WO2014174200A2 - Élément isolant muni de crochets de maintien de fils de bobinage d'un stator de machine électrique et stator correspondant - Google Patents

Élément isolant muni de crochets de maintien de fils de bobinage d'un stator de machine électrique et stator correspondant Download PDF

Info

Publication number
WO2014174200A2
WO2014174200A2 PCT/FR2014/050968 FR2014050968W WO2014174200A2 WO 2014174200 A2 WO2014174200 A2 WO 2014174200A2 FR 2014050968 W FR2014050968 W FR 2014050968W WO 2014174200 A2 WO2014174200 A2 WO 2014174200A2
Authority
WO
WIPO (PCT)
Prior art keywords
stator
support
coil
winding
hook
Prior art date
Application number
PCT/FR2014/050968
Other languages
English (en)
Other versions
WO2014174200A3 (fr
Inventor
Benoit WALME
Rafal PISAREK
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Priority to CN201490000606.9U priority Critical patent/CN205693455U/zh
Publication of WO2014174200A2 publication Critical patent/WO2014174200A2/fr
Publication of WO2014174200A3 publication Critical patent/WO2014174200A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles

Definitions

  • the invention relates to an insulating element provided with hooks for holding winding wires of an electric machine stator and on the corresponding stator.
  • the invention finds a particularly advantageous application in the field of rotating electrical machines such as an alternator, or an electric motor.
  • the invention can be used advantageously with a refrigerant compressor air conditioner for a motor vehicle.
  • Electric machines having a stator and a rotor integral with a shaft ensuring the movement of a scroll compressor, also known as a "scroll compressor".
  • a scroll compressor also known as a "scroll compressor”.
  • Such a system comprises two spirals interposed as pallets for pumping and compressing the refrigerant. In general, one of the turns is fixed, while the other moves eccentrically without turning, so as to pump and trap and compress fluid pockets between the turns.
  • Such a system is for example described in EP1865200.
  • the stator comprises a body made of laminated sheets to reduce the eddy currents.
  • the body has at its outer periphery an annular wall, called a yoke, and teeth coming from the inner periphery of the annular wall having an outer periphery in contact with a housing that comprises the rotating electrical machine.
  • This housing also called casing, is configured to rotate the rotor shaft via ball bearings and / or needle as can be seen for example in Figures 1 and 2 of EP1865200.
  • the stator teeth of radial orientation are distributed on the wall of the stator body and extend inwardly of the stator towards the rotor.
  • An air gap exists between the free end of the teeth, defining the periphery internal of the stator body, and the outer periphery of the rotor, which may be a rotor with permanent magnets.
  • the teeth define with the annular wall notches open towards the inside and intended to receive coils, for example in the form of coils, for forming a polyphase stator for example of the three-phase type.
  • a winding operation is carried out consisting in winding at least one conductive wire around the different poles.
  • a coil may be made from a single or a plurality of son in parallel.
  • the excitation coils of each pole are electrically connected together by connecting son in series or in parallel. To properly perform the winding operation, it is necessary to maintain fixed end of the son of the coils.
  • the invention aims to meet this need by proposing an insulating element for maintaining winding wires for a stator of a rotating electrical machine, characterized in that it comprises an annular support having an internal bearing face adapted to be pressed against a radial end face of the stator and hooks, each hook delimiting, with an outer face of the support opposite to the inner support face, a space allowing passage of an end of at least one wire of a coil for its maintenance during a winding operation.
  • the hooks of the insulating element make it possible to maintain the ends of the wires of the last turns of the coils during the winding operations. These hooks also allow to maintain a mechanical tension on the son of the coils.
  • the hooks have a height adapted to the wire diameter of the coils.
  • the hooks have a height adapted to the number of turns of the coil wire around the hooks.
  • the position of the hooks depends on a winding direction of the bobbin thread.
  • each hook is intended to be positioned on the right of the coil which corresponds to it for a direction of winding anticlockwise or on the left of the coil which corresponds to it for a clockwise winding direction.
  • each hook comprises a stud coming from the outer face of the support and a tab located on the side of a free end of the stud projecting in the direction of an outer periphery of the support.
  • each tab has the shape of a triangular ramp on the opposite side of the space allowing passage of the end of the coil wire.
  • the insulating element further comprises walls each sandwiched between two successive hooks so that there is an alternation between the hooks and the walls on a circumference of the support.
  • each hook being positioned between two lateral faces of two adjacent walls turned towards each other, the hook is separated from each of these faces by a space sufficient to allow passage of a winding needle.
  • a plurality of walls are each provided with a tongue projecting from a face of the wall facing an outer periphery of the support to form electrical wire bundle holding systems connected to the stator coils.
  • the inner periphery of the support comprises recesses intended to receive ends of notch insulators positioned inside slots of the stator.
  • the support further comprises on its bearing face at least two latching devices for the angular positioning of the element on an end face of the stator.
  • the support comprises on its bearing surface recesses intended to come opposite stator rivets located on the same circumference.
  • the insulating element further comprises arms distributed circumferentially around the support extending radially relative to the support from an inner periphery of the support towards the inside of the support intended to bear against stator teeth distributed regularly. on an inner periphery of an annular wall of said stator, each hook being associated with an arm.
  • each hook is offset angularly with respect to a median plane of the arm with which said hook is associated.
  • the insulating element further comprises flanges extending on either side of the arms.
  • the subject of the invention is also a stator for a rotating electrical machine provided with an insulating element according to the invention intended to be pressed against a radial end face of said stator.
  • the subject of the invention is also a method of winding a stator for a rotating electrical machine provided with an insulating element, said insulating element comprising hooks.
  • the method comprises the following steps:
  • the method further comprises at the end of the attachment step, a step of winding the wire around two pads of the support dedicated to said formed coil. This results in a length of wire which allows the electrical connection of the coil formed of one phase to the next coil of the same phase, to which the formed coil is to be connected.
  • said hooking and winding steps are repeated to form coils on all of the stator arms, said method further comprising a step of cutting each of the wire portions between the hook attachment dedicated to a coil and the two pads of the support dedicated to the same coil.
  • Figure 1 shows a perspective view of an assembled stator according to the invention
  • Figure 2a is a perspective view of the stator according to the invention without the beams connecting the coils together to form the different phases of the electric machine;
  • Figure 2b is a detailed view of the upper portion of the stator of Figure 2a;
  • Figure 3 shows a bottom view of the electrically insulating member according to the invention
  • FIG. 4 shows the zone of contact between an arm of the insulating element according to the invention and a tooth of the stator
  • Figure 5a shows a side view of a holding hook of the insulating member according to the invention around which the wire has been wound once
  • Figure 5b shows a side view of a holding hook of the insulating element according to the invention around which the wire has been wound twice;
  • Figure 6 is an exploded perspective view of the stator according to the invention without the winding
  • Figures 7a and 7b show top and bottom perspective views respectively of the other electrically insulating member
  • Figure 8 shows a diagram of the electrical connections of the stator coils according to the invention between them
  • Figure 9 shows a top view of the stator showing the groupings of the different inputs of the coils together for the realization of the neutral points of the electric machine;
  • FIG. 10 shows a schematic representation of the configuration of the connections of the wires coming from a phase output
  • FIGS. 11a and 11b schematically show the positioning of the hooks as a function of the winding direction of the wire of the coils seen from inside the stator;
  • Figure 12 schematically illustrates the different steps of winding a stator according to the invention.
  • FIGS. 1, 2a, 2b, 6 and 9 show a stator 1 of a rotating electrical machine, such as an air conditioner refrigerant compressor for a motor vehicle.
  • the machine consists of an alternator or an electric motor.
  • This stator 1 comprises a body 2 in the form of a bundle of laminated sheets having at its outer periphery an annular wall 3, called a yoke, and teeth 5 coming from the inner periphery of the annular wall. 3.
  • These teeth 5 are circumferentially evenly distributed and extend inward towards the rotor of the machine such as a permanent magnet rotor.
  • the teeth 5 delimit two by two notches 8, two successive notches 8 being thus separated by a tooth 5.
  • These teeth 5 have at their free end returns 9 extending circumferentially on either side of the tooth 5.
  • the Free ends of the teeth 5 delimit, in known manner, an air gap with the outer periphery of the rotor of the rotating electrical machine.
  • An electrically insulative member 1 is plated on one side of the stator.
