WO2014174826A1 - 電動機およびこの電動機を備えた電気機器 - Google Patents

電動機およびこの電動機を備えた電気機器 Download PDF

Info

Publication number
WO2014174826A1
WO2014174826A1 PCT/JP2014/002230 JP2014002230W WO2014174826A1 WO 2014174826 A1 WO2014174826 A1 WO 2014174826A1 JP 2014002230 W JP2014002230 W JP 2014002230W WO 2014174826 A1 WO2014174826 A1 WO 2014174826A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
electric motor
dielectric layer
rotating body
motor according
Prior art date
Application number
PCT/JP2014/002230
Other languages
English (en)
French (fr)
Inventor
宏昭 川崎
圭策 中野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201490000608.8U priority Critical patent/CN205029472U/zh
Publication of WO2014174826A1 publication Critical patent/WO2014174826A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • H02K1/30Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/012Shields associated with rotating parts, e.g. rotor cores or rotary shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching

Definitions

  • the present invention relates to an electric motor, and more particularly to an electric motor improved to suppress the occurrence of electrolytic corrosion in a bearing.
  • the present invention relates to an electric device provided with this electric motor.
  • an inverter drive using a pulse width modulation method (hereinafter referred to as “PWM method”) is often used as a drive method of an electric motor.
  • PWM method pulse width modulation method
  • the potential at the neutral point of the winding does not become zero. Therefore, a potential difference (hereinafter referred to as “shaft voltage”) is generated between the outer ring of the bearing and the inner ring of the bearing.
  • the shaft voltage contains high frequency components due to switching.
  • a minute current flows inside the bearing.
  • electrolytic corrosion occurs inside the bearing.
  • a wavy wear phenomenon occurs on the inner ring of the bearing, the outer ring of the bearing, or the bearing ball.
  • wavy wear occurs, abnormal noise may be generated from the bearing. The occurrence of this abnormal noise is one of the main causes of problems in the electric motor.
  • Patent Document 1 the rotor has a dielectric layer. With this configuration, the generation of electrolytic corrosion is suppressed by lowering the shaft voltage.
  • the electric motor of the present invention includes a stator, a rotor, a pair of bearings, and a pair of brackets.
  • the stator includes a stator core around which windings are wound.
  • the rotor includes a rotating body that has a permanent magnet in the circumferential direction facing the stator, and a shaft that passes through the axis of the rotating body.
  • the pair of bearings rotatably support the shaft.
  • the pair of brackets fix the bearing.
  • the rotating body has an outer iron core, an inner iron core, and a dielectric layer.
  • the outer iron core constitutes the outer periphery of the rotating body.
  • the inner iron core constitutes an inner peripheral part fastened to the shaft.
  • the dielectric layer is located between the outer iron core and the inner iron core. The dielectric layer adjusts the capacitance between the outer iron core and the inner iron core.
  • FIG. 1 is a cross-sectional view of an electric motor according to Embodiment 1 of the present invention.
  • FIG. 2A is a perspective view of a main part of a rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2B is a top view of the rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2C is a top view of another rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2D is a top view of another rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2E is a top view of another rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2A is a perspective view of a main part of a rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2B is a top view of the rotating body used in the electric motor according to Em
  • FIG. 2F is a top view of another rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of a rotating body used in the electric motor according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of an air conditioner indoor unit equipped with the electric motor according to any one of the first and second embodiments of the present invention.
  • the present invention obtains an appropriate shaft voltage by easily changing the capacitance generated between the outer iron core and the inner iron core in the electric motor in each embodiment described later.
  • a more appropriate axial voltage can be obtained when the dielectric layer has a conductor or the rotating body includes a conductive member.
  • the present invention can provide an electric motor in which the occurrence of electrolytic corrosion in the bearing is effectively suppressed.
  • the present invention can provide an electric device including an electric motor in which the occurrence of electrolytic corrosion in the bearing is effectively suppressed.
  • the conventional motor has the following points to be improved.
  • Patent Document 1 it is possible to suppress the high-frequency voltage induced in the inner ring of the bearing by using the electrostatic capacity of the dielectric layer.
  • this configuration it may be difficult to set a required dielectric layer in order to obtain an appropriate axial voltage.
  • the conventional electric motor includes a rotor having a rotating body and a shaft.
  • a rotating body used in a conventional electric motor has an outer iron core, an inner iron core, and a dielectric layer positioned between the outer iron core and the inner iron core.
  • the dielectric layer is formed of an insulating resin.
  • One method is to change the distance between the outer core and the inner core of the rotating body. If the distance is changed between the outer iron core and the inner iron core, the thickness of the insulating resin is changed. If the thickness of the insulating resin is changed, the capacitance is changed.
  • the following method changes the length in the direction along the axis of the outer iron core and the length in the direction along the axis of the inner iron core. If the length in the direction along the axis of the outer iron core and the length in the direction along the axis of the inner iron core are changed, the area where both iron cores face each other is changed. If the area where both iron cores oppose is changed, the capacitance is changed.
  • the rotor size is standardized. It is difficult to greatly change the standardized size due to the convenience of the electric motor. Also, if you change the size of the rotor, there are the following precautions. That is, when changing the shape or the like of the iron core of the rotor, the mold for creating the iron core must be changed. Since changing the mold requires cost and man-hours, it is difficult to change the mold easily.
  • the outer iron core is used for a magnet yoke. The length in the direction along the axis of the outer iron core affects characteristics such as the efficiency of the electric motor.
  • the inner iron core is fastened to the shaft. The length in the direction along the axis of the inner iron core also affects the strength with which the rotor and the shaft are fastened. Therefore, the outer iron core and the inner iron core cannot be easily changed.
  • the resin material when changing the dielectric constant of the insulating resin forming the dielectric layer, the resin material may be changed.
  • items other than the dielectric constant for example, items such as strength must be evaluated. Since there are many items that require confirmation, the resin material cannot be easily changed.
  • the shaft voltage varies depending on the set to which the electric motor is attached. It is very difficult to set such an axial voltage within the optimum range by changing the resin material without changing the shape of the iron core or the length in the direction along the axis. Therefore, in the conventional method, it is difficult to set an optimum capacitance in order to obtain an appropriate shaft voltage.
  • FIG. 1 is a cross-sectional view of an electric motor according to Embodiment 1 of the present invention.
  • 2A is a perspective view of a main part of a rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2B is a top view of the rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2C is a top view of another rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2D is a top view of another rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2E is a top view of another rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • FIG. 2F is a top view of another rotating body used in the electric motor according to Embodiment 1 of the present invention.
  • Embodiment 1 an electric motor mounted on an electric device will be exemplified and described.
  • This electric motor is a brushless motor.
  • This electric motor is an inner rotor type electric motor.
  • the rotor In the inner rotor type electric motor, the rotor is rotatably disposed on the inner peripheral side of the stator.
  • a brushless motor 100 which is an electric motor according to Embodiment 1 of the present invention, includes a stator 10, a rotor 14, a pair of bearings 15 (15a, 15b), and a pair of brackets 17, 24. And comprising.
  • the stator 10 includes a stator core 11 around which a stator winding 12 that is a winding is wound.
  • the rotor 14 includes a rotating body 20 having a magnet 22 that is a permanent magnet in the circumferential direction facing the stator 10, and a shaft 16 that penetrates the axis 40 of the rotating body 20.
  • the pair of bearings 15 rotatably supports the shaft 16.
  • the pair of brackets 17 and 24 fix the bearing 15.
  • the rotating body 20 includes an outer iron core 25, an inner iron core 26, and a dielectric layer 23.
  • the outer iron core 25 constitutes the outer peripheral portion of the rotating body 20.
  • the inner iron core 26 constitutes an inner peripheral portion fastened to the shaft 16.
  • the dielectric layer 23 is located between the outer iron core 25 and the inner iron core 26. The dielectric layer 23 adjusts the capacitance between the outer iron core 25 and the inner iron core 26.
  • the rotating body 20 used in the electric motor according to the first embodiment includes a conductor that divides the dielectric layer 23 in a direction in which the dielectric layer 23 is orthogonal to the axis 40. 28.
  • the rotating body 20 has a cylindrical shape. Therefore, the direction orthogonal to the axis 40 refers to the radial direction of the upper surface 41 or the bottom surface in the cylindrical shape formed by the rotating body 20.
  • the conductor 28 divides the dielectric layer 23 into a concentric shape along the axial direction.
  • the dielectric layer 23 has a plurality of conductors 28.
  • the rotating body 20 used in the electric motor according to the first embodiment has dielectric layers 23 having different thicknesses in the direction in which the divided dielectric layer 23 is orthogonal to the axis 40.
  • the outer insulating resin 27a and the inner insulating resin 27b, which are bodies, are formed.
  • the rotating body 20 used in the electric motor according to the first embodiment includes an outer insulating resin 27a and an inner insulating resin in which the divided dielectric layers 23 are resins having different dielectric constants. And resin 27b.
  • the rotating body 20 further includes a conducting member 42 that conducts the outer iron core 25 and the conductor 28.
  • the rotating body 20 includes a conducting member 42 that conducts the conductor 28 and the inner iron core 26.
  • a stator winding 12 is wound around the stator core 11.
