by PCR. The Fd chain gene fragment fused with the base sequence encoding Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr was obtained in Example 2 using primer 15 and primer 48 (SEQ ID NO: 71).
- PCR was performed using the Fab-type antibody expression vector containing the Fd chain gene containing the base sequence encoding Asp-Lys-Thr-His-Thr prepared as a template to obtain a fragment.
- This fragment is treated with BglII, inserted into the BglII site of pUC-LEU2-PMmfTm described in Example 1, and a base sequence encoding Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr A plasmid containing the Fd chain gene containing was constructed.
- a gene fragment having EcoRI sites on both sides of a gene fragment to which a part of MOX promoter, MF ⁇ , L chain, and MOX terminator was linked was prepared by PCR using primers 13 and 14. did.
- This gene fragment was treated with EcoRI, and then inserted into the EcoRI site of a plasmid containing an Fd chain gene containing a base sequence encoding Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr.
- a Fab-type antibody expression vector containing an Fd chain gene containing a base sequence encoding Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr was constructed.
- Example 20 Acquisition of transformant
- the Fab-type antibody expression recombinant vector constructed in Example 19 was linearized by cutting at the EcoRV site in the MOX terminator. This fragment was transformed with Ogata Air polymorpha using the method described in Example 2 to obtain a Fab type antibody expression strain.
- Example 21 Culture of transformant and preparation of culture supernatant The culture supernatant of the Fab type antibody expression strain obtained in Example 20 was prepared and obtained in the same manner as in Example 3.
- Example 22 Quantification of Fab type antibody
- the production amount of the Fab type antibody obtained in Example 21 to the culture supernatant was analyzed by the method described in Example 4.
- Table 5 shows the results of quantification of the Fab-type antibody in the culture supernatant using a standard protein calibration curve. As shown in Table 5, it was revealed that the production amount of the Fab-type antibody in which the peptide of 10 residues was fused to the Fd chain was improved about 5 times that of the non-fused Fab-type antibody.
- Fab-type antibody expression vector 4 A fragment in which a base sequence encoding an Fd chain, a base sequence encoding a 30-residue peptide (SEQ ID NO: 74) (SEQ ID NO: 75), and a base sequence encoding a stop codon was prepared by PCR.
- the Fd chain gene fragment fused with the base sequence encoding the peptide of SEQ ID NO: 74 is used as a template with primer 49 (SEQ ID NO: 76) and primer 50 (SEQ ID NO: 77) and pEGFP-F (manufactured by Clontech). PCR was performed to obtain a fragment.
- This fragment was treated with BglII and BamHI and inserted into the BglII site of pUC-LEU2-PmMfTm described in Example 1 to obtain a plasmid containing a part of the base sequence encoding the peptide of SEQ ID NO: 74.
- PCR was performed using primer 15 and primer 51 (SEQ ID NO: 78) to obtain an Fd chain gene fragment.
- a vector containing the gene was constructed.
- pUC-LEU2-PmMfLTm as a template, a gene fragment having EcoRI sites on both sides of a gene fragment to which a part of MOX promoter, MF ⁇ , L chain, and MOX terminator was linked was prepared by PCR using primers 13 and 14. did.
- Example 24 Acquisition of transformant
- the Fab-type antibody expression recombinant vector constructed in Example 23 was linearized by cutting at the EcoRV site in the MOX terminator. This fragment was transformed with Ogata Air polymorpha using the method described in Example 2 to obtain a Fab type antibody expression strain.
- Example 25 Culture of transformant and preparation of culture supernatant The culture supernatant of the Fab type antibody expression strain obtained in Example 24 was prepared in the same manner as in Example 3.
- Example 26 Quantification of Fab-type antibody The amount of secreted production of the Fab-type antibody obtained in Example 25 into the culture supernatant was analyzed by the method described in Example 4. Table 6 shows the results of quantification of the Fab-type antibody in the culture supernatant, which was carried out using a standard protein calibration curve. As shown in Table 6, it was revealed that the production amount of the Fab antibody in which a 30-residue peptide was fused to the Fd chain was improved about 4 times that of the unfused Fab antibody.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Mycology (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本発明の目的は、酵母を宿主として用いたFab型抗体等の低分子化抗体の製造方法において、低分子化抗体を高い生産性で製造できる方法を提供することである。本発明によれば、抗体のFd鎖又はL鎖のアミノ酸配列をコードする塩基配列の3'末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有する、遺伝子が提供される。
Description
本発明は、抗体のFd鎖又はL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有する、遺伝子に関する。本発明はさらに、前記鎖遺伝子を含む組み換えベクター、前記組み換えベクターを有する形質転換体、前記形質転換体を用いたFab型抗体の製造方法、並びに抗体のFd鎖及び/又はL鎖のアミノ酸配列のC末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列を有する、Fab型抗体に関する。
遺伝子組換え技術を用いてタンパク質を生産するためには、そのタンパク質の発現に適切な宿主が使用される。宿主としては、例えば、CHO細胞等の動物細胞、カイコ等の昆虫及び昆虫細胞、ニワトリや牛などの動物、並びに大腸菌又は酵母などの微生物などが用いられている。上記の中でも酵母は、安価な培地で大規模な高密度培養が可能であり、タンパク質を低コストで生産することができる。また、分泌シグナルペプチド等を利用すれば培養液中への分泌生産も可能なため、タンパク質の精製も容易となる。上記したような宿主を用いて生産するタンパク質としては、次世代タンパク医薬品であるscFvやFab型抗体等の低分子化抗体が注目されている。しかし、宿主として酵母を用いてこれらの低分子化抗体を発現させた場合、抗体の生産性が低いという問題があり、さらに炭素源によって生産物に影響を及ぼす場合があることが懸念されている。
上記した問題を解消するための手段としては、炭素源による生産物への影響を回避するための宿主として、コマガタエラ(Komagataella)属酵母、オガタエア(Ogataea)属酵母及びキャンディダ(Candida)属酵母等のメタノール資化性酵母が用いることが報告されている。さらにタンパク質の生産性を向上させるために、通常のプロモーターと比較して数倍の活性を有するメタノールオキシダーゼ(Methanol oxidase)やアルコールオキシダーゼ(Alcohol oxidase)等のプロモーターの下流にFab型抗体をコードする塩基配列を配置して、Fab型抗体を生産する方法が報告されている(非特許文献1)。しかしながら、上記のような強力なプロモーターを用いてFab型抗体のような高次構造を持つタンパク質を発現させた場合、立体構造が正しくホールディングされないFab型抗体が小胞体内で蓄積し、小胞体ストレスと呼ばれるストレスを菌体に与えるといった問題がある。
上記した通り、宿主として酵母を用いてFab型抗体等の低分子化抗体を低コストで生産するためには、通常より活性の高いプロモーターを用いる方法が知られているが、小胞体ストレスを引き起こす等の問題がある。そのため、通常より活性の高いプロモーターを用いる方法は、高生産の観点から見て効率的であるとはいえず、問題は未だ解決されていない。
Biotechnology and Bioengineering, vol94, 353-361, 2006
本発明は、酵母を宿主として用いたFab型抗体等の低分子化抗体の製造方法において、低分子化抗体を高い生産性で製造できる方法を提供することを解決すべき課題とした。具体的には、本発明は、活性の高いプロモーターを用いることなく、酵母を宿主として用いてFab型抗体等の低分子化抗体を高い生産性で製造できる方法を提供することを解決すべき課題とした。
本発明者らは、前記課題を解決すべく鋭意研究を行った結果、Fd鎖又はL鎖のアミノ酸配列をコードする塩基配列の3’末端に1~10残基のアミノ酸をコードする塩基配列を連結し、これを酵母において発現させることによって、Fab型抗体の生産性が向上することを見出し、本発明を完成するに至った。
すわなち、本発明によれば、以下の発明が提供される。
(1)抗体のFd鎖又はL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有する、遺伝子。
(2) 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、1~30個のアミノ酸からなるものである、(1)に記載の遺伝子。
(3) 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、Asp、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、His、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-His、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr、又はGly-Gly-Gly-Gly-Ser-Met-Val-Ser-Lys-Gly-Glu-Glu-Leu-Phe-Thr-Gly-Val-Val-Pro-Ile-Leu-Val-Glu-Leu-Asp-Gly-Asp-Val-Asn-Glyの何れかである、(1)又は(2)に記載の遺伝子。
(1)抗体のFd鎖又はL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有する、遺伝子。
(2) 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、1~30個のアミノ酸からなるものである、(1)に記載の遺伝子。
(3) 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、Asp、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、His、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-His、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr、又はGly-Gly-Gly-Gly-Ser-Met-Val-Ser-Lys-Gly-Glu-Glu-Leu-Phe-Thr-Gly-Val-Val-Pro-Ile-Leu-Val-Glu-Leu-Asp-Gly-Asp-Val-Asn-Glyの何れかである、(1)又は(2)に記載の遺伝子。
(4) (1)から(3)の何れかに記載の遺伝子を含有する組換えベクター。
(5) 以下の何れかである、(4)に記載の組み換えベクター。
(a)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子と、抗体のL鎖遺伝子とを含有する、組み換えベクター;
(b)抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子と、抗体のFd鎖遺伝子とを含有する、組み換えベクター;及び
(c)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子と、抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子とを含有する組み換えベクター。
(5) 以下の何れかである、(4)に記載の組み換えベクター。
(a)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子と、抗体のL鎖遺伝子とを含有する、組み換えベクター;
(b)抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子と、抗体のFd鎖遺伝子とを含有する、組み換えベクター;及び
(c)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子と、抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子とを含有する組み換えベクター。
(6) 以下の何れかである、組換えベクターの組み合わせ。
(A)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子を含有する組み換えベクターと、抗体のL鎖遺伝子を含有する組み換えベクターとの組み合わせ;
(B)抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子を含有する組み換えベクターと、抗体のFd鎖遺伝子を含有する組み換えベクターとの組み合わせ;及び
(C)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子を含有する組み換えベクターと、抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子を含有する組み換えベクターとの組み合わせ:
(A)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子を含有する組み換えベクターと、抗体のL鎖遺伝子を含有する組み換えベクターとの組み合わせ;
(B)抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子を含有する組み換えベクターと、抗体のFd鎖遺伝子を含有する組み換えベクターとの組み合わせ;及び
(C)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子を含有する組み換えベクターと、抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子を含有する組み換えベクターとの組み合わせ:
(7) (4)又は(5)に記載の組換えベクター又は(6)に記載の組換えベクターの組み合わせにより宿主を形質転換することにより得られる形質転換体。
(8) 宿主が酵母である、(7)に記載の形質転換体。
(9) 酵母がオガタエア属またはコマガタエラ属酵母である、(7)又は(8)に記載の形質転換体。
(8) 宿主が酵母である、(7)に記載の形質転換体。
(9) 酵母がオガタエア属またはコマガタエラ属酵母である、(7)又は(8)に記載の形質転換体。
(10) オガタエア属またはコマガタエラ属酵母が、オガタエア・ポリモルファまたはコマガタエラ・パストリスである、(9)に記載の形質転換体。
(11) 形質転換体を培養してFab型抗体を生産させた場合の、培養上清中のFab型抗体分泌生産量が2.0mg/mL以上である、(7)から(10)の何れかに記載の形質転換体。
(12) (7)から(11)の何れかに記載の形質転換体を培養し、Fab型抗体を回収する工程を含むFab型抗体の製造方法。
(11) 形質転換体を培養してFab型抗体を生産させた場合の、培養上清中のFab型抗体分泌生産量が2.0mg/mL以上である、(7)から(10)の何れかに記載の形質転換体。
(12) (7)から(11)の何れかに記載の形質転換体を培養し、Fab型抗体を回収する工程を含むFab型抗体の製造方法。
(13) 抗体のFd鎖及び/又はL鎖のアミノ酸配列のC末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列を有する、Fab型抗体。
(14) 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、1~10個のアミノ酸からなるものである、(13)に記載のFab型抗体.
