WO2014171525A1 - Laminate structure, flexible printed wiring board and method for manufacturing same - Google Patents

Laminate structure, flexible printed wiring board and method for manufacturing same Download PDF

Info

Publication number
WO2014171525A1
WO2014171525A1 PCT/JP2014/060986 JP2014060986W WO2014171525A1 WO 2014171525 A1 WO2014171525 A1 WO 2014171525A1 JP 2014060986 W JP2014060986 W JP 2014060986W WO 2014171525 A1 WO2014171525 A1 WO 2014171525A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed wiring
flexible printed
wiring board
resin
layer
Prior art date
Application number
PCT/JP2014/060986
Other languages
French (fr)
Japanese (ja)
Inventor
宮部 英和
亮 林
横山 裕
直之 小池
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013087826A external-priority patent/JP5847754B2/en
Priority claimed from JP2013107519A external-priority patent/JP6050180B2/en
Priority claimed from JP2013107520A external-priority patent/JP6050181B2/en
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to KR1020157028866A priority Critical patent/KR102229343B1/en
Priority to CN201480021937.5A priority patent/CN105164585B/en
Publication of WO2014171525A1 publication Critical patent/WO2014171525A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0195Dielectric or adhesive layers comprising a plurality of layers, e.g. in a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks

Definitions

  • the present invention relates to a laminated structure, in particular, a photosensitive resin structure, a dry film using the same, and a flexible printed wiring board, and more particularly, a photosensitive resin structure capable of forming a fine pattern on the flexible printed wiring board.
  • a non-photosensitive resin structure obtained by applying a thermosetting adhesive to a film such as polyimide has been used as a protective film for a flexible printed wiring board.
  • a method for forming such a non-photosensitive resin structure on a flexible printed wiring board by patterning conventionally, a method of thermocompression bonding on the flexible printed wiring board after punching by punching has been used.
  • a method has been used in which a solvent-soluble thermosetting resin composition is directly pattern-printed on a flexible printed wiring board and thermally cured to form a pattern.
  • a polyimide film has been used as a suitable material for a flexible printed wiring board because it has flexibility and is excellent in heat resistance, mechanical properties, and electrical properties (see, for example, Patent Document 1).
  • the shape of the pattern edge part collapses due to resin oozing at the time of application or thermocompression bonding, so it is required for miniaturization of wiring and miniaturization of chip parts mounted on flexible printed wiring boards. It was difficult to form a fine pattern.
  • a cover based on polyimide with excellent mechanical properties such as heat resistance and flexibility is used for the bent part (bent part).
  • Lay is used (see, for example, Patent Documents 2 and 3), and the mounting part (non-bent part) uses a photosensitive resin composition that is excellent in electrical insulation and solder heat resistance and can be finely processed. Is widely adopted.
  • a polyimide-based coverlay with excellent mechanical properties such as heat resistance and flexibility is not suitable for fine wiring because it requires processing by die punching. Therefore, it is necessary to partially use an alkali developing type photosensitive resin composition (solder resist) that can be processed by photolithography in a chip mounting portion that requires fine wiring.
  • solvent resist alkali developing type photosensitive resin composition
  • an insulating film as a coverlay as a solder resist for a flexible printed wiring board.
  • a coverlay film requires a complicated process for pattern formation, and is not suitable for punching holes by punching. There is a problem that it is difficult to cope with the formation of a fine pattern due to low processing accuracy and oozing of the resin during thermocompression bonding.
  • an object of the present invention is to form a photosensitive resin structure that is capable of forming a fine pattern on a flexible printed wiring board and is excellent in insulation and flexibility, and a cured product thereof as a protective film, for example, a coverlay or a solder resist. It is in providing the flexible printed wiring board which has.
  • Another object of the present invention is to provide an insulating film for a flexible printed wiring board having excellent reliability and processing accuracy such as impact resistance, bendability, and low warpage, and excellent workability.
  • Part) and a laminated structure suitable for the batch formation process of the mounting part (non-bending part) and its cured product as a protective film, for example, coverlay or solder resist, for reliability such as impact resistance and flexibility The object is to provide an excellent flexible printed wiring board.
  • Still another object of the present invention is to provide an insulating film for a flexible printed wiring board excellent in reliability and processing accuracy such as impact resistance, bendability, and low warpage, particularly a bent portion (bend portion) and mounting.
  • An object of the present invention is to provide a flexible printed wiring board manufacturing method and a flexible printed wiring board capable of forming an insulating film, such as a cover lay and a solder resist, at a portion (non-bent portion) with good workability.
  • the present inventors have made the above object by forming a protective film for a flexible printed wiring board from a photosensitive resin structure in which a plurality of developable resin layers are laminated.
  • the present invention has been completed.
  • the photosensitive resin structure of the present invention comprises a developable adhesive layer (a) and a developable protective layer (b) laminated on the flexible printed wiring board via the developable adhesive layer (a).
  • a photosensitive resin structure having at least the developable protective layer (b) can be patterned by light irradiation, and the developable adhesive layer (a) and the developable protective layer (b) The pattern can be collectively formed by development.
  • both the developable adhesive layer (a) and the developable protective layer (b) can be patterned by light irradiation.
  • the developable adhesive layer (a) is thicker than the developable protective layer (b).
  • the photosensitive resin structure of the present invention can be used for at least one of a bent portion and a non-bent portion of the flexible printed wiring board, and among the cover lay and the solder resist of the flexible printed wiring board. Can be used to form at least one of the following.
  • the dry film of the present invention is characterized in that at least one surface of the photosensitive resin structure is supported or protected by a film.
  • the flexible printed wiring board of the present invention has a protective film formed by patterning the photosensitive resin structure formed on the flexible printed wiring board by light irradiation and forming the pattern collectively by development. It is a feature.
  • the developable adhesive layer (a) is formed by applying a photosensitive or non-photosensitive resin composition (a1) on a flexible printed wiring board.
  • the laminated structure of the present invention comprises a resin layer (A) made of an alkali developing resin composition, and a resin layer (B) laminated on a flexible printed wiring board via the resin layer (A).
  • the resin layer (B) is composed of a photosensitive thermosetting resin composition containing an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound. To do.
  • both the resin layer (A) and the resin layer (B) can be patterned by light irradiation.
  • the laminated structure of the present invention can be used for at least one of a bent portion and a non-bent portion of the flexible printed wiring board.
  • the cover lay of the flexible printed wiring board, the solder resist, and the interlayer insulating material can be used as at least one of the applications.
  • the dry film of the present invention is characterized in that at least one surface of the laminated structure is supported or protected by a film.
  • the flexible printed wiring board of the present invention has an insulating film formed by forming a layer of the laminated structure on the flexible printed wiring board, patterning by light irradiation, and forming the pattern in a batch with a developer. It is a feature.
  • the flexible printed wiring board of the present invention is formed by sequentially forming the resin layer (A) and the resin layer (B) without using the laminated structure according to the present invention, and then patterning by light irradiation.
  • the pattern may be formed in a lump.
  • the “pattern” means a patterned cured product, that is, an insulating film.
  • the present inventors have completed the present invention having the following contents. That is, in the method for producing a flexible printed wiring board of the present invention, the step of forming at least one resin layer (A) made of an alkali-developable photosensitive resin composition (A1) on the flexible printed wiring board, the resin layer ( A) A step of forming at least one resin layer (B) composed of a photosensitive thermosetting resin composition (B1) containing an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound.
  • the flexible printed wiring board of the present invention is manufactured by the above manufacturing method.
  • a fine pattern on a flexible printed wiring board it is possible to form a fine pattern on a flexible printed wiring board, and have a photosensitive resin structure excellent in insulation and flexibility, and a cured product thereof as a protective film, for example, a coverlay and a solder resist.
  • a printed wiring board can be provided.
  • the insulating film for flexible printed wiring boards which has excellent reliability and processing accuracy such as impact resistance, bendability, and low warpage, and excellent workability, particularly a bent portion (bent portion).
  • a laminated structure suitable for the batch formation process of the mounting part (non-bent part) and its cured product as an insulating film for example, coverlay, solder resist, interlayer insulating layer, and reliability such as impact resistance and flexibility
  • a flexible printed wiring board having excellent properties can be provided.
  • the manufacturing method of the flexible printed wiring board which can form the insulating film in a bending part) for example, a coverlay and a soldering resist, collectively with sufficient workability
  • the photosensitive resin structure of the present invention can be laminated on a flexible printed wiring board, and can be patterned by light irradiation on the flexible printed wiring board, and a pattern can be collectively formed by development.
  • the pattern means a patterned cured product, that is, a protective film.
  • the coverlay is pressure-bonded on the flexible printed wiring board.
  • the developable adhesive layer (a) and the development are applied on the flexible printed wiring board. After laminating the protective layer (b), it is possible to form a pattern all at once by light irradiation and development.
  • FIG. 1 shows a photosensitive resin structure according to an embodiment of the present invention.
  • the structure 1 shown in the figure has a developable adhesive layer (a) and a developable protective layer (b) in this order on a flexible printed wiring board in which a copper circuit 3 is formed on a flexible substrate 2, and at least developable protection.
  • the layer (b) can be patterned by light irradiation, and the developable adhesive layer (a) and the developable protective layer (b) can collectively form a pattern by development.
  • patterning means that a portion irradiated with light changes from a non-developable state to a developable state (positive type) or changes from a developable state to a non-developable state (negative type). To tell.
  • pattern formation means that a light irradiated part is developed and an unirradiated part remains in a pattern (positive type), or an unirradiated part is developed and a light irradiated part remains in a pattern (negative type). )
  • both the developable adhesive layer (a) and the developable protective layer (b) of the photosensitive resin structure of the present invention can be patterned by light irradiation because a fine pattern can be formed.
  • the developable adhesive layer (a) is formed of a photosensitive or non-photosensitive resin composition (a1), and the developable protective layer (b) is a photosensitive resin composition (b1) different from the resin composition (a1). ).
  • the photosensitive or non-photosensitive resin composition (a1) is appropriately selected from materials that can impart flexibility to the protective film. In order to form a fine pattern, the resin composition (a1) is preferably photosensitive.
  • the photosensitive resin composition (b1) is appropriately selected mainly from materials that can impart insulating properties.
  • the developing adhesive layer (a) is preferably thicker than the developing protective layer (b) from the viewpoint of followability of the protective film to the copper circuit and flexibility.
  • the photosensitive resin structure of the present invention can be used for at least one of a bent portion and a non-bent portion of a flexible printed wiring board. Specifically, the cover lay and the solder of the flexible printed wiring board are used. It can be used to form at least one of the resists. Examples of the non-bent part include a chip mounting part.
  • the development method may be development using an aqueous alkali solution (hereinafter also referred to as alkali development) or development using an organic solvent, but alkali development is preferred.
  • the photosensitive resin compositions (a1) and (b1) that can be used for the developable adhesive layer (a) and the developable protective layer (b) may be positive or negative.
  • As the positive photosensitive composition a publicly known and conventional one can be used as long as the light irradiation part (also referred to as an exposure part) is dissolved by the developer due to the change in polarity before and after the light irradiation.
  • a composition containing a diazonaphthoquinone compound and an alkali-soluble resin can be mentioned.
  • the negative photosensitive composition a known and commonly used one can be used as long as the light irradiation part is hardly soluble in the developer.
  • examples thereof include a composition containing a photoacid generator and an alkali-soluble resin, a composition containing a photobase generator and an alkali-soluble resin, and a composition containing a photopolymerization initiator and an alkali-soluble resin.
  • the photosensitive resin compositions (a1) and (b1) As a combination of the photosensitive resin compositions (a1) and (b1), the positive photosensitive resin composition (a1), the positive photosensitive resin composition (b1), and the negative photosensitive resin composition (a1) Any combination of negative photosensitive resin composition (b1) may be used.
  • composition (a1) containing a photobase generator and a composition (b1) containing a photobase generator A composition (a1) containing a photobase generator and a composition (b1) containing a photopolymerization initiator, A composition (a1) containing a photopolymerization initiator and a composition (b1) containing a photobase generator, A composition (a1) containing a photopolymerization initiator and a composition (b1) containing a photopolymerization initiator,
  • the combination can be selected according to the embodiment.
  • the photosensitive resin structure of the present invention is an application of a flexible printed wiring board, it is preferable to be able to reduce distortion and warpage during curing. Accordingly, a composition containing the photobase generator is preferred, and examples of such a composition include a composition containing a photobase generator and a thermosetting resin and cured by an addition reaction.
  • the photosensitive resin composition (a1) and the photosensitive resin composition (b1) has a photoacid generator, a photobase generator, or a photopolymerization initiator, and the other has a photoacid generator.
  • the structure which does not contain any of a generator, a photobase generator, and a photoinitiator may be sufficient.