  • the stator core 11 has an insulating resin 13 that is an insulator that insulates between the stator core 11 and the stator winding 12.
  • the stator core 11 is fixed together with the other fixing members in the motor case 19. Therefore, the outer shape of the stator 10 is substantially cylindrical.
  • the stator 10 may be molded by a molding material that is an insulating resin.
  • Rotator 14 is inserted inside stator 10 through a gap.
  • the rotor 14 includes a rotating body 20 and a shaft 16.
  • the rotating body 20 has a cylindrical shape.
  • the rotating body 20 may be disk-shaped.
  • the rotating body 20 includes a metal rotor core 21.
  • the shaft 16 passes through the axis 40 of the rotating body 20 and is fixed to the rotating body 20.
  • the rotating body 20 includes a magnet 22 that is a permanent magnet in the circumferential direction facing the inner peripheral side of the stator 10.
  • a ferrite resin magnet or a sintered ferrite magnet is used for the magnet 22, for example, a ferrite resin magnet or a sintered ferrite magnet is used.
  • the rotating body 20 is arranged in the order of the outer iron core 25, the dielectric layer 23, and the inner iron core 26 from the outermost peripheral magnet 22 toward the inner peripheral shaft 16.
  • the outer iron core 25 constitutes the outer peripheral portion of the rotor iron core 21.
  • the inner iron core 26 constitutes an inner peripheral portion of the rotor iron core 21. That is, in the rotating body 20 in the first embodiment, the rotor core 21, the dielectric layer 23, and the magnet 22 are integrally formed.
  • the inner peripheral side of the stator 10 and the outer peripheral side of the rotating body 20 are arranged to face each other.
  • a pair of bearings 15 that support the shaft 16 are attached to the shaft 16 of the rotor 14.
  • the bearing 15 is a cylindrical bearing having a plurality of iron balls.
  • One bearing 15a is fixed to a metal bracket 17 formed integrally with a mold resin or the like.
  • the other bearing 15 b is fixed to a metal bracket 24.
  • This configuration allows the rotor 14 to rotate because the shaft 16 is supported by the pair of bearings 15.
  • the brushless motor 100 has a printed circuit board 18 built in a motor case 19.
  • a drive circuit including a control circuit is mounted on the printed circuit board 18.
  • connection line is connected to the printed circuit board 18.
  • the connection line includes a lead wire for applying a control voltage for controlling the power supply voltage of the stator winding 12, the power supply voltage of the control circuit, and the rotation speed to the printed circuit board 18.
  • the connection line includes a ground line of the control circuit.
  • the power supply voltage and the control signal are supplied to the brushless motor 100 configured as described above via the connection line.
  • a driving current supplied to the stator winding 12 is generated by a driving circuit mounted on the printed circuit board 18 based on the supplied power supply voltage and control signal.
  • a drive current is supplied to the stator winding 12
  • a magnetic field is generated from the stator core 11.
  • the magnetic field generated from the stator core 11 and the magnetic field generated from the magnet 22 included in the rotor 14 generate an attractive force and a repulsive force according to the polarities of these magnetic fields.
  • the rotor 14 rotates around the shaft 16 by these suction force and repulsive force.
  • the rotating body 20 has a magnet 22 at the outermost periphery.
  • the rotating body 20 is disposed in the order of the magnet 22, the outer iron core 25, the dielectric layer 23, and the inner iron core 26 from the outermost peripheral portion toward the inner peripheral shaft 16.
  • the rotor core 21 is composed of an outer core 25 and an inner core 26.
  • the dielectric layer 23 is a layer composed of an insulating resin 27. In the following description, the insulating resin 27 is also referred to as a dielectric.
  • such a dielectric layer 23 is provided in order to suppress the occurrence of electrolytic corrosion.
  • a magnet 22, an outer iron core 25, a dielectric layer 23, and an inner iron core 26 are integrally formed in the rotating body 20.
  • the conductor 28 is formed integrally inside the dielectric layer 23, the conductor 28 is formed integrally.
  • the inner iron core 26 has a shaft insertion hole 26 b into which the shaft 16 is inserted on the inner peripheral side of the inner iron core 26.
  • the shaft 16 is fastened to the inner iron core 26 in the shaft insertion hole 26b.
  • the rotor 14 is formed by fixing the shaft 16 to the rotating body 20 via the shaft insertion hole 26b.
  • the rotor 14 is supported by a pair of bearings 15.
  • the dielectric layer 23 is configured such that the insulating resin 27 and the conductor 28, which are insulators, form a layer in a direction perpendicular to the axis 40, that is, in the radial direction.
  • the outer iron core 25 and the inner iron core 26 are separated from each other in a state of being insulated in series by the insulating resin 27 and the conductor 28 configured in layers.
  • the insulating resin 27 constituting the dielectric layer 23 is formed of an insulating resin having a predetermined dielectric constant.
  • the high frequency current flows between the outer iron core 25 and the inner iron core 26.
  • the impedance generated between the stator core and the pair of brackets is high.
  • This impedance is called the stator core side impedance.
  • the impedance generated between the rotating body and the shaft is low. This impedance is referred to as the rotating body side impedance.
  • ⁇ Stator side impedance mainly has two impedances. That is, with reference to the stator core, there is an impedance that occurs between one bracket and the stator core, and an impedance that occurs between the other bracket and the stator core. A pair of outer rings of bearings are fixed to the pair of brackets.
  • Rotating body side impedance is an impedance generated between a rotating body having no dielectric layer and a shaft to which the rotating body is fixed. Since the rotating body and the shaft are electrically connected, the rotating body side impedance is low. An inner ring of a pair of bearings is fixed to the shaft.
  • the brushless motor an equivalent circuit in which the stator core side impedance and the rotating body side impedance are converted is formed.
  • the brushless motor is driven by an inverter using the PWM method.
  • a high frequency current resulting from pulse width modulation is generated from the stator core or the like.
  • the generated high-frequency current flows into an equivalent circuit in which the stator core side impedance and the rotating body side impedance are converted.
  • a potential difference due to a high frequency current occurs between the outer ring of the bearing electrically connected to each bracket and the inner ring of the bearing electrically connected to the shaft.
  • electrolytic corrosion occurs in the bearing.
  • the first embodiment suppresses the occurrence of electrolytic corrosion by increasing the impedance of the rotating body.
  • the rotating body 20 When the rotating body is formed only with an iron core, the impedance is low. Therefore, as illustrated in FIGS. 2A and 2B, the rotating body 20 includes a dielectric layer 23 between the outer iron core 25 and the inner iron core 26. If it is this structure, the impedance of the rotary body 20 will become high. Specifically, the impedance of the rotating body 20 having the dielectric layer 23 is raised to a value that approximates the impedance on the bracket 17 side.
  • the rotating body 20 has a dielectric layer 23 between the outer iron core 25 and the inner iron core 26.
  • the rotor 14 including the rotator 20 has the dielectric layer 23, and thus becomes equivalent to a circuit in which electrostatic capacitances are connected in series. As described above, when the impedance of the rotor 20 is increased, the impedance of the rotor 14 is increased.
  • the outer ring of the bearing 15 is electrically connected to the bracket 17.
  • the inner ring of the bearing 15 is electrically connected to the shaft 16.
  • the rotating body 20 will be described in detail.
  • the rotating body 20 has an inner iron core 26 and an outer iron core 25 that have a substantially cylindrical shape.
  • the outer iron core 25 has an annular column shape having an inner surface facing the side surface of the inner iron core 26 in the direction along the axis 40.
  • the rotating body 20 includes an insulating resin 27 between the inner iron core 26 and the outer iron core 25.
  • the rotating body 20 has the following configuration in order to improve the strength when the inner iron core 26 or the outer iron core 25 and the insulating resin 27 are fastened. That is, as shown in FIG.
  • the inner iron core 26 and the outer iron core 25 may be configured to mesh with each other via the insulating resin 27.
  • the shape of the boundary portion 43 may be a polygonal shape in a plane orthogonal to the axis 40.
  • the length of the outer iron core 25 and the length of the inner iron core 26 may be the same length.
  • the length of the outer iron core 25 and the length of the inner iron core 26 may be different as long as predetermined characteristics can be secured.
  • the dielectric layer 23 includes an outer insulating resin 27 a and an inner insulating resin 27 b having different thicknesses in the direction along the axis 40.
  • the dielectric layer 23 has a conductor 28 between the outer insulating resin 27a and the inner insulating resin 27b.
  • the dielectric layer 23 is formed by integrally molding the outer insulating resin 27a, the conductor 28, and the inner insulating resin 27b.
  • the rotating body 20 includes a capacitor having a predetermined capacitance between the outer iron core 25 and the inner iron core 26.
  • the capacitance C possessed by the cylindrical dielectric layer 23 is calculated by the following equation (1). That is, the inner diameter of the dielectric layer 23 is a. Let the outer diameter of the dielectric layer 23 be b. In the direction along the axis 40, the length of the dielectric layer 23 is L. Let the dielectric constant of the dielectric layer 23 be ⁇ . At this time, the equation (1) is as follows.
  • Capacitance C 2 ⁇ ⁇ ⁇ ⁇ ⁇ L / log (b / a) (1)
  • the thickness of the dielectric layer 23 is represented by (b / a).
  • (b / a) becomes small, the thickness of the dielectric layer 23 becomes thin.
  • the electric motor according to the first embodiment adjusts the capacitance C derived by the equation (1) to obtain an optimum shaft voltage that suppresses electrolytic corrosion. For example, it may be required to increase the capacitance C in order to obtain an optimum shaft voltage.
  • the outer iron core 25 and the conductor 28, or the conductor 28 and the inner iron core 26 are electrically connected by the conducting member 42.
  • the state before the conductive member 42 is used for the dielectric layer 23 is the initial state of the dielectric layer 23.
  • a member used for welding becomes the conduction member 42.
  • the thickness of the dielectric layer 23 of the rotating body 20 is substantially reduced. If the thickness of the dielectric layer 23 is reduced, the capacitance C generated between the outer iron core 25 and the inner iron core 26 is increased according to the equation (1). Therefore, if the distance between the outer iron core 25 and the inner iron core 26 is shortened using the conductive member 42 and the conductor 28, the dielectric layer 23 has a larger capacitance C than in the initial state.
