WO2014175160A1 - ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体 - Google Patents

ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体 Download PDF

Info

Publication number
WO2014175160A1
WO2014175160A1 PCT/JP2014/060920 JP2014060920W WO2014175160A1 WO 2014175160 A1 WO2014175160 A1 WO 2014175160A1 JP 2014060920 W JP2014060920 W JP 2014060920W WO 2014175160 A1 WO2014175160 A1 WO 2014175160A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
egf
amino acid
acid sequence
human
Prior art date
Application number
PCT/JP2014/060920
Other languages
English (en)
French (fr)
Inventor
健一郎 小野
淳一 赤塚
Original Assignee
株式会社医学生物学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社医学生物学研究所 filed Critical 株式会社医学生物学研究所
Priority to EP14787867.2A priority Critical patent/EP2990418B1/en
Priority to US14/786,436 priority patent/US9920117B2/en
Priority to JP2015513717A priority patent/JP5838427B2/ja
Publication of WO2014175160A1 publication Critical patent/WO2014175160A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Definitions

  • the present invention relates to an antibody against human HB-EGF protein, DNA encoding the antibody, the antibody or a hybridoma containing the DNA, and a composition for treating or preventing cancer containing the antibody as an active ingredient.
  • Heparin-binding epidermal growth factor-like growth factor is a protein belonging to the epidermal growth factor family (EGF receptor / EGF / EGF receptor / EGF). It has been revealed that it binds to ErbB1 or ErbB4) and promotes cell proliferation, differentiation, chemical migration, and the like (Non-Patent Documents 1 to 3).
  • HB-EGF has been shown to contribute to myogenesis, heart formation, and wound healing in vivo, so HB-EGF is considered to be an important factor in organogenesis. (Non-Patent Documents 4 to 6).
  • Non-patent document 7 pancreatic cancer growth
  • gastric cancer growth Non-patent document 8
  • skin cancer Non-patent document 9
  • head and neck cancer drug resistance Non-patent document 10.
  • HB-EGF is involved in the growth and progression of cancer in various points such as angiogenesis in cancer tissue (Non-patent Document 11), and HB-EGF is also observed in various cancers. It has become clear that this is an important factor.
  • HB-EGF is first synthesized as a type I membrane protein (membrane type HB-EGF), and then the extracellular region directly above the cell membrane penetrating portion is cleaved by a protease, followed by secretion of 14-22 kilodaltons. It has been revealed that it is released as type HB-EGF (Non-patent Documents 12 and 13).
  • the secretory HB-EGF produced by this cleavage is a growth factor in an autocrine mode that activates EGFR / ErbB1 of HB-EGF-expressing cells itself or a paracrine mode that activates EGFR / ErbB1 of other cells. It is also known to function as.
  • Non-patent Document 14 membrane-type HB-EGF itself functions as a growth factor by the Jack-Stuck line mode that activates EGFR / ErbB1 of other adjacent cells.
  • membrane-type HB-EGF has a weaker cell growth activity than secretory HB-EGF (Non-patent Document 11). From these results, it is considered that the process of producing secreted HB-EGF by cleavage of protease is important for HB-EGF to function as a growth factor.
  • Non-patent Documents 5 and 15 abnormalities in cardiac organ formation similar to those of knockout mice that do not express HB-EGF have been observed. Furthermore, it has also been shown that cardiac hypertrophy caused by secreted HB-EGF is suppressed by suppressing cleavage of HB-EGF by a protease inhibitor. It is considered that the above-mentioned important physiological functions in are secreted HB-EGF.
  • Non-patent Document 17 the function of cleaved HB-EGF intracellular region (HB-EGF-CTF) to the nucleus to promote cell division is also known (Non-patent Document 17). Furthermore, it has been shown that suppression of HB-EGF cleavage by a protease inhibitor can inhibit the growth and invasion of gastric cancer (Non-patent Document 18). Therefore, it has been clarified that the HB-EGF cleavage process is an important factor in the growth of cancer cells.
  • Non-patent Documents 19 and 20 anti-tumor effects
  • proliferation of cancer cells can be inhibited by inhibiting the cleavage of HB-EGF and suppressing the generation of secreted HB-EGF by using an antibody.
  • Non-patent Document 21 antibodies that bind to HB-EGF and exhibit activities such as antitumor activity and cleavage inhibitory activity have been developed.
  • Non-Patent Document 21 has cleavage-inhibiting activity as described above, it is also disclosed in the same document that the antibody does not have neutralizing activity.
  • the present invention has been made in view of the problems of the prior art, and inhibits cleavage in human HB-EGF by binding to human HB-EGF, and the human HB-EGF and EGF receptor. It aims at providing the antibody which inhibits a coupling
  • the present inventors immunized mice with a partial peptide consisting of the extracellular region of HB-EGF protein, and obtained a monoclonal antibody against human HB-EGF protein. Then, among the obtained anti-human HB-EGF monoclonal antibodies, three antibodies (35-1 antibody, 292 antibody and 1-1 antibody) showing strong reactivity against HB-EGF expressed on the cell surface are obtained. Selected.
  • the 35-1 antibody and the 292 antibody were found to have 115th phenylalanine, 117th isoleucine, 140th glycine, 141st glutamic acid and 142nd antibody in human HB-EGF protein. It became clear that he recognized arginine.
  • antibody 1-1 recognizes 115th phenylalanine, 140th glycine, 141st glutamic acid, and 142nd arginine, but it does not recognize 117th isoleucine unlike said 2 antibodies. It was.
  • the 35-1 antibody and the 292 antibody can inhibit cleavage in human HB-EGF. Furthermore, the present inventors have also found that any antibody can suppress phosphorylation of EGFR caused by binding of human HB-EGF and EGF receptor (EGFR), that is, has neutralizing activity. On the other hand, although the antibody 1-1 had cleavage inhibitory activity, it did not have neutralizing activity. Therefore, the 35-1 antibody and the 292 antibody have cleavage inhibitory activity and neutralizing activity by recognizing including the 117th isoleucine of the human HB-EGF protein, and the 1-1 antibody has the 117th isoleucine. The anti-HB-EGF antibody binds to the 117th isoleucine of human HB-EGF protein in order to exhibit strong neutralizing activity. It became clear that is necessary.
  • the present inventors determined heavy chain and light chain variable regions and CDR sequences for the 35-1 antibody and the 292 antibody having such cleavage inhibitory activity and neutralizing activity. Furthermore, based on the determined sequence, as for the antibody 35-1, a chimeric antibody in which the constant region is substituted with one derived from human IgG, and a humanized antibody in which the framework region of the variable region is substituted with those of the human antibody was made. It was also clarified that administration of the obtained chimeric antibody to a mouse transplanted with cancer cells suppresses the proliferation of the cancer cells in the mouse body. Furthermore, it has been found that the antibody exhibits antibody-dependent cytotoxicity (ADCC activity) against cancer cells, and the present invention has been completed.
  • ADCC activity antibody-dependent cytotoxicity
  • the present invention provides the following ⁇ 1> to ⁇ 10>.
  • ⁇ 1> An antibody that binds to the 117th isoleucine in the human HB-EGF protein represented by SEQ ID NO: 1.
  • ⁇ 2> The antibody according to ⁇ 1>, further binding to the 115th phenylalanine, the 140th glycine, the 141st glutamic acid, and the 142nd arginine in the human HB-EGF protein represented by SEQ ID NO: 1.
  • Amino acid retains substitutions, deletions, and heavy chain variable region comprising an addition and / or inserted and has the amino acid sequence.
  • ⁇ 5> An antibody that binds to human HB-EGF, A light chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 18 or an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence; An antibody which retains an amino acid sequence or a heavy chain variable region comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence.
  • ⁇ 7> A hybridoma that produces the antibody according to any one of ⁇ 1> to ⁇ 5> or includes the DNA according to ⁇ 6>.
  • ⁇ 8> A composition for treating or preventing cancer, comprising the antibody according to any one of ⁇ 1> to ⁇ 5> as an active ingredient.
  • ⁇ 9> A method of using the composition according to ⁇ 8> as a medicine.
  • ⁇ 10> A method for treating a cancer patient by administering the composition according to ⁇ 8>.
  • the amino acid sequences described in SEQ ID NOs: 2 to 4 are the amino acid sequences of CDR1 to CDR3 of the light chain variable region of the 35-1 antibody, respectively.
  • the amino acid sequence described in SEQ ID NO: 5 is the 35-1 antibody.
  • the amino acid sequences of the light chain variable regions of SEQ ID NOs: 6 to 8 are the amino acid sequences of CDRs 1 to 3 of the heavy chain variable region of the 35-1 antibody, respectively, and are described in SEQ ID NO: 9. This amino acid sequence is the amino acid sequence of the heavy chain variable region of the 35-1 antibody.
  • the amino acid sequence described in SEQ ID NO: 18 is the amino acid sequence of the light chain variable region of the 35-1 humanized antibody
  • the amino acid sequence described in SEQ ID NO: 19 is the heavy chain of the 35-1 humanized antibody.
  • the amino acid sequences described in SEQ ID NOs: 10-12 are the amino acid sequences of CDR1-3 of the light chain variable region of the 292 antibody, respectively, and the amino acid sequences described in SEQ ID NO: 13 are those of the light chain variable region of the 292 antibody.
  • the amino acid sequences shown in SEQ ID NOs: 14 to 16 are the amino acid sequences of CDR1 to CDR3 of the heavy chain variable region of the 292 antibody.
  • the amino acid sequence shown in SEQ ID NO: 17 is the amino acid sequence of the 292 antibody. Amino acid sequence of heavy chain variable region.
  • the present invention it is possible to provide an antibody that inhibits cleavage in the human HB-EGF and binds to the human HB-EGF and the EGF receptor by binding to the human HB-EGF. It becomes.
  • the obtained antibody against human HB-EGF protein (35-1 antibody and 292 antibody), cell line expressing human HB-EGF protein on the cell surface (HB-EGF / st293T), or expressing the protein on the cell surface
  • HB-EGF / st293T cell line expressing human HB-EGF protein on the cell surface
  • HB-EGF / st293T cell line expressing human HB-EGF protein on the cell surface
  • expressing the protein on the cell surface It is a histogram which shows the result of having analyzed the reactivity with a cell line (293T) which does not exist by flow cytometry.
  • the white histogram shows the reactivity of each antibody with 293T (negative control)
  • the black histogram shows the reactivity of each antibody with HB-EGF / st293T.
  • the vertical axis represents the number of cells
  • the horizontal axis represents the reactivity (average fluorescence intensity) between the antibody and
  • FIG. 3 is a graph showing the results of analyzing the reactivity of antibodies against human HB-EGF protein (35-1 antibody, 292 antibody and 1-1 antibody) and amino acid variants of each human HB-EGF protein by flow cytometry. .
  • the vertical axis represents the binding strength (relative value) of each antibody to each amino acid variant.
  • 2 is a graph showing the results of analyzing the inhibitory activity against cleavage of human HB-EGF protein produced by PMA by flow cytometry for the antibodies of the present invention (35-1 antibody and 292 antibody).
  • the vertical axis represents the amount of human HB-EGF protein (average fluorescence intensity) remaining on the surface of cells (HA-HB-EGF / stCHO-K1) after addition of PMA.
  • the horizontal axis indicates the concentration of each antibody added to the cells.
  • 2 is a photograph showing the results of analyzing the inhibitory activity against cleavage of human HB-EGF protein produced by PMA by Western blotting of the antibody of the present invention (35-1 antibody).
  • HB-EGF-CTF in the figure is a partial protein (HB-EGF C-terminal fragment) remaining on the cell membrane side after the human HB-EGF protein (full length HB-EGF) is cleaved. This is shown (the same applies to FIG. 5).
  • 2 is a photograph showing the results of Western blot analysis of the inhibitory activity against cleavage of human HB-EGF protein caused by PMA for the antibodies of the present invention (35-1 antibody and 292 antibody).
  • FIG. 2 is a photograph showing the results of analyzing the inhibitory activity against EGFR phosphorylation induced by human HB-EGF protein by Western blotting for the antibody of the present invention (35-1 antibody).
  • EGFR indicates the amount of EGFR protein in each cell
  • p-EGFR indicates the amount of phosphorylated EGFR protein in each cell (the notation in the figure is the same in FIGS. 7 and 8). is there).
  • FIG. 2 is a photograph showing the results of analyzing the inhibitory activity against phosphorylation of EGFR induced by human HB-EGF protein by Western blotting for the antibodies of the present invention (35-1 antibody and 292 antibody).
  • FIG. 2 is a photograph showing the results of analyzing the inhibitory activity against phosphorylation of EGFR induced by human HB-EGF protein by Western blotting on an antibody against human HB-EGF protein (1-1 antibody).
  • 2 is a graph showing changes in tumor volume over time in xenografted mice administered with chimerized 35-1 antibody.
  • 35-1 (high concentration) indicates the result of administering an antibody solution diluted with PBS to 750 ug / ml
  • 35-1 (low concentration) indicates an antibody solution diluted with PBS to 150 ug / ml.
  • PBS indicates the result of administration of PBS alone (negative control).
  • the present inventors have two kinds of human HB-EGF proteins that bind to 115th phenylalanine, 117th isoleucine, 140th glycine, 141st glutamic acid, and 142th arginine.
  • Antibodies 35-1 antibody and 292 antibody
  • these antibodies have a strong inhibitory activity (cleavage inhibitory activity) against the cleavage of human HB-EGF protein and a strong inhibitory activity (neutralizing activity) against phosphorylation of the EGFR produced by the binding of human HB-EGF and EGFR. ).
  • the present invention provides an antibody that binds to the 117th isoleucine in human HB-EGF protein.
  • Such an antibody may be an antibody that binds to other amino acids in the human HB-EGF protein in addition to the 117th isoleucine.
  • the 115th phenylalanine and the 117th isoleucine in the human HB-EGF protein are used.
  • 140th glycine, 141st glutamic acid and 142th arginine are used.
  • Antibody in the present invention includes all classes and subclasses of immunoglobulins. “Antibody” includes polyclonal antibodies and monoclonal antibodies, and also includes forms of functional fragments of antibodies. “Polyclonal antibodies” are antibody preparations comprising different antibodies directed against different epitopes. “Monoclonal antibody” means an antibody (including antibody fragments) obtained from a substantially homogeneous population of antibodies, and recognizes a single determinant on an antigen. The antibody of the present invention is preferably a monoclonal antibody. The antibodies of the present invention are also antibodies that have been separated and / or recovered (ie, isolated) from components of the natural environment.
  • HB-EGF is a protein also referred to as heparin-binding epidermal growth factor-like growth factor, DTR (diphtheria toxin receptor), DTS, DTSF, HEGFL, and the like.
  • the human HB-EGF protein is typically a protein consisting of the amino acid sequence shown in SEQ ID NO: 1 (a protein specified by RefSeq ID: NP_001936, a protein encoded by a base sequence specified by RefSeq ID: NM_001945). It is.
  • the human HB-EGF protein according to the present invention comprises an amino acid sequence in which one or more amino acids are substituted, deleted, inserted or added in the protein comprising the amino acid sequence set forth in SEQ ID NO: 1. Is also included.
  • the substitution, deletion, insertion or addition of the amino acid sequence is generally within 10 amino acids (for example, within 5 amino acids, within 3 amino acids, 1 amino acid).
  • the antibody is an antibody that binds to the 117th isoleucine or the like in human HB-EGF protein (whether it is an antibody that recognizes the 117th isoleucine or the like in human HB-EGF protein). If it is a trader, it can evaluate using an immunological analysis method (Flow cytometry, ELISA, Western blot, immunoprecipitation etc.) as shown in Example 3 mentioned later.
  • an immunological analysis method Flow cytometry, ELISA, Western blot, immunoprecipitation etc.
  • the epitope in the present invention may be a polypeptide composed of a plurality of amino acids that are continuous in the primary sequence of amino acids (linear epitope), and amino acids that are not adjacent in the primary sequence of amino acids are peptides or proteins. It may be a polypeptide (discontinuous epitope, structural epitope) formed by coming close by a three-dimensional structure such as folding. Such epitopes typically consist of at least one, and most usually at least five (eg, 8-10, 6-20) amino acids.
  • “Cleavage of human HB-EGF protein” suppressed by the antibody of the present invention means cleavage of the human HB-EGF protein in the Jackson membrane domain by a protease such as ADAM12 activated by PMA or the like.
  • the jacksta membrane domain is typically a region consisting of amino acids 145 to 161 from the N-terminus described in RefSeq ID: NP_001936.
  • disconnection can be evaluated by the method shown in Example 4 mentioned later, for example.
  • human HB-EGF is not only the full length of the human HB-EGF protein (membrane type HB-EGF), It means to include a partial protein (secreted HB-EGF) released to the outside of the cell by the cleavage.
  • the secretory HB-EGF includes a protein consisting of the first to 149th amino acid sequence from the N-terminus described in SEQ ID NO: 1, and the HB-EGF-CTF is described in SEQ ID NO: 1. Examples thereof include proteins consisting of the 150th to 208th amino acid sequences from the N-terminus.
  • the “EGF receptor” according to the present invention is EGFR (ErbB1) or ErbB4.
  • binding of human HB-EGF and EGF receptor suppressed by the antibody of the present invention includes not only binding of the human HB-EGF and the EGF receptor, but also EGFR or ErbB4 associated with the binding. Changes in the structure, homo- or heterodimerization of EGFR or ErbB4 induced by the change in structure, phosphorylation of EGFR or ErbB4 accompanying the dimerization, activity of the MAPK pathway induced by the phosphorylation And activation of the PI3K-Akt pathway caused by the phosphorylation.
  • the target of suppression by the antibody of the present invention is preferably EGFR phosphorylation, and more preferably EGFR phosphorylation in cancer cells. Moreover, the activity which suppresses this phosphorylation can be evaluated by the method shown in Example 5 mentioned later, for example.
  • the antibody of the present invention comprises: It preferably has cell growth-inhibiting activity (cell growth-inhibiting activity) or antibody-dependent cytotoxicity activity (ADCC activity), and has cleavage-inhibiting activity, neutralizing activity, cell growth-inhibiting activity, and ADCC activity. More preferably.
  • “Suppression of cell proliferation” in the present invention means not only suppression of cell proliferation itself (cell division) but also suppression of cell proliferation by induction of cell death (apoptosis and the like).
  • the object of suppression by the antibody of the present invention is preferably cancer cell growth, more preferably in vivo cancer cell growth (tumor growth).
  • the activity of suppressing tumor growth in vivo can be evaluated, for example, by the method shown in Example 6 described later.
  • the tumor volume at the start of antibody administration when the tumor volume at the start of antibody administration is 100%, the tumor volume after 30 days from the start of antibody administration is 230% or less (for example, 220 % Or less, 210% or less, 200% or less, 190% or less, 180% or less, 170% or less).
  • cancer cells are preferred as targets for cytotoxicity caused by the antibody of the present invention.
  • the ADCC activity against such cancer cells can be evaluated by, for example, the method shown in Example 7 described later.
  • a preferred embodiment of the antibody of the present invention is an antibody having ADCC activity of 10% or more (eg, 20% or more, 30% or more) when the concentration added to the target cell is 1 ⁇ g / ml in the method. .
  • Non-Patent Documents 7-11 and 17-21 As the types of cancers that are targets of growth inhibition by the antibodies of the present invention and / or cell damage targets, the relationship between HB-EGF and various types of cancers is, for example, as shown in Non-Patent Documents 7-11 and 17-21. There are no restrictions as it has become clear.
  • Another preferred embodiment of the antibody of the present invention is an antibody that binds to human HB-EGF and has the characteristics described in (a) or (b) below.
  • (A) one or more amino acids are substituted in at least one of the amino acid sequences shown in SEQ ID NOs: 2 to 4 (the amino acid sequences of CDR1 to CDR3 in the light chain variable region of the 35-1 antibody described later)
  • a light chain variable region comprising a deleted, added and / or inserted amino acid sequence, and an amino acid sequence described in SEQ ID NOs: 6 to 8 (the CDRs 1 to 3 in the heavy chain variable region of the 35-1 antibody described below)
  • An amino acid sequence) or a heavy chain variable region comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in at least one of the amino acid sequences
  • SEQ ID NO: 10 12 to 12 amino acid sequence of CDR1 to CDR3 in the light chain variable region of 292 antibody described later
  • a more preferred embodiment of the antibody of the present invention includes an antibody that binds to human HB-EGF and has the characteristics described in (a) or (b) below.