  • the photoacid generator, photobase generator, or photopolymerization initiator contained in one photosensitive resin composition may cure the other photosensitive resin composition.
  • the combination of a non-photosensitive resin composition (a1) and a positive photosensitive resin composition (b1) may be sufficient, and a non-photosensitive resin composition (a1) and a negative photosensitive resin composition ( It may be a combination with b1).
  • the combination of positive photosensitive resin composition (a1) and non-photosensitive resin composition (b1) may be sufficient, and negative photosensitive resin composition (a1) and non-photosensitive resin composition (b1) A combination may be used.
  • the non-photosensitive resin composition (a1) include a composition containing a thermosetting resin.
  • the total film thickness of the laminated structure of the present invention is preferably 100 ⁇ m or less, and more preferably in the range of 4 to 80 ⁇ m.
  • the developable adhesive layer (a) is, for example, 3 to 60 ⁇ m, but is not limited thereto. By setting it as such thickness, a developable contact bonding layer (a) can closely_contact
  • the developable protective layer (b) may have a thickness of 1 to 20 ⁇ m, for example.
  • FIG. 2 is a cross-sectional view showing a state where a pattern is formed by irradiating the photosensitive resin structure 1 on the flexible printed wiring board shown in FIG. 1 with light and then developing with an alkaline developer.
  • the photosensitive resin composition (b1) is diluted with an organic solvent to have an appropriate viscosity, and is applied to the carrier film with a uniform thickness using a comma coater or the like.
  • the coating layer is dried to form a developable protective layer (b) on the carrier film.
  • a developable adhesive layer (a) can be formed on the developable protective layer (b) with a photosensitive or non-photosensitive resin composition (a1) to obtain the dry film of the present invention.
  • a plastic film is used as the carrier film.
  • the thickness of the carrier film is not particularly limited, but is generally appropriately selected within the range of 10 to 150 ⁇ m.
  • the flexible printed wiring board of the present invention has a protective film formed by patterning the photosensitive resin structure of the present invention on the flexible printed wiring board by light irradiation and forming the pattern in a lump with a developer.
  • the protective film is preferably at least one of a coverlay and a solder resist.
  • a dry film is bonded on the flexible printed wiring board by a laminator or the like so that the developable adhesive layer (a) is in contact with at least one of the bent portion and the non-bent portion of the flexible printed wiring board.
  • a photosensitive adhesive composition or a non-photosensitive resin composition (a1) and a photosensitive resin composition (b1) are sequentially applied and dried on a flexible printed wiring board by screen printing or the like, and then a developing adhesive layer. (A) and a developable protective layer (b) are formed.
  • the resin composition (a1) is applied to a flexible printed wiring board and dried to form a developable adhesive layer (a). From the photosensitive resin composition (b1) on the developable adhesive layer (a). The film which laminates may be formed and the method of forming a developable protective layer (b) may be used. Conversely, a developable adhesive layer (a) is formed by laminating a film made of the resin composition (a1) on a flexible printed wiring board, and a photosensitive resin composition (a) is formed on the developable adhesive layer (a). The developable protective layer (b) may be formed by applying and drying b1).
  • the manufacturing method of the flexible printed wiring board using the negative photosensitive resin structure containing a photoinitiator In the case of a negative laminated resin structure containing a photopolymerization initiator, it is sufficient that at least one of the resin composition (a1) and the resin composition (b1) contains a photopolymerization initiator. In this case, a photosensitive resin structure having a developable adhesive layer (a) and a developable protective layer (b) is formed on the flexible printed wiring board by the laminating method or the like. Thereafter, the negative photosensitive resin structure is irradiated with light in a pattern by a contact method or a non-contact method, and an unirradiated portion is developed to obtain a protective film having a negative pattern.
  • thermosetting component for example, by heating to a temperature of about 140 to 180 ° C. and thermosetting, heat resistance, chemical resistance, moisture absorption, adhesion, electrical characteristics, etc. A protective film having excellent characteristics can be formed. Since the negative photosensitive resin structure contains a photopolymerization initiator, the light irradiation part is cured by radical polymerization.
  • the manufacturing method of the flexible printed wiring board using the negative photosensitive resin structure containing a photobase generator also in the case of a negative laminated resin structure containing a photobase generator, at least one of the resin composition (a1) and the resin composition (b1) only needs to contain a photobase generator. Also in this case, first, a negative photosensitive resin structure having a developable adhesive layer (a) and a developable protective layer (b) is formed on the flexible printed wiring board by the laminating method or the like. Thereafter, the negative photosensitive resin structure is irradiated with light in a pattern, thereby generating a base from the photobase generator and curing the light irradiation portion.
  • the unirradiated portion is removed by development to obtain a protective film having a negative pattern.
  • ultraviolet rays may be irradiated after the development in order to further improve the insulation reliability of the protective film.
  • a heat curing (post-cure) step may be further included, and both ultraviolet irradiation and heat curing may be performed after development.
  • the heating temperature in the thermosetting process is, for example, 160 ° C. or higher.
  • At least one of the resin composition (a1) and the resin composition (b1) may be a positive type composition.
  • the positive photosensitive resin structure having the developable adhesive layer (a) and the developable protective layer (b) is formed on the flexible printed wiring board by the laminating method or the like. Then, the polarity is changed by irradiating the positive photosensitive resin structure with light in a pattern. Thereafter, the light irradiation part is developed to obtain a protective film having a positive pattern.
  • the exposure apparatus used for the light irradiation may be any apparatus that is equipped with a high-pressure mercury lamp lamp, an ultra-high pressure mercury lamp lamp, a metal halide lamp, a mercury short arc lamp, etc., and irradiates ultraviolet rays in the range of 350 to 450 nm.
  • a direct drawing apparatus for example, a laser direct imaging apparatus that directly draws an image with a laser using CAD data from a computer
  • a laser light source of the direct drawing apparatus either a gas laser or a solid laser may be used as long as laser light having a maximum wavelength in the range of 350 to 450 nm is used.
  • the exposure amount for image formation varies depending on the film thickness and the like, but can generally be in the range of 20 to 1500 mJ / cm 2 .
  • the developing method can be a dipping method, a shower method, a spray method, a brush method or the like, and as a developer, potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, Alkaline aqueous solutions such as ammonia and amines can be used.
  • the laminated structure of the present invention has a laminated structure having a resin layer (A) made of an alkali developing resin composition and a resin layer (B) laminated on a flexible printed wiring board via the resin layer (A).
  • the resin layer (B) is composed of a photosensitive thermosetting resin composition containing an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound. is there.
  • Such a laminated structure of the present invention can be laminated on a flexible printed wiring board, and can be patterned by light irradiation on the flexible printed wiring board, and patterns can be collectively formed by development. It becomes.
  • a resin having an imide ring in the molecule is used as the resin layer (B), and (2) an alkali-soluble resin and a thermally reactive compound are used.
  • This layer functions as a reinforcing layer by using a composition utilizing the addition reaction, and even if a resin layer (A) made of a conventional solder resist composition or an interlayer insulating material is used, impact resistance and bending It is possible to provide an insulating film for a flexible printed wiring board that is excellent in reliability such as reliability and low warpage and processing accuracy and excellent in workability.
  • the laminated structure of the present invention has a resin layer (A) and a resin layer (B) in order on a flexible printed wiring board in which a copper circuit is formed on a flexible substrate, and at least the resin layer (B) is irradiated with light. Can be patterned, and the resin layer (A) and the resin layer (B) can collectively form a pattern by development.
  • the alkali-developable resin composition constituting the resin layer (A) is a composition containing a resin that contains one or more functional groups among phenolic hydroxyl groups, thiol groups, and carboxyl groups and that can be developed with an alkaline solution. Any photocurable resin composition or thermosetting resin composition may be used. Preferred examples include a resin composition containing a compound having two or more phenolic hydroxyl groups, a carboxyl group-containing resin, a compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups. It is done.
  • thermosetting resin composition For example, a light containing a carboxyl group-containing resin or a carboxyl group-containing photosensitive resin, a compound having an ethylenically unsaturated bond, a photopolymerization initiator, and a heat-reactive compound conventionally used as a solder resist composition
  • a curable thermosetting resin composition is mentioned.
  • carboxyl group-containing resin or a carboxyl group-containing photosensitive resin a compound having an ethylenically unsaturated bond, a photopolymerization initiator, and a heat-reactive compound, known and commonly used ones are used.
  • the photosensitive thermosetting resin composition constituting the resin layer (B) includes an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound.
  • the alkali-soluble resin having an imide ring is one having an alkali-soluble group such as a carboxyl group or an acid anhydride group and an imide ring.
  • a known and usual method can be used for introducing the imide ring into the alkali-soluble resin.
  • the resin obtained by making a carboxylic anhydride component react with an amine component and / or an isocyanate component is mentioned.
  • the imidization may be performed by thermal imidization or chemical imidization, and these can be used in combination.
  • examples of the carboxylic acid anhydride component include tetracarboxylic acid anhydrides and tricarboxylic acid anhydrides, but are not limited to these acid anhydrides, and acid anhydrides that react with amino groups or isocyanate groups. Any compound having a physical group and a carboxyl group can be used, including derivatives thereof. These carboxylic anhydride components may be used alone or in combination.
  • tetracarboxylic acid anhydride examples include pyromellitic dianhydride, 3-fluoropyromellitic dianhydride, 3,6-difluoropyromellitic dianhydride, 3,6-bis (trifluoromethyl) pyro Merit acid dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic acid Anhydride, 2,2'-difluoro-3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 5,5'-difluoro-3,3', 4,4'-biphenyltetracarboxylic dianhydride Anhydride, 6,6′-difluoro-3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,
  • tricarboxylic acid anhydride examples include trimellitic acid anhydride and nuclear hydrogenated trimellitic acid anhydride.
  • amine component diamines such as aliphatic diamines and aromatic diamines, and polyvalent amines such as aliphatic polyether amines can be used, but are not limited to these amines. These amine components may be used alone or in combination.
  • diamine examples include p-phenylenediamine (PPD), 1,3-diaminobenzene, 2,4-toluenediamine, 2,5-toluenediamine, 2,6-toluenediamine, 3,5-diaminobenzoic acid,
  • PPD p-phenylenediamine
  • 1,3-diaminobenzene 1,3-diaminobenzene
  • 2,4-toluenediamine 2,5-toluenediamine
  • 2,6-toluenediamine 3,5-diaminobenzoic acid
  • One diamine nucleus diamine such as 2,5-diaminobenzoic acid and 3,4-diaminobenzoic acid
  • diaminodiphenyl ether such as 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, and 3,4′-diaminodiphenyl ether 4,4′-d
  • isocyanate component aromatic diisocyanates and their isomers and multimers, aliphatic diisocyanates, alicyclic diisocyanates and isomers thereof, and other general-purpose diisocyanates can be used. It is not limited. These isocyanate components may be used alone or in combination.
  • diisocyanates include aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, biphenyl diisocyanate, diphenyl sulfone diisocyanate, diphenyl ether diisocyanate, and isomers, multimers, hexamethylene diisocyanate, and isophorone.
  • aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, biphenyl diisocyanate, diphenyl sulfone diisocyanate, diphenyl ether diisocyanate, and isomers, multimers, hexamethylene diisocyanate, and isophorone.
  • Examples thereof include aliphatic diisocyanates such as diisocyanate, dicyclohexylmethane diisocyanate, and xylylene diisocyanate, alicyclic diisocyanates and isomers obtained by hydrogenation of the aromatic diisocyanate, and other general-purpose diisocyanates.
  • the alkali-soluble resin having an imide ring as described above may have an amide bond.
  • This may be an amide bond obtained by reacting an isocyanate and a carboxylic acid, or may be caused by other reaction.
  • you may have the coupling
  • a known and commonly used alkali-soluble polymer, oligomer or monomer having a carboxyl group and / or an acid anhydride group may be used. It may be a resin obtained by reacting an alkali-soluble resin alone or in combination with the above carboxylic anhydride component and reacting with the above amine / isocyanate.
  • an organic solvent is not particularly limited as long as it is a solvent that does not react with the carboxylic acid anhydrides, amines, and isocyanates that are raw materials and that dissolves these raw materials, and the structure is not particularly limited.
  • Specific examples include amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone.
  • Cyclic ester solvents such as ⁇ -methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, lactam solvents such as caprolactam, ether solvents such as dioxane, glycol solvents such as triethylene glycol, m-cresol, phenolic solvents such as p-cresol, 3-chlorophenol, 4-chlorophenol, 4-methoxyphenol, 2,6-dimethylphenol, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl Sulfo Sid, such as tetramethylurea.
  • aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and ⁇ -butyrolactone are preferred because of the high solubility of the raw materials.