  • the dielectric layer 23 has a configuration in which the thickness of the outer insulating resin 27a is thinner than the thickness of the inner insulating resin 27b in the direction orthogonal to the axis 40.
  • the outer iron core 25 and the conductor 28 are electrically connected by the conductive member 42.
  • the thickness of the dielectric layer 23 is substantially equivalent to the thickness of the inner insulating resin 27b. That is, the dielectric layer 23 in which the outer iron core 25 and the conductor 28 are conducted by the conducting member 42 has a larger capacitance C than in the initial state.
  • the conductor 28 and the inner iron core 26 are electrically connected by the conductive member 42.
  • the thickness of the dielectric layer 23 is substantially equivalent to the thickness of the outer insulating resin 27a. That is, the dielectric layer 23 in which the conductor 28 and the inner iron core 26 are conducted by the conducting member 42 has a larger capacitance C than in the initial state.
  • the dielectric layer 23 in which the conductor 28 and the inner iron core 26 are conducted by the conducting member 42 is more dielectric layer than the dielectric layer 23 in which the outer iron core 25 and the conductor 28 are conducted by the conducting member 42.
  • the thickness of 23 becomes thin. Therefore, the dielectric layer 23 in which the conductor 28 and the inner iron core 26 are conducted by the conducting member 42 has a capacitance higher than that of the dielectric layer 23 in which the outer iron core 25 and the conductor 28 are conducted by the conducting member 42. C increases.
  • the dielectric layer 23 appropriately selects the thickness of the outer insulating resin 27a and the thickness of the inner insulating resin 27b. In addition, the dielectric layer 23 appropriately conducts the conductor 28 and either the outer iron core 25 or the inner iron core 26 with the conducting member 42.
  • the range which can adjust the electrostatic capacitance produced between the outer side iron core 25 and the inner side iron core 26 becomes wide. That is, (a) in the direction along the axis 40, the length of the conductor 28 is shorter than the length of the outer iron core 25 or the length of the inner iron core 26.
  • the dielectric layer 23 includes a plurality of conductors 28, so that the dielectric layer 23 is divided into three or more.
  • the outer insulating resin 27a and the inner insulating resin 27b are formed of resins having different dielectric constants.
  • the capacitance generated between the outer iron core 25 and the inner iron core 26 can be adjusted even after the rotating body 20 is molded.
  • the mold for molding the insulating resin 27 that is a dielectric does not have to be changed in order to adjust the capacitance. Further, in the direction along the axis 40, the length of the outer iron core 25 and the length of the inner iron core 26 may not be changed. Therefore, it is possible to suppress an increase in cost and man-hour required for adjusting the capacitance.
  • the electrostatic capacitance generated between the initial outer iron core 25 and the inner iron core 26 is set as a small capacitance. If the initial capacitance is set to be small, the range of adjustable capacitance can be widened by conducting the outer iron core 25 and the conductor 28 or the conductor 28 and the inner iron core 26 with the conducting member 42. As a result, the rotor 14 can increase the impedance of the rotor 14 by adjusting the capacitance component using the dielectric layer 23. Therefore, the rotor 14 can suppress the high-frequency current that has flowed into the inner ring side of the bearing 15 via the shaft 16. The rotor 14 can reduce the electric potential on the inner ring side of the bearing 15 by suppressing the high-frequency current flowing into the inner ring side of the bearing 15.
  • the electrostatic capacitance by the dielectric layer 23 is set to an appropriate value, an optimum state can be obtained in which the potential difference generated between the inner ring of the bearing 15 and the outer ring of the bearing 15, that is, the shaft voltage becomes the lowest. That is, by adjusting the capacitance of the dielectric layer 23 so that the potential difference generated between the inner ring of the bearing 15 and the outer ring of the bearing 15 is reduced, the occurrence of electrolytic corrosion can be efficiently suppressed.
  • Embodiment 2 Next, a mode different from that described in Embodiment 1 will be described with reference to the drawings.
  • symbol is attached
  • FIG. 3 is a cross-sectional view of a rotating body used in the electric motor according to Embodiment 2 of the present invention.
  • the rotating body 20 used in the electric motor according to the second embodiment of the present invention includes a capacitor 30 that electrically connects the outer iron core 25 and the inner iron core 26.
  • the capacitance generated between the outer iron core 25 and the inner iron core 26 is adjusted by the capacitor 30.
  • the rotating body 20 constituting the rotor includes an outer iron core 25, an inner iron core 26, and an insulating resin 29.
  • the capacitor 30 electrically connects the outer iron core 25 and the inner iron core 26.
  • the capacitor 30 functions as a member that adjusts the capacitance between the outer iron core 25 and the inner iron core 26.
  • the capacitor 30 is composed of a variable capacitor or the like whose capacity can be changed, the capacitance generated between the outer iron core 25 and the inner iron core 26 can be adjusted more easily.
  • the capacitance generated between the outer iron core 25 and the inner iron core 26 can be adjusted.
  • the mold for molding the insulating resin 29 that is a dielectric does not have to be changed in order to adjust the capacitance. Further, in the direction along the axis 40, the length of the outer iron core 25 and the length of the inner iron core 26 may not be changed. Therefore, it is possible to suppress an increase in cost and man-hour required for adjusting the capacitance.
  • the electric motor according to the second embodiment can increase the impedance of the rotor 14 by adjusting the capacitance component using the dielectric layer 23. . Therefore, the rotor 14 can suppress the high-frequency current that has flowed into the inner ring side of the bearing 15 via the shaft 16. The rotor 14 can reduce the electric potential on the inner ring side of the bearing 15 by suppressing the high-frequency current flowing into the inner ring side of the bearing 15.
  • the electrostatic capacitance by the dielectric layer 23 is set to an appropriate value, an optimum state can be obtained in which the potential difference generated between the inner ring of the bearing 15 and the outer ring of the bearing 15, that is, the shaft voltage becomes the lowest. That is, by adjusting the capacitance of the dielectric layer 23 so that the potential difference generated between the inner ring of the bearing 15 and the outer ring of the bearing 15 is reduced, the occurrence of electrolytic corrosion can be efficiently suppressed.
  • Embodiment 3 Next, a mode in which the electric motor described in Embodiment 1 or 2 is mounted on an electric device will be described with reference to the drawings.
  • an indoor unit of an air conditioner is shown as a specific example of the electric device.
  • FIG. 4 is a schematic diagram of an air conditioner indoor unit equipped with the electric motor according to any one of the first and second embodiments of the present invention.
  • an air conditioner indoor unit 210 that is an electric device according to the third embodiment of the present invention includes an electric motor 201 and an electric motor drive device 213 that is a drive unit that drives the electric motor 201.
  • an electric motor 201 is mounted in the casing 211 of the air conditioner indoor unit 210.
  • a cross flow fan 212 is attached to the rotating shaft of the electric motor 201.
  • a heat exchanger is disposed in the casing 211.
  • the electric motor 201 is driven by an electric motor driving device 213 which is a driving unit. A drive signal is transmitted from the motor drive device 213 to the motor 201. The electric motor 201 is rotated by this drive signal. When the electric motor 201 rotates, the cross flow fan 212 also rotates. If the crossflow fan 212 rotates, the air conditioned by the heat exchanger can be blown into the living room where the air conditioner indoor unit 210 is installed. As the electric motor 201, the brushless motor described in the first and second embodiments can be applied.
  • an air conditioner indoor unit is illustrated as a specific example of the electric device according to the third embodiment of the present invention.
  • the present invention can also be applied to electric motors used for various information devices and industrial devices such as an air conditioner outdoor unit.
  • the rotor of the rotor used in the electric motor has the outer iron core, the inner iron core, and the dielectric layer.
  • the outer iron core constitutes the outer peripheral part of the rotating body.
  • the inner iron core constitutes an inner peripheral portion fastened to the shaft.
  • the dielectric layer is located between the outer iron core and the inner iron core. The dielectric layer adjusts the capacitance between the outer iron core and the inner iron core.
  • the rotating body includes a conductive member that conducts the outer iron core and the conductor.
  • the rotating body includes a conducting member that conducts the conductor and the inner iron core.
  • the rotating body includes a capacitor that conducts between the outer iron core and the inner iron core.
  • This configuration adjusts the capacitance between the outer iron core and the inner iron core. Therefore, according to the present configuration, the capacitance generated between the outer iron core and the inner iron core can be adjusted even after the rotating body is molded.
  • the mold for molding the insulating resin that is a dielectric does not have to be changed in order to adjust the capacitance.
  • the length of the outer iron core and the length of the inner iron core need not be changed. Therefore, it is possible to suppress an increase in cost and man-hour required for adjusting the capacitance.
  • the optimum capacitance means the optimum impedance on the rotor side.
  • a surface magnetic flux type motor in which a magnet is attached to the outer iron core is shown.
  • the same effect can be obtained even in a magnet-embedded motor in which a magnet is embedded in the outer iron core or an outer rotor type motor in which a rotor is disposed outside the stator.
  • the motor of the present invention can reduce the shaft voltage and can effectively suppress the occurrence of electrolytic corrosion of the bearing. For this reason, it is effective for motors mounted on air conditioner indoor units, air conditioner outdoor units, etc., for example, mainly for devices that are required to reduce the price and increase the life of motors.
  • Stator 11 Stator core 12 Stator winding (winding) 13 Insulating resin 14 Rotor 15, 15a, 15b Bearing 16 Shaft 17, 24 Bracket 18 Printed circuit board 19 Motor case 20 Rotating body 21 Rotor core 22 Magnet (permanent magnet) 23 Dielectric layer 25 Outer iron core 26 Inner iron core 26b Shaft insertion hole 27, 29 Insulating resin 27a Outer insulating resin 27b Inner insulating resin 28 Conductor 30 Capacitor 40 Shaft 41 201 Brushless motor (electric motor) 210 Air Conditioner Indoor Unit 211 Case 212 Cross Flow Fan 213 Electric Motor Drive Device (Drive Unit)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Motor Or Generator Frames (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