(15) 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、Asp、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、His、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-His、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr、又はGly-Gly-Gly-Gly-Ser-Met-Val-Ser-Lys-Gly-Glu-Glu-Leu-Phe-Thr-Gly-Val-Val-Pro-Ile-Leu-Val-Glu-Leu-Asp-Gly-Asp-Val-Asn-Glyの何れかである、(13)又は(14)に記載のFab型抗体。
(14) 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、1~10個のアミノ酸からなるものである、(13)に記載のFab型抗体.
(15) 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、Asp、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、His、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-His、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr、又はGly-Gly-Gly-Gly-Ser-Met-Val-Ser-Lys-Gly-Glu-Glu-Leu-Phe-Thr-Gly-Val-Val-Pro-Ile-Leu-Val-Glu-Leu-Asp-Gly-Asp-Val-Asn-Glyの何れかである、(13)又は(14)に記載のFab型抗体。
本発明によれば、抗体のFd鎖又はL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を連結させるだけで、Fab型抗体の生産性を向上させることができる。本発明によれば、通常より活性の高いプロモーターを用いる必要がないことにより、小胞体ストレスを菌体に与えるという懸念がない。また、本発明によるFab型抗体の製造方法においては、高密度培養が可能な酵母を宿主として用いることが可能であることから抗体の製造コストを削減できる。本発明は、抗体医薬の開発に有用である。
以下、本発明の実施の形態についてさらに詳細に説明する。
本発明における抗体のFd鎖とは、IgG抗体のH鎖からヒンジ部位とFc領域を除いた部分であり、H鎖のN末端から、L鎖のC末端のシステインとS-S結合するシステイン残基までの部分を指す。
本発明における抗体のFd鎖とは、IgG抗体のH鎖からヒンジ部位とFc領域を除いた部分であり、H鎖のN末端から、L鎖のC末端のシステインとS-S結合するシステイン残基までの部分を指す。
本発明におけるFd鎖又はL鎖のアミノ酸配列をコードする塩基配列とは、Fd鎖又はL鎖のアミノ酸配列をコードするDNA断片であれば特に限定されない。
本発明で用いるFd鎖又はL鎖が由来する抗体の種類は、特に限定されず、例えばヒト抗体、ヒト化抗体、マウス抗体、イヌ抗体、ネコ抗体、ウマ抗体、ウシ抗体、ブタ抗体、ニワトリ抗体、又はこれらを融合したキメラ抗体などが挙げられる。
本発明で用いるFd鎖又はL鎖が由来する抗体が結合する抗原も特に限定されないが、好ましくは創薬のターゲットとして知られるCD20、HER2、IL2R、CD33、CD52、EGFR、VEGF、CD3、CD25、TNFα、CD11、IgE、CD2、α4integrin、CD80、CD86、IL6R、C5a、GPIIb/IIIa、RSVF Protein、VEGF-A、GM-CSFなどの抗原が挙げられる。
Fd鎖のアミノ酸配列をコードする塩基配列の具体例としては、配列番号16又は配列番号60に示す塩基配列である。
本発明におけるL鎖遺伝子とは、Fd鎖遺伝子と共に発現させた場合にFab型抗体が生産されるものであればよく、IgG抗体のL鎖のアミノ酸配列をコードする塩基配列である。L鎖遺伝子の具体例としては、配列番号17又は配列番号59に示す塩基配列である。
本発明の遺伝子においては、抗体のFd鎖又はL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有する。
Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列としては、Fab型抗体の分泌量を増大できるという作用を発揮する限り、特に限定されず、アミノ酸の個数も特に限定されないが、好ましくは1~30個であり、より好ましくは1~10個又は1~5個である。
Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列としては、Fab型抗体の分泌量を増大できるという作用を発揮する限り、特に限定されず、アミノ酸の個数も特に限定されないが、好ましくは1~30個であり、より好ましくは1~10個又は1~5個である。
Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列の具体例としては、Asp、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、His、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-His(配列番号1)、Asp-Lys-Thr-His-Thr(配列番号2)、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr(配列番号69)、又はGly-Gly-Gly-Gly-Ser-Met-Val-Ser-Lys-Gly-Glu-Glu-Leu-Phe-Thr-Gly-Val-Val-Pro-Ile-Leu-Val-Glu-Leu-Asp-Gly-Asp-Val-Asn-Gly(配列番号74)の何れかである。また、上記のアミノ酸又はアミノ酸配列の中から複数のものを選択して、組み合わせたものでもよい。但し、複数個(例えば6~10個程度など)のHisからなるヒスチジンタグをコードする塩基配列を、抗体のFd鎖又はL鎖のアミノ酸配列をコードする塩基配列の3’末端に含む態様は、本発明から除外される。同様に、Asp-Lys-Thr-His-Thr(配列番号2)、Asp-Lys-Thr-His-Leu(配列番号72)Asp-Lys-Thr-His-Thr-Cys-Ala-Ala(配列番号73)をコードする塩基配列を、抗体のFd鎖又はL鎖のアミノ酸配列をコードする塩基配列の3’末端に含む態様も、本発明から除外される。
上記したFab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列は、各アミノ酸コドンをコードする塩基配列を組み合わせて成るが、各アミノ酸コドンは、Fd鎖遺伝子又はL鎖遺伝子を発現させる宿主内で利用できるコドンの中から任意で選ぶことができる。具体的には、Aspの場合は、gac、Asp-Lysの場合は、gacaag、Asp-Lys-Thrの場合は、gacaagacc、Asp-Lys-Thr-His(配列番号1)の場合は、gacaagacccac(配列番号3)、Asp-Lys-Thr-His-Thr(配列番号2)の場合は、gacaagacccacacc(配列番号4)の塩基配列、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr(配列番号69)の場合は、gacaagacccacaccgacaagacccacacc(配列番号70)、Gly-Gly-Gly-Gly-Ser-Met-Val-Ser-Lys-Gly-Glu-Glu-Leu-Phe-Thr-Gly-Val-Val-Pro-Ile-Leu-Val-Glu-Leu-Asp-Gly-Asp-Val-Asn-Gly(配列番号74)の場合は、ggaggtggcggatccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggc(配列番号75)が挙げられるが、特にこれらに限定されるものではない。
上述のAsp、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、Hisはそれぞれ、アスパラギン酸残基、グリシン残基、アラニン残基、バリン残基、ロイシン残基、イソロシシン残基、システイン残基、メチオニン残基、セリン残基、スレオニン残基、チロシン残基、フェニルアラニン残基、トリプトファン残基、プロリン残基、グルタミン酸残基、アスパラギン残基、グルタミン残基、リジン残基、アルギニン残基、およびヒスチジン残基を指す。また、塩基配列を示すTはチミン、Aはアデニン、Gはグアニン、Cはシトシンを指す。
上述のFd鎖のアミノ酸配列を有するタンパク質をコードする塩基配列の3'末端に、gac、gacaag、gacaagacc、gacaagacccac(配列番号3)、又はgacaagacccacacc(配列番号4)のいずれかを含有し、さらにその3'末端に終止コドンとしてtaa、tgaおよびtagからなる塩基配列を含有してもよい。
配列番号5は配列番号16の塩基配列の3'末端に、gacの塩基配列と終止コドンtaaの塩基配列を連結させた遺伝子である、
配列番号6は配列番号16の塩基配列の3'末端に、gacaagの塩基配列と終止コドンtaaの塩基配列を連結させた遺伝子である。
配列番号7は配列番号16の塩基配列の3'末端に、gacaagaccの塩基配列と終止コドンtaaの塩基配列を連結させた遺伝子である。
配列番号8は配列番号16の塩基配列の3'末端に、gacaagacccac(配列番号3)の塩基配列と終止コドンtaaの塩基配列を連結させた遺伝子である。
配列番号9は配列番号16の塩基配列3'末端に、gacaagacccacacc(配列番号4)の塩基配列と終止コドンtaaの塩基配列を連結させた遺伝子である。
配列番号6は配列番号16の塩基配列の3'末端に、gacaagの塩基配列と終止コドンtaaの塩基配列を連結させた遺伝子である。
配列番号7は配列番号16の塩基配列の3'末端に、gacaagaccの塩基配列と終止コドンtaaの塩基配列を連結させた遺伝子である。
配列番号8は配列番号16の塩基配列の3'末端に、gacaagacccac(配列番号3)の塩基配列と終止コドンtaaの塩基配列を連結させた遺伝子である。
配列番号9は配列番号16の塩基配列3'末端に、gacaagacccacacc(配列番号4)の塩基配列と終止コドンtaaの塩基配列を連結させた遺伝子である。
本発明における組換えベクターとは、形質転換後の宿主細胞において、上記したFd鎖遺伝子が発現する機能を有する核酸分子のことを意味する。組み換えベクターは、発現カセットに加えて、組み込み相同領域、栄養要求性相補遺伝子または薬剤耐性遺伝子などの選択マーカー遺伝子、自律複製配列などを有していてもよい。
本発明において宿主に形質転換された後のベクターは、形質転換体の染色体に組み込まれている状態でも良く、自律複製型として存在している状態でも良い。自律複製型ベクターの例としては、YEpベクター、YRpベクター、YCpベクターなどが挙げられる。コマガタエラ属の場合はpPICHOLI、pHIP、pHRP、pHARSなどが挙げられるが、特にこれらに限定されるものではない。
本発明における「発現カセット」とは、プロモーターおよび発現する目的タンパク質遺伝子より構成され、ターミネーター遺伝子を含んでも良く、例えば、pUC19等のプラスミド上に構築することもできるし、PCR法によっても作成することができる。
本発明における組み込み相同領域とは、本発明の組換えベクターが形質転換後の宿主細胞の染色体上に相同組換えで組み込まれるための領域を指す。本領域は、宿主細胞の染色体の一部を任意で利用できるが、栄養要求性相補遺伝子や、発現カセット内のプロモーターやターミネーターなどを利用することもできる。
本発明における栄養要求性相補遺伝子は、宿主細胞のアミノ酸や核酸などの栄養要求性を相補する遺伝子であれば特に限定されない。具体的な例としては、URA3遺伝子、LEU2遺伝子、ADE1遺伝子、HIS4遺伝子などが挙げられ、それぞれウラシル、ロイシン、アデニン、ヒスチジンの栄養要求性株において原栄養株表現型の回復により選択することができる。
本発明における薬剤耐性遺伝子などの選択マーマー遺伝子は、宿主細胞が保有していない薬剤耐性を付与する遺伝子であれば特に限定されない。具体的な例としては、G418耐性遺伝子、ゼオシン耐性遺伝子、ハイグロマイシン耐性遺伝子などが挙げられ、それぞれG418、ゼオシン、ハイグロマイシンを含む培地上における耐性により選択することができる。なお、酵母宿主を作成するときに用いた栄養要求性選択マーカーは、該選択マーカーが破壊されていない場合は、用いることができない。この場合、該選択マーカーを回復させればよく、方法は当業者において公知の方法を用いることができる。
本発明における自律複製配列とは、宿主細胞において、本発明の組換えベクターの複製起点として作用し、自律的な複製を可能とする配列のことを指す。
本発明の組み換えベクターは、本明細書に記載した本発明のFd鎖遺伝子又はL鎖遺伝子を含有する組換えベクターであるが、好ましくは、Fd鎖遺伝子とL鎖遺伝子の両方を含むものである。本発明の組み換えベクターの具体例としては、
(a)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子と、抗体のL鎖遺伝子とを含有する、組み換えベクター;
