WO2015043108A1 - 照明系统及其相位信号传送装置 - Google Patents

照明系统及其相位信号传送装置 Download PDF

Info

Publication number
WO2015043108A1
WO2015043108A1 PCT/CN2014/000806 CN2014000806W WO2015043108A1 WO 2015043108 A1 WO2015043108 A1 WO 2015043108A1 CN 2014000806 W CN2014000806 W CN 2014000806W WO 2015043108 A1 WO2015043108 A1 WO 2015043108A1
Authority
WO
WIPO (PCT)
Prior art keywords
brightness
phase angle
control module
luminaire
waveform
Prior art date
Application number
PCT/CN2014/000806
Other languages
English (en)
French (fr)
Inventor
林铭锋
Original Assignee
东林科技股份有限公司
林铭锋
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201320617398.4U external-priority patent/CN203608408U/zh
Application filed by 东林科技股份有限公司, 林铭锋 filed Critical 东林科技股份有限公司
Priority to JP2016517129A priority Critical patent/JP2016523428A/ja
Publication of WO2015043108A1 publication Critical patent/WO2015043108A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission

Definitions

  • the invention relates to luminaire control; in particular to an illumination system and its phase signal transmission device.
  • two wires for connecting the switch are reserved between the electrical box on the ceiling and the electrical box on the wall.
  • electrical equipment such as lamps or fans
  • install the electrical equipment on the ceiling and connect one end of the mains to the electrical equipment.
  • the other end of the mains is connected to a switch through the reserved wires.
  • the switch By switching the switch, the opening and closing of the electrical equipment can be controlled.
  • the wireless transmission mode is to install a wireless receiver and a transmitter respectively on the LED module and the wall surface control panel, and transmit the control signal to control the LED module by wireless transmission.
  • the carrier transmission mode is to adjust the control signal into a frequency modulation signal or an amplitude modulation signal by using a voltage regulator, and the power line carrier is used, and then the demodulator is also turned into the original control signal to control the LED module.
  • the equipment of the foregoing two methods is expensive, and the transmitter and the voltage regulator on the wall of the building have to be additionally connected with the power cord, and the power cord is also an additional problem.
  • the signals transmitted by wireless or carrier waves are easily interfered by other wireless signals, and it is even more troublesome to pass the national EMI and EMS security regulations.
  • an object of the present invention to provide an illumination system and a phase signal transmission device thereof that can transmit signals using wiring of a power supply circuit.
  • the illumination system provided in accordance with the present invention includes an input interface, a phase angle control module, a luminaire and a drive module.
  • the input interface is controllably switchable between the first state and the second state;
  • the phase angle control module is electrically connected to the AC power source and the input interface, and when the input interface is in the first state, the phase angle control module Changing a waveform of the alternating current power source to cause a half-wave period of the waveform of the alternating current power source to generate a delayed conduction angle, and outputting the light;
  • the light fixture is controlled to generate bright light;
  • the driving module is electrically connected to the phase angle control module and the light fixture,
  • the driving module has a built-in default illumination mode and a brightness adjustment mode, and the driving module receives the electric energy output by the phase angle control module, and performs switching between the modes according to the delayed conduction angle to control the lamp to generate bright light; Where the default lighting mode is the
  • the waveform of the electrical energy output by the phase angle control module does not generate the delayed conduction angle.
  • the driving module includes a power conversion circuit, a phase angle detecting circuit and a processor electrically connected to each other, and the power conversion circuit is electrically connected to the phase angle control module and the lamp for outputting the phase angle control module
  • the electrical energy is converted into electrical energy required by the luminaire;
  • the phase angle detecting circuit is electrically connected to the phase angle control module for detecting the delayed conduction angle;
  • the processor has the mode built therein, and the processor Switching between the modes is performed according to the delayed conduction angle detected by the phase angle detecting circuit, and the power conversion circuit is controlled to drive the lamp to generate bright light.
  • the brightness adjustment mode is that the brightness generated by driving the lamp changes from a third brightness value between the first and second brightness values.
  • the method includes a plurality of the illuminators and a plurality of the driving modules.
  • Each of the phase angle detecting circuits further detects a waveform of the electric energy output by the phase angle control module, and each of the processors switches to the brightness adjustment mode, and each of the processors switches to the brightness adjustment mode.
  • the processor drives at least one reference point in the period of the waveform measured by each phase angle detecting circuit to drive the brightness generated by each of the lamps to change the brightness difference.
  • the reference point is a zero crossing in a period of the waveform measured by each of the phase angle detecting circuits.
  • the reference point is a peak in a period of a waveform measured by each phase angle detecting circuit.
  • the driving module is further provided with a full-bright illumination mode, which is a bright light that drives the luminaire to generate a maximum brightness value at a rated power.
  • the luminaire comprises a plurality of first light sources and a plurality of second light sources, the light color of the first light source is different from the light color of the second light source;
  • the default illumination mode comprises brightness ratio information, the brightness The ratio information is the ratio of the brightness of the first and second light sources when the default illumination mode is recorded, and the brightness ratio refers to the brightness value of the brightness generated by the first and second light sources occupying the preset brightness value.
  • the driving module further has a chromaticity adjustment mode, wherein the chromaticity adjustment mode is to drive the luminaire to generate bright light, and repeatedly change the first light source of the luminaire and the preset brightness value is unchanged
  • the brightness ratio of the second light source stops controlling the change of the brightness ratio of the first and second light sources until the state of the input interface changes, and records the brightness ratio of the first and second light sources at the moment, and The recorded brightness ratio replaces the brightness ratio information of the default illumination mode, and drives the first and second light sources to generate bright light having a new brightness ratio.
  • the angle of the delayed conduction angle is less than or equal to 90 degrees.
  • the delayed conduction angle is a positive half wave generated from a waveform of the alternating current power source.
  • the input interface includes a switch, and the switch is a normally open push switch.
  • the switch is in the first state when pressed, and the first state is a short circuit state, and the switch is automatically reset to the first state when the switch is not pressed.
  • the second state is the open state.
  • the input interface includes a plurality of the switches.
  • the phase angle control module When the switches are pressed, the phase angle control module generates the delayed conduction angles corresponding to different angles, and the driving module determines the angle according to the angle of the delayed conduction angle. The state of the switch, and switching between the modes according to the state of the switch.
  • the invention further provides another illumination system, comprising: a variable resistor, a phase angle control module, a lamp and a driving module.
  • the variable resistor can be controlled to change its resistance value;
  • the phase angle control module is electrically connected to the AC power source and the variable resistor, and the phase angle control module changes the waveform of the AC power source according to the resistance value of the variable resistor.
  • the luminaire can be controlled to generate bright light
  • the driving module is electrically
  • the phase angle control module and the luminaire are connected to receive the electrical energy of the alternating current power source and converted into electrical energy required by the luminaire; the driving module receives the electrical energy output by the phase angle control module, and according to the delayed conduction angle The angle controls the light produced by the luminaire.
  • the maximum angle of the delayed conduction angle is 90 degrees.
  • the angle of the delayed conduction angle is greater than zero degrees.
  • the delayed conduction angle is a positive half wave generated from a waveform of the alternating current power source.
  • the phase signal transmission device is disposed between the AC power source and the lamp, and includes: a switch, a phase angle control module and a driving module.
  • the switch can be controlled to switch between the short circuit state and the open circuit state;
  • the phase angle control module is electrically connected to the AC power source and the switch, and when the switch is in the short circuit state, the phase angle control module changes the waveform of the AC power source And outputting a half-wave period of the waveform of the AC power source to generate a delayed conduction angle, and the waveform of the power output by the phase angle control module does not generate the delayed conduction angle when the switch is in the open state;
  • the driving module is electrically The phase angle control module and the luminaire are connected, and the driving module receives the electric energy output by the phase angle control module, and determines the state of the switch according to the delayed conduction angle, and generates a corresponding electrical signal to control the illuminating device. Bright light.
  • another phase signal transmission device is provided between the AC power source and the lamp, and includes a variable resistor, a phase angle control module and a driving module.
  • the variable resistor is controllably changed in its resistance value; the phase angle control module is electrically connected to the alternating current power source and the variable resistor, and the phase angle control module changes the alternating current power source according to the resistance value of the variable resistor.
  • the driving module is electrically connected to the phase angle
  • the control module and the luminaire receive the electric energy output by the phase angle control module, and generate a corresponding electrical signal according to the angle of the delayed conduction angle to control the brightness generated by the luminaire.
  • the advantages and effects of the present invention are that, by the illumination system of the present invention and its phase signal transmission device, signals can be transmitted by using the wiring of the power supply circuit, without additionally increasing the wiring of the control circuit, thereby effectively reducing the cost of installing the illumination system.
  • FIG. 1 is a block diagram of an illumination system in accordance with a first preferred embodiment of the present invention.
  • Figure 2A is a waveform diagram showing that the positive half-wave trailing edge produces a delayed conduction angle when the switch is turned on.
  • Figure 2B is a waveform diagram showing that the positive half-wave trailing edge produces a delayed conduction angle when the switch is turned on.
  • FIG. 3 is a block diagram of a lighting system in accordance with a second preferred embodiment of the present invention.