本発明の電動機は、固定子(10)と、回転子(14)と、一対の軸受(15)と、一対のブラケット(17、24)と、を備える。回転体(20)は、外側鉄心(25)と、内側鉄心(26)と、誘電体層(23)と、を有する。外側鉄心(25)は、回転体(20)の外周部分を構成する。内側鉄心(26)は、シャフト(16)に締結される内周部分を構成する。誘電体層(23)は、外側鉄心(25)と内側鉄心(26)との間に位置する。誘電体層(23)は、外側鉄心(25)と内側鉄心(26)との間の静電容量を調整する。

Description

電動機およびこの電動機を備えた電気機器
 本発明は、電動機、特に、軸受における電食の発生を抑制するように改良された電動機に関する。併せて、本発明は、この電動機を備えた電気機器に関する。
 近年、電動機の駆動方式は、パルス幅変調(Pulse Width Modulation)方式(以下、「PWM方式」という)を用いたインバータ駆動が多く採用される。PWM方式を用いたインバータ駆動の場合、巻線の中性点の電位は零とならない。従って、軸受の外輪と軸受の内輪との間には、電位差(以下、「軸電圧」という)が発生する。
 軸電圧は、スイッチングによる高周波成分を含んでいる。軸電圧が軸受の内部に存在する油膜の絶縁破壊が生じる電圧に達すると、軸受の内部には微小な電流が流れる。この微小な電流が流れると、軸受の内部には電食が発生する。電食が進行した場合、軸受の内輪、軸受の外輪または軸受ボールには、波状の摩耗現象が発生する。波状の摩耗現象が発生すると、軸受から異常音が発生することがある。この異常音の発生が、電動機における不具合の主要因の1つとなっている。
 従来、電食を抑制するために、つぎの技術が提案されている。例えば、特許文献1において、回転子には誘電体層を有する。本構成により、軸電圧を低くして、電食の発生を抑制している。
国際公開第2009/113311号
 本発明の電動機は、固定子と、回転子と、一対の軸受と、一対のブラケットと、を備える。
 固定子は、巻線を巻装した固定子鉄心を含む。回転子は、固定子に対向して周方向に永久磁石を有する回転体と、回転体の軸心を貫通するシャフトと、を含む。一対の軸受は、シャフトを回転自在に支持する。一対のブラケットは、軸受を固定する。
 特に、回転体は、外側鉄心と、内側鉄心と、誘電体層と、を有する。
 外側鉄心は、回転体の外周部を構成する。内側鉄心は、シャフトに締結される内周部を構成する。誘電体層は、外側鉄心と内側鉄心との間に位置する。誘電体層は、外側鉄心と内側鉄心との間の静電容量を調整する。
図1は、本発明の実施の形態1における電動機の断面図である。 図2Aは、本発明の実施の形態1における電動機に用いられる回転体の要部斜視図である。 図2Bは、本発明の実施の形態1における電動機に用いられる回転体の上面図である。 図2Cは、本発明の実施の形態1における電動機に用いられる他の回転体の上面図である。 図2Dは、本発明の実施の形態1における電動機に用いられる他の回転体の上面図である。 図2Eは、本発明の実施の形態1における電動機に用いられる他の回転体の上面図である。 図2Fは、本発明の実施の形態1における電動機に用いられる他の回転体の上面図である。 図3は、本発明の実施の形態2における電動機に用いられる回転体の断面図である。 図4は、本発明の実施の形態1から2のいずれかの形態における電動機を搭載したエアコン室内機の概略図である。
 本発明は、後述する各実施の形態における電動機において、外側鉄心と内側鉄心との間で生じる静電容量を、容易に変更することで、適切な軸電圧を得る。特に、誘電体層が導電体を有する、あるいは、回転体が導通部材を含むことで、より適切な軸電圧を得ることができる。
 よって、本発明は、軸受における電食の発生が、効果的に抑制された電動機を提供できる。併せて、本発明は、軸受における電食の発生が、効果的に抑制された電動機を備えた電気機器を提供できる。
 まず、従来の電動機には、つぎの改善すべき点がある。
 すなわち、特許文献1に開示された技術では、誘電体層が有する静電容量を利用して、軸受の内輪に誘起される高周波電圧を抑制できる。しかし、この構成では、適切な軸電圧を得るために、必要とされる誘電体層を設定することは困難な場合があった。
 つまり、従来の電動機では、誘電体層が有する静電容量を柔軟に変更できれば、適切な軸電圧が設定できる。従来の電動機では、静電容量を変更するために、つぎの方法がある。
 すなわち、従来の電動機は、回転体と、シャフトと、を有する回転子を備える。従来の電動機に用いられる回転体は、外側鉄心と、内側鉄心と、外側鉄心と内側鉄心との間に位置する誘電体層と、を有する。誘電体層は、絶縁樹脂で形成される。
 ひとつの方法は、回転体が有する外側鉄心と内側鉄心との間の距離を変更する。外側鉄心と内側鉄心との間で距離を変更すれば、絶縁樹脂の厚さが変更される。絶縁樹脂の厚さを変更すれば、静電容量が変更される。
 つぎの方法は、外側鉄心の軸心に沿った方向の長さと内側鉄心の軸心に沿った方向の長さとを変更する。外側鉄心の軸心に沿った方向の長さと内側鉄心の軸心に沿った方向の長さとを変更すれば、両鉄心が対向する面積が変更される。両鉄心が対向する面積を変更すれば、静電容量が変更される。
 他の方法は、誘電体層を形成する絶縁樹脂の誘電率を変更する。絶縁樹脂の誘電率を変更すれば、静電容量が変更される。
 ところが、電動機が用いられる電気機器において、電動機を取り付けるために許容される空間は、電気機器ごとにほぼ決められている。つまり、この許容される空間に応じて、電動機の大きさが導かれる。よって、電動機で使用される回転子の大きさも、自ずと導かれる。
 一般的に、回転子の大きさは標準化されている。この標準化された大きさを、電動機の都合で、大きく変更することは困難である。また、仮に回転子の大きさを変更する場合、つぎの注意点がある。すなわち、回転子が有する鉄心の形状などを変更する場合、鉄心を作成する金型を変更しなければならない。金型の変更には、費用と工数とが必要となるため、容易に金型を変更することは困難である。また、外側鉄心は、磁石のヨークに用いられる。外側鉄心の軸心に沿った方向の長さは、電動機の効率などの特性に影響する。内側鉄心は、軸に締結される。内側鉄心の軸心に沿った方向の長さは、回転子とシャフトとが締結される強度にも影響する。よって、外側鉄心と内側鉄心とは、容易に変更することができない。
 また、誘電体層を形成する絶縁樹脂の誘電率を変更する場合、樹脂材料を変更することがある。しかし、樹脂材料を変更する場合、誘電率以外の項目、例えば、強度などの項目を評価しなければならない。多数の確認を要する項目が存在するため、樹脂材料は容易に変更できない。しかも、軸電圧は、電動機が取り付けられるセットによっても変化する。このような軸電圧を、鉄心の形状や軸心に沿った方向の長さを変更することなく、樹脂材料を変更することのみで最適な範囲に設定することは、大変な困難を伴う。従って、従来の方法では、適切な軸電圧を得るために、最適な静電容量を設定することは、困難であった。
 以下、本発明の電動機およびこの電動機を備えた電気機器について、図面を用いて説明する。
 なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術範囲を限定するものではない。
 (実施の形態1)
 図1は、本発明の実施の形態1における電動機の断面図である。図2Aは、本発明の実施の形態1における電動機に用いられる回転体の要部斜視図である。図2Bは、本発明の実施の形態1における電動機に用いられる回転体の上面図である。図2Cは、本発明の実施の形態1における電動機に用いられる他の回転体の上面図である。図2Dは、本発明の実施の形態1における電動機に用いられる他の回転体の上面図である。図2Eは、本発明の実施の形態1における電動機に用いられる他の回転体の上面図である。図2Fは、本発明の実施の形態1における電動機に用いられる他の回転体の上面図である。
 本実施の形態1では、電気機器に搭載される電動機を例示して、説明する。この電動機は、ブラシレスモータである。この電動機は、インナロータ型の電動機である。インナロータ型の電動機は、回転子が固定子の内周側に、回転自在に配置される。