(b)抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子と、抗体のFd鎖遺伝子とを含有する、組み換えベクター;及び
(c)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子と、抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子とを含有する組み換えベクター;
を挙げることができる。
(a)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子と、抗体のL鎖遺伝子とを含有する、組み換えベクター;
(b)抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子と、抗体のFd鎖遺伝子とを含有する、組み換えベクター;及び
(c)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子と、抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子とを含有する組み換えベクター;
を挙げることができる。
本発明の組み換えベクターに含まれる各構成要素の5'側から3'側への並び方について好ましい例を以下に挙げる。
(1)第1のプロモーター配列-第1のシグナル配列-L鎖遺伝子-第2のプロモーター配列-第2のシグナル配列-Fd鎖遺伝子-ターミネーター配列;
(2)第1のプロモーター配列-第1のシグナル配列-Fd鎖遺伝子-第2のプロモーター配列-第2のシグナル配列-L鎖遺伝子-ターミネーター配列;
(3)(第1のプロモーター配列-第1のシグナル配列-L鎖遺伝子-第1のターミネーター配列)を含む発現ベクターと、(第2のプロモーター配列-第2のシグナル配列-Fd鎖遺伝子-第2のターミネーター配列)を含む発現ベクターとの組み合わせ;
(1)第1のプロモーター配列-第1のシグナル配列-L鎖遺伝子-第2のプロモーター配列-第2のシグナル配列-Fd鎖遺伝子-ターミネーター配列;
(2)第1のプロモーター配列-第1のシグナル配列-Fd鎖遺伝子-第2のプロモーター配列-第2のシグナル配列-L鎖遺伝子-ターミネーター配列;
(3)(第1のプロモーター配列-第1のシグナル配列-L鎖遺伝子-第1のターミネーター配列)を含む発現ベクターと、(第2のプロモーター配列-第2のシグナル配列-Fd鎖遺伝子-第2のターミネーター配列)を含む発現ベクターとの組み合わせ;
(1)~(3)において、第1のプロモーターと第2のプロモーターは同一であっても異なっていてもよい。第1及び第2のプロモーターは、好ましくは、ハンゼヌラ・ポリモルファ(好ましくは宿主であるハンゼヌラ・ポリモルファ)のMOXプロモーター又はGAPプロモーターである。
(1)~(3)において、第1のシグナル配列と第2のシグナル配列は同一であっても異なっていてもよい。第1及び第2のシグナル配列は、好ましくは、サッカロマイセス・セレビシエのMating Factor α(MFα)プレプロシグナルである。
(3)において、第1のターミネーター配列と第2のターミネーター配列は同一であっても異なっていてもよい。第1及び第2のターミネーター配列は、好ましくは、ハンゼヌラ・ポリモルファのMOX遺伝子のターミネーター配列である。
本発明における宿主とは、本発明のFd鎖遺伝子及び/又はL鎖遺伝子を含有する組換えベクターを導入し、Fab型抗体を生産できれば、特に限定されないが、好ましくは酵母、カビ、動物細胞、トランスジェニック動物、大腸菌、無細胞タンパク質合成系などが挙げられる。中でも酵母が好ましく、メタノール資化性酵母がより好ましく、オガタエア属(Ogataea)やコマガタエラ属(Komagataella)に属するメタノール資化性酵母がさらに好ましい。オガタエア属に属するメタノール資化性酵母の中でも、オガタエア・ポリモルファ(Ogataea polymorpha)、オガタエア・ミニュータ(Ogataea minuta)が好ましく、コマガタエラ属に属するメタノール資化性酵母では、コマガタエア・パストリス(Komagataella pastoris)が好ましい。
本発明における形質転換体とは、本発明の組換えベクターが宿主に導入されたものを意味する。本発明の形質転換体は、組換えベクターに含まれる栄養要求性相補遺伝子や薬剤耐性遺伝子により得られる表現型を指標にして、選択的に得ることができる。
本発明のFab型抗体の製造方法としては、上記した形質転換体を培養して、生産したFab型抗体を回収することで得られる。生産する方法としては、上記の形質転換体を培養し、その培養上清中に蓄積させる分泌方法等が挙げられる。
本発明における分泌生産とは、形質転換体を液体培養して、菌体内部でなく培養上清にFab型抗体を蓄積させることを指す。分泌生産は、Fab型抗体のFd鎖および/またはL鎖を、分泌シグナルを融合したタンパク質として発現させることにより行う。分泌シグナルの融合としては、例えば、Fab型抗体のFd鎖および/またはL鎖をコードする塩基配列の5’末端にシグナル配列をコードする塩基配列を導入することにより行うことができる。
本発明におけるシグナル配列をコードする塩基配列は、宿主細胞がFab型抗体を分泌発現できるシグナル配列であれば特に限定されないが、サッカロマイセス・セレビシアエ(Saccharomyces cerevisiae)のMating Factor α(MFα)や、オガタエア・ポリモルファやコマガタエラ・パストリスの酸ホスファターゼ(PHO1)、サッカロマイセス・セレビシアエのインベルターゼ(SUC2)、サッカロマイセス・セレビシアエのPLB1、牛血清アルブミン(BSA)、ヒト血清アルブミン(HSA)、免疫グロブリンのシグナル配列をコードする塩基配列等が挙げられる。
本発明における形質転換体の培地は、通常宿主細胞が資化する栄養源を含む培地であれば何でも使用でき、上記栄養源としては、グルコース、シュークロース、マルトース等の糖類、乳酸、酢酸、クエン酸、プロピオン酸等の有機酸類、メタノール、エタノール、グリセロール等のアルコール類、パラフィン等の炭化水素類、大豆油、菜種油等の油脂類、またはこれらの混合物等の炭素源、硫酸アンモニウム、リン酸アンモニウム、尿素、酵母エキス、肉エキス、ペプトン、コーンスチープリカー等の窒素源、更に、その他の無機塩、ビタミン類等の栄養源を適宜混合・配合した通常の培地を用いることができるが、特にグリセロールやメタノールを炭素源として用いることが好ましい。また、培養方法としてバッチ培養、連続培養またはドーム型培養のいずれでも培養可能である。
培養は通常一般の条件により行なうことができ、例えば、pH2.5~10.0、温度範囲10℃~48℃の範囲で、好気的に10時間~10日間培養することにより行うことができる。
本発明の形質転換体は、好ましくは、形質転換体を培養してFab型抗体を生産させた場合の培養上清中のFab型抗体分泌生産量が2.0mg/mL以上(さらに好ましくは2.5mg/mL以上)である。形質転換体を培養してFab型抗体を生産させた場合の培養上清中のFab型抗体分泌生産量が2.0mg/mL以上(さらに好ましくは2.5mg/mL以上)である形質転換体とは、実施例1に示したFab型抗体の遺伝子を含む発現ベクターを用い、それを実施例2に示す方法で酵母に形質転換し、得られた形質転換体を、実施例3及び4に示す方法で、培養して得られた培養上清中のFab型抗体分泌生産量を解析した場合に、そのFab型抗体の濃度が2.0mg/L以上(又は2.5mg/mL以上)になる形質転換体を意味する。
本発明のFab型抗体を回収する方法は、分泌生産の場合、培養液から遠心分離等で培養上清を調製する工程や、培養上清から任意の方法でFab型抗体を単離精製する工程を含む。培養上清からの単離精製は、公知のタンパク質精製法を適当に組み合わせて用いることにより実施できる。例えば、形質転換体を適当な培地で培養し、培養液の遠心分離、あるいは、濾過処理により培養上清から菌体を除き、得られた培養上清を、塩析(硫酸アンモニウム沈殿、リン酸ナトリウム沈殿など)、溶媒沈殿(アセトンまたはエタノールなどによる蛋白質分画沈殿法)、透析、ゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー、疎水クロマトグラフィー、アフィニティークロマトグラフィー、逆相クロマトグラフィー、限外濾過等の手法で、該培養上清からFab型抗体を回収することができる。上記回収したFab型抗体は、そのまま使用することもできるが、その後PEG化等の薬理学的な変化をもたらす修飾、酵素やアイソトープ等の機能を付加する修飾を加えて使用することもできる。また、各種の製剤化処理を使用しても良い。
以下の実施例により本発明を詳細に説明するが、本発明はこれらにより限定されるものではない。なお、以下の実施例において用いた組換えDNA技術に関する詳細な操作方法などは、次の成書に記載されている:Molecular Cloning 2nd Edition(Cold Spring Harbor Laboratory Press,1989)、Current Protocols in Molecular Biology(Greene Publishing Associates and Wiley-Interscience)、Current Protocols in Molecular Biology(Greene Publishing Associates and Wiley-Interscience)。
また、以下の実施例において取得したプラスミドは、大腸菌E. coli DH5αコンピテントセル(タカラバイオ社製)を用いて、これに記載の条件で行うことにより取得した形質転換体を用いて増幅している。
PCRにはPrime STAR HS DNA Polymerase(タカラバイオ社製)を用い、反応条件は添付のマニュアルに記載の方法で行った。
(実施例1)pUC-LEU2-PmMfTmの構築
抗体発現ベクターの構築において利用した、MOXプロモーター(配列番号18)、MOXターミネーター(配列番号19)、LEU2遺伝子(配列番号20)はハンゼヌラ・ポリモルファ 8V株のゲノムDNAをテンプレートにしてPCRで調製した。Mating Factorαプレプロシグナル(MFα、配列番号21)は、サッカロマイセス・セレビシアエS288c株のゲノムDNAをテンプレートにしてPCRで調製した。抗体遺伝子は、完全ヒト型化抗TNF-α抗体(adalimumab;HUMIRA(登録商標))の公開配列情報に基づいて、L鎖(配列番号22)、H鎖(配列番号23)を化学合成した(特開2009-082033)ものをテンプレートにしてPCRで調製した。
抗体発現ベクターの構築において利用した、MOXプロモーター(配列番号18)、MOXターミネーター(配列番号19)、LEU2遺伝子(配列番号20)はハンゼヌラ・ポリモルファ 8V株のゲノムDNAをテンプレートにしてPCRで調製した。Mating Factorαプレプロシグナル(MFα、配列番号21)は、サッカロマイセス・セレビシアエS288c株のゲノムDNAをテンプレートにしてPCRで調製した。抗体遺伝子は、完全ヒト型化抗TNF-α抗体(adalimumab;HUMIRA(登録商標))の公開配列情報に基づいて、L鎖(配列番号22)、H鎖(配列番号23)を化学合成した(特開2009-082033)ものをテンプレートにしてPCRで調製した。
HindIII-NotI-BamHI-SpeI-BglII-XbaI-EcoRIのサイトをもつ遺伝子断片(配列番号24)を全合成し、これをpUC19のHindIII-EcoRIサイトに挿入してpUC-1を調製した。LEU2遺伝子の両側にHindIIIサイトをつけた遺伝子断片を、プライマー1および2(配列番号25および26)を用いたPCRにより調製し、HindIII処理後にpUC-1のHindIIIサイトに挿入した(pUC-LEU2)。次に、MOXプロモーターの両側にBamHIサイトをつけた遺伝子断片を、プライマー3および4(配列番号27および28)を用いたPCRにより調製し、BamHI処理後にpUC-LEU2のBamHIサイトへ挿入した(pUC-LEU2-Pm)。MFαの5'側にSpeIサイトを、3'側にBglIIサイトつけた遺伝子断片をプライマー5および6(配列番号29および30)を用いたPCRにより調製し、SpeIおよびBglII処理後にpUC-LEU2-PmのSpeI-BglIIサイトへ挿入した(pUC-LEU2-PmMf)。MOXターミネーターの両側にXbaIサイトをつけた遺伝子断片を、プライマー7および8(配列番号31および32)を用いたPCRにより調製し、XbaI処理後にpUC-LEU2-PmMfのXbaIサイトに挿入した(pUC-LEU2-PmMfTm)。
(比較例1)Fab型抗体発現組換えベクターの構築
L鎖の両側にBglIIサイトをつけた遺伝子断片を、プライマー9および10(配列番号33および34)を用いたPCRにより調製した。本遺伝子断片をBglII処理後、pUC-LEU2-PmMfTmのBglIIサイトに挿入し、pUC-LEU2-PmMfLTmを構築した。Fd鎖の両側にBglIIサイトをつけた遺伝子断片を、プライマー11および12(配列番号35および36)を用いたPCRにより調製した。本遺伝子断片をBglII処理後、pUC-LEU2-PmMfTmのBglIIサイトに挿入し、pUC-LEU2-PmMfFTmを構築した。pUC-LEU2-PmMfLTmをテンプレートにして、MOXプロモーター、MFα、L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14(配列番号37および38)を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、pUC-LEU2-PmMfFTmのEcoRIサイトに挿入し、pUC-LEU2-PmMfFTm-PmMfLtmを構築した。本発現ベクターは、Fab型抗体のL鎖およびFd鎖がそれぞれ別々のMOXプロモーター制御下で発現するように設計されている。