  • a light chain variable region comprising the amino acid sequence and the amino acid sequence set forth in SEQ ID NO: 9 (amino acid sequence of the heavy chain variable region of the 35-1 antibody described below) or one or more amino acids in the amino acid sequence,
  • the antibodies of the present invention include mouse antibodies, chimeric antibodies, humanized antibodies (humanized antibodies), human antibodies, and functional fragments of these antibodies.
  • a chimeric antibody, a humanized antibody, or a human antibody is desirable from the viewpoint of reducing side effects.
  • Preferred embodiments of the humanized antibody of the present invention include human HB- An antibody that binds to EGF, the light chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 18 or an amino acid sequence in which one or more amino acids are substituted, deleted, added, and / or inserted in the amino acid sequence
  • An antibody having a heavy chain variable region comprising the amino acid sequence set forth in SEQ ID NO: 19 or an amino acid sequence in which one or more amino acids are substituted, deleted, added, and / or inserted in the amino acid sequence Can be mentioned.
  • a “chimeric antibody” is an antibody in which a variable region of a certain antibody is linked to a constant region of a heterogeneous antibody.
  • a chimeric antibody for example, immunizes a mouse with an antigen, cuts out an antibody variable region (variable region) that binds to the antigen from the mouse monoclonal antibody gene, and binds to a human bone marrow-derived antibody constant region (constant region) gene. This can be obtained by incorporating it into an expression vector and introducing it into a host for production (for example, JP-A-8-280387, US Pat. No. 4,816,397, US Pat. No. 4,816,567, US Pat. 5807715).
  • the “humanized antibody” is an antibody obtained by transplanting (CDR grafting) the gene sequence of the antigen-binding site (CDR) of a non-human-derived antibody to a human antibody gene.
  • CDR antigen-binding site
  • a “human antibody” is an antibody derived from all regions.
  • the “functional fragment” of an antibody means a part (partial fragment) of an antibody that binds to an antigen.
  • the “functional fragment” of the antibody according to the present invention include, for example, Fab, Fab ′, F (ab ′) 2, variable region fragment (Fv), disulfide bond Fv, single chain Fv (scFv), sc (Fv) 2, diabodies, multispecific antibodies, and polymers thereof.
  • Fab means a monovalent antigen-binding fragment of an immunoglobulin composed of one light chain and part of a heavy chain. It can be obtained by papain digestion of antibodies and by recombinant methods. “Fab ′” differs from Fab by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain, including one or more cysteines in the hinge region of the antibody. “F (ab ') 2” means a divalent antigen-binding fragment of an immunoglobulin that consists of both light chains and parts of both heavy chains.
  • “Variable region fragment (Fv)” is the smallest antibody fragment with complete antigen recognition and binding sites. Fv is a dimer in which a heavy chain variable region and a light chain variable region are strongly linked by a non-covalent bond. “Single-chain Fv (scFv)” comprises the heavy and light chain variable regions of an antibody, and these regions are present in a single polypeptide chain. “Sc (Fv) 2” is a chain formed by joining two heavy chain variable regions and two light chain variable regions with a linker or the like.
  • a “diabody” is a small antibody fragment having two antigen-binding sites, the fragment comprising a heavy chain variable region bound to a light chain variable region in the same polypeptide chain, each region comprising a separate It forms a pair with the complementary region of the strand.
  • a “multispecific antibody” is a monoclonal antibody that has binding specificities for at least two different antigens. For example, it can be prepared by co-expression of two immunoglobulin heavy / light chain pairs where the two heavy chains have different specificities.
  • the antibodies of the present invention include antibodies whose amino acid sequence has been modified without reducing the desired activity (antigen binding activity, cleavage inhibition activity, neutralization activity, other biological properties).
  • Amino acid sequence variants of the antibodies of the invention can be made by introducing mutations into the DNA encoding the antibody chains of the invention or by peptide synthesis. Such modifications include, for example, residue substitutions, deletions, additions and / or insertions within the amino acid sequences of the antibodies of the invention.
  • the site where the amino acid sequence of the antibody is modified may be the constant region of the heavy chain or light chain of the antibody as long as it has an activity equivalent to that of the antibody before modification, and the variable region (framework region and CDR).
  • Modification of amino acids other than CDR is considered to have a relatively small effect on the binding affinity with the antigen, but at present, the amino acid of the CDR is modified to screen for an antibody having an increased affinity for the antigen.
  • Methods are known (PNAS, 102: 8466-8471 (2005), Protein Engineering, Design & Selection, 21: 485-493 (2008), International Publication No. 2002/051870, J. Biol. Chem., 280: 24880- 24887 (2005), Protein Engineering, Design & Selection, 21: 345-351 (2008)).
  • the number of amino acids to be modified is preferably within 10 amino acids, more preferably within 5 amino acids, and most preferably within 3 amino acids (for example, within 2 amino acids, 1 amino acid).
  • the amino acid modification is preferably a conservative substitution.
  • conservative substitution means substitution with another amino acid residue having a chemically similar side chain. Groups of amino acid residues having chemically similar amino acid side chains are well known in the technical field to which the present invention belongs.
  • acidic amino acids (aspartic acid and glutamic acid), basic amino acids (lysine, arginine, histidine), neutral amino acids, amino acids having a hydrocarbon chain (glycine, alanine, valine, leucine, isoleucine, proline), hydroxy group Amino acids with amino acids (serine / threonine), amino acids with sulfur (cysteine / methionine), amino acids with amide groups (asparagine / glutamine), amino acids with imino groups (proline), amino acids with aromatic groups (phenylalanine / tyrosine / (Tryptophan).
  • “having equivalent activity” means that the binding activity to the antigen, the cleavage activity or the neutralization activity is the target antibody (typically, the 35-1 antibody or the 292 antibody shown in Examples described later). It means equivalent (for example, 70% or more, preferably 80% or more, more preferably 90% or more).
  • the antigen binding activity can be determined, for example, by analyzing the reactivity with the antigen by ELISA, or by producing cells that express the antigen, and the reactivity with the antibody sample using a flow cytometer, as shown in the Examples below. It can be evaluated by analyzing.
  • the cleavage activity can be determined by, for example, the method shown in Examples below, using the residual rate of membrane-type HB-EGF on the cell surface subjected to PMA stimulation as an index, or HB-EGF- on the cell surface subjected to PMA stimulation.
  • the incidence of CTF can be evaluated as an index.
  • the neutralizing activity can be evaluated using the degree of phosphorylation of EGFR protein in cancer cells stimulated with HB-EGF protein as an index.
  • the modification of the antibody of the present invention may be modification of a post-translational process of the antibody such as changing the number or position of glycosylation sites.
  • the ADCC activity of the antibody can be improved.
  • Antibody glycosylation is typically N-linked or O-linked.
  • Antibody glycosylation is highly dependent on the host cell used to express the antibody.
  • the glycosylation pattern can be modified by a known method such as introduction or deletion of a specific enzyme involved in sugar production (JP 2008-113663 A, US Pat. No. 5,047,335, US Pat. No. 5,510,261, U.S. Pat. No. 5,278,299, WO 99/54342).
  • deamidation is suppressed by substituting an amino acid adjacent to the amino acid deamidated or deamidated with another amino acid for the purpose of increasing the stability of the antibody. May be.
  • glutamic acid can be substituted with other amino acids to increase antibody stability.
  • the present invention also provides the antibody thus stabilized.
  • the antibody of the present invention is a polyclonal antibody
  • an animal is immunized with an antigen (human HB-EGF protein, a partial peptide thereof (eg, an EGF domain of human HB-EGF protein), or a cell expressing these)
  • the antiserum can be purified and obtained by conventional means (eg, salting out, centrifugation, dialysis, column chromatography, etc.).
  • Monoclonal antibodies can be prepared by a hybridoma method or a recombinant DNA method.
  • a typical example of the hybridoma method is the method of Kohler and Milstein (Kohler & Milstein, Nature, 256: 495 (1975)).
  • the antibody-producing cells used in the cell fusion step in this method are spleen cells, lymph node cells, peripheral cells of animals immunized with the antigen (eg, mice, rats, hamsters, rabbits, monkeys, goats, chickens, camels). Such as blood leukocytes. It is also possible to use antibody-producing cells obtained by allowing an antigen to act in the medium on the above-mentioned cells or lymphocytes previously isolated from non-immunized animals. As the myeloma cells, various known cell lines can be used.
  • the antibody-producing cells and myeloma cells may be of different animal species as long as they can be fused, but are preferably of the same animal species.
  • the hybridoma is produced, for example, by cell fusion between a spleen cell obtained from a mouse immunized with an antigen and a mouse myeloma cell, and then binds to the 117th isoleucine in the human HB-EGF protein by screening.
  • a hybridoma producing the antibody to be obtained can be obtained.
  • a monoclonal antibody that binds to the 117th isoleucine or the like in human HB-EGF protein can be obtained by culturing the hybridoma or from the ascites of the mammal to which the hybridoma has been administered.
  • DNA encoding the antibody of the present invention is cloned from a hybridoma or B cell, and incorporated into an appropriate vector, which is then introduced into a host cell (eg, mammalian cell line, E. coli, yeast cell, insect cell, plant). Cell) and the like, and the antibody of the present invention is produced as a recombinant antibody (for example, PJ Delves, Antibody Production: Essential Technologies, 1997 WILEY, P. Shepherd and C. Dean Monoclonal 2000). OXFORD UNIVERSITY PRESS, Vandame AM et al., Eur. J. Biochem. 192: 767-775 (1990)).
  • the DNA encoding the heavy chain or the light chain may be separately incorporated into an expression vector to transform the host cell.
  • a host cell may be transformed by incorporating it into a single expression vector (see International Publication No. 94/11523).
  • the antibody of the present invention can be obtained in a substantially pure and uniform form by culturing the above host cell, separating and purifying it from the host cell or culture medium. For the separation and purification of the antibody, the methods used in the usual purification of polypeptides can be used.
  • transgenic animal bovine, goat, sheep, pig, etc.
  • a transgenic animal production technology a large amount of monoclonal antibody derived from the antibody gene is produced from the milk of the transgenic animal. It is also possible to obtain.
  • the present invention can also provide a DNA encoding the antibody of the present invention and a hybridoma that produces the antibody of the present invention or contains a DNA encoding the antibody of the present invention.
  • a compound or molecule such as a drug or a prodrug may be bound.
  • the compound or molecule can be delivered to a site where human HB-EGF protein is expressed (eg, cancer cell).
  • a site where human HB-EGF protein is expressed eg, cancer cell.
  • Such a substance having antitumor properties is not particularly limited, and examples thereof include anticancer agents (irinotecan (CPT-11), irinotecan metabolite SN-38 (10-hydroxy-7-ethylcamptothecin), adriamycin, taxol, Alkylating agents such as 5-fluorouracil, nimustine and laministin, antimetabolites such as gemcitabine and hydroxycarbamide, plant alkaloids such as etoposide and vincristine, anticancer antibiotics such as mitomycin and bleomycin, platinum preparations such as cisplatin, sorafenib, Examples include molecular targeting agents such as erlotinib, methotrexate, cytosine arabinoside, 6-thioguanine, 6-mercaptopurine, cyclophosphamide, ifosfamide, busulfan, etc. In addition, radioisotopes are also included. It can be suitably used as
  • the antibody can be bound to the compound or molecule by a method known in the art, and either direct binding or indirect binding may be used.
  • a covalent bond can be used as a direct bond.
  • a bond via a linker can be used.
  • linkage via a linker one of ordinary skill in the art see, for example, Hermanson, G. et al. T.A. Bioconjugate Technologies, Academic Press, 1996; Harris, J. et al. M.M. And Zalipsky, S. Ed., Poly (ethylene glycol), Chemistry and Biological Applications, ACS Symposium Series, 1997; Veronese, F .; And Harris, J.M. M.M. Hen, Peptide and protein PEGylation.
  • the number of the compounds or molecules that bind to one antibody molecule of the present invention is not particularly limited in theory, but is usually 1 to 4 from the viewpoint of the stability and ease of production of a complex comprising an antibody and a compound.
  • the number is 10, preferably 1 to 8.
  • the present invention includes a composition for treating or preventing cancer comprising the antibody of the present invention as an active ingredient, and a step of administering a therapeutically or prophylactically effective amount of the antibody of the present invention to a human.
  • the present invention also provides a method for treating or preventing cancer (eg, a method for treating a cancer patient by administering the composition).
  • this invention provides the method of using the said composition as a pharmaceutical.
  • the cancer targeted by the antibody of the present invention is not particularly limited as described above, and various types of cancer can be targeted.
  • composition for treating or preventing cancer comprising the antibody of the present invention as an active ingredient is used in a form containing the antibody of the present invention and an optional component such as physiological saline, sucrose aqueous solution or phosphate buffer. can do.
  • the composition for treating or preventing cancer of the present invention may be shaped in a liquid or lyophilized form as needed, and optionally a pharmaceutically acceptable carrier or vehicle, for example, a stabilizer. , Preservatives, tonicity agents and the like can also be included.
  • the pharmaceutically acceptable carrier examples include mannitol, lactose, saccharose, human albumin and the like in the case of a lyophilized preparation.
  • physiological saline, water for injection, phosphoric acid, etc. examples thereof include, but are not limited to, a salt buffer and aluminum hydroxide.
  • the method of administering the composition for treating or preventing cancer of the present invention varies depending on the age, weight, sex, health status, etc. of the subject of administration, but oral administration, parenteral administration (for example, intravenous administration, arterial administration, local administration) Administration).
  • the dosage of the composition may vary depending on the patient's age, weight, sex, health status, degree of cancer progression, and components of the composition to be administered.
  • the amount per day per kg is 0.01 to 1000 mg, preferably 1 to 100 mg.
  • the method for administering the antibody of the present invention is not particularly limited as described above, and it can be administered by any of the administration routes of oral administration and parenteral administration. it can.
  • One skilled in the art can achieve this by selecting the pharmaceutically acceptable carrier or medium and taking the form of a suitable composition.
  • the therapeutically or prophylactically “effective amount” of the antibody of the present invention to be administered to humans is, for those skilled in the art, the patient's age, weight, sex, health status, degree of progression of cancer, administration The route can be determined in consideration of the route.
  • human used as the administration object of the antibody of this invention,
  • the human who has cancer is mentioned.
  • it may be a human after the cancer has been removed by chemotherapy, radiotherapy, surgery or the like.
  • the method for treating or preventing cancer of the present invention may include a step of evaluating the effectiveness of the antibody of the present invention in addition to the step of administering the antibody of the present invention. That is, Administering to a human a therapeutically or prophylactically effective amount of an antibody of the invention; Evaluating the effectiveness of the antibody of the present invention in the human after the administration,
  • the present invention provides a method for treating or preventing cancer.
  • the “evaluation of efficacy” of the antibody of the present invention is not particularly limited, and for example, if the tumor size after administration, cancer metastasis ability, or expression of various cancer markers is reduced compared to before administration, It can be determined that the antibody of the present invention is effective in treatment and the like.
  • an index abnormalities associated with cancer such as weight loss, abdominal pain, back pain, decreased appetite, nausea, vomiting, general malaise, weakness, and jaundice. Can do.
  • the antibody of the present invention is also effective in the treatment of cancer and the like by examining the degree of signal transduction involving HB-EGF in the tumor tissue. Can be determined. For example, if it is detected that EGFR phosphorylation, which is normally enhanced in tumor tissue, is inhibited by administration of the antibody of the present invention, it is determined that the antibody of the present invention is effective in the treatment of cancer, etc. Can do.
  • the antibody of the present invention can be applied not only to cancer treatment and prevention but also to cancer testing.
  • the EGF domain in which the epitope of the antibody of the present invention exists is an extracellular region of HB-EGF protein, it can express HB-EGF protein conveniently and efficiently in cell immunostaining or flow cytometry. Cancer cells can be detected.
  • the present invention also provides a cancer test drug and kit comprising the antibody of the present invention as an active ingredient.
  • the antibody of the present invention When the antibody of the present invention is used for cancer testing or used for detection of a tumor site in cancer treatment, the antibody of the present invention may be labeled.
  • the label for example, a radioactive substance, a fluorescent dye, a chemiluminescent substance, an enzyme, and a coenzyme can be used.
  • the antibody titer of the purified antibody is measured, and after appropriately diluting with PBS or the like, 0.1% sodium azide or the like can be added as a preservative.
  • the antibody titer of a substance obtained by adsorbing the antibody of the present invention on latex or the like can be obtained, diluted appropriately, and added with a preservative.
  • kits for detecting cancer containing the test agent of the present invention as a constituent component is also included in the present invention.
  • various reagents for example, various reagents (secondary antibody, color reagent, etc.) for performing an antigen-antibody reaction (ELISA method, immunohistochemical staining method, flow cytometry, etc.) Staining reagents, buffers, controls, etc.), reaction vessels, operating instruments, and / or instructions.
  • HB-EGF is derived from a human having the amino acid sequence (amino acids 1 to 208) represented by SEQ ID NO: 1 (NCBI reference sequence: NP — 001936). 2 shows the membrane type HB-EGF protein.
  • HB-EGF a partial protein in which HB-EGF is cleaved (shedded) by a protease and released to the outside of the cell
  • secreted HB-EGF the partial protein remaining on the cell membrane side after the cleavage
  • HB-CTF HB-EGF C-terminal fragment
  • EGF domain is a region consisting of the 107th to 144th amino acids from the N-terminal
  • the Jacksta membrane domain (shedding region) is a region consisting of the 145th to 161st amino acids from the N-terminal.
  • the extracellular region is a region consisting of amino acids 1 to 161 from the N terminus
  • transmembrane (transmembrane domain) is a region consisting of amino acids 162 to 183 from the N terminus.
  • Example 1 An antibody against human HB-EGF protein was prepared by the method shown below.
  • HB-EGF protein protein consisting of amino acid sequences 1 to 208 described in SEQ ID NO: 1.
  • the encoding DNA was amplified by the PCR method.
  • the obtained PCR product was cloned into T7Blue T-vector (Novagen, catalog number: 69820), and the nucleotide sequence was confirmed.
  • the vector thus obtained was named hHB-EGF-pT7.
  • Animal cells that stably express the full length of human HB-EGF protein were prepared as follows. That is, first, using hHB-EGF-pT7 as a template, the end of the DNA amplified by the PCR method was cleaved with NotI and BamHI and inserted into the NotI-BamHI site of an animal cell expression vector.
  • pQCxmhIPG which is controlled by a CMV promoter and simultaneously expresses a target gene and a Puromycin-EGFP fusion protein by an IRES sequence, was used.
  • pQCxmhIPG is a vector obtained by modifying the pQCXIP retroviral vector of “BD Retro-X Q Vectors” (Clontech, catalog number: 631516) by the present inventors.