  • FIG. 4 is a block diagram of a lighting system in accordance with a third preferred embodiment of the present invention.
  • FIG. 5 is a block diagram of a lighting system in accordance with a fourth preferred embodiment of the present invention.
  • Figure 6 is another embodiment of the illumination system of the first preferred embodiment.
  • Figure 7 is another embodiment of the illumination system of the second preferred embodiment.
  • Figure 8 is another embodiment of the illumination system of the third preferred embodiment.
  • Figure 9 is another embodiment of the illumination system of the fourth preferred embodiment.
  • Figure 10 is a block diagram of a lighting system in accordance with a fifth preferred embodiment of the present invention.
  • Figure 11 is a block diagram of a lighting system in accordance with a sixth preferred embodiment of the present invention.
  • Lighting system 10 LED module
  • Phase signal transmission device 16 Phase angle control module
  • Control unit 184a phase angle detecting circuit
  • Lighting system 24 Input interface
  • LED module 29 Three-way switch
  • Lighting system 30 Toggle switch
  • FIG. 1 shows an illumination system 1 according to a first preferred embodiment of the present invention, including a luminaire, an input interface 12, and a phase signal transmission device 14 exemplified by an LED module 10.
  • the LED module 10 has a plurality of light emitting diodes for receiving electrical signals to generate bright light to provide illumination.
  • the input interface 12 includes a switch 122 that is a normally open push switch that is in a short circuit state (ie, the first state defined by the present invention) when the user presses.
  • the phase signal transmitting device 14 includes a phase angle control module 16 and a drive module 18. among them:
  • the phase angle control module 16 is electrically connected to the AC power source S and the switch 122.
  • the phase angle control module 16 is configured to detect the state of the switch 122, and when the switch 122 is pressed and turned on, the phase angle control module 16 changing the waveform of the AC power source S, causing the positive half-wave period of the waveform of the AC power source S to generate a delayed conduction angle and outputting the switch; and when the switch 122 is not pressed, the switch 122 is automatically reset to an open state ( That is, the second state defined by the present invention, and the phase angle control module 16 does not change the waveform of the AC power source S, that is, the waveform outputted by the phase angle control module 16 does not have the delayed conduction angle.
  • the angle of the delayed conduction angle is less than or equal to 90 degrees to reduce the harmonics of the AC power source and reduce the degree of power factor reduction.
  • the phase angle control module 16 changes the waveform of the AC power source S, and the positive half wave of the voltage waveform at the output thereof.
  • the trailing edge of the cycle produces a delayed conduction angle (waveform 2 of Figure 2A).
  • it can be designed as shown in Figure 2B in a positive half-wave period.
  • the leading edge produces a delayed conduction angle.
  • it is also possible to generate a delayed conduction angle at the leading or trailing edge of the negative half wave or at the leading or trailing edge of the positive half wave and the negative half wave period, and the recognition as the switch 122 is pressed can also be achieved.
  • the driving module 18 includes a power conversion circuit 182 and a control unit 184 that are electrically connected to each other.
  • the power conversion circuit 182 is electrically connected to the phase angle control module 16 and the LED module 10 for receiving the power output by the phase angle control module 16 and converting the power required by the LED module 10 into power.
  • the power conversion circuit 182 is controllably changeable to the on and off states and brightness of the LED module 10.
  • the power conversion circuit 182 is designed based on a Pulse Width Modulation (PWM) circuit, and the electrical signal supplied to the LED module 10 is adjusted by pulse width modulation. The frequency width.
  • PWM Pulse Width Modulation
  • the power conversion circuit 182 can also be used to adjust the size of the electrical signal or other circuit design for adjusting the electrical signal.
  • the control unit 184 includes a phase angle detecting circuit 184a and a processor 184b.
  • the phase angle detecting circuit 184 is electrically connected to the phase angle control module 16 for detecting whether the waveform of the electric energy output by the phase angle control module 16 has the delayed conduction angle and the angle of detecting the delayed conduction angle. And transmitting the detection result to the processor 184b.
  • the processor 184b has a plurality of control modes built therein, and the control mode includes a full-bright illumination mode, a default illumination mode, and a brightness adjustment mode, and controls an electrical signal output by the power conversion circuit 182 in one of the control modes to drive the signal.
  • the LED module 10 generates bright light, and determines the state of the switch 122 by using the result of detecting the delayed conduction angle of the phase angle detecting circuit 184a as a basis for switching the control mode. among them:
  • the full-bright illumination mode is a light that controls the power conversion circuit 182 to drive the LED module 10 to generate a maximum brightness value at a rated power.
  • the default illumination mode is to control the power conversion circuit 182 to drive the LED module 10 to generate a default brightness value.
  • the preset brightness value is initially set to half of the maximum brightness value, and in the brightness adjustment mode. Medium can update the preset brightness value.
  • the brightness adjustment mode is to control the power conversion circuit 182 to drive the light generated by the LED module 10 to repeatedly change between the first brightness value and the second brightness value until the processor 184b determines that the state of the switch 122 changes, and stops. Controlling the change of the brightness, and recording the brightness value of the brightness generated by the LED module 10, and replacing the recorded brightness value with the original default brightness value of the default illumination mode, and driving the LED module 10 to generate a new pre-production.
  • the first brightness value is a maximum brightness value
  • the second brightness value is a minimum brightness value, whereby, in the brightness adjustment mode, the brightness of the LED module 10 is at a maximum brightness and a minimum brightness. Change between.
  • the processor 184b can also control the power conversion circuit 182 to drive the light generated by the LED module 10 to increase or decrease from the third brightness value between the first and second brightness values, and repeat A change between a brightness value and a second brightness value.
  • the third brightness value can be set to one-half of the maximum brightness value, thereby switching to the brightness adjustment mode to first emit light with the centered brightness, thereby preventing the user from feeling eye discomfort due to too much brightness change.
  • the delay conduction angle exists in every cycle of the waveform of the electric energy output by the phase angle control module 16, so the processor 184b can according to the number of cycles having the delayed conduction angle.
  • the length of time during which the switch 122 is depressed is calculated, and control mode switching is performed accordingly.
  • the phase angle control module 16 does not change the waveform of the AC power source S in the initial state (when the AC power source S is just turned on) and the switch 122 is not pressed.
  • the waveform detected by the phase angle detecting circuit 184a does not have the waveform.
  • the conduction angle is delayed.
  • the processor 184b controls the power conversion circuit 182 to block the power supplied to the LED module 10, so that the LED module 10 is in an extinguished state.
  • the phase angle detecting circuit 184a detects that the waveform of the electric energy output by the phase angle control module 16 has the delayed conduction angle, and the processor 184b determines the pressing time of the switch 122 being pressed. And carry out corresponding control.
  • the processor 184b switches to the full-bright illumination mode to cause the LED module 10 to generate bright light having the maximum brightness value.
  • the processor 184b switches to the default illumination mode to cause the LED module to emit bright light having the default brightness value.
  • the processor 184b controls the power conversion circuit 182 to block the power supplied to the LED module 10, so that the LED module 10 is in an extinguished state.
  • the processor 184b switches to the brightness adjustment mode for the user to change the set preset brightness value.
  • the switch 122 and the phase angle control module 16 can be installed on the wall surface of the building (that is, installed on the control end), and the driving module is 18 and the LED module 10 are mounted on a wall or ceiling of a building (ie, mounted on a load end).
  • the phase angle control module 16 and the driving module 18 need only be connected by two wires connected to the AC power source S.
  • the waveform corresponding to the state of the switch 122 can be transmitted by using the original wiring of the building.
  • the module 18 is driven, and the driving module 18 can determine the state of the switch 122 and send a corresponding electrical signal to control the LED module 10.
  • the foregoing mounting method is only an application example, and is not limited thereto, and the position of each component can be adjusted according to actual needs.
  • the LED module 10 may include a plurality of first light sources exemplified by the first light emitting diode and a plurality of second light sources exemplified by the second light emitting diode, and the light color of the first light emitting diode Different from the light color of the second light emitting diode.
  • the light color of the first light emitting diode is a luminescent color system (such as white light, blue light, etc.)
  • the light color of the second light emitting diode is a warm light color (such as yellow light, red light, etc.).
  • the power conversion circuit 182 of the driving module 18 can individually control the brightness ratio of the first light emitting diode and the second light emitting diode, and the brightness ratio refers to the light generated by the first and second light emitting diodes.
  • the ratio of the brightness value to the maximum brightness value or the preset brightness value is adjusted by the brightness ratio of the first light emitting diode and the second light emitting diode to adjust the color temperature of the light generated by the light emitting diode module 10.
  • the full-brightness illumination mode includes first brightness ratio information, and the first brightness ratio information is a brightness ratio of the first and second light-emitting diodes when the full-light illumination mode is recorded.
  • the default illumination mode includes second brightness ratio information, and the second brightness ratio information is a brightness ratio of the first and second light emitting diodes when the default illumination mode is recorded.
  • the control mode of the processor 184b further includes a chromaticity adjustment mode for adjusting the first ratio information or the second ratio information.
  • a chromaticity adjustment mode for adjusting the first ratio information or the second ratio information.
  • the chromaticity adjustment mode is to control the power conversion circuit 182 to drive the LED module 10 to generate bright light, and repeatedly change the LED module 10 if the brightness value (ie, the maximum brightness value or the preset brightness value) is unchanged.
  • the brightness ratio of the first light emitting diode and the second light emitting diode is stopped until the processor 184b determines that the state of the switch 122 changes, and stops controlling the change of the brightness ratio of the first and second light emitting diodes.
