WO2014175036A1 - Gas phase substance degradation body, gas phase substance degradation unit, gas phase purification method, and method for manufacturing gas phase substance degradation body - Google Patents

Gas phase substance degradation body, gas phase substance degradation unit, gas phase purification method, and method for manufacturing gas phase substance degradation body Download PDF

Info

Publication number
WO2014175036A1
WO2014175036A1 PCT/JP2014/059884 JP2014059884W WO2014175036A1 WO 2014175036 A1 WO2014175036 A1 WO 2014175036A1 JP 2014059884 W JP2014059884 W JP 2014059884W WO 2014175036 A1 WO2014175036 A1 WO 2014175036A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas phase
yeast
enzyme
phase substance
decomposition product
Prior art date
Application number
PCT/JP2014/059884
Other languages
French (fr)
Japanese (ja)
Inventor
悠司 豊田
直毅 田中
岸 達也
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2014175036A1 publication Critical patent/WO2014175036A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a gas phase substance decomposition product formed from a mixture containing a specific enzyme capable of decomposing harmful chemical substances such as formaldehyde, polyvinyl alcohol (PVA) resin and water, and a gas containing the gas phase substance decomposition product.
  • the present invention relates to a phase material decomposition unit and a gas phase purification method using the gas phase material decomposition unit.
  • the present invention also relates to a method for producing the gas phase substance decomposition product.
  • a method for removing formaldehyde in the indoor environment a method using an adsorbent that adsorbs formaldehyde and a method for decomposing and removing formaldehyde with a photocatalyst are known.
  • the adsorbed formaldehyde may be re-released.
  • a photocatalyst a light source is required, so a space that is not exposed to much light, for example, furniture interior or air conditioner interior. There was a problem that it could not be used, and neither method was sufficient.
  • a formaldehyde decomposing method characterized by using a mold having formaldehyde decomposing ability (see, for example, Patent Document 1) or a formaldehyde removing agent in which a microorganism-derived formaldehyde degrading enzyme is immobilized on a carrier whose surface is modified with an amino group Is disclosed (for example, see Patent Document 2).
  • Patent Document 1 a formaldehyde decomposing method characterized by using a mold having formaldehyde decomposing ability
  • a formaldehyde removing agent in which a microorganism-derived formaldehyde degrading enzyme is immobilized on a carrier whose surface is modified with an amino group Is disclosed (for example, see Patent Document 2).
  • an aldehyde removal filter formed by adsorbing formaldehyde oxidoreductase on the surface of activated carbon or the like is disclosed (for example, see Patent Document 3).
  • An object of the present invention is to provide a gas phase substance decomposition product capable of efficiently decomposing and removing a specific substance such as a harmful chemical substance in the gas phase with good selectivity, a gas phase material decomposition unit including the gas phase material decomposition product, and the It is to provide a gas phase purification method using a gas phase material decomposition unit, and to provide a method capable of manufacturing the gas phase material decomposition product at low cost.
  • Another object of the present invention is to be able to decompose and remove specific substances such as harmful chemical substances in the gas phase with high selectivity and high efficiency even when stored for a long time, and to maintain such an action for a long time. It is another object of the present invention to provide a gas phase material decomposition product and a gas phase material decomposition unit that are capable of achieving high heat resistance.
  • the present invention relates to a gas phase substance decomposed material formed from a mixed solution containing a polyvinyl alcohol-based resin, a yeast-derived gas phase substance decomposing enzyme, and water.
  • the polyvinyl alcohol-based resin forms a supporting substrate, and the yeast-derived gas phase substance-degrading enzyme is dispersed in the supporting substrate.
  • the polymerization degree of the polyvinyl alcohol resin is preferably 100 to 3000.
  • the saponification degree of the polyvinyl alcohol resin is preferably 85 to 100 mol%.
  • the content ratio of the gas phase material decomposing enzyme is preferably 0.0001 to 5% by mass based on the total amount of the gas phase material decomposing substance.
  • the gas phase material decomposition product of the present invention is preferably in the form of a sheet.
  • the yeast-derived gas phase substance-degrading enzyme is obtained by crushing yeast.
  • the present invention provides a vapor phase substance decomposition unit characterized in that the vapor phase substance decomposition product is provided on a substrate so as to be in contact with the gas phase, and the vapor phase substance decomposition unit is in contact with the gas phase.
  • the present invention relates to a gas phase purification method.
  • the present invention includes a step of applying a mixed solution containing a polyvinyl alcohol-based resin, a yeast-derived gas phase substance-degrading enzyme, and water on a substrate to form a coating film, and a step of drying the coating film. It is related with the manufacturing method of the gaseous-phase material decomposition body characterized by including.
  • the mixed solution is obtained by mixing a yeast crushing extract containing a gas phase substance-degrading enzyme obtained by crushing yeast and a polyvinyl alcohol resin solution.
  • the vapor phase substance decomposition product of the present invention can decompose and remove specific substances such as harmful substances with high selectivity and high efficiency, and can purify the gas phase such as air. Therefore, the vapor phase substance decomposition product and the gas phase substance decomposition unit of the present invention are effectively used in an environment where functions such as deodorization countermeasures, sick house syndrome prevention, allergy prevention, and chemical substance hypersensitivity suppression are required. be able to.
  • a gas phase material degradation product using a yeast-derived gas phase material degrading enzyme has heat resistance.
  • the gas phase material decomposition product according to the present invention having the above-described effects can be produced at low cost.
  • Vapor phase material decomposition product The gas phase material decomposition product of the present invention is formed from a mixed solution containing polyvinyl alcohol (PVA) resin, a gas phase material decomposition enzyme derived from yeast (yeast), and water. And
  • Gas-phase substance degrading enzyme Any gas-phase substance-degrading enzyme that can be used in the present invention can be used as long as it is derived from yeast and can degrade (react) a specific substance in the gas phase. It is.
  • the gas phase substance that is decomposed by the enzyme or reacts with the enzyme is not particularly limited, and examples thereof include aldehydes and carboxylic acids. Among these, particularly harmful Organic substances are mentioned as the object.
  • gas phase substances include acetaldehyde, formaldehyde, trichloroacetaldehyde (chloral), benzaldehyde, orthonitrobenzaldehyde, propionaldehyde, n-butyraldehyde, thiophene aldehyde, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid. , Succinic acid, or a mixture of two or more thereof.
  • the form of these gas phase substances may be any of gas, mist, and fine aerosol.
  • Any enzyme can be used as the enzyme used in the present invention as long as it can decompose (react) the gas phase substance.
  • one or two selected from the group consisting of aldehydes and carboxylic acids Preferred are enzymes using the above substances as substrates.
  • examples of such an enzyme include one or more selected from the group consisting of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), aldehyde oxidase, and alcohol oxidase.
  • ADH ADH, ALDH, and aldehyde oxidase are most useful, and ADH, formaldehyde dehydrogenase, formaldehyde oxidase, and the like are more preferable from the viewpoints of specificity and the like.
  • the yeast that can be used in the present invention is not particularly limited, and can be appropriately selected depending on the gas phase substance to be decomposed.
  • yeast of the genus Saccharomyces yeast of Schizosaccharomyces Fungi, yeasts of the genus Candida, yeasts of the genus Pichia, yeasts of the genus Hansenula, yeasts of the genus Torulopsis, yeasts of the genus Acetobacter, etc.
  • yeast of the genus Saccharomyces include Saccharomyces cerevisiae, Saccharomyces bayanus, etc. Examples thereof include Candida utilis and Candida lipolytica.
  • Saccharomyces cerevisiae for example, alcohol yeast (wine yeast, brewer's yeast), brewer's yeast, baker's yeast, and sake yeast (Saccharomyces sake), etc. Can be mentioned.
  • yeast of Saccharomyces genus is preferable, Saccharomyces cerevisiae is more preferable, and baker's yeast is more preferable among them because the ratio between the enzyme obtained by crushing yeast and the amount of coenzyme is good.
  • the yeast is dried to a degree of powder or granules (water content is usually 10% by mass or less, preferably 8% by mass or less). From the viewpoint of storage stability, it is preferable to use dry yeast (dry yeast).
  • dry yeast commercially available ones can be used.
  • dry yeast of baker's yeast Sacharomyces cerevisiae
  • dry yeast manufactured by Oriental Yeast Co., Ltd. AB Mauli's dry yeast for bread
  • examples thereof include dry yeast for refrigerated bread manufactured by Nippon Sugar Sugar Co., Ltd.
  • the enzyme activity value of the gas phase substance-degrading enzyme derived from yeast is preferably 1.00 ⁇ M / s or more, and more preferably 1.50 ⁇ M / s or more.
  • the enzyme activity value is obtained from a measurement of ethanol degradation. It is preferable to use a gas phase substance-degrading enzyme having an enzyme activity value within the above range in order to obtain sufficient resolution.
  • the measuring method of an enzyme activity value can be measured by the method as described in an Example.
  • the method for extracting the gas-phase substance-degrading enzyme from the yeast is not particularly limited, and it can be obtained by crushing the yeast and self-digesting, and then removing unnecessary substances such as cell walls by centrifugation.
  • it is not necessary to isolate and purify the gas phase material-degrading enzyme, and it may be prepared as a mixed solution (yeast crushing extract) containing the gas phase material-degrading enzyme.
  • yeast crushing extract The detail of the manufacturing method of a yeast crushing extract is mentioned later.
  • the content ratio of the gas phase material decomposing enzyme is preferably 0.0001 to 5% by mass and more preferably 0.001 to 0.5% by mass based on the total amount of the gas phase material decomposing substance of the present invention. preferable. If it is less than 0.0001% by mass, it may be difficult to sufficiently remove substances in the gas phase. If it exceeds 5% by mass, the proportion of enzymes not involved in the reaction increases, and the reaction rate per enzyme amount increases. There is a risk that efficiency will decrease from the viewpoint.
  • the content of the gas phase substance-decomposing enzyme in the gas phase substance-decomposed product can be calculated from the enzyme activity value by the following procedure.
  • purified enzyme solutions Prepare buffer solutions of purified enzymes of various concentrations (hereinafter referred to as purified enzyme solutions), measure the enzyme activity values of the purified enzyme solutions of each concentration, and create a calibration curve based on the enzyme concentrations and the measured enzyme activity values. create. 2) Measure the enzyme activity value ( ⁇ M / s) of a solution containing a gas phase substance-degrading enzyme (for example, yeast disruption extract), and calculate the concentration of the solution containing the gas phase substance-decomposing enzyme from the calibration curve created above. To do. 3) The amount of the gas phase substance decomposing enzyme used in the gas phase substance decomposing body is calculated by multiplying the calculated concentration of the solution containing the gas phase substance decomposing enzyme by the amount using the solution.
  • purified enzyme solutions Prepare buffer solutions of purified enzymes of various concentrations (hereinafter referred to as purified enzyme solutions), measure the enzyme activity values of the purified enzyme solutions of each concentration, and create a calibration curve based on the enzyme concentrations and the measured enzyme activity values. create. 2) Measure the enzyme activity value (
  • the enzyme activity value is , 0.61 ⁇ M / s, 1.45 ⁇ M / s, 2.35 ⁇ M / s, 3.11 ⁇ M / s, and therefore a calibration curve can be obtained based on the numerical values. From the calibration curve, the amount of ADH used (that is, the amount of ADH contained in the gas phase substance decomposition product) can be calculated.
  • a coenzyme can be used together with a gas phase substance-degrading enzyme derived from yeast as necessary.
  • the coenzyme is also preferably derived from yeast as in the case of the gas phase substance-degrading enzyme.
  • the gas phase substance degrading enzyme is ADH or ALDH
  • oxidized nicotinamide adenine dinucleotide (NAD + ) is used, and when it is an aldehyde oxidase, reduced nicotinamide adenine dinucleotide (NADH) is used. be able to.
  • the content of the coenzyme is preferably 20% by mass or less, and more preferably 10% by mass or less, based on the total amount of the gas phase substance decomposition product of the present invention.
  • PVA resin used in the present invention for example, PVA resin obtained by saponifying polyvinyl acetate or a derivative thereof; vinyl acetate and vinyl acetate copolymerized Saponified products of copolymers with possible monomers; modified PVA resins obtained by acetalizing, urethanizing, etherifying, grafting, phosphoric esterifying, etc. of PVA resins; These PVA resins can be used alone or in combination of two or more. Among these, PVA resin is preferable from the viewpoint of good hygroscopicity.
  • Monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid and esters thereof; ⁇ such as ethylene and propylene -Olefin, (meth) allylsulfonic acid (soda), sulfonic acid soda (monoalkylmalate), disulfonic acid soda alkylmalate, N-methylolacrylamide, acrylamide alkylsulfonic acid alkali salt, N-vinylpyrrolidone, N-vinyl Examples include pyrrolidone derivatives. These monomers copolymerizable with vinyl acetate are preferably 10 mol% or less, more preferably 5 mol% or less in the PVA resin.
  • the average degree of polymerization of the PVA resin is preferably 100 to 3000, more preferably 500 to 2000, from the viewpoint of the decomposition efficiency of the gas phase substance.
  • the average saponification degree of the PVA-based resin is preferably 85 to 100 mol%, more preferably 90 to 100 mol%, and further preferably 95 to 100 mol%.
  • the above-mentioned effects can be improved, and the gas phase substance decomposition product and gas phase of the present invention can be improved. This is preferable because the durability of the phase material decomposition unit can be improved.
  • the content ratio of the PVA-based resin is preferably 30 to 98% by mass, more preferably 50 to 95% by mass, based on the total amount of the gas phase substance decomposition product of the present invention. If it exceeds 98% by mass, it may be difficult to exert high enzyme activity, and if it is less than 30% by mass, it may be difficult to maintain the enzyme activity over a long period of time.
  • the vapor-phase material decomposition product of the present invention contains water.
  • the content ratio of the water is preferably 1.9999 to 50% by mass, more preferably 5 to 35% by mass, based on the total amount of the gas phase substance decomposition product of the present invention.
  • the water is preferably contained in such a proportion when the vapor-phase material decomposer of the present invention is used. If the water content is less than 1.9999% by mass, the efficiency of the enzyme reaction may be reduced. If the content is higher than 50% by mass, the enzyme may be easily deteriorated during long-term storage. The mechanical strength of the dismantling itself may be extremely reduced.
  • the preferable content ratio of water can be adjusted by utilizing the spontaneous hygroscopic property of the gas phase material decomposition product in the use environment. It is also possible to adjust the preferable amount of water by supplying water by a method of spraying an appropriate amount of water intermittently or continuously to the gas phase substance decomposer during use or during use.
  • the adjustment of the preferable water content ratio is performed in the gas phase material decomposition product in addition to the method of directly utilizing the hygroscopic property inherent in the hydroxyl group in the PVA resin. It can also be performed by a method of containing an additive capable of adjusting the hygroscopicity.