  • This element 1 1 may be moldable plastic, for example PA 6.6.
  • the element 1 1 of plastic material may be reinforced by fibers, such as glass fibers.
  • This element 1 1 comprises at its outer periphery a support 12 in the form of an X axis ring having an axial orientation, and circumferentially distributed arms 14 which extend radially from an inner periphery of the support 12 towards the inside of the housing.
  • the axis X of the element 1 1 is substantially coincident with the axis of the stator 1.
  • the arms 14 each end at their free end by a flange 15 which extends circumferentially on either side of the arm 14. The function of the flange 15 is to retain in the radial direction an excitation coil wound around a tooth of each pole of the stator 1 visible in Figures 1, 2a and 2b.
  • the element 1 1 has an internal bearing face 18 intended to be pressed against a radial end face 19 of the stator and an external face 20 opposite to the bearing face 18.
  • radial end face 19 is inscribed in the plane perpendicular to the axis of the stator 1.
  • the arms 14 are evenly distributed on the inner periphery of the support 12 and are intended to bear against the teeth 5 of the stator 1 of corresponding shape.
  • the arms 14 are symmetrical with respect to their median plane P1 extending substantially radially with respect to the X axis shown in FIG. 3.
  • the internal periphery of the support 12 has two inclined faces, one per
  • the arms 14 of the insulating element are here fifteen in number, like the teeth 5 of the stator 1.
  • the arms 14, the flanges 15, and the inner periphery of the support 12 delimit notches 22 having a shape and dimensions corresponding to the notches 8 of the stator 1.
  • the arms 14, the flanges 15 and the inner periphery of the support 12 each comprise recesses 26 made in the thickness of the material intended to receive the notch insulator ends 27 of the stator.
  • the stator 1 is equipped with notch insulators 27 in the form of a thin membrane, made of an electrically insulating material and heat conductor, for example an aramid material of Nomex type (trademark). This thin membrane is folded so that each notch insulator 27 is pressed against the axial inner walls 29 of the stator between two adjacent poles (see FIG. 4).
  • the ends of the notch insulators 27 protruding axially from the stator may be housed inside the recesses 26.
  • These insulators have a small thickness (0, 24 mm in Figure 4).
  • the recesses have a depth adapted to that of the insulator (0.5 mm in Figure 4).
  • These recesses 26 of the arms are delimited by a face substantially perpendicular to the X axis and an orthogonal face substantially parallel to the lateral faces of the arms 14.
  • the recesses 26 of the flanges 15, which lie in the continuity of the recesses of the arms 14, are delimited by a face substantially perpendicular to the axis X and an orthogonal face which extends parallel to the faces of the flanges 15 facing the notches 22.
  • the recesses 26 formed in the inner periphery of the support 12, which lie in the continuity of the recesses 26 of the arms 14, are delimited by a face substantially perpendicular to the axis X and an orthogonal face which extends parallel to the faces 23 of the inner periphery of the support 12.
  • the recesses 26 follow the contour of the notches 22 of the insulating element 1 1.
  • the support 12 has on its external face 20 hooks 31 delimiting, with said external face 20, a space 32 allowing the passage of an end 33 of one or more son forming a coil 24 for its maintenance during a winding operation.
  • These hooks 31 make it possible to hold the ends of the wires of the polyphase winding of the stator 1 in position after the completion of each coil.
  • each hook 31 is located on the support 12 near the outer periphery of the arms 14.
  • each hook 31 is preferably slightly angularly offset relative to the median plane P1 of an arm 14 which is associated with the hook 31.
  • the position of the hooks 31 with respect to the coils 24 depends on the winding direction of the wire of the coils around the teeth 5 of the stator 1. Indeed, for a direction of anti-clockwise winding AH, the hook 31 is positioned on the right of the coil 24 and thus of the arm 14 corresponding to allow the maintenance of the wire end of the last turn DS of the coil 24 as can be seen in FIG. 11a as well as in the embodiment of FIGS. 2a, 2b, 6 and 8.
  • each hook 31 comprises a stud 35 coming from the outer face 20 of the support 12 and a tab 36 located on the side of a free end of the stud 35 projecting in the direction of the outer periphery of the support 12.
  • the pads 35 may have rounded edges, particularly on the side of the outer periphery of the support 12 to avoid injure the son of the coils 24.
  • the tab 36 in the present case is in the form of a triangular ramp on the opposite side to the space 32.
  • the space 32 is delimited by the face of the pad 35 turned on the side of the outer periphery of the support 12, the face of the tab 36 facing the outer face 20, as well as the portion of the outer face 20 facing the paw.
  • the space 32 is thus closed on the side of the inner periphery of the support 12 by a face of the stud 35 against which the one or more wires of the end of a coil 24 abut.
  • the space 32 is open laterally as well as on the side of the outer periphery of the support 12 so as to allow the passage of the end 33 or the son of the coils 24.
  • Each hook 31 has a height Hc and a width Le (see Figures 2b, 5a, 5b) adapted
  • the height Hc corresponds to the height of the space 32 allowing the passage of the wire, as is clearly visible in Figures 5a and 5b.
  • This height Hc also depends on the number of turns of wire made around the hook 31.
  • the hook 31 of Figure 5b around which the coil wire 24 is wound on two turns has a height Hc substantially twice as large as that of the hook 31 of Figure 5a around which the wire of the coil 24 is wound only once.
  • the height Hc follows the formula below:
  • -D is the coil wire diameter including enamel layer
  • kf 1 and kf 2 are between 0.05 mm and 0.2 mm and represent respectively the clearance left on the high side of the hook and the clearance left on the bottom side of the hook.
  • -N is the number of turns around the hook.
  • the insulating element 1 1 further comprises walls 38 clearly visible in Figures 1, 2a, 2b and 6 extending in axial projection relative to the outer face 20 at a height greater than that of the hooks 31. These walls 38 are each interposed between two successive hooks 31. There is thus an alternation between the hooks 31 and the walls 38 on the circumference of the support 12. Each hook 31 being positioned between two lateral faces of two adjacent walls 38 facing each other, the hook 31 is separated from each of these faces by a space 39 (see Figure 2b) sufficient to allow passage of a winding needle.
  • a plurality of walls 38 are each provided with a tongue 41 clearly visible in Figures 2b and 3 projecting from a face of the wall 38 facing the outer periphery of the support 12 to form systems 42 for maintaining the 63 bundles of electrical son connected to the coils 24 of the stator.
  • all the walls 38 are provided with a tongue 41.
  • each beam 63 is formed of several son of the coils 24 belonging to the same phase of the stator.
  • the tongue 41 ensures the retention of a holding wire 44 bearing against one side of the tongue 41 facing the bearing face 18 of the support 12. The holding wire 44 is also in position.
  • the buns correspond to the portions axial end of the coils 24 which protrude axially with respect to each radial outer end face of the stator 1.
  • the support 12 comprises at least two snap-fasteners 48 (clipping) shown in FIG. 3, to facilitate the angular positioning of the insulating element 1 1 and thus the centering of the insulating elements. 1 1 on the end face of the stator 1 during assembly.
  • the devices 48 are intended to cooperate by snapping (clipping) with corresponding openings 49 (see FIG. 6) formed on each radial end face of the stator 1.
  • the support 12 On the inner support face 18, the support 12 also has recesses 50 shown in FIG. 3, for example circular in shape, intended to come into contact with rivets 51 of the stator (see FIG. 6) situated on the same circumference. These rivets 51 pass axially from one side to the stacking of the sheets of the stator 1 to ensure the maintenance of the sheets and formation of a manipulable and transportable assembly. Thus, the bearing face 18 of the insulating element 1 1 does not interfere with the rivets 51 of the sheet package.
  • another electrically insulating element 11 ' is implanted at the level of the other radial end face of the stator. This insulator 11 'is similar to the element 1 1.
  • the insulating element 11 has a support portion 12' devoid of a hook 31 and a wall 38.
  • the electrically insulating element 11 ' can be made of moldable plastic, for example in PA 6.6.
  • the plastic member may be reinforced with fibers, such as glass fibers.
  • the arms 14 of the insulating member 1 ' may have on their outer face inclined grooves to facilitate the change of rank during the winding operation of winding a conductive wire around the various poles to obtain the stator windings 1. It is the same for the insulating element January 1 which may have grooves to facilitate winding during the winding operation. The grooves are not inclined in this case.
  • the insulating elements 1 1, 1 1 ' have a diameter slightly smaller than the external diameter of the stator 1 to allow the passage of tie rods for mounting the electric machine along the lateral face of the stator 1.
  • the stator 1 has at its outer periphery recesses 54 for the passage of the tie rods. It is the same insulating elements 1 1, 1 1 'as visible in figs 1 and 2a.
  • the tie rods are implanted on a circumference with a diameter greater than that of the rivets 51 for attaching the stator plate package 1.
  • the insulating elements 1 1, 1 1 have an external diameter L1 ( Figure 3) of the order of 10cm.
  • the element 1 1 has a maximum height L2 of the order of 1 1 mm.
  • the arms 14 have a length L3 of the order of 15mm.
  • the recesses 50 have a depth slightly greater than 1 mm.
  • the height Hc and the width of the hooks 31 of Figure 5a are respectively about 0.9mm and 2.2mm.