  • the prepared vector was named HB-EGF-pQCxmhIPG.
  • HA-HB-EGF in which an HA tag is added between the 24th and 25th amino acids from the N-terminus by overlap extension PCR is used.
  • HA-HB-EGF was also inserted into pQCxmhIPG as described above.
  • the prepared vector was named HA-HB-EGF-pQCxmhIPG.
  • the prepared vector was introduced into 293T cells or CHO-K1 cells as follows using a pantropic retrovirus expression system (Clontech, catalog number: K1063-1).
  • GP2-293 (manufactured by Clontech, catalog number: K1063-1) was prepared in a 100-mm dish coated with collagen, and Lipofectamine 2000 (manufactured by Invitrogen, catalog number: 11668). -12) using the above-described expression vector (HB-EGF-pQCxmhIPG or HA-HB-EGF-pQCxmhIPG) and pVSV-G (manufactured by Clontech, catalog number: K1063-1). Co-introduced one by one. After 48 hours, the supernatant containing the virus particles was collected, and the virus particles were precipitated by ultracentrifugation (18,000 rpm, 1.5 hours, 4 ° C.).
  • cells were prepared in a 96-well microplate so as to be about 40% confluent, and the medium of these cells was replaced with the virus particle-containing medium. These cells are cultured in a selective medium containing Puromycin (SIGMA, catalog number: P-8833), so that cells expressing the target gene (HB-EGF / st293T, HA-HB-EGF) / St293T, HB-EGF / stCHO-K1, and HA-HB-EGF / stCHO-K1).
  • SIGMA Puromycin
  • a medium containing 5 ug / mL Puromycin was used for 293T cell culture, and a selective medium containing 10 ug / mL Puromycin was used for CHO-K1 cell culture.
  • HB-EGF protein consisting of the first to 149th amino acid sequence from the N-terminus described in SEQ ID NO: 1 or HB-EGF extracellular region (first to 161 from the N-terminus described in SEQ ID NO: 1)
  • HB-EGF extracellular region
  • HHB-EGF-pT7 Using HHB-EGF-pT7 as a template, the end of HB-EGF partial length DNA amplified by PCR was cleaved with NotI and BamHI, and inserted into the NotI-BamHI site of animal cell secretion expression vector pQCxmhIPG.
  • a vector in which DNA encoding secretory HB-EGF (HB-EGFv5) is inserted is named HB-EGFv5-pQCxmhIPG, and a vector in which DNA encoding HB-EGF extracellular region (HB-EGFv4) is inserted is HB-EGFv4.
  • HB-EGFv5-pQCxmhIPG A vector in which DNA encoding secretory HB-EGF (HB-EGFv5) is inserted is named HB-EGFv5-pQCxmhIPG, and a vector in which DNA encoding HB-EGF extracellular region (HB-EGFv4) is
  • the prepared vector is introduced into 293T cells using a pantropic retrovirus expression system, and cultured in a selective medium containing 5 ug / mL Puromycin, thereby stably expressing the target gene.
  • Strains (HB-EGFv5 / st293T and HB-EGFv4 / st293T) were established.
  • HB-EGF partial length purified protein (animal cell-derived recombinant protein)
  • the expression cell lines established above (HB-EGFv5 / st293T and HB-EGFv4 / st293T) were each cultured in 1 L of a medium for 293 (product name: CD293, manufactured by Invitrogen). The culture supernatant was collected, and the recombinant protein was purified therefrom using a TALON purification kit (Clontech, catalog number: K1253-1). The purified proteins (HB-EGFv5 and HB-EGFv4) were confirmed by SDS-PAGE and Western blot. Furthermore, the protein concentration was determined using Protein Assay Kit II (manufactured by BioRad, catalog number: 500-0002JA).
  • HB-EGFv4 is diluted with PBS, mixed with the same amount of complete adjuvant (manufactured by SIGMA, catalog number: F5881) to form an emulsion, and 1 in 4 to 5 week-old C3H mice (manufactured by Japan SLC). The mice were immunized 6 times every 5 to 20 ug and every 3 to 7 days. Three days after the final immunization, lymphocyte cells were removed from the mouse and fused with mouse myeloma cell P3U1 (P3-X63Ag8U1) by the following method.
  • Cell fusion was performed based on the following general method.
  • the FBS in all the media used was inactivated by a treatment kept at 56 ° C. for 30 minutes.
  • P3U1 was prepared by culturing in RPMI 1640-10% FBS (containing Penicillin-Streptomycin).
  • the extracted mouse lymphocyte cells and P3U1 were mixed at a ratio of 10: 1 to 2: 1 and centrifuged.
  • the precipitated cells were gently mixed while gradually adding 50% polyethylene glycol 4000 (manufactured by Merck, catalog number: 1.09727.0100), and then centrifuged.
  • the precipitated fused cells are appropriately diluted with a HAT medium (RPMI1640, HAT-supplement (Invitrogen, catalog number: 11067-030), Penicillin-Streptomycin) containing 15% FBS, and 200 ⁇ L / well in a 96-well microplate. Sowing.
  • the fused cells were cultured in a CO 2 incubator (5% CO 2 , 37 ° C.). When colonies were formed, the culture supernatant was sampled and screened as shown below.
  • Hybridomas producing anti-HB-EGF antibodies were selected by enzyme immunoassay (ELISA).
  • ELISA enzyme immunoassay
  • the recombinant human HB-EGF protein used as an immunogen was dispensed at 0.5 ug / mL and 50 uL / well into a 96-well ELISA plate (manufactured by nunc), and allowed to stand at room temperature for 2 hours or at 4 ° C. overnight. What was placed and adsorbed was used.
  • the plate was washed with 0.05% Tween 20-PBS, and then a color developing solution (5 mM sodium citrate, 0.8 mM 3.3′.5.5 ′ tetramethylbenzidine-2HCl, 10% N, N-dimethylformamide, 0.625% polyethylene glycol 4000, 5 mM citric acid monohydrate, 5 mM H 2 O 2 ) is added at 50 uL / well and allowed to stand at room temperature for 20 minutes, and 1M phosphoric acid is added at 50 uL / well for color development. After stopping, the absorbance at a main wavelength of 450 nm and a sub wavelength of 620 nm was measured using a plate reader (manufactured by Thermo Fisher Scientific).
  • the hybridoma confirmed that the produced antibody specifically recognizes HB-EGF is HT medium containing 15% FBS (RPMI1640, HT-supplement (manufactured by Invitrogen, catalog number: 21060-017), Penicillin. -Expanded culture with (Streptomycin) and then cloned by limiting dilution.
  • ⁇ Acquisition of anti-HB-EGF monoclonal antibody> Each hybridoma monocloned as described above is cultured in a serum-free medium (GIBCO, catalog number: 12300-067), and antibodies are obtained from the culture supernatant by a general affinity purification method using protein A-Sepharose. Was purified. The reactivity of these antibodies to human HB-EGF was confirmed by enzyme immunoassay (ELISA) using the purified protein used as an immunogen, as described above, and hybridomas producing anti-HB-EGF antibodies were obtained.
  • ELISA enzyme immunoassay
  • Example 2 ⁇ Reactivity of the obtained antibody to cell surface HB-EGF>
  • those that strongly react with cell surface HB-EGF were selected by a general method using flow cytometry.
  • each acquired antibody 5 ug / mL
  • secondary antibody (Beckman Coulter, Inc.) at the same concentration
  • catalog number: IM0855 antibody diluted to 1/200) was used, and the average fluorescence intensity in flow cytometry was analyzed.
  • mouse IgG1 (isotype control, manufactured by MBL, catalog number: M075-3) was used as a negative control, and it was confirmed that it did not react with HB-EGF / st293T or 293T. The obtained results are shown in FIG.
  • the 35-1 antibody, the 292 antibody, and the like are antibodies that strongly react with HB-EGF on the cell surface.
  • Example 3 ⁇ Epitope analysis of acquired antibody>
  • the reactivity of the anti-HB-EGF antibody to amino acid point mutant HB-EGF was analyzed by flow cytometry, and the epitope to which the obtained antibody bound was identified.
  • cells expressing amino acid point mutant HB-EGF for use in flow cytometry were prepared. That is, genes encoding mutant HB-EGF shown in Table 1 were prepared by site-directed mutagenesis using HB-EGF-pQCxmhIPG as a template. The obtained mutant HB-EGF gene was inserted into an animal cell expression vector pQCxmhIPG to prepare a vector encoding each mutant HB-EGF. Each of these vectors was introduced into 293T cells and transiently expressed to prepare cells expressing the amino acid point mutant HB-EGF.
  • HB-EGF-pQCxmhIPG was introduced into 293T cells and transiently expressed to prepare cells expressing wild type HB-EGF.
  • anti-HB-EGF antibody 5 ug / mL
  • secondary antibody manufactured by Beckman Coulter, catalog number: IM0855
  • IM0855 secondary antibody
  • the average fluorescence intensity of flow cytometry was analyzed.
  • goat-derived anti-human HB-EGF polyclonal antibody catalog number: BAF259, manufactured by R & D, whose binding ability does not change due to amino acid point mutation is 1 ug / ml.
  • the binding strength (relative value) of the anti-HB-EGF antibody to the mutant HB-EGF is 0.4 or less
  • the anti-HB-EGF antibody is an amino acid before being substituted in the mutant. was determined to be an antibody that binds to.
  • the 35-1 antibody and the 292 antibody hardly reacted with G140A, E141H, and R142A, and in addition, the reactivity to F115A and I117A was extremely low.
  • the 1-1 antibody hardly reacted with F115A and R142A, and in addition, the reactivity to G140A and E141H was extremely low.
  • the 35-1 antibody and the 292 antibody are the 115th phenylalanine, the 117th isoleucine, the 140th glycine, the 141st glutamic acid and the 142nd antibody of the human HB-EGF protein. It was revealed that arginine was recognized.
  • the antibody 1-1 recognizes the 115th phenylalanine, the 140th glycine, the 141st glutamic acid, and the 142th arginine, but does not recognize the 117th isoleucine unlike the above-mentioned 2 antibodies. It was.
  • Example 4 ⁇ HB-EGF cleavage inhibitory activity of the obtained antibody> Whether the obtained anti-HB-EGF antibody can inhibit the cleavage of membrane-type HB-EGF was evaluated by flow cytometry shown below.
  • HA-HB-EGF / stCHO-K1 was seeded in a 48-well microplate at 100,000 cells per well and cultured at 37 ° C. for 6 hours. After confirming that the cells adhered to the bottom of the plate, the cells were replaced with serum-free F12 Ham's medium and cultured for another 15 hours.
  • the medium was replaced with a medium supplemented with 35-1 antibody or control antibody (manufactured by MBL, catalog number: M075-3), and incubated at 37 ° C. for 30 minutes.
  • the antibody concentration at this time was 25, 5, 1, 0.2, and 0.04 ug / mL, and the amount of medium per well was 200 uL.
  • PMA was added to a final concentration of 500 nM by adding 2 uL of PMA-added medium adjusted to 5000 nM per well and mixing. After culturing at 37 ° C. for 60 minutes, the cells were detached by detaching with PBS-0.05% EDTA. It has been shown that PMA (phorbol-12-myristate-13-acetate) added to the medium induces shedding in HB-EGF by activating protein kinase C (PKC). .
  • PKC protein kinase C
  • HB-EGF remaining on the surface of these cells is detected by flow cytometry using an antibody that recognizes the HA tag added to the N-terminus of HB-EGF.
  • MBL Biotinylated anti-HA tag antibody
  • PE-labeled streptavidin diluted by 1/100 as a secondary antibody (manufactured by Invitrogen, catalog number: S866)
  • FIG. 3 the vertical axis represents the average fluorescence intensity in flow cytometry.
  • HA-HB-EGF / stCHO-K1 was seeded in a 48-well microplate at 100,000 cells per well and cultured at 37 ° C. for 6 hours. After confirming that the cells adhered to the bottom of the plate, the cells were replaced with serum-free F12 Ham's medium and cultured for another 15 hours.
  • the medium was replaced with a medium supplemented with 35-1 antibody or control antibody (manufactured by MBL, catalog number: M075-3), and incubated at 37 ° C. for 30 minutes.
  • the antibody concentration at this time was 100, 10, and 1 ug / mL, and the amount of medium per well was 200 uL.
  • the intracellular HB-EGF-CTF was analyzed by Western blotting using an antibody that recognizes the myc tag added to the C-terminus of HB-EGF.
  • the collected cell samples were heat-treated and then 10 uL each was subjected to SDS-PAGE, and anti-myc tag antibody (MBL, catalog number: M047-3) diluted 5000 times as a primary antibody and diluted 5000 times as a secondary antibody.
  • An HRP-labeled anti-mouse IgG antibody manufactured by MBL, catalog number: 330 was used in accordance with a conventional method. The obtained results are shown in FIG.
  • Incubation conditions were HA-HB-EGF / stCHO-K1, 35-1 antibody, 292 antibody, or the above-mentioned control with an added concentration in the medium of 25, 5, 1, 0.2, or 0.04 ug / mL.
  • incubation with antibodies as described above, whether these antibodies can inhibit the cleavage of membrane-type HB-EGF was evaluated by Western blot. The obtained results are shown in FIG.
  • Example 5 ⁇ HB-EGF neutralizing activity of the obtained antibody>
  • the obtained anti-HB-EGF antibody inhibits the phosphorylation of EGFR induced by stimulation with HB-EGF using A431 (ATCC, catalog number: CRL-1555), a cultured cell line of human lung cancer. Whether or not the anti-HB-EGF antibody has an activity of neutralizing HB-EGF was analyzed by Western blotting as shown below.
  • A431 cultured in DMEM-10% FBS (containing Penicillin-Streptomycin) was seeded at 50000 cells per well in a 12-well plate and cultured at 37 ° C. for 6 hours. After confirming that the cells adhered to the bottom of the plate, the cells were replaced with serum-free DMEM medium and further cultured for 48 hours.
  • the secretory HB-EGF recombinant protein (HB-EGFv5) and the obtained anti-HB-EGF antibody (35-1, 292 or 1-1 antibody) were added in 200 ⁇ L of serum-free DMEM medium. And incubated at 37 ° C. for 30 minutes and then added to the cells. At this time, the concentration of the recombinant protein was 50 ng / mL, and the antibody concentrations of 125, 25, 5, 1, 0.2, and 0 ug / mL were 6 levels. The 35-1 antibody was also tested at low concentrations (6 levels of 10, 1, 0.1, 0.01, 0.001 and 0 ug / mL).
  • HB-EGFv5 HB-EGF recombinant protein
  • DMEM medium without HB-EGF DMEM medium without HB-EGF
  • both the 35-1 antibody and the 292 antibody inhibit EGFR phosphorylation by HB-EGF in a concentration-dependent manner, and both the 35-1 antibody and the 292 antibody both have HB- -It was found to have EGF neutralizing activity.
  • the 1-1 antibody did not inhibit the phosphorylation of EGFR by HB-EGF and did not have the HB-EGF neutralizing activity. .
  • Non-Patent Document 21 describes antibodies (7E10, 3D9) having epitopes of 133th isoleucine and 135th histidine as epitopes and antibodies having epitopes of 141st glutamic acid (3H4 etc.) in human HB-EGF protein. All have cleavage-inhibiting activity, but have no neutralizing activity.
  • the anti-HB-EGF antibody must bind to the 117th isoleucine of the human HB-EGF protein in order to exert neutralizing activity.
  • Example 6 ⁇ Evaluation of antitumor activity in advanced cancer model>
  • human breast cancer cell line MDA-MB-231 ATCC, catalog number: HTB-26
  • DMEM-10% FBS containing Penicillin-Streptomycin
  • PBS-0.05% EDTA PBS-0.05% EDTA
  • mice After adding an equal amount of Matrigel (BD, catalog number: 354230) and suspending, 200 uL each on the right ventral side of a 6-week-old female nude mouse (CLEA Japan, BALB / cAJcl-nu / nu) Subcutaneously transplanted. When the tumor volume reached around 200 mm 3 , the mice were selected so that the average tumor volume of each group was equivalent. From the same day, the antibody solution diluted with PBS to 750 ug / ml (high concentration) or 150 ug / ml (low concentration) was administered as abdominal cavity by 200 uL each in the control group (4 mice in each group). The antibody administered to the xenograft mouse is the chimerized 35-1 antibody described later.
  • Matrigel catalog number: 354230
  • Tumor volume (mm 3 ) major axis ⁇ minor axis 2 ⁇ 0.5
  • FIG. 1 The obtained results are shown in FIG.
  • the 35-1 antibody inhibited the growth of the human breast cancer cell line MDA-MB-231. That is, it was revealed that the 35-1 antibody has antitumor activity in an advanced cancer model.
  • ADCC activity The ADCC activity of the obtained anti-HB-EGF antibody was evaluated. That is, first, the human breast cancer cell line MDA-MB-231 was selected as the target cell. Then, the cells are cultured in DMEM-10% FBS (containing Penicillin-Streptomycin), detached with PBS-0.05% EDTA, washed with PBS, and then washed with PBS, then DMEM-10% FBS (containing Penicillin-Streptomycin). Prepared to optimum concentration. Peripheral blood mononuclear cells (PBMC) of effector cells were prepared from peripheral blood of healthy persons by the following method.
  • PBMC Peripheral blood mononuclear cells
  • Healthy human peripheral blood was collected using Benogect II vacuum blood collection tube (TERUMO) and diluted by adding the same amount of physiological saline.
  • the diluted peripheral blood was overlaid on Histopaque-1077 (manufactured by Sigma, catalog number: 10771-500ML), centrifuged at 800 g for 20 minutes to collect peripheral blood mononuclear cells, washed with PBS, washed with PBS, DMEM-10 % FBS (containing Penicillin-Streptomycin) was prepared to an optimal concentration.
  • the ADCC activity was evaluated by dispensing 25 uL of effector cells and 50 uL of target cells into a 96-well U-bottom plate (manufactured by Sumitomo Bakelite Co., Ltd., catalog number: MS-309UR) so that the effector cells 20 become target cells 1. After that, 25 uL of antibody diluted to each concentration with DMEM-10% FBS (containing Penicillin-Streptomycin) was added and incubated at 37 ° C. with 5% CO 2 for 20 hours. The antibody added to the cells is the chimerized 35-1 antibody described later.
  • LDH lactate dehydrogenase
  • the antibody 35-1 exhibited cytotoxic activity depending on the antibody concentration. Therefore, it was revealed that the 35-1 antibody exhibits not only neutralizing activity but also an antitumor effect by ADCC against cancers expressing HB-EGF.
  • Example 8 ⁇ Isolation of heavy chain and light chain variable region genes of antibody 35-1 and 292 and identification of CDR>
  • Each hybridoma was cultured, and total RNA was extracted by a general method.
  • cDNA was obtained by 5′-RACE method using GeneRacer kit (manufactured by Invitrogen, catalog number: L1502-01).
  • GeneRacer 5 ′ primer (5′-CGACTGGAGCACGAGGACACTGA-3 ′, SEQ ID NO: 20), CH1 (mouse IgG1 constant region 1), 3 ′ primer (5′-AATTTTCTTTCCCCCTGG-3 ′, SEQ ID NO: 21 ) was used to perform PCR ([94 ° C.
  • Each amplified gene fragment was cloned into a pT7Blue T-vector (Novagen, catalog number: 69820), and the sequence was analyzed using an autosequencer (Applied Biosystems). And based on the obtained base sequence, the amino acid sequence of the variable region of a heavy chain and a light chain, and the sequence of CDR in each variable region were determined. The results are as follows.
  • Example 9 Preparation of 35-1 chimerized antibody> Based on the determined gene sequence, the following PCR amplification primers were designed, and the antibody variable region was amplified by PCR. At this time, the secretory signal sequence was converted to a sequence recommended by Lonza, and a restriction enzyme recognition sequence was added to the end of the amplified fragment (a HindIII recognition sequence and an XhoI recognition sequence were added to the heavy chain variable region, and the light chain variable region To which HindIII and BsiWI recognition sequences are added).
  • the obtained PCR product was cleaved with the above restriction enzyme, and inserted into a human IgG1 antibody production vector manufactured by Lonza Corporation incorporating a constant region of human IgG1 by a conventional method.
  • a chimeric antibody-producing cell line was established based on the protocol recommended by Lonza, and the chimeric antibody (35-1 chimeric antibody) was purified from the culture supernatant using Protein A.
  • a humanized antibody was prepared by the CDR-grafting method. Specifically, a homology search was performed on the framework region excluding the CDR sequence of the heavy chain variable region and the framework region excluding the CDR sequence of the light chain variable region, respectively, and 73.5% homology with the 35-1 antibody. The light chain variable region human antibody sequence having 86.3% homology with the heavy chain variable region human antibody sequence having the property was selected. Using this human antibody sequence as a template sequence, the sequence of the variable region converted to the CDR sequence of 35-1 was determined according to the CDR-grafting method.
  • the synthesized variable region sequence was inserted into a Lonza human IgG1 antibody production vector incorporating a human IgG1 constant region by a conventional method, and a heavy chain variable region and a light chain variable region consisting of the following sequences were 35- One humanized antibody was prepared.
  • Example 11 ⁇ Reactivity of 35-1 chimerized antibody or 35-1 humanized antibody to antigen> The reactivity of 35-1 chimerized antibody or 35-1 humanized antibody to HB-EGF was evaluated by flow cytometry.
  • Flow cytometry is the same method as described above, using a culture supernatant of 293T cells introduced with a human IgG1 antibody production vector expressing 35-1 chimeric antibody or 35-1 humanized antibody as a primary antibody. I went there.
  • the antibody concentration in the culture supernatant was calculated by the sandwich ELISA method.
  • sandwich ELISA method goat anti-mouse IgG (manufactured by MBL, code number: 303G) was solid-phased at 5 ug / mL and 50 uL / well on a 96-well ELISA plate, and 293T cell culture supernatant was added at 50 uL / well.
  • the plate was washed with 0.05% Tween20-PBS for 50 hours, and then added with 50 uL / well of HRP-labeled goat anti-mouse IgG (MBL, code number: 330) diluted 1 / 10,000 times as a detection antibody. And left for 1 hour.
  • a color developing solution was added at 50 uL / well and allowed to stand for 20 minutes at room temperature to develop color.
  • 1 M phosphoric acid was added at 50 uL / well, color development was stopped, and then 450 nm. was measured with a plate reader.
  • an antibody that inhibits cleavage in the human HB-EGF and inhibits binding between the human HB-EGF and the EGF receptor can be provided.
  • the antibody of the present invention is also useful in treating or preventing cancer because it is excellent in activity of suppressing tumor growth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