 図1に示すように、本発明の実施の形態1における電動機であるブラシレスモータ100は、固定子10と、回転子14と、一対の軸受15(15a、15b)と、一対のブラケット17、24と、を備える。
 固定子10は、巻線である固定子巻線12を巻装した固定子鉄心11を含む。回転子14は、固定子10に対向して周方向に永久磁石である磁石22を有する回転体20と、回転体20の軸心40を貫通するシャフト16と、を含む。一対の軸受15は、シャフト16を回転自在に支持する。一対のブラケット17、24は、軸受15を固定する。
 特に、回転体20は、外側鉄心25と、内側鉄心26と、誘電体層23と、を有する。
 外側鉄心25は、回転体20の外周部分を構成する。内側鉄心26は、シャフト16に締結される内周部分を構成する。誘電体層23は、外側鉄心25と内側鉄心26との間に位置する。誘電体層23は、外側鉄心25と内側鉄心26との間の静電容量を調整する。
 本実施の形態1における電動機において、特に顕著な作用効果を奏する形態は、つぎのものがある。
 すなわち、図2Aに示すように、本実施の形態1における電動機に用いられる回転体20は、誘電体層23が、軸心40に対して直交する方向において、誘電体層23を分割する導電体28を有する。本実施の形態1において、回転体20は、円筒形状を成す。よって、軸心40に対して直交する方向とは、回転体20が成す円筒形状において、上面41または底面の半径方向をいう。
 つぎに、図2Bに示すように、本実施の形態1における電動機に用いられる回転体20は、導電体28が、誘電体層23を軸心方向に沿って同心形状に分割する。特に、図2Cに示すように、誘電体層23は、複数の導電体28を有する。
 また、図2Bに示すように、本実施の形態1における電動機に用いられる回転体20は、分割された誘電体層23が、軸心40に対して直交する方向において、各々異なる厚みを有する誘電体である、外側絶縁樹脂27aと内側絶縁樹脂27bとで形成される。
 また、図2Bに示すように、本実施の形態1における電動機に用いられる回転体20は、分割された誘電体層23が、各々異なる誘電率を有する樹脂である、外側絶縁樹脂27aと内側絶縁樹脂27bとで形成される。
 また、図2Dに示すように、本実施の形態1における電動機は、さらに、回転体20が、外側鉄心25と導電体28とを導通する導通部材42を含む。あるいは、図2Eに示すように、回転体20が、導電体28と内側鉄心26とを導通する導通部材42を含む。
 さらに、図面を用いて、詳細に説明する。
 図1に示すように、固定子鉄心11には、固定子巻線12が巻装される。固定子鉄心11は、固定子鉄心11と固定子巻線12との間を絶縁するインシュレータである絶縁樹脂13を有する。固定子鉄心11は、他の固定部材とともに、モータケース19内に、一体となって固定される。よって、固定子10は、外形が概ね円筒形状となる。例えば、固定子10は、絶縁樹脂であるモールド材により、成型されてもよい。
 固定子10の内側には、空隙を介して回転子14が挿入される。図1、図2Aに示すように、回転子14は、回転体20と、シャフト16とを有する。回転体20は、円柱状である。回転体20は、円板状でもよい。回転体20は、金属製の回転子鉄心21を含む。シャフト16は、回転体20の軸心40を貫通して回転体20に固定される。回転体20は、固定子10の内周側に対向して周方向に、永久磁石である磁石22を有する。磁石22には、例えば、フェライト樹脂磁石やフェライト焼結磁石などが用いられる。
 図1、図2Aに示すように、最外周部の磁石22から内周側のシャフト16に向かって、回転体20は、外側鉄心25、誘電体層23、内側鉄心26の順に配置される。外側鉄心25は、回転子鉄心21の外周部分を構成する。内側鉄心26は、回転子鉄心21の内周部分を構成する。つまり、本実施の形態1における回転体20は、回転子鉄心21と、誘電体層23と、磁石22とが一体に成形される。このように、固定子10の内周側と回転体20の外周側とは、対向して配置される。
 図1に示すように、回転子14のシャフト16には、シャフト16を支持する一対の軸受15が取り付けられる。軸受15は、複数の鉄ボールを有する円筒形状のベアリングである。一方の軸受15aは、モールド樹脂などと一体に成型された金属製のブラケット17に固定される。他方の軸受15bは、金属製のブラケット24に固定される。
 本構成によって、シャフト16が一対の軸受15に支持されるため、回転子14は回転自在になる。
 ブラシレスモータ100は、プリント基板18がモータケース19内に内蔵される。プリント基板18には、制御回路を含む駆動回路が実装される。
 プリント基板18には、接続線が接続される。接続線は、プリント基板18へ、固定子巻線12の電源電圧、制御回路の電源電圧および回転数を制御する制御電圧を印加するリード線を含む。接続線は、制御回路のグランド線なども含む。
 以上のように構成されたブラシレスモータ100に対して、接続線を介して各電源電圧および制御信号が、それぞれ供給される。供給された、それぞれの電源電圧および制御信号に基いて、固定子巻線12へ供給される駆動電流が、プリント基板18上に実装された駆動回路によって生成される。固定子巻線12へ駆動電流が流されると、固定子鉄心11から磁界が発生する。固定子鉄心11から生じた磁界と回転子14に含まれる磁石22から生じた磁界は、これら磁界の極性に応じた吸引力および反発力を発生する。これらの吸引力および反発力によって、回転子14はシャフト16を中心に回転する。
 次に、以上のように構成されたブラシレスモータ100に用いられる回転体20の概要について説明する。図2Aに示すように、回転体20は、最外周部分に磁石22を有する。最外周部分から内周側のシャフト16に向かって、回転体20は、磁石22、外側鉄心25、誘電体層23、内側鉄心26の順に配置される。回転子鉄心21は、外側鉄心25と内側鉄心26とで、構成される。誘電体層23は、絶縁樹脂27で構成される層である。以降の説明において、絶縁樹脂27を誘電体ともいう。
 本実施の形態1では、電食の発生を抑制するために、このような誘電体層23が設けられる。回転体20は、磁石22と、外側鉄心25と、誘電体層23と、内側鉄心26と、が一体に形成される。誘電体層23の内部には、導電体28が一体に成型される。
 図2Bに示すように、内側鉄心26は、内側鉄心26の内周側に、シャフト16が挿入されるシャフト挿入孔26bが形成される。シャフト16は、シャフト挿入孔26bにおいて、内側鉄心26と締結される。シャフト16が、シャフト挿入孔26bを介して回転体20と固定されることで、回転子14が形成される。回転子14は、一対の軸受15に支持される。
 回転体20において、誘電体層23は、絶縁物である絶縁樹脂27と導電体28とが、軸心40に対して直交する方向、すなわち、半径方向に層を成すように構成される。層状に構成された絶縁樹脂27と導電体28とにより、外側鉄心25と内側鉄心26とは、直列的に絶縁された状態で分離される。
 また、誘電体層23を構成する絶縁樹脂27は、所定の誘電率を有する絶縁樹脂で形成される。高周波電流は、外側鉄心25と内側鉄心26との間を流れる。
 ところで、本実施の形態1で示す誘電体層23を有さない回転体が用いられた場合、つぎの理由により、軸受に電食が生じる。
 すなわち、一般的に、固定子鉄心と一対のブラケットとの間で生じるインピーダンスは高い。このインピーダンスを固定子鉄心側インピーダンスという。一方、回転体とシャフトとの間で生じるインピーダンスは低い。このインピーダンスを回転体側インピーダンスという。
 固定子側インピーダンスは、主に二つのインピーダンスを有する。つまり、固定子鉄心を基準として、一方のブラケットと固定子鉄心との間に生じるインピーダンスと、他方のブラケットと固定子鉄心との間に生じるインピーダンスと、が存在する。なお、一対のブラケットには、各々対応する、一対の軸受の外輪が固定される。
 回転体側インピーダンスは、誘電体層を有さない回転体と、この回転体が固定されるシャフトとの間に生じるインピーダンスである。回転体とシャフトとは電気的に接続されるため、回転体側インピーダンスは低い。なお、シャフトには、一対の軸受の内輪が固定される。