  • the user only needs to press the switch 122 for the length of time to switch the brightness, and adjust the brightness or adjust the chromaticity.
  • FIG. 3 shows a lighting system 2 according to a second preferred embodiment of the present invention.
  • a switch 20 is additionally provided, and the AC power source S and the phase angle control are electrically connected respectively.
  • Module 16 The switch 20 is configured to turn on and off the light of the LED module 10.
  • the processor 184b of the driving module 18 when the switch 20 is turned on, the processor 184b of the driving module 18 operates in the full-bright illumination mode to make the brightness of the LED module 10 the brightest.
  • the default illumination mode and the full-light illumination mode can be switched, and the brightness adjustment mode or the chromaticity adjustment mode can be switched to the same.
  • the input interface 22 of the embodiment includes two switches 222, 224.
  • the two switches 222, 224 are electrically connected to the phase angle control module 16.
  • the phase angle control module 16 When the switches 222, 224 are pressed to be in a short-circuit state, the phase angle control module 16 generates the delayed conduction angle by generating a positive half-wave period of the waveform of the AC power source S, and presses each of the switches 222, 224 The resulting angles of the delayed conduction angles are different.
  • the processor 184b can use the angle of the delayed conduction angle detected by the phase angle detecting circuit 184a to correspond to the pressing state of the switches 222, 224 to switch between the control modes.
  • the pressing time is less than the set time
  • long pressing the switch 222 ie, the pressing time is greater than the set time
  • the processor 184b can further have a plurality of preset chromaticities, each of which corresponds to a brightness ratio of the first and second LEDs.
  • the switch 224 is short-pressed to switch the preset chromaticity, and the preset chromaticity is replaced by the first stored first brightness ratio information or the second brightness ratio.
  • the chromaticity adjustment mode is switched to perform chromaticity adjustment of the LED module 10.
  • FIG. 5 shows an illumination system 4 according to a fourth preferred embodiment of the present invention, which has substantially the same structure as the second embodiment described above, except that the input interface 24 of the present embodiment includes three switches 242, 244. 246.
  • the three switches 242, 244, 246 are electrically connected to the phase angle control module 16.
  • the phase angle control module 16 When the switches 242, 244, 246 are pressed, the phase angle control module 16 generates the delayed conduction angle corresponding to a particular angle of each of the switches 242, 244, 246.
  • the illumination system 4 of the present embodiment includes three sets of driving modules 262, 264, 266, and LED modules 282, 284, 286, each of which is corresponding to determining a specific angle of the delay guide.
  • the driving angles of the switches 242, 244, 246 can be detected by the driving modules 262, 264, 266, thereby controlling the LED modules 282, 284, 286.
  • the driving module 262 detects the corresponding angle of the delayed conduction angle and calculates the pressing time to control the LED module 282.
  • the number of the switches of the input interface 24 in this embodiment is not limited to three, and three uppers can also be set, and The same number of driving modules and LED modules are correspondingly arranged on the load end, and the purpose of controlling multiple sets of LED modules on the control end can also be achieved.
  • the lighting system of the first embodiment described above may also be designed as a connection manner as shown in FIG. 6, and two sets of the phase angle control module 16 and the switch 122 are disposed in a building. Different locations, whereby the user can control the LED module 10 at different locations.
  • the illumination systems of the second, third, and fourth embodiments can also be respectively designed as the connection modes shown in FIG. 7 to FIG. 9, and the two sets of three-way switches 29, the phase angle control module 16 and The input interfaces 12, 22, 24 are located at different locations in the building, and the user can control the LED modules at different locations.
  • FIG. 10 shows a lighting system 5 according to a fifth preferred embodiment of the present invention, including a changeover switch 30, an input interface 32, a phase angle control module 34, a drive module 36 and an LED module 38.
  • the input interface 32 includes a variable resistor 322, and the phase angle control module 34 is electrically connected to the variable resistor 322, and generates an angle corresponding to the resistance value of the variable resistor 322 according to the resistance value of the variable resistor 322.
  • the delayed conduction angle is provided to the phase angle control module 34.
  • the resistance value of 322 is adjusted to 0 ohms, and the angle of the delayed conduction angle is greater than zero degrees, that is, the delayed conduction angle exists in the waveform of the electric energy output by the phase angle control module 34.
  • the processor 362 of the driving module 36 calculates the resistance value of the variable resistor 322 according to the angle of the delayed conduction angle detected by the phase angle detecting circuit 364.
  • the control power conversion circuit 366 corresponding to the change in the resistance value outputs a corresponding electrical signal to the LED module 38 for control.
  • the brightness of the LED module 38 can be adjusted by using a change in the resistance value, or the chromaticity of the LED module 38 can be adjusted.
  • FIG. 11 shows a lighting system 6 of a sixth preferred embodiment of the present invention having substantially the same structure as the second embodiment, including a plurality of sets of driving modules 40 and LED modules 42.
  • Each of the driving sample sets includes a phase angle detecting circuit 402, a processor 404, and a power conversion circuit 406.
  • Each group of the driving module 40 and the light emitting diode module 42 are installed at different positions.
  • the user can use the switch 20 to simultaneously control the driving module 40 to turn on or off the respective connected LED modules 42; press the switch 122 and simultaneously control the processor 404 of each of the driving modules 40 according to the pressing time and the number of times Switching between different control modes, such as full-light illumination mode, default illumination mode, and brightness adjustment mode.
  • the processor 404 of each of the driving modules 40 controls the connected power conversion circuit 406 to drive the light generated by the LED module to repeatedly change between the first brightness value and the second brightness value until the When the processor 404 determines that the state of the switch 122 is changed, it stops controlling the change of the brightness, and records the brightness value of the brightness generated by each of the LED modules 42 in place of the default brightness of the default illumination mode in each processor 404. value.
  • the processor 404 may cause timing errors due to process variations of the processor 404 itself, temperature changes, voltage instability, and other noise, resulting in timing errors. As such, there will be an error in the time when the processor 404 controls the brightness change of the LED module 42 in the brightness adjustment mode. The longer or longer the brightness of the light generated by the LED module 42 is, the more obvious the difference in brightness between the LED modules 42 is, so that each state of the switch 122 is changed when the state of the switch 122 is changed. The current brightness values are all different, causing the LED module 42 to generate bright light with different default brightness values.
  • the present embodiment further increases the synchronization mechanism in the brightness adjustment mode, so that the processor 404 can synchronously control the respective connected power conversion circuits 406 at the same time point.
  • the measuring circuit 402 detects the waveform of the electric energy output by the phase angle control module 16, and each of the processors 404 can relatively acquire the period of the alternating current power source S, and the reference point is taken as the synchronization by the alternating current power source S cycle.
  • the example is the first zero crossing in each cycle as the reference point.
  • the power conversion circuit 406 is controlled to drive the light generated by the LED module 42 to increase or decrease the luminance difference.
  • the first brightness value is "100”
  • the second brightness value is “10”
  • the brightness difference value is "1”
  • each of the processors 404 is in the AC power source S.
  • the power conversion circuit 406 is controlled to drive the LED module 42 to generate a brightness value of "100"; at the first zero crossing point of each subsequent cycle, one is reduced.
  • the luminance difference value is "1" until the luminance value is “10”, and then increases from the luminance value "10”, and each luminance power supply S period is increased by one luminance difference "1” until the luminance value is "100".
  • the next cycle is performed, so repeatedly changing between the first brightness value and the second brightness value.
  • the waveform of the AC power source S is used as a basis for synchronization, so that all the processors 404 can change the brightness value at the same time point every time, effectively changing the brightness of the LED module 42 to avoid the respective processing.
  • the brightness of the LED module 42 is controlled, the brightness of each of the LED modules 42 is inconsistent.
  • two zero-crossing points can be taken as the reference point of synchronization in each cycle of the AC power source S.
  • the peak value in the waveform can also be used as the reference point, and the synchronization effect can also be achieved.
  • each of the LED modules 42 includes a plurality of first LEDs and a plurality of second LEDs, and the color of the first LED is different from the color of the second LED.
  • the control mode of each of the processors 404 further includes a chromaticity adjustment mode for adjusting the chromaticity of each of the LED modules 42.
  • the waveform of the AC power source S can also be utilized as a basis for synchronization, that is, each of the processors 404 changes each of the LED modules at a reference point in each cycle.
  • the brightness ratio of the first light emitting diode and the second light emitting diode of 42 is such that each of the light emitting diode modules 42 can change the chromaticity synchronously at the same time point to avoid the color of the light emitting diode module 42. Degrees produce differences.
  • the illumination system and the phase signal transmission device of the present invention are described by taking an LED module as an example.
  • the illumination system of the present invention may also adopt other types of lamps, such as fluorescent lamps.
  • Gas generator lamps, for different types of lamps, only need to use the corresponding power conversion circuit to drive the lamps.
  • the phase signal transmission device formed by the phase angle control module and the driving module uses the phase of the input interface to pass through the delayed conduction angle of the power waveform, and is transmitted from the control terminal to the load terminal to output the state of the corresponding input interface.
  • the electrical signal controls the luminaire, that is, the signal is transmitted using the waveform of the AC power source.
  • the present invention effectively reduces the cost of installing the lighting system without adding extra wiring or transmitting signals by the wireless signal transmission device.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种照明系统,包含有输入接口、相角控制模块、灯具与驱动模块。该输入接口可受控制地于第一、第二状态间切换;该相角控制模块电性连接交流电源与该输入接口,在该输入接口于该第一状态时,该相角控制模块改变该交流电源的波形,使波形的其中半波周期产生延迟导通角后输出;该驱动模块内建有多个控制模式,该驱动模块接收该相角控制模块输出的电能,并依据该延迟导通角进行所述控制模式之间的切换,以控制该灯具产生亮光。本发明的优点及其效果在于,通过本发明的照明系统及其相位讯信号传送装置,利用电源回路的配线即可传输信号,无需额外增加控制线路的配线,有效减少安装照明系统的成本。