  • the alkali-soluble resin having an alkali-soluble group such as a carboxyl group or an acid anhydride group and an imide ring as described above has an acid value of 20 to 200 mgKOH / g in order to cope with the photolithography process. And more preferably 60 to 150 mgKOH / g.
  • the acid value is 20 mgKOH / g or more, the solubility in alkali increases, the developability becomes good, and further, the degree of crosslinking with the thermosetting component after light irradiation becomes high, so that sufficient development contrast is obtained. be able to.
  • the molecular weight of the alkali-soluble resin is preferably from 1,000 to 100,000, more preferably from 2,000 to 50,000, considering developability and cured coating film characteristics.
  • the molecular weight is 1,000 or more, sufficient development resistance and cured properties can be obtained after exposure and PEB.
  • the molecular weight is 100,000 or less, alkali solubility increases and developability improves.
  • the photobase generator used in the resin layer (B) is used as a catalyst for the polymerization reaction of a thermoreactive compound, which will be described later, when the molecular structure is changed by light irradiation such as ultraviolet light or visible light, or when the molecule is cleaved. It is a compound that produces one or more basic substances that can function. Examples of basic substances include secondary amines and tertiary amines. Examples of photobase generators include ⁇ -aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzyl carbamate groups, alkoxybenzyl carbamates.
  • oxime ester compounds and ⁇ -aminoacetophenone compounds are preferred.
  • ⁇ -aminoacetophenone compound those having two or more nitrogen atoms are particularly preferable.
  • WPBG-018 (trade name: 9-anthrylmethylN, N′-diethylcarbamate)
  • WPBG-027 trade name: (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl Piperidine
  • WPBG-082 (trade name: guanidinium2- (3-benzoylphenyl) propionate
  • WPBG-140 (trade name: 1- (anthraquinon-2-yl) ethyl imidazole carbonate).
  • the ⁇ -aminoacetophenone compound has a benzoin ether bond in the molecule, and when irradiated with light, cleavage occurs in the molecule to produce a basic substance (amine) that exhibits a curing catalytic action.
  • ⁇ -aminoacetophenone compounds include (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane (Irgacure 369, trade name, manufactured by BASF Japan Ltd.) and 4- (methylthiobenzoyl) -1-methyl.
  • -1-morpholinoethane (Irgacure 907, trade name, manufactured by BASF Japan Ltd.), 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl)
  • a commercially available compound such as phenyl] -1-butanone (Irgacure 379, trade name, manufactured by BASF Japan Ltd.) or a solution thereof can be used.
  • any compound that generates a basic substance by light irradiation can be used.
  • examples of such oxime ester compounds include CGI-325, Irgacure OXE01, Irgacure OXE02 manufactured by BASF Japan Ltd., N-1919, NCI-831 manufactured by Adeka Corp., and the like.
  • numerator described in the patent 4344400 gazette can also be used suitably.
  • Such photobase generators may be used alone or in combination of two or more.
  • the blending amount of the photobase generator in the thermosetting resin composition is preferably 0.1 to 40 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the thermoreactive compound. It is. In the case of 0.1 parts by mass or more, the development resistance contrast of the light irradiated part / non-irradiated part can be favorably obtained. Moreover, in 40 mass parts or less, hardened
  • the heat-reactive compound used in the resin layer (B) is a resin having a functional group capable of undergoing a curing reaction by heat, preferably a resin having a cyclic (thio) ether group, more preferably an epoxy resin, Examples include polyfunctional oxetane compounds.
  • the cyclic (thio) ether group means at least one of a cyclic ether group and a cyclic thioether group.
  • the epoxy resin is a resin having an epoxy group, and any known one can be used. Examples thereof include a bifunctional epoxy resin having two epoxy groups in the molecule, and a polyfunctional epoxy resin having many epoxy groups in the molecule. In addition, a hydrogenated bifunctional epoxy compound may be used.
  • Polyfunctional epoxy compounds include bisphenol A type epoxy resin, brominated epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin, alicyclic ring Epoxy resin, trihydroxyphenylmethane type epoxy resin, bixylenol type or biphenol type epoxy resin or a mixture thereof; bisphenol S type epoxy resin, bisphenol A novolak type epoxy resin, tetraphenylolethane type epoxy resin, heterocyclic epoxy Resin, diglycidyl phthalate resin, tetraglycidyl xylenoyl ethane resin, naphthalene group-containing epoxy resin, epoxy resin having dicyclopentadiene skeleton, glycidyl methacrylate Acrylate copolymer epoxy resins, copolymerized epoxy resins of cyclohexylmaleimide and glycidyl methacrylate, and
  • liquid bifunctional epoxy resins include vinylcyclohexene diepoxide, (3 ′, 4′-epoxycyclohexylmethyl) -3,4-epoxycyclohexanecarboxylate, (3 ′, 4′-epoxy-6′-methyl) And alicyclic epoxy resins such as (cyclohexylmethyl) -3,4-epoxy-6-methylcyclohexanecarboxylate. These epoxy resins may be used individually by 1 type, and may use 2 or more types together.
  • polyfunctional oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl -3-Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl)
  • polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, Poly (p-hydroxystyrene
  • the amount of the heat-reactive compound is such that the equivalent ratio with the alkali-soluble resin (alkali-soluble group such as carboxyl group: heat-reactive group such as epoxy group) is 1: 0.1 to 1:10. It is preferable. By setting the blending ratio in such a range, development becomes favorable and a fine pattern can be easily formed.
  • the equivalent ratio is more preferably 1: 0.2 to 1: 5.
  • Polymer resin The resin composition used in the resin layer (A) and the resin layer (B) as described above is blended with a known and commonly used polymer resin for the purpose of improving the flexibility and dryness of the cured product obtained. can do.
  • polymer resins include cellulose-based, polyester-based, phenoxy-resin-based polymers, polyvinyl acetal-based, polyvinyl butyral-based, polyamide-based, polyamide-imide-based binder polymers, block copolymers, and elastomers. This polymer resin may be used individually by 1 type, and may use 2 or more types together.
  • the resin composition used in the resin layer (A) and the resin layer (B) is blended with an inorganic filler in order to suppress curing shrinkage of the cured product and improve properties such as adhesion and hardness.
  • an inorganic filler examples include barium sulfate, amorphous silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, aluminum nitride, boron nitride, Neuburg Sicilius Earth etc. are mentioned.
  • the base in the resin composition used in the present invention, can be sufficiently cured to the deep part of the resin layer by the chemical growth of the base to the deep part. Therefore, according to the resin composition used in the present invention, even when a colorant is contained, a pattern layer having excellent copper circuit concealing property and excellent adhesion can be formed.
  • organic solvent For the resin composition used in the resin layer (A) and the resin layer (B), an organic solvent should be used for preparing the resin composition and adjusting the viscosity for application to a substrate or carrier film. Can do. Examples of such organic solvents include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. Such an organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
  • the resin composition used in the resin layer (A) and the resin layer (B) can further contain components such as a mercapto compound, an adhesion promoter, an antioxidant, and an ultraviolet absorber as necessary.
  • a mercapto compound such as finely divided silica, hydrotalcite, organic bentonite, montmorillonite, defoamers and / or leveling agents such as silicones, fluorines and polymers, silane coupling agents, rust inhibitors
  • Known and conventional additives such as can be blended.
  • the method for producing a flexible printed wiring board of the present invention includes a step of forming at least one resin layer (A) made of an alkali-developable photosensitive resin composition (A1) on the flexible printed wiring board, the resin layer (A) A step of forming at least one resin layer (B) comprising a photosensitive thermosetting resin composition (B1) containing an alkali-soluble resin having an imide ring, a photobase generator, and a thermoreactive compound; A step of irradiating the resin layers (A) and (B) formed in the step with light in a pattern, a step of heating the resin layers (A) and (B) irradiated with the light in the step, and the light A step of alkali-developing the irradiated resin layers (A) and (B) to form at least one of a coverlay and a solder resist.
  • the resin layer (B) in the present invention, (1) a resin having an imide ring in the molecule is used, and (2) a composition that causes an addition reaction between an alkali-soluble resin and a thermally reactive compound is used.
  • the resin layer (B) can function as a reinforcing layer. That is, by forming a resin layer (A) made of a conventional solder resist composition and laminating the resin layer (B) on the resin layer (A), impact resistance, flexibility, low warpage, etc. A cover lay and a solder resist having excellent reliability and processing accuracy can be collectively formed on a flexible printed wiring board. Note that an interlayer insulating film may be formed as the insulating film.
  • at least one resin layer (A) made of the alkali development type photosensitive resin composition (A1) is formed on the flexible printed wiring board. Since the resin layer (A) can be alkali-developed, a pattern can be formed. Further, by laminating the resin layer (A), the circuit followability and the adhesion to the substrate can be improved.
  • the flexible printed wiring board is obtained by forming a copper circuit 2 on a flexible substrate 1.
  • the position where the resin layer (A) is formed may be one of a bent portion and a non-bent portion, but is preferably both a bent portion and a non-bent portion.
  • the bent portion is a portion that is repeatedly bent and requires flexibility
  • the non-bent portion is a portion that is not bent, such as a chip mounting portion.
  • Examples of the method for forming the resin layer (A) include a coating method and a laminating method.
  • the coating method the alkali-developable photosensitive resin composition (A1) is coated on the flexible printed wiring board by a screen printing method, a curtain coating method, a spray coating method, a roll coating method or the like, and 50 to 130 ° C.
  • the resin layer (A) is formed by heating at about a temperature for about 15 to 60 minutes.
  • the laminating method first, the alkali developing type photosensitive resin composition (A1) is diluted with an organic solvent to adjust to an appropriate viscosity, applied onto a carrier film and dried to have a resin layer (A). Create Next, after bonding together so that a resin layer (A) may contact a flexible printed wiring board with a laminator etc., a carrier film is peeled.
  • a resin layer (B) comprising a photosensitive thermosetting resin composition (B1) containing an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound on the resin layer (A).
  • a resin layer (B) comprising a photosensitive thermosetting resin composition (B1) containing an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound on the resin layer (A).
  • At least one layer Since the resin layer (B) can be alkali-developed, a fine pattern can be formed and the processing accuracy is excellent. Further, by laminating the resin layer (B), it is possible to improve impact resistance, flexibility and low warpage.
  • the position where the resin layer (B) is formed is preferably both a bent portion and a non-bent portion on the resin layer (A).
  • the resin layer (B) may be formed only on the bent portion or only on the non-bent portion of the resin layer (A). Further, a further layer may be interposed between the resin layer (B) and the resin layer (A).
  • the resin layer (B) can be formed by the same method as the method for forming the resin layer (A).
  • the resin layers (A) and (B) may be formed by laminating the laminated dry film on a flexible printed wiring board after making them into one laminated dry film.
  • the resin layer (A) is preferably formed thicker than the resin layer (B) from the viewpoint of followability to the copper circuit.
  • the resin layers (A) and (B) are irradiated with light in a negative pattern.
  • the photobase generator contained in the photosensitive thermosetting resin composition can be activated to cure the light irradiation part.
  • this base acts as a catalyst for the addition reaction between the alkali-developable resin and the heat-reactive compound, and the addition reaction proceeds. Therefore, in the light irradiation part, the resin layer is sufficiently deep. To harden.
  • a light irradiation device for example, a laser direct imaging device that directly draws an image with a laser using CAD data from a computer
  • a light irradiation device equipped with a metal halide lamp or a light irradiation device equipped with a (ultra) high pressure mercury lamp
  • a light irradiator equipped with a mercury short arc lamp or a direct drawing apparatus using an ultraviolet lamp such as a (super) high pressure mercury lamp can be used.
  • the active energy ray used for light irradiation it is preferable to use laser light or scattered light having a maximum wavelength in the range of 350 to 450 nm.
  • the amount of light irradiation varies depending on the film thickness and the like, but can generally be in the range of 50 to 1500 mJ / cm 2 , preferably 100 to 1000 mJ / cm 2 .
  • the resin layers (A) and (B) are heated. Thereby, it can fully harden
  • This process is a so-called PEB (POST EXPOSURE BAKE) process.
  • the heating temperature is preferably a temperature at which the light-irradiated portion of the thermosetting resin composition is thermally cured, but the non-irradiated portion is not thermally cured.
  • the heating step is a temperature lower than the heat generation start temperature or the heat generation peak temperature of the unirradiated thermosetting resin composition and higher than the heat generation start temperature or the heat generation peak temperature of the light irradiated thermosetting resin composition. It is preferable to heat with.
  • the heating temperature is, for example, 80 to 140 ° C. By setting the heating temperature to 80 ° C. or higher, the light irradiation part can be sufficiently cured. On the other hand, by setting the heating temperature to 140 ° C. or lower, only the light irradiation part can be selectively cured.