L鎖の両側にBglIIサイトをつけた遺伝子断片を、プライマー9および10(配列番号33および34)を用いたPCRにより調製した。本遺伝子断片をBglII処理後、pUC-LEU2-PmMfTmのBglIIサイトに挿入し、pUC-LEU2-PmMfLTmを構築した。Fd鎖の両側にBglIIサイトをつけた遺伝子断片を、プライマー11および12(配列番号35および36)を用いたPCRにより調製した。本遺伝子断片をBglII処理後、pUC-LEU2-PmMfTmのBglIIサイトに挿入し、pUC-LEU2-PmMfFTmを構築した。pUC-LEU2-PmMfLTmをテンプレートにして、MOXプロモーター、MFα、L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14(配列番号37および38)を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、pUC-LEU2-PmMfFTmのEcoRIサイトに挿入し、pUC-LEU2-PmMfFTm-PmMfLtmを構築した。本発現ベクターは、Fab型抗体のL鎖およびFd鎖がそれぞれ別々のMOXプロモーター制御下で発現するように設計されている。
(比較例2)形質転換体の取得
比較例1で構築したFab型抗体発現ベクターをMOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例3記載の方法を用いてオガタエア・ポリモルファを形質転換した。
比較例1で構築したFab型抗体発現ベクターをMOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例3記載の方法を用いてオガタエア・ポリモルファを形質転換した。
(比較例3)形質転換体の培養および培養上清の調製
比較例2で取得したFab型抗体発現ベクター導入株の培養上清の調製は実施例4に記載の方法と同様に実施した。
比較例2で取得したFab型抗体発現ベクター導入株の培養上清の調製は実施例4に記載の方法と同様に実施した。
(比較例4)Fab型抗体の定量
比較例3で取得した培養上清中のFab型抗体の分泌生産量は、実施例5と同様にサンドイッチELISA(Enzyme-Linked ImmunosorbentAssay)法により解析した。
比較例3で取得した培養上清中のFab型抗体の分泌生産量は、実施例5と同様にサンドイッチELISA(Enzyme-Linked ImmunosorbentAssay)法により解析した。
本発明の各Fd鎖遺伝子(配列番号5~9)は、上記のpUC-LEU2-PmMfFTmをテンプレートにしてPCRにより調製した。
(実施例2)各Fab型抗体発現組換えベクターの構築
Fd鎖をコードする塩基配列、Asp、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-HisおよびAsp-Lys-Thr-His-Thrの何れかのアミノ酸配列をコードする塩基配列、終止コドンをコードする塩基配列を融合させた断片は、PCRにより調製した。
Fd鎖をコードする塩基配列、Asp、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-HisおよびAsp-Lys-Thr-His-Thrの何れかのアミノ酸配列をコードする塩基配列、終止コドンをコードする塩基配列を融合させた断片は、PCRにより調製した。
Aspをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15(配列番号10)とプライマー16(配列番号11)を、Asp-Lysをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー17(配列番号12)を、Asp-Lys-Thrをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー1とプライマー18(配列番号13)を、Asp-Lys-Thr-His(配列番号1)をコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー19(配列番号14)を、Asp-Lys-Thr-His-Thr(配列番号2)をコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー20(配列番号15)を、それぞれ用いてPCRを行い、各断片を得た。各断片をBglII処理して、実施例1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入して、Asp、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-His(配列番号1)およびAsp-Lys-Thr-His-Thr(配列番号2)の何れかをコードする塩基配列を含有するFd鎖遺伝子を含む各プラスミドを構築した。pUC-LEU2-PmMfLTmをテンプレートにして、MOXプロモーター、MFα、L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14(配列番号37および38)を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、上述のAsp、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-His(配列番号1)およびAsp-Lys-Thr-His-Thr(配列番号2)の何れかをコードする塩基配列を含有するFd鎖遺伝子を含む各プラスミドのEcoRIサイトに挿入し、Asp、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-His(配列番号1)およびAsp-Lys-Thr-His-Thr(配列番号2)の何れかをコードする塩基配列を含有するFd鎖遺伝子を含む各Fab型抗体発現ベクターを構築した。
(実施例3)形質転換体の取得
実施例2で構築した各種のFab型抗体発現組換えベクターを、MOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を用いてオガタエア・ポリモルファを形質転換した。具体的には、オガタエア・ポリモルファBY4329(NCYC495由来、leu1-1)を3mlのYPD培地(1% yeast extract bacto(Difco社製),2% tryptone bacto(Difco社製),2% glucose)に接種し、37℃で一晩振とう培養して、前培養液を得た。得られた前培養液500μlを50mlのYPD培地に接種し、OD600が1~1.5になるまで30℃で振とう培養後、集菌(3000×g、10分、20℃)した。菌体を10mlの50mMリン酸カリウムバッファー(25mM DTTを含む、 pH7.5)に懸濁し、懸濁液を37℃で15分インキュベートした。集菌(3000×g、10分、4℃)した後、氷冷した50mlのSTMバッファー(270mMスクロース, 10mM Tris-HCl, 1mM塩化マグネシウム, pH7.5)で菌体を再懸濁した。集菌(3000×g、10分、4℃)後、菌体を25mlの氷冷したSTMバッファーで再懸濁した。集菌(3000×g、10分、4℃)した後、菌体を250μlの氷冷したSTMバッファーに懸濁し、これをコンピテントセル溶液とした。このコンピテントセル溶液60μlと直鎖状の各プラスミド溶液3μl(DNA量0.5~1μg)を混合し、エレクトロポレーション用キュベット(ディスポキュベット電極,電極間隔2mm;ビーエム機器社製)に移し入れ、7.5kV/cm、10μF、900Ωの条件でエレクトロポレーションした。その後、菌体をYPD培地1mlで懸濁し、37℃で1時間静置した。集菌(3000×g、5分、室温)し、1mlの生理食塩水で菌体を洗浄し、再度集菌(3000×g、5分、室温)した。菌体を適当量の生理食塩水で懸濁後、SD培地寒天プレート(0.67% yeast nitrogen base(Difco社製),1% glucose)に塗布し、30℃、3日間の静置培養で生育する株を選択し、各種Fab型抗体発現株を取得した。
実施例2で構築した各種のFab型抗体発現組換えベクターを、MOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を用いてオガタエア・ポリモルファを形質転換した。具体的には、オガタエア・ポリモルファBY4329(NCYC495由来、leu1-1)を3mlのYPD培地(1% yeast extract bacto(Difco社製),2% tryptone bacto(Difco社製),2% glucose)に接種し、37℃で一晩振とう培養して、前培養液を得た。得られた前培養液500μlを50mlのYPD培地に接種し、OD600が1~1.5になるまで30℃で振とう培養後、集菌(3000×g、10分、20℃)した。菌体を10mlの50mMリン酸カリウムバッファー(25mM DTTを含む、 pH7.5)に懸濁し、懸濁液を37℃で15分インキュベートした。集菌(3000×g、10分、4℃)した後、氷冷した50mlのSTMバッファー(270mMスクロース, 10mM Tris-HCl, 1mM塩化マグネシウム, pH7.5)で菌体を再懸濁した。集菌(3000×g、10分、4℃)後、菌体を25mlの氷冷したSTMバッファーで再懸濁した。集菌(3000×g、10分、4℃)した後、菌体を250μlの氷冷したSTMバッファーに懸濁し、これをコンピテントセル溶液とした。このコンピテントセル溶液60μlと直鎖状の各プラスミド溶液3μl(DNA量0.5~1μg)を混合し、エレクトロポレーション用キュベット(ディスポキュベット電極,電極間隔2mm;ビーエム機器社製)に移し入れ、7.5kV/cm、10μF、900Ωの条件でエレクトロポレーションした。その後、菌体をYPD培地1mlで懸濁し、37℃で1時間静置した。集菌(3000×g、5分、室温)し、1mlの生理食塩水で菌体を洗浄し、再度集菌(3000×g、5分、室温)した。菌体を適当量の生理食塩水で懸濁後、SD培地寒天プレート(0.67% yeast nitrogen base(Difco社製),1% glucose)に塗布し、30℃、3日間の静置培養で生育する株を選択し、各種Fab型抗体発現株を取得した。
(実施例4)形質転換体の培養および培養上清の調製
培養上清の調製は以下のように実施した。即ち、実施例3で得られた各Fab型抗体発現株を2mlのBMGMY培地(1% yeast extract bacto,2% peptone,1.34% yeast nitrogen base,0.4mg/l Biotin,100mMリン酸カリウム(pH6.0),1% Glycerol, 1% Methanol)に植菌し、30℃で72時間振とう培養後、遠心分離(15,000rpm、1分、4℃)により培養上清を調製した。
培養上清の調製は以下のように実施した。即ち、実施例3で得られた各Fab型抗体発現株を2mlのBMGMY培地(1% yeast extract bacto,2% peptone,1.34% yeast nitrogen base,0.4mg/l Biotin,100mMリン酸カリウム(pH6.0),1% Glycerol, 1% Methanol)に植菌し、30℃で72時間振とう培養後、遠心分離(15,000rpm、1分、4℃)により培養上清を調製した。
(実施例5)Fab型抗体の定量
Fab型抗体の培養上清への分泌生産量は、サンドイッチELISA(Enzyme-Linked ImmunosorbentAssay)法により解析した。
サンドイッチELISAは、ELISA用プレート(マキシソープ;NUNC社製)に固定化バッファー(0.1M 炭酸ナトリウムバッファー、pH9.6)にて2500倍希釈したAnti IgG(Fd) ,Human (Sheep)(The Binding Site Group社製)を50μl/ウェルで添加し、終夜で4℃インキュベートした。インキュベート後、ウェル中の溶液を除去し、5倍希釈したイムノブロック(大日本住友製薬社製)を250μl/ウェルで加え、室温で1時間静置し、ブロッキングした。各ウェルをPBST(PBS(タカラバイオ社製)+0.1% Tween20)で3回洗浄後、系列希釈した標準Fab型抗体(Anti-Human IgGFab;rockland社製)と培養上清の希釈液を50μl/ウェルで加え、室温で1時間反応した。ウェル中の溶液を除去し、PBSTで2回洗浄後、PBSTIB(PBST + 2% イムノブロック)溶液にて8000倍希釈したAnti-Human IgG(Fab SPECIFIC)PEROXIDASE CONJUGATE Antibody developed in Goat Affinity Isolated Antibody(SIGMA社製)を50μl/ウェルで加え、室温で1時間反応させた。ウェル中の溶液を除去し、PBSTで4回洗浄後、TMB 1-Component Microwell Peroxidase Substrate,SureBlue(KPL社製)を100μl/ウェルで添加し、室温で20分静置した。TMB Stop Solution(KPL社製)を100μl/ウェルで添加して反応を停止させた後、マイクロプレートリーダー(BenchMark Plus;Bio-Rad社製)で450nmの吸光度を測定した。培養上清中のFab型抗体の定量は、標準タンパク質の検量線を用いて行った結果を表1に示す。表1の通り、Asp、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-HisおよびAsp-Lys-Thr-His-Thrの何れかを融合したFab型抗体の生産量は、融合していないFab型抗体の5倍程度向上していることが明らかとなった。