Description

照明系统及其相位信号传送装置 技术领域
本发明是与灯具控制有关;特别是指一种照明系统及其相位信号传送装置。
背景技术
按,一般建筑物的室内配线方式是在天花板上的电气盒与壁面上的电气盒之间预留两条供连接开关的电线。在安装电器设备(如灯具或电扇)时,将电器设备装设于天花板上,且将市电的其中一端连接于电器设备,市电的另一端通过预留的电线串接一个开关,再接回该电器设备上,以形成一个电源回路。通过切换该开关,即可控制电器设备的启闭。
随着科技的进步,电器设备的功能愈来愈多,以发光二极管照明系统为例,现今的发光二极管照明系统除了单纯的控制启闭外,更具备有调整亮度、色度的功能,因此,除了原本的电源回路外,也必须要有额外的控制线路才能将控制信号由壁面上的控制面板传送到装设于天花板上的发光二极管模块。
因此,要装设具备有亮度、色度的调整功能的发光二极管照明系统时,则必须另外再配接控制线路,利用控制线路传送控制信号,以控制照明系统的发光二极管模块。然,额外配接控制线路,将会使得房屋的修缮及装潢施工成本增加。
另有二种方式可在不额外配接控制线路的情况下传送控制信号,其一为无线传输,其二为载波传输。无线传输方式是在发光二极管模块及壁面的控制面板分别加装无线接收器与发射器,以无线传输的方式传送控制信号控制发光二极管模块。载波传输方式是利用调压器将控制信号调变成调频信号或调幅信号,利用电力线载波,再以解调器还成原来的控制信号后控制发光二极管模块。
然,前述两种方式的设备成本昂贵,且在建筑物壁面的发射器及调压器均须另外配接电源线外,配接电源线亦是额外的困扰。再者,无线或载波所传输的信号易受其它无线信号干扰,要通过各国EMI和EMS安规更是徒增困扰。
发明内容
有鉴于此,本发明的目的在于提供一种照明系统及其相位信号传送装置,可利用电源回路的配线传送信号。
缘以达成上述目的,本发明的目的及解决其技术问题是采用以下技术方案来实现的。依据本发明所提供的照明系统,包含有输入接口、相角控制模块、灯具与驱动模块。其中,该输入接口可受控制地于第一状态与第二状态切换;该相角控制模块电性连接交流电源与该输入接口,在该输入接口于该第一状态时,该相角控制模块改变该交流电源的波形,使该交流电源的波形的其中半波周期产生延迟导通角后输出;该灯具,可受控制产生亮光;该驱动模块电性连接该相角控制模块与该灯具,该驱动模块内建默认照明模式及亮度调整模式,该驱动模块接收该相角控制模块所输出的电能,并依据该延迟导通角进行所述模式之间的切换,以控制该灯具产生亮光;其中,该默认照明模式是驱动 该灯具产生具有预设亮度值的亮光;该亮度调整模式是驱动该灯具产生的亮光于第一亮度值与第二亮度值之间变化,直到该输入接口的状态改变时,停止控制亮度的变化,并记录该灯具当下所产生的亮光的亮度值,且将记录的亮度值取代该默认照明模式的该默认亮度值,并驱动该灯具产生具有新的预设亮度值的亮光。
本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。
其中,该输入接口于该第二状态时,该相角控制模块输出的电能的波形未产生该延迟导通角。
其中,该驱动模块包含有相互电性连接的电源转换电路、相角侦测电路与处理器,该电源转换电路电性连接该相角控制模块及该灯具,用以将该相角控制模块输出的电能转换成该灯具所需的电能;该相角侦测电路电性连接该相角控制模块,用以侦测该延迟导通角;该处理器内建有所述模式,且该处理器依据该相角侦测电路所侦测的延迟导通角进行所述模式之间的切换,并控制该电源转换电路驱动该灯具产生亮光。
其中,该亮度调整模式是驱动该灯具产生的亮光由介于该第一、第二亮度值之间的第三亮度值开始变化。
其中,包含有多个该灯具与多个该驱动模块;各该相角侦测电路更侦测该相角控制模块所输出的电能的波形,各该处理器切换至该亮度调整模式后,各该处理器在各该相角侦测电路所测得的波形的周期中至少一个基准点,驱动各该灯具产生的亮光改变亮度差值。
其中,该基准点为各该相角侦测电路所测得的波形的周期中的零交越点(zero crossing)。
其中,该基准点为各该相角侦测电路所测得的波形的周期中的峰值。
其中,该驱动模块更内建有全亮照明模式,该全亮照明模式是驱动该灯具产生额定功率下最大亮度值的亮光。
其中,该灯具包含有多个第一光源以及多个第二光源,所述第一光源的光色不同于所述该第二光源的光色;该默认照明模式包括有亮度比例信息,该亮度比例信息是记录该默认照明模式时,所述第一、第二光源的亮度比例,所述的亮度比例是指该第一、第二光源所产生的亮光的亮度值占该预设亮度值的比例;该驱动模块更内建有色度调整模式,该色度调整模式是驱动该灯具产生亮光,并在该预设亮度值不变的情况下,反复地改变该灯具的所述第一光源以及所述第二光源的亮度比例,直到该输入接口的状态改变时,停止控制所述第一、第二光源亮度比例的变化,并记录该当下该第一、第二光源的亮度比例,且将记录的亮度比例取代该默认照明模式的亮度比例信息,并驱动所述第一、第二光源产生具有新的亮度比例的亮光。
其中,该延迟导通角的角度小于或等于90度。
其中,该延迟导通角是产生于该交流电源的波形的正半波。
其中,该输入接口包含有开关,该开关为常开式的按压开关,该开关受按压时呈该第一状态,该第一状态为短路状态,该开关未受按压时则自动复归呈该第二状态,该第二状态为开路状态。
其中,该输入接口包含有多个该开关,各该开关受接压时,该相角控制模块对应产生不同角度的该延迟导通角,该驱动模块依据该延迟导通角的角度判断所述开关的状态,并依据所述开关的状态进行所述模式之间的切换。
本发明更提供另一个照明系统,包含有:可变电阻、相角控制模組、灯具与驱动模块。其中,该可变电阻可受控制地改变其电阻值;该相角控制模块电性连接交流电源与该可变电阻,该相角控制模块依据该可变电阻的电阻值改变该交流电源的波形,使该交流电源的波形的其中半波周期产生延迟导通角后输出,该延迟导通角的角度是随该可变电阻的电阻值变化;该灯具可受控制产生亮光;该驱动模块电性连接该相角控制模块与该灯具,用以接收该交流电源的电能并转换成该灯具所需的电能;该驱动模块接收该相角控制模块所输出的电能,并依据该延迟导通角的角度控制该灯具产生的亮光。
其中,该延迟导通角的最大角度为90度。
其中,该可变电阻的电阻值为零时,该延迟导通角的角度大于零度。
其中,该延迟导通角是产生于该交流电源的波形的正半波。
本发明的目的及解决其技术问题还采用以下技术方案来实现。依据本发明所提供的相位信号传送装置,是设于交流电源与灯具之间,包含有:开关、相角控制模块与驱动模块。其中,该开关可受控制地于短路状态与开路状态切换;该相角控制模块电性连接该交流电源与该开关,该开关于该短路状态时,该相角控制模块改变该交流电源的波形,使该交流电源的波形的其中半波周期产生延迟导通角后输出,该开关于该开路状态时,该相角控制模块输出的电能的波形未产生该延迟导通角;该驱动模块电性连接该相角控制模块与该灯具,该驱动模块接收该相角控制模块所输出的电能,且依据该延迟导通角判断该开关的状态,并产生相对应的电信号控制该灯具产生的亮光。
本发明的目的及解决其技术问题另外再采用以下技术方案来实现。依据本发明更提供另一个相位信号传送装置,是设于交流电源与灯具之间,包含有可变电阻、相角控制模块与驱动模块。其中,该可变电阻是可受控制地改变其电阻值;该相角控制模块电性连接该交流电源与该可变电阻,该相角控制模块依据该可变电阻的电阻值改变该交流电源的波形,使该交流电源的波形的其中半波周期产生延迟导通角后输出,且该延迟导通角的角度是随该可变电阻的电阻值变化;该驱动模块电性连接该相角控制模块与该灯具,该驱动模块接收该相角控制模块所输出的电能,并依据该延迟导通角的角度产生相对应的电信号控制该灯具产生的亮光。
本发明的优点及其效果在于,通过本发明的照明系统及其相位信号传送装置,利用电源回路的配线即可传输信号,无需额外增加控制线路的配线,有效减少安装照明系统的成本。
附图的简要说明
图1为本发明第一较佳实施例的照明系统的方框图。
图2A为波形图,揭示开关导通时正半波后缘产生延迟导通角。
图2B为波形图,揭示开关导通时正半波后缘产生延迟导通角。
图3为本发明第二较佳实施例的照明系统的方框图。
图4为本发明第三较佳实施例的照明系统的方框图。
图5为本发明第四较佳实施例的照明系统的方框图。
图6为第一较佳实施例的照明系统的另一个实施例。
图7为第二较佳实施例的照明系统的另一个实施例。
图8为第三较佳实施例的照明系统的另一个实施例。
图9为第四较佳实施例的照明系统的另一个实施例。
图10为本发明第五较佳实施例的照明系统的方框图。
图11为本发明第六较佳实施例的照明系统的方框图。
【主要元件符号说明】
1:照明系统                    10:发光二极管模块
12:输入接口                   122:开关
14:相位信号传送装置           16:相角控制模块
18:驱动模块                   182:电源转换电路
184:控制单元                  184a:相角侦测电路
184b:处理器                   2:照明系统