  • the insulating element 1 1 comprises fifteen arms 14 and fifteen hooks 31 for a stator 1 to fifteen coils.
  • this number of elements and the dimensions of these elements will be adapted according to the configuration of the stator 1 to be isolated, and in particular the number and size of the teeth 5 of the stator 1, as well as the diameter of the wire. of coil.
  • the insulating element 1 1 is plated via its bearing surface 18 against an end face of the stator 1 so that the latching devices 48 cooperate with the openings 49 of the corresponding stator 1.
  • element 1 1 ' The same is true of element 1 1 '.
  • the positioning of the elements 1 1, 1 1 ' is such that the ends of the notch insulators 27 previously positioned inside the slots 8 of the stator 1 which protrude axially from the stator 1 are housed inside the recesses 26 of the insulating element.
  • the arms 14 of the insulating elements 1 1, 1 1 'and the insulator 27 thus electrically isolate the coils of the stator winding 1, here of the three-phase type, with respect to the stator laminations. They also protect the winding wires during the winding of the conductive wires around the teeth 5 of the stator 1.
  • the son of the coils such as copper or aluminum wires covered with an electrically insulating layer, such as enamel, are wound around a tooth 5 of the stator and associated arms 14 of the insulating elements 1 1, 1 1 'during a winding operation.
  • the winding direction is for example anti-clockwise, as shown in Figure 1 1 a.
  • a coil 24 is in the embodiment illustrated by the figures obtained from a single wire but could alternatively be obtained from several son in parallel.
  • a centrally hollow needle is used to allow passage of the son or son which moves circumferentially, axially and radially relative to the stator.
  • the first turn of the coils 24 is maintained by the operator and then trapped by the following turns.
  • the hook 31 allows the attachment of the last turn after the winding of the wire to form the coil 24.
  • the hook 31 thus maintains the tension mechanical on the wire.
  • the end 33 of the wire of the last turn runs along a side wall of the stud 35 of the hook 31 turned on the side of the coil 24 from which it originates and passes inside the space 32 delimited by the hook. 31 to then be folded on the side of the opposite side face of the stud 35, as is clearly visible in Figures 2a and 2b.
  • the end of the wire is wound on several turns, in this case on two turns, around the stud 35 of the hook 31.
  • the coils 24 have two parts, called buns, arranged on either side of a tooth of the stator. These buns are retained by the flanges 15 of the arms 14.
  • the coils have a trapezoidal shape as can be seen in FIG. 9. It should be noted that the use of the insulating element 1 1 provided with the hooks 31 makes it possible to use the wire continuously to achieve all of the coils 24 insofar as after making a coil and the latching of the last turn, it is not necessary to cut the wire to move to the next coil. If necessary, it will be possible to cut the wires at the end of the winding operation of all the coils 24.
  • the end of the first turn of the coils 24 called input is intended to be interconnected with other inputs to form the neutral point of the electrical machine.
  • the end of the last turn held by a hook 31 called output is intended to be interconnected with other outputs to form one of the phases U, V, W of the machine.
  • the inputs and outputs has a single wire. Alternatively, they could comprise a plurality of son in parallel.
  • the outputs of the coils 24, which are coupled in parallel, are connected alternately to the different phases of the machine.
  • the output of the first coil 24 is connected to the phase U
  • the output of the second coil 24 is connected to the phase V
  • the output of the third coil 24 is connected to the last phase W and so on for all the stator coils.
  • the references Ui thus correspond to the outputs of the coils i connected to the phase U
  • the references Vj correspond to the outputs of the coils j connected to the phase V
  • the references Wk correspond to the outputs of the coils k connected to the phase W.
  • the neutral points of the electrical machine are made by connecting together the inputs of M successive coils at interconnection points, M being the number of phases.
  • M being the number of phases.
  • the interconnection points N1-N5 may each be physically constituted by a metal tube 60 to which the inputs of the coils 28 are connected in groups of three. It is noted that the interconnection points N1-N5 may or may not be connected to each other.
  • each phase U, V, W is associated with a strand of wires 61 connected to the coils.
  • Each strand 61 is preferably separated into two beams 63 in a separation zone SU located near a connection with an output of one of the coils 24 belonging to the corresponding phase.
  • These beams 63 positioned on an outer periphery of the bunches traverse a portion of the circumference of the stator 1 in two opposite directions to connect the outputs of the coils 24 forming a same phase.
  • These beams 63 are protected by a set of insulating sheaths 65 extending along the circumference of the stator 1 between two successive coils 24 of the same phase, all of which have a substantially identical length relative to one another.
  • FIG. 10 thus shows an example of the separation of the strand 61 associated with the phase U formed by five coils each consisting of a single wire.
  • This strand 61 comprising five son has a wire connected to an output U3 of a coil 24.
  • This strand 61 is subdivided in a separation zone SU located near this first connection in two beam 63 each having two son and a wire after the connection with an output U2, U4 of one of the coils.
  • the last wires of each beam 63 are respectively connected to the outputs U1 and U5 of the last coils 24.
  • the number of wires of each beam 63 decreases, after each connection with a coil output, the number of wires in parallel in each coil. who here is equal to one.
  • the number of wires inside each beam 63 decreases by three after each connection with an output.
  • the holding wires 44 shown in FIG. 1 are positioned against the rear faces of the walls 38 of the holding systems 42 and against the face of the tongue 41 turned towards the face of 18.
  • the holding son 44 are also positioned against the faces of the walls 38 so as to return towards the X axis and pass over the sheathed bundles.
  • the wire 44 passes under the beams 63 and then hooks around a new holding system 42.
  • the holding wire 44 follows a slot-shaped path around the entire circumference of the support to move from a holding system 44 to another.
  • this housing here comprises, in known manner, three parts, namely an intermediate portion carrying the annular wall 3 of the stator 1 of the electric machine, such as a refrigerant compressor for a motor vehicle air conditioner, and two flanges arranged on either side of the intermediate part.
  • an intermediate portion carrying the annular wall 3 of the stator 1 of the electric machine such as a refrigerant compressor for a motor vehicle air conditioner
  • two flanges arranged on either side of the intermediate part.
  • One of the hollow-shaped flanges accommodates the "scroll" of the compressor, while the other flange carries the control electronics of the compressor.
  • Tie rods connect the flanges together through the recesses 54 of the stator, for example mounted by shrinking via its annular wall in the intermediate portion sandwiched between the flanges.
  • the intermediate portion comprises shrinking sectors for mounting by shrinking of the wall of the stator 1.
  • the shrinking sectors are separated from each other by passages.
  • the outer periphery of the wall is in hooping contact with the inner periphery of the hooping sectors.
  • the passages are facing the recesses 54 so that the tie rods pass through the passages without interfering with the intermediate portion of the housing.
  • the intermediate part may be filled with coolant. This fluid can cross the spaces between the coils 24 and the beams.
  • the rotor of the electric motor of the compressor is permanent magnets, preferably buried in the rotor.
  • the magnets may be of radial orientation.
  • the rotor comprises a body in the form of a pack of sheets provided with housings, which may be of radial orientation for housing the magnets.
  • the rotor made of laminated sheets may comprise a central core, and teeth extending radially relative to the core. These teeth each comprise two flanges extending circumferentially on either side of the teeth.
  • Permanent magnets are positioned inside housings delimited each by two faces facing each other of two adjacent teeth, an outer face of the rotor core, and the edges of the teeth.
  • the rotor sheet package may be integral with a shaft itself integral with the scroll-mobile scroll movable in English- the compressor.
  • the compressor has no pulley and the control electronics of the electric motor is integral with a flange being integrated in the compressor.
  • the insulating element 1 1, 1 1 'stator can modify the shape of the insulating element 1 1, 1 1 'stator without departing from the scope of the invention.
  • the support 15 may then comprise only the hooks 31 or a combination of the hooks 31 and holding systems 42 of the electrical harnesses.
  • the support 1 1 retains only the systems 42 holding the beams.
  • the insulator 27 may alternatively be in two parts each in one piece with one of the elements 1 1, 1 1 '.
  • the arms 14 can be in variant in one piece with the insulation 27 advantageously in two parts for forming a coil insulator separate supports 12, 12 '.
  • FIG. 12 are illustrated the different steps of the winding process of the stator 1 using the hooks 31, namely:
  • said first winding step 122 is repeated around an arm, the attachment step 123, the winding step 123a, and the second winding step 124 around an arm to form the coils of all the stator arms.
  • the method comprises a cutting step 125 of each of the wire portions located between the hook hook dedicated to a coil and the two pads of the support dedicated to the same coil.
  • a cutting step 125 of each of the wire portions located between the hook hook dedicated to a coil and the two pads of the support dedicated to the same coil.