  • Examples of the additive capable of adjusting the hygroscopic property that can be contained in the gas phase substance decomposition product of the present invention include at least one of saccharides, polyhydric alcohols, polyalkylene glycols, and amino acids. It is done. Specifically, for example, sugars such as glucose, sucrose, maltose, xylitol, trehalose, oligosaccharide, cellulose, carboxymethylcellulose, chondroitin sulfate; ethylene glycol, propylene glycol, butylene glycol, glycerin, diglycerin, polyglycerin, etc.
  • Polyhydric alcohols such as polyethylene glycol, polypropylene glycol, polybutylene glycol, polyethylene glycol-polypropylene glycol copolymer; and amino acids such as aspartic acid and arginine.
  • at least one of the saccharides specifically mentioned above can be preferably used in that it has an effect of inhibiting degradation of the enzyme.
  • these components are derived from yeast as well as the gas phase substance-degrading enzyme.
  • the content is preferably 50% by mass or less, more preferably 1 to 50% by mass, based on the total amount of the gas phase substance decomposition product. More preferably, it is ⁇ 20% by mass.
  • the content of the additive capable of adjusting the hygroscopicity is more than 50% by mass, the effect of the PVA resin may be impaired.
  • the vapor phase material decomposition product of the present invention contains the PVA resin, the gas phase material decomposition enzyme, and water. Moreover, the said coenzyme and the additive which can adjust hygroscopicity can be added arbitrarily.
  • the gas phase material decomposition product of the present invention may contain other additives in addition to the above as long as the enzyme activity is not impaired.
  • other additives include inorganic salts, organic salts, surfactants, preservatives, dyes, cross-linking agents, ultraviolet absorbers, primers for improving adhesion to the substrate, and the like.
  • the content ratio of these other additives can be appropriately determined within a range that achieves the desired effect and does not impair the desired effect of the present invention. It is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less.
  • the form of the vapor phase substance decomposition product of the present invention is not particularly limited, but is a solidified form in which the PVA resin forms a supporting substrate and the enzyme is dispersed in the supporting substrate. Is preferred.
  • the solidified form may be in the form of a gel as long as it does not have fluidity, but it is preferable to have a certain degree of hardness when considering the mechanical strength of the gas phase substance decomposition product.
  • the enzyme may be dispersed in an embedded state in the polymer, or may be partly exposed and dispersed.
  • the vapor-phase material decomposition product of the present invention include a sheet shape, a mesh shape, and a film shape, and among these, a film shape is preferable.
  • the thickness is preferably from 0.01 to 5000 ⁇ m, more preferably from 0.1 to 100 ⁇ m. If the thickness is less than 0.01 ⁇ m, the ratio of the enzyme exposed to the outside rather than the inside of the film increases, and the stability of the enzyme may be reduced. If the thickness is greater than 5000 ⁇ m, the enzyme reacts with the enzyme. It is difficult to obtain sufficient contact between the phase substance and the enzyme, and the enzyme reactivity may be reduced.
  • the gas phase material decomposition product of the present invention has the above-mentioned effects by including a specific gas phase material decomposition enzyme, a PVA resin, and water.
  • the gas phase material decomposition enzyme, PVA The effect of the present invention can be obtained even when the gas phase substance decomposed product is stored for a long period of time by controlling the content ratio of the resin and water in the above range, or by adding a specific additive. Is preferable because the effect of the present invention can be maintained for a long time.
  • the gas phase material decomposition product of the present invention is formed from a mixed solution containing a PVA resin, a yeast-derived gas phase material decomposing enzyme, and water. It preferably contains yeast-derived gas-phase substance-degrading enzyme, yeast-derived coenzyme, water, etc., and mixes yeast disruption extract containing gas-phase substance-degrading enzyme obtained by crushing yeast described later and PVA resin solution It is preferable that it is obtained.
  • the yeast crushing extract contains a yeast-derived gas phase material degrading enzyme, a yeast-derived coenzyme, and water.
  • the method for producing the gas phase material decomposition body of the present invention is not particularly limited.
  • PVA resin, yeast-derived gas phase material decomposition enzyme, and It can be manufactured by a manufacturing method including a step of coating a mixed solution containing water on a substrate to form a coating film, and a step of drying the coating film.
  • the mixed solution is preferably obtained by mixing a yeast disruption extract containing a gas phase substance-degrading enzyme obtained by disrupting yeast and a PVA resin solution.
  • a gas phase material degradation product is produced by a very simple method of mixing a yeast disruption extract directly with a PVA resin solution without isolating the gas phase material degradation enzyme. It is something that can be done.
  • the method using the yeast disruption extract which is a preferred embodiment of the present invention, will be specifically described.
  • a specific method for obtaining a yeast disruption extract containing a gas phase substance-degrading enzyme from yeast is as follows. 1) The yeast is dissolved in a predetermined amount of solvent to prepare a yeast solution. At this time, the concentration of the yeast solution is preferably 0.1 to 0.5 g / mL, and more preferably 0.15 to 0.3 g / mL.
  • the solvent include water; various buffer solutions such as acetate buffer, phosphate buffer, Tris-HCl buffer, carbonate buffer, Good's buffer; ethanol, methanol, propanol, dimethyl sulfoxide, dimethylformamide, and the like. These organic solvents can be used alone or as a mixture.
  • the pH of the buffer solution is preferably pH 6.0 to 9.0, and more preferably pH 8. 2)
  • the yeast solution is put into a bead-type cell crusher to crush the yeast. At this time, glass beads having an appropriate shape and amount are used.
  • the crushing conditions can be determined as appropriate, but the acceleration is usually about 1 to 10 m / s, and the crushing can be performed under any number of times (for example, about 1 to 5 times of treatment for about 10 to 120 seconds at a time). .
  • the temperature at the time of crushing is not particularly limited, but is preferably 45 ° C. or less, more preferably 40 ° C.
  • the enzyme begins to be inactivated at 30 ° C. and completely inactivated at 50 ° C., but the enzyme contained in the yeast crushed extract used in the present invention is not inactivated even at 40 ° C. and has high heat resistance. Is. 3)
  • the obtained crushed liquid is centrifuged using a refrigerated centrifuge, and the supernatant is collected to obtain a yeast crushed extract.
  • the conditions of the cooling centrifuge can be adjusted as appropriate, but are usually 1 to 10 ° C., 500 to 10,000 rpm, and about 1 to 10 minutes.
  • the PVA-based resin examples include water; various buffer solutions such as acetate buffer, phosphate buffer, Tris-HCl buffer, carbonate buffer, Good's buffer; ethanol, methanol, A single solution or a mixture of various organic solvents such as propanol, dimethyl sulfoxide, dimethylformamide and the like can be used. Among these, water or a buffer solution is preferable.
  • the concentration of the PVA resin solution is not particularly limited, but is preferably 1 to 15% by mass, and more preferably 5 to 10% by mass.
  • the mixing ratio of the yeast crushed extract and the PVA resin solution is not particularly limited.
  • the yeast crushed extract: PVA resin solution 0.5: 9.5 to 4: 6 (mass) Ratio), preferably 1: 9 to 2: 8 (mass ratio).
  • the various additives can be mixed in the mixed solution as necessary. Moreover, various additives can be added to a liquid mixture so that the compounding quantity in a gaseous-phase material decomposition body may become in the said range.
  • the coating and drying may be performed by applying the mixed solution to a substrate to form a coating film, and evaporating (drying) the solvent from the coating film to form a film or the like.
  • examples thereof include a continuous coating method in which a certain amount of the mixed solution is applied while being slid and the solvent is dried, and a method in which the mixed solution is sprayed onto a suitable substrate and dried.
  • the concentration of the PVA-based resin in the mixed solution containing the PVA-based resin and the enzyme used when producing the gas-phase material decomposed material of the present invention is such a concentration that the gas-phase material decomposed material can be easily prepared into a film, for example Usually, it is in the range of 0.1 to 50% by mass. If the polymer concentration is less than 0.1% by mass, the production efficiency may decrease. If the polymer concentration exceeds 50% by mass, the viscosity of the mixed solution increases and the handling property at the time of forming a gas phase substance decomposition product may decrease. Occurs.
  • the material of the substrate for applying the mixed liquid includes metals, ceramics, wood, plastic, glass, paper, etc. Examples thereof include a plate, a substrate having a curved surface, a fiber, a nonwoven fabric, and a porous body.
  • the drying step of the coating film can be performed while suppressing degradation of the enzyme because it contains the PVA resin, but the enzyme is the most in the production process. Since it is a process that easily deteriorates, it is preferable to perform it carefully. Specifically, it is usually dried in the range of 10 to 70 ° C., desirably in the range of 20 to 50 ° C. If the drying temperature is less than 10 ° C., the drying efficiency may be lowered, and if it is higher than 70 ° C., the enzyme deterioration suppressing effect by the polymer is lowered, and the enzyme may be deteriorated.
  • the vapor-phase material decomposition product of the present invention formed on the substrate can be used as it is as a vapor-phase material decomposition unit of the present invention, which will be described later. In some cases, it can be peeled off from the substrate and used as a self-supporting film.
  • the gas phase material decomposition unit of the present invention is a unit in which the above-described gas phase material decomposition product of the present invention is provided on a substrate so as to be in contact with a gas phase such as air.
  • a gas phase such as air.
  • the substrate include the above-described substrates, and further, building materials, furniture, clothing, air-conditioning equipment, air filters, refrigerators, automobiles, and the like including such a substrate.
  • the gas phase purification method of the present invention is characterized in that the gas phase material decomposition unit of the present invention is brought into contact with a gas phase such as air.
  • Examples of the method for bringing the gas phase material decomposition unit into contact with the gas phase include a method in which the gas phase material decomposition product of the gas phase material decomposition unit is exposed to the gas phase to be purified.
  • a flow of the gas phase to be purified is made with a fan or the like so as to contact the gas phase material decomposition product in the minute space.
  • a substance in the gas phase capable of reacting with the enzyme is adsorbed on the surface of the gas phase substance decomposition body of the gas phase substance decomposition unit, and bound to the enzyme present on the surface, or
  • the substance adsorbed to the enzyme in the gas phase substance decomposition product moves and binds, and the enzyme reaction proceeds to decompose and purify the substance.
  • Example 1 Preparation of yeast crushed extract 12.5 g of dry yeast (trade name: Oriental yeast / general use, Saccharomyces cerevisiae, manufactured by Oriental Yeast Co., Ltd.) was dissolved in 50 mL of 50 mM NaH 2 PO 4 buffer (pH 8.0), ⁇ 1 A 15 mL centrifuge tube (Falcon) was packed together with 4.0 g of 0.0 mm glass beads (Fuji Science Industry Co., Ltd.). This was crushed using a bead type cell crusher (Fast prep 24, manufactured by MP-Biomedicals) under the conditions of acceleration 6.0 m / s, 30 s ⁇ 2 while cooling with ice.
  • a bead type cell crusher Fest prep 24, manufactured by MP-Biomedicals
  • yeast crushed extract contained alcohol dehydrogenase (ADH) as an enzyme and oxidized nicotinamide adenine dinucleotide (NAD + ) as a coenzyme.
  • ADH alcohol dehydrogenase
  • NAD + oxidized nicotinamide adenine dinucleotide
  • ⁇ Method for measuring enzyme activity value 1
  • An optical cell having an optical path length of 1 cm was charged with 250 ⁇ L of NAD + solution (10 mM). Furthermore, 1200 ⁇ L of 50 mM NaH 2 PO 4 buffer (pH 8.0) and 600 ⁇ L of 1.5 M ethanol were charged and stirred. The optical cell was set in a spectrophotometer (equipment trade name, etc .: UV-2550, manufactured by Shimadzu Corporation), and 20 ⁇ L of yeast disruption extract obtained in Examples 1 to 3 and 50 mM NaH 2 PO 4 buffer were used. (PH 8.0) 600 ⁇ L was quickly added. 2) Absorbance at 340 nm (NADH) was measured over time.
  • a graph plotting the concentration of 340 nm (NADH) every hour was created from the measured change in absorbance and the following formula.
  • the enzyme activity value (unit: ⁇ M / s, enzyme concentration per unit time) was calculated from the slope of the initial graph from the start of measurement to 10 seconds.
  • the slope of the initial graph is that the enzyme (ADH) contained in the yeast disruption extract causes the following reaction to convert alcohol to aldehyde, which is a reversible reaction. Therefore, the enzyme activity value is calculated from the slope of the graph at the initial stage of measurement without considering the reverse reaction.
  • the PVA resin contained in the obtained sheet sample is 165 mg (use 3.3 mL of 5 mass% PVA solution). Further, as described above, the enzyme activity is 1.1 ⁇ M / s, and the effective enzyme amount concentration calculated therefrom is 0.80 mg / mL. Since the used yeast crush extract amount is 0.7 mL, the amount of effective enzyme contained in the obtained sheet sample is 0.56 mg.
  • Example 2 In the same manner as in Example 1 except that dry yeast for bread (trade name: Active Dry Yeast (ADY), Saccharomyces cerevisiae) manufactured by AB Mauli was used instead of the dry yeast used in Example 1. Was made. The total weight of the sheet sample was 250 mg.
  • ADY Active Dry Yeast
  • Saccharomyces cerevisiae Saccharomyces cerevisiae
  • the yeast crushing extract of Example 2 contains alcohol dehydrogenase (ADH) as an enzyme and oxidized nicotinamide adenine dinucleotide (NAD + ) as a coenzyme, and the enzyme activity value is 1.9 ⁇ M / s.
  • ADH alcohol dehydrogenase
  • NAD + oxidized nicotinamide adenine dinucleotide
  • the PVA resin contained in the obtained sheet sample is 165 mg (use 3.3 mL of 5 mass% PVA solution). Further, as described above, the enzyme activity is 1.9 ⁇ M / s, and the effective enzyme amount concentration calculated therefrom is 1.28 mg / mL. Since the used yeast crushing extract amount is 0.7 mL, the amount of effective enzyme contained in the obtained sheet sample is 0.90 mg.
  • Example 3 instead of the dry yeast used in Example 1, it was the same as Example 1 except that dry yeast for refrigerated bread (trade name: Nitten FR yeast dry yeast product, Saccharomyces cerevisiae) manufactured by Nippon Sugar Sugar Co., Ltd. was used. Thus, a sheet sample was produced. The total weight of the sheet sample was 250 mg.
  • dry yeast for refrigerated bread trade name: Nitten FR yeast dry yeast product, Saccharomyces cerevisiae
  • the total weight of the sheet sample was 250 mg.
  • the yeast crushing extract of Example 3 contains alcohol dehydrogenase (ADH) as an enzyme and oxidized nicotinamide adenine dinucleotide (NAD + ) as a coenzyme, and the enzyme activity value is 1.7 ⁇ M / s.
  • ADH alcohol dehydrogenase
  • NAD + oxidized nicotinamide adenine dinucleotide
  • the PVA resin contained in the obtained sheet sample is 165 mg (use 3.3 mL of 5 mass% PVA solution). Moreover, as above-mentioned, enzyme activity is 1.7 micromol / s and the effective enzyme amount density
  • Comparative Example 1 0.7 mL of 50 mM NaH 2 PO 4 buffer (pH 8.0) was added to 3.3 mL of a 5% by mass PVA solution, which was dropped into a petri dish having an outer diameter of 91 mm ⁇ height of 20 mm, and then overnight (about 12 hours) A sheet sample having a thickness of 10 to 50 ⁇ m was prepared by drying at room temperature (23 ° C.).
  • the yeast crushing extract has a heat resistance higher by about 10 ° C. than the purified enzyme.
  • the gas phase material decomposition product of the present invention containing a specific gas phase material decomposition enzyme, PVA resin and water as a harmful gas decomposition sheet.
  • the harmful gas decomposition sheet of the present invention which is highly functional but inexpensive, is highly likely to be accepted not only in developed countries but also in emerging markets that have problems such as sick houses as a current problem.