 ヒトHB-EGFタンパク質における115番目のフェニルアラニン、117番目のイソロイシン、140番目のグリシン、141番目のグルタミン酸及び142番目のアルギニンに結合する2種の抗体(35-1抗体及び292抗体)を取得することに成功した。そして、これら抗体は、ヒトHB-EGFタンパク質の切断に対する抑制活性と、ヒトHB-EGFとEGFRとが結合することによって生じる該EGFRのリン酸化に対する抑制活性とを有していることも見出した。さらに、これら抗体の軽鎖及び重鎖の可変領域のアミノ酸配列、並びに各可変領域におけるCDRの配列を決定した。

Description

ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体
 本発明は、ヒトHB-EGFタンパク質に対する抗体、該抗体をコードするDNA、前記抗体又は該DNAを含むハイブリドーマ、前記抗体を有効成分とする癌を治療又は予防するための組成物に関する。
 ヘパリン結合上皮細胞増殖因子様増殖因子(Heparin-binding epidermal growth factor-like growth factor/HB-EGF)は上皮細胞成長因子(epidermal growth factor/EGF)ファミリーに属するタンパク質であり、EGF受容体(EGFR/ErbB1又はErbB4)に結合し、細胞の増殖、分化及び化学遊走等を促進することが明らかになっている(非特許文献1~3)。
 また、HB-EGFは、生体内において、筋形成、心臓の形成、創傷治癒に寄与していることが明らかになっているため、HB-EGFは器官形成において重要な因子であると考えられている(非特許文献4~6)。
 さらに、膵臓癌の増殖(非特許文献7)、胃癌の増殖(非特許文献8)、皮膚癌(非特許文献9)との関連、頭頸部癌の薬剤耐性との関連(非特許文献10)、癌組織への血管新生(非特許文献11)等、様々な点において、HB-EGFは癌の増殖、進行に関与していることが報告されており、HB-EGFは様々な癌においても重要な因子であることが明らかになっている。
 また、HB-EGFについては、先ずI型膜タンパク質(膜型HB-EGF)として合成され、その後、細胞膜貫通部の直上の細胞外領域がプロテアーゼにより切断された後、14~22キロダルトンの分泌型HB-EGFとして遊離することが明らかになっている(非特許文献12及び13)。そして、この切断によって生じた分泌型HB-EGFが、HB-EGF発現細胞自身のEGFR/ErbB1を活性化するオートクライン様式や他の細胞のEGFR/ErbB1を活性化するパラクライン様式により、増殖因子として機能することも知られている。
 一方、膜型HB-EGF自体も隣接する他の細胞のEGFR/ErbB1を活性化するジャックスタクライン様式により、増殖因子として機能することが知られている(非特許文献14)。しかし、膜型HB-EGFは分泌型HB-EGFに比べ、細胞増殖活性が弱いことが示されている(非特許文献11)。これらの結果から、プロテアーゼの切断によって分泌型HB-EGFを生じる過程が、HB-EGFが増殖因子として機能を発揮する上で重要であると考えられている。
 また、HB-EGFの切断部位にアミノ酸変異を導入することにより、膜型HB-EGFは発現するが分泌型HB-EGFは発現しないように調製された、変異型マウスが作製されている。そして、この変異型マウスの解析において、HB-EGFが全く発現していないノックアウトマウスと同様の心臓の器官形成における異常が観察されている(非特許文献5及び15)。さらに、プロテアーゼ阻害剤によりHB-EGFの切断を抑制することで、分泌型HB-EGFに起因する心肥大は抑制されることも示されており(非特許文献16)、HB-EGFの器官形成における前述の重要な生理機能は、分泌型HB-EGFが担っていると考えられている。
 また、癌においては、切断されたHB-EGFの細胞内領域(HB-EGF-CTF)が核に移行し細胞分裂を促進する機能も知られている(非特許文献17)。さらに、プロテアーゼ阻害剤によるHB-EGF切断の抑制により、胃癌の増殖や浸潤を阻害しうることが示されている(非特許文献18)。故に、癌細胞の増殖等においても、HB-EGFの切断過程が重要な要素であることが明らかになっている。
 以上の知見に基づき、HB-EGFが関与すると想定されている様々な疾患(心不全、神経疾患、肺疾患等)、特に癌の治療方法の研究、開発が進められている。例えば、卵巣癌細胞を移植したゼノグラフトマウスモデルにおいて、抗HB-EGF抗体等の抗腫瘍効果が確認されている(非特許文献19及び20)。さらに、抗体によって、HB-EGFの切断を阻害し、分泌型HB-EGFの発生を抑制することで、癌細胞の増殖を阻害しうることも示されている(非特許文献21)。このように、HB-EGFに結合し、抗腫瘍活性や切断阻害活性等の活性を発揮する抗体が開発されている。
 前述の通り、HB-EGFに対する抗体が、癌等の治療において十分な活性を有するため、すなわち細胞の増殖等におけるHB-EGFが関与するシグナル伝達を完全に阻害するためには、(1)増殖因子等として機能する分泌型HB-EGF及びHB-EGF-CTFを生じさせる切断を、強く阻害すること(切断阻害活性)、(2)分泌型HB-EGF及び膜型HB-EGFとEGF受容体(EGFR/ErbB1又はErbB4)との結合を阻害し、ひいては該EGF受容体の活性化等を強く阻害すること(中和活性)、この2つの活性を兼ね備えることが必要であると想定される。
 しかしながら、例えば、非特許文献21に記載の抗体は、前述の通り、切断阻害活性を有するものの、同文献には該抗体が中和活性を有していないことも明らかにされており、このように、HB-EGFが関与する疾患の治療、特に癌の治療において十分な活性を有する、HB-EGFに対する抗体は開発されていないのが現状である。
Raab G.、Biochim Biophys Acta、1997年、1333巻、3号、F179~F199 Ono M.ら、J.Biol.Chem.、1994年、296巻、49号、31315~31321ページ Elenius K.ら、EMBO J.、1997年、16巻、6号、1268~1278ページ Chen,X.ら、J.Biol.Chem.、1995年、270巻、18285~18294ページ Iwamoto R.ら、PNAS、2003年、100巻、6号、3221~3226ページ Marikovsky M.ら、PNAS、1993年、90巻、9号、3889~3893ページ Kobrin M.S.ら、BBRC、1994年、202巻、3号、1705~1709ページ Neaf M.ら、Int J Cancer、1996年、66巻、3号、315~321ページ Downing M.T.ら、Histochem J.、1997年、29巻、10号、735~744ページ Hatakeyama H.ら、PLosOne、2010年、5巻、4号、e9875 Ongusaha P.ら、Cancer res.、2004年、64巻、5283~5290ページ Sahin U.ら、J Cell Biol.、2004年、164巻、5号、769~779ページ Higashiyama S.ら、J.Biol.Chem.、1992年、267巻、9号、6205~6212ページ Takemura T.ら、J.Biol.Chem.、1997年、272巻、31036~31042ページ Yamazaki S.ら、J Cell Biol.、2003年、163巻、3号、469~475ページ Asakura M.ら、Nat Med.、2002年、8巻、1号、35~40ページ Shimura T.ら、Clin Cancer Res.、2008年、14巻、12号、3956~3965ページ Shimura T.ら、BMC Cancer、2012年、12:205 Miyamoto S.ら、Cancer Res.、2004年、64巻、5720~5727ページ Miyamoto S.ら、Clin Cancer Res.、2011年、17巻、21号、6733~6741ページ Hamaoka M.ら、J.Biochem.、2010年、148巻、1号、55~69ページ
 本発明は、前記従来技術の有する課題に鑑みてなされたものであり、ヒトHB-EGFに結合することにより、該ヒトHB-EGFにおける切断を阻害し、かつ該ヒトHB-EGFとEGF受容体との結合を阻害する抗体を提供することを目的とする。
 本発明者らは、前記目的を達成すべく、HB-EGFタンパク質の細胞外領域からなる部分ペプチドをマウスに免疫し、ヒトHB-EGFタンパク質に対するモノクローナル抗体を取得した。そして、取得した抗ヒトHB-EGFモノクローナル抗体の中から、細胞表面に発現しているHB-EGFに対して強い反応性を示す3抗体(35-1抗体、292抗体及び1-1抗体)を選抜した。
 さらに、これら抗体のエピトープを解析した結果、35-1抗体及び292抗体は、ヒトHB-EGFタンパク質において、115番目のフェニルアラニン、117番目のイソロイシン、140番目のグリシン、141番目のグルタミン酸及び142番目のアルギニンを認識していることが明らかになった。一方、1-1抗体は、115番目のフェニルアラニン、140番目のグリシン、141番目のグルタミン酸及び142番目のアルギニンを認識するが、前記2抗体とは異なり117番目のイソロイシンを認識しないことが明らかになった。
 また、かかる抗体について鋭意研究を重ねた結果、35-1抗体及び292抗体はいずれもヒトHB-EGFにおける切断を阻害できることを見出した。さらに、ヒトHB-EGFとEGF受容体(EGFR)とが結合することによって生じる該EGFRのリン酸化をいずれの抗体も抑制できること、すなわち中和活性を有していることも見出した。一方、1-1抗体は、切断阻害活性を有しているものの、中和活性を有していなかった。そのため、35-1抗体及び292抗体は、ヒトHB-EGFタンパク質の117番目のイソロイシンを含めて認識することにより、切断阻害活性及び中和活性を有し、1-1抗体は、117番目のイソロイシンを認識しないことにより中和活性を有していないことが明らかになり、抗HB-EGF抗体が強い中和活性を発揮するためには、ヒトHB-EGFタンパク質の117番目のイソロイシンに結合することが必要であることが明らかとなった。
 また、本発明者らは、かかる切断阻害活性及び中和活性を有する35-1抗体及び292抗体について、重鎖及び軽鎖の可変領域及びCDRの配列を決定した。さらに、決定した配列に基づき、35-1抗体については、定常領域をヒトIgGに由来するものに置換したキメラ抗体、及び、可変領域のフレームワーク領域をヒト抗体のそれらに置換したヒト型化抗体を作製した。そして、得られたキメラ抗体を、癌細胞を移植したマウスに投与することによって、当該癌細胞のマウス体内における増殖が抑制されることも明らかにした。さらに、当該抗体は癌細胞に対して抗体依存性細胞障害活性(ADCC活性)を発揮することを見出し、本発明を完成するに至った。すなわち、本発明は、以下<1>~<10>を提供するものである。
<1> 配列番号:1に示されるヒトHB-EGFタンパク質における117番目のイソロイシンに結合する抗体。
<2> 配列番号:1に示されるヒトHB-EGFタンパク質における115番目のフェニルアラニン、140番目のグリシン、141番目のグルタミン酸及び142番目のアルギニンに更に結合する、<1>に記載の抗体。
<3> ヒトHB-EGFに結合する抗体であって、下記(a)又は(b)に記載の特徴を有する抗体
(a) 配列番号:2~4に記載のアミノ酸配列又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:6~8に記載のアミノ酸配列又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する
(b) 配列番号:10~12に記載のアミノ酸配列又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:14~16に記載のアミノ酸配列又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する。
<4> ヒトHB-EGFに結合する抗体であって、下記(a)又は(b)に記載の特徴を有する抗体
(a) 配列番号:5に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:9に記載のアミノ酸配列または該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する
(b) 配列番号:13に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:17に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列とを含む重鎖可変領域とを保持する。
<5> ヒトHB-EGFに結合する抗体であって、
 配列番号:18に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:19に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する、抗体。
<6> <1>~<5>のうちのいずれか一に記載の抗体をコードするDNA。
<7> <1>~<5>のうちのいずれか一に記載の抗体を産生する、又は、<6>に記載のDNAを含む、ハイブリドーマ。
<8> <1>~<5>のうちのいずれか一に記載の抗体を有効成分とする、癌を治療又は予防するための組成物。
<9> <8>に記載の組成物を医薬として使用する方法。
<10> <8>に記載の組成物を癌患者に投与して治療する方法。
 なお、配列番号:2~4に記載のアミノ酸配列は、各々35-1抗体の軽鎖可変領域のCDR1~3のアミノ酸配列であり、配列番号:5に記載のアミノ酸配列は、35-1抗体の軽鎖可変領域のアミノ酸配列であり、配列番号:6~8に記載のアミノ酸配列は、各々35-1抗体の重鎖可変領域のCDR1~3のアミノ酸配列であり、配列番号:9に記載のアミノ酸配列は、35-1抗体の重鎖可変領域のアミノ酸配列である。配列番号:18に記載のアミノ酸配列は、35-1ヒト型化抗体の軽鎖可変領域のアミノ酸配列であり、配列番号:19に記載のアミノ酸配列は、35-1ヒト型化抗体の重鎖可変領域のアミノ酸配列である。配列番号:10~12に記載のアミノ酸配列は、各々292抗体の軽鎖可変領域のCDR1~3のアミノ酸配列であり、配列番号:13に記載のアミノ酸配列は、292抗体の軽鎖可変領域のアミノ酸配列であり、配列番号:14~16に記載のアミノ酸配列は、各々292抗体の重鎖可変領域のCDR1~3のアミノ酸配列であり、配列番号:17に記載のアミノ酸配列は、292抗体の重鎖可変領域のアミノ酸配列である。
 本発明によれば、ヒトHB-EGFに結合することにより、該ヒトHB-EGFにおける切断を阻害し、かつ該ヒトHB-EGFとEGF受容体との結合を阻害する抗体を提供することが可能となる。
取得したヒトHB-EGFタンパク質に対する抗体(35-1抗体及び292抗体)と、ヒトHB-EGFタンパク質を細胞表面に発現する細胞株(HB-EGF/st293T)又は該タンパク質を細胞表面に発現していない細胞株(293T)との反応性をフローサイトメトリーによって解析した結果を示す、ヒストグラムである。図中、白いヒストグラムは各抗体と293Tとの反応性(陰性対照)を示し、黒いヒストグラムは各抗体とHB-EGF/st293Tとの反応性を示す。縦軸は細胞数を示し、横軸は、抗体と細胞株との反応性(平均蛍光強度)を示す。 ヒトHB-EGFタンパク質に対する抗体(35-1抗体、292抗体及び1-1抗体)と、各ヒトHB-EGFタンパク質のアミノ酸変異体との反応性をフローサイトメトリーによって解析した結果を示すグラフである。縦軸は各アミノ酸変異体に対する各抗体の結合強度(相対値)を示す。 PMAによって生じるヒトHB-EGFタンパク質の切断に対する抑制活性を、本発明の抗体(35-1抗体及び292抗体)について、フローサイトメトリーにより解析した結果を示すグラフである。縦軸は、PMA添加後の細胞(HA-HB-EGF/stCHO-K1)表面に残存しているヒトHB-EGFタンパク質量(平均蛍光強度)を示す。横軸は、細胞に添加した各抗体の濃度を示す。 PMAによって生じるヒトHB-EGFタンパク質の切断に対する抑制活性を、本発明の抗体(35-1抗体)について、ウェスタンブロットにより解析した結果を示す写真である。なお、図中の「HB-EGF-CTF」は、ヒトHB-EGFタンパク質(全長HB-EGF)が切断された後生じる、細胞膜側に残存している部分タンパク質(HB-EGF C末断片)を示す(図5においても同じ)。 PMAによって生じるヒトHB-EGFタンパク質の切断に対する抑制活性を、本発明の抗体(35-1抗体及び292抗体)について、ウェスタンブロットにより解析した結果を示す写真である。 ヒトHB-EGFタンパク質によって誘起されるEGFRのリン酸化に対する抑制活性を、本発明の抗体(35-1抗体)についてウェスタンブロットにより解析した結果を示す写真である。図中、「EGFR」は各細胞におけるEGFRタンパク質の量を示し、「p-EGFR」は各細胞におけるリン酸化されたEGFRタンパク質の量を示す(図中の表記に関し、図7及び8において同様である)。 ヒトHB-EGFタンパク質によって誘起されるEGFRのリン酸化に対する抑制活性を、本発明の抗体(35-1抗体及び292抗体)についてウェスタンブロットにより解析した結果を示す写真である。 ヒトHB-EGFタンパク質によって誘起されるEGFRのリン酸化に対する抑制活性を、ヒトHB-EGFタンパク質に対する抗体(1-1抗体)についてウェスタンブロットにより解析した結果を示す写真である。 キメラ化した35-1抗体を投与したゼノグラフトマウスにおける、腫瘍体積の経時的変化を示すグラフである。図中、「35-1(高濃度)」は750ug/mlにPBSで希釈した抗体溶液を投与した結果を示し、「35-1(低濃度)」は150ug/mlにPBSで希釈した抗体溶液を投与した結果を示し、「PBS」はPBSのみを投与した結果(陰性対照)を示す。 キメラ化した35-1抗体の抗体依存性細胞障害活性(ADCC活性)を分析した結果を示すグラフである。 キメラ化した35-1抗体(35-1キメラ化抗体)及びヒト型化した35-1抗体(35-1ヒト型化抗体)と、ヒトHB-EGFタンパク質との反応性をELISAによって解析した結果を示す、グラフである。図中、縦軸は、抗体とヒトHB-EGFタンパク質との反応性(平均蛍光強度)を示す。
 後述の実施例において示す通り、本発明者らは、ヒトHB-EGFタンパク質における115番目のフェニルアラニン、117番目のイソロイシン、140番目のグリシン、141番目のグルタミン酸及び142番目のアルギニンに結合する2種の抗体(35-1抗体及び292抗体)を取得した。さらに、これら抗体は、ヒトHB-EGFタンパク質の切断に対する強い抑制活性(切断阻害活性)と、ヒトHB-EGFとEGFRとが結合することによって生じる該EGFRのリン酸化に対する強い抑制活性(中和活性)とを有していることも見出した。一方、ヒトHB-EGFタンパク質の117番目のイソロイシンに結合しないヒトHB-EGFタンパク質に対する抗体(後述の1-1抗体等)は中和活性を有していないことも見出した。従って、本発明は、ヒトHB-EGFタンパク質における117番目のイソロイシンに結合する抗体を提供する。
 かかる抗体は、前記117番目のイソロイシン以外に、ヒトHB-EGFタンパク質における他のアミノ酸にも結合する抗体であってもよく、好ましくは、ヒトHB-EGFタンパク質における115番目のフェニルアラニン、117番目のイソロイシン、140番目のグリシン、141番目のグルタミン酸及び142番目のアルギニンに結合する抗体である。
 本発明における「抗体」は、免疫グロブリンのすべてのクラス及びサブクラスを含む。「抗体」には、ポリクローナル抗体、モノクローナル抗体が含まれ、また抗体の機能的断片の形態も含む意である。「ポリクローナル抗体」は、異なるエピトープに対する異なる抗体を含む抗体調製物である。「モノクローナル抗体」とは、実質的に均一な抗体の集団から得られる抗体(抗体断片を含む)を意味し、抗原上の単一の決定基を認識するものである。本発明の抗体は、好ましくはモノクローナル抗体である。また、本発明の抗体は、自然環境の成分から分離され、及び/又は回収された(即ち、単離された)抗体である。
 本発明において「HB-EGF」は、ヘパリン結合上皮細胞増殖因子様増殖因子、DTR(ジフテリア毒素受容体)、DTS、DTSF、HEGFL等とも称されるタンパク質である。ヒトHB-EGFタンパク質は、典型的には、配列番号:1に記載のアミノ酸配列からなるタンパク質(RefSeq ID:NP_001936で特定されるタンパク質、RefSeq ID:NM_001945で特定される塩基配列がコードするタンパク質)である。
 また、ヒトHB-EGFタンパク質は、このような典型的なアミノ酸配列を有するもの以外に、天然においてアミノ酸が変異したものも存在しうる。従って、本発明にかかるヒトHB-EGFタンパク質には、配列番号:1に記載のアミノ酸配列からなるタンパク質において、1若しくは複数個のアミノ酸が置換、欠失、挿入若しくは付加されたアミノ酸配列からなるものも含まれる。アミノ酸配列の置換、欠失、挿入若しくは付加は、一般的には、10アミノ酸以内(例えば、5アミノ酸以内、3アミノ酸以内、1アミノ酸)である。
 なお、抗体が、ヒトHB-EGFタンパク質において、117番目のイソロイシン等に結合する抗体であるかどうか(ヒトHB-EGFタンパク質において、117番目のイソロイシン等を認識する抗体であるかどうか)は、当業者であれば、後述の実施例3に示すような、免疫学的解析手法(フローサイトメトリー、ELISA、ウェスタンブロット、免疫沈降等)を利用して評価することができる。