20:切换开关                   3:照明系统
22:输入接口                   222:开关
4:照明系统                    24:输入接口
242、244、246:开关            262、264、266:驱动模块
282、284、286:发光二极管模块  29:三路开关
5:照明系统                    30:切换开关
32:输入接口                   322:可变电阻
34:相角控制模块               36:驱动模块
362:处理器                    364:相角侦测电路
366:电源转换电路              38:发光二极管模块
S:交流电源
实现发明的最佳方式
为能更清楚地说明本发明,兹举下列实施例并配合图示详细说明如后。图1所示为本发明第一较佳实施例的照明系统1,包含有以发光二极管模块10为例的灯具、输入接口12、相位信号传送装置14。
该发光二极管模块10具有多个发光二极管,用以接收电信号以产生亮光提供照明。该输入接口12包含有开关122,该开关122为常开式的按压开关,该开关122在使用者按压时呈短路状态(即本发明定义的第一状态)。
该相位信号传送装置14包含有相角控制模块16与驱动模块18。其中:
该相角控制模块16电性连接交流电源S与该开关122,该相角控制模块16用以侦测该开关122的状态,并在该开关122受按压而导通时,该相角控制模块16改变该交流电源S的波形,使该交流电源S的波形的正半波周期产生延迟导通角后输出;而在该开关122未为受按压时,该开关122则自动复归呈开路状态(即本发明定义的第二状态),且该相角控制模块16不改变该交流电源S的波形,亦即该相角控制模块16所输出的波形中无该延迟导通角存在。而该延迟导通角的角度以小于或等于90度为佳,以减少该交流电源的谐波及减少功率因子降低的程度。
请参阅图2A,本实施例中,在该开关122受压时(如图2A的波形1),该相角控制模块16改变该交流电源S的波形,在其输出的电压波形的正半波周期的后缘产生产生延迟导通角(如图2A的波形2)。在实务上,可设计成如图2B所示于正半波周期的 前缘产生延迟导通角。当然,亦可在负半波前或后缘,抑或是在正半波及负半波周期的前缘或后缘产生延迟导通角,同样都可以达到作为开关122被按下的识别。
该驱动模块18包含有相互电性连接的电源转换电路182与控制单元184。其中,该电源转换电路182电性连接该相角控制模块16及该发光二极管模块10,用以接收该相角控制模块16所输出的电能,并转换成该发光二极管模块10所需的电能,该电源转换电路182是可受控制地改变该发光二极管模块10的开、关状态及亮度。在本实施例中,该电源转换电路182是以脉冲宽度调变(Pulse Width Modulation,PWM)电路为基础进行设计,并通过脉冲宽度调变的方式来调整供予该发光二极管模块10的电信号的频率宽度。当然在实际实施上,该电源转换电路182亦可为调整电信号大小或其他调整电信号的电路设计。
该控制单元184包含有相角侦测电路184a与处理器184b。该相角侦测电路184a电性连接该相角控制模块16,用以侦测该相角控制模块16输出的电能的波形中是否具有该延迟导通角以及侦测该延迟导通角的角度,并将侦测结果传递予该处理器184b。该处理器184b内建有多种控制模式,所述控制模式包括全亮照明模式、默认照明模式与亮度调整模式,并以其中一种控制模式控制该电源转换电路182输出的电信号,借以驱动该发光二极管模块10产生亮光,并利用该相角侦测电路184a所侦测该延迟导通角的结果判断该开关122的状态,以做为控制模式切换的依据。其中:
该全亮照明模式是控制该电源转换电路182驱动该发光二极管模块10产生额定功率下最大亮度值的亮光。
该默认照明模式是控制该电源转换电路182驱动该发光二极管模块10产生默认亮度值的亮光,在本实施例中,该预设亮度值初始设定为最大亮度值的一半,而在亮度调整模式中是可更新该预设亮度值。
该亮度调整模式是控制该电源转换电路182驱动该发光二极管模块10产生的亮光反复于第一亮度值与第二亮度值之间变化,直到该处理器184b判断该开关122的状态改变时,停止控制亮度的变化,并记录该发光二极管模块10当下所产生的亮光的亮度值,且将记录的亮度值取代该默认照明模式原先的默认亮度值,并驱动该发光二极管模块10产生具有新的预设亮度值的亮光。在本实施例中,该第一亮度值为最大亮度值,该第二亮度值为最小亮度值,借此,在亮度调整模式时,该发光二极管模块10的亮光即在最大亮度与最小亮度之间变化。实务上,该处理器184b亦可控制该电源转换电路182驱动该发光二极管模块10产生的亮光由介于该第一、第二亮度值之间的第三亮度值开始增加或减少,而反复于第一亮度值与第二亮度值之间变化。该第三亮度值可设定为最大亮度值的二分之一,借此切换至该亮度调整模式时,先以居中的亮度发光,避免使用者因亮度变化太大而感到眼睛不适。
由于该开关122被按压的期间,该相角控制模块16输出的电能的波形中每一个周期皆会有该延迟导通角存在,因此该处理器184b可依据具有该延迟导通角的周期数计算该开关122被压下的时间长度,据以进行控制模式切换。
在初始状态(交流电源S刚接通时)且该开关122未按压前,该相角控制模块16未改变该交流电源S的波形,该相角侦测电路184a所侦测的波形未具有该延迟导通角,此时,该处理器184b控制该电源转换电路182阻断供予该发光二极管模块10的电能,使该发光二极管模块10为熄灭的状态。
在该开关122按压后,该相角侦测电路184a侦测到该相角控制模块16输出的电能的波形中具有该延迟导通角,而该处理器184b判断该开关122被按压的按压时间,并进行相对应的控制。
在该按压时间小于预定时间(本实施例中设为1.2秒)时,该处理器184b切换至该全亮照明模式,使该发光二极管模块10产生具有最大亮度值的亮光。
再按压一次该开关122后,且按压时间小于该预定时间,该处理器184b切换至该默认照明模式,使该发光二极管模块发出具有该默认亮度值的亮光。
再按压一次该开关122后,且按压时间小于该预定时间,该处理器184b控制该电源转换电路182阻断供予该发光二极管模块10的电能,使该发光二极管模块10为熄灭的状态。
当使用者需要改变该预设亮度值时,按压该开关122超过该预定时间,该处理器184b即切换至该亮度调整模式,以供用户改变设定的预设亮度值。
借由上述的结构,该照明系统1应用于建筑物时,可将该开关122及该相角控制模块16装设于建筑物的壁面上(即装设于控制端),而将该驱动模块18及该发光二极管模块10装设于建筑物的壁面或天花板(即装设于负载端)。如此,该相角控制模块16与该驱动模块18之间只需用两条连接交流电源S的电线连接,换言之,利用建筑物原有的配线即可传输对应该开关122状态的波形至该驱动模块18,而该驱动模块18即可判断该开关122的状态,并送出对应的电信号控制该发光二极管模块10。
前述的装设方式仅是应用例而已,并不以此为限,可依实际的需求调整各构件装设的位置。
在实务上,该发光二极管模块10可包含有多个以第一发光二极管为例的第一光源及多个以第二发光二极管为例的第二光源,且所述第一发光二极管的光色不同于所述该第二发光二极管的光色。举例而言,所述第一发光二极管的光色为冷光色系(如白光、蓝光等),而所述第二发光二极管的光色为暖光色系(如黄光、红光等)。
该驱动模块18的电源转换电路182则可个别控制所述第一发光二极管及所述第二发光二极管的亮度比例,而所述的亮度比例是指该第一、第二发光二极管所产生的亮光的亮度值占该最大亮度值或该预设亮度值的比例,利用所述第一发光二极管与第二发光二极管的亮度比例的搭配,可达到调整该发光二极管模块10产生的亮光的色温。
该处理器184b的控制模式中,该全亮照明模式包括有第一亮度比例信息,该第一亮度比例信息是记录该全亮照明模式时,所述第一、第二发光二极管的亮度比例。该默认照明模式包括有第二亮度比例信息,该第二亮度比例信息是记录该默认照明模式时,所述第一、第二发光二极管的亮度比例。
该处理器184b的控制模式更包含有色度调整模式,供调整该第一比例信息或第二比例信息。当该处理器184b操作于该全亮照明模式或该默认照明模式时,用户持续按压该开开关122超过另一个设定时间(本实施例中为4秒),该处理器的操作模式则切换至该色度调整模式。其中:
该色度调整模式是控制该电源转换电路182驱动该发光二极管模块10产生亮光,并在亮度值(即最大亮度值或预设亮度值)不变的情况下,反复地改变该发光二极管模块10的所述第一发光二极管以及所述第二发光二极管的亮度比例,直到该处理器184b判断该开关122的状态改变时,停止控制所述第一、第二发光二极管亮度比例的变化, 并记录该当下该第一、第二发光二极管的亮度比例,且将记录的亮度比例取代该全亮照明模式原先的第一亮度比例信息或取代该默认照明模式原先的第二亮度比例信息,并驱动所述第一、第二发光二极管产生具有新的亮度比例的亮光。
借此,使用者仅需通过该开关122按压时间的长短即可进行亮度的切换,以及调整亮度或调整色度的选择。