Abstract

The purpose of this invention is to provide a gas phase substance degradation body, a gas phase substance degradation unit comprising the gas phase degradation body, and a gas phase purification method using the gas phase substance degradation unit, with all of which designated substances such as harmful chemicals in a gas phase can be degraded and removed with good selectivity and high efficiency. Moreover, this invention relates to a method for manufacturing a gas phase substance degradation body in which the abovementioned gas phase substance degradation body can be manufactured inexpensively. Furthermore, another purpose of this invention is to provide a gas phase substance degradation body and a gas phase substance degradation unit with which designated substances such as harmful chemicals in a gas phase can be degraded and removed with good selectivity and high efficiency even when stored for long periods of time and which can maintain this operation over long periods of time. This invention is a gas phase degradation body characterized in that it is formed from a mixed liquid comprising a polyvinyl-alcohol-based resin, a yeast-derived gas phase substance degradation enzyme, and water.

Description

気相物質分解体、気相物質分解ユニット、気相浄化方法、及び、気相物質分解体の製造方法Vapor phase material decomposition product, gas phase material decomposition unit, gas phase purification method, and gas phase material decomposition product manufacturing method
 本発明は、ホルムアルデヒド等の有害化学物質を分解可能な特定の酵素、ポリビニルアルコール(PVA)系樹脂、水を含む混合液から形成される気相物質分解体、該気相物質分解体を含む気相物質分解ユニット、及び、該気相物質分解ユニットを用いた気相浄化方法に関する。また、本発明は、前記気相物質分解体の製造方法に関する。 The present invention relates to a gas phase substance decomposition product formed from a mixture containing a specific enzyme capable of decomposing harmful chemical substances such as formaldehyde, polyvinyl alcohol (PVA) resin and water, and a gas containing the gas phase substance decomposition product. The present invention relates to a phase material decomposition unit and a gas phase purification method using the gas phase material decomposition unit. The present invention also relates to a method for producing the gas phase substance decomposition product.
 ホルムアルデヒド等の有害化学物質の捕捉については、従来より、芳香系消臭剤等のマスキング作用を用いた感覚的消臭法、石鹸等による殺菌作用を用いた滅菌生物的消臭法、消化酵素、酵母等を用いて捕捉し分解する生物的消臭法、活性炭等の多孔質体の表面に吸着し捕捉する物理的消臭法、化学反応により捕捉し分解する化学的消臭法等の方法が知られている。これらの中でも、物理的消臭方法とともに化学的消臭方法が有力な方法とされている。 For the capture of harmful chemical substances such as formaldehyde, conventionally, sensory deodorization method using masking action of aromatic deodorants, sterilization biological deodorization method using bactericidal action with soap, digestive enzyme, Biological deodorization method that captures and decomposes using yeast, physical deodorization method that adsorbs and captures on the surface of porous materials such as activated carbon, and chemical deodorization method that captures and decomposes by chemical reaction Are known. Among these, the chemical deodorization method is considered to be an effective method together with the physical deodorization method.
 また、室内環境中のホルムアルデヒド除去方法として、ホルムアルデヒドを吸着する吸着剤を用いる方法や、光触媒によってホルムアルデヒドを分解除去する方法が知られている。しかしながら、吸着剤を用いる方法では、吸着されたホルムアルデヒドが再放出する恐れがあり、光触媒を用いる方法では、光源が必要とされるため、あまり光が当たらない空間、例えば、家具内部やエアーコンディショナー内部などでは使用できないという問題があり、いずれの方法も十分ではなかった。 Further, as a method for removing formaldehyde in the indoor environment, a method using an adsorbent that adsorbs formaldehyde and a method for decomposing and removing formaldehyde with a photocatalyst are known. However, in the method using an adsorbent, the adsorbed formaldehyde may be re-released. In the method using a photocatalyst, a light source is required, so a space that is not exposed to much light, for example, furniture interior or air conditioner interior. There was a problem that it could not be used, and neither method was sufficient.
 このため、上記方法以外のホルムアルデヒド除去方法が種々検討されており、その一つとして、ホルムアルデヒドを分解する微生物を用いる方法が知られている。例えば、ホルムアルデヒド分解能を有するカビを用いることを特徴とするホルムアルデヒド分解方法(例えば、特許文献1参照)や、微生物由来のホルムアルデヒド分解酵素を、表面をアミノ基で修飾した担体に固定化したホルムアルデヒド除去剤が開示されている(例えば、特許文献2参照)。また、ホルムアルデヒド酸化還元酵素を活性炭等の表面に吸着させてなるアルデヒド除去フィルタが開示されている(例えば、特許文献3参照)。 For this reason, various methods for removing formaldehyde other than the above methods have been studied, and as one of them, a method using a microorganism that decomposes formaldehyde is known. For example, a formaldehyde decomposing method characterized by using a mold having formaldehyde decomposing ability (see, for example, Patent Document 1) or a formaldehyde removing agent in which a microorganism-derived formaldehyde degrading enzyme is immobilized on a carrier whose surface is modified with an amino group Is disclosed (for example, see Patent Document 2). Moreover, an aldehyde removal filter formed by adsorbing formaldehyde oxidoreductase on the surface of activated carbon or the like is disclosed (for example, see Patent Document 3).
特開2003-52355号公報JP 2003-52355 A 特開2005-131567号公報JP 2005-131567 A 特開2001-340436号公報JP 2001-340436 A
 しかしながら、いずれの特許文献においても、酵母菌由来の酵素については何ら開示されていないものである。また、これらの特許文献1~3に開示された方法では、除去フィルタ等の製造にコストがかかるという問題があった。 However, none of the patent documents discloses any enzyme derived from yeast. In addition, the methods disclosed in these Patent Documents 1 to 3 have a problem in that manufacturing a removal filter or the like is expensive.
 本発明の目的は、気相中の有害化学物質等の特定物質を選択性良く、効率よく分解除去できる気相物質分解体、該気相物質分解体を含む気相物質分解ユニット、及び、該気相物質分解ユニットを使用する気相浄化方法を提供すること、また、安価に前記気相物質分解体を製造できる方法を提供することである。 An object of the present invention is to provide a gas phase substance decomposition product capable of efficiently decomposing and removing a specific substance such as a harmful chemical substance in the gas phase with good selectivity, a gas phase material decomposition unit including the gas phase material decomposition product, and the It is to provide a gas phase purification method using a gas phase material decomposition unit, and to provide a method capable of manufacturing the gas phase material decomposition product at low cost.
 本発明の別の目的は、長期保存した場合にも気相中の有害化学物質等の特定物質を選択性良く、高効率で分解除去でき、さらには、このような作用を長期間維持することができ、かつ、耐熱性に優れた気相物質分解体、及び、気相物質分解ユニットを提供することにある。 Another object of the present invention is to be able to decompose and remove specific substances such as harmful chemical substances in the gas phase with high selectivity and high efficiency even when stored for a long time, and to maintain such an action for a long time. It is another object of the present invention to provide a gas phase material decomposition product and a gas phase material decomposition unit that are capable of achieving high heat resistance.
 すなわち、本発明は、ポリビニルアルコール系樹脂、酵母由来の気相物質分解酵素、及び、水を含む混合液から形成されることを特徴とする気相物質分解体に関する。 That is, the present invention relates to a gas phase substance decomposed material formed from a mixed solution containing a polyvinyl alcohol-based resin, a yeast-derived gas phase substance decomposing enzyme, and water.
 前記ポリビニルアルコール系樹脂が担持基材を形成し、当該担持基材中に前記酵母由来の気相物質分解酵素が分散していることが好ましい。 It is preferable that the polyvinyl alcohol-based resin forms a supporting substrate, and the yeast-derived gas phase substance-degrading enzyme is dispersed in the supporting substrate.
 前記ポリビニルアルコール系樹脂の重合度が、100~3000であることが好ましい。また、前記ポリビニルアルコール系樹脂のケン化度が、85~100モル%であることが好ましい。 The polymerization degree of the polyvinyl alcohol resin is preferably 100 to 3000. The saponification degree of the polyvinyl alcohol resin is preferably 85 to 100 mol%.
 前記気相物質分解酵素の含有割合は、前記気相物質分解体全量基準で、0.0001~5質量%であることが好ましい。 The content ratio of the gas phase material decomposing enzyme is preferably 0.0001 to 5% by mass based on the total amount of the gas phase material decomposing substance.
 本発明の気相物質分解体が、シート形状であることが好ましい。 The gas phase material decomposition product of the present invention is preferably in the form of a sheet.
 前記酵母由来の気相物質分解酵素が、酵母を破砕して得られることが好ましい。 It is preferable that the yeast-derived gas phase substance-degrading enzyme is obtained by crushing yeast.
 また、本発明は、前記気相物質分解体を、気相と接することができるように基体上に設けたことを特徴とする気相物質分解ユニット、前記気相物質分解ユニットを気相と接触させることを特徴とする気相浄化方法に関する。 Further, the present invention provides a vapor phase substance decomposition unit characterized in that the vapor phase substance decomposition product is provided on a substrate so as to be in contact with the gas phase, and the vapor phase substance decomposition unit is in contact with the gas phase. The present invention relates to a gas phase purification method.
 さらに、本発明は、ポリビニルアルコール系樹脂、酵母由来の気相物質分解酵素、及び、水を含む混合液を基体上に塗布して塗布膜を形成する工程、前記塗布膜を乾燥する工程、を含むことを特徴とする気相物質分解体の製造方法に関する。 Furthermore, the present invention includes a step of applying a mixed solution containing a polyvinyl alcohol-based resin, a yeast-derived gas phase substance-degrading enzyme, and water on a substrate to form a coating film, and a step of drying the coating film. It is related with the manufacturing method of the gaseous-phase material decomposition body characterized by including.
 前記混合液が、酵母を破砕して得られた気相物質分解酵素を含む酵母破砕抽出液と、ポリビニルアルコール系樹脂溶液を混合して得られることが好ましい。 It is preferable that the mixed solution is obtained by mixing a yeast crushing extract containing a gas phase substance-degrading enzyme obtained by crushing yeast and a polyvinyl alcohol resin solution.
 本発明の気相物質分解体は、有害物質等の特定物質を選択性良く、高効率で分解除去でき、空気等の気相を浄化することができる。従って、本発明の気相物質分解体、及び、気相物質分解ユニットは、防臭対策、シックハウス症候群予防、アレルギー予防、化学物質過敏症抑制等の機能が必要とされる環境下において有効に利用することができる。 The vapor phase substance decomposition product of the present invention can decompose and remove specific substances such as harmful substances with high selectivity and high efficiency, and can purify the gas phase such as air. Therefore, the vapor phase substance decomposition product and the gas phase substance decomposition unit of the present invention are effectively used in an environment where functions such as deodorization countermeasures, sick house syndrome prevention, allergy prevention, and chemical substance hypersensitivity suppression are required. be able to.
 また、酵母由来の気相物質分解酵素を用いた気相物質分解体は、耐熱性を有するものである。 In addition, a gas phase material degradation product using a yeast-derived gas phase material degrading enzyme has heat resistance.
 さらに、本発明の気相物質分解体の製造方法では、前述のような効果を奏する本発明の気相物質分解体を安価に製造することができる。 Furthermore, in the method for producing a gas phase material decomposition product according to the present invention, the gas phase material decomposition product according to the present invention having the above-described effects can be produced at low cost.
実施例におけるホルムアルデヒドガス分解実験結果を示す図である。It is a figure which shows the formaldehyde gas decomposition | disassembly experiment result in an Example. 実施例における耐熱性試験結果を示す図である。It is a figure which shows the heat resistance test result in an Example.
1.気相物質分解体
 本発明の気相物質分解体は、ポリビニルアルコール(PVA)系樹脂、酵母(イースト)菌由来の気相物質分解酵素、及び、水を含む混合液から形成されることを特徴とする。
1. Vapor phase material decomposition product The gas phase material decomposition product of the present invention is formed from a mixed solution containing polyvinyl alcohol (PVA) resin, a gas phase material decomposition enzyme derived from yeast (yeast), and water. And
(1)気相物質分解酵素
 本発明で用いることができる気相物質分解酵素としては、酵母菌由来であって、気相中の特定物質を分解(反応)できる酵素であればいずれも使用可能である。
(1) Gas-phase substance degrading enzyme Any gas-phase substance-degrading enzyme that can be used in the present invention can be used as long as it is derived from yeast and can degrade (react) a specific substance in the gas phase. It is.
 前記酵素により分解されるか、又は前記酵素と反応する気相物質としては、特に限定されるものではないが、例えば、アルデヒド類、及び、カルボン酸類を挙げることができ、これらの中でも、特に有害な有機物質がその対象として挙げられる。このような気相物質としては、例えば、アセトアルデヒド、ホルムアルデヒド、トリクロルアセトアルデヒド(クロラール)、ベンズアルデヒド、オルソニトロベンズアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、チオフェンアルデヒド、ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、又は、これらの2種以上の混合物等が挙げられる。これらの気相物質の形態は、ガス状、霧状、微細なエアロゾル状のいずれであっても良い。 The gas phase substance that is decomposed by the enzyme or reacts with the enzyme is not particularly limited, and examples thereof include aldehydes and carboxylic acids. Among these, particularly harmful Organic substances are mentioned as the object. Examples of such gas phase substances include acetaldehyde, formaldehyde, trichloroacetaldehyde (chloral), benzaldehyde, orthonitrobenzaldehyde, propionaldehyde, n-butyraldehyde, thiophene aldehyde, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid. , Succinic acid, or a mixture of two or more thereof. The form of these gas phase substances may be any of gas, mist, and fine aerosol.