 また、本発明の抗体が結合するアミノ酸を含む部位、すなわち「エピトープ」は、ヒトHB-EGFタンパク質中に存在する抗原決定基(抗体中の抗原結合ドメインが結合する抗原上の部位)を意味する。従って、本発明におけるエピトープは、アミノ酸の一次配列中において連続する複数のアミノ酸からなるポリペプチド(線状エピトープ)であってもよく、アミノ酸の一次配列中において隣接していないアミノ酸が、ペプチド又はタンパク質の折り畳み等の三次元構造によって近傍にくることにより形成されるポリペプチド(不連続エピトープ、構造的エピトープ)であってもよい。また、かかるエピトープとしては、典型的には、少なくとも1つ、及び最も普通には少なくとも5つ(例えば8~10個、6~20個)のアミノ酸からなる。
 本発明の抗体によって抑制される「ヒトHB-EGFタンパク質の切断」は、PMA等によって活性化されたADAM12等のプロテアーゼによる、ヒトHB-EGFタンパク質のジャクスタメンブレンドメイン内における切断を意味する。ジャックスタメンブレンドメインは、典型的にはRefSeq ID:NP_001936に記載のN末端から145~161番目のアミノ酸からなる領域である。また、かかる切断を抑制する活性は、例えば、後述の実施例4に示す方法にて評価することができる。
 本発明の抗体によって抑制される「ヒトHB-EGFとEGF受容体との結合」において、「ヒトHB-EGF」とは前記ヒトHB-EGFタンパク質の全長(膜型HB-EGF)のみならず、前記切断によって細胞外に放出される部分タンパク質(分泌型HB-EGF)を含む意味である。例えば、分泌型HB-EGFとしては、配列番号:1に記載のN末端から1番目から149番目のアミノ酸配列からなるタンパク質が挙げられ、HB-EGF-CTFとしては、配列番号:1に記載のN末端から150番目から208番目のアミノ酸配列からなるタンパク質が挙げられる。また、本発明にかかる「EGF受容体」は、EGFR(ErbB1)又はErbB4である。
 さらに、本発明の抗体によって抑制される「ヒトHB-EGFとEGF受容体との結合」には、前記ヒトHB-EGFと前記EGF受容体との結合のみならず、該結合に伴うEGFR又はErbB4の構造の変化、該構造の変化によって誘導されるEGFR又はErbB4のホモあるいはヘテロ二量体化、該二量体化に伴うEGFR又はErbB4のリン酸化、該リン酸化によって惹起されるMAPK経路の活性化、前記リン酸化によって惹起されるPI3K-Akt経路の活性化を含む意味である。本発明の抗体による抑制の対象として、好ましくはEGFRのリン酸化であり、より好ましくは癌細胞におけるEGFRのリン酸化である。また、かかるリン酸化を抑制する活性は、例えば、後述の実施例5に示す方法にて評価することができる。
 また、本発明の抗体は、前述のヒトHB-EGFタンパク質の切断を抑制する活性(切断阻害活性)及びヒトHB-EGFとEGF受容体との結合を抑制する活性(中和活性)に加え、細胞の増殖を抑制する活性(細胞増殖抑制活性)又は抗体依存性細胞障害活性(ADCC活性)を有していることが好ましく、切断阻害活性、中和活性、細胞増殖抑制活性及びADCC活性を有していることがより好ましい。
 本発明における「細胞の増殖の抑制」は、細胞の増殖自体(細胞の分裂)の抑制のみならず、細胞の死(アポトーシス等)の誘導による細胞の増殖抑制を含む意味である。本発明の抗体による抑制の対象として、好ましくは癌細胞の増殖であり、より好ましくはin vivoにおける癌細胞の増殖(腫瘍の増大)である。かかるin vivoにおける腫瘍の増殖を抑制する活性は、例えば、後述の実施例6に示す方法にて評価することができる。本発明の抗体の好ましい態様は、当該方法において、抗体投与開始時における腫瘍体積を100%とした際に、抗体の投与を開始してから30日経過後の腫瘍体積を230%以下(例えば、220%以下、210%以下、200%以下、190%以下、180%以下、170%以下)に抑えることのできる抗体である。
 また、本発明の抗体による細胞障害の標的として、好ましくは癌細胞である。かかる癌細胞に対するADCC活性は、例えば、後述の実施例7に示す方法にて評価することができる。本発明の抗体の好ましい態様は、当該方法において、標的細胞に添加した濃度が1μg/mlである場合に、ADCC活性が10%以上(例えば、20%以上、30%以上)である抗体である。
 本発明の抗体による増殖抑制の対象及び/又は細胞障害の標的となる癌の種類としては、HB-EGFと多種の癌との関連は、例えば非特許文献7~11及び17~21に示す通り明らかになっているので、特に制限はない。
 本発明の抗体の他の好ましい態様としては、ヒトHB-EGFに結合する抗体であって、下記(a)又は(b)に記載の特徴を有する抗体が挙げられる。
(a) 配列番号:2~4に記載のアミノ酸配列(後述の35-1抗体の軽鎖可変領域におけるCDR1~3のアミノ酸配列)又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:6~8に記載のアミノ酸配列(後述の35-1抗体の重鎖可変領域におけるCDR1~3のアミノ酸配列)又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する
(b) 配列番号:10~12に記載のアミノ酸配列(後述の292抗体の軽鎖可変領域におけるCDR1~3のアミノ酸配列)又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:14~16に記載のアミノ酸配列(後述の292抗体の重鎖可変領域におけるCDR1~3のアミノ酸配列)又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する。
 また、本発明の抗体のより好ましい態様としては、ヒトHB-EGFに結合する抗体であって、下記(a)又は(b)に記載の特徴を有する抗体が挙げられる。
(a) 配列番号:5に記載のアミノ酸配列(後述の35-1抗体の軽鎖可変領域のアミノ酸配列)又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:9に記載のアミノ酸配列(後述の35-1抗体の重鎖可変領域のアミノ酸配列)または該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する
(b) 配列番号:13に記載のアミノ酸配列(後述の292抗体の軽鎖可変領域のアミノ酸配列)又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:17に記載のアミノ酸配列(後述の292抗体の重鎖可変領域のアミノ酸配列)又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列とを含む重鎖可変領域とを保持する。
 本発明の抗体には、マウス抗体、キメラ抗体、ヒト型化抗体(ヒト化抗体)、ヒト抗体、及び、これら抗体の機能的断片が含まれる。本発明の抗体を医薬としてヒトに投与する場合は、副作用低減の観点から、キメラ抗体、ヒト型化抗体、あるいはヒト抗体が望ましく、本発明のヒト型化抗体の好ましい態様としては、ヒトHB-EGFに結合する抗体であって、配列番号:18に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:19に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する、抗体が挙げられる。
 本発明において「キメラ抗体」とは、ある種の抗体の可変領域とそれとは異種の抗体の定常領域とを連結した抗体である。キメラ抗体は、例えば、抗原をマウスに免疫し、そのマウスモノクローナル抗体の遺伝子から抗原と結合する抗体可変部(可変領域)を切り出して、ヒト骨髄由来の抗体定常部(定常領域)遺伝子と結合し、これを発現ベクターに組み込んで宿主に導入して産生させることにより取得することができる(例えば、特開平8-280387号公報、米国特許第4816397号公報、米国特許第4816567号公報、米国特許第5807715号公報)。また、本発明において「ヒト型化抗体」とは、非ヒト由来の抗体の抗原結合部位(CDR)の遺伝子配列をヒト抗体遺伝子に移植(CDRグラフティング)した抗体であり、その作製方法は、公知である(例えば、EP239400、EP125023、WO90/07861、WO96/02576参照)。本発明において、「ヒト抗体」とは、すべての領域がヒト由来の抗体である。ヒト抗体の作製においては、ヒトB細胞より活性のある抗体の産生をスクリーニングする方法、ファージディスプレイ法、免疫することで、ヒト抗体のレパートリーを生産することが可能なトランスジェニック動物(例えばマウス)を利用すること等が可能である。ヒト抗体の作製手法は、公知である(例えば、Nature,362:255-258(1993)、Intern.Rev.Immunol,13:65-93(1995)、J.Mol.Biol,222:581-597(1991)、Nature Genetics,15:146-156(1997)、Proc.Natl.Acad.Sci.USA,97:722-727(2000)、特開平10-146194号公報、特開平10-155492号公報、特許2938569号公報、特開平11-206387号公報、特表平8-509612号公報、特表平11-505107号公報)。
 本発明において抗体の「機能的断片」とは、抗体の一部分(部分断片)であって、抗原に結合するものを意味する。本発明にかかる抗体の「機能的断片」の態様としては、例えば、Fab、Fab’、F(ab’)2、可変領域断片(Fv)、ジスルフィド結合Fv、一本鎖Fv(scFv)、sc(Fv)2、ダイアボディー、多特異性抗体、及びこれらの重合体が挙げられる。
 ここで「Fab」とは、1つの軽鎖及び重鎖の一部からなる免疫グロブリンの一価の抗原結合断片を意味する。抗体のパパイン消化によって、また、組換え方法によって得ることができる。「Fab’」は、抗体のヒンジ領域の1つ又はそれより多いシステインを含めて、重鎖CH1ドメインのカルボキシ末端でのわずかの残基の付加によって、Fabとは異なる。「F(ab’)2」とは、両方の軽鎖と両方の重鎖の部分からなる免疫グロブリンの二価の抗原結合断片を意味する。
 「可変領域断片(Fv)」は、完全な抗原認識及び結合部位を有する最少の抗体断片である。Fvは、重鎖可変領域及び軽鎖可変領域が非共有結合により強く連結されたダイマーである。「一本鎖Fv(scFv)」は、抗体の重鎖可変領域および軽鎖可変領域を含み、これらの領域は、単一のポリペプチド鎖に存在する。「sc(Fv)2」は、2つの重鎖可変領域及び2つの軽鎖可変領域をリンカー等で結合して一本鎖にしたものである。「ダイアボディー」とは、二つの抗原結合部位を有する小さな抗体断片であり、この断片は、同一ポリペプチド鎖の中に軽鎖可変領域に結合した重鎖可変領域を含み、各領域は別の鎖の相補的領域とペアを形成している。「多特異性抗体」は、少なくとも2つの異なる抗原に対して結合特異性を有するモノクローナル抗体である。例えば、二つの重鎖が異なる特異性を持つ二つの免疫グロブリン重鎖/軽鎖対の同時発現により調製することができる。
 本発明の抗体には、望ましい活性(抗原への結合活性、前記切断阻害活性、前記中和活性、他の生物学的特性)を減少させることなく、そのアミノ酸配列が修飾された抗体が含まれる。本発明の抗体のアミノ酸配列変異体は、本発明の抗体鎖をコードするDNAへの変異導入によって、またはペプチド合成によって作製することができる。そのような修飾には、例えば、本発明の抗体のアミノ酸配列内の残基の置換、欠失、付加及び/又は挿入を含む。抗体のアミノ酸配列が改変される部位は、改変される前の抗体と同等の活性を有する限り、抗体の重鎖または軽鎖の定常領域であってもよく、また、可変領域(フレームワーク領域及びCDR)であってもよい。CDR以外のアミノ酸の改変は、抗原との結合親和性への影響が相対的に少ないと考えられるが、現在では、CDRのアミノ酸を改変して、抗原へのアフィニティーが高められた抗体をスクリーニングする手法が公知である(PNAS,102:8466-8471(2005)、Protein Engineering,Design&Selection,21:485-493(2008)、国際公開第2002/051870号、J.Biol.Chem.,280:24880-24887(2005)、Protein Engineering,Design&Selection,21:345-351(2008))。
 改変されるアミノ酸数は、好ましくは、10アミノ酸以内、より好ましくは5アミノ酸以内、最も好ましくは3アミノ酸以内(例えば、2アミノ酸以内、1アミノ酸)である。アミノ酸の改変は、好ましくは、保存的な置換である。本発明において「保存的な置換」とは、化学的に同様な側鎖を有する他のアミノ酸残基で置換することを意味する。化学的に同様なアミノ酸側鎖を有するアミノ酸残基のグループは、本発明の属する技術分野でよく知られている。例えば、酸性アミノ酸(アスパラギン酸及びグルタミン酸)、塩基性アミノ酸(リシン・アルギニン・ヒスチジン)、中性アミノ酸においては、炭化水素鎖を持つアミノ酸(グリシン・アラニン・バリン・ロイシン・イソロイシン・プロリン)、ヒドロキシ基を持つアミノ酸(セリン・トレオニン)、硫黄を含むアミノ酸(システイン・メチオニン)、アミド基を持つアミノ酸(アスパラギン・グルタミン)、イミノ基を持つアミノ酸(プロリン)、芳香族基を持つアミノ酸(フェニルアラニン・チロシン・トリプトファン)で分類することができる。
 また「同等の活性を有する」とは、抗原への結合活性、前記切断活性又は前記中和活性が対象抗体(代表的には、後述の実施例において示す、35-1抗体又は292抗体)と同等(例えば、70%以上、好ましくは80%以上、より好ましくは90%以上)であることを意味する。抗原への結合活性は、例えば、後述の実施例において示す通り、抗原との反応性をELISAにより解析することや、抗原を発現する細胞を作製し、抗体サンプルとの反応性をフローサイトメーターで解析することにより評価することができる。前記切断活性は、例えば、後述の実施例に示す方法にて、PMA刺激を与えた細胞表面における膜型HB-EGFの残存率を指標として、またはPMA刺激を与えた細胞表面におけるHB-EGF-CTFの発生率を指標として評価することができる。また、前記中和活性は、HB-EGFタンパク質による刺激を与えた癌細胞におけるEGFRタンパク質のリン酸化の程度を指標として評価することができる。
 また、本発明の抗体の改変は、例えば、グリコシル化部位の数又は位置を変化させる等の抗体の翻訳後プロセスの改変であってもよい。これにより、例えば、抗体のADCC活性を向上させることができる。抗体のグリコシル化とは、典型的には、N-結合又はO-結合である。抗体のグリコシル化は、抗体を発現するために用いる宿主細胞に大きく依存する。グリコシル化パターンの改変は、糖生産に関わる特定の酵素の導入又は欠失等の公知の方法で行うことができる(特開2008-113663号公報、米国特許第5047335号、米国特許第5510261号、米国特許第5278299号、国際公開第99/54342号)。さらに、本発明においては、抗体の安定性を増加させる等の目的で脱アミド化されるアミノ酸若しくは脱アミド化されるアミノ酸に隣接するアミノ酸を他のアミノ酸に置換することにより脱アミド化を抑制してもよい。また、グルタミン酸を他のアミノ酸へ置換して、抗体の安定性を増加させることもできる。本発明は、こうして安定化された抗体をも提供するものである。
 本発明の抗体は、ポリクローナル抗体であれば、抗原(ヒトHB-EGFタンパク質、その部分ペプチド(例えば、ヒトHB-EGFタンパク質のEGFドメイン)、又はこれらを発現する細胞等)で動物を免疫し、その抗血清から、従来の手段(例えば、塩析、遠心分離、透析、カラムクロマトグラフィー等)によって、精製して取得することができる。
 また、モノクローナル抗体は、ハイブリドーマ法や組換えDNA法によって作製することができる。
 ハイブリドーマ法としては、代表的には、コーラー及びミルスタインの方法(Kohler&Milstein,Nature,256:495(1975))が挙げられる。この方法における細胞融合工程に使用される抗体産生細胞は、前記抗原で免疫された動物(例えば、マウス、ラット、ハムスター、ウサギ、サル、ヤギ、ニワトリ、ラクダ)の脾臓細胞、リンパ節細胞、末梢血白血球などである。免疫されていない動物から予め単離された上記の細胞又はリンパ球等に対して、抗原を培地中で作用させることによって得られた抗体産生細胞も使用することが可能である。ミエローマ細胞としては公知の種々の細胞株を使用することが可能である。抗体産生細胞及びミエローマ細胞は、それらが融合可能であれば、異なる動物種起源のものでもよいが、好ましくは、同一の動物種起源のものである。ハイブリドーマは、例えば、抗原で免疫されたマウスから得られた脾臓細胞と、マウスミエローマ細胞との間の細胞融合により産生され、その後のスクリーニングにより、ヒトHB-EGFタンパク質における117番目のイソロイシン等に結合する抗体を産生するハイブリドーマを得ることができる。ヒトHB-EGFタンパク質における117番目のイソロイシン等に結合するモノクローナル抗体は、ハイブリドーマを培養することにより、また、ハイブリドーマを投与した哺乳動物の腹水から、取得することができる。
 組換えDNA法は、本発明の抗体をコードするDNAをハイブリドーマやB細胞等からクローニングし、適当なベクターに組み込んで、これを宿主細胞(例えば哺乳類細胞株、大腸菌、酵母細胞、昆虫細胞、植物細胞等)に導入し、本発明の抗体を組換え抗体として産生させる手法である(例えば、P.J.Delves,Antibody Production:Essential Techniques,1997 WILEY、P.Shepherd and C.Dean Monoclonal Antibodies,2000 OXFORD UNIVERSITY PRESS、Vandamme A.M.et al.,Eur.J.Biochem.192:767-775(1990))。本発明の抗体をコードするDNAの発現においては、重鎖又は軽鎖をコードするDNAを別々に発現ベクターに組み込んで宿主細胞を形質転換してもよく、重鎖及び軽鎖をコードするDNAを単一の発現ベクターに組み込んで宿主細胞を形質転換してもよい(国際公開第94/11523号公報 参照)。本発明の抗体は、上記宿主細胞を培養し、宿主細胞内又は培養液から分離・精製し、実質的に純粋で均一な形態で取得することができる。抗体の分離・精製は、通常のポリペプチドの精製で使用されている方法を使用することができる。トランスジェニック動物作製技術を用いて、抗体遺伝子が組み込まれたトランスジェニック動物(ウシ、ヤギ、ヒツジ、ブタ等)を作製すれば、そのトランスジェニック動物のミルクから、抗体遺伝子に由来するモノクローナル抗体を大量に取得することも可能である。
 従って、本発明は、本発明の抗体をコードするDNA、本発明の抗体を産生する又は本発明の抗体をコードするDNAを含むハイブリドーマをも提供することができる。
 また、本発明の抗体においては、薬剤若しくはプロドラッグ等の化合物又は分子が結合していてもよい。かかる抗体を投与することにより、ヒトHB-EGFタンパク質が発現している部位(例えば、癌細胞)に、該化合物又は分子を送達することができる。そのような薬物又はプロドラッグとしては特に制限はないが、本発明の抗体による抗腫瘍効果を相加的又は相乗的に増強するという観点から、抗腫瘍性を有する物質が好ましい。かかる抗腫瘍性を有する物質としては特に制限されるものではなく、例えば、抗癌剤(イリノテカン(CPT-11)、イリノテカンの代謝産物SN-38(10-ヒドロキシ-7-エチルカンプトテシン)、アドリアマイシン、タキソール、5-フルオロウラシル、ニムスチン、ラミニスチン等のアルキル化剤、ゲムシタビン、ヒドロキシカルバミド等の代謝拮抗剤、エトポシド、ビンクリスチン等の植物アルカロイド、マイトマイシン、ブレオマイシン等の抗癌性抗生物質、シスプラチン等の白金製剤、ソラフェニブ、エルロチニブ等の分子標的剤、メトトレキセート、シトシンアラビノシド、6-チオグアニン、6-メルカプトプリン、シクロフォスファミド、イフォスファミド、ブスルファン等が挙げられる。また、放射性同位体も本発明の抗体に結合する抗腫瘍性を有する物質として好適に利用できる。
 また、抗体と前記化合物又は分子との結合も、当該技術分野で公知の方法により行うことができ、直接的結合及び間接的結合のいずれでもよい。例えば、直接的な結合として、共有結合を利用することができる。間接的な結合としては、リンカーを介した結合を利用することができる。かかるリンカーを介した結合については、当業者であれば、例えばHermanson,G.T.Bioconjugate Techniques,Academic Press,1996;Harris,J.M. and Zalipsky,S.編,Poly(ethylene glycol),Chemistry and Biological Applications,ACS Symposium Series,1997;Veronese,F. and Harris,J.M.編,Peptide and protein PEGylation.Advanced Drug Delivery Review 54(4),2002の記載を参照しながら行うことができる。本発明の抗体1分子に結合する前記化合物又は分子の数は、理論的には特に限定されないが、抗体と化合物等とからなる複合体の安定性や製造容易性等の観点から、通常1~10個、好ましくは1~8個である。
