WO2014173176A1 - 利用电源波形传输信号的方法 - Google Patents

利用电源波形传输信号的方法 Download PDF

Info

Publication number
WO2014173176A1
WO2014173176A1 PCT/CN2014/000337 CN2014000337W WO2014173176A1 WO 2014173176 A1 WO2014173176 A1 WO 2014173176A1 CN 2014000337 W CN2014000337 W CN 2014000337W WO 2014173176 A1 WO2014173176 A1 WO 2014173176A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
input interface
switch
load
module
Prior art date
Application number
PCT/CN2014/000337
Other languages
English (en)
French (fr)
Inventor
林铭锋
Original Assignee
东林科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东林科技股份有限公司 filed Critical 东林科技股份有限公司
Priority to JP2016509272A priority Critical patent/JP2016522607A/ja
Publication of WO2014173176A1 publication Critical patent/WO2014173176A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5412Methods of transmitting or receiving signals via power distribution lines by modofying wave form of the power source

Definitions

  • the present invention relates to signal transmission, and more particularly to a method of transmitting a signal using a power supply waveform. Background technique
  • the indoor wiring of a building is to reserve two wires for connecting the switch between the electrical box on the ceiling and the electrical box on the wall.
  • electrical equipment such as lamps or fans
  • install the electrical equipment on the ceiling and connect one end of the mains to the electrical equipment.
  • the other end of the mains is connected to the switch through a reserved wire.
  • the wireless transmission mode is to add a wireless receiver and a transmitter to the control panel of the LED module and the wall, and transmit the control signal to control the LED module by wireless transmission.
  • the carrier transmission method uses a modulator to convert the control signal into a frequency modulation signal or an amplitude modulation signal, and uses the power line carrier to control the light emitting diode module after the demodulator also becomes the original control signal.
  • a method for transmitting a signal by using a power waveform according to the present invention is applied to a load control system, the load control system includes a phase angle control module and a driving module electrically connected to each other, and the phase angle control module is electrically connected An AC power supply and an input interface, the drive module is electrically connected to the load, and the method includes the following steps:
  • the phase angle control module detects the state of the input interface
  • the phase angle control module changes the waveform of the alternating current power source according to the state detected in step A, so that one half of the waveform of the waveform of the alternating current power source has a delayed conduction angle and then outputs;
  • the driving module receives the electric energy output by the phase angle control module, and after determining that the delayed conduction angle exists in the waveform of the electric energy output by the phase angle control module, determining the state of the input interface according to the delayed conduction angle ; as well as
  • the driver module outputs a pair of electrical signals corresponding to the state of the input interface to the load according to the state of the input interface determined in step C.
  • the object of the present invention and solving the technical problems thereof can be further achieved by the following technical measures.
  • the method for transmitting a signal by using a power waveform wherein the input interface includes a switch, and the switch is in a short-circuit state when pressed, and is in an open state when not pressed.
  • the switch is pressed to make the switch
  • the open state changes to a short circuit state
  • step C it is determined whether the switch is pressed according to the presence or absence of the delayed conduction angle.
  • step A the input interface includes a plurality of the switches
  • step B the angle of the generated conduction angle is correspondingly pressed.
  • step C the angle of detecting the delayed conduction angle is further included, and the corresponding switch is determined according to the angle of the delayed conduction angle; in step D, the corresponding step in the step C is The corresponding electrical signal of the switch is transmitted to the load.
  • step B the angle of the delayed conduction angle is The resistance value of the variable resistor should be determined; in step C, the resistance value of the variable resistor is determined according to the angle of the delayed conduction angle; in step D, an electrical signal corresponding to the resistance value of the variable resistor is transmitted to the load.
  • the angle of the delayed conduction angle is greater than zero.
  • the foregoing method for transmitting a signal by using a power waveform wherein the phase angle control module and the input interface are located at a control end, and the driving module and the load are located at a load end.
  • the foregoing method for transmitting a signal using a power supply waveform wherein the maximum angle of the delayed conduction angle is 90 degrees.
  • the present invention has significant advantages and advantageous effects over the prior art.
  • the method for transmitting signals by using the power waveform of the present invention has at least the following advantages and beneficial effects: the method borrowed by the present invention can transmit signals by using the wiring of the power supply loop, without additionally increasing the wiring of the control circuit, effectively reducing The cost of wiring.
  • Figure 1 is a block diagram of an illumination system in accordance with a first preferred embodiment of the present invention.
  • FIG. 2 is a block diagram of a lighting system in accordance with a second preferred embodiment of the present invention.
  • FIG. 3 is a block diagram of an illumination system in accordance with a third preferred embodiment of the present invention.
  • Figure 4 is a block diagram of an illumination system in accordance with a fourth preferred embodiment of the present invention.
  • Figure 5 is a block diagram of another embodiment of the illumination system of the first preferred embodiment.
  • Figure 6 is a schematic illustration of another embodiment of a lighting system of the second preferred embodiment.
  • Figure 7 is a schematic illustration of another embodiment of a lighting system of a third preferred embodiment.
  • Figure 8 is a schematic illustration of another embodiment of a lighting system of a fourth preferred embodiment.
  • Figure 9 is a block diagram of an illumination system in accordance with a fifth preferred embodiment of the present invention.
  • LED lighting system 10 LED module
  • Phase signal transmission device 16 Phase angle control module
  • Control unit 184a phase angle detection circuit
  • LED lighting system 24 Input interface
  • LED lighting system 30 Toggle switch
  • Processor 364 Phase Angle Detection Circuit
  • the following is a load control system exemplified by an LED illumination system illustrating the method of the present invention for transmitting signals using a power waveform.
  • the LED lighting system 1 of the first preferred embodiment of the present invention includes a load, an input interface 12, and a phase signal transmitting device 14 as an example of the LED module 10.
  • the LED module 10 has a plurality of light emitting diodes for receiving electrical signals to produce bright light to provide illumination.
  • the input interface 12 includes a switch 122 that is a normally open push switch that is shorted when the user presses.
  • the phase signal transmitting device 14 includes a phase angle control module 16 and a drive module 18.
  • the phase angle control module 16 is electrically connected to the AC power source S and the switch 122.
  • the phase angle control module 16 is configured to detect the state of the switch 122, and when the switch 122 is pressed and turned on, the phase angle is
  • the control module 16 changes the waveform of the AC power source S so that the positive half-wave period of the waveform of the AC power source S generates a delayed conduction angle and outputs the signal.
  • the switch 122 automatically resets the switch 122.
  • the open state, and the phase angle control module 16 does not change the waveform of the AC power source S, that is, the waveform outputted by the phase angle control module 16 does not have the delayed conduction angle.