 ブラシレスモータ内には、固定子鉄心側インピーダンスと回転体側インピーダンスとを変換した等価回路が形成された状態となる。このような状態において、ブラシレスモータには、PWM方式を用いたインバータ駆動が施される。このとき、固定子鉄心などから、パルス幅変調に起因する高周波電流が発生する。発生した高周波電流は、固定子鉄心側インピーダンスと回転体側インピーダンスとが変換された等価回路へ流れ込む。この結果、各々のブラケットと電気的に接続された軸受の外輪と、シャフトと電気的に接続された軸受の内輪との間で、高周波電流による電位差が生じる。この電位差が高い場合、軸受に電食が生じる。
 上述した電食が発生する要因に着目して、本実施の形態1では、回転体のインピーダンスを高くすることで、電食の発生を抑制する。
 回転体が、鉄心のみで形成された場合、インピーダンスは低くなる。そこで、図2A、図2Bに示すように、回転体20は、外側鉄心25と内側鉄心26との間に、誘電体層23を有する。本構成とすれば、回転体20のインピーダンスは高くなる。具体的には、誘電体層23を有する回転体20のインピーダンスは、ブラケット17側のインピーダンスと近似する値にまで引き上げられる。
 つまり、図1に示すように、回転体20は、外側鉄心25と内側鉄心26との間に誘電体層23を有する。回転体20を含む回転子14は、誘電体層23を有することにより、静電容量が直列に接続された回路と等価になる。このように、回転体20のインピーダンスを高くすれば、回転子14が有するインピーダンスは高くなる。
 回転子14のインピーダンスが高くなれば、回転子14からシャフト16へと流れる高周波電流による電圧降下は大きくなる。よって、高周波電流によりシャフト16に発生していた電位は、低くすることができる。
 換言すれば、軸受15の外輪は、ブラケット17に電気的に接続される。軸受15の内輪は、シャフト16と電気的に接続される。上述した動作原理に基いて、本実施の形態1におけるブラシレスモータ100は、軸受15の外輪と、軸受15の内輪との間において、高周波電流による電位差が少なくなる。よって、軸受15の内輪と軸受15の外輪との間は、電位差が低くなるように保たれる。この結果、軸受15における電食の発生は抑制される。
 回転体20について、詳細に説明する。
 図2A、図2Fに示すように、回転体20は、略円筒形状を成す内側鉄心26と、外側鉄心25とを有する。外側鉄心25は、軸心40に沿った方向において、内側鉄心26の側面と対向する内面を有する円環柱形状を成す。回転体20は、内側鉄心26と外側鉄心25との間に、絶縁樹脂27を有する。回転体20は、内側鉄心26または外側鉄心25と、絶縁樹脂27とを締結するにあたり、その強度を向上させるために、つぎの構成とした。すなわち、図2Fに示すように、外側鉄心25と絶縁樹脂27とが接する境界部43には、軸心40に対して直交する方向において、複数の凸部44と、この凸部44と嵌合する凹部45とを有する。本構成により、隣り合う外側鉄心25と絶縁樹脂27とが締結する力が強くなる。なお、図2Fに示した、凸部44と凹部45とを入れ替える構成としてもよい。
 その他、内側鉄心26と外側鉄心25とが、絶縁樹脂27を介して、互いに噛み合うような構成であってもよい。また、境界部43の形状は、軸心40に対して直交する面において、多角形状であってもよい。
 さらに、軸心40に沿った方向において、外側鉄心25の長さと内側鉄心26の長さは、同じ長さでよい。あるいは、所定の特性を確保できれば、外側鉄心25の長さと内側鉄心26の長さは、異なっていてもよい。
 ここで、図2A、図2Bに示すように、誘電体層23は、軸心40に沿った方向において、異なる厚みを有する外側絶縁樹脂27aと内側絶縁樹脂27bと、を有する。誘電体層23は、外側絶縁樹脂27aと内側絶縁樹脂27bとの間に、導電体28を有する。誘電体層23は、外側絶縁樹脂27aと、導電体28と、内側絶縁樹脂27bとが、一体に成型される。
 本構成とすれば、回転体20は、外側鉄心25と内側鉄心26との間に、所定の静電容量を有するキャパシタが形成される。円筒形状の誘電体層23が有する静電容量Cは、後述する(1)式により算出される。すなわち、誘電体層23の内径をaとする。誘電体層23の外径をbとする。軸心40に沿った方向において、誘電体層23の長さをLとする。誘電体層23の誘電率をεとする。このとき、(1)式は、つぎのようになる。
 静電容量C=2×π×ε×L/log(b/a)・・・(1)
 なお、(1)において、誘電体層23の厚みは、(b/a)で示される。(b/a)が小さくなれば、誘電体層23の厚みは薄くなる。
 本実施の形態1における電動機は、(1)式で導き出される静電容量Cを調整して、電食が抑制される、最適な軸電圧を得る。例えば、最適な軸電圧を得るために、静電容量Cを大きくすることが求められることがある。この場合、図2D、図2Eに示すように、回転体20は、外側鉄心25と導電体28、または、導電体28と内側鉄心26、とが導通部材42で導通される。
 誘電体層23に対して導通部材42が用いられる前の状態を、誘電体層23の初期状態とする。例えば、外側鉄心25と導電体28とが溶接により導通される場合、溶接に用いられる部材が導通部材42となる。
 外側鉄心25と導電体28、または、導電体28と内側鉄心26、とが導通部材42で導通されると、回転体20は、誘電体層23の厚みが実質的に薄くなる。誘電体層23の厚みが薄くなれば、(1)式により、外側鉄心25と内側鉄心26との間に生じる静電容量Cが大きくなる。よって、導通部材42と導電体28とを用いて外側鉄心25と内側鉄心26との距離を短くすれば、誘電体層23は、初期状態と比べて静電容量Cが大きくなる。
 つぎに、図2Dに示すように、誘電体層23は、軸心40に直交する方向において、外側絶縁樹脂27aの厚みが内側絶縁樹脂27bの厚みよりも薄い構成を成す。
 本構成において、外側鉄心25と導電体28とが導通部材42で導通される。この場合、誘電体層23の厚みは、実質的には、内側絶縁樹脂27bの厚さと等価になる。つまり、外側鉄心25と導電体28とが導通部材42で導通された誘電体層23は、初期状態と比べて静電容量Cが大きくなる。
 上記構成とは異なり、図2Eに示すように、導電体28と内側鉄心26とが導通部材42で導通される。この場合、誘電体層23の厚みは、実質的には、外側絶縁樹脂27aの厚さと等価になる。つまり、導電体28と内側鉄心26とが導通部材42で導通された誘電体層23は、初期状態と比べて静電容量Cが大きくなる。
 しかも、導電体28と内側鉄心26とが導通部材42で導通された誘電体層23は、外側鉄心25と導電体28とが導通部材42で導通された誘電体層23よりも、誘電体層23の厚みが薄くなる。よって、導電体28と内側鉄心26とが導通部材42で導通された誘電体層23は、外側鉄心25と導電体28とが導通部材42で導通された誘電体層23よりも、静電容量Cが大きくなる。
 上述したように、誘電体層23は、外側絶縁樹脂27aの厚みと内側絶縁樹脂27bの厚みとを、適宜、選択する。また、誘電体層23は、導電体28と、外側鉄心25あるいは内側鉄心26のいずれか一方とを、導通部材42で、適宜、導通する。
 本構成とすることにより、回転体20が有する静電容量は、容易に調整できる。
 なお、つぎの(a)から(c)の構成とすることで、外側鉄心25と内側鉄心26との間で生じる静電容量は、調整できる範囲が広くなる。すなわち、(a)軸心40に沿った方向において、導電体28の長さは、外側鉄心25の長さ、あるいは、内側鉄心26の長さより短くなる。(b)例えば、図2Cに示すように、誘電体層23が複数の導電体28を有することで、誘電体層23は3つ以上に分割される。(c)外側絶縁樹脂27aと内側絶縁樹脂27bは、各々異なる誘電率を有する樹脂で形成される。
 以上説明したように、本実施の形態1における電動機によれば、回転体20を成型した後であっても、外側鉄心25と内側鉄心26との間に生じる静電容量を調整できる。
 すなわち、誘電体である絶縁樹脂27を成型する金型は、静電容量を調整するために、変更しなくてもよい。また、軸心40に沿った方向において、外側鉄心25の長さと内側鉄心26の長さは、変更しなくてもよい。よって、静電容量を調整するために必要となるコストや工数が、増加することを抑制できる。