 また、後述の実施例において示す通り、癌細胞の増殖等において重要な要素である、HB-EGFタンパク質の切断と、EGFRのリン酸化とを、本発明の抗体により抑制できることから、癌の治療又は予防に利用することができる。従って、本発明は、本発明の抗体を有効成分とする癌を治療又は予防するための組成物、並びに本発明の抗体の治療上又は予防上の有効量を、ヒトに投与する工程を含んでなる、癌を治療又は予防するための方法(前記組成物を癌患者に投与して治療する方法等)をも提供するものである。また、本発明は、前記組成物を医薬として使用する方法を提供するものである。なお、本発明の抗体が標的とする癌としては、前述の通り特に制限はなく、多種の癌が標的となり得る。
 本発明の抗体を有効成分とする癌を治療又は予防するための組成物は、本発明の抗体と任意の成分、例えば生理食塩水、葡萄糖水溶液又はリン酸塩緩衝液等を含有する形態で使用することができる。本発明の癌を治療又は予防するための組成物は、必要に応じて液体又は凍結乾燥した形態で製形化しても良く、任意に薬学的に許容される担体若しくは媒体、例えば、安定化剤、防腐剤、等張化剤等を含有させることもできる。
 薬学的に許容される担体としては、凍結乾燥した製剤の場合、マンニトール、ラクトース、サッカロース、ヒトアルブミン等を例として挙げることができ、液状製剤の場合には、生理食塩水、注射用水、リン酸塩緩衝液、水酸化アルミニウム等を例として挙げることができるが、これらに限定されるものではない。
 本発明の癌を治療又は予防するための組成物の投与方法は、投与対象の年齢、体重、性別、健康状態等により異なるが、経口投与、非経口投与(例えば、静脈投与、動脈投与、局所投与)のいずれかの投与経路で投与することができる。当該組成物の投与量は、患者の年齢、体重、性別、健康状態、癌の進行の程度及び投与する組成物の成分により変動しうるが、一般的に静脈内投与の場合、成人には体重1kg当たり1日0.01~1000mg、好ましくは1~100mgである。
 本発明の癌を治療又は予防するための方法においては、本発明の抗体を投与する方法としては前述の通り特に制限はなく、経口投与、非経口投与のいずれかの投与経路で投与することができる。当業者であれば前記薬学的に許容される担体若しくは媒体等を選択し、適した組成物の形態をとることにより達成できる。ヒトに投与される本発明の抗体の治療上又は予防上の「有効量」は、前述の通り、当業者であれば、患者の年齢、体重、性別、健康状態、癌の進行の程度、投与経路等を考慮して決定することができる。また、本発明の抗体の投与対象となる「ヒト」としては特に制限はなく、例えば、癌を罹患しているヒト(癌患者)が挙げられる。また、予防、癌の再発を抑えるという観点から、癌を化学療法、放射線療法、外科療法等によって除去した後のヒトであってもよい。
 さら、本発明の癌を治療又は予防するための方法においては、本発明の抗体を投与する工程の他、本発明の抗体の有効性を評価する工程を含んでいてもよい。すなわち、
本発明の抗体の治療上又は予防上の有効量をヒトに投与する工程と、
該投与後のヒトにおいて、本発明の抗体の有効性を評価する工程とを含む、
癌を治療又は予防するための方法を、本発明は提供する。
 本発明の抗体の「有効性の評価」については特に制限はなく、例えば、投与後の腫瘍のサイズ、癌の転移能又は各種癌マーカーの発現が投与前と比べ低減していれば、癌の治療等において本発明の抗体は有効であると判定することができる。また、癌に伴う異常、例えば、体重減少、腹痛、背痛、食欲低下、嘔気、嘔吐及び全身性倦怠感、虚弱、並びに黄疸等を指標としても、本発明の抗体の有効性を評価することができる。さらに、本発明の抗体による治療後、腫瘍組織を切除した場合、該腫瘍組織におけるHB-EGFが関与するシグナル伝達の程度を調べることによっても、癌の治療等において本発明の抗体は有効であると判定することができる。例えば、腫瘍組織において通常亢進されるEGFRのリン酸化が、本発明の抗体の投与によって阻害されていることが検出されれば、癌の治療等において本発明の抗体は有効であると判定することができる。
 本発明の抗体は、前述の通り、多種の癌においてHB-EGFタンパク質の発現亢進等が認められているため、癌の治療や予防のみならず、癌の検査への応用も考えられる。特に、本発明の抗体のエピトープが存在するEGFドメインは、HB-EGFタンパク質の細胞外領域であるため、細胞免疫染色やフローサイトメトリー等において、簡便かつ効率良く、HB-EGFタンパク質を発現している癌細胞を検出することができる。また、本発明は、上記本発明の抗体を有効成分とする癌の検査薬及びキットを提供する。
 本発明の抗体を癌の検査に用いる場合あるいは癌の治療における腫瘍部位の検出に用いる場合、本発明の抗体は、標識したものであってもよい。標識としては、例えば、放射性物質、蛍光色素、化学発光物質、酵素、補酵素を用いることが可能である。本発明の抗体を検査薬として調剤するには、合目的な任意の手段を採用して任意の剤型でこれを得ることができる。例えば、精製した抗体についてその抗体価を測定し、適当にPBS等で希釈した後、0.1%アジ化ナトリウム等を防腐剤として加えることができる。また、例えば、ラテックス等に本発明の抗体を吸着させたものについて抗体価を求め、適当に希釈し、防腐剤を添加して用いることもできる。
 また、本発明の検査薬を構成成分として含む、癌を検出するためのキットもまた、本発明に含まれる。かかるキットには、本発明の検査薬の他に、例えば、抗原抗体反応(ELISA法、免疫組織化学染色法、フローサイトメトリー等)を実施するための種々の試薬(二次抗体、発色試薬、染色試薬、緩衝液、対照標品等)、反応容器、操作器具、及び/又は説明書を含めることができる。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。また、本実施例において、特段の断りがない限り、「HB-EGF」は、配列番号:1(NCBIリファレンスシークエンス:NP_001936)に記載のアミノ酸配列(1~208番目のアミノ酸)からなる、ヒト由来の膜型HB-EGFタンパク質を示す。また、HB-EGFがプロテアーゼによって切断(シェディング)され細胞外に放出される部分タンパク質を「分泌型HB-EGF」と称し、当該切断後、細胞膜側に残存している部分タンパク質を「HB-EGF-CTF(HB-EGF C末断片)」と称する。なお、HB-EGFにおいて、EGFドメインは、N末端から107~144番目のアミノ酸からなる領域であり、ジャックスタメンブレンドメイン(シェディング領域)は、N末端から145~161番目のアミノ酸からなる領域であり、細胞外領域は、N末端から1~161番目のアミノ酸からなる領域であり、トランスメンブレン(膜貫通ドメイン)は、N末端から162~183番目のアミノ酸からなる領域である。
 (実施例1)
 ヒトHB-EGFタンパク質に対する抗体を以下に示す方法にて作製した。
 <HB-EGFのcDNA取得>
 ヒト膵臓癌細胞AsPC-1(ATCC、カタログ番号:CRL-1682)から作製したcDNAライブラリーから、ヒトHB-EGFタンパク質(配列番号:1に記載の1~208番目のアミノ酸配列からなるタンパク質)をコードするDNAをPCR法によって増幅した。得られたPCR産物をT7Blue T-ベクター(Novagen社製、カタログ番号:69820)にクローニングし、塩基配列を確認した。また、このようにして得られたベクターをhHB-EGF-pT7と名づけた。
 <膜型HB-EGFを発現する細胞の作製>
 ヒトHB-EGFタンパク質の全長を安定発現する動物細胞を、以下のように作製した。すなわち先ず、hHB-EGF-pT7を鋳型として、PCR法にて増幅させたDNAの末端をNotIとBamHIとで切断し、動物細胞用発現ベクターのNotI-BamHIサイトに挿入した。動物細胞用の発現ベクターには、CMVプロモーターで制御され、IRES配列により目的遺伝子とPuromycin-EGFP融合タンパク質とが同時に発現されるpQCxmhIPGを用いた。pQCxmhIPGは、本発明者らが「BD Retro-X Qベクターズ」(Clontech社製、カタログ番号:631516)のpQCXIPレトロウィルスベクターを改変したベクターである。作製したベクターは、HB-EGF-pQCxmhIPGと名付けた。
 また、リコンビナントHB-EGF分子の細胞膜上の発現を確認するために、オーバーラップ・エクステンションPCR法にてN末端から24番目と25番目のアミノ酸の間にHAタグを付加したHA-HB-EGFを調製した。そして、HA-HB-EGFも前記同様に、pQCxmhIPGに挿入した。作製したベクターは、HA-HB-EGF-pQCxmhIPGと名付けた。
 次に、作製したベクターを、パントロピック レトロウィルス発現システム(Clontech社製、カタログ番号:K1063-1)を用いて以下のように293T細胞又はCHO-K1細胞に導入した。
 先ず、コラーゲンにてコートした100mmディッシュに、80~90%コンフルエント状態のGP2-293(Clontech社製、カタログ番号:K1063-1)を準備し、リポフェクトアミン2000(Invitrogen社製、カタログ番号:11668-019)を用いて、上記の通り構築した発現ベクター(HB-EGF-pQCxmhIPG又はHA-HB-EGF-pQCxmhIPG)とpVSV-G(Clontech社製、カタログ番号:K1063-1)とを11.2ugずつ共導入した。48時間後、ウイルス粒子を含む上清を回収し、超遠心(18,000rpm、1.5時間、4℃)によってウイルス粒子を沈殿させ、その沈殿物を30uLのTNE(50mM Tris-HCl[pH=7.8]、130mM NaCl、1mM EDTA)で懸濁し、レトロウイルスベクター濃縮液を調製した。次いで、このレトロウイルスベクター濃縮液5uLを、8ug/mLの臭化ヘキサジメトリン(SIGMA社製、カタログ番号:H-9268)を含んだ150uLのDMEM(SIGMA社製、カタログ番号;D5796)-10%FBSで希釈し、ウイルス粒子含有培地を調製した。
 次に、96穴のマイクロプレートに約40%コンフルエントの状態になるように細胞を準備し、これら細胞の培地を、前記ウイルス粒子含有培地に交換した。そして、これら細胞を、Puromycin(SIGMA社製、カタログ番号:P-8833)を含む選択培地にて培養することによって、目的遺伝子が発現している細胞(HB-EGF/st293T、HA-HB-EGF/st293T、HB-EGF/stCHO-K1、HA-HB-EGF/stCHO-K1)を得た。なお、293T細胞の培養には5ug/mLのPuromycinを含む培地を、CHO-K1細胞の培養には10ug/mLのPuromycinを含む選択培地を用いた。
 <HB-EGFの部分長を分泌発現する細胞の作製>
 分泌型HB-EGF(配列番号:1に記載のN末端から1番目から149番目のアミノ酸配列からなるタンパク質)又はHB-EGF細胞外領域(配列番号:1に記載のN末端から1番目から161番目のアミノ酸配列からなるタンパク質)を発現する動物細胞を、以下のようにして作製した。
 hHB-EGF-pT7を鋳型として、PCR法にて増幅させたHB-EGF部分長DNAの末端をNotIとBamHIとで切断し、動物細胞分泌発現用ベクターpQCxmhIPGのNotI-BamHIサイトに挿入した。分泌型HB-EGF(HB-EGFv5)をコードするDNAを挿入したベクターをHB-EGFv5-pQCxmhIPGと名付け、HB-EGF細胞外領域(HB-EGFv4)をコードするDNAを挿入したベクターをHB-EGFv4-pQCxmhIPGと名付けた。
 そして、作製したベクターを上記と同様に、パントロピック レトロウィルス発現システムを用いて293T細胞に導入し、5ug/mLのPuromycinを含む選択培地で培養することによって、目的遺伝子を安定的に発現する細胞株(HB-EGFv5/st293T及びHB-EGFv4/st293T)を樹立した。
 <HB-EGF部分長精製タンパク質(動物細胞由来リコンビナントタンパク質)の調製>
 前記にて樹立した発現細胞株(HB-EGFv5/st293T及びHB-EGFv4/st293T)を、293用培地(製品名:CD293、Invitrogen社製)1Lにて各々培養した。培養上清を回収し、そこからTALON精製キット(Clontech社製、カタログ番号:K1253-1)を用いてリコンビナントタンパク質を精製した。精製したタンパク質(HB-EGFv5及びHB-EGFv4)は、SDS-PAGE及びウエスタンブロットにて確認した。さらにプロテインアッセイキットII(BioRad社製、カタログ番号:500-0002JA)を用いてタンパク質濃度を決定した。
 <抗原免疫>
 HB-EGFv4はPBSにて希釈し、同量のコンプリートアジュバント(SIGMA社製、カタログ番号:F5881)と混合してエマルジョンにし、4~5週齢のC3Hマウス(日本エスエルシー社製)等に1匹当たり5~20ug、3~7日おきに6回免疫した。最終免疫の3日後にマウスからリンパ球細胞を摘出し、マウス骨髄腫細胞P3U1(P3-X63Ag8U1)と、次に示す方法にて融合させた。
 <細胞融合>
 細胞融合は以下の一般的な方法を基本として行った。全ての培地中のFBSは、56℃で30分間保温する処理によって非働化したものを使用した。P3U1は、RPMI1640-10%FBS(Penicillin-Streptomycin含有)で培養して準備した。摘出したマウスリンパ球細胞とP3U1を10:1~2:1の割合で混合し、遠心した。沈殿した細胞に50%ポリエチレングリコール4000(Merck社製、カタログ番号:1.09727.0100)を徐々に加えながら穏やかに混合後、遠心した。沈殿した融合細胞を、15%FBSを含むHAT培地(RPMI1640、HAT-supplement(Invitrogen社製、カタログ番号:11067-030)、Penicillin-Streptomycin)で適宜希釈し、96穴のマイクロプレートに200uL/ウェルで播種した。融合細胞をCOインキュベータ(5%CO、37℃)中で培養し、コロニーが形成されたところで培養上清をサンプリングし、次に示す通りスクリーニングを行った。
 <抗HB-EGFモノクローナル抗体産生細胞の選択>
 抗HB-EGF抗体を産生するハイブリドーマは、酵素免疫測定法(ELISA)によって選定した。アッセイにはそれぞれ免疫原として使用したリコンビナントヒトHB-EGFタンパク質を96ウェルのELISAプレート(nunc社製)に0.5ug/mL、50uL/ウェルで分注し、室温2時間又は4℃一晩静置して吸着させたものを用いた。溶液を除去後、1% BSA(ナカライ社製、カタログ番号:01863-35)-5%スクロース(WAKO社製)-PBSを150uL/ウェル加え、室温で2時間静置し、残存する活性基をブロックした。静置後、溶液を除去し、一次抗体としてハイブリドーマ培養上清を50uL/ウェル分注し、1時間静置した。該プレートを0.05% Tween20-PBSで洗浄後、二次抗体として1/10000倍希釈したHRP標識ヤギ抗マウスIgG(MBL社製、カタログ番号:330)を50uL/ウェル加えて室温で1時間静置した。該プレートを0.05% Tween20-PBSで洗浄後、発色液(5mMクエン酸ナトリウム、0.8mM 3.3’.5.5’テトラメチルベンチジン-2HCl、10%N,N-ジメチルホルムアミド、0.625%ポリエチレングリコール4000、5mMクエン酸一水和物、5mM H)を50uL/ウェル添加し室温20分静置して発色させ、1Mリン酸を50uL/ウェル添加して発色を停止させた後、主波長450nm及び副波長620nmにおける吸光度をプレートリーダー(サーモフィッシャーサイエンティフィック社製)を用いて測定した。
 ここで選択したハイブリドーマの培養上清は、さらに、免疫原として使用したリコンビナントタンパク質と同一のタグ配列を持つ他の精製リコンビナントタンパク質に反応しないことを同様のELISAによって確認した。これにより、産生される抗体はタグ部分やリンカー部分ではなくHB-EGFを認識するものであることを確認した。
 そして、産生する抗体がHB-EGFを特異的に認識することが確認されたハイブリドーマは、15%FBSを含むHT培地(RPMI1640、HT-サプリメント(Invitrogen社製、カタログ番号:21060-017)、Penicillin-Streptomycin)で拡大培養した後、限界希釈法によって単クローン化した。
 <抗HB-EGFモノクローナル抗体の取得>
 前記にて単クローン化した各ハイブリドーマを無血清培地(GIBCO社製、カタログ番号:12300-067)で培養し、その培養上清から、プロテインA-セファロースを用いた一般的なアフィニティー精製法により抗体を精製した。これら抗体のヒトHB-EGFに対する反応性は、前記同様に、免疫原として使用した精製タンパク質を用いた酵素免疫測定法(ELISA)によって確認し、抗HB-EGF抗体を産生するハイブリドーマを取得した。
 (実施例2)
 <取得抗体の細胞表面HB-EGFに対する反応性>
 実施例1にて取得した抗HB-EGF抗体のうち、細胞表面HB-EGFに強く反応するものを、フローサイトメトリーを用いた一般的な方法によって選定した。同数のHB-EGF/st293T(5×10^4個)又は293T(5×10^4個)に対し、同濃度の各取得抗体(5ug/mL)と同濃度の二次抗体(ベックマンコールター社製、カタログ番号:IM0855の抗体を1/200に希釈して使用)とを反応させ、フローサイトメトリーにおける平均蛍光強度を解析した。なお、このフローサイトメトリーにおいて、陰性対照としてマウスIgG1(アイソタイプコントロール、MBL社製、カタログ番号:M075-3)をコントロール抗体として用い、HB-EGF/st293T又は293Tと反応しないことを確認した。得られた結果を図1に示す。
 図1に示す通り、取得した抗体のうち、35-1抗体及び292抗体等は細胞表面上のHB-EGFに強く反応する抗体であることが明らかになった。
 (実施例3)
 <取得抗体のエピトープ解析>
 以下に示す方法にて、アミノ酸点変異型HB-EGFに対する抗HB-EGF抗体の反応性をフローサイトメトリーにて解析し、取得抗体が結合するエピトープの同定を試みた。
 先ず、フローサイトメトリーに供するアミノ酸点変異型HB-EGFを発現する細胞を調製した。すなわち、HB-EGF-pQCxmhIPGを鋳型とし、部位特異的変異導入法により、表1に示す変異型HB-EGFをコードする遺伝子を作製した。得られた変異型HB-EGF遺伝子を、動物細胞用発現ベクターpQCxmhIPGに挿入し、各変異型HB-EGFをコードするベクターを調製した。そして、これらベクターを各々293T細胞に遺伝子導入し、一過性に発現をさせることにより、アミノ酸点変異型HB-EGFを発現する細胞を調製した。
Figure JPOXMLDOC01-appb-T000001
 また、フローサイトメトリーに陽性対照として供するため、HB-EGF-pQCxmhIPGを293T細胞に遺伝子導入し、一過性に発現をさせることにより、野生型HB-EGFを発現する細胞を調製した。
 次に、野生型HB-EGF又は各変異型HB-EGFを発現した細胞に対し、抗HB-EGF抗体(5ug/mL)と二次抗体(ベックマンコールター社製、カタログ番号:IM0855の抗体を1/200に希釈して使用))とを反応させ、フローサイトメトリーの平均蛍光強度を解析した。また、各変異体の発現量の違いを補正するため、アミノ酸点変異により結合能が変化しないヤギ由来の抗ヒトHB-EGFポリクローナル抗体(R&D社製、カタログ番号:BAF259の抗体を1ug/mlにて使用)、SA-PE(Invitrogen社製、カタログ番号:S866の抗体を1/200に希釈して使用)を反応させ、前記抗HB-EGF抗体同様に、フローサイトメトリーの平均蛍光強度を解析した。そして、得られた平均蛍光強度(抗体の反応性)に基づき、各変異型HB-EGFに対する各抗HB-EGF抗体の結合強度(相対値)を以下の式(式*)にて算出した。得られた結果を図2に示す。
式*:(変異型HB-EGFに対する抗HB-EGF抗体の反応性/変異型HB-EGFに対するヤギポリクローナル抗体の反応性)/(野生型HB-EGFに対する抗HB-EGF抗体の反応性/野生型HB-EGFに対するヤギポリクローナル抗体反応性)。
 また、前述の変異型HB-EGFに対する抗HB-EGF抗体の結合強度(相対値)が0.4以下である場合に、当該抗HB-EGF抗体は、当該変異体において置換される前のアミノ酸に結合する抗体であると判定した。
 図2に示した結果から明らかなように、35-1抗体及び292抗体は、G140A、E141H、R142Aには殆ど反応せず、加えてF115A、I117Aへの反応性は著しく低いものであった。また、今回取得した抗体の一つ、1-1抗体は、F115A、R142Aには殆ど反応せず、加えてG140A、E141Hへの反応性は著しく低いものであった。
 従って、取得した抗HB-EGF抗体のうち、35-1抗体及び292抗体は、ヒトHB-EGFタンパク質の115番目のフェニルアラニン、117番目のイソロイシン、140番目のグリシン、141番目のグルタミン酸及び142番目のアルギニンを認識していることが明らかとなった。また、1-1抗体は、115番目のフェニルアラニン、140番目のグリシン、141番目のグルタミン酸及び142番目のアルギニンを認識するが、前記2抗体とは異なり117番目のイソロイシンを認識しないことが明らかになった。
 (実施例4)
 <取得抗体のHB-EGF切断阻害活性>
 取得した抗HB-EGF抗体によって、膜型HB-EGFの切断を阻害できるかどうかを、以下に示すフローサイトメトリーにて評価した。