  • the angle of the delayed conduction angle is preferably less than or equal to 90 degrees to reduce the harmonics of the AC power source and reduce the degree of power factor reduction.
  • the drive module 18 includes a power conversion circuit 182 and a control unit 184 that are electrically connected to each other.
  • the power conversion circuit 182 is electrically connected to the phase angle control module 16 and the LED module 10 for receiving the power output by the phase angle control module 16 and converting the power required by the LED module 10 into power.
  • the power conversion circuit 182 can controllably change the on and off states and brightness of the LED module 10.
  • the power conversion circuit 182 is designed based on a Pulse Width Modulation (PWM) circuit, and the power supplied to the LED module 10 is adjusted by pulse width modulation. The clock width of the signal.
  • PWM Pulse Width Modulation
  • the power conversion circuit 182 can also be used to adjust the size of the electrical signal or other circuit design for adjusting the electrical signal.
  • the control unit 184 includes a phase angle detecting circuit 184a and a processor 184b.
  • Phase angle detection The circuit 184 is electrically connected to the phase angle control module 16 for detecting whether the waveform of the power output by the phase angle control module 16 has the delayed conduction angle and detecting the angle of the delayed conduction angle, and detecting The result is passed to the processor 184b.
  • the processor 184b has a plurality of control modes built therein. The control modes include a full illumination mode, a preset illumination mode and a brightness adjustment mode, and control the output of the power conversion circuit 182 in one of the control modes.
  • the signal is used to drive the LED module 10 to generate bright light
  • the state of the switch 122 is determined by the result of detecting the delayed conduction angle by the phase angle detecting circuit 184a, and the L is the basis for the control mode switching.
  • the full-bright illumination mode is a light that controls the power conversion circuit 182 to drive the LED module 10 to generate a maximum brightness value at a rated power.
  • the preset illumination mode is to control the power conversion circuit 182 to drive the LED module 10 to generate a predetermined brightness value.
  • the preset brightness value is initially set to half of the maximum brightness value, and The preset brightness value can be updated in the brightness adjustment mode.
  • the brightness adjustment mode is to control the light conversion generated by the power conversion circuit 182 to drive the LED module 10 to repeatedly change between a first brightness value and a second brightness value until the processor 184b determines that the state of the switch 122 changes. Stop controlling the change of the brightness, and record the brightness value of the brightness generated by the LED module 10, and replace the recorded brightness value with the original preset brightness value of the preset illumination mode, and drive the LED module 10 to generate Bright light with a new preset brightness value.
  • the first brightness value is a maximum brightness value
  • the second brightness value is a minimum brightness value, whereby, in the brightness adjustment mode, the brightness of the LED module 10 is at a maximum brightness and a minimum brightness. Change between.
  • the delay conduction angle exists in every period of the waveform of the electric energy output by the phase angle control module 16, so the processor 184b can according to the number of cycles having the delayed conduction angle.
  • the length of time during which the switch 122 is depressed is calculated to control the mode switching.
  • the phase angle control module 16 In the initial state (when the AC power source S is just turned on) and the switch 122 is not pressed, the phase angle control module 16 does not change the waveform of the AC power source S, and the waveform detected by the phase angle detecting circuit 184a does not have the waveform. The conduction angle is delayed. At this time, the processor 184b controls the power conversion circuit 182 to block the power supplied to the LED module 10, so that the LED module 10 is in an extinguished state.
  • the phase angle detecting circuit 184a detects that the waveform of the electric energy output by the phase angle control module 16 has the delayed conduction angle, and the processor 184b determines that the switch 122 is pressed. Time, and the corresponding control.
  • the processor 184b switches to the full-bright illumination mode to cause the LED module 10 to generate bright light having the maximum brightness value.
  • the processor 184b Switching to the preset illumination mode causes the LED module to emit a bright light having the preset brightness value.
  • the processor 184b controls the power conversion circuit 182 to block the power supplied to the LED module 10, so that the LED module 10 is in an extinguished state.
  • the processor 184b switches to the brightness adjustment mode for the user to change the set preset brightness value.
  • the switch 122 and the phase angle control module 16 can be installed on the wall of the building (ie, installed at a control end), and The driving module 18 and the LED module 10 are installed on a wall surface or a ceiling of the building (that is, mounted on a load end).
  • the phase angle control module 16 and the drive module 18 need only be connected by two wires connected to the AC power source S.
  • the waveform corresponding to the state of the switch 122 can be transmitted by using the original wiring of the building.
  • the module 18 is driven, and the driving module 18 can determine the state of the switch 122 and send a corresponding electrical signal to control the LED module 10.
  • the foregoing mounting method is only an application example, and is not limited thereto, and the position of each component can be adjusted according to actual needs.
  • the LED module 10 can include a plurality of first LEDs and a plurality of second LEDs, and the color of the first LEDs is different from the color of the second LEDs.
  • the light colors of the first light emitting diodes are cold light colors (such as white light, blue light, etc.)
  • the light colors of the second light emitting diodes are warm light colors (such as yellow light, red light, etc.).
  • the power conversion circuit 182 of the driving module 18 can respectively control the brightness ratios of the first light emitting diodes and the second light emitting diodes, and the brightness ratio refers to the brightness generated by the first and second light emitting diodes.
  • the ratio of the brightness value to the maximum brightness value or the preset brightness value can be adjusted to adjust the color temperature of the light generated by the LED module 10 by using the ratio of the brightness ratios of the first light emitting diodes to the second light emitting diodes.
  • the full-brightness illumination mode includes a first brightness ratio information, and the first brightness ratio information is a brightness ratio of the first and second light-emitting diodes when the full-light illumination mode is recorded.
  • the preset illumination mode includes a second brightness ratio information, and the second brightness ratio information is a brightness ratio of the first and second light emitting diodes when the preset illumination mode is recorded.
  • the control mode of the processor 184b further includes a chromaticity adjustment mode for adjusting the first brightness ratio information or the second brightness ratio information.
  • a chromaticity adjustment mode for adjusting the first brightness ratio information or the second brightness ratio information.
  • the chromaticity adjustment mode is to control the power conversion circuit 182 to drive the LED module 10 to generate bright light, and repeatedly change the LED module 10 if the brightness value (ie, the maximum brightness value or the preset brightness value) is unchanged.
  • the brightness ratios of the first light-emitting diodes and the second light-emitting diodes are controlled until the processor 184b determines that the state of the switch 122 is changed, and stops controlling the change of the brightness ratios of the first and second light-emitting diodes, and records The brightness ratio of the first and second LEDs is replaced, and the recorded brightness ratio is substituted for the first brightness ratio information of the full-light illumination mode or the second brightness ratio information of the preset illumination mode is replaced, and the The first and second light emitting diodes produce bright light having a new brightness ratio.