 このとき、初期の外側鉄心25と内側鉄心26との間に生じる静電容量は、少ない静電容量と設定しておくことが望ましい。初期の静電容量を少なく設定すれば、外側鉄心25と導電体28、または、導電体28と内側鉄心26とを導通部材42で導通することにより、調整できる静電容量の範囲を広くできる。この結果、誘電体層23を用いて静電容量の成分を調整することで、回転子14は、回転子14が有するインピーダンスを高くできる。従って、回転子14は、シャフト16を介して軸受15の内輪側へ流れ込んでいた高周波電流を、抑えることができる。回転子14は、軸受15の内輪側へ流れ込んでいた高周波電流を抑制することで、軸受15の内輪側の電位を低くできる。
 誘電体層23による静電容量を適切な値とすれば、軸受15の内輪と軸受15の外輪との間に生じる電位差、すなわち軸電圧が、最も低くなるような最適状態を得ることができる。つまり、軸受15の内輪と、軸受15の外輪との間に生じる電位差が少なくなるように誘電体層23が有する静電容量を調整すれば、電食の発生を効率的に抑制できる。
 (実施の形態2)
 つぎに、実施の形態1にて説明したものとは異なる形態について、図面を用いて説明する。なお、実施の形態1と同様の構成要素については、同じ符号を付し、説明を援用する。
 図3は、本発明の実施の形態2における電動機に用いられる回転体の断面図である。
 図3に示すように、本発明の実施の形態2における電動機に用いられる回転体20は、外側鉄心25と内側鉄心26とを導通するコンデンサ30を含む。外側鉄心25と内側鉄心26との間に生じる静電容量は、コンデンサ30により調整される。
 さらに、詳細に説明する。
 回転子を構成する回転体20は、外側鉄心25と、内側鉄心26と、絶縁樹脂29と、を有する。コンデンサ30は、外側鉄心25と内側鉄心26とを、電気的に接続する。コンデンサ30は、外側鉄心25と内側鉄心26との間において、静電容量を調整する部材として機能する。
 特に、コンデンサ30が、容量を変更できる可変コンデンサ等で構成されると、外側鉄心25と内側鉄心26との間で生じる静電容量は、より一層、容易に調整できる。
 つまり、本実施の形態2における電動機によれば、回転体20を成型した後であっても、外側鉄心25と内側鉄心26との間に生じる静電容量を調整できる。
 すなわち、誘電体である絶縁樹脂29を成型する金型は、静電容量を調整するために、変更しなくてもよい。また、軸心40に沿った方向において、外側鉄心25の長さと内側鉄心26の長さは、変更しなくてもよい。よって、静電容量を調整するために必要となるコストや工数が、増加することを抑制できる。
 以上の説明から明らかなように、本実施の形態2における電動機は、誘電体層23を用いて静電容量の成分を調整することで、回転子14は、回転子14が有するインピーダンスを高くできる。従って、回転子14は、シャフト16を介して軸受15の内輪側へ流れ込んでいた高周波電流を、抑えることができる。回転子14は、軸受15の内輪側へ流れ込んでいた高周波電流を抑制することで、軸受15の内輪側の電位を低くできる。
 誘電体層23による静電容量を適切な値とすれば、軸受15の内輪と軸受15の外輪との間に生じる電位差、すなわち軸電圧が、最も低くなるような最適状態を得ることができる。つまり、軸受15の内輪と、軸受15の外輪との間に生じる電位差が少なくなるように誘電体層23が有する静電容量を調整すれば、電食の発生を効率的に抑制できる。
 (実施の形態3)
 つぎに、実施の形態1または2にて説明した電動機が、電気機器に搭載された形態について、図面を用いて説明する。なお、後述する説明において、電気機器の具体例として、エアコンの室内機を示す。
 図4は、本発明の実施の形態1または2のいずれかの形態における電動機を搭載したエアコン室内機の概略図である。
 図4に示すように、本発明の実施の形態3における電気機器であるエアコン室内機210は、電動機201と、電動機201を駆動する駆動部である電動機駆動装置213と、を備える。
 図面とともに、詳細に説明する。
 図4に示すように、エアコン室内機210の筐体211内には、電動機201が搭載される。電動機201が有する回転軸には、クロスフローファン212が取り付けられる。筐体211内には、熱交換器が配置される。
 電動機201は、駆動部である電動機駆動装置213によって駆動される。電動機201には、電動機駆動装置213から駆動信号が送信される。この駆動信号により、電動機201が回転する。電動機201が回転すれば、クロスフローファン212も回転する。クロスフローファン212が回転すれば、熱交換器で空気調和された空気を、エアコン室内機210が設置された居室内に送風できる。電動機201は、上述した実施の形態1から2で示したブラシレスモータが適用できる。
 なお、上述した説明では、本発明の実施の形態3における電気機器の具体例として、エアコン室内機を例示した。本具体例の他に、エアコン室外機など、各種の情報機器や産業機器などに使用される電動機にも適用できる。
 以上説明したように、本発明の実施の形態における電動機において、電動機に用いられる回転子の回転体は、外側鉄心と、内側鉄心と、誘電体層と、を有する。
 外側鉄心は、回転体の外周部分を構成する。内側鉄心は、シャフトに締結される内周部分を構成する。誘電体層は、外側鉄心と内側鉄心との間に位置する。誘電体層は、外側鉄心と内側鉄心との間の静電容量を調整する。
 本構成において、静電容量を調整することにより、容易に適切な軸電圧を得ることができる。よって、本発明の実施の形態における電動機によれば、軸受に生じていた電食を効果的に抑制できる。
 特に、本実施の形態における電動機は、回転体が、外側鉄心と導電体とを導通する導通部材を含む。あるいは、回転体が、導電体と内側鉄心とを導通する導通部材を含む。その他、回転体は、外側鉄心と内側鉄心とを導通するコンデンサを含む。
 本構成により、外側鉄心と内側鉄心との間の静電容量を調整する。よって、本構成によれば、回転体を成型した後であっても、外側鉄心と内側鉄心との間に生じる静電容量を調整できる。
 すなわち、誘電体である絶縁樹脂を成型する金型は、静電容量を調整するために、変更しなくてもよい。また、軸心に沿った方向において、外側鉄心の長さと内側鉄心の長さは、変更しなくてもよい。よって、静電容量を調整するために必要となるコストや工数が、増加することを抑制できる。
 また、上述した構成において、静電容量を調整することにより、軸電圧が最も低くなる最適の静電容量を得ることができる。本発明の実施の形態において、最適の静電容量とは、回転子側の最適のインピーダンスをいう。
 上述した、これらの構造は、各々の構成を組み合わせても、軸受に生じる電食を抑制することができる。
 また、本発明の実施の形態1または2では、一例として、外側鉄心に磁石が貼り付けられる表面磁束型モータを示した。その他、外側鉄心に磁石を埋設された磁石埋め込み型モータや、固定子の外側に回転子が配置されるアウターロータ型モータであっても、同様の効果が得られる。
 本発明の電動機は、軸電圧を減少させることが可能であり、軸受の電食発生を効果的に抑制することができる。このため、主に電動機の低価格化および高寿命化が要望される機器で、例えばエアコン室内機、エアコン室外機などに搭載される電動機に有効である。
 10  固定子
 11  固定子鉄心
 12  固定子巻線(巻線)
 13  絶縁樹脂
 14  回転子
 15,15a,15b  軸受
 16  シャフト
 17,24  ブラケット
 18  プリント基板
 19  モータケース
 20  回転体
 21  回転子鉄心
 22  磁石(永久磁石)
 23  誘電体層
 25  外側鉄心
 26  内側鉄心
 26b  シャフト挿入孔
 27,29  絶縁樹脂
 27a  外側絶縁樹脂
 27b  内側絶縁樹脂
 28  導電体
 30  コンデンサ
 40  軸心
 41  上面
 42  導通部材
 43  境界部
 44  凸部
 45  凹部
 100,201  ブラシレスモータ(電動機)
 210  エアコン室内機
 211  筐体
 212  クロスフローファン
 213  電動機駆動装置(駆動部)