 先ず、HA-HB-EGF/stCHO-K1を、48穴のマイクロプレートに1ウェルあたり100000細胞播種し、37℃で6時間培養した。細胞がプレート底面に接着したことを確認したのち、血清を含まないF12 Ham’s培地に交換して、さらに15時間培養した。
 次に、35-1抗体又はコントロール抗体(MBL社製、カタログ番号:M075-3)を添加した培地に交換し、37℃で30分間インキュベートした。この際の抗体濃度は25、5、1、0.2、0.04ug/mLの5段階とし、1ウェルあたりの培地量は200uLとした。続いて、5000nMに調整したPMA添加培地を1ウェルあたり2uL添加し混合することによって、最終濃度500nMとなるようにPMAを添加した。37℃で60分間培養した後、PBS-0.05% EDTAで剥離し、細胞を回収した。なお、培地に添加したPMA(ホルボール-12-ミリステート-13-アセテート)は、プロテインキナーゼC(PKC)を活性化することにより、HB-EGFにシェディングを誘導することが明らかになっている。
 一連の処理を行ったのちに、これら細胞の表面に残存しているHB-EGFを、HB-EGFのN末端に付加されているHAタグを認識する抗体を用いたフローサイトメトリーで検出することによって解析した。一次抗体として2ug/mLに希釈したビオチン化抗HAタグ抗体(MBL社製、カタログ番号:M132-3)、二次抗体として1/100希釈したPE標識ストレプトアビジン(インビトロジェン社製、カタログ番号:S866)を使用し、常法に従って行った。得られた結果を図3に示す。なお、図3において、縦軸はフローサイトメトリーでの平均蛍光強度を示す。
 図3に示した結果から明らかなように、35-1抗体及び292抗体のいずれにおいても、細胞表面に残存しているHB-EGFの量は、抗体の添加濃度依存的に増大していった。
 次に、取得した抗HB-EGF抗体によって、膜型HB-EGFの切断を阻害できるかどうかを、以下に示すウェスタンブロットにて評価した。
 先ず、HA-HB-EGF/stCHO-K1を、48穴のマイクロプレートに1ウェルあたり100000細胞播種し、37℃で6時間培養した。細胞がプレート底面に接着したことを確認したのち、血清を含まないF12 Ham’s培地に交換して、さらに15時間培養した。
 次に、35-1抗体又はコントロール抗体(MBL社製、カタログ番号:M075-3)を添加した培地に交換し、37℃で30分間インキュベートした。この際の抗体濃度は100、10、1ug/mLの段階とし、1ウェルあたりの培地量は200uLとした。
 続いて、5000nMに調整したPMA添加培地を1ウェルあたり2uL添加し、混合することによって、最終濃度500nMとなるようにPMAを添加した。また、PMAによる切断が誘導されていない条件下のHB-EGF-CTFの量を測定するため、培地のみ添加した細胞を用意した。さらに、非阻害時のHB-EGF-CTFの生成量を測定するため、抗体を添加せずPMAのみを添加した細胞を用意した。そして、これら細胞を37℃で60分間培養した後、1ウェルあたり100uLのSDSサンプルバッファー(62.5mM Tris-HCL(pH=6.8)、5% グリセロール、2% SDS、0.003% BPB、5% 2-メルカプトエタノール)で細胞を回収した。
 一連の処理を行った後に、これら細胞内のHB-EGF-CTFを、HB-EGFのC末端に付加されているmycタグを認識する抗体を用いたウェスタンブロットで検出することによって解析した。回収した細胞サンプルを加熱処理した後10uLずつをSDS-PAGEに供し、一次抗体として5000倍希釈した抗mycタグ抗体(MBL社製、カタログ番号:M047-3)、二次抗体として5000倍希釈したHRP標識抗マウスIgG抗体(MBL社製、カタログ番号:330)を使用し、常法に従って行った。得られた結果を図4に示す。
 また、インキュベーションの条件を、HA-HB-EGF/stCHO-K1と、培地における添加濃度が25、5、1、0.2又は0.04ug/mLである35-1抗体、292抗体又は前記コントロール抗体とのインキュベーションに替え、前記同様に、これら抗体によって、膜型HB-EGFの切断を阻害できるかどうかをウェスタンブロットにて評価した。得られた結果を図5に示す。
 図4及び5に示した結果から明らかなように、35-1抗体及び292抗体のいずれにおいても、抗体の添加により、切断後細胞膜側に残存するHB-EGF-CTFの生成量は低減された。また、図には示さないが、1-1抗体においても、前記2抗体同様に、切断後細胞膜側に残存するHB-EGF-CTFの生成量は低減された。
 以上の結果より、35-1抗体、292抗体及び1-1抗体は、膜型HB-EGFに対する切断阻害活性を示すことが明らかになった。
 (実施例5)
 <取得抗体のHB-EGF中和活性>
 ヒト肺がんの株化培養細胞であるA431(ATCC、カタログ番号:CRL-1555)を用いて、HB-EGFで刺激した際に誘起されるEGFRのリン酸化を、取得した抗HB-EGF抗体が阻害できるか、すなわち抗HB-EGF抗体にHB-EGFを中和する活性の有無を、以下に示すウエスタンブロット法によって解析した。
 先ず、DMEM-10%FBS(Penicillin-Streptomycin含有)にて培養したA431を、12穴プレートに1ウェルあたり50000細胞播種し、37℃で6時間培養した。細胞がプレート底面に接着したことを確認したのち、血清を含まないDMEM培地に交換して、さらに48時間培養した。
 次に、分泌型HB-EGFのリコンビナントタンパク質(HB-EGFv5)と、取得した抗HB-EGF抗体(35-1抗体、292抗体又は1-1抗体)とを、血清を含まないDMEM培地200uL中で混和し、37℃で30分間インキュベートした後、前記細胞に添加した。この際、リコンビナントタンパク質の濃度は50ng/mLであり、抗体濃度は125、25、5、1、0.2及び0ug/mLの抗体濃度は6段階とした。また、35-1抗体については低濃度(10、1、0.1、0.01、0.001及び0ug/mLの6段階)でも試行した。また陽性対照として、HB-EGFのリコンビナントタンパク質(HB-EGFv5)のみを、陰性対照としてHB-EGFを含まないDMEM培地のみを添加した。これを37℃で15分間培養した後、1ウェルあたり150uLのSDSサンプルバッファー(62.5mM Tris-HCL(pH=6.8)、5%グリセロール、2% SDS、0.003% BPB、5% 2-メルカプトエタノール)で細胞を回収した。
 そして、回収した細胞サンプルを加熱処理した後、15uLずつをSDS-PAGEに供し、1/1000希釈した抗リン酸化EGFRウサギ抗体(CellSignaling社製、カタログ番号:#3777)又はEGFRウサギ抗体(CellSignaling社製、カタログ番号:#4267)と1/5000希釈したHRP標識抗ウサギ抗体(MBL社製、カタログ番号:458)を用いてウェスタンブロットを施行した。得られた結果を図6~8に示す。
 図6及び7に示した結果から明らかな通り、35-1抗体及び292抗体はいずれもHB-EGFによるEGFRのリン酸化を濃度依存的に阻害し、35-1抗体及び292抗体はいずれもHB-EGF中和活性を有することが明らかになった。一方、図8に示した結果から明らかな通り、1-1抗体はHB-EGFによるEGFRのリン酸化の阻害は認められず、HB-EGF中和活性を有していないことが明らかになった。
 前述の通り、35-1抗体及び292抗体と、1-1抗体とは、ヒトHB-EGFタンパク質の117番目のイソロイシンがエピトープに含まれるか否かにおいて相違する。また、非特許文献21には、ヒトHB-EGFタンパク質において、133番目のイソロイシン及び135番目のヒスチジンをエピトープとする抗体(7E10、3D9)並びに141番目のグルタミン酸をエピトープとする抗体(3H4等)のいずれも切断阻害活性を有するものの、中和活性を有していないことが示されている。
 従って、抗HB-EGF抗体が中和活性を発揮するためには、ヒトHB-EGFタンパク質の117番目のイソロイシンに結合することが必要であることが明らかになった。
 (実施例6)
 <進行癌モデルでの抗腫瘍活性評価>
 取得した抗HB-EGF抗体の抗腫瘍活性を判定するため、ゼノグラフトマウスを用いて評価を行った。すなわち先ず、ヒト乳癌細胞株MDA-MB-231(ATCC、カタログ番号:HTB-26)をDMEM-10%FBS(Penicillin-Streptomycin含有)で培養し、PBS-0.05% EDTAで剥離した。PBSにて洗浄後、RPMI1640培地で5×10細胞/mLとなるように縣濁した。Matrigel(BD社製、カタログ番号:354230)を等量加えて縣濁したのち、6週齢メスのヌードマウス(日本クレア社製、BALB/cAJcl-nu/nu)の右腹側部に200uLずつ皮下移植した。腫瘍体積が200mm前後になった時点で、各群の平均腫瘍体積が同等となるようにマウスを選抜した。同日から、750ug/ml(高濃度)又は150ug/ml(低濃度)にPBSで希釈した抗体溶液を、コントロール群はPBSを、200uLずつ腹空投与した(各群4匹)。なお、ゼノグラフトマウスに投与した抗体は、後述のキメラ化した35-1抗体である。また、投与は一週間に2回、計6回行った。抗体投与時点からノギスで腫瘍径を測定し、腫瘍体積を以下の式により算出した。
式:腫瘍体積(mm)=長径×短径×0.5
得られた結果を図9に示す。
 図9に示した結果から明らかなように、35-1抗体はヒト乳癌細胞株MDA-MB-231の増殖を阻害した。すなわち、35-1抗体は進行癌モデルにおいて抗腫瘍活性を有することが明らかとなった。
 (実施例7)
 <抗体依存性細胞障害活性(ADCC活性)の評価>
 取得した抗HB-EGF抗体のADCC活性を評価した。すなわち先ず、標的細胞としてヒト乳癌細胞株MDA-MB-231を選択した。そして、該細胞をDMEM-10%FBS(Penicillin-Streptomycin含有)で培養し、PBS-0.05% EDTAで剥離したのち、PBSで洗浄後、DMEM-10%FBS(Penicillin-Streptomycin含有)にて至適濃度に調製した。エフェクター細胞の末梢血単核球(Peripheral blood mononuclear cell:PBMC)は、健常人末梢血から以下の方法で調製した。ベノジェクトII真空採血管(TERUMO社)を用いて健常人末梢血を採血し、同量の生理食塩水を加えて希釈した。希釈した末梢血をHistopaque-1077(sigma社製、カタログ番号:10771-500ML)に重層し、800g、20分間遠心分離し末梢血単核球を回収した後、PBSにて洗浄後、DMEM-10%FBS(Penicillin-Streptomycin含有)にて至適濃度に調製した。
 ADCC活性の評価は、96穴U底プレート(住友ベークライト社製、カタログ番号:MS-309UR)に、エフェクター細胞25uLと標的細胞50uLとを、標的細胞1に対してエフェクター細胞20になるよう分注した後、DMEM-10%FBS(Penicillin-Streptomycin含有)で各濃度に希釈した抗体25uLを添加し、5%CO、37℃にて20時間インキュベートした。なお、細胞に添加した抗体は、後述のキメラ化した35-1抗体である。
 抗体とのインキュベーション後、200gにて1分間遠心分離し、上清50uLを96穴プレートに回収した。そして、CytoTox96非放射性細胞毒性アッセイ(Promega社製、コード番号:G1780)にて、上清中の乳酸デヒドロゲナーゼ(LDH)活性を測定した。また、エフェクター細胞、標的細胞、抗体を添加した実験区におけるLDH値の他に、エフェクター細胞のLDH値、標的細胞のLDH値、さらに、標的細胞を、CytoTox96非放射性細胞毒性アッセイ付属のLysis solution(9% TritonX-100)にて可溶化した際の、最大細胞障害時のLDH値も同様に測定した。ADCC活性は次式により求めた。
式:細胞障害活性%=(実験区におけるLDH値-エフェクター細胞のLDH値-標的細胞のLDH値)/(最大細胞障害時のLDH値-標的細胞のLDH値)×100%
得られた結果を図10に示す。
 図10に示した結果から明らかなように、35-1抗体は抗体濃度依存的に細胞障害活性を示した。従って、35-1抗体は、HB-EGFを発現している癌に対し、中和活性のみではなくADCCによる抗腫瘍効果を示すことが明らかになった。
 (実施例8)
 <35-1抗体及び292抗体の重鎖及び軽鎖可変領域遺伝子の単離、並びにCDRの同定>
 各ハイブリドーマを培養し、一般的な方法によりtotal RNAを抽出した。次に、GeneRacerキット(Invitrogen社製、カタログ番号:L1502-01)を用いた5’-RACE法により、cDNAを取得した。このcDNAを鋳型とし、GeneRacer 5’プライマー(5’-CGACTGGAGCACGAGGACACTGA-3’、配列番号:20)、CH1(マウスIgG1定常領域1)、3’プライマー(5’-AATTTTCTTGTCCACCTGG-3’、配列番号:21)を用いて、プラチナ Taq DNA ポリメラーゼ ハイフィデリティ(Invitrogen社製、カタログ番号:11304-029)でPCR([94℃ 30秒、57℃ 30秒、72℃ 50秒]を35サイクル)を実施し、抗体重鎖可変領域の遺伝子(cDNA)を増幅した。一方、抗体軽鎖についても同様にGeneRacer 5’プライマーとCk(κ定常領域)3’プライマー(5’-CTAACACTCATTCCTGTTGAAGCTCT-3’、配列番号:22)を用いてPCRを実施して、遺伝子(cDNA)を増幅した。増幅した遺伝子断片をそれぞれpT7Blue T-ベクター(Novagen社製、カタログ番号:69820)にクローニングし、オートシークエンサー(アプライドバイオシステムズ社製)を用いて配列を解析した。そして、得られた塩基配列に基づき、重鎖及び軽鎖の可変領域のアミノ酸配列、並びに各可変領域におけるCDRの配列を決定した。その結果は以下の通りである。
<35-1抗体の重鎖可変領域>
配列番号:9
EVQLQQSGPELVKPRASVKISCKASGYSFSGYYMHWVKQSPEKSLEWIGEINPSTGGITYNQKFKAKATLTVDRSSSTAYMQLKSLTSEDSAVYYCTRITWAFAYWGQGTLVTVSA
<35-1抗体の重鎖可変領域のCDR1>
配列番号:6
GYYMH
<35-1抗体の重鎖可変領域のCDR2>
配列番号:7
EINPSTGGITYNQKFKA
配列番号:8
<35-1抗体の重鎖可変領域のCDR3>
ITWAFAY
<35-1抗体の軽鎖可変領域>
配列番号:5
QIVLTQSPAIMSASPGEKVTMTCSASSSVTYMYWYQQKPGSSPRLLIYDTSNLASGVPVRFSGSGSGTSYSLTISRMEAEDAATYYCQQWSSYPPTFGGGTKLEIK
<35-1抗体の軽鎖可変領域のCDR1>
配列番号:2
SASSSVTYMY
<35-1抗体の軽鎖可変領域のCDR2>
配列番号:3
DTSNLAS
<35-1抗体の軽鎖可変領域のCDR3>
配列番号:4
QQWSSYPPT
<292抗体の重鎖可変領域>
配列番号:17
EVQLQQSGPELVKPGASVKISCKASGYSFTGYYMHWVKQSPEKSLEWIGEINPSTGGTTYNQKFKAKATLTLDKSSSTAYMQLKSLTSEDSAVYYCAKSPYWDGAYWGQGTLVTVSA
<292抗体の重鎖可変領域のCDR1>
配列番号:14
GYYMH
<292抗体の重鎖可変領域のCDR2>
配列番号:15
EINPSTGGTTYNQKFKA
<292抗体の重鎖可変領域のCDR3>
配列番号:16
SPYWDGAY
<292抗体の軽鎖可変領域>
配列番号:13
QIVLTQSPAIMSASPGEKVTMTCSASSSISYMYWYQQRPGSSPRLLIYDTSNLASGVPVRFSGSGSGTSHSLTISRMEAEDAATYYCQQWSSYPSTFGGGTKLEIK
<292抗体の軽鎖可変領域のCDR1>
配列番号:10
SASSSISYMY
<292抗体の軽鎖可変領域のCDR2>
配列番号:11
DTSNLAS
<292抗体の軽鎖可変領域のCDR3>
配列番号:12
QQWSSYPST
 (実施例9)
 <35-1キメラ化抗体の作製>
 決定した遺伝子配列をもとに以下のPCR増幅用プライマーを設計し、PCRによって抗体可変領域を増幅した。この際、分泌シグナル配列はロンザ社推奨の配列に変換し、また増幅断片の末端に制限酵素認識配列を付加した(重鎖可変領域にはHindIII認識配列及びXhoI認識配列を付加、軽鎖可変領域にはHindIII及びBsiWI認識配列を付加)。
 得られたPCR産物を上記の制限酵素で切断し、常法によって、ヒトIgG1の定常領域を組み込んだロンザ社のヒトIgG1抗体産生用ベクターに挿入した。これらのベクターを使用して、ロンザ社推奨プロトコルに基づいてキメラ抗体産生細胞株を樹立し、それらの培養上清からProteinAを用いてキメラ化抗体(35-1キメラ化抗体)を精製した。
 (実施例10)
 <35-1ヒト型化抗体の作製>
 CDR-grafting法により、ヒト型化抗体を作製した。具体的には重鎖可変領域のCDR配列を除いたフレームワーク領域と、軽鎖可変領域のCDR配列を除いたフレームワーク領域に対しそれぞれホモロジー検索を行い、35-1抗体と73.5%相同性を持つ重鎖可変領域ヒト抗体配列と86.3%相同性を持つ軽鎖可変領域ヒト抗体配列を選出した。このヒト抗体配列を鋳型配列とし、CDR-grafting法に従い35-1のCDR配列に変換した可変領域の配列を決定した。常法によって、合成した可変領域配列をヒトIgG1の定常領域を組み込んだロンザ社のヒトIgG1抗体産生用ベクターに挿入し、以下に示す配列からなる重鎖可変領域及び軽鎖可変領域を有する35-1ヒト型化抗体を作製した。
<35-1ヒト型化抗体重鎖可変領域>
配列番号:19
QVQLVQSGAEVVKPGSSVKVSCKASGYSFSGYYMHWVKQAPGQGLEWIGEINPSTGGITYNQKFKAKATLTVDRSTSTAYMELKSLTSEDTAVYYCTRITWAFAYWGQGTTVTVSS
<35-1ヒト型化抗体軽鎖可変領域>
配列番号:18
QIVLTQSPTTMAASPGEKITITCSASSSVTYMYWYQQRPGFSPKLLIYDTSNLASGVPVRFSGSGSGTSYSLTIGTMEAEDVATYYCQQWSSYPPTFGGGTKLEIK
 (実施例11)
 <35-1キメラ化抗体又は35-1ヒト型化抗体の抗原に対する反応性>
 35-1キメラ化抗体又は35-1ヒト型化抗体のHB-EGFに対する反応性を、フローサイトメトリーによって評価した。
 フローサイトメトリーは、1次抗体として35-1キメラ化抗体又は35-1ヒト型化抗体を発現するヒトIgG1抗体産生用ベクターを導入した293T細胞の培養上清を用いて、前述と同様の方法で行った。培養上清中の抗体濃度は、サンドイッチELISA法にて算出した。サンドイッチELISA法は、ヤギ抗マウスIgG(MBL社製、コード番号:303G)を5ug/mL、50uL/ウェルで固相した96ウェルのELISAプレートに、293T細胞の培養上清を50uL/ウェルで1時間反応させ、該プレートを0.05% Tween20-PBSで洗浄後、検出抗体として1/10000倍希釈したHRP標識ヤギ抗マウスIgG(MBL社製、コード番号:330)を50uL/ウェル加えて室温で1時間静置した。該プレートを0.05% Tween20-PBSで洗浄後、発色液を50uL/ウェル添加し室温20分静置して発色させ、1Mリン酸を50uL/ウェル添加して発色を停止させたのち、450nmの吸光度をプレートリーダーにて測定した。培養上清中の抗体濃度は、濃度既知の抗体溶液を段階希釈して測定した値から標準曲線を作成し、培養上清の測定値から抗体濃度を算出した。得られた結果を図11に示す。図11に示す通り、35-1キメラ化抗体及び35-1ヒト型化抗体はHB-EGFに濃度依存的に結合し、各々抗原に対する反応性が維持されていることが明らかになった。
 以上説明したように、本発明によれば、ヒトHB-EGFに結合することにより、該ヒトHB-EGFにおける切断を阻害し、かつ該ヒトHB-EGFとEGF受容体との結合を阻害する抗体を提供することが可能となる。また、本発明の抗体は、腫瘍の増殖を抑制する活性においても優れるため、癌を治療又は予防する点においても有用である。
配列番号:2
<223> 35-1抗体の軽鎖可変領域のCDR1
配列番号:3
<223> 35-1抗体の軽鎖可変領域のCDR2
配列番号:4
<223> 35-1抗体の軽鎖可変領域のCDR3
配列番号:5
<223> 35-1抗体の軽鎖可変領域
配列番号:6
<223> 35-1抗体の重鎖可変領域のCDR1
配列番号:7
<223> 35-1抗体の重鎖可変領域のCDR2
配列番号:8
<223> 35-1抗体の重鎖可変領域のCDR3
配列番号:9
<223> 35-1抗体の重鎖可変領域
配列番号:10
<223> 292抗体の軽鎖可変領域のCDR1
配列番号:11
<223> 292抗体の軽鎖可変領域のCDR2
配列番号:12
<223> 292抗体の軽鎖可変領域のCDR3
配列番号:13
<223> 292抗体の軽鎖可変領域
配列番号:14
<223> 292抗体の重鎖可変領域のCDR1
配列番号:15
<223> 292抗体の重鎖可変領域のCDR2
配列番号:16
<223> 292抗体の重鎖可変領域のCDR3
配列番号:17
<223> 292抗体の重鎖可変領域
配列番号:18
<223> 35-1ヒト型化抗体の軽鎖可変領域
配列番号:19
<223> 35-1ヒト型化抗体の重鎖可変領域
配列番号:20~22
<223> 人工的に合成されたプライマーの配列