  • the user only needs to press the switch 122 for the length of time to switch the brightness, and adjust the brightness or adjust the chromaticity.
  • FIG. 2 there is shown a block diagram of a lighting system in accordance with a second preferred embodiment of the present invention.
  • the LED lighting system 2 of the second preferred embodiment of the present invention is based on the structure of the first embodiment described above, and a switch 20 is additionally provided to electrically connect the AC power source S and the phase angle control module 16 respectively.
  • the switch 20 is for turning on and off the light of the LED module 10.
  • the processor 184b of the driving module 18 when the switch 20 is turned on, the processor 184b of the driving module 18 operates in the full-bright illumination mode to make the brightness of the LED module 10 the brightest.
  • the length of the pressing time of the switch 122 it is possible to switch between the preset illumination mode and the full-illumination mode, and also switch to the brightness adjustment mode or the chromaticity adjustment mode.
  • FIG. 3 there is shown a block diagram of a lighting system in accordance with a third preferred embodiment of the present invention.
  • the LED illumination system 3 of the third preferred embodiment of the present invention is based on the structure of the second embodiment described above, except that the input interface 22 of the present embodiment includes two switches 222 and 224, and the two switches 222.
  • the 224 is electrically connected to the phase angle control module 16.
  • the phase angle control module 16 When the switches 222 and 224 are pressed to be in a short-circuit state, the phase angle control module 16 generates the delayed conduction angle by generating a positive half-wave period of the waveform of the AC power source S, and presses each of the switches 222 and 224.
  • the resulting angles of the delayed conduction angles are different.
  • the processor 184b can use the angle of the delayed conduction angle detected by the phase angle detecting circuit 184a to respond to the pressing states of the switches 222 and 224 to switch between the control modes.
  • the pressing time is less than the set time
  • long pressing the switch 222 ie, the pressing time is greater than the setting
  • the processor 184b can also have a plurality of preset chromaticities, each of which corresponds to a brightness ratio of the first and second LEDs. In the full-light illumination mode or the preset illumination mode, short-pressing the switch 224 to switch one of the preset chromaticities, and replacing the preset chromaticity with the previously stored first brightness ratio information or the second Luminance ratio information, and drive the first, first The two light emitting diodes produce a bright light with a new brightness ratio.
  • the chromaticity adjustment mode is switched to perform chromaticity adjustment of the LED module 10.
  • FIG. 4 there is shown a block diagram of a lighting system in accordance with a fourth preferred embodiment of the present invention.
  • the LED illumination system 4 of the fourth preferred embodiment of the present invention has a structure substantially the same as that of the second embodiment described above, except that the input interface 24 of the present embodiment includes three switches 242, 244, 246.
  • the switches 242, 244, 246 are electrically connected to the phase angle control module 16. When the switches 242, 244, 246 are pressed, the phase angle control module 16 generates the delayed conduction angle corresponding to a particular angle of each of the switches 242, 244, 246.
  • the LED illumination system 4 of the present embodiment includes three sets of driving modules 262, 264, and 266 and LED modules 282, 284, and 286, and each of the driving modules 262, 264, and 266 correspondingly determines the delay of a specific angle.
  • the conduction angles enable the driving modules 262, 264, and 266 to detect the pressing states of the switches 242, 244, and 246, and control the LED modules 282, 284, and 286.
  • the driving module 262 detects the corresponding angle of the delayed conduction angle and calculates the pressing time to control the LED module 282.
  • the number of the switches of the input interface 24 in this embodiment is not limited to three, and may be set to three or more, and the same number of driving modules and LED modules are correspondingly disposed on the load end, which can also be achieved at the control end. The purpose of manipulating multiple sets of LED modules.
  • the LED lighting system of the first embodiment described above can also be designed as a connection manner as shown in FIG. 5, and two sets of the phase angle control module 16 and the switch 122 are disposed in the building. Different positions in the device, whereby the user can control the LED module 10 at different positions.
  • the LED lighting systems of the second, third, and fourth embodiments can also be respectively designed as the connection modes shown in FIG. 6 to FIG. 8, and the two sets of three-way switches 29 and the phase angle control module are respectively designed. 16 and the input interfaces 12, 22, 24 are located at different positions in the building, and the user can control the LED module at different positions.
  • the LED lighting system 5 of the fifth preferred embodiment of the present invention includes a changeover switch 30, an input interface 32, a phase angle control module 34, a drive module 36 and an LED module 38.
  • the input interface 32 includes a variable resistor 322, and the phase angle control module 34 is electrically connected to the variable resistor 322, and generates an angle corresponding to the resistance value of the variable resistor 322 according to the resistance value of the variable resistor 322. The delayed conduction angle.
  • the processor 362 of the driving module 36 calculates the resistance value of the variable resistor 322 according to the angle of the delayed conduction angle detected by the phase angle detecting circuit 364. And use the change in resistance value
  • the corresponding control power conversion circuit 366 outputs a corresponding electrical signal to the LED module 38 for control.
  • the brightness of the LED module 38 can be adjusted by using a change in the resistance value, or the chromaticity of the LED module 38 can be adjusted.
  • the LED illumination system of the above embodiments is merely a method for explaining the power waveform transmission signal of the present invention.
  • the present invention is also applicable to other load control systems, such as motor control.
  • the system uses a phase signal transmission device to transmit the state of the input interface of the control terminal to the load terminal to control the start, stop and rotation speed of the motor.
  • the present invention can also be applied to control the load of various electrical products such as bathroom heaters, exhaust fans, ceiling fans, and the like.
  • the phase signal transmission device composed of the phase angle control module and the driving module uses the phase of the input interface to pass the delayed conduction angle of the power supply waveform, and is transmitted from the control terminal to the load terminal to output the corresponding input interface state.
  • the electrical signal controls the load, that is, the signal is transmitted using the waveform of the AC power source.
  • the invention relates to a method for transmitting a signal by using a power waveform, which is applied to a load control system, the load control system includes a phase angle control module and a driving module, and the phase angle control module is electrically connected to the input interface, the method
  • the method includes the following steps: A.
  • the phase angle control module detects the state of the input interface; B. according to the state detected in step A, changing the waveform of an AC power source so that one half of the waveform has a delay guide After the corner angle is output; C.
  • the driving module receives the electric energy output by the phase angle control module, and after determining that the delayed conduction angle exists in the waveform of the electric energy outputted in the step B, determining the input according to the delayed conduction angle
  • the state of the interface D. According to the state of the input interface, output a pair of electrical signals that should be input to the state of the interface to a load.