Fab型抗体の培養上清への分泌生産量は、サンドイッチELISA(Enzyme-Linked ImmunosorbentAssay)法により解析した。
サンドイッチELISAは、ELISA用プレート(マキシソープ;NUNC社製)に固定化バッファー(0.1M 炭酸ナトリウムバッファー、pH9.6)にて2500倍希釈したAnti IgG(Fd) ,Human (Sheep)(The Binding Site Group社製)を50μl/ウェルで添加し、終夜で4℃インキュベートした。インキュベート後、ウェル中の溶液を除去し、5倍希釈したイムノブロック(大日本住友製薬社製)を250μl/ウェルで加え、室温で1時間静置し、ブロッキングした。各ウェルをPBST(PBS(タカラバイオ社製)+0.1% Tween20)で3回洗浄後、系列希釈した標準Fab型抗体(Anti-Human IgGFab;rockland社製)と培養上清の希釈液を50μl/ウェルで加え、室温で1時間反応した。ウェル中の溶液を除去し、PBSTで2回洗浄後、PBSTIB(PBST + 2% イムノブロック)溶液にて8000倍希釈したAnti-Human IgG(Fab SPECIFIC)PEROXIDASE CONJUGATE Antibody developed in Goat Affinity Isolated Antibody(SIGMA社製)を50μl/ウェルで加え、室温で1時間反応させた。ウェル中の溶液を除去し、PBSTで4回洗浄後、TMB 1-Component Microwell Peroxidase Substrate,SureBlue(KPL社製)を100μl/ウェルで添加し、室温で20分静置した。TMB Stop Solution(KPL社製)を100μl/ウェルで添加して反応を停止させた後、マイクロプレートリーダー(BenchMark Plus;Bio-Rad社製)で450nmの吸光度を測定した。培養上清中のFab型抗体の定量は、標準タンパク質の検量線を用いて行った結果を表1に示す。表1の通り、Asp、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-HisおよびAsp-Lys-Thr-His-Thrの何れかを融合したFab型抗体の生産量は、融合していないFab型抗体の5倍程度向上していることが明らかとなった。
(実施例6)各Fab型抗体発現ベクターの構築2
Fd鎖をコードする塩基配列、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、Hisの何れかのアミノ酸をコードする塩基配列、終止コドンをコードする塩基配列を融合させた断片は、PCRにより調製した。
Fd鎖をコードする塩基配列、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、Hisの何れかのアミノ酸をコードする塩基配列、終止コドンをコードする塩基配列を融合させた断片は、PCRにより調製した。
Glyをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー21(配列番号39)を、Alaをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー22(配列番号40)を、Valをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー23(配列番号41)を、Leuをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー24(配列番号42)を、Ileをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー25(配列番号43)を、Cysをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー26(配列番号44)を、Metをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー27(配列番号45)を、Serをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー28(配列番号46)を、Thrをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー29(配列番号47)を、Tyrをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー30(配列番号48)を、Pheをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー31(配列番号49)を、Trpをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー32(配列番号50)を、Proをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー33(配列番号51)を、Gluをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー34(配列番号52)を、Asnをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー35(配列番号53)を、Glnをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー36(配列番号54)を、Lysをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー37(配列番号55)を、Argをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー38(配列番号56)を、Hisをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー39(配列番号57)を、それぞれ用いてPCRを行い、各断片を得た。各断片をBglII処理して、実施例1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入して、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、Hisの何れかをコードする塩基配列を含有するFd鎖遺伝子を含む各プラスミドを構築した。pUC-LEU2-PmMfLTmをテンプレートにして、MOXプロモーター、MFα、L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14(配列番号37および38)を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、上述のGly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、Hisの何れかをコードする塩基配列を含有するFd鎖遺伝子を含む各プラスミドのEcoRIサイトに挿入し、ly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、Hisの何れかをコードする塩基配列を含有するFd鎖遺伝子を含む各Fab型抗体発現ベクターを構築した。
(実施例7)各Fab型抗体発現ベクターの構築3
L鎖をコードする塩基配列、Aspののアミノ酸をコードする塩基配列、終止コドンをコードする塩基配列を融合させた断片は、PCRにより調製した。
Aspをコードする塩基配列を融合したL鎖遺伝子断片はプライマー9とプライマー40(配列番号58)を用いてPCRを行い、断片を得た。本断片をBglII処理して、実施例1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入し、Aspをコードする塩基配列を含有するL鎖遺伝子を含むベクターを構築した。本ベクターをテンプレートにして、MOXプロモーター、MFα、Aspをコードする塩基配列を含有するL鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14(配列番号37および38)を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、実施例2記載のpUC-LEU2-PmMfFTmのEcoRIサイトに挿入し、Aspをコードする塩基配列を含有するL鎖遺伝子を含む各Fab型抗体発現ベクターを構築した。
L鎖をコードする塩基配列、Aspののアミノ酸をコードする塩基配列、終止コドンをコードする塩基配列を融合させた断片は、PCRにより調製した。
Aspをコードする塩基配列を融合したL鎖遺伝子断片はプライマー9とプライマー40(配列番号58)を用いてPCRを行い、断片を得た。本断片をBglII処理して、実施例1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入し、Aspをコードする塩基配列を含有するL鎖遺伝子を含むベクターを構築した。本ベクターをテンプレートにして、MOXプロモーター、MFα、Aspをコードする塩基配列を含有するL鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14(配列番号37および38)を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、実施例2記載のpUC-LEU2-PmMfFTmのEcoRIサイトに挿入し、Aspをコードする塩基配列を含有するL鎖遺伝子を含む各Fab型抗体発現ベクターを構築した。
(実施例8)形質転換体の培養および培養上清の調製
実施例6および7で構築した各種のFab型抗体発現組換えベクターを、MOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例2に記載の方法を用いてオガタエア・ポリモルファを形質転換し、各種Fab型抗体発現株を取得した。
実施例6および7で構築した各種のFab型抗体発現組換えベクターを、MOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例2に記載の方法を用いてオガタエア・ポリモルファを形質転換し、各種Fab型抗体発現株を取得した。
(実施例9)形質転換体の培養および培養上清の調製
実施例8で得られた各種Fab型抗体発現株の培養上清の調製は実施例3と同様に実施して取得した。
実施例8で得られた各種Fab型抗体発現株の培養上清の調製は実施例3と同様に実施して取得した。
(実施例10)Fab型抗体の定量
実施例9で取得したFab型抗体の培養上清への分泌生産量は、実施例4に記載の方法により解析した。
実施例9で取得したFab型抗体の培養上清への分泌生産量は、実施例4に記載の方法により解析した。
培養上清中のFab型抗体の定量は、標準タンパク質の検量線を用いて行った結果を表2に示す。表2の通り、Fd鎖にGly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、Hisの何れかを融合したFab型抗体の生産量、L鎖にAspを融合したFab型抗体の生産量は、融合していないFab型抗体の4~6倍程度向上していることが明らかとなった。
(比較例5)レミケード由来のFab型抗体発現ベクターの構築
レミケード由来のFab型抗体遺伝子は、レミケード(Infliximab;Remicade(登録商標))の公開配列情報に基づいて、L鎖(配列番号59)、Fd鎖(配列番号60)を化学合成し、これをテンプレートにしてPCRで調製した。
レミケード由来のFab型抗体遺伝子は、レミケード(Infliximab;Remicade(登録商標))の公開配列情報に基づいて、L鎖(配列番号59)、Fd鎖(配列番号60)を化学合成し、これをテンプレートにしてPCRで調製した。
レミケード由来L鎖の両側にBglIIサイトをつけた遺伝子断片を、プライマー41および42(配列番号61および62)を用いたPCRにより調製した。本遺伝子断片をBglII処理後、実施例1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入し、pUC-LEU2-PmMfrLTmを構築した。レミケード由来Fd鎖の両側にBglIIサイトをつけた遺伝子断片を、プライマー43および44(配列番号63および64)を用いたPCRにより調製した。本遺伝子断片をBglII処理後、pUC-LEU2-PmMfTmのBglIIサイトに挿入し、pUC-LEU2-PmMfrFTmを構築した。pUC-LEU2-PmMfrLTmをテンプレートにして、MOXプロモーター、MFα、レミケード由来L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14(配列番号37および38)を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、pUC-LEU2-PmMfrFTmのEcoRIサイトに挿入し、pUC-LEU2-PmMfrFTm-PmMfrLtmを構築した。本発現ベクターは、レミケード由来のFab型抗体のL鎖およびFd鎖がそれぞれ別々のMOXプロモーター制御下で発現するように設計されている。