Claims (8)

  1.  配列番号:1に示されるヒトHB-EGFタンパク質における117番目のイソロイシンに結合する抗体。
  2.  配列番号:1に示されるヒトHB-EGFタンパク質における115番目のフェニルアラニン、140番目のグリシン、141番目のグルタミン酸及び142番目のアルギニンに更に結合する、請求項1に記載の抗体。
  3.  ヒトHB-EGFに結合する抗体であって、下記(a)又は(b)に記載の特徴を有する抗体
    (a) 配列番号:2~4に記載のアミノ酸配列又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:6~8に記載のアミノ酸配列又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する
    (b) 配列番号:10~12に記載のアミノ酸配列又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:14~16に記載のアミノ酸配列又は該アミノ酸配列の少なくともいずれかにおいて1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する。
  4.  ヒトHB-EGFに結合する抗体であって、下記(a)又は(b)に記載の特徴を有する抗体
    (a) 配列番号:5に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:9に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する
    (b) 配列番号:13に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:17に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列とを含む重鎖可変領域とを保持する。
  5.  ヒトHB-EGFに結合する抗体であって、
     配列番号:18に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む軽鎖可変領域と、配列番号:19に記載のアミノ酸配列又は該アミノ酸配列において1若しくは複数のアミノ酸が置換、欠失、付加及び/又は挿入されているアミノ酸配列を含む重鎖可変領域とを保持する、抗体。
  6.  請求項1~5のうちのいずれか一項に記載の抗体をコードするDNA。
  7.  請求項1~5のうちのいずれか一項に記載の抗体を産生する、又は、請求項6に記載のDNAを含む、ハイブリドーマ。
  8.  請求項1~5のうちのいずれか一項に記載の抗体を有効成分とする、癌を治療又は予防するための組成物。
PCT/JP2014/060920 2013-04-23 2014-04-17 ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体 WO2014175160A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14787867.2A EP2990418B1 (en) 2013-04-23 2014-04-17 Functional monoclonal antibody against heparin-binding epidermal growth factor-like growth factor
US14/786,436 US9920117B2 (en) 2013-04-23 2014-04-17 Functional monoclonal antibody against heparin-binding epidermal growth factor-like growth factor
JP2015513717A JP5838427B2 (ja) 2013-04-23 2014-04-17 ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2013/061943 2013-04-23
PCT/JP2013/061943 WO2014174596A1 (ja) 2013-04-23 2013-04-23 ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体

Publications (1)

Publication Number Publication Date
WO2014175160A1 true WO2014175160A1 (ja) 2014-10-30

Family

ID=51791206

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/061943 WO2014174596A1 (ja) 2013-04-23 2013-04-23 ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体
PCT/JP2014/060920 WO2014175160A1 (ja) 2013-04-23 2014-04-17 ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061943 WO2014174596A1 (ja) 2013-04-23 2013-04-23 ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体

Country Status (3)

Country Link
US (1) US9920117B2 (ja)
EP (1) EP2990418B1 (ja)
WO (2) WO2014174596A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109535252B (zh) * 2018-12-17 2020-04-21 江苏莱森生物科技研究院有限公司 一种抗hb-egf单克隆抗体及其制备方法
CN109580959B (zh) * 2018-12-17 2020-03-31 江苏莱森生物科技研究院有限公司 一种检测肝素结合性表皮生长因子的elisa试剂盒

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
US4816397A (en) 1983-03-25 1989-03-28 Celltech, Limited Multichain polypeptides or proteins and processes for their production
WO1990007861A1 (en) 1988-12-28 1990-07-26 Protein Design Labs, Inc. CHIMERIC IMMUNOGLOBULINS SPECIFIC FOR p55 TAC PROTEIN OF THE IL-2 RECEPTOR
US5047335A (en) 1988-12-21 1991-09-10 The Regents Of The University Of Calif. Process for controlling intracellular glycosylation of proteins
US5278299A (en) 1991-03-18 1994-01-11 Scripps Clinic And Research Foundation Method and composition for synthesizing sialylated glycosyl compounds
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
US5510261A (en) 1991-11-21 1996-04-23 The Board Of Trustees Of The Leland Stanford Juniot University Method of controlling the degradation of glycoprotein oligosaccharides produced by cultured Chinese hamster ovary cells
JPH08509612A (ja) 1993-04-26 1996-10-15 ジェンファーム インターナショナル インコーポレイテッド 異種抗体を産生することができるトランスジェニック非ヒト動物
JPH08280387A (ja) 1994-06-30 1996-10-29 Centro Immunologia Molecular マウス抗体可変部ドメインの免疫原性を減弱させた修飾免疫グロブリンの取得方法およびそれらを含有する組成物
JPH10146194A (ja) 1990-01-12 1998-06-02 Abjenics Inc 異種抗体の生成
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
JPH11505107A (ja) 1995-04-28 1999-05-18 アブジェニックス インク. 免疫したゼノマウス(XenoMouse)に由来するヒト抗体
JPH11206387A (ja) 1991-08-28 1999-08-03 Genpharm Internatl Inc 異種免疫グロブリンを作る方法及びそのためのトランスジェニックマウス
JP2938569B2 (ja) 1990-08-29 1999-08-23 ジェンファーム インターナショナル,インコーポレイティド 異種免疫グロブリンを作る方法及びトランスジェニックマウス
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
WO2002051870A2 (en) 2000-12-22 2002-07-04 GRAD, Carole Legal Representative of KAPLAN, Howard Phage display libraries of human vh fragments
JP2008113663A (ja) 2000-10-06 2008-05-22 Kyowa Hakko Kogyo Co Ltd 抗体組成物を生産する細胞
WO2009072628A1 (ja) * 2007-12-05 2009-06-11 Kyowa Hakko Kirin Co., Ltd. ヘパリン結合上皮細胞増殖因子様増殖因子に結合するモノクローナル抗体
JP2011501655A (ja) * 2007-09-26 2011-01-13 ウー3・フアルマ・ゲー・エム・ベー・ハー ヘパリン結合上皮成長因子様成長因子抗原結合タンパク質

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816397A (en) 1983-03-25 1989-03-28 Celltech, Limited Multichain polypeptides or proteins and processes for their production
EP0125023A1 (en) 1983-04-08 1984-11-14 Genentech, Inc. Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5807715A (en) 1984-08-27 1998-09-15 The Board Of Trustees Of The Leland Stanford Junior University Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin
EP0239400A2 (en) 1986-03-27 1987-09-30 Medical Research Council Recombinant antibodies and methods for their production
US5047335A (en) 1988-12-21 1991-09-10 The Regents Of The University Of Calif. Process for controlling intracellular glycosylation of proteins
WO1990007861A1 (en) 1988-12-28 1990-07-26 Protein Design Labs, Inc. CHIMERIC IMMUNOGLOBULINS SPECIFIC FOR p55 TAC PROTEIN OF THE IL-2 RECEPTOR
JPH10155492A (ja) 1990-01-12 1998-06-16 Abjenics Inc 異種抗体の生成
JPH10146194A (ja) 1990-01-12 1998-06-02 Abjenics Inc 異種抗体の生成
JP2938569B2 (ja) 1990-08-29 1999-08-23 ジェンファーム インターナショナル,インコーポレイティド 異種免疫グロブリンを作る方法及びトランスジェニックマウス
US5278299A (en) 1991-03-18 1994-01-11 Scripps Clinic And Research Foundation Method and composition for synthesizing sialylated glycosyl compounds
JPH11206387A (ja) 1991-08-28 1999-08-03 Genpharm Internatl Inc 異種免疫グロブリンを作る方法及びそのためのトランスジェニックマウス
US5510261A (en) 1991-11-21 1996-04-23 The Board Of Trustees Of The Leland Stanford Juniot University Method of controlling the degradation of glycoprotein oligosaccharides produced by cultured Chinese hamster ovary cells
WO1994011523A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Fully impaired consensus kozac sequences for mammalian expression
JPH08509612A (ja) 1993-04-26 1996-10-15 ジェンファーム インターナショナル インコーポレイテッド 異種抗体を産生することができるトランスジェニック非ヒト動物
JPH08280387A (ja) 1994-06-30 1996-10-29 Centro Immunologia Molecular マウス抗体可変部ドメインの免疫原性を減弱させた修飾免疫グロブリンの取得方法およびそれらを含有する組成物
WO1996002576A1 (fr) 1994-07-13 1996-02-01 Chugai Seiyaku Kabushiki Kaisha Anticorps humain reconstitue contre l'interleukine-8 humaine
JPH11505107A (ja) 1995-04-28 1999-05-18 アブジェニックス インク. 免疫したゼノマウス(XenoMouse)に由来するヒト抗体
WO1999054342A1 (en) 1998-04-20 1999-10-28 Pablo Umana Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
JP2008113663A (ja) 2000-10-06 2008-05-22 Kyowa Hakko Kogyo Co Ltd 抗体組成物を生産する細胞
WO2002051870A2 (en) 2000-12-22 2002-07-04 GRAD, Carole Legal Representative of KAPLAN, Howard Phage display libraries of human vh fragments
JP2011501655A (ja) * 2007-09-26 2011-01-13 ウー3・フアルマ・ゲー・エム・ベー・ハー ヘパリン結合上皮成長因子様成長因子抗原結合タンパク質
WO2009072628A1 (ja) * 2007-12-05 2009-06-11 Kyowa Hakko Kirin Co., Ltd. ヘパリン結合上皮細胞増殖因子様増殖因子に結合するモノクローナル抗体

Non-Patent Citations (40)

* Cited by examiner, † Cited by third party
Title
ASAKURA M. ET AL., NAT MED., vol. 8, no. 1, 2002, pages 35 - 40
CHEN, X. ET AL., J. BIOL. CHEM., vol. 270, 1995, pages 18285 - 18294
DOWNING M. T. ET AL., HISTOCHEM J., vol. 29, no. 10, 1997, pages 735 - 744
ELENIUS . ET AL., EMBO J., vol. 16, no. 6, 1997, pages 1268 - 1278
HAMAOKA M. ET AL., J. BIOCHEM., vol. 148, no. 1, 2010, pages 55 - 69
HAMAOKA M. ET AL.: "Anti-human HB-EGF monoclonal antibodies inhibiting ectodomain shedding of HB-EGF and diphtheria toxin binding", THE JOURNAL OF BIOCHEMISTRY, vol. 148, no. 1, 2010, pages 55 - 69, XP055291799 *
HARRIS, J. M. ANDZALIPSKY, S.: "Poly(ethylene glycol), Chemistry and Biological Applications", 1997, ACS SYMPOSIUM SERIES
HATAKEYAMA H. ET AL., PLOSONE, vol. 5, no. 4, 2010, pages E9875
HERMANSON, G. T.: "Bioconjugate Techniques", 1996, ACADEMIC PRESS
HIGASHIYAMA S. ET AL., J. BIOL. CHEM., vol. 267, no. 9, 1992, pages 6205 - 6212
INTERN. REV. IMMUNOL, vol. 13, 1995, pages 65 - 93
IWAMOTO R. ET AL., PNAS, vol. 100, no. 6, 2003, pages 3221 - 3226
J. BIOL. CHEM., vol. 280, 2005, pages 24880 - 24887
J. MOL. BIOL, vol. 222, 1991, pages 581 - 597
KOBRIN M. S. ET AL., BBRC, vol. 202, no. 3, 1994, pages 1705 - 1709
KOHLER; MILSTEIN, NATURE, vol. 256, 1975, pages 495
MARIKOVSKY M. ET AL., PNAS, vol. 90, no. 9, 1993, pages 3889 - 3893
MIYAMOTO S. ET AL., CANCER RES., vol. 64, 2004, pages 5720 - 5727
MIYAMOTO S. ET AL., CLIN CANCER RES., vol. 17, no. 21, 2011, pages 6733 - 6741
NATURE GENETICS, vol. 15, 1997, pages 146 - 156
NATURE, vol. 362, 1993, pages 255 - 258
NEAF M. ET AL., INT J CANCER, vol. 66, no. 3, 1996, pages 315 - 321
ONGUSAHA P. ET AL., CANCER RES., vol. 64, 2004, pages 5283 - 5290
ONO M. ET AL., J. BIOL. CHEM., vol. 296, no. 49, 1994, pages 31315 - 31321
P. J. DELVES: "Antibody Production: Essential Techniques", 1997, WILEY
P. SHEPHERD; C. DEAN: "Monoclonal Antibodies", 2000, OXFORD UNIVERSITY PRESS
PNAS, vol. 102, 2005, pages 8466 - 8471
PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 722 - 727
PROTEIN ENGINEERING, DESIGN & SELECTION, vol. 21, 2008, pages 345 - 351
PROTEIN ENGINEERING, DESIGN & SELECTION, vol. 21, 2008, pages 485 - 493
RAAB G., BIOCHIM BIOPHYS ACTA, vol. 1333, no. 3, 1997, pages F179 - F199
SAHIN U. ET AL., J CELL BIOL., vol. 164, no. 5, 2004, pages 769 - 779
SATO S. ET AL.: "A Potent Anti-HB-EGF Monoclonal Antibody Inhibits Cancer Cell Proliferation and Multiple Angiogenic Activities of HB-EGF", PLOS ONE, vol. 7, no. 12, 2012, pages 1 - 10, XP055291800 *
SHIMURA T. ET AL., BMC CANCER, vol. 12, 2012, pages 205
SHIMURA T. ET AL., CLIN CANCER RES., vol. 14, no. 12, 2008, pages 3956 - 3965
TAKEMURA T. ET AL., J. BIOL. CHEM., vol. 272, 1997, pages 31036 - 31042
TSUJI I. ET AL.: "Characterization of a variety of neutralizing anti-heparin-binding epidermal growth factor-like growth factor monoclonal antibodies by different immunization methods", MABS, vol. 4, no. 6, 2012, pages 732 - 739, XP055291802 *
VANDAMME A. M. ET AL., EUR. J. BIOCHEM., vol. 192, 1990, pages 767 - 775
VERONESE, F. AND HARRIS, J. M.: "Peptide and protein PEGylation. Advanced Drug Delivery Review", vol. 54, 2002
YAMAZAKI S. ET AL., J CELL BIOL., vol. 163, no. 3, 2003, pages 469 - 475

Also Published As

Publication number Publication date
EP2990418A1 (en) 2016-03-02
EP2990418A4 (en) 2017-01-11
US20160083464A1 (en) 2016-03-24
WO2014174596A1 (ja) 2014-10-30
US9920117B2 (en) 2018-03-20
EP2990418B1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
US20210155712A1 (en) Treatment and prevention of cancer using her3 antigen-binding molecules
TWI784322B (zh) 標靶cldn18.2的抗體及其製備方法和應用
JP5788384B2 (ja) 形質転換増殖因子アルファに結合し、Ras遺伝子変異癌に対して増殖抑制活性を有する抗体
JP6025904B2 (ja) Egfファミリーリガンドのアンタゴニストを成分とする医薬組成物
ES2750358T3 (es) Anticuerpo anti-TROP-2 humano que muestra actividad antitumoral in vivo
TW202102546A (zh) 密蛋白抗體及其應用
WO2020228806A1 (zh) 针对密蛋白18a2的抗体及其应用
AU2018312816A1 (en) Antibodies that bind EGFR and cMET
WO2020026987A1 (ja) 抗ror1モノクローナル抗体およびその機能的断片、遺伝子、薬剤デリバリー組成物、並びに、医薬組成物
WO2011004837A1 (ja) 抗癌活性を有する抗体
WO2014175160A1 (ja) ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体
JP5838427B2 (ja) ヘパリン結合上皮増殖因子様増殖因子に対する機能性モノクローナル抗体
AU2021209740A1 (en) SEMG2 antibody and use thereof
WO2011052753A1 (ja) Mansc1蛋白質に結合し、抗癌活性を有する抗体
US10323087B2 (en) Antibody against human NRG1 protein
KR101998029B1 (ko) Mic-1 단백질에 특이적으로 결합하는 항체 및 이의 용도
KR102207221B1 (ko) 도펠-타겟팅 분자를 이용한 병리학적 신생혈관 생성을 억제하는 방법
AU2013227987A1 (en) Anti-hepcidin antibodies and methods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015513717

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14786436

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014787867

Country of ref document: EP