Abstract

一种利用电源波形传输信号的方法,是应用于一负载控制系统,该负载控制系统包含有相角控制模块与驱动模块,该相角控制模块电性连接输入接口,该方法包括以下步骤:A.该相角控制模块侦测该输入接口的状态;B.依据步骤A中所侦测的状态,改变一交流电源的波形,使其波形的其中一半波周期具有一延迟导通角后输出;C.该驱动模块接收该相角控制模块输出的电能,并在判断步骤B中输出的电能的波形中具有该延迟导通角存在后,依据该延迟导通角判断该输入接口的状态;D.依据该输入接口的状态,输出一对应该输入接口的状态的电信号至一负载。

Description

利用电源波形传输信号的方法 技术领域
本发明与信号传输有关, 特别是涉及的一种利用电源波形传输信号的 方法。 背景技术
一般建筑物的室内配线方式是在天花板上的电气盒与壁面上的电气盒 之间预留两条供连接开关的电线。 在安装电器设备(如灯具或电扇等负载) 时, 将电器设备装设于天花板上, 且将市电的其中一端连接于电器设备,市 电的另一端通过预留的电线串接一开关, 再接回该电器设备上, 以形成一 个电源回路。 通过切换该开关, 即可控制电器设备的启闭。
随着科技的进步, 电器设备的功能愈来愈多, 以发光二极管照明系统 为例, 现今的发光二极管照明系统除了单纯的控制启闭外, 更具备有调整 亮度、 色度的功能, 因此, 除了原本的电源回路外, 也必须要有额外的控 制线路才能将控制信号由壁面上的控制面板传送到装设于天花板上的发光 二极管模块。
因此, 要装设具备有亮度、 色度的调整功能的发光二极管照明系统时, 则必须另外再配接控制线路, 利用控制线路传送控制信号, 以控制照明系 统的发光二极管模块。 然而, 额外配接控制线路, 将会使得房屋的修缮及 装潢施工成本增加。
另外有二种方式可在不额外配接控制线路的情况下传送控制信号, 其 一为无线传输, 其二为载波传输。 无线传输方式是在发光二极管模块及壁 面的控制面板分别加装无线接收器与发射器, 以无线传输的方式传送控制 信号控制发光二极管模块。 载波传输方式是利用调变器将控制信号调变成 调频信号或调幅信号, 利用电力线载波, 再以解调器还成原来的控制信号 后控制发光二极管模块。
然而, 前述两种方式的设备成本昂贵, 且在建筑物壁面的发射器及调 变器均须另外配接电源线, 而配接电源线也是额外的困扰。 再者, 无线或 载波所传输的信号易受到其它无线信号干扰, 要通过各国 EMI和 EMS安规 更是徒增困扰。 发明内容
有鉴于此, 本发明的主要目的在于, 提供一种利用电源波形传输信号 的方法, 使其可利用电源回路的配线传送信号。 本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的一种利用电源波形传输信号的方法, 是应用于一负载控制系 统, 该负载控制系统包含有相互电性连接的相角控制模块与驱动模块,该相 角控制模块电性连接交流电源与输入接口, 该驱动模块电性连接负载,该方 法包括以下步骤:
A. 该相角控制模块侦测该输入接口的状态;
B. 该相角控制模块依据步骤 A中所侦测的状态, 改变该交流电源的波 形, 使该交流电源的波形的其中一半波周期具有一延迟导通角后输出;
C. 该驱动模块接收该相角控制模块输出的电能, 并在判断该相角控制 模块输出的电能的波形中具有该延迟导通角存在后, 依据该延迟导通角判 断该输入接口的状态; 以及
D. 该驱动模块依据步骤 C所判断的该输入接口的状态, 输出一对应该 输入接口的状态的电信号至该负载。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 前述的利用电源波形传输信号的方法, 其中该输入接口包含有开关,该 开关受按压时是而呈短路状态, 未受按压时呈开路状态, 在步骤 A中,是按 压该开关使该开关由开路状态改变为短路状态, 且在步骤 C 中是依据该延 迟导通角的存在与否判断该开关是否被按压。
前述的利用电源波形传输信号的方法, 其中该输入接口包含有多个该 开关, 在步骤 A中是按压其中一个该开关; 在步骤 B中, 所产生的延迟导 通角的角度是对应被按压的该开关; 在步骤 C 中还包含侦测该延迟导通角 的角度, 并依据该延迟导通角的角度判断所对应的该开关; 在步骤 D中,是 将步骤 C中所对应的该开关相应的电信号传送至该负载。
前述的利用电源波形传输信号的方法, 其中该输入接口包含有可变电 阻, 该可变电阻是可受控制而改变其电阻值的状态; 在步骤 B 中, 该延迟 导通角的角度是对应该可变电阻的电阻值; 在步骤 C 中是依据该延迟导通 角的角度判断该可变电阻的电阻值; 在步骤 D 中是将对应该可变电阻的电 阻值的电信号传送至该负载。
前述的利用电源波形传输信号的方法, 其中该可变电阻的电阻值为零 时, 该延迟导通角的角度大于零度。
前述的利用电源波形传输信号的方法, 其中该相角控制模块与该输入 接口位于一控制端, 该驱动模块与该负载位于一负载端。
前述的利用电源波形传输信号的方法, 其中该延迟导通角是产生于该 交流电源的波形的正半波。
前述的利用电源波形传输信号的方法, 其中该延迟导通角的最大角度 为 90度。 前述的利用电源波形传输信号的方法, 其中步骤 C 中包含有将该交流 电源的电能转换成该负载所需的电能。
前述的利用电源波形传输信号的方法, 其中该负载为一发光二极管模 块。
本发明与现有技术相比具有明显的优点和有益效果。 借由上述技术方 案,本发明利用电源波形传输信号的方法至少具有下列优点及有益效果:本 发明借的方法利用电源回路的配线即可传输信号, 无需额外增加控制线路 的配线, 有效减少了配线的成本。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的简要说明
图 1是本发明第一较佳实施例的照明系统的方框图。
图 2是本发明第二较佳实施例的照明系统的方框图。
图 3是本发明第三较佳实施例的照明系统的方框图。
图 4是本发明第四较佳实施例的照明系统的方框图。
图 5是第一较佳实施例的照明系统的另一实施方式的方框图。
图 6是第二较佳实施例的照明系统的另一实施方式的示意图。
图 7是第三较佳实施例的照明系统的另一实施方式的示意图。
图 8是第四较佳实施例的照明系统的另一实施方式的示意图。
图 9是本发明第五较佳实施例的照明系统的方框图。
1 : 发光二极管照明系统 10: 发光二极管模块
12: 输入接口 122: 开关
14: 相位信号传送装置 16: 相角控制模块
18: 驱动模块 182: 电源转换电路
184: 控制单元 184a :相角侦测电路
184b:处理器 2: 发光二极管照明系统
20: 切换开关 3: 发光二极管照明系统
22: 输入接口 222、 242: 开关
4: 发光二极管照明系统 24: 输入接口
242 ~ 246: 开关 262 ~ 266: 驱动模块
282 ~ 286: 发光二极管模块 29: 三路开关
5: 发光二极管照明系统 30: 切换开关
32: 输入接口 322: 可变电阻 34: 相角控制模块 36: 驱动模块
362: 处理器 364: 相角侦测电路
366: 电源转换电路 38: 发光二极管模块
S: 交流电源 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的利用电源波形传输信 号的方法其具体实施方式、 方法、 步骤、 特征及其功效, 详细说明如后。
以下是以发光二极管照明系统为例的负载控制系统说明本发明利用电 源波形传输信号的方法。
请参阅图 1所示, 是本发明第一较佳实施例的照明系统的方框图。 本 发明第一较佳实施例的发光二极管照明系统 1 包含有以发光二极管模块 10 为例的负载、 输入接口 12、 相位信号传送装置 14。