(比較例6)形質転換体の取得
比較例5で構築したレミケード由来Fab型抗体発現ベクターをMOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例3記載の方法を用いてオガタエア・ポリモルファを形質転換した。
比較例5で構築したレミケード由来Fab型抗体発現ベクターをMOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例3記載の方法を用いてオガタエア・ポリモルファを形質転換した。
(比較例7)形質転換体の培養および培養上清の調製
比較例6で取得したレミケード由来Fab型抗体発現ベクター導入株の培養上清の調製は実施例13に記載の方法と同様に実施した。
比較例6で取得したレミケード由来Fab型抗体発現ベクター導入株の培養上清の調製は実施例13に記載の方法と同様に実施した。
(比較例8)Fab型抗体の定量
比較例7で取得した培養上清中のFab型抗体の分泌生産量は、実施例5と同様にサンドイッチELISA(Enzyme-Linked ImmunosorbentAssay)法により解析した。結果を表3に示す。
比較例7で取得した培養上清中のFab型抗体の分泌生産量は、実施例5と同様にサンドイッチELISA(Enzyme-Linked ImmunosorbentAssay)法により解析した。結果を表3に示す。
(実施例11)レミケード由来各Fab型抗体発現ベクターの構築
Aspをコードする塩基配列を融合したレミケード由来Fd鎖遺伝子断片はプライマー43とプライマー45(配列番号65)を用いてPCRを行い、断片を得た。本断片をBglII処理して、実施1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入して、Aspをコードする塩基配列を含有するレミケード由来Fd鎖遺伝子を含むベクターを構築した。比較例2記載のpUC-LEU2-PmMfrLTmをテンプレートにして、MOXプロモーター、MFα、レミケード由来L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14(配列番号37および38)を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、上述のAspをコードする塩基配列を含有するレミケード由来Fd鎖遺伝子を含むベクターのEcoRIサイトに挿入し、Aspをコードする塩基配列を含有するレミケード由来Fd鎖遺伝子を含むレミケード由来Fab型抗体発現組換えベクターを構築した。
Aspをコードする塩基配列を融合したレミケード由来Fd鎖遺伝子断片はプライマー43とプライマー45(配列番号65)を用いてPCRを行い、断片を得た。本断片をBglII処理して、実施1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入して、Aspをコードする塩基配列を含有するレミケード由来Fd鎖遺伝子を含むベクターを構築した。比較例2記載のpUC-LEU2-PmMfrLTmをテンプレートにして、MOXプロモーター、MFα、レミケード由来L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14(配列番号37および38)を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、上述のAspをコードする塩基配列を含有するレミケード由来Fd鎖遺伝子を含むベクターのEcoRIサイトに挿入し、Aspをコードする塩基配列を含有するレミケード由来Fd鎖遺伝子を含むレミケード由来Fab型抗体発現組換えベクターを構築した。
(実施例12)形質転換体の取得
実施例11で構築したレミケード由来Fab型抗体発現組換えベクターを、MOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例2に記載の方法を用いてオガタエア・ポリモルファを形質転換し、レミケード由来Fab型抗体発現株を取得した。
実施例11で構築したレミケード由来Fab型抗体発現組換えベクターを、MOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例2に記載の方法を用いてオガタエア・ポリモルファを形質転換し、レミケード由来Fab型抗体発現株を取得した。
(実施例13)形質転換体の培養および培養上清の調製
培養上清の調製は以下のように実施した。即ち、実施例12で得られたレミケード由来Fab型抗体発現株を2mlのBMGMY培地(1% yeast extract bacto,2% peptone,1.34% yeast nitrogen base,0.4mg/l Biotin,100mMリン酸カリウム(pH6.0),1% Glycerol, 1% Methanol)に植菌し、30℃で60時間振とう培養後、Methanolを20mg添加し、さらに30℃で24時間振とう培養した。その後、遠心分離(15,000rpm、1分、4℃)により培養上清を調製した。
培養上清の調製は以下のように実施した。即ち、実施例12で得られたレミケード由来Fab型抗体発現株を2mlのBMGMY培地(1% yeast extract bacto,2% peptone,1.34% yeast nitrogen base,0.4mg/l Biotin,100mMリン酸カリウム(pH6.0),1% Glycerol, 1% Methanol)に植菌し、30℃で60時間振とう培養後、Methanolを20mg添加し、さらに30℃で24時間振とう培養した。その後、遠心分離(15,000rpm、1分、4℃)により培養上清を調製した。
(実施例14)Fab型抗体の定量
実施例13で取得したレミケード由来Fab型抗体の培養上清への分泌生産量は、実施例4に記載の方法により解析した。
培養上清中のレミケード由来Fab型抗体の定量は、標準タンパク質の検量線を用いて行った結果を表3に示す。表3の通り、Fd鎖にAspを融合したレミケード由来Fab型抗体の生産量は、融合していないレミケード由来Fab型抗体の5倍程度向上しており、Fab型抗体の種類に因らず、効果があることが明らかとなった。
実施例13で取得したレミケード由来Fab型抗体の培養上清への分泌生産量は、実施例4に記載の方法により解析した。
培養上清中のレミケード由来Fab型抗体の定量は、標準タンパク質の検量線を用いて行った結果を表3に示す。表3の通り、Fd鎖にAspを融合したレミケード由来Fab型抗体の生産量は、融合していないレミケード由来Fab型抗体の5倍程度向上しており、Fab型抗体の種類に因らず、効果があることが明らかとなった。
(比較例9)ピキア用Fab型抗体ベクターの構築
実施例2記載のpUC-LEU2-PmMfLTm-PmMfFtmをHindIIIで処理した後に、Fab型抗体遺伝子を含むベクター断片をアガロースゲルから精製した。その後、本ベクター断片のHindIIIサイトに、実施例15に記載のG418耐性遺伝子を挿入し、pUC-G418-PmMfLTm-PmMfFtmを構築した。
実施例2記載のpUC-LEU2-PmMfLTm-PmMfFtmをHindIIIで処理した後に、Fab型抗体遺伝子を含むベクター断片をアガロースゲルから精製した。その後、本ベクター断片のHindIIIサイトに、実施例15に記載のG418耐性遺伝子を挿入し、pUC-G418-PmMfLTm-PmMfFtmを構築した。
(比較例10)ピキアの形質転換体の取得
比較例9で構築したベクターを、ピキア酵母野生株Y-11430株に形質転換した。方法は実施例16に記載の方法にて実施した。
比較例9で構築したベクターを、ピキア酵母野生株Y-11430株に形質転換した。方法は実施例16に記載の方法にて実施した。
(比較例11)形質転換体の培養および培養上清の調製
比較例10で取得したFab型抗体発現ベクター導入ピキア株の培養上清の調製は実施例4に記載の方法と同様に実施した。
比較例10で取得したFab型抗体発現ベクター導入ピキア株の培養上清の調製は実施例4に記載の方法と同様に実施した。
(比較例12)Fab型抗体の定量
比較例11で取得した培養上清中のFab型抗体の分泌生産量は、実施例5と同様にサンドイッチELISA(Enzyme-Linked ImmunosorbentAssay)法により解析した。結果を表4に示す。
比較例11で取得した培養上清中のFab型抗体の分泌生産量は、実施例5と同様にサンドイッチELISA(Enzyme-Linked ImmunosorbentAssay)法により解析した。結果を表4に示す。
(実施例15)ピキア用Fab型抗体ベクターの構築
オガタエア・ポリモルファ酵母のGAPプロモーター制御下で発現するように設計したG418耐性遺伝子(配列番号66)を全合成し、PCRのテンプレートとした。このG418耐性遺伝子の両側にHindIIIサイトを付加した遺伝子断片を、プライマー46および47(配列番号67および68)用いてPCRで調製し、HindIII処理をした。実施例2記載のAspをコードする塩基配列を含有するFd鎖遺伝子を含む各Fab型抗体発現ベクターをHindIIIで処理した後に、Fab型抗体遺伝子を含むベクター断片をアガロースゲルから精製した。その後、本ベクター断片のHindIIIサイトに上述のG418耐性遺伝子を挿入し、G418耐性遺伝子を選択マーカーとするAspをコードする塩基配列を含有するFd鎖遺伝子を含む各Fab型抗体発現ベクターを構築した。
オガタエア・ポリモルファ酵母のGAPプロモーター制御下で発現するように設計したG418耐性遺伝子(配列番号66)を全合成し、PCRのテンプレートとした。このG418耐性遺伝子の両側にHindIIIサイトを付加した遺伝子断片を、プライマー46および47(配列番号67および68)用いてPCRで調製し、HindIII処理をした。実施例2記載のAspをコードする塩基配列を含有するFd鎖遺伝子を含む各Fab型抗体発現ベクターをHindIIIで処理した後に、Fab型抗体遺伝子を含むベクター断片をアガロースゲルから精製した。その後、本ベクター断片のHindIIIサイトに上述のG418耐性遺伝子を挿入し、G418耐性遺伝子を選択マーカーとするAspをコードする塩基配列を含有するFd鎖遺伝子を含む各Fab型抗体発現ベクターを構築した。
(実施例16)ピキアの形質転換体の取得
実施例15で構築したG418耐性遺伝子を選択マーカーとするAspをコードする塩基配列を含有するFd鎖遺伝子を含む各Fab型抗体発現ベクターを、ピキア酵母野生株Y-11430株に形質転換した。方法は実施例3に記載の方法において、ハンゼヌラ酵母をピキア酵母に変更して実施した。
形質転換後の菌体をG418含有のSD培地寒天プレート(0.17% Bacto Yeast Nitrogen Base w/o Amino Acids and Ammonium Sulfate(Difco社製),0.1% sodium glutamate, 1% glucose, 0.25g/L G418)に塗布し、30℃、3日間の静置培養で生育する株を選択し、Fab型抗体発現株を取得した。
実施例15で構築したG418耐性遺伝子を選択マーカーとするAspをコードする塩基配列を含有するFd鎖遺伝子を含む各Fab型抗体発現ベクターを、ピキア酵母野生株Y-11430株に形質転換した。方法は実施例3に記載の方法において、ハンゼヌラ酵母をピキア酵母に変更して実施した。
形質転換後の菌体をG418含有のSD培地寒天プレート(0.17% Bacto Yeast Nitrogen Base w/o Amino Acids and Ammonium Sulfate(Difco社製),0.1% sodium glutamate, 1% glucose, 0.25g/L G418)に塗布し、30℃、3日間の静置培養で生育する株を選択し、Fab型抗体発現株を取得した。
(実施例17)形質転換体の培養および培養上清の調製
実施例16で取得したピキア酵母のFab型抗体発現ベクター導入株の培養上清の調製は実施例4に記載の方法と同様に実施した。
実施例16で取得したピキア酵母のFab型抗体発現ベクター導入株の培養上清の調製は実施例4に記載の方法と同様に実施した。
(実施例18)Fab型抗体の定量
実施例17で取得した培養上清中のFab型抗体の分泌生産量は、実施例5と同様にサンドイッチELISA(Enzyme-Linked ImmunosorbentAssay)法により解析した。
実施例17で取得した培養上清中のFab型抗体の分泌生産量は、実施例5と同様にサンドイッチELISA(Enzyme-Linked ImmunosorbentAssay)法により解析した。
培養上清中のFab型抗体の定量は、標準タンパク質の検量線を用いて行った結果を表4に示す。表4の通り、Fd鎖にAspを融合したFab型抗体の生産量は、融合していないFab型抗体の2倍程度向上しており、複数の酵母種において、効果があることが明らかとなった。
(実施例19)各Fab型抗体発現ベクターの構築3