 本発明で用いる酵素としては、前記気相物質を分解(反応)できる酵素であればいずれも使用可能であり、例えば、アルデヒド類、及び、カルボン酸類からなる群から選択される1種又は2種以上の物質を基質とする酵素が好ましく挙げられる。このような酵素としては、例えば、アルコールデヒドロゲナーゼ(ADH)、アルデヒドデヒドロゲナーゼ(ALDH)、アルデヒドオキシターゼ、及び、アルコールオキシダーゼからなる群より選ばれる1種、又は、2種以上が挙げられる。これらの中でも、ADH、ALDH、アルデヒドオキシターゼが最も有用であり、特異性等が明確である点から、ADH、ホルムアルデヒドデヒドロゲナーゼ、ホルムアルデヒドオキシダーゼ等がさらに好ましい。 Any enzyme can be used as the enzyme used in the present invention as long as it can decompose (react) the gas phase substance. For example, one or two selected from the group consisting of aldehydes and carboxylic acids Preferred are enzymes using the above substances as substrates. Examples of such an enzyme include one or more selected from the group consisting of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), aldehyde oxidase, and alcohol oxidase. Among these, ADH, ALDH, and aldehyde oxidase are most useful, and ADH, formaldehyde dehydrogenase, formaldehyde oxidase, and the like are more preferable from the viewpoints of specificity and the like.
 本発明で使用可能な酵母菌は、特に限定されず、分解対象である気相物質により適宜選択することができるが、例えば、サッカロミセス(Saccharomyces)属の酵母菌、シゾサッカロミセス(Schizosaccharomyces)の酵母菌、カンジダ(Candida)属の酵母菌、ピチア(Pichia)属の酵母菌、ハンセヌラ(Hansenula)属の酵母菌、及び、トルロプシス(Torulopsis)属の酵母菌、アセトバクター(Acetobacter)属の酵母菌等が挙げられる。サッカロミセス属としては、例えば、サッカロミセス・セルビシエ(Saccharomyces cerevisiae)、サッカロミセス・バイアヌス(Saccharomyces bayanus)、サッカロミセス・ブラウディ(Saccharomyces boulardii)、及び、サッカロミセス・ルーキシィ(Saccharomyces rouxii)等が挙げられ、カンジダ属としては、例えば、カンジダ・ユチリス(Candida utilis)、及び、カンジダ・リポリチカ(Candida lipolytica)等が挙げられる。さらに、サッカロミセス・セルビシエに属するものとしては、例えば、アルコール酵母菌(ワイン酵母菌、ビール酵母菌)、ビール酵母菌、パン酵母菌、及び、清酒酵母(サッカロミセス・サケ(Saccharomyces sake))菌等が挙げられる。これらの中でも、酵母の破砕によって得られる酵素と補酵素の量との比が良好である点から、サッカロミセス属の酵母菌が好ましく、サッカロミセス・セルビシエがより好ましく、その中でもパン酵母菌がさらに好ましい。 The yeast that can be used in the present invention is not particularly limited, and can be appropriately selected depending on the gas phase substance to be decomposed. For example, yeast of the genus Saccharomyces, yeast of Schizosaccharomyces Fungi, yeasts of the genus Candida, yeasts of the genus Pichia, yeasts of the genus Hansenula, yeasts of the genus Torulopsis, yeasts of the genus Acetobacter, etc. Is mentioned. Examples of the genus Saccharomyces include Saccharomyces cerevisiae, Saccharomyces bayanus, etc. Examples thereof include Candida utilis and Candida lipolytica. Further, as belonging to Saccharomyces cerevisiae, for example, alcohol yeast (wine yeast, brewer's yeast), brewer's yeast, baker's yeast, and sake yeast (Saccharomyces sake), etc. Can be mentioned. Among these, yeast of Saccharomyces genus is preferable, Saccharomyces cerevisiae is more preferable, and baker's yeast is more preferable among them because the ratio between the enzyme obtained by crushing yeast and the amount of coenzyme is good.
 また、本発明においては、取扱性の観点から、酵母を粉末状、又は、顆粒状になる程度まで乾燥(水分含量が、通常10質量%以下、好ましくは8質量%以下程度のもの)させた乾燥酵母(ドライイースト)を用いることが、保存性の観点から好ましい。 In the present invention, from the viewpoint of handleability, the yeast is dried to a degree of powder or granules (water content is usually 10% by mass or less, preferably 8% by mass or less). From the viewpoint of storage stability, it is preferable to use dry yeast (dry yeast).
 このようなドライイーストは市販されているものを用いることができ、例えば、パン酵母(Saccharomyces cerevisiae)のドライイーストとして、オリエンタル酵母工業(株)製のドライイースト、AB Mauli製のパン用ドライイースト、日本甜菜製糖(株)製の冷蔵パン用ドライイースト等を挙げることができる。 As such dry yeast, commercially available ones can be used. For example, as dry yeast of baker's yeast (Saccharomyces cerevisiae), dry yeast manufactured by Oriental Yeast Co., Ltd., AB Mauli's dry yeast for bread, Examples thereof include dry yeast for refrigerated bread manufactured by Nippon Sugar Sugar Co., Ltd.
 酵母菌由来の気相物質分解酵素の酵素活性値は、1.00μM/s以上であることが好ましく、1.50μM/s以上であることがより好ましい。前記酵素活性値は、エタノールの分解測定から得られる。酵素活性値が前記範囲の気相物質分解酵素を用いることが、十分な分解能を得るためにも好ましい。酵素活性値の測定方法は、実施例に記載の方法によって測定することができる。 The enzyme activity value of the gas phase substance-degrading enzyme derived from yeast is preferably 1.00 μM / s or more, and more preferably 1.50 μM / s or more. The enzyme activity value is obtained from a measurement of ethanol degradation. It is preferable to use a gas phase substance-degrading enzyme having an enzyme activity value within the above range in order to obtain sufficient resolution. The measuring method of an enzyme activity value can be measured by the method as described in an Example.
 酵母菌より気相物質分解酵素を取り出す方法は特に限定されず、酵母菌を破砕、自己消化した後、遠心分離で細胞壁等の不要物を取り除くことでなし得る。本発明においては、気相物質分解酵素を単離・精製する必要はなく、気相物質分解酵素を含む混合溶液(酵母破砕抽出液)として調整されれば良い。酵母破砕抽出液の製造方法の詳細については後述する。 The method for extracting the gas-phase substance-degrading enzyme from the yeast is not particularly limited, and it can be obtained by crushing the yeast and self-digesting, and then removing unnecessary substances such as cell walls by centrifugation. In the present invention, it is not necessary to isolate and purify the gas phase material-degrading enzyme, and it may be prepared as a mixed solution (yeast crushing extract) containing the gas phase material-degrading enzyme. The detail of the manufacturing method of a yeast crushing extract is mentioned later.
 前記気相物質分解酵素の含有割合は、本発明の気相物質分解体全量基準で、0.0001~5質量%であることが好ましく、0.001~0.5質量%であることがより好ましい。0.0001質量%未満では、気相中の物質を十分除去することが困難になる恐れがあり、5質量%より多いと反応に関与しない酵素の割合が増加し、酵素量あたりの反応率の観点から効率低下が生じる恐れがある。気相物質分解体中の気相物質分解酵素の含有量は、以下の手順で酵素活性値から算出することができる。 The content ratio of the gas phase material decomposing enzyme is preferably 0.0001 to 5% by mass and more preferably 0.001 to 0.5% by mass based on the total amount of the gas phase material decomposing substance of the present invention. preferable. If it is less than 0.0001% by mass, it may be difficult to sufficiently remove substances in the gas phase. If it exceeds 5% by mass, the proportion of enzymes not involved in the reaction increases, and the reaction rate per enzyme amount increases. There is a risk that efficiency will decrease from the viewpoint. The content of the gas phase substance-decomposing enzyme in the gas phase substance-decomposed product can be calculated from the enzyme activity value by the following procedure.
1)各種濃度の精製酵素のバッファー溶液(以下、精製酵素溶液)を準備し、それぞれの濃度の精製酵素溶液の酵素活性値を測定し、酵素濃度と測定した酵素活性値を元に検量線を作成する。
2)気相物質分解酵素を含む溶液(例えば、酵母破砕抽出液)の酵素活性値(μM/s)を測定し、前記作成した検量線から、気相物質分解酵素を含む溶液の濃度を算出する。
3)算出された気相物質分解酵素を含む溶液の濃度に、当該溶液を用いた量を乗じることで、気相物質分解体に使用された気相物質分解酵素量を算出する。
1) Prepare buffer solutions of purified enzymes of various concentrations (hereinafter referred to as purified enzyme solutions), measure the enzyme activity values of the purified enzyme solutions of each concentration, and create a calibration curve based on the enzyme concentrations and the measured enzyme activity values. create.
2) Measure the enzyme activity value (μM / s) of a solution containing a gas phase substance-degrading enzyme (for example, yeast disruption extract), and calculate the concentration of the solution containing the gas phase substance-decomposing enzyme from the calibration curve created above. To do.
3) The amount of the gas phase substance decomposing enzyme used in the gas phase substance decomposing body is calculated by multiplying the calculated concentration of the solution containing the gas phase substance decomposing enzyme by the amount using the solution.
 具体的には、例えば、気相物質分解酵素としてADHを用いた場合、精製酵素濃度が0.5mg/mL、1mg/mL、1.5mg/mL、2mg/mLの場合に、酵素活性値が、0.61μM/s、1.45μM/s、2.35μM/s、3.11μM/sであるので、当該数値を元に検量線を得ることができる。当該検量線から、使用したADH量(すなわち、気相物質分解体に含まれるADHの量)を算出することができる。 Specifically, for example, when ADH is used as a gas phase substance-degrading enzyme, when the purified enzyme concentration is 0.5 mg / mL, 1 mg / mL, 1.5 mg / mL, 2 mg / mL, the enzyme activity value is , 0.61 μM / s, 1.45 μM / s, 2.35 μM / s, 3.11 μM / s, and therefore a calibration curve can be obtained based on the numerical values. From the calibration curve, the amount of ADH used (that is, the amount of ADH contained in the gas phase substance decomposition product) can be calculated.
(2)補酵素
 本発明において、必要に応じで、酵母菌由来の気相物質分解酵素と供に、補酵素を使用することができる。前記補酵素も、気相物質分解酵素と同様に、酵母菌由来であることが好ましい。例えば、前記気相物質分解酵素が、ADH、ALDHである場合は、酸化型ニコチンアミドアデニンジヌクレオチド(NAD)を、アルデヒドオキシターゼである場合は、還元型ニコチンアミドアデニンジヌクレオチド(NADH)を用いることができる。
(2) Coenzyme In the present invention, a coenzyme can be used together with a gas phase substance-degrading enzyme derived from yeast as necessary. The coenzyme is also preferably derived from yeast as in the case of the gas phase substance-degrading enzyme. For example, when the gas phase substance degrading enzyme is ADH or ALDH, oxidized nicotinamide adenine dinucleotide (NAD + ) is used, and when it is an aldehyde oxidase, reduced nicotinamide adenine dinucleotide (NADH) is used. be able to.
 前記補酵素の含有割合は、本発明の気相物質分解体全量基準で、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。 The content of the coenzyme is preferably 20% by mass or less, and more preferably 10% by mass or less, based on the total amount of the gas phase substance decomposition product of the present invention.
(3)PVA系樹脂から形成される担持基材
 本発明で用いるPVA系樹脂としては、例えば、ポリ酢酸ビニルをケン化して得られたPVA樹脂やその誘導体;酢酸ビニルと、酢酸ビニルと共重合可能な単量体との共重合体のケン化物;PVA樹脂をアセタール化、ウレタン化、エーテル化、グラフト化、リン酸エステル化等した変性PVA樹脂;などが挙げられる。これらのPVA系樹脂は1種単独で、または2種以上を併用することができる。これらの中でも、吸湿性が良好である点からは、PVA樹脂が好ましい。
(3) Supporting substrate formed from PVA resin As PVA resin used in the present invention, for example, PVA resin obtained by saponifying polyvinyl acetate or a derivative thereof; vinyl acetate and vinyl acetate copolymerized Saponified products of copolymers with possible monomers; modified PVA resins obtained by acetalizing, urethanizing, etherifying, grafting, phosphoric esterifying, etc. of PVA resins; These PVA resins can be used alone or in combination of two or more. Among these, PVA resin is preferable from the viewpoint of good hygroscopicity.
 酢酸ビニルと共重合可能な単量体としては、(無水)マレイン酸、フマール酸、クロトン酸、イタコン酸、(メタ)アクリル酸等の不飽和カルボン酸及びそのエステル類;エチレン、プロピレン等のα-オレフィン、(メタ)アリルスルホン酸(ソーダ)、スルホン酸ソーダ(モノアルキルマレート)、ジスルホン酸ソーダアルキルマレート、N-メチロールアクリルアミド、アクリルアミドアルキルスルホン酸アルカリ塩、N-ビニルピロリドン、N-ビニルピロリドン誘導体等が挙げられる。これらの、酢酸ビニルと共重合可能な単量体は、PVA系樹脂中10モル%以下であることが好ましく、5モル%以下であることがより好ましい。 Monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids such as (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, (meth) acrylic acid and esters thereof; α such as ethylene and propylene -Olefin, (meth) allylsulfonic acid (soda), sulfonic acid soda (monoalkylmalate), disulfonic acid soda alkylmalate, N-methylolacrylamide, acrylamide alkylsulfonic acid alkali salt, N-vinylpyrrolidone, N-vinyl Examples include pyrrolidone derivatives. These monomers copolymerizable with vinyl acetate are preferably 10 mol% or less, more preferably 5 mol% or less in the PVA resin.
 上記PVA系樹脂の平均重合度は、気相物質の分解効率の点から、100~3000であることが好ましく、500~2000であることがより好ましい。また、PVA系樹脂の平均ケン化度は、85~100モル%であることが好ましく、90~100モル%であることがより好ましく、95~100モル%であることがさらに好ましい。本発明においては、PVA系樹脂の種類(組成)や分子量、ケン化度を上記範囲で適宜制御することにより、前述の効果を向上させることができる他、本発明の気相物質分解体や気相物質分解ユニットの耐久性を向上させることができるため好ましい。 The average degree of polymerization of the PVA resin is preferably 100 to 3000, more preferably 500 to 2000, from the viewpoint of the decomposition efficiency of the gas phase substance. The average saponification degree of the PVA-based resin is preferably 85 to 100 mol%, more preferably 90 to 100 mol%, and further preferably 95 to 100 mol%. In the present invention, by appropriately controlling the type (composition), molecular weight, and saponification degree of the PVA-based resin within the above ranges, the above-mentioned effects can be improved, and the gas phase substance decomposition product and gas phase of the present invention can be improved. This is preferable because the durability of the phase material decomposition unit can be improved.
 前記PVA系樹脂の含有割合は、本発明の気相物質分解体全量基準で、30~98質量%であることが好ましく、50~95質量%であることがより好ましい。98質量%より多いと高い酵素活性を発揮させることが困難になる恐れがあり、30質量%未満では酵素活性を長期間にわたって維持することが困難になる恐れがある。 The content ratio of the PVA-based resin is preferably 30 to 98% by mass, more preferably 50 to 95% by mass, based on the total amount of the gas phase substance decomposition product of the present invention. If it exceeds 98% by mass, it may be difficult to exert high enzyme activity, and if it is less than 30% by mass, it may be difficult to maintain the enzyme activity over a long period of time.
(4)水
 本発明の気相物質分解体は、水を含有するものである。前記水の含有割合は、本発明の気相物質分解体全量基準で、1.9999~50質量%であることが好ましく、5~35質量%であることがより好ましい。前記水は、本発明の気相物質分解体の使用時にこのような含有割合であることが好ましい。水の含有割合が1.9999質量%未満では酵素反応の効率が低下する恐れがあり、50質量%より高いと長期保存の際に酵素の劣化が生じ易くなる恐れがあると共に、気相物質分解体自体の力学的強度が極端に低下する恐れがある。
(4) Water The vapor-phase material decomposition product of the present invention contains water. The content ratio of the water is preferably 1.9999 to 50% by mass, more preferably 5 to 35% by mass, based on the total amount of the gas phase substance decomposition product of the present invention. The water is preferably contained in such a proportion when the vapor-phase material decomposer of the present invention is used. If the water content is less than 1.9999% by mass, the efficiency of the enzyme reaction may be reduced. If the content is higher than 50% by mass, the enzyme may be easily deteriorated during long-term storage. The mechanical strength of the dismantling itself may be extremely reduced.
 本発明の気相物質分解体において、前記好ましい水の含有割合の調整は、使用環境下における気相物質分解体の自発的な吸湿性を利用して調整することができる他、使用環境においては、使用時あるいは使用中に気相物質分解体に断続的又は連続的に適量の水分を噴霧する方法等によって水を供給して好ましい水分量を調整することもできる。 In the gas phase material decomposition product of the present invention, the preferable content ratio of water can be adjusted by utilizing the spontaneous hygroscopic property of the gas phase material decomposition product in the use environment. It is also possible to adjust the preferable amount of water by supplying water by a method of spraying an appropriate amount of water intermittently or continuously to the gas phase substance decomposer during use or during use.
 本発明の気相物質分解体において、前記好ましい水の含有割合の調整は、前記PVA系樹脂における水酸基が本来有する吸湿性を直接利用して制御する方法に加えて、気相物質分解体中に吸湿性を調整しうる添加剤を含有させる方法によっても行なうことができる。 In the gas phase material decomposition product according to the present invention, the adjustment of the preferable water content ratio is performed in the gas phase material decomposition product in addition to the method of directly utilizing the hygroscopic property inherent in the hydroxyl group in the PVA resin. It can also be performed by a method of containing an additive capable of adjusting the hygroscopicity.
 本発明の気相物質分解体に含有させることが可能な前記吸湿性を調整しうる添加剤としては、例えば、糖類、多価アルコール類、ポリアルキレングリコール類及びアミノ酸類の少なくとも1種が好ましく挙げられる。具体的には、例えば、ブドウ糖、ショ糖、マルトース、キシリトール、トレハロース、オリゴ糖、セルロース、カルボキシメチルセルロース、コンドロイチン硫酸等の糖類;エチレングリコール、プロピレングリコール、ブチレングリコール、グリセリン、ジグリセリン、ポリグリセリン等の多価アルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体等のポリアルキレングリコール類;アスパラギン酸、アルギニン等のアミノ酸類等が挙げられる。これらの中でも吸湿性を付与することに加えて、酵素の劣化抑制効果を併せ持つ点で、上記具体的に挙げた糖類の少なくとも1種を好ましく用いることができる。また、これらの成分は、気相物質分解酵素と同様に、酵母菌由来であることが好ましい。 Examples of the additive capable of adjusting the hygroscopic property that can be contained in the gas phase substance decomposition product of the present invention include at least one of saccharides, polyhydric alcohols, polyalkylene glycols, and amino acids. It is done. Specifically, for example, sugars such as glucose, sucrose, maltose, xylitol, trehalose, oligosaccharide, cellulose, carboxymethylcellulose, chondroitin sulfate; ethylene glycol, propylene glycol, butylene glycol, glycerin, diglycerin, polyglycerin, etc. Polyhydric alcohols; Polyalkylene glycols such as polyethylene glycol, polypropylene glycol, polybutylene glycol, polyethylene glycol-polypropylene glycol copolymer; and amino acids such as aspartic acid and arginine. Among these, in addition to imparting hygroscopicity, at least one of the saccharides specifically mentioned above can be preferably used in that it has an effect of inhibiting degradation of the enzyme. Moreover, it is preferable that these components are derived from yeast as well as the gas phase substance-degrading enzyme.
 前記吸湿性を調整しうる添加剤を含有させる場合の含有割合は、気相物質分解体全量基準で、50質量%以下であることが好ましく、1~50質量%であることがより好ましく、5~20質量%であることがさらに好ましい。前記吸湿性を調整しうる添加剤の含有割合が50質量%より多いと、PVA系樹脂の効果を損なう恐れがある。 When the additive capable of adjusting the hygroscopicity is contained, the content is preferably 50% by mass or less, more preferably 1 to 50% by mass, based on the total amount of the gas phase substance decomposition product. More preferably, it is ˜20% by mass. When the content of the additive capable of adjusting the hygroscopicity is more than 50% by mass, the effect of the PVA resin may be impaired.
(5)その他
 本発明の気相物質分解体は、前記PVA系樹脂、気相物質分解酵素、水を含むものである。また任意で前記補酵素や吸湿性を調整しうる添加剤を添加することができる。
(5) Others The vapor phase material decomposition product of the present invention contains the PVA resin, the gas phase material decomposition enzyme, and water. Moreover, the said coenzyme and the additive which can adjust hygroscopicity can be added arbitrarily.
 さらに、本発明の気相物質分解体には、前記以外にも必要に応じて、酵素活性を損なわない範囲で他の添加剤を含有させることができる。他の添加剤としては、例えば、無機塩類、有機塩類、界面活性剤、防腐剤、色素、架橋剤、紫外線吸収剤、基材との密着性を高めるためのプライマー等が挙げられる。これら他の添加剤の含有割合は、その所望の効果を達成し、かつ、本発明の所望の効果を損なわない範囲で適宜決定することができるが、例えば、気相物質分解体全量基準で、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、3質量%以下であることがさらに好ましい。 Furthermore, the gas phase material decomposition product of the present invention may contain other additives in addition to the above as long as the enzyme activity is not impaired. Examples of other additives include inorganic salts, organic salts, surfactants, preservatives, dyes, cross-linking agents, ultraviolet absorbers, primers for improving adhesion to the substrate, and the like. The content ratio of these other additives can be appropriately determined within a range that achieves the desired effect and does not impair the desired effect of the present invention. It is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less.
 本発明の気相物質分解体の形態としては、特に限定されるものではないが、前記PVA系樹脂が担持基材を形成し、該担持基材中に前記酵素が分散した固化形態であることが好ましい。固化形態は、流動性がなければゲル状であっても良いが、気相物質分解体の機械的強度等を考慮する場合には、ある程度の硬度を有することが好ましい。また、前記酵素の分散状態は、前記重合体中に埋入した状態で分散していても、また、一部が露出して分散していても良い。 The form of the vapor phase substance decomposition product of the present invention is not particularly limited, but is a solidified form in which the PVA resin forms a supporting substrate and the enzyme is dispersed in the supporting substrate. Is preferred. The solidified form may be in the form of a gel as long as it does not have fluidity, but it is preferable to have a certain degree of hardness when considering the mechanical strength of the gas phase substance decomposition product. Further, the enzyme may be dispersed in an embedded state in the polymer, or may be partly exposed and dispersed.
 本発明の気相物質分解体の具体的な形態としては、シート状、メッシュ状、フィルム状等の形態を挙げることができ、この中でもフィルム状であることが好ましい。また、その厚さは、0.01~5000μmであることが好ましく、0.1~100μmであることがより好ましい。厚さが0.01μm未満の場合には、前記酵素がフィルム内部よりも外部に露出する割合が多くなり、前記酵素の安定性が低下する恐れがあり、5000μmより厚いと前記酵素と反応する気相物質と前記酵素とが十分な接触が得られ難くなり酵素反応性が低下する恐れがある。 Specific examples of the vapor-phase material decomposition product of the present invention include a sheet shape, a mesh shape, and a film shape, and among these, a film shape is preferable. The thickness is preferably from 0.01 to 5000 μm, more preferably from 0.1 to 100 μm. If the thickness is less than 0.01 μm, the ratio of the enzyme exposed to the outside rather than the inside of the film increases, and the stability of the enzyme may be reduced. If the thickness is greater than 5000 μm, the enzyme reacts with the enzyme. It is difficult to obtain sufficient contact between the phase substance and the enzyme, and the enzyme reactivity may be reduced.
 本発明の気相物質分解体は、特定の気相物質分解酵素、PVA系樹脂、及び、水を含むことで前述の効果を奏するものであるが、特に、特定の気相物質分解酵素、PVA系樹脂、及び、水の含有割合の前記範囲に制御したり、さらに、特定の添加物を含有させることにより、気相物質分解体を長期保存した場合にも本発明の効果が得られ、さらには本発明の効果を長期維持することが可能とすることができるため好ましい。 The gas phase material decomposition product of the present invention has the above-mentioned effects by including a specific gas phase material decomposition enzyme, a PVA resin, and water. In particular, the gas phase material decomposition enzyme, PVA The effect of the present invention can be obtained even when the gas phase substance decomposed product is stored for a long period of time by controlling the content ratio of the resin and water in the above range, or by adding a specific additive. Is preferable because the effect of the present invention can be maintained for a long time.
 また、本発明の気相物質分解体は、前述の通り、PVA系樹脂、酵母由来の気相物質分解酵素、及び、水を含む混合液から形成されるものであるが、前記混合液は、酵母由来の気相物質分解酵素、酵母由来の補酵素、水等を含むことが好ましく、後述する酵母を破砕して得られる気相物質分解酵素を含む酵母破砕抽出液とPVA系樹脂溶液を混合して得られたものであることが好ましい。酵母破砕抽出液には、酵母由来の気相物質分解酵素、酵母由来の補酵素、水が含まれるものである。 Moreover, as described above, the gas phase material decomposition product of the present invention is formed from a mixed solution containing a PVA resin, a yeast-derived gas phase material decomposing enzyme, and water. It preferably contains yeast-derived gas-phase substance-degrading enzyme, yeast-derived coenzyme, water, etc., and mixes yeast disruption extract containing gas-phase substance-degrading enzyme obtained by crushing yeast described later and PVA resin solution It is preferable that it is obtained. The yeast crushing extract contains a yeast-derived gas phase material degrading enzyme, a yeast-derived coenzyme, and water.
(6)気相物質分解体の製造方法
 本発明の気相物質分解体の製造方法は、特に限定されるものではないが、例えば、PVA系樹脂、酵母由来の気相物質分解酵素、及び、水を含む混合液を基体上に塗布して塗布膜を形成する工程、前記塗布膜を乾燥する工程、を含む製造方法により製造することができる。
(6) Method for Producing Gas Phase Material Decomposition Body The method for producing the gas phase material decomposition body of the present invention is not particularly limited. For example, PVA resin, yeast-derived gas phase material decomposition enzyme, and It can be manufactured by a manufacturing method including a step of coating a mixed solution containing water on a substrate to form a coating film, and a step of drying the coating film.
 また、前記混合液は、酵母を破砕して得られる気相物質分解酵素を含む酵母破砕抽出液、及び、PVA系樹脂溶液を混合して得られることが好ましい。このように、本発明においては、気相物質分解酵素を単離することなく、酵母破砕抽出液そのままをPVA系樹脂溶液と混合するという非常に簡単な方法により、気相物質分解体を製造することができるものである。以下、本発明の好ましい態様である、酵母破砕抽出液を用いる方法について具体的に説明をする。 The mixed solution is preferably obtained by mixing a yeast disruption extract containing a gas phase substance-degrading enzyme obtained by disrupting yeast and a PVA resin solution. As described above, in the present invention, a gas phase material degradation product is produced by a very simple method of mixing a yeast disruption extract directly with a PVA resin solution without isolating the gas phase material degradation enzyme. It is something that can be done. Hereinafter, the method using the yeast disruption extract, which is a preferred embodiment of the present invention, will be specifically described.
 酵母菌より、気相物質分解酵素を含む酵母破砕抽出液を得る具体的な方法としては、以下の通りである。
1)上記酵母菌を所定量の溶媒に溶解して酵母菌溶液を作製する。この時、酵母菌溶液の濃度は、0.1~0.5g/mLであることが好ましく、0.15~0.3g/mLであることがより好ましい。前記溶媒としては、例えば、水;酢酸緩衝液、リン酸緩衝液、トリス-塩酸緩衝液、炭酸緩衝液、グッドの緩衝液等の各種緩衝溶液;エタノール、メタノール、プロパノール、ジメチルスルホキシド、ジメチルホルムアミド等の各種有機溶媒の単独液あるいは混合液を用いることができる。酵素の種類によってはアルコールと反応する場合もあるので、これらの中でも、酵素が不可逆的な変性を起こさない水、又は、緩衝溶液が好ましい。緩衝溶液のpHとしては、pH6.0~9.0であることが好ましく、特にpH8であることがより好ましい。
2)前記酵母菌溶液をビーズ式細胞破砕機に投入し、酵母菌を破砕する。この際、適宜な形状、量のガラスビーズを用いる。破砕の条件は適宜決定できるが、通常加速度1~10m/s程度であり、任意な回数(例えば、1回10~120秒程度の処理を1~5回程度)の条件で破砕することができる。また、破砕時の温度は、特に限定されないが、45℃以下であることが好ましく、40℃以下であることがより好ましく、30℃以下であることがさらに好ましく、15℃以下であることが特に好ましい。また、必要に応じて、冷却しながら破砕してもよい。通常、酵素は30℃で失活が始まり、50℃で完全に失活するが、本発明で用いる酵母破砕抽出液中に含まれる酵素は40℃でも失活しないものであり、耐熱性が高いものである。
3)得られた破砕液を冷却遠心機を用いて遠心分離し、その上清を分取してこれを酵母破砕抽出液とすることができる。冷却遠心機の条件についても適宜調整可能であるが、通常、1~10℃、500~10,000rpm、1~10分程度である。
A specific method for obtaining a yeast disruption extract containing a gas phase substance-degrading enzyme from yeast is as follows.
1) The yeast is dissolved in a predetermined amount of solvent to prepare a yeast solution. At this time, the concentration of the yeast solution is preferably 0.1 to 0.5 g / mL, and more preferably 0.15 to 0.3 g / mL. Examples of the solvent include water; various buffer solutions such as acetate buffer, phosphate buffer, Tris-HCl buffer, carbonate buffer, Good's buffer; ethanol, methanol, propanol, dimethyl sulfoxide, dimethylformamide, and the like. These organic solvents can be used alone or as a mixture. Depending on the type of enzyme, it may react with alcohol, and among these, water or a buffer solution in which the enzyme does not cause irreversible denaturation is preferable. The pH of the buffer solution is preferably pH 6.0 to 9.0, and more preferably pH 8.
2) The yeast solution is put into a bead-type cell crusher to crush the yeast. At this time, glass beads having an appropriate shape and amount are used. The crushing conditions can be determined as appropriate, but the acceleration is usually about 1 to 10 m / s, and the crushing can be performed under any number of times (for example, about 1 to 5 times of treatment for about 10 to 120 seconds at a time). . The temperature at the time of crushing is not particularly limited, but is preferably 45 ° C. or less, more preferably 40 ° C. or less, further preferably 30 ° C. or less, and particularly preferably 15 ° C. or less. preferable. Moreover, you may crush, cooling, as needed. Usually, the enzyme begins to be inactivated at 30 ° C. and completely inactivated at 50 ° C., but the enzyme contained in the yeast crushed extract used in the present invention is not inactivated even at 40 ° C. and has high heat resistance. Is.
3) The obtained crushed liquid is centrifuged using a refrigerated centrifuge, and the supernatant is collected to obtain a yeast crushed extract. The conditions of the cooling centrifuge can be adjusted as appropriate, but are usually 1 to 10 ° C., 500 to 10,000 rpm, and about 1 to 10 minutes.
 前記PVA系樹脂としては、前述のものを好適に用いることができる。また、前記PVA系樹脂溶液に用いる溶媒としては、例えば、水;酢酸緩衝液、リン酸緩衝液、トリス-塩酸緩衝液、炭酸緩衝液、グッドの緩衝液等の各種緩衝溶液;エタノール、メタノール、プロパノール、ジメチルスルホキシド、ジメチルホルムアミド等の各種有機溶媒の単独液あるいは混合液を用いることができる。これらの中でも、水又は緩衝溶液が好ましい。 As the PVA-based resin, those described above can be preferably used. Examples of the solvent used for the PVA resin solution include water; various buffer solutions such as acetate buffer, phosphate buffer, Tris-HCl buffer, carbonate buffer, Good's buffer; ethanol, methanol, A single solution or a mixture of various organic solvents such as propanol, dimethyl sulfoxide, dimethylformamide and the like can be used. Among these, water or a buffer solution is preferable.
 前記PVA系樹脂溶液の濃度は、特に限定されるものではないが、1~15質量%であることが好ましく、5~10質量%であることがより好ましい。 The concentration of the PVA resin solution is not particularly limited, but is preferably 1 to 15% by mass, and more preferably 5 to 10% by mass.
 前記酵母破砕抽出液、PVA系樹脂溶液の混合割合としては、特に限定されるものではないが、例えば、酵母破砕抽出液:PVA系樹脂溶液=0.5:9.5~4:6(質量比)であることが好ましく、1:9~2:8(質量比)であることがより好ましい。 The mixing ratio of the yeast crushed extract and the PVA resin solution is not particularly limited. For example, the yeast crushed extract: PVA resin solution = 0.5: 9.5 to 4: 6 (mass) Ratio), preferably 1: 9 to 2: 8 (mass ratio).
 前記混合液には、前記PVA系樹脂溶液、酵母破砕抽出液以外に、必要に応じて、前記各種添加剤を混合することができる。また、各種添加剤は、気相物質分解体中における配合量が前記範囲内になるように、混合液に添加することができる。 In addition to the PVA resin solution and the yeast crushing extract, the various additives can be mixed in the mixed solution as necessary. Moreover, various additives can be added to a liquid mixture so that the compounding quantity in a gaseous-phase material decomposition body may become in the said range.
 また、前記塗布、乾燥は、前記混合液を基体に塗布して塗布膜を形成し、該塗布膜から溶媒を蒸発(乾燥)させてフィルム状等に形成する溶媒キャスト法、連続的に基体をスライドさせながら一定量の前記混合液を塗布し溶媒を乾燥させていく連続コーティング法、前記混合液をスプレー等で適当な基体に噴霧して乾燥させる方法等が挙げられる。 In addition, the coating and drying may be performed by applying the mixed solution to a substrate to form a coating film, and evaporating (drying) the solvent from the coating film to form a film or the like. Examples thereof include a continuous coating method in which a certain amount of the mixed solution is applied while being slid and the solvent is dried, and a method in which the mixed solution is sprayed onto a suitable substrate and dried.
 本発明の気相物質分解体を製造する際に用いる前記PVA系樹脂及び酵素等を含む前記混合液中の前記PVA系樹脂濃度は、気相物質分解体を例えばフィルムに容易に調製できる濃度であれば良く、通常0.1~50質量%の範囲である。前記重合体濃度が0.1質量%未満では、製造効率が低下する恐れがあり、50質量%を超えると前記混合液の粘度が上昇し気相物質分解体形成時のハンドリング性が低下する恐れが生じる。 The concentration of the PVA-based resin in the mixed solution containing the PVA-based resin and the enzyme used when producing the gas-phase material decomposed material of the present invention is such a concentration that the gas-phase material decomposed material can be easily prepared into a film, for example Usually, it is in the range of 0.1 to 50% by mass. If the polymer concentration is less than 0.1% by mass, the production efficiency may decrease. If the polymer concentration exceeds 50% by mass, the viscosity of the mixed solution increases and the handling property at the time of forming a gas phase substance decomposition product may decrease. Occurs.
 本発明の気相物質分解体を製造するにあたり、前記混合液を塗布等するための基体の材質としては、金属類、セラミックス、木製、プラスチック、ガラス、紙等が挙げられ、その形態としては、板、曲面を有する基体、繊維、不織布、多孔質体等が挙げられる。 In producing the vapor phase substance decomposed body of the present invention, the material of the substrate for applying the mixed liquid includes metals, ceramics, wood, plastic, glass, paper, etc. Examples thereof include a plate, a substrate having a curved surface, a fiber, a nonwoven fabric, and a porous body.
 本発明の気相物質分解体を製造するにあたり、前記塗布膜の乾燥工程は、前記PVA系樹脂を含むので酵素の劣化を抑制して行なうことが可能であるが、製造工程中、酵素が最も劣化し易い工程であるので注意して行うことが好ましい。具体的には、通常、10~70℃の範囲、望ましくは20~50℃の範囲で乾燥する。乾燥温度が10℃未満では、乾燥効率が低下する恐れがあり、70℃より高温では前記重合体による酵素劣化抑制効果が低下し、酵素が劣化する恐れがある。 In the production of the gas phase substance decomposition product of the present invention, the drying step of the coating film can be performed while suppressing degradation of the enzyme because it contains the PVA resin, but the enzyme is the most in the production process. Since it is a process that easily deteriorates, it is preferable to perform it carefully. Specifically, it is usually dried in the range of 10 to 70 ° C., desirably in the range of 20 to 50 ° C. If the drying temperature is less than 10 ° C., the drying efficiency may be lowered, and if it is higher than 70 ° C., the enzyme deterioration suppressing effect by the polymer is lowered, and the enzyme may be deteriorated.
 前記基体に形成した本発明の気相物質分解体は、そのまま後述する本発明の気相物質分解ユニットとして用いることができる他、例えば、フィルム形態等の場合であって、十分な厚みと強度がある場合には、基体から剥がして自己支持性のフィルムとして利用することができる。 The vapor-phase material decomposition product of the present invention formed on the substrate can be used as it is as a vapor-phase material decomposition unit of the present invention, which will be described later. In some cases, it can be peeled off from the substrate and used as a self-supporting film.
2.気相物質分解ユニット
 本発明の気相物質分解ユニットは、上述の本発明の気相物質分解体を、空気等の気相に接することができるように基体上に設けたものである。基体としては、上述の基体、さらには、このような基体を含む建材、家具、衣類、エアコン機器、エアフィルター、冷蔵庫、自動車等を挙げることができる。
2. Gas Phase Material Decomposition Unit The gas phase material decomposition unit of the present invention is a unit in which the above-described gas phase material decomposition product of the present invention is provided on a substrate so as to be in contact with a gas phase such as air. Examples of the substrate include the above-described substrates, and further, building materials, furniture, clothing, air-conditioning equipment, air filters, refrigerators, automobiles, and the like including such a substrate.
3.気相浄化方法
 本発明の気相浄化方法は、前記本発明の気相物質分解ユニットを空気等の気相と接触させることを特徴とする。
3. Gas Phase Purification Method The gas phase purification method of the present invention is characterized in that the gas phase material decomposition unit of the present invention is brought into contact with a gas phase such as air.
 前記気相物質分解ユニットを気相に接触させる方法としては、気相物質分解ユニットの気相物質分解体を、浄化すべき気相に暴露させる方法、また、例えば、繊維質や多孔質等の微小な空間に気相物質分解体が形成された気相物質分解ユニットの場合には、浄化すべき気相をファン等で流れを作り、該微小な空間の気相物質分解体に接触するように気相を送り込む方法等により接触させることができる。 Examples of the method for bringing the gas phase material decomposition unit into contact with the gas phase include a method in which the gas phase material decomposition product of the gas phase material decomposition unit is exposed to the gas phase to be purified. In the case of a gas phase material decomposition unit in which a gas phase material decomposition product is formed in a minute space, a flow of the gas phase to be purified is made with a fan or the like so as to contact the gas phase material decomposition product in the minute space. Can be brought into contact with each other by a method of feeding a gas phase to the substrate.
 本発明の気相浄化方法においては、前記気相物質分解ユニットの気相物質分解体表面に、酵素と反応可能な気相中の物質が吸着し、該表面に存在する酵素に結合、若しくは、気相物質分解体内部の酵素まで吸着された物質が移動して結合して、酵素反応が進行することにより、該物質が分解浄化される。 In the gas phase purification method of the present invention, a substance in the gas phase capable of reacting with the enzyme is adsorbed on the surface of the gas phase substance decomposition body of the gas phase substance decomposition unit, and bound to the enzyme present on the surface, or The substance adsorbed to the enzyme in the gas phase substance decomposition product moves and binds, and the enzyme reaction proceeds to decompose and purify the substance.
 以下に、実施例及び比較例を挙げて本発明をより具体的に説明する。但し、本発明は、以下の実施例及び比較例に何ら制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples and comparative examples.
調製例1 PVA溶液の調製
 50mM NaHPOバッファー(pH8.0)10mLにPVA(商品名:JF-17、重合度:1700、ケン化度:98~99%、日本酢ビ・ポバール(株)製)を溶解してPVA溶液(5質量%)を作製した。得られたPVA溶液は、実施例及び比較例において担持場として用いた。
Preparation Example 1 Preparation of PVA solution PVA (trade name: JF-17, degree of polymerization: 1700, degree of saponification: 98-99%, Nippon Vinegar Poval (stock) in 10 mL of 50 mM NaH 2 PO 4 buffer (pH 8.0) )) Was dissolved to prepare a PVA solution (5% by mass). The obtained PVA solution was used as a supporting field in Examples and Comparative Examples.
実施例1
1.酵母破砕抽出液の作製
 ドライイースト(商品名:オリエンタルイースト/一般用、Saccharomyces cerevisiae、オリエンタル酵母工業(株)製)12.5gを50mM NaHPOバッファー(pH8.0)50mLに溶解し、φ1.0mmのガラスビーズ(富士理科工業(株)製)4.0gと共に15mL遠沈管(Falcon社製)に充填した。これをビーズ式細胞破砕機(Fast prep 24、MP-Biomedicals社製)を用い、氷冷却しながら、加速度6.0m/s、30s×2の条件で破砕した。この破砕液を冷却遠心機((株)トミー精工製)にて5℃、4000rpm、5分の条件で遠心分離し、その上清を分取してこれを酵母破砕抽出液とした。また、前記酵母破砕抽出液には、酵素として、アルコールデヒドロゲナーゼ(ADH)、補酵素として、酸化型ニコチンアミドアデニンジヌクレオチド(NAD)が含まれていた。得られた酵母破砕抽出液について、以下の方法で、酵素活性値を測定したところ、1.1μM/sであった。
Example 1
1. Preparation of yeast crushed extract 12.5 g of dry yeast (trade name: Oriental yeast / general use, Saccharomyces cerevisiae, manufactured by Oriental Yeast Co., Ltd.) was dissolved in 50 mL of 50 mM NaH 2 PO 4 buffer (pH 8.0), φ1 A 15 mL centrifuge tube (Falcon) was packed together with 4.0 g of 0.0 mm glass beads (Fuji Science Industry Co., Ltd.). This was crushed using a bead type cell crusher (Fast prep 24, manufactured by MP-Biomedicals) under the conditions of acceleration 6.0 m / s, 30 s × 2 while cooling with ice. This crushed liquid was centrifuged under conditions of 5 ° C., 4000 rpm, and 5 minutes with a cooling centrifuge (manufactured by Tommy Seiko Co., Ltd.), and the supernatant was collected to obtain a yeast crushed extract. In addition, the yeast crush extract contained alcohol dehydrogenase (ADH) as an enzyme and oxidized nicotinamide adenine dinucleotide (NAD + ) as a coenzyme. About the obtained yeast crushing extract, the enzyme activity value was measured by the following method and found to be 1.1 μM / s.
<酵素活性値の測定方法>
1)光路長1cmの光学セルに、NAD溶液(10mM)250μLを入れた。さらに、50mMのNaHPOバッファー(pH8.0)を1200μL、1.5Mエタノール600μLを充填し、撹拌した。前記光学セルを分光光度計(装置商品名等:UV-2550、(株)島津製作所製)にセットし、実施例1~3で得られた酵母破砕抽出液20μLと50mMのNaHPOバッファー(pH8.0)600μLを手早く入れた。
2)340nm(NADH)の吸光度を経時で計測した。測定した吸光度変化量と下記式から、時間毎の340nm(NADH)の濃度をプロットしたグラフを作成した。測定開始から10秒までの初期のグラフの傾きから、酵素活性値(単位:μM/s、単位時間当たりの酵素濃度)を算出した。
 なお、上記算出にあたり、初期のグラフの傾きとしたのは、酵母破砕抽出液に含まれる酵素(ADH)により、以下に示すアルコールをアルデヒドに変換する反応が生じており、当該反応は可逆反応であるため、逆反応を考慮する必要がない測定初期のグラフの傾きから、酵素活性値を算出したものである。
Figure JPOXMLDOC01-appb-C000001