该发光二极管模块 10具有多个发光二极管, 用以接收电信号以产生亮 光提供照明。 该输入接口 12包含有一开关 122, 该开关 122为常开式的按 压开关, 该开关 122在使用者按压时呈短路状态。
该相位信号传送装置 14包含有相角控制模块 16与驱动模块 18。其中: 该相角控制模块 16电性连接交流电源 S与该开关 122, 该相角控制模 块 16用以侦测该开关 122的状态, 并在该开关 122受按压而导通时, 该相 角控制模块 16改变该交流电源 S的波形, 使该交流电源 S的波形的正半波 周期产生一延迟导通角后输出; 而在该开关 122未为受按压时, 该开关 122 则自动复归呈开路状态,且该相角控制模块 16不改变该交流电源 S的波形, 也即该相角控制模块 16所输出的波形中无该延迟导通角存在。 该延迟导通 角的角度以小于或等于 90度为佳, 以减少该交流电源的谐波及减少功率因 数降低的程度。
该驱动模块 18 包含有相互电性连接的电源转换电路 182 与控制单元 184。 其中, 该电源转换电路 182 电性连接该相角控制模块 16及该发光二 极管模块 10, 用以接收该相角控制模块 16所输出的电能, 并转换成该发光 二极管模块 10所需的电能, 该电源转换电路 182可受控制地改变该发光二 极管模块 10的开、 关状态及亮度。 在本实施例中, 该电源转换电路 182是 以脉冲宽度调制 (Pu l se Width Modulat ion, PWM ) 电路为基础进行设计, 并通过脉冲宽度调制的方式来调整供予该发光二极管模块 10的电信号的时 脉宽度。 当然在实际实施上, 该电源转换电路 182 也可为调整电信号大小 或其他调整电信号的电路设计。
该控制单元 184包含有相角侦测电路 184a与处理器 184b。该相角侦测 电路 184a电性连接该相角控制模块 16, 用以侦测该相角控制模块 16输出 的电能的波形中是否具有该延迟导通角以及侦测该延迟导通角的角度, 并 将侦测结果传递予该处理器 184b。该处理器 184b内建有多种控制模式, 该 些控制模式包括一全亮照明模式、 一预设照明模式与一亮度调整模式, 并 以其中一种控制模式控制该电源转换电路 182输出的电信号, 借以驱动该 发光二极管模块 10产生亮光, 并利用该相角侦测电路 184a所侦测该延迟 导通角的结果判断该开关 122的状态, 以^ L为控制模式切换的依据。 其中: 该全亮照明模式是控制该电源转换电路 182驱动该发光二极管模块 10 产生额定功率下最大亮度值的亮光。
该预设照明模式是控制该电源转换电路 182驱动该发光二极管模块 10 产生一预设亮度值的亮光, 在本实施例中, 该预设亮度值初始设定为最大 亮度值的一半, 而在亮度调整模式中可更新该预设亮度值。
该亮度调整模式是控制该电源转换电路 182驱动该发光二极管模块 10 产生的亮光反复在一第一亮度值与一第二亮度值之间变化, 直到该处理器 184b判断该开关 122的状态改变时, 停止控制亮度的变化, 并记录该发光 二极管模块 10当下所产生的亮光的亮度值, 且将记录的亮度值取代该预设 照明模式原先的预设亮度值, 并驱动该发光二极管模块 10产生具有新的预 设亮度值的亮光。 在本实施例中, 该第一亮度值为最大亮度值, 该第二亮 度值为最小亮度值, 借此, 在亮度调整模式时, 该发光二极管模块 10的亮 光即在最大亮度与最小亮度之间变化。
由于该开关 122被按压的期间, 该相角控制模块 16输出的电能的波形 中每一个周期皆会有该延迟导通角存在, 因此该处理器 184b可依据具有该 延迟导通角的周期数计算该开关 122被压下的时间长度, 据以进行控制模 式切换。
在初始状态 (交流电源 S刚接通时)且该开关 122未按压前, 该相角 控制模块 16未改变该交流电源 S的波形, 该相角侦测电路 184a所侦测的 波形未具有该延迟导通角, 此时, 该处理器 184b控制该电源转换电路 182 阻断供予该发光二极管模块 10的电能, 使该发光二极管模块 10为熄灭的 状态。
在该开关 122按压后,该相角侦测电路 184a侦测到该相角控制模块 16 输出的电能的波形中具有该延迟导通角, 而该处理器 184b判断该开关 122 被按压的一按压时间, 并进行相对应的控制。
在该按压时间小于一预定时间 (本实施例中设为 1. 2 秒) 时, 该处理 器 184b切换至该全亮照明模式, 使该发光二极管模块 10产生具有最大亮 度值的亮光。
再按压一次该开关 122后,且按压时间小于该预定时间,该处理器 184b 切换至该预设照明模式, 使该发光二极管模块发出具有该预设亮度值的亮 光。
再按压一次该开关 122后,且按压时间小于该预定时间,该处理器 184b 控制该电源转换电路 182阻断供予该发光二极管模块 10的电能, 使该发光 二极管模块 10为熄灭的状态。
当使用者需要改变该预设亮度值时, 按压该开关 122超过该预定时间, 该处理器 184b即切换至该亮度调整模式, 以供使用者改变设定的预设亮度 值。
借由上述的结构, 该发光二极管照明系统 1 应用于建筑物时, 可将该 开关 122 及该相角控制模块 16 装设于建筑物的壁面上(即装设于一控制 端), 而将该驱动模块 18及该发光二极管模块 10装设于建筑物的壁面或天 花板(即装设于一负载端)。 如此, 该相角控制模块 16与该驱动模块 18之 间只需用两条连接交流电源 S 的电线连接, 换言之, 利用建筑物原有的配 线即可传输对应该开关 122状态的波形至该驱动模块 18, 而该驱动模块 18 即可判断该开关 122 的状态, 并送出相应的电信号控制该发光二极管模块 10。
前述的装设方式仅是一应用例而已, 并不以此为限, 可依实际的需求 调整各构件装设的位置。
在实务上, 该发光二极管模块 10可包含有多个第一发光二极管及多个 第二发光二极管, 且该些第一发光二极管的光色不同于该些该第二发光二 极管的光色。 举例而言, 该些第一发光二极管的光色为冷光色系 (如白光、 蓝光等), 而该些第二发光二极管的光色为暖光色系 (如黄光、 红光等)。
该驱动模块 18的电源转换电路 182则可分别控制该些第一发光二极管 及该些第二发光二极管的亮度比例, 而所述的亮度比例是指该第一、 第二 发光二极管所产生的亮光的亮度值占该最大亮度值或该预设亮度值的比 例, 利用该些第一发光二极管与第二发光二极管的亮度比例的搭配, 可达 到调整该发光二极管模块 10产生的亮光的色温。
在该处理器 184b的控制模式中, 该全亮照明模式包括有一第一亮度比 例信息, 该第一亮度比例信息是记录该全亮照明模式时, 该些第一、 第二 发光二极管的亮度比例。 该预设照明模式包括有一第二亮度比例信息, 该 第二亮度比例信息是记录该预设照明模式时, 该些第一、 第二发光二极管 的亮度比例。
该处理器 184b的控制模式还包含有一色度调整模式, 供调整该第一亮 度比例信息或第二亮度比例信息。 当该处理器 184b操作于该全亮照明模式 或该预设照明模式时, 使用者持续按压该开关 122超过另一设定时间 (本 实施例中为 4秒), 该处理器 184b的操作模式则切换至该色度调整模式。 其中:
该色度调整模式是控制该电源转换电路 182驱动该发光二极管模块 10 产生亮光, 并在亮度值 (即最大亮度值或预设亮度值) 不变的情况下, 反 复地改变该发光二极管模块 10的该些第一发光二极管以及该些第二发光二 极管的亮度比例, 直到该处理器 184b判断该开关 122的状态改变时, 停止 控制该些第一、 第二发光二极管亮度比例的变化, 并记录当下该第一、 第 二发光二极管的亮度比例, 且将记录的亮度比例取代该全亮照明模式原先 的第一亮度比例信息或取代该预设照明模式原先的第二亮度比例信息, 并 驱动该些第一、 第二发光二极管产生具有新的亮度比例的亮光。