Abstract

L'invention porte principalement sur un élément isolant (11) de maintien de fils de bobinage pour un stator (1) de machine électrique tournante. Conformément à l'invention, cet élément isolant (11) comporte un support annulaire (12) ayant une face interne d'appui (18) adaptée à être plaquée contre une face radiale d'extrémité (19) du stator (1) ainsi que des crochets (31), chaque crochet (31) délimitant, avec une face externe (20) du support opposée à la face interne d'appui (18), un espace autorisant un passage d'une extrémité (33) d'au moins un fil d'une bobine (24) pour son maintien lors d'une opération de bobinage.

Description

ELEMENT ISOLANT MUNI DE CROCHETS DE MAINTIEN DE FILS DE BOBINAGE D'UN STATOR DE MACHINE ELECTRIQUE ET
STATOR CORRESPONDANT
DOMAINE TECHNIQUE DE L'INVENTION
L'invention porte sur un élément isolant muni de crochets de maintien de fils de bobinage d'un stator de machine électrique ainsi que sur le stator correspondant. L'invention trouve une application particulièrement avantageuse dans le domaine des machines électriques tournantes telles qu'un alternateur, ou un moteur électrique. L'invention pourra être utilisée avantageusement avec un compresseur de fluide réfrigérant de climatiseur pour véhicule automobile.
ETAT DE LA TECHNIQUE
On connaît des machines électriques comportant un stator et un rotor solidaire d'un arbre assurant la mise en mouvement d'un compresseur à spirale, également connu sous le nom de "compresseur scroll". Un tel système comporte deux spirales intercalées comme des palettes pour pomper et comprimer le fluide réfrigérant. En général, une des spires est fixe, alors que l'autre se déplace excentriquement sans tourner, de manière à pomper puis emprisonner et comprimer des poches de fluide entre les spires. Un tel système est par exemple décrit dans le document EP1865200.
Le stator comporte un corps réalisé en tôles feuilletées pour diminuer les courants de Foucault. Le corps présente à sa périphérie externe une paroi annulaire, appelée culasse, et des dents issues de la périphérie interne de la paroi annulaire présentant une périphérie externe en contact avec un boîtier que comporte la machine électrique tournante. Ce boîtier, appelé également carter, est configuré pour porter à rotation l'arbre du rotor via des roulements à billes et/ou à aiguilles comme visible par exemple dans les figures 1 et 2 du document EP1865200.
Les dents du stator d'orientation radiale sont réparties sur la paroi du corps du stator et s'étendent vers l'intérieur du stator en direction du rotor. Un entrefer existe entre l'extrémité libre des dents, définissant la périphérie interne du corps du stator, et la périphérie externe du rotor, qui pourra être un rotor à aimants permanents. Les dents définissent avec la paroi annulaire des encoches ouvertes vers l'intérieur et destinées à recevoir des bobinages, par exemple en forme de bobines, pour formation d'un stator polyphasé par exemple du type triphasé.
Pour obtenir les bobines du bobinage du stator, on effectue une opération de bobinage consistant à enrouler au moins un fil conducteur autour des différents pôles. En effet, une bobine pourra être réalisée à partir d'un seul ou d'une pluralité de fils en parallèle. Les bobines d'excitation de chaque pôle sont reliées électriquement entre elles par des fils de liaison en série ou en parallèle. Pour réaliser de manière convenable l'opération de bobinage, il est nécessaire de maintenir fixe une extrémité des fils des bobines.
OBJET DE L'INVENTION
L'invention vise à répondre à ce besoin en proposant un élément isolant de maintien de fils de bobinage pour un stator de machine électrique tournante caractérisé en ce qu'il comporte un support annulaire ayant une face interne d'appui adaptée à être plaquée contre une face radiale d'extrémité du stator ainsi que des crochets, chaque crochet délimitant, avec une face externe du support opposée à la face interne d'appui, un espace autorisant un passage d'une extrémité d'au moins un fil d'une bobine pour son maintien lors d'une opération de bobinage.
Ainsi, les crochets de l'élément isolant permettent de maintenir les extrémités des fils des dernières spires des bobines lors des opérations de bobinage. Ces crochets permettent également de conserver une tension mécanique sur les fils des bobines.
Selon une réalisation, les crochets ont une hauteur adaptée au diamètre du fil des bobines.
Selon une réalisation, les crochets ont une hauteur adaptée au nombre de tours du fil des bobines autour des crochets.
Selon une réalisation, la position des crochets dépend d'un sens d'enroulement du fil des bobines. Selon une réalisation, chaque crochet est destiné à être positionné sur la droite de la bobine qui lui correspond pour un sens d'enroulement antihoraire ou sur la gauche de la bobine qui lui correspond pour un sens d'enroulement horaire.
Selon une réalisation, chaque crochet comporte un plot issu de la face externe du support et une patte située du côté d'une extrémité libre du plot s'étendant en saillie en direction d'une périphérie externe du support.
Selon une réalisation, chaque patte présente la forme d'une rampe triangulaire du côté opposé de l'espace autorisant le passage de l'extrémité du fil de bobine.
Selon une réalisation, l'élément isolant comporte en outre des murets intercalés chacun entre deux crochets successifs en sorte qu'il existe une alternance entre les crochets et les murets sur une circonférence du support.
Selon une réalisation, chaque crochet étant positionné entre deux faces latérales de deux murets adjacents tournées l'une vers l'autre, le crochet est séparé de chacune de ces faces d'un espace suffisant pour autoriser un passage d'une aiguille de bobinage.
Selon une réalisation, une pluralité de murets sont munis chacun d'une languette s'étendant en saillie depuis une face du muret tournée vers une périphérie externe du support pour former des systèmes de maintien de faisceaux de fils électrique reliés à des bobines du stator.
Selon une réalisation, du côté de la face d'appui, la périphérie interne du support comporte des évidements destinés à recevoir des extrémités d'isolants d'encoche positionnés à l'intérieur d'encoches du stator.
Selon une réalisation, le support comporte en outre sur sa face d'appui au moins deux dispositifs d'encliquetage pour le positionnement angulaire de l'élément sur une face d'extrémité du stator.
Selon une réalisation, le support comporte sur sa face d'appui des creux destinés à venir en regard de rivets du stator situés sur une même circonférence. Selon une réalisation, l'élément isolant comporte en outre des bras répartis circonférentiellement autour du support s'étendant radialement par rapport au support depuis une périphérie interne du support vers l'intérieur du support destinés à venir en appui contre des dents du stator réparties régulièrement sur une périphérie interne d'une paroi annulaire dudit stator, chaque crochet étant associé à un bras.
Selon une réalisation, chaque crochet est décalé angulairement par rapport à un plan médian du bras auquel est associé ledit crochet.
Selon une réalisation, l'élément isolant comporte en outre des rebords s'étendant de part et d'autre des bras.
L'invention a également pour objet un stator pour machine électrique tournante muni d'un élément isolant selon l'invention destiné à être plaqué contre une face radiale d'extrémité dudit stator.
L'invention a également pour objet un procédé de bobinage d'un stator pour machine électrique tournante muni d'un élément isolant, ledit élément isolant comprenant des crochets.
Selon une caractéristique générale, le procédé comporte les étapes suivantes :
-une étape de maintien du stator dans un support ;
-une première étape d'enroulement d'un fil autour d'un premier bras dudit stator pour former une bobine ;
-une étape d'accrochage de la dernière spire de ladite bobine autour d'un crochet dédié à la dite bobine formée situé sur élément isolant directement à côté de ladite bobine;
-une deuxième étape d'enroulement dudit fil autour d'un bras dudit stator adjacent au bras sur lequel ladite bobine a été enroulée pour former une bobine suivante adjacente.
Selon un mode de mise en œuvre, le procédé comprend en outre à l'issu de l'étape d'accrochage, une étape d'enroulement du fil autour de deux plots du support dédiés à ladite bobine formée. On obtient ainsi une longueur de fil qui permet la connexion électrique de la bobine formée d'une phase avec la bobine suivante de la même phase, à laquelle la bobine formée doit être connectée.
Selon un mode de mise en œuvre, à l'issu de ladite deuxième étape d'enroulement autour d'un bras, on répète lesdites étape d'accrochage et d'enroulement pour former des bobines sur l'ensemble des bras du stator, ledit procédé comprenant en outre une étape de découpage de chacune des portions de fil situées entre le crochet d'accrochage dédié à une bobine et les deux plots du support dédiés à la même bobine.
Il est ainsi possible de bobiner avec un fil de manière continue l'ensemble des bobines puis de couper les fils après.
BREVE DESCRIPTION DES FIGURES
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention.
La figure 1 montre une vue en perspective d'un stator assemblé selon l'invention;
La figure 2a est une vue en perspective du stator selon l'invention sans les faisceaux reliant les bobines entre elles pour former les différentes phases de la machine électrique;
La figure 2b est une vue détaillée de la partie supérieure du stator de la figure 2a;
La figure 3 montre une vue de dessous de l'élément électriquement isolant selon l'invention;
La figure 4 montre la zone de contact entre un bras de l'élément isolant selon l'invention et une dent du stator;
La figure 5a montre une vue de côté d'un crochet de maintien de l'élément isolant selon l'invention autour duquel le fil a été enroulé une fois; La figure 5b montre une vue de côté d'un crochet de maintien de l'élément isolant selon l'invention autour duquel le fil a été enroulé deux fois;
La figure 6 est une vue en perspective éclatée du stator selon l'invention sans le bobinage ;
Les figures 7a et 7b montrent respectivement des vues en perspective de dessus et de dessous de l'autre élément électriquement isolant;
La figure 8 montre un schéma des connexions électriques des bobines du stator selon l'invention entre elles;
La figure 9 montre une vue de dessus du stator faisant apparaître les regroupements des différentes entrées des bobines entre elles pour la réalisation des points neutre de la machine électrique;
La figure 10 montre une représentation schématique de la configuration des connexions des fils issus d'une sortie de phase;
Les figures 1 1 a et 1 1 b montrent de manière schématique le positionnement des crochets en fonction du sens d'enroulement du fil des bobines vues depuis l'intérieur du stator ; et
La figure 12 illustre de manière schématique les différentes étapes de bobinage d'un stator selon l'invention.
Les éléments identiques, similaires ou analogues conservent la même référence d'une figure à l'autre.
DESCRIPTION D'EXEMPLES DE REALISATION DE L'INVENTION
Les figures 1 , 2a, 2b, 6 et 9 montrent un stator 1 de machine électrique tournante, tel qu'un compresseur de fluide réfrigérant de climatiseur pour véhicule automobile. En variante, la machine consiste en un alternateur ou en un moteur électrique.
Ce stator 1 comporte un corps 2 sous la forme d'un paquet de tôles feuilletées présentant à sa périphérie externe une paroi annulaire 3, appelé culasse, et des dents 5 issues de la périphérie interne de la paroi annulaire 3. Ces dents 5 sont réparties circonférentiellement de manière régulière et s'étendent vers l'intérieur en direction du rotor de la machine tel qu'un rotor à aimants permanents. Les dents 5 délimitent deux à deux des encoches 8, deux encoches 8 successives étant ainsi séparées par une dent 5. Ces dents 5 présentent à leur extrémité libre des retours 9 s'étendant circonférentiellement de part et d'autre de la dent 5. Les extrémités libres des dents 5 délimitent, de manière connue, un entrefer avec la périphérie externe du rotor de la machine électrique tournante.
Un élément 1 1 électriquement isolant est plaqué d'un côté du stator. Cet élément 1 1 pourra être en matière plastique moulable, par exemple en PA 6.6. L'élément 1 1 en matière plastique pourra être renforcé par des fibres, telles que des fibres de verre. Cet élément 1 1 comporte à sa périphérie externe un support 12 en forme d'anneau d'axe X présentant une orientation axiale, et des bras 14 répartis circonférentiellement qui s'étendent radialement depuis une périphérie interne du support 12 vers l'intérieur de l'élément 1 1 . L'axe X de l'élément 1 1 est sensiblement confondu avec l'axe du stator 1 . Les bras 14 se terminent chacun à leur extrémité libre par un rebord 15 qui s'étend circonférentiellement de part et d'autre du bras 14. La fonction du rebord 15 est de retenir dans la direction radiale un bobinage d'excitation enroulé autour d'une dent de chaque pôle du stator 1 visible sur les figures 1 , 2a et 2b.
Comme visible aux figures 2a et 2b, l'élément 1 1 présente une face interne d'appui 18 destinée à être plaquée contre une face 19 radiale d'extrémité du stator et une face externe 20 opposée à la face d'appui 18. La face 19 radiale d'extrémité est inscrite dans le plan perpendiculaire à l'axe du stator 1 . Les bras 14 sont répartis régulièrement sur la périphérie interne du support 12 et sont destinés à venir en appui contre les dents 5 du stator 1 de forme correspondante. Les bras 14 sont symétriques par rapport à leur plan médian P1 s'étendant sensiblement radialement par rapport à l'axe X représenté à la figure 3. Entre deux bras 14 successifs, la périphérie interne du support 12 présente deux faces inclinées l'une par rapport à l'autre suivant une forme en V. En l'occurrence, les bras 14 de l'élément isolant sont ici au nombre de quinze, comme les dents 5 du stator 1 . Les bras 14, les rebords 15, et la périphérie interne du support 12 délimitent des encoches 22 ayant une forme et des dimensions correspondantes aux encoches 8 du stator 1 .
On notera la présence d'une ouverture entre deux rebords d'une même encoche 8, 22. Ces ouvertures permettent le passage d'une aiguille pour formation de bobines 24 appartenant au bobinage polyphasé du stator 1 de manière décrite ci-après.
Comme montré sur les figures 3 et 4, du côté de la face d'appui 18, les bras 14, les rebords 15 et la périphérie interne du support 12 comportent chacun des évidements 26 réalisés dans l'épaisseur de la matière destinés à recevoir les extrémités d'isolants d'encoche 27 du stator. En effet, le stator 1 est équipé d'isolants d'encoche 27 prenant la forme d'une membrane fine, réalisée dans un matériau électriquement isolant et conducteur de chaleur, par exemple un matériau aramide de type dit Nomex (marque déposée). Cette membrane fine est pliée de manière que chaque isolant d'encoche 27 est plaqué contre les parois internes axiales 29 du stator entre deux pôles adjacents (cf. figure 4). Les extrémités des isolants d'encoche 27 qui dépassent axialement du stator peuvent être logées à l'intérieur des évidements 26. Ces isolants ont une faible épaisseur (0, 24 mm à la figure 4). Les évidements ont une profondeur adaptée à celle de l'isolant (0,5 mm à la figure 4).
Ces évidements 26 des bras sont délimités par une face sensiblement perpendiculaire à l'axe X et une face orthogonale sensiblement parallèle aux faces latérales des bras 14. Les évidements 26 des rebords 15, qui se situent dans la continuité des évidements des bras 14, sont délimités par une face sensiblement perpendiculaire à l'axe X et une face orthogonale qui s'étend parallèlement aux faces des rebords 15 tournées vers les encoches 22. Les évidements 26 ménagés dans la périphérie interne du support 12, qui se situent dans la continuité des évidements 26 des bras 14, sont délimités par une face sensiblement perpendiculaire à l'axe X et une face orthogonale qui s'étend parallèlement aux faces 23 de la périphérie interne du support 12. Ainsi, les évidements 26 suivent le contour des encoches 22 de l'élément isolant 1 1 . Comme cela est bien visible sur les figures 2a, 2b et en particulier les figures 5a et 5b, le support 12 comporte sur sa face externe 20 des crochets 31 délimitant, avec ladite face externe 20, un espace 32 autorisant le passage d'une extrémité 33 d'un ou plusieurs fils formant une bobine 24 pour son maintien lors d'une opération de bobinage. Ces crochets 31 permettent de maintenir en position les extrémités des fils du bobinage polyphasé du stator 1 après la réalisation de chaque bobine.
Ces crochets 31 , ici en même nombre que les bras 14, sont situés sur le support 12 à proximité de la périphérie externe des bras 14. Sur la circonférence du support 12, chaque crochet 31 est de préférence légèrement décalé angulairement par rapport au plan médian P1 d'un bras 14 auquel est associé le crochet 31 . La position des crochets 31 par rapport aux bobines 24 dépend du sens d'enroulement du fil des bobines autour des dents 5 du stator 1 . En effet, pour un sens d'enroulement anti-horaire AH, le crochet 31 est positionné sur la droite de la bobine 24 et donc du bras 14 correspondant pour permettre le maintien de l'extrémité du fil de la dernière spire DS de la bobine 24 comme cela est bien visible sur la figure 1 1 a ainsi que dans la réalisation des figures 2a, 2b, 6 et 8.
En variante, pour un sens d'enroulement horaire H, le crochet 31 est positionné sur la gauche de la bobine 24 et donc du bras 14 correspondant pour permettre le maintien de l'extrémité du fil de la dernière spire DS de la bobine 24, comme cela est bien visible sur la figure 1 1 b. Le positionnement "droite" ou "gauche" d'un crochet 31 donné ainsi que le sens d'enroulement du fil sont indiqués lorsqu'on regarde la bobine correspondante, c'est-à-dire celle dont est issu le fil qui est maintenu par ledit crochet 31 , depuis un point situé sur l'axe X de l'élément isolant 1 1 , autrement dit depuis l'intérieur du stator LPIus précisément, comme illustré aux figures 5a et 5b, chaque crochet 31 comporte un plot 35 issu de la face externe 20 du support 12 et une patte 36 située du côté d'une extrémité libre du plot 35 s'étendant en saillie en direction de la périphérie externe du support 12.
Les plots 35, de forme globalement parallélépipédique, pourront présenter des arêtes de forme arrondie, en particulier du côté de la périphérie externe du support 12 afin d'éviter de blesser les fils des bobines 24. La patte 36 présente en l'occurrence la forme d'une rampe triangulaire du côté opposé à l'espace 32.
L'espace 32 est délimité par la face du plot 35 tourné du côté de la périphérie externe du support 12, la face de la patte 36 tournée vers la face externe 20, ainsi que la partie de la face externe 20 située en regard de la patte. L'espace 32 est ainsi fermé du côté de la périphérie interne du support 12 par une face du plot 35 contre laquelle vient en appui le ou les fils de l'extrémité d'une bobine 24. L'espace 32 est ouvert latéralement ainsi que du côté de la périphérie externe du support 12 de manière à autoriser le passage de l'extrémité 33 du ou des fils des bobines 24. Chaque crochet 31 a une hauteur Hc et une largeur Le (cf. figures 2b, 5a, 5b) adaptées au diamètre du fil des bobines 24. La hauteur Hc correspond à la hauteur de l'espace 32 autorisant le passage du fil, comme cela est bien visible sur les figures 5a et 5b. Cette hauteur Hc dépend également du nombre de tours de fil réalisés autour du crochet 31 . Ainsi, le crochet 31 de la figure 5b autour duquel le fil de la bobine 24 est enroulé sur deux tours présente une hauteur Hc sensiblement deux fois plus grande que celle du crochet 31 de la figure 5a autour duquel le fil de la bobine 24 est enroulé une seule fois. A titre d'exemple de réalisation, la hauteur Hc suit la formule ci-dessous :
Hc = kf1 + kf2 + N*D
dans laquelle :
-D est le diamètre de fil de bobine couche d'émail comprise ;
-kf 1 et kf2 sont compris entre 0.05 mm et 0,2 mm et représentent respectivement le jeu laissé du côté haut du crochet et le jeu laissé du côté bas du crochet. Ainsi, avec les jeux kf 1 et kf2, on évite de blesser le fil ; et
-N est le nombre de tours autour du crochet.
L'élément isolant 1 1 comporte en outre des murets 38 bien visibles sur les figures 1 , 2a, 2b et 6 s'étendant en saillie axiale par rapport à la face externe 20 à une hauteur supérieure à celle des crochets 31 . Ces murets 38 sont intercalés chacun entre deux crochets 31 successifs. Il existe ainsi une alternance entre les crochets 31 et les murets 38 sur la circonférence du support 12. Chaque crochet 31 étant positionné entre deux faces latérales de deux murets 38 adjacents tournées l'une vers l'autre, le crochet 31 est séparé de chacune de ces faces d'un espace 39 (cf. figure 2b) suffisant pour autoriser un passage d'une aiguille de bobinage.
De préférence, une pluralité de murets 38 sont munis chacun d'une languette 41 bien visible aux figures 2b et 3 s'étendant en saillie depuis une face du muret 38 tournée vers la périphérie externe du support 12 pour former des systèmes 42 de maintien de faisceaux 63 de fils électrique reliés à des bobines 24 du stator. Dans une réalisation, tous les murets 38 sont munis d'une languette 41 . Comme décrit plus en détails ci-après, chaque faisceau 63 est formé de plusieurs fils des bobines 24 appartenant à une même phase du stator. Comme montré sur la figure 1 , la languette 41 assure la retenue d'un fil de maintien 44 venant en appui contre une face de la languette 41 tournée vers la face d'appui 18 du support 12. Le fil de maintien 44 est également en appui contre les faces latérales d'un muret 38 et passe au- dessus des faisceaux 63 et en dessous de chignons du stator 1 de manière à maintenir les faisceaux 63 plaqués contre les chignons des bobines 24. On rappelle ici que les chignons correspondent aux portions d'extrémité axiale des bobines 24 qui font saillie axialement par rapport à chaque face d'extrémité radiale externe du stator 1 .
Sur la face interne d'appui 18, le support 12 comporte au moins deux dispositifs d'encliquetage 48 (de clipsage) montrés sur la figure 3, pour faciliter le positionnement angulaire de l'élément isolant 1 1 et donc le centrage des éléments isolants 1 1 sur la face d'extrémité du stator 1 lors du montage. A cet effet, les dispositifs 48 sont destinés à coopérer par encliquetage (clipsage) avec des ouvertures 49 (cf. figure 6) correspondantes ménagées sur chaque face radiale d'extrémité du stator 1 .
Sur la face interne d'appui 18, le support 12 comporte également des creux 50 montrés sur la figure 3 par exemple de forme circulaire destinés à venir en regard de rivets 51 du stator (cf. figure 6) situés sur une même circonférence. Ces rivets 51 traversent axialement de part en part l'empilement des tôles du stator 1 pour assurer le maintien des tôles et formation d'un ensemble manipulable et transportable. Ainsi, la face d'appui 18 de l'élément isolant 1 1 n'interfère pas avec les rivets 51 du paquet de tôles. Bien entendu, comme mieux visible dans les figures 7a et 7b, un autre élément électriquement isolant 1 1 ' est implanté au niveau de l'autre face radiale d'extrémité du stator. Cet isolant 1 1 ' est analogue à l'élément 1 1 . Il possède un support 12', des bras 14 à rebords 15 issus de la périphérie interne du support 12', des encoches 22, des évidements 26 de réception de l'isolant d'encoche 27 et deux dispositifs d'encliquetage 48 (de clipsage). Cet isolant 1 1 ' se différencie de l'élément isolant 1 1 uniquement par la forme de son support 12'. Plus précisément, l'élément isolant 1 1 ' présente une partie de support 12' dépourvue de crochet 31 et de muret 38. Tout comme l'élément isolant 1 1 , l'élément électriquement isolant 1 1 ' pourra être en matière plastique moulable, par exemple en PA 6.6. L'élément en matière plastique pourra être renforcé par des fibres, telles que des fibres de verre.
Dans une variante de réalisation, les bras 14 de l'élément isolant 1 1 ' peuvent présenter sur leur face externe des rainures inclinées afin de faciliter le changement de rang lors de l'opération de bobinage consistant à enrouler un fil conducteur autour des différents pôles pour obtenir les bobinages du stator 1 . Il en est de même de l'élément isolant 1 1 qui peut présenter des rainures pour faciliter l'enroulement lors de l'opération d'enroulement. Les rainures ne sont pas inclinées dans ce cas.
Les éléments isolants 1 1 , 1 1 ' présentent un diamètre légèrement inférieur au diamètre externe du stator 1 pour permettre le passage de tirants de montage de la machine électrique le long de la face latérale du stator 1 . A cet effet, le stator 1 présente à sa périphérie externe des évidements 54 pour le passage des tirants. Il en est de même des éléments isolants 1 1 , 1 1 ' comme visible sur les figues 1 et 2a. Les tirants sont implantés sur une circonférence de diamètre supérieur à celle des rivets 51 de fixation du paquet de tôles du stator 1 .
Selon une réalisation, les éléments isolants 1 1 , 1 1 ' présentent un diamètre externe L1 (cf. figure 3) de l'ordre de 10cm. L'élément 1 1 présente une hauteur maximale L2 de l'ordre de 1 1 mm. Les bras 14 ont une longueur L3 de l'ordre de 15mm. Les creux 50 présentent une profondeur légèrement supérieure à 1 mm. Pour un diamètre de fil de bobine valant par exemple 0.63mm couche d'émail comprise, la hauteur Hc et la largeur Le des crochets 31 de la figure 5a valent respectivement environ 0.9mm et 2.2mm. Dans la réalisation représentée, l'élément isolant 1 1 comporte quinze bras 14 ainsi que quinze crochets 31 pour un stator 1 à quinze bobines. Bien entendu, ce nombre d'éléments ainsi que les dimensions de ces éléments seront adaptées en fonction de la configuration du stator 1 à isoler, et en particulier du nombre et de la taille des dents 5 du stator 1 , ainsi que du diamètre du fil de bobine.
Lors du montage, l'élément isolant 1 1 est plaqué via sa face d'appui 18 contre une face d'extrémité du stator 1 de sorte que les dispositifs d'encliquetage 48 coopèrent avec les ouvertures 49 du stator 1 correspondantes. Il en est de même de l'élément 1 1 '. Le positionnement des éléments 1 1 , 1 1 ' est tel que les extrémités des isolants d'encoche 27 préalablement positionnés à l'intérieur des encoches 8 du stator 1 qui dépassent axialement du stator 1 sont logées à l'intérieur des évidements 26 de l'élément isolant. Les bras 14 des éléments isolants 1 1 , 1 1 ' et l'isolant 27 isolent ainsi électriquement les bobines du bobinage du stator 1 , ici du type triphasé, par rapport au paquet de tôles du stator. Ils protègent également les fils des bobinages lors de l'enroulement des fils conducteurs autour des dents 5 du stator 1 .
Plus précisément les fils des bobines, tels que des fils en cuivre ou en aluminium recouverts d'une couche électriquement isolante, telle que de l'émail, sont enroulés autour d'une dent 5 du stator et des bras 14 associés des éléments isolants 1 1 , 1 1 ' au cours d'une opération de bobinage. Le sens d'enroulement est par exemple anti-horaire, comme représenté sur la figure 1 1 a. Une bobine 24 est dans l'exemple de réalisation illustré par les figures obtenue à partir d'un seul fil mais pourrait en variante être obtenue à partir de plusieurs fils en parallèle. A cet effet, on utilise une aiguille centralement creuse pour permettre un passage du ou des fils qui se déplace circonférentiellement, axialement et radialement par rapport au stator.
Lors de l'opération de bobinage, la première spire des bobines 24 est maintenue par l'opérateur puis piégée par les spires suivantes. Le crochet 31 permet l'accrochage de la dernière spire après l'enroulement du fil pour former la bobine 24. Le crochet 31 permet ainsi de maintenir la tension mécanique sur le fil. A cet effet, l'extrémité 33 du fil de la dernière spire longe une paroi latérale du plot 35 du crochet 31 tournée du côté de la bobine 24 dont elle est issue et passe à l'intérieur de l'espace 32 délimité par le crochet 31 pour ensuite être rabattue du côté de la face latérale opposée du plot 35, comme cela est bien visible sur les figures 2a et 2b. En variante, comme montré sur la figure 5b, l'extrémité du fil est enroulée sur plusieurs tours, en l'occurrence sur deux tours, autour du plot 35 du crochet 31 . Il existe un passage entre deux dents 5 consécutives de sorte qu'une même encoche reçoit deux demi-bobines 24. Les bobines 24 présentent deux parties, appelées chignons, disposées de part et d'autre d'une dent du stator. Ces chignons sont retenus par les rebords 15 des bras 14. Les bobines ont une forme trapézoïdale comme cela est visible à la figure 9. Il est à noter que l'utilisation de l'élément isolant 1 1 muni des crochets 31 permet d'utiliser le fil en continu pour réaliser l'ensemble des bobines 24 dans la mesure où après avoir réalisé une bobine et l'accrochage de la dernière spire, il n'est pas nécessaire de couper le fil pour passer à la bobine suivante. Si nécessaire, il sera possible de couper les fils à la fin de l'opération de bobinage de l'ensemble des bobines 24.
L'extrémité de la première spire des bobines 24 appelée entrée est destinée à être interconnectée avec d'autres entrées pour former le point neutre de la machine électrique. L'extrémité de la dernière spire maintenue par un crochet 31 appelée sortie est destinée à être interconnectée avec d'autres sorties pour former une des phases U, V, W de la machine. En l'occurrence, les entrées et les sorties comporte un fil unique. En variante, elles pourraient comporter une pluralité de fils en parallèle.
Comme montré sur la figure 8, les sorties des bobines 24, qui sont couplées en parallèle, sont connectées alternativement aux différentes phases de la machine. Ainsi, pour trois bobines 24 successives, la sortie de la première bobine 24 est connectée à la phase U, la sortie de la deuxième bobine 24 est connectée à la phase V, et la sortie de la troisième bobine 24 est connectée à la dernière phase W et ainsi de suite pour l'ensemble des bobines du stator. Les références Ui correspondent ainsi aux sorties des bobines i connectées à la phase U, les références Vj correspondent aux sorties des bobines j connectées à la phase V tandis que les références Wk correspondent aux sorties des bobines k connectées à la phase W.
Les points neutre de la machine électrique sont réalisés en connectant entre elles les entrées de M bobines successives en des points d'interconnexion, M étant le nombre de phases. Comme cela est bien visible sur les figures 8 et 9, les entrées des bobines 24 sont donc regroupées par groupe de trois en 15/3=5 points d'interconnexion N1 -N5. Comme visible sur la figure 9, les points d'interconnexion N1 -N5 pourront être constitués chacun physiquement par un tube métallique 60 auquel les entrées des bobines 28 sont reliées par groupe de trois. On note que les points d'interconnexion N1 -N5 pourront ou non être connectés entre eux.
Comme cela est visible aux figures 1 et 10, chaque phase U, V, W est associée à un toron de fils 61 reliés aux bobines. Chaque toron 61 est séparé de préférence en deux faisceaux 63 dans une zone de séparation SU située à proximité d'une connexion avec une sortie d'une des bobines 24 appartenant à la phase correspondante. Ces faisceaux 63 positionnés sur une périphérie externe des chignons parcourent une partie de la circonférence du stator 1 suivant deux sens opposés pour relier les sorties des bobines 24 formant une même phase. Ces faisceaux 63 sont protégés par un ensemble de gaines isolantes 65 s'étendant suivant la circonférence du stator 1 entre deux bobines 24 successives d'une même phase qui présentent toutes une longueur sensiblement identique les unes par rapport aux autres.
La figure 10 montre ainsi un exemple de la séparation du toron 61 associé à la phase U formée par cinq bobines constituées chacune par un seul fil. Ce toron 61 comportant cinq fils présente un fil connecté à une sortie U3 d'une bobine 24. Ce toron 61 est subdivisé dans une zone de séparation SU située à proximité de cette première connexion en deux faisceau 63 comportant chacun deux fils puis un fil après la connexion avec une sortie U2, U4 d'une des bobines. Les derniers fils de chaque faisceau 63 sont connectés respectivement aux sorties U1 et U5 des dernières bobines 24. Ainsi, le nombre de fils de chaque faisceau 63 diminue, après chaque connexion avec une sortie de bobine, du nombre de fils en parallèle dans chaque bobine qui est ici égal à un. Dans le cas où les bobines sont formées chacune à partir de trois fils, le nombre de fils à l'intérieur de chaque faisceau 63 diminue de trois après chaque connexion avec une sortie.
Pour maintenir les faisceaux 63 plaqués contre les chignons du bobinage, les fils de maintien 44 montrés à la figure 1 sont positionnés contre les faces arrière des murets 38 des systèmes de maintien 42 et contre la face de la languette 41 tournée vers la face d'appui 18. Les fils de maintien 44 sont également positionnés contre les faces des murets 38 de manière à revenir vers l'axe X et passer au-dessus des faisceaux gainés. Le fil 44 passe sous les faisceaux 63 pour ensuite s'accrocher autour d'un nouveau système de maintien 42. Le fil de maintien 44 suit un chemin en forme de créneau sur toute la circonférence du support pour passer d'un système de maintien 44 à un autre.
Ainsi qu'il ressort des dessins et notamment de la figure 2a, le positionnement des évidements 54 correspond au positionnement angulaire des ouvertures ménagées dans des flasques de fermeture de la machine assurant le passage des tirants d'assemblage, lesdits flasques appartenant au boîtier portant le corps 2 du stator 1 . Plus précisément, ce boîtier comporte ici, de manière connue, trois parties à savoir une partie intermédiaire portant la paroi annulaire 3 du stator 1 de la machine électrique, telle qu'un compresseur de fluide réfrigérant de climatiseur de véhicule automobile, et deux flasques disposés de part et d'autre de la partie intermédiaire. L'un des flasques de forme creuse accueille le « scroll » du compresseur, tandis que l'autre flasque porte l'électronique de commande du compresseur. Les tirants, par exemple en forme de vis, relient entre eux les flasques en traversant les évidements 54 du stator par exemple monté par frettage via sa paroi annulaire dans la partie intermédiaire prise en sandwich entre les flasques. Avantageusement, la partie intermédiaire comporte des secteurs de frettage pour le montage par frettage de la paroi du stator 1 . Les secteurs de frettage sont séparés les uns des autres par des passages. La périphérie externe de la paroi est en contact de frettage avec la périphérie interne des secteurs de frettage. Les passages sont en regard des évidements 54 de sorte que les tirants traversent les passages sans interférer avec la partie intermédiaire du boîtier. La partie intermédiaire pourra être remplie de liquide réfrigérant. Ce fluide pourra traverser les espaces entre les bobines 24 et les faisceaux.
On notera que les extrémités des torons 61 sont gainées par des tubes 70 visibles sur la figure 1 aptes à se contracter autour des fils par chauffage. On forme ainsi des extrémités saillantes reliées à un connecteur 71 (cf. figure 1 ) destiné à être mis en relation avec un onduleur, comme décrit par exemple dans le document EP0831580 auquel on se reportera pour plus de détails.
Dans cette réalisation, le rotor du moteur électrique du compresseur est à aimants permanents, de préférence enterrés dans le rotor. Les aimants pourront être d'orientation radiale. Dans ce mode de réalisation le rotor comporte un corps sous la forme d'un paquet de tôles doté de logements, qui pourront être d'orientation radiale pour logement des aimants. Le rotor réalisé en tôles feuilletées pourra comporter une âme centrale, et des dents s'étendant radialement par rapport à l'âme. Ces dents comportent chacune deux rebords s'étendant circonférentiellement de part et d'autre des dents. Des aimants permanents sont positionnés à l'intérieur de logements délimités chacun par deux faces en regard l'une de l'autre de deux dents adjacentes, une face externe de l'âme du rotor, et les rebords des dents.
Le paquet de tôle du rotor pourra être solidaire d'un arbre lui-même solidaire de la spirale mobile-movable scroll en Anglais- du compresseur. Dans ce type de réalisation le compresseur est dépourvu de poulie et l'électronique de commande du moteur électrique est solidaire d'un flasque en étant intégrée au compresseur.
Bien évidemment, l'homme du métier peut modifier la forme de l'élément isolant 1 1 , 1 1 ' de stator sans sortir du cadre de l'invention. En particulier, il est possible de supprimer les bras 14 et les rebords 15 pour ne conserver que le support 12, 12'. Le support 15 peut alors comporter uniquement les crochets 31 ou alors une combinaison des crochets 31 et des systèmes de maintien 42 des faisceaux électriques. Alternativement également, le support 1 1 conserve uniquement les systèmes de maintien 42 des faisceaux. Bien entendu, l'isolant 27 pourra être en variante en deux parties chacune d'un seul tenant avec l'un des éléments 1 1 , 1 1 '. Les bras 14 pourront être en variante d'un seul tenant avec l'isolant 27 avantageusement en deux parties pour formation d'un isolant de bobine distinct des supports 12, 12'.
Sur la figure 12 sont illustrées les différentes étapes du procédé de bobinage du stator 1 utilisant les crochets 31 à savoir :
-une étape de maintien 121 du stator dans un support ;
-une première étape d'enroulement 122 d'un fil autour d'un premier bras dudit stator pour former une bobine ;
-une étape d'accrochage 123 de la dernière spire de ladite bobine autour d'un crochet dédié à la dite bobine formée situé sur élément isolant 1 1 directement à côté de ladite bobine;
- une étape d'enroulement 123a du fil autour de deux plots du support dédiés à ladite bobine formée ;
-une deuxième étape d'enroulement 124 dudit fil autour d'un bras dudit stator adjacent au bras sur lequel ladite bobine a été enroulée pour former une bobine suivante adjacente.
A l'issu de ladite deuxième étape d'enroulement 124 autour d'un bras, on répète la dite première étape d'enroulement 122 autour d'un bras, l'étape d'accrochage 123, l'étape d'enroulement 123a et la deuxième étape d'enroulement 124 autour d'un bras pour former les bobines de tous les bras du stator.
Après avoir répété les étapes d'enroulement et d'accrochage, le procédé comprend une étape de découpage 125 de chacune des portions de fil situées entre le crochet d'accrochage dédié à une bobine et les deux plots du support dédiés à la même bobine. Ainsi, une seule étape de découpage est nécessaire. Il n'est plus nécessaire de découper à l'issu de la formation de chacune des bobines. Au contraire, on bobine l'ensemble des bras du stator et pour chacune des bobines, on découpe le fil entre le crochet d'accrochage dédié à la bobine et les deux plots du support dédiés à la même bobine.