Fd鎖をコードする塩基配列、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr(配列番号69)のペプチドをコードする塩基配列(配列番号70)、終止コドンをコードする塩基配列を融合させた断片は、PCRにより調製した。Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thrをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー48(配列番号71)を用いて、実施例2にて調製したAsp-Lys-Thr-His-Thrをコードする塩基配列を含有するFd鎖遺伝子を含むFab型抗体発現ベクターをテンプレートに用いてPCRを行い、断片を得た。本断片をBglII処理して、実施例1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入して、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thrをコードする塩基配列を含有するFd鎖遺伝子を含むプラスミドを構築した。pUC-LEU2-PmMfLTmをテンプレートにして、MOXプロモーター、MFα、L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thrをコードする塩基配列を含有するFd鎖遺伝子を含むプラスミドのEcoRIサイトに挿入し、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thrをコードする塩基配列を含有するFd鎖遺伝子を含むFab型抗体発現ベクターを構築した。
Fd鎖をコードする塩基配列、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr(配列番号69)のペプチドをコードする塩基配列(配列番号70)、終止コドンをコードする塩基配列を融合させた断片は、PCRにより調製した。Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thrをコードする塩基配列を融合したFd鎖遺伝子断片はプライマー15とプライマー48(配列番号71)を用いて、実施例2にて調製したAsp-Lys-Thr-His-Thrをコードする塩基配列を含有するFd鎖遺伝子を含むFab型抗体発現ベクターをテンプレートに用いてPCRを行い、断片を得た。本断片をBglII処理して、実施例1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入して、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thrをコードする塩基配列を含有するFd鎖遺伝子を含むプラスミドを構築した。pUC-LEU2-PmMfLTmをテンプレートにして、MOXプロモーター、MFα、L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thrをコードする塩基配列を含有するFd鎖遺伝子を含むプラスミドのEcoRIサイトに挿入し、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thrをコードする塩基配列を含有するFd鎖遺伝子を含むFab型抗体発現ベクターを構築した。
(実施例20)形質転換体の取得
実施例19で構築したFab型抗体発現組換えベクターを、MOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例2に記載の方法を用いてオガタエア・ポリモルファを形質転換し、Fab型抗体発現株を取得した。
実施例19で構築したFab型抗体発現組換えベクターを、MOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例2に記載の方法を用いてオガタエア・ポリモルファを形質転換し、Fab型抗体発現株を取得した。
(実施例21)形質転換体の培養および培養上清の調製
実施例20で得られたFab型抗体発現株の培養上清の調製は実施例3と同様に実施して取得した。
実施例20で得られたFab型抗体発現株の培養上清の調製は実施例3と同様に実施して取得した。
(実施例22)Fab型抗体の定量
実施例21で取得したFab型抗体の培養上清への分泌生産量は、実施例4に記載の方法により解析した。
培養上清中のFab型抗体の定量は、標準タンパク質の検量線を用いて行った結果を表5に示す。表5の通り、Fd鎖に10残基のペプチドを融合したFab型抗体の生産量は、融合していないFab型抗体の5倍程度向上していることが明らかとなった。
実施例21で取得したFab型抗体の培養上清への分泌生産量は、実施例4に記載の方法により解析した。
培養上清中のFab型抗体の定量は、標準タンパク質の検量線を用いて行った結果を表5に示す。表5の通り、Fd鎖に10残基のペプチドを融合したFab型抗体の生産量は、融合していないFab型抗体の5倍程度向上していることが明らかとなった。
(実施例23)Fab型抗体発現ベクターの構築4
Fd鎖をコードする塩基配列、30残基のペプチド(配列番号74)をコードする塩基配列(配列番号75)、終止コドンをコードする塩基配列を融合させた断片は、PCRにより調製した。
配列番号74のペプチドをコードする塩基配列を融合したFd鎖遺伝子断片は、プライマー49(配列番号76)とプライマー50(配列番号77)を用いてpEGFP-F(クローンテック社製)などをテンプレートに用いてPCRを行い、断片を得た。本断片をBglIIおよびBamHI処理して、実施例1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入し、配列番号74のペプチドをコードする塩基配列の一部を含むプラスミドを得た。次に、プライマー15とプライマー51(配列番号78)を用いてPCRを行い、Fd鎖遺伝子断片を得た。本断片をBglIIおよびBamHI処理し、上述の配列番号74のペプチドをコードする塩基配列の一部を含むプラスミドのBglIIサイトに挿入して、配列番号74のペプチドをコードする塩基配列を融合したFd鎖遺伝子を含むベクターを構築した。pUC-LEU2-PmMfLTmをテンプレートにして、MOXプロモーター、MFα、L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、配列番号74のペプチドをコードする塩基配列を融合したFd鎖遺伝子を含むベクターのEcoRIサイトに挿入し、配列番号74のペプチドをコードする塩基配列を含有するFd鎖遺伝子を含むFab型抗体発現ベクターを構築した。
Fd鎖をコードする塩基配列、30残基のペプチド(配列番号74)をコードする塩基配列(配列番号75)、終止コドンをコードする塩基配列を融合させた断片は、PCRにより調製した。
配列番号74のペプチドをコードする塩基配列を融合したFd鎖遺伝子断片は、プライマー49(配列番号76)とプライマー50(配列番号77)を用いてpEGFP-F(クローンテック社製)などをテンプレートに用いてPCRを行い、断片を得た。本断片をBglIIおよびBamHI処理して、実施例1記載のpUC-LEU2-PmMfTmのBglIIサイトに挿入し、配列番号74のペプチドをコードする塩基配列の一部を含むプラスミドを得た。次に、プライマー15とプライマー51(配列番号78)を用いてPCRを行い、Fd鎖遺伝子断片を得た。本断片をBglIIおよびBamHI処理し、上述の配列番号74のペプチドをコードする塩基配列の一部を含むプラスミドのBglIIサイトに挿入して、配列番号74のペプチドをコードする塩基配列を融合したFd鎖遺伝子を含むベクターを構築した。pUC-LEU2-PmMfLTmをテンプレートにして、MOXプロモーター、MFα、L鎖、MOXターミネーターの一部が連結した遺伝子断片の両側にEcoRIサイトをつけた遺伝子断片を、プライマー13および14を用いたPCRにより調製した。本遺伝子断片をEcoRI処理後、配列番号74のペプチドをコードする塩基配列を融合したFd鎖遺伝子を含むベクターのEcoRIサイトに挿入し、配列番号74のペプチドをコードする塩基配列を含有するFd鎖遺伝子を含むFab型抗体発現ベクターを構築した。
(実施例24)形質転換体の取得
実施例23で構築したFab型抗体発現組換えベクターを、MOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例2に記載の方法を用いてオガタエア・ポリモルファを形質転換し、Fab型抗体発現株を取得した。
実施例23で構築したFab型抗体発現組換えベクターを、MOXターミネーター内のEcoRVサイトで切断して直鎖状にした。本断片を実施例2に記載の方法を用いてオガタエア・ポリモルファを形質転換し、Fab型抗体発現株を取得した。
(実施例25)形質転換体の培養および培養上清の調製
実施例24で得られたFab型抗体発現株の培養上清の調製は実施例3と同様に実施して取得した。
実施例24で得られたFab型抗体発現株の培養上清の調製は実施例3と同様に実施して取得した。
(実施例26)Fab型抗体の定量
実施例25で取得したFab型抗体の培養上清への分泌生産量は、実施例4に記載の方法により解析した。
培養上清中のFab型抗体の定量は、標準タンパク質の検量線を用いて行った結果を表6に示す。表6の通り、Fd鎖に30残基のペプチドを融合したFab型抗体の生産量は、融合していないFab型抗体の4倍程度向上していることが明らかとなった。
実施例25で取得したFab型抗体の培養上清への分泌生産量は、実施例4に記載の方法により解析した。
培養上清中のFab型抗体の定量は、標準タンパク質の検量線を用いて行った結果を表6に示す。表6の通り、Fd鎖に30残基のペプチドを融合したFab型抗体の生産量は、融合していないFab型抗体の4倍程度向上していることが明らかとなった。
Claims (15)
- 抗体のFd鎖又はL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有する、遺伝子。
- 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、1~30個のアミノ酸からなるものである、請求項1に記載の遺伝子。
- 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、Asp、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、His、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-His、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr、又はGly-Gly-Gly-Gly-Ser-Met-Val-Ser-Lys-Gly-Glu-Glu-Leu-Phe-Thr-Gly-Val-Val-Pro-Ile-Leu-Val-Glu-Leu-Asp-Gly-Asp-Val-Asn-Glyの何れかである、請求項1又は2に記載の遺伝子。
- 請求項1から3の何れか1項に記載の遺伝子を含有する組換えベクター。
- 以下の何れかである、請求項4に記載の組み換えベクター。
(a)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子と、抗体のL鎖遺伝子とを含有する、組み換えベクター;
(b)抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子と、抗体のFd鎖遺伝子とを含有する、組み換えベクター;及び
(c)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子と、抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子とを含有する組み換えベクター。 - 以下の何れかである、組換えベクターの組み合わせ。
(A)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子を含有する組み換えベクターと、抗体のL鎖遺伝子を含有する組み換えベクターとの組み合わせ;
(B)抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子を含有する組み換えベクターと、抗体のFd鎖遺伝子を含有する組み換えベクターとの組み合わせ;及び
(C)抗体のFd鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するFd鎖遺伝子を含有する組み換えベクターと、抗体のL鎖のアミノ酸配列をコードする塩基配列の3’末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列をコードする塩基配列を含有するL鎖遺伝子を含有する組み換えベクターとの組み合わせ: - 請求項4又は5に記載の組換えベクター又は請求項6に記載の組換えベクターの組み合わせにより宿主を形質転換することにより得られる形質転換体。
- 宿主が酵母である、請求項7に記載の形質転換体。
- 酵母がオガタエア属またはコマガタエラ属酵母である、請求項7又は8に記載の形質転換体。
- オガタエア属またはコマガタエラ属酵母が、オガタエア・ポリモルファまたはコマガタエラ・パストリスである、請求項9に記載の形質転換体。
- 形質転換体を培養してFab型抗体を生産させた場合の、培養上清中のFab型抗体分泌生産量が2.0mg/mL以上である、請求項7から10の何れか1項に記載の形質転換体。
- 請求項7から11の何れか1項に記載の形質転換体を培養し、Fab型抗体を回収する工程を含むFab型抗体の製造方法。
- 抗体のFd鎖及び/又はL鎖のアミノ酸配列のC末端に、Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列を有する、Fab型抗体。
- 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、1~10個のアミノ酸からなるものである、請求項13に記載のFab型抗体.