借此, 使用者仅需通过该开关 122按压时间的长短即可进行亮度的切 换, 以及调整亮度或调整色度的选择。
以下再提供其它较佳可行的实施例, 同样具有相同的上述效果。
请参阅图 2所示, 是本发明第二较佳实施例的照明系统的方框图。 本 发明第二较佳实施例的发光二极管照明系统 2是以上述第一实施例的结构 为基础, 增设一切换开关 20, 分别电性连接该交流电源 S与该相角控制模 块 16。 该切换开关 20供开启及关闭该发光二极管模块 10的亮光。
在本实施例中, 该切换开关 20导通时, 该驱动模块 18的处理器 184b 操作于该全亮照明模式, 使该发光二极管模块 10 的亮光为最亮。 同样地, 通过按压该开关 122 的按压时间长短, 即可在该预设照明模式、 该全亮照 明模式之间切换, 而且同样可切换至该亮度调整模式或该色度调整模式。
请参阅图 3所示, 是本发明第三较佳实施例的照明系统的方框图。 本 发明第三较佳实施例的发光二极管照明系统 3是以上述第二实施例的结构 为基础, 不同的是本实施例的输入接口 22包含有二个开关 222、 224 , 该二 个开关 222、 224电性连接该相角控制模块 16。 各该开关 222、 224被按压 而呈短路状态时, 该相角控制模块 16使该交流电源 S的波形的正半波周期 产生该延迟导通角后输出, 且按压各该开关 222、 224所产生的该延迟导通 角的角度各不相同。 借此, 该处理器 184b 即可利用该相角侦测电路 184a 所侦测的该延迟导通角的角度对应该些开关 222、 224的按压状态, 以进行 在该些控制模式之间切换。
举例而言, 利用短按该开关 222 (即按压时间小于该设定时间)作为该 全亮照明模式与该预设照明模式之间的切换; 长按该开关 222 (即按压时间 大于该设定时间), 则切换至该亮度调整模式。
而该处理器 184b还可内建多个预设色度, 各该预设色度是对应一种该 些第一、 第二发光二极管的亮度比例。 在该全亮照明模式或该预设照明模 式时, 利用短按该开关 224, 以切换其中一该预设色度, 并将该预设色度取 代原先储存的第一亮度比例信息或第二亮度比例信息,并驱动该些第一、 第 二发光二极管产生具有新的亮度比例的亮光。
此外, 在该全亮照明模式或该预设照明模式时, 利用长按该开关 224 , 则切换至该色度调整模式, 以进行该发光二极管模块 10的色度调整。
请参阅图 4所示, 是本发明第四较佳实施例的照明系统的方框图。 本 发明第四较佳实施例的发光二极管照明系统 4 具有大致相同于上述第二实 施例的结构,不同的是,本实施例的输入接口 24包含有三个开关 242、 244、 246, 该三个开关 242、 244、 246电性连接该相角控制模块 16。 按压各该开 关 242、 244、 246时, 该相角控制模块 16则产生对应各该开关 242、 244、 246的特定角度的该延迟导通角。 此外, 本实施例的发光二极管照明系统 4 包含有三组驱动模块 262、 264、 266及发光二极管模块 282、 284、 286, 每一该驱动模块 262、 264、 266是对应判断一个特定角度的该延迟导通角, 借此, 各该驱动模块 262、 264、 266即可对应侦测各该开关 242、 244、 246 的按压状态, 进而控制各该发光二极管模块 282、 284、 286。
举例而言, 该开关 242被按压时, 该驱动模块 262侦测到相对应的该 延迟导通角的角度并计算按压时间, 以对该发光二极管模块 282进行控制。
当然, 本实施例输入接口 24的开关的数量不以三个为限, 也可设置三 个以上, 且在负载端相对应地设置相同数量的驱动模块及发光二极管模块, 同样可以达到在控制端操控多组发光二极管模块的目的。
此外, 为配合建筑物的格局, 上述第一实施例的发光二极管照明系统 也可设计成如图 5所示的连接方式, 并将二组该相角控制模块 16及该开关 122设于建筑物中的不同位置,借此,使用者即可在不同的位置控制发光二 极管模块 10。 依据相同的构思, 第二、 第三、 第四实施例的发光二极管照 明系统也可分别设计成如图 6至图 8所示的连接方式,将二组三路开关 29、 该相角控制模块 16及输入接口 12, 22, 24设于建筑物中的不同位置,使用 者即可在不同的位置控制发光二极管模块。
请参阅图 9所示, 是本发明第五较佳实施例的照明系统的方框图。 本 发明第五较佳实施例的发光二极管照明系统 5包含有切换开关 30、 输入接 口 32、 相角控制模块 34、 驱动模块 36与一发光二极管模块 38。 该输入接 口 32包含有可变电阻 322,且该相角控制模块 34电性连接该可变电阻 322, 并依据该可变电阻 322的电阻值, 产生对应该可变电阻 322 电阻值的角度 的该延迟导通角。 在本实施例中, 该可变电阻 322 的电阻值愈大, 对应该 延迟导通角的角度则愈大; 反之, 电阻值愈小则该延迟导通角的角度愈小, 即使该可变电阻 322的电阻值调整到 0欧姆, 该延迟导通角的角度大于零 度, 也即该相角控制模块 34输出的电能的波形中仍有该延迟导通角存在。
而该驱动模块 36的处理器 362则依据相角侦测电路 364所侦测的该延 迟导通角的角度, 计算该可变电阻 322 的电阻值。 并利用电阻值的变化相 对应控制电源转换电路 366输出对应的电信号至该发光二极管模块 38,以进 行控制。 例如, 可利用电阻值的变化调整该发光二极管模块 38 的亮度,或 是调整该发光二极管模块 38的色度。
在上述中各实施例的发光二极管照明系统仅是用以说明本发明的电源 波形传输信号的方法, 除了应用于发光二极管照明系统外, 本发明也可应 用于其它的负载控制系统, 例如马达控制系统, 利用相位信号传送装置将 控制端的输入接口的状态传送到负载端, 以控制马达的启动、 停止及转速。 此外, 本发明也可应用于控制浴室暖风机、 抽风机、 吊扇等各类电气产品 的负载。
根据以上所述, 本发明利用相角控制模块与驱动模块构成的相位信号 传送装置, 将输入接口的状态通过电源波形的延迟导通角, 由控制端传送 到负载端, 以输出对应输入接口状态的电信号控制负载, 也即利用交流电 源的波形传送信号。 相比较于传统的信号传输方式, 本发明无需增加额外 的配线或是以无线信号传输装置传输信号, 有效减少了配线的成本。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内,当可利 用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但 凡是未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例所 作的任何简单修改、 等同变化与修饰 ,均仍属于本发明技术方案的范围内。 工业应用性
本发明是有关于一种利用电源波形传输信号的方法, 是应用于一负载 控制系统, 该负载控制系统包含有相角控制模块与驱动模块, 该相角控制 模块电性连接输入接口, 该方法包括以下步驟: A. 该相角控制模块侦测该 输入接口的状态; B.依据步骤 A中所侦测的状态, 改变一交流电源的波形, 使其波形的其中一半波周期具有一延迟导通角后输出; C. 该驱动模块接收 该相角控制模块输出的电能, 并在判断步骤 B 中输出的电能的波形中具有 该延迟导通角存在后, 依据该延迟导通角判断该输入接口的状态; D. 依据 该输入接口的状态, 输出一对应该输入接口的状态的电信号至一负载。

Claims

权 利 要 求
1、 一种利用电源波形传输信号的方法, 其特征在于其是应用于一负载 控制系统, 该负载控制系统包含有相互电性连接的相角控制模块与驱动模 块, 该相角控制模块电性连接交流电源与输入接口, 该驱动模块电性连接 负载, 该方法包括以下步骤:
A. 该相角控制模块侦测该输入接口的状态;
B. 该相角控制模块依据步骤 A中所侦测的状态, 改变该交流电源的波 形, 使该交流电源的波形的其中一半波周期具有一延迟导通角后输出;
C. 该驱动模块接收该相角控制模块输出的电能, 并在判断该相角控制 模组输出的电能的波形中具有该延迟导通角存在后, 依据该延迟导通角判 断该输入接口的状态; 以及
D. 该驱动模块依据步骤 C所判断的该输入接口的状态, 输出一对应该 输入接口的状态的电信号至该负载。
2、 根据权利要求 1所述的利用电源波形传输信号的方法, 其特征在于 其中该输入接口包含有开关, 该开关受按压时是而呈短路状态, 未受按压 时呈开路状态, 在步骤 A 中, 是按压该开关使该开关由开路状态改变为短 路状态, 且在步骤 C 中是依据该延迟导通角的存在与否判断该开关是否被 按压。
3、 根据权利要求 2所述的利用电源波形传输信号的方法, 其特征在于 其中该输入接口包含有多个该开关, 在步骤 A中是按压其中一个该开关;在 步骤 B 中, 所产生的延迟导通角的角度是对应被按压的该开关; 在步骤 C 中还包含侦测该延迟导通角的角度, 并依据该延迟导通角的角度判断所对 应的该开关; 在步骤 D中, 是将步骤 C中所对应的该开关相应的电信号传 送至该负载。
4、 根据权利要求 1所述的利用电源波形传输信号的方法, 其特征在于 其中该输入接口包含有可变电阻, 该可变电阻是可受控制而改变其电阻值 的状态; 在步骤 B中, 该延迟导通角的角度是对应该可变电阻的电阻值;在 步骤 C 中是依据该延迟导通角的角度判断该可变电阻的电阻值; 在步骤 D 中是将对应该可变电阻的电阻值的电信号传送至该负载。
5、 根据权利要求 4所述的利用电源波形传输信号的方法, 其特征在于 其中该可变电阻的电阻值为零时, 该延迟导通角的角度大于零度。
6、 根据权利要求 1所述的利用电源波形传输信号的方法, 其特征在于 其中该相角控制模块与该输入接口位于一控制端, 该驱动模块与该负载位 于一负载端。
7、 根据权利要求 1所述的利用电源波形传输信号的方法, 其特征在于 其中该延迟导通角是产生于该交流电源的波形的正半波。
8、 根据权利要求 1所述的利用电源波形传输信号的方法, 其特征在于 其中该延迟导通角的最大角度为 90度。
9、 根据权利要求 1所述的利用电源波形传输信号的方法, 其特征在于 其中步骤 C中包含有将该交流电源的电能转换成该负载所需的电能。
10、 根据权利要求 1 所述的利用电源波形传输信号的方法, 其特征在 于其中该负载为一发光二极管模块。
PCT/CN2014/000337 2013-04-24 2014-03-28 利用电源波形传输信号的方法 WO2014173176A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016509272A JP2016522607A (ja) 2013-04-24 2014-03-28 電力波形を利用した信号の伝送方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310144925.9 2013-04-24
CN201310144925.9A CN104122847A (zh) 2013-04-24 2013-04-24 利用电源波形传输信号的方法

Publications (1)

Publication Number Publication Date
WO2014173176A1 true WO2014173176A1 (zh) 2014-10-30

Family

ID=51768300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000337 WO2014173176A1 (zh) 2013-04-24 2014-03-28 利用电源波形传输信号的方法

Country Status (3)

Country Link
JP (1) JP2016522607A (zh)
CN (1) CN104122847A (zh)
WO (1) WO2014173176A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105843045A (zh) * 2015-01-13 2016-08-10 东林科技股份有限公司 电器控制系统
CN106163028A (zh) * 2015-03-27 2016-11-23 东林科技股份有限公司 调光方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035593A (zh) * 1987-04-21 1989-09-13 卢特龙电子有限公司 相位控制信号输入式电源控制电路
CN2800640Y (zh) * 2004-12-01 2006-07-26 崇贸科技股份有限公司 切换式控制装置
JP2007115430A (ja) * 2005-10-18 2007-05-10 Marumo Denki Kk 調光装置用同期検出回路及び調光装置
CN102036458A (zh) * 2009-09-30 2011-04-27 塞瑞斯逻辑公司 相位控制调光兼容照明系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386595U (zh) * 1989-12-25 1991-09-02
WO2007026170A2 (en) * 2005-09-03 2007-03-08 E-Light Limited Improvements to lighting systems
DE112010004782A5 (de) * 2009-10-23 2012-10-18 Tridonic Gmbh & Co Kg Betrieb einer LED-Leuchte mit variablem Spektrum
US8441202B2 (en) * 2009-10-26 2013-05-14 Light-Based Technologies Incorporated Apparatus and method for LED light control
CN102870497B (zh) * 2010-03-18 2016-03-02 皇家飞利浦电子股份有限公司 用于增加固态照明灯具的调光范围的方法和装置
CN201830496U (zh) * 2010-06-02 2011-05-11 艾迪光电(杭州)有限公司 一种led调光器
AU2011310149B2 (en) * 2010-09-27 2014-06-05 Cmc Magnetics Corporation LED illumination apparatus and LED illumination system
JP2012226839A (ja) * 2011-04-15 2012-11-15 Kuroi Electric Co Ltd 負荷制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035593A (zh) * 1987-04-21 1989-09-13 卢特龙电子有限公司 相位控制信号输入式电源控制电路
CN2800640Y (zh) * 2004-12-01 2006-07-26 崇贸科技股份有限公司 切换式控制装置
JP2007115430A (ja) * 2005-10-18 2007-05-10 Marumo Denki Kk 調光装置用同期検出回路及び調光装置
CN102036458A (zh) * 2009-09-30 2011-04-27 塞瑞斯逻辑公司 相位控制调光兼容照明系统

Also Published As

Publication number Publication date
CN104122847A (zh) 2014-10-29
JP2016522607A (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
EP2277357B1 (en) Methods and apparatus for encoding information on an a.c. line voltage
WO2014121660A1 (zh) 可调光的发光二极管照明系统及其驱动装置与驱动方法
WO2015051592A1 (zh) 多灯具的控制方法
WO2014173176A1 (zh) 利用电源波形传输信号的方法
US20170280522A1 (en) Method And Apparatus For Modulating Load By Means Of A Control Command Obtained By Varying The Conduction Angle Of AC Voltage
TWI504182B (zh) A method of transmitting a signal using a power waveform
CN203608408U (zh) 照明系统及其相位信号传送装置
CN205336577U (zh) 单线制交流电载波调光开关装置
JP3900761B2 (ja) 照明制御装置
TWI538563B (zh) Multi-fixture control method
WO2015043108A1 (zh) 照明系统及其相位信号传送装置
CN205902171U (zh) 一种自适应负载类型的总线式调光设备
TWM471729U (zh) 照明系統及其相位訊號傳送裝置
WO2016118022A1 (en) Lighting systems
WO2020086301A1 (en) Method for monitoring power consumption of a load coupled to a power switch
TWI400001B (zh) 單線式訊號控制系統及其方法
US9282617B2 (en) Illumination system and phase signal transmitter of the same
TWI566494B (zh) Electrical control system
CN212163764U (zh) 一种led光源的控制装置
CN210807720U (zh) 一种灯具开关控制装置
JP6463865B1 (ja) 負荷制御システム及び負荷制御装置
CN108337794B (zh) 照明灯具和照明灯具控制方法
KR20150057359A (ko) 이중 z형 회로망에 근거한 프로그램 제어 싸인웨이브 디머기의 조절 회로 디머기의 조명조절회로 및 이를 적용한 이중 걸이식 이동용 디머기
KR20120125864A (ko) 상용 ac 라인 신호 방식의 led 조광제어 시스템
TWM503710U (zh) 電器控制系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14789105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016509272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14789105

Country of ref document: EP

Kind code of ref document: A1