  • the heating time is, for example, 10 to 100 minutes. In the unirradiated portion, no base is generated from the photobase generator, so that thermosetting is suppressed.
  • the development method is alkali development, and can be performed by a known method such as a dipping method, a shower method, a spray method, or a brush method.
  • the alkaline developer include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, ethanolamine, amines such as imidazole, tetramethylammonium hydroxide aqueous solution (TMAH), etc.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • An alkaline aqueous solution or a mixed solution thereof can be used.
  • the following steps may be added as necessary.
  • the resin layers (A) and (B) may be irradiated with light.
  • the photobase generator remaining without being activated in the resin layer (B) in the previous light irradiation step is activated to sufficiently generate a base.
  • the wavelength of ultraviolet rays and the light irradiation amount (exposure amount) in this light irradiation may be the same as or different from those in the light irradiation step.
  • the light irradiation amount is, for example, 150 to 2000 mJ / cm 2 .
  • the resin layers (A) and (B) may be further thermally cured (post-cured) by heating.
  • the pattern layer is sufficiently thermoset by the light irradiation step or the base generated from the photobase generator in the light irradiation step and the second light irradiation step. Since the unirradiated part has already been removed at the time of the thermosetting process, the thermosetting process can be performed at a temperature equal to or higher than the curing reaction start temperature of the unirradiated thermosetting resin composition.
  • the heating temperature is, for example, 150 ° C. or higher.
  • Example 1 and 2 Comparative Examples 1 and 2
  • Various components shown in Table 1 below were blended in the proportions (parts by mass) shown in Table 1, premixed with a stirrer, and then kneaded with a three-roll mill to prepare a photosensitive resin composition.
  • Example 1 For Example 1, the laminating method was used. In Example 1, after the photosensitive resin composition for (b) layer was applied to a carrier film and dried to form a developable protective layer, the photosensitive resin composition for (a) layer was formed on the surface. Was applied and dried to obtain a dry film. The dry film was pressure-bonded to a flexible printed wiring board at 120 ° C. to form a photosensitive resin structure. Table 1 shows the film thickness. (Example 2) For Example 2, the whole surface printing method was used, and after the photosensitive resin composition for layer (a) was applied on a flexible printed wiring board and dried, the photosensitive resin composition for layer (b) was applied to the surface. Application and drying were performed to form a photosensitive resin structure. Each film thickness is shown in Table 1.
  • Comparative Example 1 About the comparative example 1, the whole surface printing method was used, the photosensitive resin composition for (b) layer was apply
  • Comparative Example 2 For Comparative Example 2, the whole surface printing method was used, and the photosensitive resin composition for (a) layer was applied onto the flexible printed wiring board and dried to obtain a flexible printed wiring board having only the (a) layer. Table 1 shows the film thickness.
  • Comparative Example 3 For Comparative Example 3, the laminating method was used.
  • Comparative Example 3 the resin for (a) layer was applied to a polyimide film having an opening pattern of 5 mm ⁇ 5 mm formed by punching, dried, and then pressed onto a flexible printed wiring board at 120 ° C. Thereby, the flexible printed wiring board which has a pattern was obtained.
  • the film thickness is shown in Table 1.
  • Comparative Example 4 a pattern printing method is used, and a resin for layer (b) is applied and dried on a flexible printed wiring board by pattern printing with an opening of 5 mm ⁇ 5 mm, and (b) a flexible printed wiring board having a pattern of only the layer Got. Table 1 shows the film thickness.
  • ⁇ Formation of resin layer (A)> A flexible printed wiring substrate on which a circuit having a copper thickness of 18 ⁇ m was formed was prepared, and pre-treatment was performed using MEC CZ-8100. Thereafter, the pre-treated flexible printed wiring board was coated with the resin compositions of Examples 3 and 4 and Comparative Example 5 by a coating method shown in Table 3 so that the film thickness was 25 ⁇ m after drying. Went. Then, it dried at 90 degreeC / 30 minutes with the hot-air circulation type drying furnace, and formed the resin layer (A) which consists of a resin composition.
  • the flexible printed wiring boards of Examples 3 and 4 can be developed in the same manner as the flexible printed wiring board of Comparative Example 5, and the flexibility and surface hardness are greatly increased. It turns out that it is excellent.

Abstract

Provided are a photosensitive resin structure enabling the forming of a fine pattern on a flexible printed wiring board and having excellent insulation properties and bendability, and a flexible printed wiring board having a cured photosensitive resin structure as a protective film such as a cover lay or a solder resist. In the photosensitive resin structure having a development adhesive layer (a) and a development protective layer (b) laminated on a flexible printed wiring board over the development adhesive layer (a), light irradiation may be used for patterning at least the development protective layer (b) and developing the development adhesive layer (a) and the development protective layer (b) enables the collective formation of a pattern.

Description

積層構造体、フレキシブルプリント配線板及びその製造方法Laminated structure, flexible printed wiring board and manufacturing method thereof
 本発明は、積層構造体、特には感光性樹脂構造体並びにそれを用いたドライフィルム及びフレキシブルプリント配線板に関し、詳しくは、フレキシブルプリント配線板上において微細なパターン形成が可能な感光性樹脂構造体、及びその硬化物を保護膜、例えば、カバーレイまたはソルダーレジストとして有するフレキシブルプリント配線板及びその製造方法に関する。 The present invention relates to a laminated structure, in particular, a photosensitive resin structure, a dry film using the same, and a flexible printed wiring board, and more particularly, a photosensitive resin structure capable of forming a fine pattern on the flexible printed wiring board. And a flexible printed wiring board having the cured product thereof as a protective film, for example, a coverlay or a solder resist, and a method for manufacturing the same.
 従来、フレキシブルプリント配線板の保護膜として、ポリイミドなどのフィルムに熱硬化型接着剤を塗布してなる非感光性樹脂構造体が用いられてきた。かかる非感光性樹脂構造体をパターン加工してフレキシブルプリント配線板上に形成する方法としては、従来、パンチングによる孔空け加工後、フレキシブルプリント配線板上に熱圧着する手法がとられてきた。あるいは、溶剤可溶性の熱硬化型樹脂組成物をフレキシブルプリント配線板上に直接パターン印刷し、熱硬化してパターンを形成する手法もとられてきた。特に、ポリイミドフィルムは、柔軟性を有しつつ、耐熱性、機械的特性、電気的特性に優れていることからフレキシブルプリント配線板に対する好適材料として使用されてきた(例えば、特許文献1参照)。 Conventionally, a non-photosensitive resin structure obtained by applying a thermosetting adhesive to a film such as polyimide has been used as a protective film for a flexible printed wiring board. As a method for forming such a non-photosensitive resin structure on a flexible printed wiring board by patterning, conventionally, a method of thermocompression bonding on the flexible printed wiring board after punching by punching has been used. Alternatively, a method has been used in which a solvent-soluble thermosetting resin composition is directly pattern-printed on a flexible printed wiring board and thermally cured to form a pattern. In particular, a polyimide film has been used as a suitable material for a flexible printed wiring board because it has flexibility and is excellent in heat resistance, mechanical properties, and electrical properties (see, for example, Patent Document 1).
 しかしながら、上述の従来の手法ではパターン端部が塗布時や熱圧着時の樹脂の滲み出しによって形状が崩れるため、配線の微細化やフレキシブルプリント配線板に搭載されるチップ部品の小型化などで要求される微細パターンの形成は困難であった。 However, in the conventional method described above, the shape of the pattern edge part collapses due to resin oozing at the time of application or thermocompression bonding, so it is required for miniaturization of wiring and miniaturization of chip parts mounted on flexible printed wiring boards. It was difficult to form a fine pattern.
 一方、近年、スマートフォンやタブレット端末の普及による電子機器の小型薄型により、回路基板の小スペース化が必要となってきている。そのため、折り曲げて収納できるフレキシブルプリント配線板の用途が拡大し、かかるフレキシブルプリント配線板に対する信頼性もこれまで以上に高いものが求められている。 On the other hand, in recent years, it has become necessary to reduce the circuit board space due to the small size and thinness of electronic devices due to the spread of smartphones and tablet terminals. Therefore, the use of the flexible printed wiring board which can be folded and accommodated is expanded, and the reliability with respect to such a flexible printed wiring board is required to be higher than ever.
 これに対し現在、フレキシブルプリント配線板の絶縁信頼性を確保するための絶縁膜として、折り曲げ部(屈曲部)には、耐熱性および屈曲性などの機械的特性に優れたポリイミドをベースとしたカバーレイが用いられ(例えば、特許文献2,3参照)、実装部(非屈曲部)には、電気絶縁性やはんだ耐熱性などに優れ微細加工が可能な感光性樹脂組成物を用いた混載プロセスが広く採用されている。 On the other hand, as an insulating film to ensure the insulation reliability of flexible printed wiring boards, a cover based on polyimide with excellent mechanical properties such as heat resistance and flexibility is used for the bent part (bent part). Lay is used (see, for example, Patent Documents 2 and 3), and the mounting part (non-bent part) uses a photosensitive resin composition that is excellent in electrical insulation and solder heat resistance and can be finely processed. Is widely adopted.
 しかし、耐熱性および屈曲性などの機械的特性に優れるポリイミドをベースとしたカバーレイでは、金型打ち抜きによる加工を必要とするため、微細配線には不向きである。そのため、微細配線が必要となるチップ実装部には、フォトリソグラフィーによる加工ができるアルカリ現像型の感光性樹脂組成物(ソルダーレジスト)を部分的に併用する必要があった。 However, a polyimide-based coverlay with excellent mechanical properties such as heat resistance and flexibility is not suitable for fine wiring because it requires processing by die punching. Therefore, it is necessary to partially use an alkali developing type photosensitive resin composition (solder resist) that can be processed by photolithography in a chip mounting portion that requires fine wiring.
WO2012/133665号公報WO2012 / 133665 gazette 特開昭62-263692号公報JP-A-62-263692 特開昭63-110224号公報Japanese Patent Laid-Open No. 63-110224
 このように、フレキシブルプリント配線板の製造工程では、カバーレイを張り合わせる工程とソルダーレジストを形成する工程の混載プロセスを採用せざるを得なく、コストと作業性に劣るという問題があった。 As described above, in the manufacturing process of the flexible printed wiring board, there is a problem that it is inferior in cost and workability because it is necessary to adopt a mixed mounting process of a process of attaching a cover lay and a process of forming a solder resist.
 このような混載プロセスに対し、従来、ソルダーレジストとしての絶縁膜をフレキシブルプリント配線板のカバーレイとして適用する提案がなされている。しかしながら、フレキシブルプリント配線板における感光性ソルダーレジストは柔軟性を付与するために低架橋密度化やエラストマー成分の添加が必要となり、これにより電気信頼性や耐衝撃性、屈曲性等が低下し、これらの信頼性が熱硬化型保護膜に比べて劣ることになる。よって、折り曲げ部(屈曲部)と実装部(非屈曲部)の一括形成プロセスの実用化には至っていない。また、ソルダーレジスト用の樹脂組成物では、アクリル系の光重合による硬化収縮も伴うため、フレキシブル配線板の反りなど寸法安定性にも課題があった。 For such a mixed loading process, proposals have conventionally been made to apply an insulating film as a solder resist as a coverlay of a flexible printed wiring board. However, the photosensitive solder resist in flexible printed wiring boards requires low crosslink density and addition of an elastomer component in order to impart flexibility, which reduces electrical reliability, impact resistance, flexibility, etc. This is inferior in reliability to the thermosetting protective film. Therefore, the batch forming process of the bent part (bent part) and the mounting part (non-bent part) has not been put to practical use. In addition, since the resin composition for solder resist is accompanied by curing shrinkage due to acrylic photopolymerization, there is a problem in dimensional stability such as warping of a flexible wiring board.
 これに対し、アルカリ溶解性と機械特性が両立できる感光性ポリイミドとして従来、ポリイミド前駆体を利用し、パターニングした後に熱閉環する方法も提案されている。しかしながら、高温処理を必要とするなど配線板製造の作業性には課題が残り、依然として実用化には至っていない。 On the other hand, as a photosensitive polyimide capable of achieving both alkali solubility and mechanical properties, a method of using a polyimide precursor and performing thermal ring closure after patterning has been proposed. However, problems remain in the workability of wiring board manufacture, such as requiring high-temperature treatment, and it has not yet been put into practical use.
 また、カバーレイとしての絶縁膜をフレキシブルプリント配線板のソルダーレジストとして適用することも考えられるが、かかるカバーレイ用のフィルムでは、パターン形成に煩雑な工程を必要とし、またパンチングによる孔空けなどの加工精度が低いことや熱圧着時の樹脂の滲み出しにより、微細パターンの形成に対応しにくいという問題があった。 In addition, it is conceivable to apply an insulating film as a coverlay as a solder resist for a flexible printed wiring board. However, such a coverlay film requires a complicated process for pattern formation, and is not suitable for punching holes by punching. There is a problem that it is difficult to cope with the formation of a fine pattern due to low processing accuracy and oozing of the resin during thermocompression bonding.
 そこで本発明の目的は、フレキシブルプリント配線板上において微細なパターン形成が可能で、絶縁性、屈曲性に優れる感光性樹脂構造体、及びその硬化物を保護膜、例えば、カバーレイまたはソルダーレジストとして有するフレキシブルプリント配線板を提供することにある。 Therefore, an object of the present invention is to form a photosensitive resin structure that is capable of forming a fine pattern on a flexible printed wiring board and is excellent in insulation and flexibility, and a cured product thereof as a protective film, for example, a coverlay or a solder resist. It is in providing the flexible printed wiring board which has.
 また、本発明の他の目的は、耐衝撃性や屈曲性、低反り性などの信頼性と加工精度に優れ、かつ作業性に優れたフレキシブルプリント配線板用の絶縁膜、特に折り曲げ部(屈曲部)と実装部(非屈曲部)の一括形成プロセスに適した積層構造体と、その硬化物を保護膜、例えば、カバーレイまたはソルダーレジストとして有する、耐衝撃性や屈曲性などの信頼性に優れるフレキシブルプリント配線板を提供することにある。 Another object of the present invention is to provide an insulating film for a flexible printed wiring board having excellent reliability and processing accuracy such as impact resistance, bendability, and low warpage, and excellent workability. Part) and a laminated structure suitable for the batch formation process of the mounting part (non-bending part) and its cured product as a protective film, for example, coverlay or solder resist, for reliability such as impact resistance and flexibility The object is to provide an excellent flexible printed wiring board.
 また、本発明の更に他の目的は、耐衝撃性、屈曲性、及び低反り性などの信頼性と加工精度に優れたフレキシブルプリント配線板用の絶縁膜、特に折り曲げ部(屈曲部)と実装部(非屈曲部)における絶縁膜、例えば、カバーレイ及びソルダーレジストを作業性良く、一括して形成可能なフレキシブルプリント配線板の製造方法、及びフレキシブルプリント配線板を提供することにある。 Still another object of the present invention is to provide an insulating film for a flexible printed wiring board excellent in reliability and processing accuracy such as impact resistance, bendability, and low warpage, particularly a bent portion (bend portion) and mounting. An object of the present invention is to provide a flexible printed wiring board manufacturing method and a flexible printed wiring board capable of forming an insulating film, such as a cover lay and a solder resist, at a portion (non-bent portion) with good workability.
 本発明者らは、上記目的の実現に向け鋭意検討した結果、フレキシブルプリント配線板の保護膜が、複数の現像性樹脂層を積層した感光性樹脂構造体から得られる構成とすることにより前記目的を達成し得ることを見出し、本発明を完成するに至った。 As a result of diligent investigations to achieve the above object, the present inventors have made the above object by forming a protective film for a flexible printed wiring board from a photosensitive resin structure in which a plurality of developable resin layers are laminated. The present invention has been completed.
 すなわち、本発明の感光性樹脂構造体は、現像性接着層(a)と、該現像性接着層(a)を介してフレキシブルプリント配線板に積層される現像性保護層(b)と、を有する感光性樹脂構造体であって、少なくとも前記現像性保護層(b)は、光照射によりパターニングが可能であり、かつ、前記現像性接着層(a)と前記現像性保護層(b)は、現像によりパターンを一括して形成することが可能であることを特徴とするものである。 That is, the photosensitive resin structure of the present invention comprises a developable adhesive layer (a) and a developable protective layer (b) laminated on the flexible printed wiring board via the developable adhesive layer (a). A photosensitive resin structure having at least the developable protective layer (b) can be patterned by light irradiation, and the developable adhesive layer (a) and the developable protective layer (b) The pattern can be collectively formed by development.
 特に、前記現像性接着層(a)と前記現像性保護層(b)が共に、光照射によりパターニングが可能であることが好ましい。 In particular, it is preferable that both the developable adhesive layer (a) and the developable protective layer (b) can be patterned by light irradiation.
 また、本発明の感光性樹脂構造体においては、前記現像性接着層(a)が、前記現像性保護層(b)よりも厚いことが好ましい。 In the photosensitive resin structure of the present invention, it is preferable that the developable adhesive layer (a) is thicker than the developable protective layer (b).
 さらに、本発明の感光性樹脂構造体は、フレキシブルプリント配線板の屈曲部及び非屈曲部のうちの少なくともいずれか一方に用いることができ、また、フレキシブルプリント配線板のカバーレイ及びソルダーレジストのうちの少なくともいずれか一方を形成するために用いることができる。 Furthermore, the photosensitive resin structure of the present invention can be used for at least one of a bent portion and a non-bent portion of the flexible printed wiring board, and among the cover lay and the solder resist of the flexible printed wiring board. Can be used to form at least one of the following.
 本発明のドライフィルムは、前記感光性樹脂構造体の少なくとも片面が、フィルムで支持又は保護されていることを特徴とするものである。 The dry film of the present invention is characterized in that at least one surface of the photosensitive resin structure is supported or protected by a film.
 また、本発明のフレキシブルプリント配線板は、フレキシブルプリント配線板上に形成された前記感光性樹脂構造体を光照射によりパターニングし、現像によりパターンを一括して形成してなる保護膜を有することを特徴とするものである。 In addition, the flexible printed wiring board of the present invention has a protective film formed by patterning the photosensitive resin structure formed on the flexible printed wiring board by light irradiation and forming the pattern collectively by development. It is a feature.
 好ましくは、前記現像性接着層(a)は、フレキシブルプリント配線板上に、感光性又は非感光性の樹脂組成物(a1)を塗布して形成される。 Preferably, the developable adhesive layer (a) is formed by applying a photosensitive or non-photosensitive resin composition (a1) on a flexible printed wiring board.
 また、本発明者らは、上記他の目的の実現に向け鋭意研究した結果、以下の内容を要旨とする本発明を完成するに至った。
 すなわち、本発明の積層構造体は、アルカリ現像型樹脂組成物からなる樹脂層(A)と、該樹脂層(A)を介してフレキシブルプリント配線板に積層される樹脂層(B)と、を有する積層構造体であって、前記樹脂層(B)が、イミド環を有するアルカリ溶解性樹脂と光塩基発生剤と熱反応性化合物を含む感光性熱硬化性樹脂組成物からなることを特徴とするものである。
In addition, as a result of intensive studies aimed at realizing the above-mentioned other objects, the present inventors have completed the present invention having the following contents.
That is, the laminated structure of the present invention comprises a resin layer (A) made of an alkali developing resin composition, and a resin layer (B) laminated on a flexible printed wiring board via the resin layer (A). The resin layer (B) is composed of a photosensitive thermosetting resin composition containing an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound. To do.
 本発明の積層構造体は、前記樹脂層(A)と前記樹脂層(B)が共に、光照射によりパターニングが可能であることが好ましい。 In the laminated structure of the present invention, it is preferable that both the resin layer (A) and the resin layer (B) can be patterned by light irradiation.
 さらに、本発明の積層構造体は、フレキシブルプリント配線板の屈曲部および非屈曲部のうちの少なくともいずれか一方に用いることができ、また、フレキシブルプリント配線板のカバーレイ、ソルダーレジストおよび層間絶縁材料のうちの少なくともいずれか1つの用途として用いることができる。 Furthermore, the laminated structure of the present invention can be used for at least one of a bent portion and a non-bent portion of the flexible printed wiring board. Also, the cover lay of the flexible printed wiring board, the solder resist, and the interlayer insulating material Can be used as at least one of the applications.
 本発明のドライフィルムは、前記積層構造体の少なくとも片面が、フィルムで支持または保護されていることを特徴とするものである。 The dry film of the present invention is characterized in that at least one surface of the laminated structure is supported or protected by a film.
 本発明のフレキシブルプリント配線板は、フレキシブルプリント配線板上に前記積層構造体の層を形成し、光照射によりパターニングし、現像液にてパターンを一括して形成してなる絶縁膜を有することを特徴とするものである。
 本発明のフレキシブルプリント配線板は、本発明にかかる積層構造体を使用せずに、樹脂層(A)と樹脂層(B)を順次に形成し、その後に、光照射によりパターニングし、現像液にてパターンを一括して形成してもよい。
 なお、本発明において「パターン」とはパターン状の硬化物、すなわち絶縁膜を意味する。
The flexible printed wiring board of the present invention has an insulating film formed by forming a layer of the laminated structure on the flexible printed wiring board, patterning by light irradiation, and forming the pattern in a batch with a developer. It is a feature.
The flexible printed wiring board of the present invention is formed by sequentially forming the resin layer (A) and the resin layer (B) without using the laminated structure according to the present invention, and then patterning by light irradiation. The pattern may be formed in a lump.
In the present invention, the “pattern” means a patterned cured product, that is, an insulating film.
 また、本発明者らは、上記更に他の目的の実現に向け鋭意研究した結果、以下の内容を要旨とする本発明を完成するに至った。
 すなわち、本発明のフレキシブルプリント配線板の製造方法は、フレキシブルプリント配線板上に、アルカリ現像型感光性樹脂組成物(A1)からなる樹脂層(A)を少なくとも一層形成する工程、前記樹脂層(A)上に、イミド環を有するアルカリ溶解性樹脂、光塩基発生剤、及び熱反応性化合物を含む感光性熱硬化性樹脂組成物(B1)からなる樹脂層(B)を少なくとも一層形成する工程、前記工程にて形成した樹脂層(A)と(B)に、パターン状に光を照射する工程、前記工程にて光照射した樹脂層(A)と(B)を加熱する工程、及び、前記光照射された樹脂層(A)と(B)をアルカリ現像して、カバーレイ、及びソルダーレジストのうちの少なくともいずれか一方を形成する工程、を含むことを特徴とするものである。
In addition, as a result of intensive studies aimed at realizing the above-described other objects, the present inventors have completed the present invention having the following contents.
That is, in the method for producing a flexible printed wiring board of the present invention, the step of forming at least one resin layer (A) made of an alkali-developable photosensitive resin composition (A1) on the flexible printed wiring board, the resin layer ( A) A step of forming at least one resin layer (B) composed of a photosensitive thermosetting resin composition (B1) containing an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound. , A step of irradiating the resin layers (A) and (B) formed in the step with light in a pattern, a step of heating the resin layers (A) and (B) irradiated with the light in the step, and A step of alkali-developing the light-irradiated resin layers (A) and (B) to form at least one of a coverlay and a solder resist.
 本発明のフレキシブルプリント配線板は、上記製造方法により製造されたことを特徴とするものである。 The flexible printed wiring board of the present invention is manufactured by the above manufacturing method.
 本発明によれば、フレキシブルプリント配線板上において微細なパターン形成が可能で、絶縁性、屈曲性に優れる感光性樹脂構造体、及びその硬化物を保護膜、例えば、カバーレイおよびソルダーレジストとして有するプリント配線板を提供することができる。 According to the present invention, it is possible to form a fine pattern on a flexible printed wiring board, and have a photosensitive resin structure excellent in insulation and flexibility, and a cured product thereof as a protective film, for example, a coverlay and a solder resist. A printed wiring board can be provided.
 また、本発明によれば、耐衝撃性や屈曲性、低反り性などの信頼性と加工精度に優れ、かつ作業性に優れたフレキシブルプリント配線板用の絶縁膜、特に折り曲げ部(屈曲部)と実装部(非屈曲部)の一括形成プロセスに適した積層構造体と、その硬化物を絶縁膜、例えば、カバーレイやソルダーレジスト、層間絶縁層として有する、耐衝撃性や屈曲性などの信頼性に優れるフレキシブルプリント配線板を提供することができる。 In addition, according to the present invention, the insulating film for flexible printed wiring boards, which has excellent reliability and processing accuracy such as impact resistance, bendability, and low warpage, and excellent workability, particularly a bent portion (bent portion). And a laminated structure suitable for the batch formation process of the mounting part (non-bent part) and its cured product as an insulating film, for example, coverlay, solder resist, interlayer insulating layer, and reliability such as impact resistance and flexibility A flexible printed wiring board having excellent properties can be provided.
 更に、本発明によれば、耐衝撃性、屈曲性、及び低反り性などの信頼性と加工精度に優れたフレキシブルプリント配線板用の絶縁膜、特に折り曲げ部(屈曲部)と実装部(非屈曲部)における絶縁膜、例えば、カバーレイ及びソルダーレジストを作業性良く、一括して形成可能なフレキシブルプリント配線板の製造方法、及びフレキシブルプリント配線板を提供することができる。 Furthermore, according to the present invention, an insulating film for a flexible printed wiring board excellent in reliability and processing accuracy such as impact resistance, bendability, and low warpage, particularly a bent portion (bend portion) and a mounting portion (non- The manufacturing method of the flexible printed wiring board which can form the insulating film in a bending part), for example, a coverlay and a soldering resist, collectively with sufficient workability | operativity, and a flexible printed wiring board can be provided.
本発明の一実施の形態に係る積層構造体を積層したフレキシブルプリント配線板の概略断面図である。It is a schematic sectional drawing of the flexible printed wiring board which laminated | stacked the laminated structure which concerns on one embodiment of this invention. 図1に示す積層構造体にパターニング及び現像処理を施した後のフレキシブルプリント配線板の概略断面図である。It is a schematic sectional drawing of the flexible printed wiring board after performing patterning and development processing to the laminated structure shown in FIG. 本発明のフレキシブルプリント配線板の製造方法の一例を模式的に示す工程図である。It is process drawing which shows typically an example of the manufacturing method of the flexible printed wiring board of this invention.
 以下、本発明の実施の形態について、詳細に説明する。
(感光性樹脂構造体)
 本発明の感光性樹脂構造体は、フレキシブルプリント配線板上に積層可能で、かつ、フレキシブルプリント配線板上で光照射によりパターニングが可能であり、現像によりパターンを一括して形成することが可能なものである。ここで、パターンは、パターン状の硬化物、すなわち、保護膜を意味する。
 従来、パンチング加工されたカバーレイに接着剤を塗布した後、フレキシブルプリント配線板上にカバーレイを圧着していたが、本発明では、フレキシブルプリント配線板上に現像性接着層(a)と現像性保護層(b)を積層した後、光照射及び現像により一括してパターンを形成することが可能である。
Hereinafter, embodiments of the present invention will be described in detail.
(Photosensitive resin structure)
The photosensitive resin structure of the present invention can be laminated on a flexible printed wiring board, and can be patterned by light irradiation on the flexible printed wiring board, and a pattern can be collectively formed by development. Is. Here, the pattern means a patterned cured product, that is, a protective film.
Conventionally, after applying an adhesive to a punched coverlay, the coverlay is pressure-bonded on the flexible printed wiring board. In the present invention, the developable adhesive layer (a) and the development are applied on the flexible printed wiring board. After laminating the protective layer (b), it is possible to form a pattern all at once by light irradiation and development.
 図1に、本発明の一実施の形態に係る感光性樹脂構造体を示す。
 図示する構造体1は、フレキシブル基板2に銅回路3が形成されたフレキシブルプリント配線板上に、現像性接着層(a)と現像性保護層(b)とを順に有し、少なくとも現像性保護層(b)が光照射によりパターニングが可能であり、かつ、現像性接着層(a)と現像性保護層(b)とが現像によりパターンを一括形成することが可能なものである。ここで、パターニングとは、光照射された部分が、現像不可能状態から現像可能状態に変化すること(ポジ型)、又は、現像可能状態から現像不可能状態に変化すること(ネガ型)を言う。また、パターンの形成とは、光照射部分が現像されて未照射部分がパターン状に残ること(ポジ型)、又は、未照射部分が現像されて光照射部分がパターン状に残ること(ネガ型)を言う。
FIG. 1 shows a photosensitive resin structure according to an embodiment of the present invention.
The structure 1 shown in the figure has a developable adhesive layer (a) and a developable protective layer (b) in this order on a flexible printed wiring board in which a copper circuit 3 is formed on a flexible substrate 2, and at least developable protection. The layer (b) can be patterned by light irradiation, and the developable adhesive layer (a) and the developable protective layer (b) can collectively form a pattern by development. Here, patterning means that a portion irradiated with light changes from a non-developable state to a developable state (positive type) or changes from a developable state to a non-developable state (negative type). To tell. In addition, pattern formation means that a light irradiated part is developed and an unirradiated part remains in a pattern (positive type), or an unirradiated part is developed and a light irradiated part remains in a pattern (negative type). )
 特に、本発明の感光性樹脂構造体の現像性接着層(a)と現像性保護層(b)とが共に光照射によりパターニングが可能である場合、微細なパターンを形成できるため好ましい。 In particular, it is preferable that both the developable adhesive layer (a) and the developable protective layer (b) of the photosensitive resin structure of the present invention can be patterned by light irradiation because a fine pattern can be formed.
 現像性接着層(a)は、感光性または非感光性の樹脂組成物(a1)により形成され、現像性保護層(b)は、樹脂組成物(a1)と異なる感光性樹脂組成物(b1)により形成されている。
 感光性又は非感光性の樹脂組成物(a1)は、主に、保護膜に屈曲性を付与し得る材料から適宜選定される。微細なパターンの形成のためには、樹脂組成物(a1)は感光性であることが好ましい。
 一方、感光性樹脂組成物(b1)は、主に、絶縁性を付与し得る材料から適宜選定される。
The developable adhesive layer (a) is formed of a photosensitive or non-photosensitive resin composition (a1), and the developable protective layer (b) is a photosensitive resin composition (b1) different from the resin composition (a1). ).
The photosensitive or non-photosensitive resin composition (a1) is appropriately selected from materials that can impart flexibility to the protective film. In order to form a fine pattern, the resin composition (a1) is preferably photosensitive.
On the other hand, the photosensitive resin composition (b1) is appropriately selected mainly from materials that can impart insulating properties.
 本発明においては、現像性接着層(a)は、保護膜の銅回路への追従性と屈曲性の観点より現像性保護層(b)よりも厚い方が好ましい。また、本発明の感光性樹脂構造体は、フレキシブルプリント配線板の屈曲部及び非屈曲部のうちの少なくともいずれか一方に用いることができ、具体的には、フレキシブルプリント配線板のカバーレイ及びソルダーレジストのうちの少なくともいずれか一方を形成するために用いることができる。非屈曲部としては、チップ実装部などが挙げられる。 In the present invention, the developing adhesive layer (a) is preferably thicker than the developing protective layer (b) from the viewpoint of followability of the protective film to the copper circuit and flexibility. The photosensitive resin structure of the present invention can be used for at least one of a bent portion and a non-bent portion of a flexible printed wiring board. Specifically, the cover lay and the solder of the flexible printed wiring board are used. It can be used to form at least one of the resists. Examples of the non-bent part include a chip mounting part.
 現像方法としては、アルカリ水溶液を用いる現像(以下、アルカリ現像ともいう。)でも有機溶剤を用いる現像でもよいが、アルカリ現像が好ましい。
 現像性接着層(a)及び現像性保護層(b)に用いることができる感光性樹脂組成物(a1)及び(b1)は、ポジ型でもネガ型でもよい。
 ポジ型感光性組成物としては、光照射前後の極性変化により、光照射部(露光部ともいう。)が現像液により溶解するものであれば、公知慣用のものを用いることができる。例えば、ジアゾナフトキノン化合物とアルカリ可溶性樹脂を含有する組成物が挙げられる。
The development method may be development using an aqueous alkali solution (hereinafter also referred to as alkali development) or development using an organic solvent, but alkali development is preferred.
The photosensitive resin compositions (a1) and (b1) that can be used for the developable adhesive layer (a) and the developable protective layer (b) may be positive or negative.
As the positive photosensitive composition, a publicly known and conventional one can be used as long as the light irradiation part (also referred to as an exposure part) is dissolved by the developer due to the change in polarity before and after the light irradiation. For example, a composition containing a diazonaphthoquinone compound and an alkali-soluble resin can be mentioned.
 ネガ型感光性組成物としては、光照射部が現像液に対して、難溶となるものであれば公知慣用のものを利用できる。例えば、光酸発生剤とアルカリ可溶性樹脂を含有する組成物、光塩基発生剤とアルカリ可溶性樹脂を含有する組成物、光重合開始剤とアルカリ可溶性樹脂を含有する組成物などが挙げられる。 As the negative photosensitive composition, a known and commonly used one can be used as long as the light irradiation part is hardly soluble in the developer. Examples thereof include a composition containing a photoacid generator and an alkali-soluble resin, a composition containing a photobase generator and an alkali-soluble resin, and a composition containing a photopolymerization initiator and an alkali-soluble resin.
 感光性樹脂組成物(a1)と(b1)の組み合わせとしては、ポジ型感光性樹脂組成物(a1)とポジ型感光性樹脂組成物(b1)、ネガ型感光性樹脂組成物(a1)とネガ型感光性樹脂組成物(b1)の組み合わせであればいずれでもよい。
 例えば、光塩基発生剤を含有する組成物(a1)と光塩基発生剤を含有する組成物(b1)、
光塩基発生剤を含有する組成物(a1)と光重合開始剤を含有する組成物(b1)、
光重合開始剤を含有する組成物(a1)と光塩基発生剤を含有する組成物(b1)、
光重合開始剤を含有する組成物(a1)と光重合開始剤を含有する組成物(b1)、
の組合せ等が挙げられ、組み合わせは、実施形態に応じて選択できる。
As a combination of the photosensitive resin compositions (a1) and (b1), the positive photosensitive resin composition (a1), the positive photosensitive resin composition (b1), and the negative photosensitive resin composition (a1) Any combination of negative photosensitive resin composition (b1) may be used.
For example, a composition (a1) containing a photobase generator and a composition (b1) containing a photobase generator,
A composition (a1) containing a photobase generator and a composition (b1) containing a photopolymerization initiator,
A composition (a1) containing a photopolymerization initiator and a composition (b1) containing a photobase generator,
A composition (a1) containing a photopolymerization initiator and a composition (b1) containing a photopolymerization initiator,
The combination can be selected according to the embodiment.
 本発明の感光性樹脂構造体は、フレキシブルプリント配線板の用途であるため、硬化時のゆがみ、反りを小さくすることができるものが好ましい。従って、上記光塩基発生剤を含有する組成物が好ましく、そのような組成物としては、例えば、光塩基発生剤と熱硬化性樹脂を含有し、付加反応により硬化する組成物も含まれる。 Since the photosensitive resin structure of the present invention is an application of a flexible printed wiring board, it is preferable to be able to reduce distortion and warpage during curing. Accordingly, a composition containing the photobase generator is preferred, and examples of such a composition include a composition containing a photobase generator and a thermosetting resin and cured by an addition reaction.
 また、感光性樹脂組成物(a1)及び感光性樹脂組成物(b1)のいずれか一方のみが、光酸発生剤、光塩基発生剤、又は光重合開始剤を有し、他方が、光酸発生剤、光塩基発生剤、及び光重合開始剤のいずれも含有しない構成でもよい。この場合、一方の感光性樹脂組成物に含まれる光酸発生剤、光塩基発生剤、又は光重合開始剤が、他方の感光性樹脂組成物を硬化すればよい。 Further, only one of the photosensitive resin composition (a1) and the photosensitive resin composition (b1) has a photoacid generator, a photobase generator, or a photopolymerization initiator, and the other has a photoacid generator. The structure which does not contain any of a generator, a photobase generator, and a photoinitiator may be sufficient. In this case, the photoacid generator, photobase generator, or photopolymerization initiator contained in one photosensitive resin composition may cure the other photosensitive resin composition.
 また、本発明では、非感光性樹脂組成物(a1)とポジ型感光性樹脂組成物(b1)との組み合わせでもよく、非感光性樹脂組成物(a1)とネガ型感光性樹脂組成物(b1)との組み合わせでもよい。また、ポジ型感光性樹脂組成物(a1)と非感光性樹脂組成物(b1)との組み合わせでもよく、ネガ型感光性樹脂組成物(a1)と非感光性樹脂組成物(b1)との組み合わせでもよい。非感光性樹脂組成物(a1)としては、熱硬化性樹脂を含有する組成物が挙げられる。 Moreover, in this invention, the combination of a non-photosensitive resin composition (a1) and a positive photosensitive resin composition (b1) may be sufficient, and a non-photosensitive resin composition (a1) and a negative photosensitive resin composition ( It may be a combination with b1). Moreover, the combination of positive photosensitive resin composition (a1) and non-photosensitive resin composition (b1) may be sufficient, and negative photosensitive resin composition (a1) and non-photosensitive resin composition (b1) A combination may be used. Examples of the non-photosensitive resin composition (a1) include a composition containing a thermosetting resin.
 本発明の積層構造体の全膜厚は、100μm以下が好ましく、4~80μmの範囲がより好ましい。例えば積層構造体が2層である場合、現像性接着層(a)は、例えば、3~60μmであるがこれに限られない。このような厚みとすることにより、現像性接着層(a)が回路に隙間なく密着できる。一方、現像性保護層(b)は、例えば、1~20μmの厚さとすればよい。 The total film thickness of the laminated structure of the present invention is preferably 100 μm or less, and more preferably in the range of 4 to 80 μm. For example, when the laminated structure has two layers, the developable adhesive layer (a) is, for example, 3 to 60 μm, but is not limited thereto. By setting it as such thickness, a developable contact bonding layer (a) can closely_contact | adhere to a circuit without a gap. On the other hand, the developable protective layer (b) may have a thickness of 1 to 20 μm, for example.
 図2は、図1に示すフレキシブルプリント配線板上の感光性樹脂構造体1を光照射した後、アルカリ現像液にて現像処理を施してパターン形成した状態を示す断面である。 FIG. 2 is a cross-sectional view showing a state where a pattern is formed by irradiating the photosensitive resin structure 1 on the flexible printed wiring board shown in FIG. 1 with light and then developing with an alkaline developer.
(ドライフィルム)
 本発明のドライフィルムは、前記感光性樹脂構造体の少なくとも片面が、フィルムで支持又は保護されている。
(Dry film)
In the dry film of the present invention, at least one surface of the photosensitive resin structure is supported or protected by the film.
 ドライフィルムの製造は、例えば、感光性樹脂組成物(b1)を有機溶剤で希釈して適切な粘度に調整し、コンマコーター等でキャリアフィルム上に均一な厚さに塗布する。その塗布層を乾燥し、キャリアフィルム上に現像性保護層(b)を形成する。同様にして、該現像性保護層(b)上に、感光性又は非感光性の樹脂組成物(a1)により現像性接着層(a)を形成し、本発明のドライフィルムを得ることができる。
 キャリアフィルムとしては、プラスチックフィルムが用いられる。キャリアフィルムの厚さについては特に制限はないが、一般に、10~150μmの範囲で適宜選択される。キャリアフィルム上に感光性樹脂構造体を形成した後、さらに、感光性樹脂構造体の表面に剥離可能なカバーフィルムを積層してもよい。
For production of the dry film, for example, the photosensitive resin composition (b1) is diluted with an organic solvent to have an appropriate viscosity, and is applied to the carrier film with a uniform thickness using a comma coater or the like. The coating layer is dried to form a developable protective layer (b) on the carrier film. Similarly, a developable adhesive layer (a) can be formed on the developable protective layer (b) with a photosensitive or non-photosensitive resin composition (a1) to obtain the dry film of the present invention. .
A plastic film is used as the carrier film. The thickness of the carrier film is not particularly limited, but is generally appropriately selected within the range of 10 to 150 μm. After forming the photosensitive resin structure on the carrier film, a peelable cover film may be further laminated on the surface of the photosensitive resin structure.
(フレキシブルプリント配線板)
 本発明のフレキシブルプリント配線板は、本発明の感光性樹脂構造体をフレキシブルプリント配線板上で光照射によりパターニングし、現像液にて一括してパターンを形成してなる保護膜を有する。保護膜は、カバーレイ及びソルダーレジストのうちの少なくともいずれか一方であることが好ましい。
<感光性樹脂構造体の製造方法>
 フレキシブルプリント配線板上に、現像性接着層(a)と現像性保護層(b)を形成する方法としては、本発明のドライフィルムを用いるラミネート法でも、樹脂組成物(a1)、(b1)をそのまま使用する塗布法でもよい。ラミネート法では、ラミネーター等により現像性接着層(a)が、フレキシブルプリント配線板の屈曲部及び非屈曲部のうちの少なくともいずれか一方と接触するようにフレキシブルプリント配線板上にドライフィルムを貼り合わせる。
(Flexible printed wiring board)
The flexible printed wiring board of the present invention has a protective film formed by patterning the photosensitive resin structure of the present invention on the flexible printed wiring board by light irradiation and forming the pattern in a lump with a developer. The protective film is preferably at least one of a coverlay and a solder resist.
<Method for producing photosensitive resin structure>
As a method for forming the developable adhesive layer (a) and the developable protective layer (b) on the flexible printed wiring board, the resin compositions (a1) and (b1) can be formed by the laminating method using the dry film of the present invention. The coating method may be used as it is. In the laminating method, a dry film is bonded on the flexible printed wiring board by a laminator or the like so that the developable adhesive layer (a) is in contact with at least one of the bent portion and the non-bent portion of the flexible printed wiring board. .
 塗布法としては、スクリーン印刷などにより、フレキシブルプリント配線板上に感光性又は非感光性の樹脂組成物(a1)と感光性樹脂組成物(b1)をそれぞれ順に塗布及び乾燥して現像性接着層(a)と現像性保護層(b)を形成する。 As a coating method, a photosensitive adhesive composition or a non-photosensitive resin composition (a1) and a photosensitive resin composition (b1) are sequentially applied and dried on a flexible printed wiring board by screen printing or the like, and then a developing adhesive layer. (A) and a developable protective layer (b) are formed.
 なお、フレキシブルプリント配線板に樹脂組成物(a1)を塗布、乾燥して現像性接着層(a)を形成し、その現像性接着層(a)上に、感光性樹脂組成物(b1)からなるフィルムをラミネートして現像性保護層(b)を形成する方法でもよい。
 逆に、樹脂組成物(a1)からなるフィルムをフレキシブルプリント配線板にラミネートすることにより現像性接着層(a)を形成し、その現像性接着層(a)上に、感光性樹脂組成物(b1)を塗布、乾燥することにより現像性保護層(b)を形成してもよい。
The resin composition (a1) is applied to a flexible printed wiring board and dried to form a developable adhesive layer (a). From the photosensitive resin composition (b1) on the developable adhesive layer (a). The film which laminates may be formed and the method of forming a developable protective layer (b) may be used.
Conversely, a developable adhesive layer (a) is formed by laminating a film made of the resin composition (a1) on a flexible printed wiring board, and a photosensitive resin composition (a) is formed on the developable adhesive layer (a). The developable protective layer (b) may be formed by applying and drying b1).
<光重合開始剤を含有するネガ型感光性樹脂構造体を用いたフレキシブルプリント配線板の製造方法>
 光重合開始剤を含有するネガ型積層樹脂構造体の場合、樹脂組成物(a1)及び樹脂組成物(b1)のうちの少なくともいずれか一方が光重合開始剤を含有していればよい。
 この場合、フレキシブルプリント配線板上に上記ラミネート法などにより、現像性接着層(a)及び現像性保護層(b)を有する感光性樹脂構造体を形成する。その後、接触式又は非接触方式により、ネガ型感光性樹脂構造体に対して、パターン状に光を照射し、未照射部を現像して、ネガ型のパターンの保護膜を得る。さらに熱硬化性成分を含有している組成物の場合、例えば約140~180℃の温度に加熱して熱硬化させることにより、耐熱性、耐薬品性、耐吸湿性、密着性、電気特性などの諸特性に優れた保護膜を形成することができる。
 ネガ型感光性樹脂構造体が光重合開始剤を含有するため、ラジカル重合により光照射部が硬化する。
<The manufacturing method of the flexible printed wiring board using the negative photosensitive resin structure containing a photoinitiator>
In the case of a negative laminated resin structure containing a photopolymerization initiator, it is sufficient that at least one of the resin composition (a1) and the resin composition (b1) contains a photopolymerization initiator.
In this case, a photosensitive resin structure having a developable adhesive layer (a) and a developable protective layer (b) is formed on the flexible printed wiring board by the laminating method or the like. Thereafter, the negative photosensitive resin structure is irradiated with light in a pattern by a contact method or a non-contact method, and an unirradiated portion is developed to obtain a protective film having a negative pattern. Furthermore, in the case of a composition containing a thermosetting component, for example, by heating to a temperature of about 140 to 180 ° C. and thermosetting, heat resistance, chemical resistance, moisture absorption, adhesion, electrical characteristics, etc. A protective film having excellent characteristics can be formed.
Since the negative photosensitive resin structure contains a photopolymerization initiator, the light irradiation part is cured by radical polymerization.
<光塩基発生剤を含むネガ型感光性樹脂構造体を用いたフレキシブルプリント配線板の製造方法>
 光塩基発生剤を含有するネガ型積層樹脂構造体の場合も、樹脂組成物(a1)及び樹脂組成物(b1)のうちの少なくともいずれか一方が光塩基発生剤を含有していればよい。この場合も、まずは、上記ラミネート方法等により、フレキシブルプリント配線板上に現像性接着層(a)及び現像性保護層(b)を有するネガ型感光性樹脂構造体を形成する。その後、ネガ型感光性樹脂構造体に対して、パターン状に光を照射することにより、光塩基発生剤から塩基を発生させて光照射部を硬化する。その後、現像により未照射部を除去してネガ型のパターンの保護膜を得る。なお、光照射後、現像性接着層(a)及び現像性保護層(b)を加熱することが好ましい。
 光照射により、光照射部で塩基が発生し、その塩基により、光塩基発生剤が不安定化し、さらに塩基が発生すると考えられる。このように塩基が化学的に増殖することにより、光照射部が深部まで十分硬化する。
<The manufacturing method of the flexible printed wiring board using the negative photosensitive resin structure containing a photobase generator>
Also in the case of a negative laminated resin structure containing a photobase generator, at least one of the resin composition (a1) and the resin composition (b1) only needs to contain a photobase generator. Also in this case, first, a negative photosensitive resin structure having a developable adhesive layer (a) and a developable protective layer (b) is formed on the flexible printed wiring board by the laminating method or the like. Thereafter, the negative photosensitive resin structure is irradiated with light in a pattern, thereby generating a base from the photobase generator and curing the light irradiation portion. Thereafter, the unirradiated portion is removed by development to obtain a protective film having a negative pattern. In addition, it is preferable to heat a developable adhesive layer (a) and a developable protective layer (b) after light irradiation.
It is considered that a base is generated in the light irradiation part by light irradiation, the photobase generator is destabilized by the base, and further a base is generated. In this way, the base is chemically propagated, so that the light irradiation part is sufficiently cured to the deep part.
 なお、現像後に、さらに、保護膜の絶縁信頼性を向上させるために紫外線を照射してもよい。また、現像後に、さらに、熱硬化(ポストキュア)工程を含んでもよく、現像後に紫外線照射と熱硬化をともに行ってもよい。熱硬化工程における加熱温度は、例えば、160℃以上である。 It should be noted that ultraviolet rays may be irradiated after the development in order to further improve the insulation reliability of the protective film. Further, after development, a heat curing (post-cure) step may be further included, and both ultraviolet irradiation and heat curing may be performed after development. The heating temperature in the thermosetting process is, for example, 160 ° C. or higher.
<光酸発生剤を含有するネガ型感光性樹脂構造体を用いたフレキシブルプリント配線板の製造方法>
 光酸発生剤を含有するネガ型積層樹脂構造体の場合も、樹脂組成物(a1)及び樹脂組成物(b1)のうちの少なくともいずれか一方が光酸発生剤を含有していればよい。この場合も、光塩基発生剤を含有する場合と同様に、上記ラミネート法等により、フレキシブルプリント配線板上に現像性接着層(a)及び現像性保護層(b)を有するネガ型感光性樹脂構造体を形成する。その後、ネガ型感光性樹脂構造体に対して、パターン状に光を照射することにより、光酸発生剤から酸を発生させて、光照射部を硬化する。その後、上記同様の現像方法より、ネガ型のパターンの保護膜を得る。
<The manufacturing method of the flexible printed wiring board using the negative photosensitive resin structure containing a photo-acid generator>
Also in the case of a negative laminated resin structure containing a photoacid generator, it suffices that at least one of the resin composition (a1) and the resin composition (b1) contains a photoacid generator. In this case, as in the case of containing a photobase generator, a negative photosensitive resin having a developable adhesive layer (a) and a developable protective layer (b) on the flexible printed wiring board by the laminating method or the like. Form a structure. Thereafter, the negative photosensitive resin structure is irradiated with light in a pattern, thereby generating an acid from the photoacid generator and curing the light irradiation portion. Thereafter, a protective film having a negative pattern is obtained by the same developing method as described above.
<ポジ型感光性樹脂構造体を用いたフレキシブルプリント配線板の製造方法>
 ポジ型積層樹脂構造体の場合も、樹脂組成物(a1)及び樹脂組成物(b1)のうちの少なくともいずれか一方がポジ型組成物であればよい。この場合も、上記ラミネート法等により、フレキシブルプリント配線板上に現像性接着層(a)及び現像性保護層(b)を有するポジ型感光性樹脂構造体を形成する。
 そして、ポジ型感光性樹脂構造体に、パターン状に光を照射することにより、極性を変化させる。その後、光照射部を現像して、ポジ型のパターンの保護膜を得る。
<Method for producing flexible printed wiring board using positive photosensitive resin structure>
Also in the case of a positive type laminated resin structure, at least one of the resin composition (a1) and the resin composition (b1) may be a positive type composition. Also in this case, the positive photosensitive resin structure having the developable adhesive layer (a) and the developable protective layer (b) is formed on the flexible printed wiring board by the laminating method or the like.