Claims (10)

  1. 巻線を巻装した固定子鉄心を含む固定子と、
    前記固定子に対向して周方向に永久磁石を有する回転体と、前記回転体の軸心を貫通するシャフトと、を含む回転子と、
    前記シャフトを回転自在に支持する、一対の軸受と、
    前記軸受を固定する、一対のブラケットと、を備え、
    前記回転体は、前記回転体の外周部を構成する外側鉄心と、前記シャフトに締結される内周部を構成する内側鉄心と、前記外側鉄心と前記内側鉄心との間に位置するとともに、前記外側鉄心と前記内側鉄心との間の静電容量を調整する誘電体層と、を有する電動機。
  2. 前記誘電体層は、前記軸心に対して直交する方向において、前記誘電体層を分割する導電体を有する請求項1に記載の電動機。
  3. 前記導電体は、前記誘電体層を前記軸心方向に沿って同心形状に分割する請求項2に記載の電動機。
  4. 前記誘電体層は、複数の前記導電体を有する請求項2または3のいずれか一項に記載の電動機。
  5. 分割された前記誘電体層は、前記軸心に対して直交する方向において、各々異なる厚みを有する誘電体で形成する請求項2に記載の電動機。
  6. 分割された前記誘電体層は、各々異なる誘電率を有する樹脂で形成される請求項2に記載の電動機。
  7. さらに、前記回転体は、前記外側鉄心と前記導電体、または、前記導電体と前記内側鉄心、とを導通する導通部材を含む請求項2に記載の電動機。
  8. さらに、前記回転体は、前記外側鉄心と前記内側鉄心とを導通するコンデンサを含む請求項1に記載の電動機。
  9. 前記コンデンサは、静電容量が変更できる可変コンデンサである請求項8に記載の電動機。
  10. 請求項1から3、または、請求項5から9のいずれか一項に記載の電動機と、前記電動機を駆動する駆動部と、を備えた電気機器。
PCT/JP2014/002230 2013-04-25 2014-04-21 電動機およびこの電動機を備えた電気機器 WO2014174826A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201490000608.8U CN205029472U (zh) 2013-04-25 2014-04-21 电动机以及具备该电动机的电气设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013092352A JP2016129439A (ja) 2013-04-25 2013-04-25 電動機およびそれを備えた電気機器
JP2013-092352 2013-04-25

Publications (1)

Publication Number Publication Date
WO2014174826A1 true WO2014174826A1 (ja) 2014-10-30

Family

ID=51791414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002230 WO2014174826A1 (ja) 2013-04-25 2014-04-21 電動機およびこの電動機を備えた電気機器

Country Status (3)

Country Link
JP (1) JP2016129439A (ja)
CN (1) CN205029472U (ja)
WO (1) WO2014174826A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
JP6939543B2 (ja) 2017-07-21 2021-09-22 株式会社デンソー 回転電機
CN113991959B (zh) 2017-07-21 2024-04-16 株式会社电装 旋转电机
JP6927186B2 (ja) 2017-12-28 2021-08-25 株式会社デンソー 回転電機
DE112018006651T5 (de) 2017-12-28 2020-10-08 Denso Corporation Radantriebsvorrichtung
JP7006541B2 (ja) 2017-12-28 2022-01-24 株式会社デンソー 回転電機
CN111557069A (zh) 2017-12-28 2020-08-18 株式会社电装 旋转电机
DE112018006694T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
DE112018006717T5 (de) 2017-12-28 2020-09-10 Denso Corporation Rotierende elektrische Maschine
WO2021176668A1 (ja) 2020-03-05 2021-09-10 株式会社デンソー 回転電機
DE102020124652A1 (de) * 2020-09-22 2022-03-24 Schaeffler Technologies AG & Co. KG Radialflussmaschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068571A (ja) * 2001-08-27 2003-03-07 Nec Corp 可変コンデンサおよび可変インダクタ並びにそれらを備えた高周波回路モジュール
WO2010067616A1 (ja) * 2008-12-12 2010-06-17 パナソニック株式会社 電動機およびそれを備えた電気機器
JP2010166689A (ja) * 2009-01-15 2010-07-29 Panasonic Corp 電動機およびその電動機を具備する電気機器
WO2012147244A1 (ja) * 2011-04-27 2012-11-01 パナソニック株式会社 電動機およびそれを備えた電気機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068571A (ja) * 2001-08-27 2003-03-07 Nec Corp 可変コンデンサおよび可変インダクタ並びにそれらを備えた高周波回路モジュール
WO2010067616A1 (ja) * 2008-12-12 2010-06-17 パナソニック株式会社 電動機およびそれを備えた電気機器
JP2010166689A (ja) * 2009-01-15 2010-07-29 Panasonic Corp 電動機およびその電動機を具備する電気機器
WO2012147244A1 (ja) * 2011-04-27 2012-11-01 パナソニック株式会社 電動機およびそれを備えた電気機器

Also Published As

Publication number Publication date
JP2016129439A (ja) 2016-07-14
CN205029472U (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
WO2014174826A1 (ja) 電動機およびこの電動機を備えた電気機器
JP5112574B2 (ja) 電動機およびそれを備えた電気機器
JP5502822B2 (ja) 電動機およびそれを備えた電気機器
JP5845427B2 (ja) 電動機およびこの電動機を備える電気機器
US9059615B2 (en) Motor and electric apparatus equipped with same
JPWO2011030536A1 (ja) 電動機およびそれを備えた電気機器
WO2012105193A1 (ja) モールドモータ
JP5370431B2 (ja) 電動機およびそれを備えた電気機器
JP2014107998A (ja) 電動機
WO2011043075A1 (ja) 空気調和機
JP6368917B2 (ja) 電動機およびこの電動機を備えた電気機器
US7579726B2 (en) Fan, motor and stator structure thereof
JP2011205724A (ja) 空気調和機
JP5312521B2 (ja) 電動機および空調機
JP2015023681A (ja) 電動機及び電気機器
WO2013042282A1 (ja) 電動機およびそれを備えた電気機器
JP2014147241A (ja) 電動機およびそれを備えた電気機器
JP6383949B2 (ja) 電動機およびそれを備えた電気機器
JP5312519B2 (ja) 電動機および空調機
JP5312518B2 (ja) 電動機および空調機
JP2014143865A (ja) 電動機およびこれを備えた電気機器
JP5493931B2 (ja) 空気調和機
JP2015056970A (ja) 電気機器
JP2014117110A (ja) 電動機
JP2009225601A (ja) モールド電動機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201490000608.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14788425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14788425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP