WO2014174201A2 - Stator de machine electrique muni de gaines d'isolation des fils relies aux bobines ayant une longueur optimisee et machine electrique correspondante - Google Patents

Stator de machine electrique muni de gaines d'isolation des fils relies aux bobines ayant une longueur optimisee et machine electrique correspondante Download PDF

Info

Publication number
WO2014174201A2
WO2014174201A2 PCT/FR2014/050969 FR2014050969W WO2014174201A2 WO 2014174201 A2 WO2014174201 A2 WO 2014174201A2 FR 2014050969 W FR2014050969 W FR 2014050969W WO 2014174201 A2 WO2014174201 A2 WO 2014174201A2
Authority
WO
WIPO (PCT)
Prior art keywords
stator
coils
phase
wires
output
Prior art date
Application number
PCT/FR2014/050969
Other languages
English (en)
Other versions
WO2014174201A3 (fr
Inventor
Jean-Claude Matt
Benoit WALME
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Priority to JP2016509526A priority Critical patent/JP2016523070A/ja
Priority to CN201490000609.2U priority patent/CN205377470U/zh
Priority to EP14726691.0A priority patent/EP2989712A2/fr
Priority to US14/777,290 priority patent/US20160036280A1/en
Publication of WO2014174201A2 publication Critical patent/WO2014174201A2/fr
Publication of WO2014174201A3 publication Critical patent/WO2014174201A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/06Machines characterised by the wiring leads, i.e. conducting wires for connecting the winding terminations

Definitions

  • the invention relates to an electric machine stator provided with insulating sheaths of the wires connected to the coils having an optimized length, as well as on the corresponding electrical machine.
  • the invention finds a particularly advantageous application in the field of rotating electrical machines such as an alternator, or an electric motor.
  • the invention can be used advantageously with a refrigerant compressor air conditioner for a motor vehicle.
  • Electric machines having a stator and a rotor integral with a shaft ensuring the movement of a scroll compressor, also known as a "scroll compressor".
  • a scroll compressor also known as a "scroll compressor”.
  • Such a system comprises two spirals interposed as pallets for pumping and compressing the refrigerant. In general, one of the turns is fixed, while the other moves eccentrically without turning, so as to pump and trap and compress fluid pockets between the turns.
  • Such a system is for example described in EP1865200.
  • the stator comprises a body made of laminated sheet to reduce the eddy currents.
  • the body has at its outer periphery an annular wall, called a yoke, and teeth coming from the inner periphery of the annular wall having an outer periphery in contact with a housing that comprises the rotating electrical machine.
  • This housing also called casing, is configured to rotate the rotor shaft via ball bearings and / or needle as can be seen for example in Figures 1 and 2 of EP1865200.
  • the stator teeth are distributed on the wall of the stator body and extend inwardly of the stator towards the rotor.
  • An air gap exists between the free end of the teeth, defining the inner periphery of the body of the stator, and the outer periphery of the rotor, which may be a rotor with permanent magnets.
  • the teeth define with the annular wall notches open towards the inside and intended to receive coils, for example in the form of coils, for forming a polyphase stator for example of the three-phase type.
  • Coils electrically insulated from the stator body are wound around the teeth so that each slot of the stator receives two half-coils. Insulation of the coils relative to the stator body can be achieved by using insulating elements plated on either side of the stator body in combination with notch insulators positioned against the inner walls of the notches. It is also possible to use coils mounted on individual insulating supports to be threaded around a tooth of the stator via an opening in the support.
  • Each coil has an input and an output having one or more wires in parallel.
  • the input is intended to be interconnected with other inputs to form the neutral point of the electrical machine while the output is intended to be interconnected with other outputs of the coils to form one of the phases of the machine.
  • FIG. 1 shows a stator 1 comprising three phases U, V, W and fifteen coils 2, ie five coils per phase.
  • Each phase U, V, W is associated with a wire bundle traversing almost the entire circumference of the stator to connect the different coils belonging to the corresponding phase.
  • FIG. 1 represents the paths C1-C4 traversed by the various insulating sheaths 3 of the wires of the bundle FU connected to the outputs U2-U5, knowing that another wire of the bundle is connected to the output U1.
  • These insulating sheaths 3 make it possible to avoid the mechanical friction of the copper wires on the bunches of the coils 2.
  • the buns are formed by the parts of the coils 2 projecting on either side of the stator body. 1.
  • the disadvantage of this configuration lies in the fact that the son of the FU beam require different lengths of sheath to be connected to the outputs of the corresponding coils, which complicates the assembly process and makes it very long.
  • the total height of the stator is not optimized.
  • the thickness of the insulating sheaths is greater in the zone ZA of connection with the first coils in which all the sheaths are present than in the zone ZB of connection with the last coils in which only a few sheaths are present.
  • the invention aims to effectively remedy at least one of these disadvantages by proposing a stator for polyphase rotating electrical machine comprising a body provided with an outer wall and teeth extending from an inner periphery of said outer wall towards the inside.
  • the stator a set of coils wound around the teeth each having an input and an output having one or more wires in parallel, the input being intended to be interconnected with other inputs to form the neutral point of the machine and the the output being intended to be interconnected with other outputs to form one of the phases of the machine and each phase is associated with a bundle of wires, this bundle being separated into two beam portions, these two beam portions traversing a portion of the circumference of the stator in two opposite directions to connect the outputs of the coils forming the same phase, and
  • the separation of each beam is carried out in a separation zone located near a connection of one or more wires of the beam with an output of one of the coils belonging to the phase corresponding to said beam, so that the insulating sheaths extending along the circumference of the stator from the separation zone to an output of a next coil of a phase or between the outputs of two coils successive phases of said phase all have a substantially identical length relative to one another.
  • the invention makes it possible to reduce the final height of the stator. It is also noted that the surface covered by the sheaths on the outer periphery of the buns is minimized, which makes it possible to obtain a better flow of the refrigerant fluid in the case of a compressor type machine.
  • each sheath protects a different number of wires, this number of wires decreasing the number of wires in parallel in a coil between two adjacent sheaths when moving from the separation zone towards the sheath of the beam portion furthest from the separation zone.
  • the neutral point is made by connecting together the inputs of M successive coils at interconnection points, M being the number of phases of the electric machine.
  • the interconnection points are connected to each other.
  • the stator comprises two insulating elements clad on either side of the stator each comprising a support intended to be pressed against the wall of the stator, and arms coming from an internal periphery of the support intended to be pressed against the stator teeth, the coils being wound around the assembly formed by the stator teeth and the arms of the insulating elements.
  • one of the insulating elements comprises anchoring systems able to maintain an input or an output of the coils during a winding operation.
  • each anchoring system is formed by a hook turned on the side of an outer periphery of the support.
  • one of the insulating elements comprises systems for holding the insulating sheaths.
  • each system for holding the insulating sheaths is formed by an axial extension base and a tongue protruding from a face of the base facing the outside of the support.
  • the stator further comprises notch insulators plated against internal walls of notches delimited by the teeth of the stator.
  • the subject of the invention is also a rotary electric machine with 2p rotor and M phase poles provided with a stator according to the invention comprising M x p coils.
  • Figure 1 already described, is a top view of a wound stator according to the state of the art showing the paths of the different insulating sheaths protecting the son connected to the outputs of the coils forming a same phase;
  • FIG. 2 shows a perspective view of a stator for an electric machine according to the invention
  • Figure 3 shows an exploded view of the various components of the stator according to the invention shown without the winding
  • FIG. 4 shows a diagram of the electrical connections of the stator coils according to the invention between them;
  • FIG. 5a shows a schematic representation of the configuration of the connections of the wires of a beam to the outputs of the coils forming the same phase U;
  • Figure 5b shows a schematic representation similar to that of Figure 5a but without the coils and with the positioning of the outputs of said coils on the circumference of the stator;
  • FIG. 6 shows a view from above of the stator showing the groupings of the different inputs of the coils for the realization of the neutral point of the electrical machine
  • Figure 7 is a top view of a wound stator according to the invention showing the paths of the different insulating sheaths protecting the son of the outputs of the coils forming a same phase.
  • FIGS. 2, 3, 6 and 7 show a stator 10 of a rotating electrical machine, such as an air conditioner refrigerant compressor for a motor vehicle.
  • the machine consists of an alternator or an electric motor.
  • this stator 10 comprises a body 11 in the form of a laminated sheet package having at its outer periphery an annular wall 12, called a yoke, and teeth 13 coming from the inner periphery. of the annular wall 12.
  • These teeth 13 are distributed circumferentially evenly and extend inward towards the rotor of the machine such as a rotor with permanent magnets.
  • the teeth 13 delimit two by two notches 15, two successive notches 15 being thus separated by a tooth 13.
  • Each tooth 13 has at their free end returns 17 extending circumferentially on either side of the tooth 13. Free ends of the teeth 13 delimit, in known manner, an air gap with the outer periphery of the rotor of the rotating electrical machine.
  • Two electrically insulating elements 20 are plated on either side of the stator 10 on its radial end faces. Each element 20 may be moldable plastic, for example PA 6.6. Each plastic element 20 may optionally be reinforced with fibers, such as glass fibers.
  • Each insulating element 20 comprises at its outer periphery a support 23 in the form of an axially oriented ring, and arms 24, distributed circumferentially, which extend radially from the inner periphery of the support 23 towards the inside of the element. 20. These arms 24 each end at their free end by a flange 25 for retaining in the radial direction of the coils 28 belonging to the excitation coil described below.
  • the arms 24 are evenly distributed on the inner periphery of the support 23 and are intended to bear against the teeth 13 of the stator of corresponding shape.
  • the support 23 is intended to be pressed against the yoke 12 of the body 1 1 of the stator. In this case, the arms 24 of insulating elements are fifteen, like the teeth 13.
  • Maintaining the insulating elements 20 may be achieved by means of two latching devices 29 (clipping) visible in Figure 3 adapted to cooperate with openings 30 formed in the end face of the corresponding stator 10.
  • stator 10 is equipped with notch insulators 33 in the form of a thin membrane, made of an electrically insulating and heat conducting material, for example an aramid material of Nomex type (trademark).
  • This thin membrane is folded so that each notch insulator 33 is pressed against the internal walls of the notches 15 of the stator 10.
  • This winding operation may for example be performed using a centrally hollow needle to allow passage of one or more parallel son forming the coil. This needle is moving circumferentially, axially and radially with respect to the stator.
  • the winding is preferably carried out counter-clockwise.
  • the arms 24 of the insulating elements 20 and the notch insulator 33 electrically insulate the coils 28 of the stator winding 10 with respect to the stator laminations 10 and protect them during the winding operation.
  • one of the insulating elements 20 preferably comprises anchoring systems 35 for holding in position an end of one or more wires forming each coil 28 corresponding to an input or an output of the coil 28
  • Each anchoring system 35 is for example formed by a hook turned on the side of the outer periphery of the support 23, as shown in Figures 2 and 6. This hook allows the passage of an end of one or more son d a coil 28 between a tab forming a return of said hook and the outer face of the support 23 located on the opposite side to the stator.
  • the anchoring system 35 comprises a stud and a U-shaped groove formed around the stud inside which is positioned the end of one or more wires bearing against the side walls of the stud for its maintenance.
  • Each coil 28 has two projections, called buns, arranged on either side of a tooth 13 of the stator.
  • the coils 28 here have a trapezoidal shape, as can be seen in FIG. 6.
  • the coils 28 each have an input and an output having one or more wires in parallel. This depends on the number of wires from which the coil was made.
  • the input is intended to be interconnected with other inputs to form the neutral point of the electrical machine.
  • the output is intended to be interconnected with other outputs to form one of the phases of the machine.
  • the inlet preferably corresponds to the end held by the anchoring system 35 during the winding operation. This is illustrated in Figure 6 for coils formed from a single wire.
  • FIG. 4 for a three-phase electrical machine U, V, W provided with a stator comprising fifteen coils 28 numbered from 1 to 15, each phase U, V, W is formed by five coils 28. More generally, for a machine with 2p rotor poles and M phases, the stator has M times p coils.
  • the outputs of the coils 28, which are coupled in parallel, are connected alternately to the different phases of the machine.
  • the output of the first coil 28 is connected to one of the phases, for example the phase U
  • the output of the second coil 28 is connected to another phase, for example the phase V
  • the output of the third coil 28 is connected to the last phase W and so on for all the coils of the stator 10.
  • the references Ui thus correspond to the outputs of the coils i connected to the phase U
  • the references Vj correspond to the outputs of the coils j connected to the phase V
  • the references Wk correspond to the outputs of the coils k connected to the phase W.
  • angular pitch PA between the coils 28 belonging to the same phase is constant (see Figure 5b).
  • angular step PA is meant the separation angle between two consecutive coil outputs 28 of the same phase.
  • the neutral point of the electrical machine is achieved by connecting together the inputs of M successive coils at interconnection points, M being the number of phases.
  • M being the number of phases.
  • the interconnection points N1-N5 may each be physically constituted by a metal tube 60 to which the inputs of the coils 28 are connected in groups of three. It is noted that the interconnection points N1 - N5 may or may not be connected to each other.
  • Each phase U, V, W is associated with a beam FU, FV, FW of son separated into two beam portions (FU1, FU2); (FV1, FV2) or (FW1, FW2).
  • the separation of each beam FU, FV, FW is carried out in a zone of separation SU, SV, SW located near, for example just above, a connection of one or more son of the beam with an output of one of the coils 28 belonging to the phase corresponding to said beam FU, FV, FW .
  • the phase U from the separation zone SU (located near the output U3), the next coils 28 following the circumference of the stator are respectively connected by the outputs U2 and U4.
  • phase U two successive coils 28 following the circumference of the stator are respectively connected by the outputs U3 and U4, U4 and U5, U3 and U2 or U2 and U1.
  • phase V from the separation zone SV (located near the output V3), the next coils 28 following the circumference of the stator are respectively connected by the outputs V2 and V4.
  • phase V two successive coils 28 following the circumference of the stator are respectively connected by the outputs V3 and V4, V4 and V5, V3 and V2 or V2 and V1.
  • the beam portions travel a portion of the circumference of the stator in two opposite directions to connect the outputs Ui, Vj, or Wk of the coils 28 forming the same phase.
  • the number of wires of each beam portion is reduced by the number of wires in parallel in a coil after each connection with an output Ui, Vj, Wk of a coil 28 when moving from the separation zone SU, SV, SW to a last coil 28 connected by its output to the corresponding beam portion.
  • the coil 28 is formed from a wire as is the case in Figures 5a and 5b, the number of wires in the beam portion decreases by one after each connection with a coil output.
  • each beam portion FU1, FU2; FV1, FV2; FW1, FW2 has at the separation zone SU, SV, SW a number of son equal to the number of son of the beam FU, FV, FW minus the number of son in parallel in a coil, the whole being divided by two.
  • the number of wires between the two portions (FU1, FU2), (FV1, FV2), (FW1, FW2) is equal.
  • the U phase FU beam which comprises five wires, has a wire connected to an output U3 of a coil 28.
  • This beam FU is subdivided into two beam portions FU1, FU2 in a separation zone SU located near the connection with the output U3.
  • Each beam portion FU1, FU2 each comprises two son and a wire after the connection with an output U2, U4 of one of the coils.
  • the last wires of each beam portion FU1, FU2 are respectively connected to the outputs U1 and U5 of the last coils 28.
  • the separation of the beam FU, FV, FW will be carried out in the area near the connection with one of the coils of the phase, the number of son of each beam portion then being different.
  • insulating sleeves 40 protecting the son of each beam portion FU1, FU2; FV1, FV2; FW1, FW2 extend between the outputs Ui, Vj, Wk of two successive coils 28 belonging to the same phase U, V, W.
  • each sheath 40 protects a different number of wires. This number of wires decreases the number of wires in parallel in a coil between two adjacent sheaths 40 when moving from the separation zone SU, SV, SW to the sheath of the corresponding beam portion furthest from the separation zone SU, SV, SW.
  • This characteristic is related to the connection configuration of the wires of the beam portions FU1, FU2; FV1, FV2; FW1, FW2 previously described.
  • the angular pitch PA between the coils being constant in the same phase as well as from one phase to the other, the insulating sheaths 40 have a length substantially identical to each other.
  • insulating sheaths 40 are used to protect the wires of the two beam portions FU1, FU2, ie two sheaths 40 per beam portion FU1, FU2.
  • the insulating sheath 40 closest to the separation zone SU protects two wires while the insulating sheath 40 furthest from the separation zone SU protects a single wire.
  • these four sheaths 40 visible in FIG. 7 substantially traverse the same circumferential path so that they all have a substantially identical length. It is the same for the insulating sleeves 40 protecting the son of the beam portions FV1, FV2; FW1, FW2 corresponding to the other phases V, W.
  • the ends of the beams FU, FV, FW are sheathed by tubes 70 visible in Figures 2, 5a, and 5b able to contract around son by heating.
  • protruding ends connected to a connector 71 are designed to be connected to an inverter, as described for example in document EP0831580, to which reference will be made for more details.
  • the insulating element 20 carrying the anchoring systems 35 also preferably comprises holding systems 45 of the insulating sheaths 40. These systems 45 are interposed between two anchoring systems. 35 successive.
  • each holding system 45 comprises a base 46 of axial extension and a tongue 47 projecting from a face of the base 46 facing the outside of the support 23.
  • the rotor of the electric motor of the compressor (not shown) is permanent magnets positioned inside the rotor.
  • the magnets may be of radial orientation.
  • the rotor comprises a body in the form of a pack of sheets provided with housings, which may be of radial orientation for housing the magnets.
  • the rotor body may comprise a central core, and teeth extending radially relative to the core. These teeth each comprise two flanges extending circumferentially on either side of the teeth. Permanent magnets are positioned inside housings delimited each by two faces facing each other of two adjacent teeth, an outer face of the rotor core, and the edges of the teeth.
  • the positioning of recesses 50 formed in the outer periphery of the body 1 1 of the stator as well as in the insulating elements 20 corresponds to the angular positioning of openings formed in flanges. closure of the machine ensuring the passage of the tie rods, said flanges belonging to a housing carrying the body of the stator.
  • this housing comprises, in known manner, three parts, namely an intermediate portion carrying the annular wall 12 of the stator 10 of the electric machine, such as a refrigerant compressor motor vehicle air conditioner, and two flanges arranged of on both sides of the middle part.
  • One of the hollow-shaped flanges carries the "scroll" of the compressor, while the other flange carries the control electronics of the compressor.
  • the tie rods for example in the form of screws, connect the flanges together by passing through the recesses 50 of the stator, for example, mounted to hooping via its annular wall 12 in the intermediate portion sandwiched between the flanges.
  • the intermediate portion comprises hooping sectors for the hooping mounting of the wall 12 of the stator 10. Between two consecutive hooping sectors there are passages. These passages are opposite the recesses 50. The outer periphery of the wall 12 is in hooping contact with the inner periphery of the hooping sectors. The passages are opposite the recesses 50 so that the tie rods pass through the passages without interfering with the intermediate part of the housing.
  • the intermediate part may be filled with coolant. This fluid can easily cross the spaces between the coils 28 and the insulating sheaths, given the reduced radial space requirement of the insulating sheaths 40 on the end face of the stator 10.
  • the rotor sheet package may be integral with a tree itself secured to the mobile scroll -movable scroll in English- the compressor.
  • the compressor is devoid of pulley and the control electronics of the electric motor is integral with a flange being integrated in the compressor.
  • individual insulating supports are used to be threaded around a tooth 13 of the stator 10 via an opening in each insulating support.
  • the coils 28 are wound around the insulating supports if necessary before positioning the individual insulating supports around the teeth 13 of the stator 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

L'invention porte principalement sur un stator (10) pour machine électrique tournante polyphasée comportant un ensemble de bobines enroulées autour de dents du stator ayant chacune une entrée et une sortie comportant un seul ou plusieurs fils en parallèle. L'entrée est destinée à être interconnectée avec d'autres entrées pour constituer le point neutre de la machine et la sortie est destinée à être interconnectée avec d'autres sorties pour former une des phases (U, V, W) de la machine. Chaque phase est associée à un faisceau de fils (FU), ce faisceau (FU) étant séparé en deux portions de faisceau (FU1, FU2), ces deux portions de faisceau parcourant une partie de la circonférence du stator (10) suivant deux sens opposés pour relier les sorties des bobines formant une même phase. Le stator comporte également un ensemble de gaines isolantes (40) protégeant les fils de chaque portion de faisceau (FU1, FU2). Conformément à l'invention, la séparation de chaque faisceau (FU) est effectuée dans une zone de séparation (SU) située à proximité d'une connexion d'un ou plusieurs fils du faisceau (FU) avec une sortie (U3) d'une des bobines appartenant à la phase correspondant audit faisceau, en sorte que les gaines isolantes (40) s'étendant suivant la circonférence du stator (10) depuis la zone de séparation (SU) à une sortie (U2, U4) d'une prochaine bobine d'une phase ou entre les sorties de deux bobines (28) successives de ladite phase présentent toutes une longueur sensiblement identique les unes par rapport aux autres.

Description

STATOR DE MACHINE ELECTRIQUE MUNI DE GAINES D'ISOLATION DES FILS RELIES AUX BOBINES AYANT UNE LONGUEUR OPTIMISEE ET MACHINE ELECTRIQUE CORRESPONDANTE
DOMAINE TECHNIQUE DE L'INVENTION L'invention concerne un stator de machine électrique muni de gaines d'isolation des fils reliés aux bobines ayant une longueur optimisée, ainsi que sur la machine électrique correspondante. L'invention trouve une application particulièrement avantageuse dans le domaine des machines électriques tournantes telles qu'un alternateur, ou un moteur électrique. L'invention pourra être utilisée avantageusement avec un compresseur de fluide réfrigérant de climatiseur pour véhicule automobile.
ETAT DE LA TECHNIQUE
On connaît des machines électriques comportant un stator et un rotor solidaire d'un arbre assurant la mise en mouvement d'un compresseur à spirale, également connu sous le nom de "compresseur scroll". Un tel système comporte deux spirales intercalées comme des palettes pour pomper et comprimer le fluide réfrigérant. En général, une des spires est fixe, alors que l'autre se déplace excentriquement sans tourner, de manière à pomper puis emprisonner et comprimer des poches de fluide entre les spires. Un tel système est par exemple décrit dans le document EP1865200.
Le stator comporte un corps réalisé en tôle feuilletée pour diminuer les courants de Foucault. Le corps présente à sa périphérie externe une paroi annulaire, appelée culasse, et des dents issues de la périphérie interne de la paroi annulaire présentant une périphérie externe en contact avec un boîtier que comporte la machine électrique tournante. Ce boîtier, appelé également carter, est configuré pour porter à rotation l'arbre du rotor via des roulements à billes et/ou à aiguilles comme visible par exemple dans les figures 1 et 2 du document EP1865200.
Les dents du stator sont réparties sur la paroi du corps du stator et s'étendent vers l'intérieur du stator en direction du rotor. Un entrefer existe entre l'extrémité libre des dents, définissant la périphérie interne du corps du stator, et la périphérie externe du rotor, qui pourra être un rotor à aimants permanents. Les dents définissent avec la paroi annulaire des encoches ouvertes vers l'intérieur et destinées à recevoir des bobinages, par exemple en forme de bobines, pour formation d'un stator polyphasé par exemple du type triphasé.
Des bobines isolées électriquement du corps du stator sont enroulées autour des dents en sorte que chaque encoche du stator reçoit deux demi-bobines. L'isolation des bobines par rapport au corps du stator pourra être réalisée en utilisant des éléments isolants plaqués de part et d'autre du corps du stator en combinaison avec des isolants d'encoche positionnés contre les parois internes des encoches. Il est également possible d'utiliser des bobines montées sur des supports isolants individuels destinés à être enfilés autour d'une dent du stator via une ouverture ménagée dans le support.
Chaque bobine comporte une entrée et une sortie comportant un seul ou plusieurs fils en parallèle. L'entrée est destinée à être interconnectée avec d'autres entrées pour constituer le point neutre de la machine électrique tandis que la sortie est destinée à être interconnectée avec d'autres sorties des bobines pour former une des phases de la machine
La figure 1 montre un stator 1 comportant trois phases U, V, W et quinze bobines 2 soit cinq bobines par phase. Chaque phase U, V, W est associée à un faisceau de fils parcourant la quasi-totalité de la circonférence du stator pour relier les différentes bobines appartenant à la phase correspondante.
La phase U étant formée par les cinq sorties de bobines U1 -U5, la figure 1 représente les chemins C1 -C4 parcourus par les différentes gaines isolantes 3 des fils du faisceau FU reliés aux sorties U2-U5 sachant qu'un autre fil du faisceau est relié à la sortie U1 . Ces gaines isolantes 3 permettent d'éviter le frottement mécanique des fils de cuivre sur les chignons des bobines 2. On rappelle que les chignons sont formés par les parties des bobines 2 s'étendant en saillie de part et d'autre du corps du stator 1 . L'inconvénient de cette configuration réside notamment dans le fait que les fils du faisceau FU nécessitent des longueurs de gaines différentes pour être reliés aux sorties des bobines correspondantes, ce qui complexifie le processus d'assemblage et le rend très long.
En outre, la hauteur totale du stator n'est pas optimisée. En effet, l'épaisseur des gaines isolantes est plus importante dans la zone ZA de connexion avec les premières bobines dans laquelle toutes les gaines sont présentes que dans la zone ZB de connexion avec les dernières bobines dans laquelle seulement quelques gaines sont présentes.
On note également que dans le cas d'un compresseur, le passage du fluide circulant à l'intérieur du stator pourra être gêné par l'ensemble des gaines qui couvrent une grande surface de la face d'extrémité du stator dans la zone ZA de connexion avec les premières bobines.
OBJET DE L'INVENTION
L'invention vise à remédier efficacement à au moins un de ces inconvénients en proposant un stator pour machine électrique tournante polyphasée comportant un corps muni d'une paroi externe et de dents s'étendant depuis une périphérie interne de ladite paroi externe vers l'intérieur du stator, un ensemble de bobines enroulées autour des dents ayant chacune une entrée et une sortie comportant un seul ou plusieurs fils en parallèle, l'entrée étant destinée à être interconnectée avec d'autres entrées pour constituer le point neutre de la machine et la sortie étant destinée à être interconnectée avec d'autres sorties pour former une des phases de la machine et, chaque phase est associée à un faisceau de fils, ce faisceau étant séparé en deux portions de faisceau, ces deux portions de faisceau parcourant une partie de la circonférence du stator suivant deux sens opposés pour relier les sorties des bobines formant une même phase, et
un ensemble de gaines isolantes protégeant les fils de chaque portion de faisceau, caractérisé en ce que
la séparation de chaque faisceau est effectuée dans une zone de séparation située à proximité d'une connexion d'un ou plusieurs fils du faisceau avec une sortie d'une des bobines appartenant à la phase correspondant audit faisceau, en sorte que les gaines isolantes s'étendant suivant la circonférence du stator depuis la zone de séparation à une sortie d'une prochaine bobine d'une phase ou entre les sorties de deux bobines successives de ladite phase présentent toutes une longueur sensiblement identique les unes par rapport aux autres.
Etant donné que toutes les gaines isolantes présentent la même longueur sur la circonférence du stator, il est possible de standardiser les gaines, ce qui va permettre de réduire la durée d'assemblage du stator. En outre, l'épaisseur des gaines isolantes étant sensiblement constante sur toute la circonférence du stator compte tenu de la configuration des portions de faisceau, l'invention permet de réduire la hauteur finale du stator. On note également que la surface couverte par les gaines sur la périphérie externe des chignons est minimisée, ce qui permet d'obtenir un meilleur écoulement du fluide réfrigérant dans le cas d'une machine de type compresseur.
Selon une réalisation, pour un ensemble de gaines correspondant à une même portion de faisceau, chaque gaine protège un nombre de fils différent, ce nombre de fils diminuant du nombre de fils en parallèle dans une bobine entre deux gaines adjacentes lorsqu'on se déplace de la zone de séparation vers la gaine de la portion de faisceau la plus éloignée de la zone de séparation.
Selon une réalisation, le point neutre est réalisé en connectant entre elles les entrées de M bobines successives en des points d'interconnexion, M étant le nombre de phases de la machine électrique.
Selon une réalisation, les points d'interconnexion sont connectés entre eux.
Selon une réalisation, le stator comporte deux éléments isolants plaqués de part et d'autre du stator comportant chacun un support destiné à être plaqué contre la paroi du stator, et des bras issus d'une périphérie interne du support destinés à être plaqués contre les dents du stator, les bobines étant enroulées autour de l'ensemble formé par les dents du stator et les bras des éléments isolants.
Selon une réalisation, un des éléments isolants comporte des systèmes d'ancrage aptes à maintenir une entrée ou une sortie des bobines lors d'une opération de bobinage. Selon une réalisation, chaque système d'ancrage est formé par un crochet tourné du côté d'une périphérie externe du support.
Selon une réalisation, un des éléments isolants comporte des systèmes de maintien des gaines isolantes. Selon une réalisation, chaque système de maintien des gaines isolantes est formé par une base d'extension axiale et une languette faisant saillie issue d'une face de la base tournée vers l'extérieur du support.
Selon une réalisation, le stator comporte en outre des isolants d'encoche plaqués contre des parois internes d'encoches délimitées par les dents du stator.
L'invention a également pour objet une machine électrique tournante à 2p pôles rotor et M phases munie d'un stator selon l'invention comportant M fois p bobines.
BREVE DESCRIPTION DES FIGURES L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention.
La figure 1 , déjà décrite, est une vue de dessus d'un stator bobiné selon l'état de la technique faisant apparaître les chemins des différentes gaines isolantes protégeant les fils reliés aux sorties des bobines formant une même phase;
La figure 2 montre une vue en perspective d'un stator pour machine électrique selon l'invention;
La figure 3 montre une vue éclatée des différents éléments composant le stator selon l'invention représenté sans le bobinage;
La figure 4 montre un schéma des connexions électriques des bobines du stator selon l'invention entre elles; La figure 5a montre une représentation schématique de la configuration des connexions des fils d'un faisceau aux sorties des bobines formant une même phase U;
La figure 5b montre une représentation schématique analogue à celle de la figure 5a mais sans les bobines et avec le positionnement des sorties desdites bobines sur la circonférence du stator;
La figure 6 montre une vue de dessus du stator faisant apparaître les regroupements des différentes entrées des bobines pour la réalisation du point neutre de la machine électrique; La figure 7 est une vue de dessus d'un stator bobiné selon l'invention faisant apparaître les chemins des différentes gaines isolantes protégeant les fils des sorties des bobines formant une même phase.
Les éléments identiques, similaires ou analogues conservent la même référence d'une figure à l'autre. DESCRIPTION D'EXEMPLES DE REALISATION DE L'INVENTION
Les figures 2, 3, 6 et 7 montrent un stator 10 de machine électrique tournante, tel qu'un compresseur de fluide réfrigérant de climatiseur pour véhicule automobile. En variante, la machine consiste en un alternateur ou en un moteur électrique. Comme cela est bien visible sur la figure 3, ce stator 10 comporte un corps 1 1 sous la forme d'un paquet de tôle feuilletée présentant à sa périphérie externe une paroi annulaire 12, appelé culasse, et des dents 13 issues de la périphérie interne de la paroi annulaire 12. Ces dents 13 sont réparties circonférentiellement de manière régulière et s'étendent vers l'intérieur en direction du rotor de la machine tel qu'un rotor à aimants permanents. Les dents 13 délimitent deux à deux des encoches 15, deux encoches 15 successives étant ainsi séparées par une dent 13. Ces dents 13 présentent à leur extrémité libre des retours 17 s'étendant circonférentiellement de part et d'autre de la dent 13. Les extrémités libres des dents 13 délimitent, de manière connue, un entrefer avec la périphérie externe du rotor de la machine électrique tournante. Deux éléments électriquement isolants 20 sont plaqués de part et d'autre du stator 10 sur ses faces radiales d'extrémité. Chaque élément 20 pourra être en matière plastique moulable, par exemple en PA 6.6. Chaque élément 20 en matière plastique pourra être le cas échéant renforcé par des fibres, telles que des fibres de verre.
Chaque élément isolant 20 comporte à sa périphérie externe un support 23 en forme d'anneau d'orientation axiale, et des bras 24, répartis circonférentiellement, qui s'étendent radialement depuis la périphérie interne du support 23 vers l'intérieur de l'élément 20. Ces bras 24 se terminent chacun à leur extrémité libre par un rebord 25 permettant de retenir dans la direction radiale des bobines 28 appartenant au bobinage d'excitation décrites ci-après. Les bras 24 sont répartis régulièrement sur la périphérie interne du support 23 et sont destinés à venir en appui contre les dents 13 du stator de forme correspondante. Le support 23 est destiné à être plaqué contre la culasse 12 du corps 1 1 du stator. En l'occurrence, les bras 24 de des éléments isolants sont au nombre de quinze, comme les dents 13.
Le maintien des éléments isolants 20 pourra être réalisé au moyen de deux dispositifs d'encliquetage 29 (de clipsage) visibles sur la figure 3 aptes à coopérer avec des ouvertures 30 ménagées dans la face d'extrémité du stator 10 correspondante.
En outre, le stator 10 est équipé d'isolants d'encoche 33 prenant la forme d'une membrane fine, réalisée dans un matériau électriquement isolant et conducteur de chaleur, par exemple un matériau aramide de type dit Nomex (marque déposée). Cette membrane fine est pliée de manière que chaque isolant d'encoche 33 est plaqué contre les parois internes des encoches 15 du stator 10.
Les fils des bobines 28 bien visibles notamment à la figure 6, tels que des fils en cuivre ou en aluminium recouverts d'une couche électriquement isolante, telle que de l'émail, sont enroulés chacun autour d'une dent 13 et des bras 24 associés des éléments isolants 20 pour former les différents pôles du stator 10. Cette opération de bobinage pourra par exemple être effectuée à l'aide d'une aiguille centralement creuse pour permettre un passage d'un ou plusieurs fils en parallèles formant la bobine. Cette aiguille se déplace circonférentiellement, axialement et radialement par rapport au stator. Le bobinage est effectué de préférence dans le sens anti-horaire. Ainsi, les bras 24 des éléments isolants 20 et l'isolant d'encoche 33 isolent électriquement les bobines 28 du bobinage du stator 10 par rapport au paquet de tôles du stator 10 et les protègent lors de l'opération de bobinage.
Pour faciliter l'opération de bobinage, un des éléments isolants 20 comporte de préférence des systèmes d'ancrage 35 permettant de maintenir en position une extrémité d'un ou plusieurs fils formant chaque bobine 28 correspondant à une entrée ou une sortie de la bobine 28. Chaque système d'ancrage 35 est par exemple formé par un crochet tourné du côté de la périphérie externe du support 23, comme montré sur les figures 2 et 6. Ce crochet autorise le passage d'une extrémité d'un ou plusieurs fils d'une bobine 28 entre une patte formant un retour dudit crochet et la face externe du support 23 située du côté opposé au stator. Alternativement, comme montré sur la figure 3, le système d'ancrage 35 comporte un plot et une gorge en forme de U ménagée autour du plot à l'intérieur de laquelle est positionnée l'extrémité d'un ou plusieurs fils en appui contre les parois latérales du plot pour son maintien.
Le bobinage est effectué en sorte qu'une même encoche 15 reçoit deux demi-bobines 28. Chaque bobine 28 présente deux parties saillantes, appelées chignons, disposées de part et d'autre d'une dent 13 du stator. Les bobines 28 ont ici une forme trapézoïdale, comme cela est bien visible sur la figure 6.
Les bobines 28 ont chacune une entrée et une sortie comportant un seul ou plusieurs fils en parallèle. Cela dépend en effet du nombre de fils à partir duquel la bobine a été réalisée. L'entrée est destinée à être interconnectée avec d'autres entrées pour former le point neutre de la machine électrique. La sortie est destinée à être interconnectée avec d'autres sorties pour former une des phases de la machine. L'entrée correspond de préférence à l'extrémité maintenue par le système d'ancrage 35 lors de l'opération de bobinage. Cela est illustré à la figure 6 pour des bobines formées à partir d'un seul fil. Comme cela est bien visible sur la figure 4, pour une machine électrique à trois phases U, V, W muni d'un stator comportant quinze bobines 28 numérotées de 1 à 15, chaque phase U, V, W est formée par cinq bobines 28. Plus généralement, pour une machine à 2p pôles rotor et M phases, le stator comporte M fois p bobines.
On note que les sorties des bobines 28, qui sont couplées en parallèle, sont connectées alternativement aux différentes phases de la machine. Ainsi, pour trois bobines 28 successives, la sortie de la première bobine 28 est connectée à une des phases, par exemple la phase U, la sortie de la deuxième bobine 28 est connectée à une autre phase, par exemple la phase V, et la sortie de la troisième bobine 28 est connectée à la dernière phase W et ainsi de suite pour l'ensemble des bobines du stator 10. Les références Ui correspondent ainsi aux sorties des bobines i connectées à la phase U, les références Vj correspondent aux sorties des bobines j connectées à la phase V tandis que les références Wk correspondent aux sorties des bobines k connectées à la phase W. On note que le pas angulaire PA entre les bobines 28 appartenant à une même phase est constant (cf figure 5b). On entend par pas angulaire PA, l'angle de séparation entre deux sorties de bobines 28 consécutives d'une même phase. Le pas angulaire peut également être constant d'une phase à l'autre. Pour chaque phase, ce pas angulaire est égal à 360 divisé par le nombre de bobines pour ladite phase, soit en l'occurrence avec un nombre identique de cinq bobines pour chacune des phases 360/5=72 degrés.
En outre, le point neutre de la machine électrique est réalisé en connectant entre elles les entrées de M bobines successives en des points d'interconnexion, M étant le nombre de phases. Comme cela est bien visible sur les figures 4 et 6, les entrées des bobines 28 sont donc regroupées par groupe de trois en 15/3=5 points d'interconnexion N1 -N5. Comme visible sur la figure 6, les points d'interconnexion N1 -N5 pourront être constitués chacun physiquement par un tube métallique 60 auquel les entrées des bobines 28 sont reliées par groupe de trois. On note que les points d'interconnexion N1 - N5 pourront ou non être connectés entre eux.
Chaque phase U, V, W est associée à un faisceau FU, FV, FW de fils séparé en deux portions de faisceaux (FU1 , FU2); (FV1 , FV2) ou (FW1 , FW2). La séparation de chaque faisceau FU, FV, FW est effectuée dans une zone de séparation SU, SV, SW située à proximité, par exemple juste au-dessus, d'une connexion d'un ou plusieurs fils du faisceau avec une sortie d'une des bobines 28 appartenant à la phase correspondant audit faisceau FU, FV, FW. Par exemple, pour la phase U, depuis la zone de séparation SU (située à proximité de la sortie U3), les prochaines bobines 28 en suivant la circonférence du stator sont respectivement branchées par les sorties U2 et U4. Pour la phase U, deux bobines 28 successives en suivant la circonférence du stator sont respectivement branchées par les sorties U3 et U4, U4 et U5, U3 et U2 ou U2 et U1 . De même, pour la phase V, depuis la zone de séparation SV (située à proximité de la sortie V3), les prochaines bobines 28 en suivant la circonférence du stator sont respectivement branchées par les sorties V2 et V4. Pour la phase V, deux bobines 28 successives en suivant la circonférence du stator sont respectivement branchées par les sorties V3 et V4, V4 et V5, V3 et V2 ou V2 et V1 .