Claims

REVENDICATIONS
1 . Elément isolant (1 1 ) de maintien de fils de bobinage pour un stator (1 ) de machine électrique tournante caractérisé en ce qu'il comporte un support annulaire (12) ayant une face interne d'appui (18) adaptée à être plaquée contre une face radiale d'extrémité (19) du stator (1 ) ainsi que des crochets (31 ), chaque crochet (31 ) délimitant, avec une face externe (20) du support opposée à la face interne d'appui (18), un espace (32) autorisant un passage d'une extrémité (33) d'au moins un fil d'une bobine (24) pour son maintien lors d'une opération de bobinage, lesdits crochets (31 ) ayant une hauteur (Hc) adaptée au diamètre du fil des bobines (24).
2. Elément selon la revendication 2, caractérisé en ce que les crochets (31 ) ont une hauteur (Hc) adaptée au nombre de tours du fil des bobines (24) autour des crochets (31 ).
3. Elément selon l'une des revendications 1 ou 2, caractérisé en ce que la position des crochets (31 ) dépend d'un sens d'enroulement (AH, H) du fil des bobines (24).
4. Elément selon la revendication 3, caractérisé en ce que chaque crochet (31 ) est destiné à être positionné sur la droite de la bobine qui lui correspond pour un sens d'enroulement anti-horaire (AH) ou sur la gauche de la bobine qui lui correspond pour un sens d'enroulement horaire (H).
5. Elément selon l'une des revendications 1 à 4, caractérisé en ce que chaque crochet (31 ) comporte un plot (35) issu de la face externe du support (12) et une patte (36) située du côté d'une extrémité libre du plot (35) s'étendant en saillie en direction d'une périphérie externe du support (12).
6. Elément selon la revendication 5, caractérisé en ce que chaque patte (36) présente la forme d'une rampe triangulaire du côté opposé de l'espace (32) autorisant le passage de l'extrémité (33) du fil de bobine.
7. Elément selon l'une des revendications 1 à 6, caractérisé en ce qu'il comporte en outre des murets (38) intercalés chacun entre deux crochets (31 ) successifs en sorte qu'il existe une alternance entre les crochets (31 ) et les murets (38) sur une circonférence du support (12).
8. Elément selon la revendication 7, caractérisé en ce que chaque crochet (31 ) étant positionné entre deux faces latérales de deux murets (38) adjacents tournées l'une vers l'autre, le crochet (31 ) est séparé de chacune de ces faces d'un espace (39) suffisant pour autoriser un passage d'une aiguille de bobinage.
9. Elément selon la revendication 7 ou 8, caractérisé en ce que une pluralité de murets (38) sont munis chacun d'une languette (41 ) s'étendant en saillie depuis une face du muret (38) tournée vers une périphérie externe du support (12) pour former des systèmes de maintien (42) de faisceaux de fils électrique reliés à des bobines du stator.
10. Elément selon l'une des revendications 1 à 9, caractérisé en ce que du côté de la face d'appui (18), la périphérie interne du support (12) comporte des évidements (26) destinés à recevoir des extrémités d'isolants d'encoche (27) positionnés à l'intérieur d'encoches du stator.
1 1 . Elément selon l'une des revendications 1 à 10, caractérisé en ce que le support (12) comporte en outre sur sa face d'appui au moins deux dispositifs d'encliquetage (48) pour le positionnement angulaire de l'élément sur une face d'extrémité (19) du stator.
12. Elément selon l'une des revendications 1 à 1 1 , caractérisé en ce que le support (12) comporte sur sa face d'appui (18) des creux (50) destinés à venir en regard de rivets (51 ) du stator situés sur une même circonférence.
13. Elément selon l'une des revendications 1 à 12, caractérisé en ce qu'il comporte en outre des bras (14) répartis circonférentiellement autour du support (12) s'étendant radialement par rapport au support (12) depuis une périphérie interne du support vers l'intérieur du support destinés à venir en appui contre des dents (5) du stator réparties régulièrement sur une périphérie interne d'une paroi annulaire (3) dudit stator (1 ), chaque crochet (31 ) étant associé à un bras (14).
14. Elément selon la revendication 13, caractérisé en ce que chaque crochet (31 ) est décalé angulairement par rapport à un plan médian (P1 ) du bras (14) auquel est associé ledit crochet (31 ).
15. Elément selon la revendication 13 ou 14, caractérisé en ce qu'il comporte en outre des rebords (15) s'étendant de part et d'autre des bras.
16. Stator (1 ) pour machine électrique tournante muni d'un élément isolant (1 1 ) selon l'une des revendications précédentes destiné à être plaqué contre une face radiale d'extrémité (19) dudit stator (1 ).
17. Procédé de bobinage d'un stator pour machine électrique tournante muni d'un élément isolant (1 1 ), ledit élément isolant comprenant des crochets (31 ) caractérisé en ce qu'il comporte les étapes suivantes :
-une étape de maintien (121 ) du stator dans un support ;
-une première étape d'enroulement (122) d'un fil autour d'un premier bras dudit stator pour former une bobine ;
-une étape d'accrochage (123) de la dernière spire de ladite bobine autour d'un crochet dédié à la dite bobine formée situé sur élément isolant (1 1 ) directement à côté de ladite bobine;
-une deuxième étape d'enroulement (124) dudit fil autour d'un bras dudit stator adjacent au bras sur lequel ladite bobine a été enroulée pour former une bobine suivante adjacente.
18. Procédé selon la revendication 17, comprenant en outre à l'issu de l'étape d'accrochage (123), une étape d'enroulement (123a) du fil autour de deux plots du support dédiés à ladite bobine formée.
19. Procédé selon la revendication 18, dans lequel à l'issu de ladite deuxième étape d'enroulement d'un bras, on répète lesdites étapes d'accrochage et d'enroulement (122, 123, 123a, 124) pour former des bobines sur l'ensemble des bras du stator, ledit procédé comprenant en outre une étape de découpage (125) de chacune des portions de fil situées entre le crochet d'accrochage dédié à une bobine et les deux plots du support dédiés à la même bobine.
PCT/FR2014/050968 2013-04-23 2014-04-22 Élément isolant muni de crochets de maintien de fils de bobinage d'un stator de machine électrique et stator correspondant WO2014174200A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201490000606.9U CN205693455U (zh) 2013-04-23 2014-04-22 用于保持电机定子的绕组电线的设置有钩的绝缘元件以及相应定子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1353688A FR3004867B1 (fr) 2013-04-23 2013-04-23 Element isolant muni de crochets de maintien de fils de bobinage d'un stator de machine electrique et stator correspondant
FR1353688 2013-04-23

Publications (2)

Publication Number Publication Date
WO2014174200A2 true WO2014174200A2 (fr) 2014-10-30
WO2014174200A3 WO2014174200A3 (fr) 2015-10-08

Family

ID=48906313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050968 WO2014174200A2 (fr) 2013-04-23 2014-04-22 Élément isolant muni de crochets de maintien de fils de bobinage d'un stator de machine électrique et stator correspondant

Country Status (3)

Country Link
CN (1) CN205693455U (fr)
FR (1) FR3004867B1 (fr)
WO (1) WO2014174200A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3063399A1 (fr) * 2017-02-27 2018-08-31 Valeo Equipements Electriques Moteur Machine electrique tournante a configuration amelioree

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5991308B2 (ja) * 2013-12-13 2016-09-14 トヨタ自動車株式会社 ステータの製造方法
US20160204668A1 (en) * 2015-01-13 2016-07-14 Hamilton Sundstrand Corporation Stator pole insulator
DE102018111572A1 (de) * 2018-05-15 2019-11-21 Seg Automotive Germany Gmbh Verfahren zum Herstellen von Wicklungen in einem Stator einer elektrischen Maschine
FR3094585A1 (fr) * 2019-03-25 2020-10-02 Valeo Japan Co. Ltd. Elément isolant de tête de bobine d’un stator de machine électrique tournante, stator et machine électrique tournante correspondants.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075304A (en) * 1997-04-30 2000-06-13 Alon Co., Ltd Stator with molded encasement for small motors and manufacturing process therefor
US6856055B2 (en) * 2002-07-11 2005-02-15 Emerson Electric Co. Interconnecting ring and wire guide
JP4788769B2 (ja) * 2006-06-01 2011-10-05 パナソニック株式会社 電動機の固定子およびモールドモータ
JP5720185B2 (ja) * 2010-11-04 2015-05-20 アイシン精機株式会社 電動モータおよびその電動モータを用いた車両用駆動装置
DE102010064051A1 (de) * 2010-12-23 2012-06-28 Robert Bosch Gmbh Wicklungsträger zur Isolation einer Einzelzahnwicklung bei elektrischen Maschinen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3063399A1 (fr) * 2017-02-27 2018-08-31 Valeo Equipements Electriques Moteur Machine electrique tournante a configuration amelioree
EP3373427A1 (fr) * 2017-02-27 2018-09-12 Valeo Equipements Electriques Moteur Machine électrique tournante à configuration améliorée

Also Published As

Publication number Publication date
FR3004867A1 (fr) 2014-10-24
CN205693455U (zh) 2016-11-16
WO2014174200A3 (fr) 2015-10-08
FR3004867B1 (fr) 2017-02-17

Similar Documents

Publication Publication Date Title
EP2677634B1 (fr) Interconnecteur pour un stator d'une machine électrique et stator comprenant un tel interconnecteur
FR2991831A1 (fr) Element isolant pour stator de machine electrique
FR2823612A1 (fr) Stator de machine tournante electrique comportant des bobines individuelles demontables
WO2014174200A2 (fr) Élément isolant muni de crochets de maintien de fils de bobinage d'un stator de machine électrique et stator correspondant
WO2014174201A2 (fr) Stator de machine electrique muni de gaines d'isolation des fils relies aux bobines ayant une longueur optimisee et machine electrique correspondante
EP1251622B1 (fr) Bobine pour machine électrique tournante
EP2795765A1 (fr) Rotor a poles saillants comportant un dispositif d'isolation de bobinages et dispositif d'isolation de bobinages associe
EP2860847B1 (fr) Stator bobiné à remplissage d'encoches optimisé et machine électrique correspondante
FR3054745A1 (fr) Machine electrique tournante munie d'un interconnecteur a crochets d'ecrouissage
FR3023994A1 (fr) Procede de realisation d'un stator bobine de machine electrique tournante
FR2995472A1 (fr) Interconnecteur pour stator de machine electrique, cache isolant, et stator de machine electrique correspondants
WO2013186460A2 (fr) Element pour le maintien de fils de bobinage d'un stator de machine electrique
EP2846438B1 (fr) Isolant de bobine
FR3054744A1 (fr) Machine electrique tournante munie d'un interconnecteur auto-denudant
FR3054748B1 (fr) Machine electrique tournante munie d'un interconnecteur a traces de couplage empilees radialement
FR2801142A1 (fr) Tole de machine tournante electrique a elements rapportes
FR3058282A1 (fr) Stator de machine electrique tournante muni de bobines a enroulement controle
FR3058283A1 (fr) Stator de machine electrique tournante muni d'un interconnecteur a positionnement optimum
WO2018020168A1 (fr) Machine électrique tournante munie d'un interconnecteur à traces de couplage empilées radialement
WO2015145008A1 (fr) Machine électrique tournante a couplage de phases optimise et procédé de réalisation de bobinage correspondant
FR2802724A1 (fr) Stator a dents convexes
FR2991829A1 (fr) Stator de machine electrique muni d'evidements pour le passage de tirants d'assemblage et machine electrique associee
FR3058281A1 (fr) Stator de machine electrique tournante muni d'un interconnecteur encliquete
FR3058280A1 (fr) Stator de machine electrique tournante muni d'un interconnecteur a configuration amelioree
FR3083651A1 (fr) Stator bobine pour une machine electrique tournante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14726690

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 14726690

Country of ref document: EP

Kind code of ref document: A2