以下再提供其它较佳可行的实施例,同样具有相同上述的效果。
图3所示为本发明第二较佳实施例的照明系统2,其是以上述第一实施例的结构为基础,更增设切换开关20,分别电性连接该交流电源S与该相角控制模块16。该切换开关20供开启及关闭该发光二极管模块10的亮光。
在本实施例中,该切换开关20导通时,该驱动模块18的处理器184b操作于该全亮照明模式,使该发光二极管模块10的亮光为最亮。同样地,通过按压该开关122的按压时间长短,即可在该默认照明模式、该全亮照明模式之间切换,而且同样可切换至该亮度调整模式或该色度调整模式。
图4所示为本发明第三较佳实施例的照明系统3,其是以上述第二实施例的结构为基础,不同的是本实施例的输入接口22包含有二个开关222,224,该二个开关222,224电性连接该相角控制模块16。各该开关222,224被按压而呈短路状态时,该相角控制模块16使该交流电源S的波形的正半波周期产生该延迟导通角后输出,且按压各该开关222,224所产生的该延迟导通角的角度各不相同。借此,该处理器184b即可利用该相角侦测电路184a所侦测的该延迟导通角的角度对应所述开关222,224的按压状态,以进行在所述控制模式之间切换。
举例而言,利用短按该开关222(即按压时间小于该设定时间)作为该全亮照明模式与该默认照明模式之间的切换;长按该开关222(即按压时间大于该设定时间),则切换至该亮度调整模式。
而该处理器184b更可内建多个预设色度,各该预设色度是对应一种所述第一、第二发光二极管的亮度比例。在该全亮照明模式或该默认照明模式时,利用短按该开关224,以切换其中该预设色度,并将该预设色度取代原先储存的第一亮度比例信息或第二亮度比例信息,并驱动所述第一、第二发光二极管产生具有新的亮度比例的亮光。
此外,在该全亮照明模式或该默认照明模式时,利用长按该开关224,则切换至该色度调整模式,以进行该发光二极管模块10的色度调整。
图5所示为本发明第四较佳实施例的照明系统4,其具有大致相同于上述第二实施例的结构,不同的是,本实施例的输入接口24包含有三个开关242,244,246,该三个开关242,244,246电性连接该相角控制模块16。按压各该开关242,244,246时,该相角控制模块16则产生对应各该开关242,244,246的特定角度的该延迟导通角。此外,本实施例的照明系统4包含有三组驱动模块262,264,266,及发光二极管模块282,284,286,每一该驱动模块262,264,266是对应判断一个特定角度的该延迟导通角,借此,各该驱动模块262,264,266即可对应侦测各该开关242,244,246的按压状态,进而控制各该发光二极管模块282,284,286。
举例而言,该开关242被按压时,该驱动模块262侦测到相对应的该延迟导通角的角度并计算按压时间,以对该发光二极管模块282进行控制。
当然,本实施例输入接口24的开关的数量不以三个为限,亦可设置三个上以,且 在负载端相对应地设置相同数量的驱动模块及发光二极管模块,同样可以达到在控制端操控多组发光二极管模块的目的。
此外,为配合建筑物的格局,上述第一实施例的照明系统亦可设计成如图6所示的连接方式,并将二组该相角控制模块16及该开关122设于建筑物中的不同位置,借此,用户即可在不同的位置控制发光二极管模块10。依据相同的构思,第二、第三、第四实施例的照明系统亦可分别设计成如图7至图9所示的连接方式,将二组三路开关29、该相角控制模块16及输入接口12,22,24设于建筑物中的不同位置,用户即可在不同的位置控制发光二极管模块。
图10所示为本发明第五较佳实施例的照明系统5,包含有切换开关30、输入接口32、相角控制模块34、驱动模块36与发光二极管模块38。该输入接口32包含有可变电阻322,且该相角控制模块34电性连接该可变电阻322,并依据该可变电阻322的电阻值,产生对应该可变电阻322电阻值的角度的该延迟导通角。本实施例中,该可变电阻322的电阻值愈大,对应该延迟导通角的角度则愈大;反之,电阻值愈小则该延迟导通角的角度愈小,即使该可变电阻322的电阻值调整到0欧姆,该延迟导通角的角度大于零度,亦即该相角控制模块34输出的电能的波形中仍有该延迟导通角存在。
而该驱动模块36的处理器362则依据相角侦测电路364所侦测的该延迟导通角的角度,计算该可变电阻322的电阻值。并利用电阻值的变化相对应的控制电源转换电路366输出对应的电信号至该发光二极管模块38,以进行控制。例如,可利用电阻值的变化调整该发光二极管模块38的亮度,或是调整该发光二极管模块38的色度。
图11所示为本发明第六较佳实施例的照明系统6,其具有大致相同于第二实施例的结构,包含有多组驱动模块40及发光二极管模块42。各该驱动样组包括相角侦测电路402、处理器404与电源转换电路406。各组驱动模块40及发光二极管模块42是装设于不同的位置。使用者可使用该切换开关20同时控制所述驱动模块40点亮或熄灭各自连接的发光二极管模块42;按压该开关122且依据按压时间及次数,同时控制各该驱动模块40的处理器404在不同控制模式之间的切换,如全亮照明模式、默认照明模式、亮度调整模式。
在亮度调整模式时,各该驱动模块40的处理器404是各自控制所连接的电源转换电路406驱动发光二极管模块产生的亮光反复于第一亮度值与第二亮度值之间变化,直到各该处理器404判断该开关122的状态改变时,停止控制亮度的变化,并记录各该发光二极管模块42当下所产生的亮光的亮度值,取代各该处理器404中该默认照明模式原先的默认亮度值。
在实际使用上,所述处理器404可能因为处理器404本身的制程差异、温度变化、电压不稳及其他噪声的干扰,造成其输出信号产生时序上的偏移而产生计时的误差。如此,将造成在亮度调整模式时,所述处理器404各自控制发光二极管模块42亮度改变的时间点有所误差。所述发光二极管模块42产生的亮光反复变化的时间愈长或次数愈多,所述发光二极管模块42之间的亮度差异愈明显,使得该开关122的状态改变时每一该处理器404记录的当下亮度值皆不相同,造成所述发光二极管模块42产生不同默认亮度值的亮光。
为避免上述的情形,本实施例在亮度调整模式时,更增加同步的机制,以使所述处理器404可在同一个时间点同步地控制各自连接的电源转换电路406。利用各该相角侦 测电路402侦测该相角控制模块16输出的电能的波形,各该处理器404即可相对取得该交流电源S的周期,由该交流电源S周期中取基准点作为同步之用,本实施例是以每一个周期中的第一个零交越点(zero crossing)作为该基准点。各该处理器404每次测得该基准点时,即控制该电源转换电路406驱动该发光二极管模块42产生的亮光增加或减少亮度差值。
举例而言,该第一亮度值为″100″,该第二亮度值为″10″,该亮度差值为″1″;在切换至亮度调整模式后,各该处理器404在交流电源S周期的第一个零交越点时,控制各该电源转换电路406驱动发光二极管模块42产生的亮度值为″100″;在之后的每一个周期的第一个零交越点时,减少一个亮度差值″1″,直到亮度值为″10″,再由亮度值″10″开始增加,每一次交流电源S周期增加一个亮度差值″1″,直到增加到亮度值为″100″再进行下一次的循环,如此重复地在第一亮度值与第二亮度值之间变化。
借此,通过该交流电源S波形作为同步的依据,可确保所有的处理器404每次皆在同一个时间点改变亮度值,有效地使所述发光二极管模块42的亮度变化一致,避免各个处理器404分别进行发光二极管模块42亮度控制时发生各个发光二极管模块42亮度不一致的情形。在实务上亦可以在交流电源S的每一个周期中取二个零交越点作为同步的基准点,当然亦可以波形中的峰值作为基准点,同样可以达到同步的效果。
在实务上,各该发光二极管模块42包含有多个第一发光二极管及多个第二发光二极管,且第一发光二极管的光色不同于第二发光二极管的光色。各该处理器404的控制模式更包含有色度调整模式,以供调整各该发光二极管模块42的色度。在各该处理器404操作于该色度调整模式,同样可利用该交流电源S的波形作为同步的依据,亦即,各该处理器404在每一个周期中的基准点改变各该发光二极管模块42的所述第一发光二极管以及所述第二发光二极管的亮度比例,如此,即可让各该发光二极管模块42在同一个时间点同步地改变色度,避免所述发光二极管模块42的色度产生差异。
在上述各实施例中,是以发光二极管模块为例说明本发明的照明系统及相位信号传送装置,本发明的照明系统除了采用发光二极管模块之外,亦可采用其它类型的灯具,例如荧光灯、气体发电灯,对于不同类型的灯具仅需采用相对应的电源转换电路即可驱动灯具。
据上所述,本发明利用相角控制模块与驱动模块构成的相位信号传送装置,将输入接口的状态通过电源波形的延迟导通角,由控制端传送到负载端,以输出对应输入接口状态的电信号控制灯具,亦即利用交流电源的波形传送信号。相比于传统的信号传输方式,本发明无需增加额外的配线或是以无线信号传输装置传输信号,有效减少安装照明系统的成本。
以上所述,仅是本发明的较佳实施例而已,并非对本发明做任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (19)

  1. 一种照明系统,其特征在于包含有:
    输入接口,受控制地在第一状态与第二状态切换;
    相角控制模块,电性连接交流电源与该输入接口,在该输入接口于该第一状态时,该相角控制模块改变该交流电源的波形,使该交流电源的波形的其中半波周期产生延迟导通角后输出;
    灯具,受控制产生亮光;
    驱动模块,电性连接该相角控制模块与该灯具,该驱动模块内建默认照明模式及亮度调整模式,该驱动模块接收该相角控制模块所输出的电能,并依据该延迟导通角进行所述模式之间的切换;其中:
    该默认照明模式是驱动该灯具产生具有预设亮度值的亮光;
    该亮度调整模式是驱动该灯具产生的亮光于第一亮度值与第二亮度值之间变化,直到该输入接口的状态改变时,停止控制亮度的变化,并记录该灯具当下所产生的亮光的亮度值,且将记录的亮度值取代该默认照明模式的该默认亮度值,并驱动该灯具产生具有新的预设亮度值的亮光。
  2. 根据权利要求1所述的照明系统,其特征在于:其中该输入接口于该第二状态时,该相角控制模块输出的电能的波形未产生该延迟导通角。
  3. 根据权利要求1所述的照明系统,其特征在于:其中该驱动模块包含有相互电性连接的电源转换电路、相角侦测电路与处理器,该电源转换电路电性连接该相角控制模块及该灯具,用以将该相角控制模块输出的电能转换成该灯具所需的电能;该相角侦测电路电性连接该相角控制模块,用以侦测该延迟导通角;该处理器内建有所述模式,且该处理器依据该相角侦测电路所侦测的延迟导通角进行所述模式之间的切换,并控制该电源转换电路驱动该灯具产生亮光。
  4. 根据权利要求1或3所述的照明系统,其特征在于:其中该亮度调整模式是驱动该灯具产生的亮光由介于该第一、第二亮度值之间的第三亮度值开始变化。
  5. 根据权利要求3所述的照明系统,其特征在于:包含有多个该灯具与多个该驱动模块;各该相角侦测电路更侦测该相角控制模块所输出的电能的波形,各该处理器切换至该亮度调整模式后,各该处理器在各该相角侦测电路所测得的波形的周期中至少一个基准点,驱动各该灯具产生的亮光改变亮度差值。
  6. 根据权利要求5所述的照明系统,其特征在于:其中该基准点为各该相角侦测电路所测得的波形的周期中的零交越点。
  7. 根据权利要求5所述的照明系统,其特征在于:其中该基准点为各该相角侦测电路所测得的波形的周期中的峰值。
  8. 根据权利要求1所述的照明系统,其特征在于:其中该驱动模块更内建有全亮照明模式,该全亮照明模式是驱动该灯具产生额定功率下最大亮度值的亮光。
  9. 根据权利要求1所述的照明系统,其特征在于:其中该灯具包含有多个第一光源以及多个第二光源,所述第一光源的光色不同于所述该第二光源的光色;该默认照明模式包括有亮度比例信息,该亮度比例信息是记录该默认照明模式时,所述第一、第二光源的亮度比例,所述的亮度比例是指该第一、第二光源所产生的亮光的亮度值占该预 设亮度值的比例;该驱动模块更内建有色度调整模式,该色度调整模式是驱动该灯具产生亮光,并在该预设亮度值不变的情况下,反复地改变该灯具的所述第一光源以及所述第二光源的亮度比例,直到该输入接口的状态改变时,停止控制所述第一、第二光源亮度比例的变化,并记录该当下该第一、第二光源的亮度比例,且将记录的亮度比例取代该默认照明模式的亮度比例信息,并驱动所述第一、第二光源产生具有新的亮度比例的亮光。
  10. 根据权利要求1所述的照明系统,其特征在于:其中该延迟导通角的角度小于或等于90度。
  11. 根据权利要求1所述的照明系统,其特征在于:其中该延迟导通角是产生于该交流电源的波形的正半波。
  12. 根据权利要求1或2所述的照明系统,其特征在于:其中该输入接口包含有开关,该开关为常开式的按压开关,该开关受按压时呈该第一状态,该第一状态为短路状态,该开关未受按压时则自动复归呈该第二状态,该第二状态为开路状态。
  13. 根据权利要求12所述的照明系统,其特征在于:其中该输入接口包含有多个该开关,各该开关受接压时,该相角控制模块对应产生不同角度的该延迟导通角,该驱动模块依据该延迟导通角的角度判断所述开关的状态,并依据所述开关的状态进行所述模式之间的切换。
  14. 一种照明系统,其特征在于包含有:
    可变电阻,受控制地改变其电阻值;
    相角控制模块,电性连接交流电源与该可变电阻,该相角控制模块依据该可变电阻的电阻值改变该交流电源的波形,使该交流电源的波形的其中半波周期产生延迟导通角后输出,该延迟导通角的角度是随该可变电阻的电阻值变化;
    灯具,受控制产生亮光;
    驱动模块,电性连接该相角控制模块与该灯具,用以接收该交流电源的电能并转换成该灯具所需的电能;该驱动模块接收该相角控制模块所输出的电能,并依据该延迟导通角的角度控制该灯具产生的亮光。
  15. 根据权利要求14所述的照明系统,其特征在于:其中该延迟导通角的最大角度为90度。
  16. 根据权利要求14所述的照明系统,其特征在于:其中该可变电阻的电阻值为零时,该延迟导通角的角度大于零度。
  17. 根据权利要求14所述的照明系统,其特征在于:其中该延迟导通角是产生于该交流电源的波形的正半波。
  18. 一种相位信号传送装置,是设于交流电源与灯具之间,其特征在于包含有:
    开关,受控制地在短路状态与开路状态切换;
    相角控制模块,电性连接该交流电源与该开关,该开关于该短路状态时,该相角控制模块改变该交流电源的波形,使该交流电源的波形的其中半波周期产生延迟导通角后输出,该开关于该开路状态时,该相角控制模块输出的电能的波形未产生该延迟导通角;
    驱动模块,电性连接该相角控制模块与该灯具,该驱动模块接收该相角控制模块所输出的电能,且依据该延迟导通角判断该开关的状态,并产生相对应的电信号控制该灯具产生的亮光。
  19. 一种相位信号传送装置,是设于交流电源与灯具之间,其特征在于包含有:
    可变电阻,其是受控制地改变其电阻值;
    相角控制模块,电性连接该交流电源与该可变电阻,该相角控制模块依据该可变电阻的电阻值改变该交流电源的波形,使该交流电源的波形的其中半波周期产生延迟导通角后输出,且该延迟导通角的角度是随该可变电阻的电阻值变化;
    驱动模块,电性连接该相角控制模块与该灯具,该驱动模块接收该相角控制模块所输出的电能,并依据该延迟导通角的角度产生相对应的电信号控制该灯具产生的亮光。
PCT/CN2014/000806 2013-09-29 2014-08-29 照明系统及其相位信号传送装置 WO2015043108A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016517129A JP2016523428A (ja) 2013-09-29 2014-08-29 照明システム及びその位相角信号伝送装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320617398.4U CN203608408U (zh) 2013-04-24 2013-09-29 照明系统及其相位信号传送装置
CN201320617398.4 2013-09-29

Publications (1)

Publication Number Publication Date
WO2015043108A1 true WO2015043108A1 (zh) 2015-04-02

Family

ID=52744744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000806 WO2015043108A1 (zh) 2013-09-29 2014-08-29 照明系统及其相位信号传送装置

Country Status (2)

Country Link
JP (1) JP2016523428A (zh)
WO (1) WO2015043108A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107333358A (zh) * 2017-08-10 2017-11-07 浙江生辉照明有限公司 感应式灯泡

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203167348U (zh) * 2013-02-08 2013-08-28 东林科技股份有限公司 可调光的发光二极管照明系统及其驱动装置
CN203181288U (zh) * 2013-01-31 2013-09-04 群胜系统科技股份有限公司 电源调光控制系统及其控制装置
CN103369780A (zh) * 2012-04-05 2013-10-23 东莞柏泽光电科技有限公司 节能照明装置及其方法
CN203608408U (zh) * 2013-04-24 2014-05-21 东林科技股份有限公司 照明系统及其相位信号传送装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582264A (ja) * 1990-12-20 1993-04-02 Toshiba Lighting & Technol Corp 照明器具
JPH05174979A (ja) * 1991-12-19 1993-07-13 Matsushita Electric Works Ltd 照明制御装置
JPH07131869A (ja) * 1993-10-29 1995-05-19 Maeda Zouen Doboku Kk 双方向データ通信方式及び双方向データ通信システム
JP2007005256A (ja) * 2005-06-27 2007-01-11 Matsushita Electric Works Ltd 照明システム
JP5285343B2 (ja) * 2008-07-09 2013-09-11 パナソニック株式会社 点灯装置、照明器具、および照明システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103369780A (zh) * 2012-04-05 2013-10-23 东莞柏泽光电科技有限公司 节能照明装置及其方法
CN203181288U (zh) * 2013-01-31 2013-09-04 群胜系统科技股份有限公司 电源调光控制系统及其控制装置
CN203167348U (zh) * 2013-02-08 2013-08-28 东林科技股份有限公司 可调光的发光二极管照明系统及其驱动装置
CN203608408U (zh) * 2013-04-24 2014-05-21 东林科技股份有限公司 照明系统及其相位信号传送装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107333358A (zh) * 2017-08-10 2017-11-07 浙江生辉照明有限公司 感应式灯泡
CN107333358B (zh) * 2017-08-10 2023-09-22 浙江生辉照明有限公司 感应式灯泡

Also Published As

Publication number Publication date
JP2016523428A (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
EP2277357B1 (en) Methods and apparatus for encoding information on an a.c. line voltage
EP2621247B1 (en) Dimming method and system for LED lamp assemblies
WO2014121660A1 (zh) 可调光的发光二极管照明系统及其驱动装置与驱动方法
TW201433205A (zh) 可調光之發光二極體照明系統及其驅動裝置與驅動方法
WO2015051592A1 (zh) 多灯具的控制方法
CN203608408U (zh) 照明系统及其相位信号传送装置
TWI504182B (zh) A method of transmitting a signal using a power waveform
WO2015043108A1 (zh) 照明系统及其相位信号传送装置
CN205336577U (zh) 单线制交流电载波调光开关装置
JP3900761B2 (ja) 照明制御装置
TWI538563B (zh) Multi-fixture control method
EP2695491A1 (en) Trailing-edge-phase-controlled light modulating circuit
WO2014173176A1 (zh) 利用电源波形传输信号的方法
TWM471729U (zh) 照明系統及其相位訊號傳送裝置
US9282617B2 (en) Illumination system and phase signal transmitter of the same
TWI566494B (zh) Electrical control system
KR101242457B1 (ko) 에너지절약형 조명제어장치
CN106658816A (zh) 发光二极体装置
TWM513538U (zh) 根據不同供電訊號之波形控制複數組發光模組之調光系統
TWI568312B (zh) And a control device for controlling the load by changing the AC voltage conduction angle as a control command
JP3157972U (ja) 発光ダイオード用調光駆動装置
TWM503710U (zh) 電器控制系統
KR20120125864A (ko) 상용 ac 라인 신호 방식의 led 조광제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517129

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848175

Country of ref document: EP

Kind code of ref document: A1