(分析方法)
Figure JPOXMLDOC01-appb-M000002

ΔA340/min:340nmにおける1分間当りの吸光度変化量
D:酵素希釈率(1)
V:最終液量(2.67mL)
ε:340nmにおけるNADHのミリモル分子吸光係数(6.3L・mmol-1・cm-1
d:光路長(1cm)
v:酵素液量(0.02mL)
<Method for measuring enzyme activity value>
1) An optical cell having an optical path length of 1 cm was charged with 250 μL of NAD + solution (10 mM). Furthermore, 1200 μL of 50 mM NaH 2 PO 4 buffer (pH 8.0) and 600 μL of 1.5 M ethanol were charged and stirred. The optical cell was set in a spectrophotometer (equipment trade name, etc .: UV-2550, manufactured by Shimadzu Corporation), and 20 μL of yeast disruption extract obtained in Examples 1 to 3 and 50 mM NaH 2 PO 4 buffer were used. (PH 8.0) 600 μL was quickly added.
2) Absorbance at 340 nm (NADH) was measured over time. A graph plotting the concentration of 340 nm (NADH) every hour was created from the measured change in absorbance and the following formula. The enzyme activity value (unit: μM / s, enzyme concentration per unit time) was calculated from the slope of the initial graph from the start of measurement to 10 seconds.
In the above calculation, the slope of the initial graph is that the enzyme (ADH) contained in the yeast disruption extract causes the following reaction to convert alcohol to aldehyde, which is a reversible reaction. Therefore, the enzyme activity value is calculated from the slope of the graph at the initial stage of measurement without considering the reverse reaction.
Figure JPOXMLDOC01-appb-C000001

(Analysis method)
Figure JPOXMLDOC01-appb-M000002

ΔA 340 / min: absorbance change per minute at 340 nm D: enzyme dilution rate (1)
V: Final liquid volume (2.67 mL)
ε: mmol molecular absorption coefficient of NADH at 340 nm (6.3 L · mmol −1 · cm −1 )
d: Optical path length (1 cm)
v: Enzyme solution amount (0.02 mL)
2.フィルムの作製
 上記で得られた酵母破砕抽出液0.7mLを5質量%PVA溶液3.3mLに添加した。これを外径91mm×高さ20mmのシャーレに滴下後、一晩(約12時間)、室温(23℃)下にてシートの含水率が20%程度になるまで乾燥させることで、厚さ10~50μmのシートサンプルを作製した。シートサンプルの全重量は、250mgであった。
2. Production of Film 0.7 mL of the yeast crushed extract obtained above was added to 3.3 mL of a 5% by mass PVA solution. After dropping this onto a petri dish having an outer diameter of 91 mm × height of 20 mm, the sheet is dried overnight (about 12 hours) at room temperature (23 ° C.) until the moisture content of the sheet reaches about 20%. A sheet sample of ˜50 μm was prepared. The total weight of the sheet sample was 250 mg.
 得られたシートサンプルに含まれるPVA樹脂は165mgである(5質量%PVA溶液を3.3mL使用)。また、前述の通り、酵素活性が1.1μM/sであり、そこから算出される有効酵素量濃度は、0.80mg/mLである。使用した酵母破砕抽出液量は、0.7mLであるので、得られたシートサンプルに含まれる有効酵素量は0.56mgである。 The PVA resin contained in the obtained sheet sample is 165 mg (use 3.3 mL of 5 mass% PVA solution). Further, as described above, the enzyme activity is 1.1 μM / s, and the effective enzyme amount concentration calculated therefrom is 0.80 mg / mL. Since the used yeast crush extract amount is 0.7 mL, the amount of effective enzyme contained in the obtained sheet sample is 0.56 mg.
実施例2
 実施例1で用いたドライイーストの代わりに、AB Mauli社製のパン用ドライイースト(商品名:Active Dry Yeast(ADY)、Saccharomyces cerevisiae)を用いた以外は実施例1と同様にして、シートサンプルを作製した。シートサンプルの全重量は、250mgであった。
Example 2
In the same manner as in Example 1 except that dry yeast for bread (trade name: Active Dry Yeast (ADY), Saccharomyces cerevisiae) manufactured by AB Mauli was used instead of the dry yeast used in Example 1. Was made. The total weight of the sheet sample was 250 mg.
 実施例2の酵母破砕抽出液には、酵素として、アルコールデヒドロゲナーゼ(ADH)、補酵素として、酸化型ニコチンアミドアデニンジヌクレオチド(NAD)が含まれており、酵素活性値は、1.9μM/sであった。 The yeast crushing extract of Example 2 contains alcohol dehydrogenase (ADH) as an enzyme and oxidized nicotinamide adenine dinucleotide (NAD + ) as a coenzyme, and the enzyme activity value is 1.9 μM / s.
 得られたシートサンプルに含まれるPVA樹脂は165mgである(5質量%PVA溶液を3.3mL使用)。また、前述の通り、酵素活性が1.9μM/sであり、そこから算出される有効酵素量濃度は、1.28mg/mLである。使用した酵母破砕抽出液量は、0.7mLであるので、得られたシートサンプルに含まれる有効酵素量は0.90mgである。 The PVA resin contained in the obtained sheet sample is 165 mg (use 3.3 mL of 5 mass% PVA solution). Further, as described above, the enzyme activity is 1.9 μM / s, and the effective enzyme amount concentration calculated therefrom is 1.28 mg / mL. Since the used yeast crushing extract amount is 0.7 mL, the amount of effective enzyme contained in the obtained sheet sample is 0.90 mg.
実施例3
 実施例1で用いたドライイーストの代わりに、日本甜菜製糖(株)製冷蔵パン用ドライイースト(商品名:ニッテンFRイーストのドライイースト化品、Saccharomyces cerevisiae)を用いた以外は実施例1と同様にして、シートサンプルを作製した。シートサンプルの全重量は、250mgであった。
Example 3
Instead of the dry yeast used in Example 1, it was the same as Example 1 except that dry yeast for refrigerated bread (trade name: Nitten FR yeast dry yeast product, Saccharomyces cerevisiae) manufactured by Nippon Sugar Sugar Co., Ltd. was used. Thus, a sheet sample was produced. The total weight of the sheet sample was 250 mg.
 実施例3の酵母破砕抽出液には、酵素として、アルコールデヒドロゲナーゼ(ADH)、補酵素として、酸化型ニコチンアミドアデニンジヌクレオチド(NAD)が含まれており、酵素活性値は、1.7μM/sであった。 The yeast crushing extract of Example 3 contains alcohol dehydrogenase (ADH) as an enzyme and oxidized nicotinamide adenine dinucleotide (NAD + ) as a coenzyme, and the enzyme activity value is 1.7 μM / s.
 得られたシートサンプルに含まれるPVA樹脂は165mgである(5質量%PVA溶液を3.3mL使用)。また、前述の通り、酵素活性が1.7μM/sであり、そこから算出される有効酵素量濃度は、1.13mg/mLである。使用した酵母破砕抽出液量は、0.7mLであるので、得られたシートサンプルに含まれる有効酵素量は0.79mgである。 The PVA resin contained in the obtained sheet sample is 165 mg (use 3.3 mL of 5 mass% PVA solution). Moreover, as above-mentioned, enzyme activity is 1.7 micromol / s and the effective enzyme amount density | concentration calculated from there is 1.13 mg / mL. Since the used yeast crush extract amount is 0.7 mL, the amount of effective enzyme contained in the obtained sheet sample is 0.79 mg.
比較例1
 50mM NaHPOバッファー(pH8.0)0.7mLを、5質量%PVA溶液3.3mLに添加し、これを外径91mm×高さ20mmのシャーレに滴下後、一晩(約12時間)、室温(23℃)下にて乾燥させることで厚さ10~50μmのシートサンプルを作製した。
Comparative Example 1
0.7 mL of 50 mM NaH 2 PO 4 buffer (pH 8.0) was added to 3.3 mL of a 5% by mass PVA solution, which was dropped into a petri dish having an outer diameter of 91 mm × height of 20 mm, and then overnight (about 12 hours) A sheet sample having a thickness of 10 to 50 μm was prepared by drying at room temperature (23 ° C.).
 実施例及び比較例で得られたシートサンプルを用いて、以下の評価を行った。 The following evaluation was performed using the sheet samples obtained in Examples and Comparative Examples.
<ホルムアルデヒドガス分解実験>
 6Lの横口コック付きのネジ口デシケーターの下部に、実施例1~3、比較例1で得られたシートサンプルをシャーレごと置き、200℃に加熱した50mLビーカーを内蓋の上に置きデシケーターの蓋を閉じた。上部のネジ口よりアルデヒド溶液(パラホルムアルデヒドを加熱分解させて調整した0.108%溶液)を10μL滴下し、速やかに蓋を閉じることで内部を一定のホルムアルデヒド濃度(初期濃度:3.3~3.5ppm)にした。初期及び経時後に検知管(91-L、91-LLホルムアルデヒド用、ガステック(株)製)にて内部のホルムアルデヒド濃度を測定した。その結果を図1に示す。
<Formaldehyde gas decomposition experiment>
The sheet samples obtained in Examples 1 to 3 and Comparative Example 1 were placed together with the petri dish at the bottom of a 6 L side-mouth cock screw desiccator, and a 50 mL beaker heated to 200 ° C. was placed on the inner lid and the desiccator The lid was closed. 10 μL of an aldehyde solution (a 0.108% solution prepared by thermally decomposing paraformaldehyde) is dropped from the upper screw mouth, and the interior is kept at a constant formaldehyde concentration (initial concentration: 3.3 to 3) by quickly closing the lid. 0.5 ppm). The initial formaldehyde concentration was measured with a detector tube (for 91-L, 91-LL formaldehyde, manufactured by Gastec Co., Ltd.) at an initial stage and after lapse of time. The result is shown in FIG.
<耐熱性試験>
 精製酵素溶液(1mg/mL)と実施例2で得られた酵母破砕抽出液を、各温度(5、20、30、40、50、60、70℃)にて12時間保存した後の酵素活性値を測定した。保存前の酵素活性値を100%とし、保存後の酵素活性維持率(%)を算出した。その結果を図2に示す。
<Heat resistance test>
Enzyme activity after storing the purified enzyme solution (1 mg / mL) and the yeast crush extract obtained in Example 2 at each temperature (5, 20, 30, 40, 50, 60, 70 ° C.) for 12 hours The value was measured. The enzyme activity maintenance rate (%) after storage was calculated with the enzyme activity value before storage as 100%. The result is shown in FIG.
 図1より、実施例1~3は120時間後の系中のホルムアルデヒド濃度顕著に減少している事を確認した。一方、比較例1は、初期に減少しているものの、当該減少はフィルムにホルムアルデヒドが吸着されることによって系中濃度が低下するためであり、一定時間経過後は一定濃度を維持した。従って、気相物質分解酵素とPVA系樹脂を含むことで明確なホルムアルデヒドの分解能が確認された。 From FIG. 1, it was confirmed that in Examples 1 to 3, the formaldehyde concentration in the system significantly decreased after 120 hours. On the other hand, in Comparative Example 1, although it decreased at the initial stage, the decrease was due to the decrease in the system concentration due to the adsorption of formaldehyde on the film, and the constant concentration was maintained after a certain period of time. Therefore, clear resolution of formaldehyde was confirmed by including a gas phase substance decomposing enzyme and a PVA resin.
 また、図2より、酵母破砕抽出液では、精製酵素より10℃程度高い耐熱性を有することが確認された。 Further, from FIG. 2, it was confirmed that the yeast crushing extract has a heat resistance higher by about 10 ° C. than the purified enzyme.
 特定の気相物質分解酵素、PVA系樹脂、水を含む本発明の気相物質分解体を、有害ガス分解シートとして用いることで、分解性能を有したシートを非常に安価な価格で提供することが可能となる。高機能でありながら、安価である本発明の有害ガス分解シートは先進国だけでなく現状の問題としてシックハウス等の問題を抱える新興国市場などで受け入れられる可能性が高いと考えられる。
 
To provide a sheet having decomposition performance at a very low price by using the gas phase material decomposition product of the present invention containing a specific gas phase material decomposition enzyme, PVA resin and water as a harmful gas decomposition sheet. Is possible. It is considered that the harmful gas decomposition sheet of the present invention, which is highly functional but inexpensive, is highly likely to be accepted not only in developed countries but also in emerging markets that have problems such as sick houses as a current problem.

Claims (11)

  1.  ポリビニルアルコール系樹脂、酵母由来の気相物質分解酵素、及び、水を含む混合液から形成されることを特徴とする気相物質分解体。 A gas phase substance decomposition product formed from a mixed solution containing a polyvinyl alcohol-based resin, a yeast-derived gas phase substance decomposing enzyme, and water.
  2.  前記ポリビニルアルコール系樹脂が担持基材を形成し、当該担持基材中に前記酵母由来の気相物質分解酵素が分散していることを特徴とする請求項1に記載の気相物質分解体。 2. The vapor phase substance decomposition product according to claim 1, wherein the polyvinyl alcohol-based resin forms a supporting base material, and the yeast-derived gas phase substance decomposing enzyme is dispersed in the supporting base material.
  3.  前記ポリビニルアルコール系樹脂の重合度が、100~3000であることを特徴とする請求項1又は2に記載の気相物質分解体。 The gas phase substance decomposition product according to claim 1 or 2, wherein the degree of polymerization of the polyvinyl alcohol resin is 100 to 3000.
  4.  前記ポリビニルアルコール系樹脂のケン化度が、85~100モル%であることを特徴とする請求項1~3の何れか一項に記載の気相物質分解体。 4. The vapor phase substance decomposition product according to claim 1, wherein the degree of saponification of the polyvinyl alcohol-based resin is 85 to 100 mol%.
  5.  前記気相物質分解酵素の含有割合は、前記気相物質分解体全量基準で、0.0001~5質量%であることを特徴とする請求項1~4の何れか一項に記載の気相物質分解体。 The gas phase according to any one of claims 1 to 4, wherein a content ratio of the gas phase material decomposing enzyme is 0.0001 to 5% by mass based on the total amount of the gas phase material decomposing material. Substance decomposition product.
  6.  シート形状であることを特徴とする、請求項1~5の何れか一項に記載の気相物質分解体。 6. The vapor phase substance decomposition product according to claim 1, wherein the gas phase material decomposition product is in a sheet shape.
  7.  前記酵母由来の気相物質分解酵素が、酵母を破砕して得られることを特徴とする請求項1~6の何れか一項に記載の気相物質分解体。 The gas phase material degrading enzyme according to any one of claims 1 to 6, wherein the yeast-derived gas phase material decomposing enzyme is obtained by crushing yeast.
  8.  請求項1~7の何れか一項に記載の気相物質分解体を、気相と接することができるように基体上に設けたことを特徴とする気相物質分解ユニット。 A vapor phase material decomposition unit comprising the vapor phase material decomposition product according to any one of claims 1 to 7 on a substrate so as to be in contact with the gas phase.
  9.  請求項8に記載の気相物質分解ユニットを気相と接触させることを特徴とする気相浄化方法。 A gas phase purification method comprising contacting the gas phase substance decomposition unit according to claim 8 with a gas phase.
  10.  ポリビニルアルコール系樹脂、酵母由来の気相物質分解酵素、及び、水を含む混合液を基体上に塗布して塗布膜を形成する工程、
     前記塗布膜を乾燥する工程、を含むことを特徴とする気相物質分解体の製造方法。
    A step of forming a coating film by applying a mixed solution containing a polyvinyl alcohol-based resin, a yeast-derived gas phase substance-degrading enzyme, and water on a substrate;
    And a step of drying the coating film.
  11.  前記混合液が、酵母を破砕して得られた気相物質分解酵素を含む酵母破砕抽出液と、ポリビニルアルコール系樹脂溶液を混合して得られることを特徴とする請求項10に記載の気相物質分解体の製造方法。
     
    The gas phase according to claim 10, wherein the mixed solution is obtained by mixing a yeast crushing extract containing a gas phase substance-degrading enzyme obtained by crushing yeast and a polyvinyl alcohol resin solution. A method for producing a substance decomposition product.
PCT/JP2014/059884 2013-04-22 2014-04-03 Gas phase substance degradation body, gas phase substance degradation unit, gas phase purification method, and method for manufacturing gas phase substance degradation body WO2014175036A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013089499A JP2014212800A (en) 2013-04-22 2013-04-22 Gas phase decomposition body, gas phase decomposition unit, gas phase purifying method, and method for producing gas phase decomposition body
JP2013-089499 2013-04-22

Publications (1)

Publication Number Publication Date
WO2014175036A1 true WO2014175036A1 (en) 2014-10-30

Family

ID=51791617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059884 WO2014175036A1 (en) 2013-04-22 2014-04-03 Gas phase substance degradation body, gas phase substance degradation unit, gas phase purification method, and method for manufacturing gas phase substance degradation body

Country Status (3)

Country Link
JP (1) JP2014212800A (en)
TW (1) TW201512277A (en)
WO (1) WO2014175036A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026814A (en) * 1974-09-09 1977-05-31 Lever Brothers Company Oxido-reductase in soap
JPS5651993A (en) * 1979-09-30 1981-05-09 Kyowa Hakko Kogyo Co Ltd Novel regeneration and circulation system of had and its method of utilization
JPS56113290A (en) * 1980-02-07 1981-09-07 Kuraray Co Ltd Immobilized enzyme and its preparation
JPS63309269A (en) * 1987-06-12 1988-12-16 Lion Corp Deodorant
JPH0315474A (en) * 1989-02-06 1991-01-23 Matsushita Electric Ind Co Ltd Ferment deodorant and its manufacture
JP2007054516A (en) * 2005-08-26 2007-03-08 Nof Corp Gas-phase purifier element, gas-phase purifier unit, and gas-phase purification method
JP2009529925A (en) * 2006-03-01 2009-08-27 スヴェレジューク ローベルト Methods for absorbing harmful substances and odors
JP2012024048A (en) * 2010-07-27 2012-02-09 Daicel Corp Deodorizer comprising unsaturated aldehyde blended with enzyme, and method of deodorization
JP2012516926A (en) * 2009-02-05 2012-07-26 ダニスコ・エー・エス Composition
JP2012240960A (en) * 2011-05-19 2012-12-10 Thermostable Enzyme Laboratory Co Ltd Deodorant

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4026814A (en) * 1974-09-09 1977-05-31 Lever Brothers Company Oxido-reductase in soap
JPS5651993A (en) * 1979-09-30 1981-05-09 Kyowa Hakko Kogyo Co Ltd Novel regeneration and circulation system of had and its method of utilization
JPS56113290A (en) * 1980-02-07 1981-09-07 Kuraray Co Ltd Immobilized enzyme and its preparation
JPS63309269A (en) * 1987-06-12 1988-12-16 Lion Corp Deodorant
JPH0315474A (en) * 1989-02-06 1991-01-23 Matsushita Electric Ind Co Ltd Ferment deodorant and its manufacture
JP2007054516A (en) * 2005-08-26 2007-03-08 Nof Corp Gas-phase purifier element, gas-phase purifier unit, and gas-phase purification method
JP2009529925A (en) * 2006-03-01 2009-08-27 スヴェレジューク ローベルト Methods for absorbing harmful substances and odors
JP2012516926A (en) * 2009-02-05 2012-07-26 ダニスコ・エー・エス Composition
JP2012024048A (en) * 2010-07-27 2012-02-09 Daicel Corp Deodorizer comprising unsaturated aldehyde blended with enzyme, and method of deodorization
JP2012240960A (en) * 2011-05-19 2012-12-10 Thermostable Enzyme Laboratory Co Ltd Deodorant

Also Published As

Publication number Publication date
TW201512277A (en) 2015-04-01
JP2014212800A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP5780763B2 (en) Polyacrylic acid (salt) water-absorbing resin and method for producing the same
US20150086458A1 (en) Formaldehyde absorbent and method for using the same
EP2166875B1 (en) Method for removing odor from vinegar
JP2008517116A5 (en)
CN107051147A (en) A kind of formaldehyde eliminating agent and preparation method thereof
CN102653596B (en) Method for preparing surface chitosan-crosslinked modified nitrocellulose membrane material
JP6232228B2 (en) Aroma adsorption and release agent
CN101195037A (en) Biological aldehydrase preparation prescription and its preparation technique
WO2014175036A1 (en) Gas phase substance degradation body, gas phase substance degradation unit, gas phase purification method, and method for manufacturing gas phase substance degradation body
JP4475534B2 (en) Gas phase purification body, gas phase purification unit, and gas phase purification method
CA2989374C (en) Disinfecting aqueous foam, process for preparing same and use thereof
JP4821168B2 (en) Gas phase purification body, gas phase purification unit, and gas phase purification method
CN101326134A (en) Surface treatment of glass sheets prior to storage
JP6225354B2 (en) Smoke agent
AU2013205440B2 (en) Enzymatic conversion of volatile organic compounds
JP2010137113A (en) Adsorbent for lower aldehyde, and method of producing the same
WO2013122828A1 (en) Film with absorbing coating
JP2001340436A (en) Filter for eliminating formaldehyde
CN101745363A (en) Preparation method for indoor formaldehyde remover
JP2001170153A (en) Tablet composition
JP2001049287A (en) Perfume composition
JP7214175B1 (en) Aqueous fixing composition
JPH01207216A (en) Gelled wood vinegar
JP4478540B2 (en) Lipase powder, its production method and its use
WO2001083610A1 (en) Method for preparing a starch-based material, and resulting material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14787715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14787715

Country of ref document: EP

Kind code of ref document: A1