Enfin, pour la phase W, depuis la zone de séparation SW (située à proximité de la sortie W3), les prochaines bobines 28 en suivant la circonférence du stator sont respectivement branchées par les sorties W2 et W4. Pour la phase W, deux bobines 28 successives en suivant la circonférence du stator sont respectivement branchées par les sorties W3 et W4, W4 et W5, W3 et W2 ou W2 et W1 .
Les portions de faisceaux parcourent une partie de la circonférence du stator suivant deux sens opposés pour relier les sorties Ui, Vj, ou Wk des bobines 28 formant une même phase. Le nombre de fils de chaque portion de faisceau est réduit du nombre de fils en parallèle dans une bobine après chaque connexion avec une sortie Ui, Vj, Wk d'une bobine 28 lorsqu'on se déplace de la zone de séparation SU, SV, SW vers une dernière bobine 28 reliée par sa sortie à la portion de faisceau correspondante. Par exemple, si la bobine 28 est formée à partir d'un fil comme c'est le cas sur les figures 5a et 5b, le nombre de fils de la portion de faisceau diminue de un après chaque connexion avec une sortie de bobine. Dans le cas où la bobine 28 est formée à partir de trois fils en parallèle, le nombre de fils dans la portion de faisceau diminue de trois après chaque connexion avec une sortie de bobine. Chaque portion de faisceau FU1 , FU2; FV1 , FV2; FW1 , FW2 comporte au niveau de la zone de séparation SU, SV, SW un nombre de fils égal au nombre de fils du faisceau FU, FV, FW moins le nombre de fils en parallèle dans une bobine, le tout étant divisé par deux. En effet, du fait qu'en parcourant le stator à partir des zones de séparations SU, SV, SW suivant les deux sens opposées, on compte un nombre de bobine égal, le nombre de fils entre les deux portions (FU1 , FU2), (FV1 , FV2), (FW1 , FW2) est égal.
Comme cela est représenté sur les figures 5a et 5b, pour le stator 10 ayant trois phases formées chacune par cinq bobines 28 formée chacune par un fil, le faisceau FU de la phase U, qui comporte cinq fils, présente un fil connecté à une sortie U3 d'une bobine 28. Ce faisceau FU est subdivisé en deux portions de faisceau FU1 , FU2 dans une zone de séparation SU située à proximité de la connexion avec la sortie U3. Chaque portion de faisceau FU1 , FU2 comporte chacune deux fils puis un fil après la connexion avec une sortie U2, U4 d'une des bobines. Les derniers fils de chaque portion de faisceau FU1 , FU2 sont connectés respectivement aux sorties U1 et U5 des dernières bobines 28. Dans le cas où le nombre de bobines 28 formant une phase est pair, la séparation du faisceau FU, FV, FW sera effectuée dans la zone située à proximité de la connexion avec une des bobines de la phase, le nombre de fils de chaque portion de faisceau étant alors différent.
En outre, des gaines isolantes 40 protégeant les fils de chaque portion de faisceau FU1 , FU2; FV1 , FV2; FW1 , FW2 s'étendent entre les sorties Ui, Vj, Wk de deux bobines 28 successives appartenant à la même phase U, V, W. Pour un ensemble de gaines 40 correspondant à une même portion de faisceau FU1 , FU2; FV1 , FV2; FW1 , FW2, chaque gaine 40 protège un nombre de fils différent. Ce nombre de fils diminue en effet du nombre de fils en parallèle dans une bobine entre deux gaines 40 adjacentes lorsqu'on se déplace de la zone de séparation SU, SV, SW vers la gaine de la portion de faisceau correspondante la plus éloignée de la zone de séparation SU, SV, SW. Cette caractéristique est liée à la configuration de connexion des fils des portions de faisceau FU1 , FU2; FV1 , FV2; FW1 , FW2 précédemment décrite. En outre, le pas angulaire PA entre les bobines étant constant dans une même phase ainsi que d'une phase à l'autre, les gaines isolantes 40 présentent toute une longueur sensiblement identique les unes par rapport aux autres.
Ainsi, comme montré sur les figures 5a et 5b, on fait appel à quatre gaines isolantes 40 pour protéger les fils des deux portions de faisceau FU1 , FU2, soit deux gaines 40 par portion de faisceau FU1 , FU2. Pour chaque portion de faisceau FU1 , FU2, la gaine isolante 40 la plus proche de la zone de séparation SU protège deux fils tandis que la gaine isolante 40 la plus éloignée de la zone de séparation SU protège un fil unique. On remarque que ces quatre gaines 40 visibles sur la figure 7 parcourent sensiblement un même chemin circonférentiel en sorte qu'elles ont toutes une longueur sensiblement identique. Il en est de même pour les gaines isolantes 40 protégeant les fils des portions de faisceaux FV1 , FV2; FW1 , FW2 correspondant aux autres phases V, W.
On notera que les extrémités des faisceaux FU, FV, FW sont gainées par des tubes 70 visibles sur les figures 2, 5a, et 5b aptes à se contracter autour des fils par chauffage. On forme ainsi des extrémités saillantes reliées à un connecteur 71 (cf. figure 2) destiné à être mis en relation avec un onduleur, comme décrit par exemple dans le document EP0831580 auquel on se reportera pour plus de détails. Comme cela est bien visible sur les figures 3 et 6 notamment, l'élément isolant 20 portant les systèmes d'ancrage 35 comporte également de préférence des systèmes de maintien 45 des gaines isolantes 40. Ces systèmes 45 sont intercalés entre deux systèmes d'ancrage 35 successifs. Pour maintenir les gaines isolantes 40, chaque système de maintien 45 comporte une base 46 d'extension axiale et une languette 47 faisant saillie issue d'une face de la base 46 tournée vers l'extérieur du support 23.
Pour maintenir les gaines isolantes 40 en position, des fils de maintien 48 visibles sur la figure 7 viennent en appui contre une face de la languette 47. Les fils de maintien 48 sont également en appui contre les faces latérales de la base 46 et passent au-dessus des gaines isolantes 40 et en dessous de chignons du stator de manière à maintenir les gaines isolantes 40 plaquées contre les chignons des bobines 28. Pour un compresseur, le rotor du moteur électrique du compresseur (non représenté) est à aimants permanents positionnés à l'intérieur du rotor. Les aimants pourront être d'orientation radiale. Dans ce mode de réalisation, le rotor comporte un corps sous la forme d'un paquet de tôles doté de logements, qui pourront être d'orientation radiale pour logement des aimants. Le corps du rotor pourra comporter une âme centrale, et des dents s'étendant radialement par rapport à l'âme. Ces dents comportent chacune deux rebords s'étendant circonférentiellement de part et d'autre des dents. Des aimants permanents sont positionnés à l'intérieur de logements délimités chacun par deux faces en regard l'une de l'autre de deux dents adjacentes, une face externe de l'âme du rotor, et les rebords des dents.
Ainsi qu'il ressort des dessins et notamment des figures 2 et 3, le positionnement d'évidements 50 ménagés dans la périphérie externe du corps 1 1 du stator ainsi que dans les éléments isolants 20 correspond au positionnement angulaire d'ouvertures ménagées dans des flasques de fermeture de la machine assurant le passage des tirants d'assemblage, lesdits flasques appartenant à un boîtier portant le corps du stator.
Plus précisément, ce boîtier comporte, de manière connue, trois parties à savoir une partie intermédiaire portant la paroi annulaire 12 du stator 10 de la machine électrique, telle qu'un compresseur de fluide réfrigérant de climatiseur de véhicule automobile, et deux flasques disposés de part et d'autre de la partie intermédiaire. L'un des flasques de forme creuse porte le «scroll» du compresseur, tandis que l'autre flasque porte l'électronique de commande du compresseur. Les tirants, par exemple en forme de vis, relient entre eux les flasques en traversant les évidements 50 du stator par exemple monté à frettage via sa paroi annulaire 12 dans la partie intermédiaire prise en sandwich entre les flasques.
Avantageusement, la partie intermédiaire comporte des secteurs de frettage pour le montage à frettage de la paroi 12 du stator 10. Entre deux secteurs de frettage consécutifs il existe des passages. Ces passages sont en regard des évidements 50. La périphérie externe de la paroi 12 est en contact de frettage avec la périphérie interne des secteurs de frettage. Les passages sont en regard des évidements 50 de sorte que les tirants traversent les passages sans interférer avec la partie intermédiaire du boîtier. La partie intermédiaire pourra être remplie de liquide réfrigérant. Ce fluide pourra traverser aisément les espaces entre les bobines 28 et les gaines isolantes, compte tenu de l'encombrement radial réduit des gaines isolantes 40 sur la face d'extrémité du stator 10.
Le paquet de tôle du rotor pourra être solidaire d'un arbre lui-même solidaire de la spirale mobile -movable scroll en Anglais- du compresseur. Dans ce type de réalisation, le compresseur est dépourvu de poulie et l'électronique de commande du moteur électrique est solidaire d'un flasque en étant intégrée au compresseur.
Alternativement, pour isoler les bobines 28 du paquet de tôle du stator 10, on utilise des supports isolants individuels non représentés destinés à être enfilés autour d'une dent 13 du stator 10 via une ouverture managée dans chaque support isolant. Les bobines 28 sont enroulées autour des supports isolants le cas échéant avant de positionner les supports isolants individuels autour des dents 13 du stator 10.

Claims

REVENDICATIONS
1 . Stator (10) pour machine électrique tournante polyphasée comportant un corps (1 1 ) muni d'une paroi externe (12) et de dents (13) s'étendant depuis une périphérie interne de ladite paroi externe (12) vers l'intérieur du stator (10),
un ensemble de bobines (28) enroulées autour des dents (13) ayant chacune une entrée et une sortie comportant un seul ou plusieurs fils en parallèle, l'entrée étant destinée à être interconnectée avec d'autres entrées pour constituer le point neutre de la machine et la sortie étant destinée à être interconnectée avec d'autres sorties pour former une des phases (U, V, W) de la machine et,
chaque phase (U, V, W) est associée à un faisceau de fils (FU, FV, FW), ce faisceau (FU, FV, FW) étant séparé en deux portions de faisceau (FU1 , FU2, FV1 , FV2, FW1 , FW2), ces deux portions de faisceau parcourant une partie de la circonférence du stator (10) suivant deux sens opposés pour relier les sorties des bobines (28) formant une même phase, et
un ensemble de gaines isolantes (40) protégeant les fils de chaque portion de faisceau (FU1 , FU2, FV1 , FV2, FW1 , FW2),
caractérisé en ce que
la séparation de chaque faisceau (FU, FV, FW) est effectuée dans une zone de séparation (SU, SV, SW) située à proximité d'une connexion d'un ou plusieurs fils du faisceau (FU, FV, FW) avec une sortie (U3, V3, W3) d'une des bobines (28) appartenant à la phase correspondant audit faisceau, en sorte que les gaines isolantes (40) s'étendant suivant la circonférence du stator (10) depuis la zone de séparation (SU, SV, SW) à une sortie (U2, U4, V2, V4, W2, W4) d'une prochaine bobine (28) d'une phase (U ,V, W) ou entre les sorties de deux bobines (28) successives de ladite phase présentent toutes une longueur sensiblement identique les unes par rapport aux autres.
2. Stator selon la revendication 1 , caractérisé en ce que pour un ensemble de gaines (40) correspondant à une même portion de faisceau
(FU1 , FU2; FV1 , FV2; FW1 , FW2), chaque gaine (40) protège un nombre de fils différent, ce nombre de fils diminuant du nombre de fils en parallèle dans une bobine entre deux gaines adjacentes lorsqu'on se déplace de la zone de séparation (SU, SV, SW) vers la gaine de la portion de faisceau la plus éloignée de la zone de séparation.
3. Stator selon la revendication 1 ou 2, caractérisé en ce que le point neutre est réalisé en connectant entre elles les entrées de M bobines successives en des points d'interconnexion (N1 -N5), M étant le nombre de phases de la machine électrique.
4. Stator selon la revendication 3, caractérisé en ce que les points d'interconnexion (N1 -N5) sont connectés entre eux.
5. Stator selon l'une des revendications 1 à 4, caractérisé en ce qu'il comporte deux éléments isolants (20) plaqués de part et d'autre du stator
(10) comportant chacun un support (23) destiné à être plaqué contre la paroi (12) du stator (10), et des bras (24) issus d'une périphérie interne du support (23) destinés à être plaqués contre les dents (13) du stator (10), les bobines (28) étant enroulées autour de l'ensemble formé par les dents (13) du stator et les bras (24) des éléments isolants.
6. Stator selon la revendication 5, caractérisé en ce qu'un des éléments isolants comporte des systèmes d'ancrage aptes à maintenir une entrée ou une sortie des bobines lors d'une opération de bobinage.
7. Stator selon la revendication 6, caractérisé en ce que chaque système d'ancrage (35) est formé par un crochet tourné du côté d'une périphérie externe du support (23).
8. Stator selon l'une des revendications 5 à 7, caractérisé en ce que un des éléments isolants (20) comporte des systèmes de maintien (45) des gaines isolantes (40).
9. Stator selon la revendication 8, caractérisé en ce que chaque système de maintien (45) des gaines isolantes est formé par une base (46) d'extension axiale et une languette (47) faisant saillie issue d'une face de la base (46) tournée vers l'extérieur du support.
10. Stator selon l'une des revendications 1 à 9, caractérisé en ce qu'il comporte en outre des isolants d'encoche (33) plaqués contre des parois internes d'encoches (15) délimitées par les dents (13) du stator.
1 1 . Machine électrique tournante à 2p pôles rotor et M phases munie d'un stator (10) selon l'une des revendications précédentes comportant M fois p bobines.
PCT/FR2014/050969 2013-04-23 2014-04-22 Stator de machine electrique muni de gaines d'isolation des fils relies aux bobines ayant une longueur optimisee et machine electrique correspondante WO2014174201A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016509526A JP2016523070A (ja) 2013-04-23 2014-04-22 コイルに接続された配線の絶縁に最適な長さを有する外装が設けられた電気機械のステータ、および対応する電気機械
CN201490000609.2U CN205377470U (zh) 2013-04-23 2014-04-22 设置有具有用于连接至线圈的电线的绝缘优化长度的护套的电机的定子,以及相应电机
EP14726691.0A EP2989712A2 (fr) 2013-04-23 2014-04-22 Stator de machine electrique muni de gaines d'isolation des fils relies aux bobines ayant une longueur optimisee et machine electrique correspondante
US14/777,290 US20160036280A1 (en) 2013-04-23 2014-04-22 Stator of an electrical machine provided with sheaths with an optimised length for insulation of the wires which are connected to the coils, and corresponding electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1353682 2013-04-23
FR1353682A FR3004866B1 (fr) 2013-04-23 2013-04-23 Stator de machine electrique muni de gaines d'isolation des fils relies aux bobines ayant une longueur optimisee et machine electrique correspondante

Publications (2)

Publication Number Publication Date
WO2014174201A2 true WO2014174201A2 (fr) 2014-10-30
WO2014174201A3 WO2014174201A3 (fr) 2015-08-06

Family

ID=48782425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050969 WO2014174201A2 (fr) 2013-04-23 2014-04-22 Stator de machine electrique muni de gaines d'isolation des fils relies aux bobines ayant une longueur optimisee et machine electrique correspondante

Country Status (6)

Country Link
US (1) US20160036280A1 (fr)
EP (1) EP2989712A2 (fr)
JP (1) JP2016523070A (fr)
CN (1) CN205377470U (fr)
FR (1) FR3004866B1 (fr)
WO (1) WO2014174201A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2985354T3 (pl) * 2014-11-10 2017-04-28 Heraeus Deutschland Gmbh & Co Kg Sposób usuwania metalu szlachetnego z kształtek katalizatora zawierających metal szlachetny
JP6613986B2 (ja) * 2016-03-25 2019-12-04 株式会社豊田自動織機 電動式流体機械
CN107302270A (zh) * 2016-04-15 2017-10-27 舍弗勒技术股份两合公司 发电机定子和发电机
FR3056842B1 (fr) * 2016-09-28 2018-10-12 Valeo Equipements Electriques Moteur Machine electrique tournante munie d'un interconnecteur a configuration amelioree
JP6729651B2 (ja) * 2018-09-18 2020-07-22 株式会社富士通ゼネラル モータ及び圧縮機
CN112787449B (zh) * 2019-11-04 2022-06-21 上海海立电器有限公司 定子组件和永磁同步电机
EP3907857B1 (fr) * 2020-05-06 2024-03-13 ABB Schweiz AG Machine électrique

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287446A (en) * 1979-06-27 1981-09-01 Amp Incorporated Stator for stepper motor
JP3559233B2 (ja) * 2000-09-12 2004-08-25 三菱電機株式会社 回転電機の固定子
JP3672846B2 (ja) * 2001-05-29 2005-07-20 三菱電機株式会社 車両用交流発電機
JP2007129847A (ja) * 2005-11-04 2007-05-24 Denso Corp 電動機およびそれを用いた燃料ポンプ
JP5019558B2 (ja) * 2006-03-22 2012-09-05 古河電気工業株式会社 集中配電部品
JP2009235582A (ja) * 2006-07-19 2009-10-15 Ni Teijin Shoji Co Ltd モーター用銅線保護スリーブ
DE102010042677A1 (de) * 2010-08-17 2012-02-23 Robert Bosch Gmbh Elektrische Maschine
US8847457B2 (en) * 2011-04-22 2014-09-30 Honda Motor Co., Ltd. Rotary electric machine and method of manufacturing same

Also Published As

Publication number Publication date
FR3004866B1 (fr) 2015-05-22
JP2016523070A (ja) 2016-08-04
FR3004866A1 (fr) 2014-10-24
WO2014174201A3 (fr) 2015-08-06
CN205377470U (zh) 2016-07-06
EP2989712A2 (fr) 2016-03-02
US20160036280A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
EP2989712A2 (fr) Stator de machine electrique muni de gaines d'isolation des fils relies aux bobines ayant une longueur optimisee et machine electrique correspondante
EP2859648A2 (fr) Element isolant pour stator de machine electrique
FR3093386A1 (fr) Stator de machine électrique tournante
FR3054746A1 (fr) Machine electrique tournante munie d'un interconnecteur dote de bequilles d'appui
WO2014174200A2 (fr) Élément isolant muni de crochets de maintien de fils de bobinage d'un stator de machine électrique et stator correspondant
EP2795765B1 (fr) Rotor a poles saillants comportant un dispositif d'isolation de bobinages et dispositif d'isolation de bobinages associe
WO2011135268A1 (fr) Phase de moteur homopolaire.
FR3051295A1 (fr) Machine electrique tournante a puissance augmentee
FR3093384A1 (fr) Stator de machine électrique tournante
FR2995472A1 (fr) Interconnecteur pour stator de machine electrique, cache isolant, et stator de machine electrique correspondants
FR3054744A1 (fr) Machine electrique tournante munie d'un interconnecteur auto-denudant
EP2859649A2 (fr) Element pour le maintien de fils de bobinage d'un stator de machine electrique
EP3535833A1 (fr) Stator de machine électrique tournante muni de bobines à enroulement orthocyclique
FR3093385A1 (fr) Stator de machine électrique tournante
FR3058283A1 (fr) Stator de machine electrique tournante muni d'un interconnecteur a positionnement optimum
WO2019020490A1 (fr) Rotor de machine électrique tournante muni d'une couche de résine dans les cavités d'aimants permanents
FR2984625A1 (fr) Rotor a poles saillants comportant des flasques de maintien des chignons de bobinages et flasques de maintien associes
EP3535834B1 (fr) Stator de machine électrique tournante muni d'un interconnecteur à configuration ameliorée
FR3058281B1 (fr) Stator de machine electrique tournante muni d'un interconnecteur encliquete
FR3057411A1 (fr) Rotor segmente pour machine asynchrone et machine asynchrone comportant un tel rotor segmente
WO2015145008A1 (fr) Machine électrique tournante a couplage de phases optimise et procédé de réalisation de bobinage correspondant
WO2024023264A9 (fr) Stator pour une machine électrique tournante
FR2984630A1 (fr) Rotor a poles saillants comportant des flasques de maintien des chignons de bobinages et flasques de maintien associes
WO2021250338A1 (fr) Stator de machine électrique tournante
FR2995738A1 (fr) Stator pour machine electrique tournante muni d'un circuit de refroidissement et machine electrique tournante correspondante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14726691

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 14777290

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016509526

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014726691

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014726691

Country of ref document: EP