- 前記Fab型抗体の分泌量を増大できるアミノ酸又はアミノ酸配列が、Asp、Gly、Ala、Val、Leu、Ile、Cys、Met、Ser、Thr、Tyr、Phe、Trp、Pro、Glu、Asn、Gln、Lys、Arg、His、Asp-Lys、Asp-Lys-Thr、Asp-Lys-Thr-His、Asp-Lys-Thr-His-Thr-Asp-Lys-Thr-His-Thr、又はGly-Gly-Gly-Gly-Ser-Met-Val-Ser-Lys-Gly-Glu-Glu-Leu-Phe-Thr-Gly-Val-Val-Pro-Ile-Leu-Val-Glu-Leu-Asp-Gly-Asp-Val-Asn-Glyの何れかである、請求項13又は14に記載のFab型抗体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14788127.0A EP2990485B1 (en) | 2013-04-25 | 2014-04-17 | Fd chain gene or l chain gene each capable of increasing secretion amount of fab-type antibody |
JP2015513720A JP6465794B2 (ja) | 2013-04-25 | 2014-04-17 | Fab型抗体の分泌量を増大できるFd鎖遺伝子又はL鎖遺伝子 |
US14/921,497 US10570197B2 (en) | 2013-04-25 | 2015-10-23 | Fd chain gene or L chain gene capable of increasing secretion amount of fab-type antibody |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013092862 | 2013-04-25 | ||
JP2013-092862 | 2013-04-25 | ||
JP2013-221703 | 2013-10-25 | ||
JP2013221703 | 2013-10-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/921,497 Continuation-In-Part US10570197B2 (en) | 2013-04-25 | 2015-10-23 | Fd chain gene or L chain gene capable of increasing secretion amount of fab-type antibody |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014175164A1 true WO2014175164A1 (ja) | 2014-10-30 |
Family
ID=51791742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/060941 WO2014175164A1 (ja) | 2013-04-25 | 2014-04-17 | Fab型抗体の分泌量を増大できるFd鎖遺伝子又はL鎖遺伝子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10570197B2 (ja) |
EP (1) | EP2990485B1 (ja) |
JP (1) | JP6465794B2 (ja) |
WO (1) | WO2014175164A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3057616B1 (en) | 2013-10-16 | 2020-03-11 | Outlook Therapeutics, Inc. | Buffer formulations for enhanced antibody stability |
EP3247718B1 (en) | 2015-01-21 | 2021-09-01 | Outlook Therapeutics, Inc. | Modulation of charge variants in a monoclonal antibody composition |
WO2017120359A1 (en) * | 2016-01-06 | 2017-07-13 | Oncobiologics, Inc. | Reduction of high molecular weight species, acidic charge species, and fragments in a monoclonal antibody composition |
CN109563161A (zh) | 2016-02-03 | 2019-04-02 | 安口生物公司 | 用于提高抗体稳定性的缓冲制剂 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006320220A (ja) * | 2005-05-17 | 2006-11-30 | Kaneka Corp | プロテインa融合ポリペプチドの製造に利用するdna配列、組換え発現ベクター、形質転換体、およびその融合ポリペプチドの製造方法 |
JP2007215471A (ja) * | 2006-02-16 | 2007-08-30 | Kao Corp | セルラーゼ部分配列を有する融合タンパク質 |
JP2009508486A (ja) * | 2005-09-15 | 2009-03-05 | ワイス | 塩を用いた蛋白のフロキュレーション |
JP2009082033A (ja) | 2007-09-28 | 2009-04-23 | Kaneka Corp | 完全ヒト型抗体生産法 |
WO2012102171A1 (ja) * | 2011-01-27 | 2012-08-02 | 株式会社カネカ | 形質転換用酵母およびタンパク質の製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8611832D0 (en) * | 1986-05-15 | 1986-06-25 | Holland I B | Polypeptide |
CA1341235C (en) * | 1987-07-24 | 2001-05-22 | Randy R. Robinson | Modular assembly of antibody genes, antibodies prepared thereby and use |
EP0404003A3 (en) * | 1989-06-19 | 1991-10-16 | Xoma Corporation | Chimeric mouse-human km10 antibody with specificity to a human tumor cell antigen |
WO1992022324A1 (en) | 1991-06-14 | 1992-12-23 | Xoma Corporation | Microbially-produced antibody fragments and their conjugates |
CA2758524A1 (en) * | 2009-04-21 | 2010-10-28 | Amgen Inc. | Fragmentation resistant igg1 fc-conjugates |
WO2011046218A1 (ja) * | 2009-10-16 | 2011-04-21 | 株式会社カネカ | 抗体を生産するハンゼヌラ・ポリモルファ、それを用いた抗体の生産方法、およびそれにより得られる抗体 |
JP2013055935A (ja) * | 2011-08-17 | 2013-03-28 | Noguchi Institute | タンパク質の製造方法 |
-
2014
- 2014-04-17 WO PCT/JP2014/060941 patent/WO2014175164A1/ja active Application Filing
- 2014-04-17 EP EP14788127.0A patent/EP2990485B1/en active Active
- 2014-04-17 JP JP2015513720A patent/JP6465794B2/ja active Active
-
2015
- 2015-10-23 US US14/921,497 patent/US10570197B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006320220A (ja) * | 2005-05-17 | 2006-11-30 | Kaneka Corp | プロテインa融合ポリペプチドの製造に利用するdna配列、組換え発現ベクター、形質転換体、およびその融合ポリペプチドの製造方法 |
JP2009508486A (ja) * | 2005-09-15 | 2009-03-05 | ワイス | 塩を用いた蛋白のフロキュレーション |
JP2007215471A (ja) * | 2006-02-16 | 2007-08-30 | Kao Corp | セルラーゼ部分配列を有する融合タンパク質 |
JP2009082033A (ja) | 2007-09-28 | 2009-04-23 | Kaneka Corp | 完全ヒト型抗体生産法 |
WO2012102171A1 (ja) * | 2011-01-27 | 2012-08-02 | 株式会社カネカ | 形質転換用酵母およびタンパク質の製造方法 |
Non-Patent Citations (3)
Title |
---|
"Current Protocols in Molecular Biology", GREENE PUBLISHING ASSOCIATES AND WILEY-INTERSCIENCE |
"Molecular Cloning", 1989, COLD SPRING HARBOR LABORATORY PRESS |
BIOTECHNOLOGY AND BIOENGINEERING, vol. 94, 2006, pages 353 - 361 |
Also Published As
Publication number | Publication date |
---|---|
EP2990485A4 (en) | 2017-01-11 |
EP2990485B1 (en) | 2019-09-11 |
EP2990485A1 (en) | 2016-03-02 |
JP6465794B2 (ja) | 2019-02-06 |
US20160122428A1 (en) | 2016-05-05 |
US10570197B2 (en) | 2020-02-25 |
JPWO2014175164A1 (ja) | 2017-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6556625B2 (ja) | 発現配列 | |
JP6465794B2 (ja) | Fab型抗体の分泌量を増大できるFd鎖遺伝子又はL鎖遺伝子 | |
EP2684948B1 (en) | Method for producing antibodies or antibody fragments using yeast having knocked out vps gene | |
US20210269811A1 (en) | Means and methods for increased protein expression by use of transcription factors | |
WO2011046218A1 (ja) | 抗体を生産するハンゼヌラ・ポリモルファ、それを用いた抗体の生産方法、およびそれにより得られる抗体 | |
JP7349684B2 (ja) | 新規細胞及びそれを用いた目的タンパク質の製造方法 | |
US20240141363A1 (en) | Signal peptides for increased protein secretion | |
JP6943841B2 (ja) | メタノール資化性酵母由来新規タンパク質及びそれを用いた目的タンパク質の製造方法 | |
JP2016146789A (ja) | 新規オガタエア属酵母及びそれを用いた異種タンパク質の製造方法。 | |
JP6188574B2 (ja) | 発現プロセス | |
JP6387346B2 (ja) | 新規ポリペプチド及びその用途 | |
JP6387345B2 (ja) | 新規ポリペプチド及びその用途 | |
JP7012663B2 (ja) | 新規宿主細胞及びそれを用いた目的タンパク質の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14788127 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015513720 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014788127 Country of ref document: EP |