Then, the polarity is changed by irradiating the positive photosensitive resin structure with light in a pattern. Thereafter, the light irradiation part is developed to obtain a protective film having a positive pattern.
 上記光照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で紫外線を照射する装置であればよく、さらに、直接描画装置(例えばコンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。
 直接描画装置のレーザー光源としては、最大波長が350~450nmの範囲にあるレーザー光を用いていればガスレーザー、固体レーザーどちらでもよい。画像形成のための露光量は膜厚等によって異なるが、一般には20~1500mJ/cmの範囲内とすることができる。
The exposure apparatus used for the light irradiation may be any apparatus that is equipped with a high-pressure mercury lamp lamp, an ultra-high pressure mercury lamp lamp, a metal halide lamp, a mercury short arc lamp, etc., and irradiates ultraviolet rays in the range of 350 to 450 nm. A direct drawing apparatus (for example, a laser direct imaging apparatus that directly draws an image with a laser using CAD data from a computer) can also be used.
As a laser light source of the direct drawing apparatus, either a gas laser or a solid laser may be used as long as laser light having a maximum wavelength in the range of 350 to 450 nm is used. The exposure amount for image formation varies depending on the film thickness and the like, but can generally be in the range of 20 to 1500 mJ / cm 2 .
 前記現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類などのアルカリ水溶液が使用できる。 The developing method can be a dipping method, a shower method, a spray method, a brush method or the like, and as a developer, potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, Alkaline aqueous solutions such as ammonia and amines can be used.
 次に、本発明の積層構造体の実施の形態について詳述する。
(積層構造体)
 本発明の積層構造体は、アルカリ現像型樹脂組成物からなる樹脂層(A)と、該樹脂層(A)を介してフレキシブルプリント配線板に積層される樹脂層(B)とを有する積層構造体であって、前記樹脂層(B)が、イミド環を有するアルカリ溶解性樹脂と光塩基発生剤と熱反応性化合物を含む感光性熱硬化性樹脂組成物からなることを特徴とするものである。
Next, an embodiment of the laminated structure of the present invention will be described in detail.
(Laminated structure)
The laminated structure of the present invention has a laminated structure having a resin layer (A) made of an alkali developing resin composition and a resin layer (B) laminated on a flexible printed wiring board via the resin layer (A). The resin layer (B) is composed of a photosensitive thermosetting resin composition containing an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound. is there.
 このような本発明の積層構造体は、フレキシブルプリント配線板上に積層可能で、かつ、フレキシブルプリント配線板上で光照射によりパターニングが可能であり、現像によりパターンを一括して形成することが可能となる。 Such a laminated structure of the present invention can be laminated on a flexible printed wiring board, and can be patterned by light irradiation on the flexible printed wiring board, and patterns can be collectively formed by development. It becomes.
 このような本発明の積層構造体によれば、樹脂層(B)として、(1)イミド環が分子中に存在する樹脂を用いたこと、(2)アルカリ溶解性樹脂と熱反応性化合物との付加反応を利用した組成物を用いたことにより、この層が強化層として機能し、従前のソルダーレジスト組成物や層間絶縁材料からなる樹脂層(A)を用いても、耐衝撃性や屈曲性、低反り性などの信頼性と加工精度に優れ、かつ作業性に優れたフレキシブルプリント配線板用の絶縁膜を提供することができる。 According to such a laminated structure of the present invention, (1) a resin having an imide ring in the molecule is used as the resin layer (B), and (2) an alkali-soluble resin and a thermally reactive compound are used. This layer functions as a reinforcing layer by using a composition utilizing the addition reaction, and even if a resin layer (A) made of a conventional solder resist composition or an interlayer insulating material is used, impact resistance and bending It is possible to provide an insulating film for a flexible printed wiring board that is excellent in reliability such as reliability and low warpage and processing accuracy and excellent in workability.
 本発明の積層構造体は、フレキシブル基板に銅回路が形成されたフレキシブルプリント配線板上に、樹脂層(A)と樹脂層(B)とを順に有し、少なくとも樹脂層(B)が光照射によりパターニングが可能であり、かつ、樹脂層(A)と樹脂層(B)とが現像によりパターンを一括形成することが可能なものである。 The laminated structure of the present invention has a resin layer (A) and a resin layer (B) in order on a flexible printed wiring board in which a copper circuit is formed on a flexible substrate, and at least the resin layer (B) is irradiated with light. Can be patterned, and the resin layer (A) and the resin layer (B) can collectively form a pattern by development.
(積層構造体を構成する樹脂層(A))
 (樹脂層(A)を構成するアルカリ現像型樹脂組成物)
 樹脂層(A)を構成するアルカリ現像性樹脂組成物としては、フェノール性水酸基、チオール基およびカルボキシル基のうち1種以上の官能基を含有し、アルカリ溶液で現像可能な樹脂を含む組成物であれば良く、光硬化性樹脂組成物でも熱硬化性樹脂組成物でも用いることができる。好ましくはフェノール性水酸基を2個以上有する化合物、カルボキシル基含有樹脂、フェノール性水酸基およびカルボキシル基を有する化合物、チオール基を2個以上有する化合物を含む樹脂組成物が挙げられ、公知慣用のものが用いられる。
(Resin layer (A) constituting the laminated structure)
(Alkali developable resin composition constituting the resin layer (A))
The alkali-developable resin composition constituting the resin layer (A) is a composition containing a resin that contains one or more functional groups among phenolic hydroxyl groups, thiol groups, and carboxyl groups and that can be developed with an alkaline solution. Any photocurable resin composition or thermosetting resin composition may be used. Preferred examples include a resin composition containing a compound having two or more phenolic hydroxyl groups, a carboxyl group-containing resin, a compound having a phenolic hydroxyl group and a carboxyl group, and a compound having two or more thiol groups. It is done.
 例えば、従来からソルダーレジスト組成物として用いられている、カルボキシル基含有樹脂またはカルボキシル基含有感光性樹脂と、エチレン性不飽和結合を有する化合物と、光重合開始剤と、熱反応性化合物を含む光硬化性熱硬化性樹脂組成物が挙げられる。 For example, a light containing a carboxyl group-containing resin or a carboxyl group-containing photosensitive resin, a compound having an ethylenically unsaturated bond, a photopolymerization initiator, and a heat-reactive compound conventionally used as a solder resist composition A curable thermosetting resin composition is mentioned.
 ここで、カルボキシル基含有樹脂またはカルボキシル基含有感光性樹脂、エチレン性不飽和結合を有する化合物、光重合開始剤、熱反応性化合物としては、公知慣用のものが用いられる。 Here, as a carboxyl group-containing resin or a carboxyl group-containing photosensitive resin, a compound having an ethylenically unsaturated bond, a photopolymerization initiator, and a heat-reactive compound, known and commonly used ones are used.
(積層構造体を構成する樹脂層(B))
 (樹脂層(B)を構成する感光性熱硬化性樹脂組成物)
 樹脂層(B)を構成する感光性熱硬化性樹脂組成物は、イミド環を有するアルカリ溶解性樹脂と光塩基発生剤と熱反応性化合物を含む。
(Resin layer (B) constituting the laminated structure)
(Photosensitive thermosetting resin composition constituting the resin layer (B))
The photosensitive thermosetting resin composition constituting the resin layer (B) includes an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound.
(イミド環を有するアルカリ溶解性樹脂)
 本発明において、イミド環を有するアルカリ溶解性樹脂は、カルボキシル基や酸無水物基などのアルカリ溶解性基とイミド環を有するものである。このアルカリ溶解性樹脂へのイミド環の導入には公知慣用の手法を用いることができる。例えば、カルボン酸無水物成分とアミン成分及び/又はイソシアネート成分とを反応させて得られる樹脂が挙げられる。イミド化は熱イミド化で行っても、化学イミド化で行ってもよく、またこれらを併用して製造することができる。
(Alkali-soluble resin having an imide ring)
In the present invention, the alkali-soluble resin having an imide ring is one having an alkali-soluble group such as a carboxyl group or an acid anhydride group and an imide ring. For introducing the imide ring into the alkali-soluble resin, a known and usual method can be used. For example, the resin obtained by making a carboxylic anhydride component react with an amine component and / or an isocyanate component is mentioned. The imidization may be performed by thermal imidization or chemical imidization, and these can be used in combination.
 ここで、カルボン酸無水物成分としては、テトラカルボン酸無水物やトリカルボン酸無水物などが挙げられるが、これらの酸無水物に限定されるものではなく、アミノ基やイソシアネート基と反応する酸無水物基およびカルボキシル基を有する化合物であれば、その誘導体を含め用いることができる。また、これらのカルボン酸無水物成分は、単独でまたは組み合わせて使用してもよい。 Here, examples of the carboxylic acid anhydride component include tetracarboxylic acid anhydrides and tricarboxylic acid anhydrides, but are not limited to these acid anhydrides, and acid anhydrides that react with amino groups or isocyanate groups. Any compound having a physical group and a carboxyl group can be used, including derivatives thereof. These carboxylic anhydride components may be used alone or in combination.
 テトラカルボン酸無水物としては、例えば、ピロメリット酸二無水物、3-フルオロピロメリット酸二無水物、3,6-ジフルオロピロメリット酸二無水物、3,6-ビス(トリフルオロメチル)ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,2’-ジフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’-ジフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、6,6’-ジフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,5,5’,6,6’-ヘキサフルオロ-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’-ビス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’-ビス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、6,6’-ビス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,5,5’-テトラキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,6,6’-テトラキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、および2,2’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)-3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、3,3”,4,4”-テルフェニルテトラカルボン酸二無水物、3,3’”,4,4’”-クァテルフェニルテトラカルボン酸二無水物、3,3””,4,4””-キンクフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチニリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-へキサフルオロプロパン二無水物、ジフルオロメチレン-4,4’-ジフタル酸二無水物、1,1,2,2-テトラフルオロ-1,2-エチレン-4,4’-ジフタル酸二無水物、1,1,2,2,3,3-ヘキサフルオロ-1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,1,2,2,3,3,4,4-オクタフルオロ-1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,1,2,2,3,3,4,4,5,5-デカフルオロ-1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルシロキサン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,3-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、1,4-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕メタン二無水物、ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕メタンニ無水物、2,2-ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2-ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1-エチニリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-プロピリデン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、3,3’-ジフルオロオキシ-4,4’-ジフタル酸二無水物、5,5’-ジフルオロオキシ-4,4’-ジフタル酸二無水物、6,6’-ジフルオロオキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロオキシ-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、6,6’-ビス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、5,5’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、6,6’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、6,6’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、6,6’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、6,6’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、9-フェニル-9-(トリフルオロメチル)キサンテン-2,3,6,7-テトラカルボン酸二無水物、9,9-ビス(トリフルオロメチル)キサンテン-2,3,6,7-テトラカルボン酸二無水物、ビシクロ〔2,2,2〕オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、9,9-ビス〔4-(3,4-ジカルボキシ)フェニル〕フルオレン二無水物、9,9-ビス〔4-(2,3-ジカルボキシ)フェニル〕フルオレン二無水物、エチレングリコールビストリメリテート二無水物、1,2-(エチレン)ビス(トリメリテート無水物)、1,3-(トリメチレン)ビス(トリメリテート無水物)、1,4-(テトラメチレン)ビス(トリメリテート無水物)、1,5-(ペンタメチレン)ビス(トリメリテート無水物)、1,6-(ヘキサメチレン)ビス(トリメリテート無水物)、1,7-(ヘプタメチレン)ビス(トリメリテート無水物)、1,8-(オクタメチレン)ビス(トリメリテート無水物)、1,9-(ノナメチレン)ビス(トリメリテート無水物)、1,10-(デカメチレン)ビス(トリメリテート無水物)、1,12-(ドデカメチレン)ビス(トリメリテート無水物)、1,16-(ヘキサデカメチレン)ビス(トリメリテート無水物)、1,18-(オクタデカメチレン)ビス(トリメリテート無水物)などが挙げられる。 Examples of the tetracarboxylic acid anhydride include pyromellitic dianhydride, 3-fluoropyromellitic dianhydride, 3,6-difluoropyromellitic dianhydride, 3,6-bis (trifluoromethyl) pyro Merit acid dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic acid Anhydride, 2,2'-difluoro-3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 5,5'-difluoro-3,3', 4,4'-biphenyltetracarboxylic dianhydride Anhydride, 6,6′-difluoro-3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 5,5 ′, 6,6′-hexafluoro-3,3 ′ , 4,4'-biphenylte Lacarboxylic acid dianhydride, 2,2′-bis (trifluoromethyl) -3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 5,5′-bis (trifluoromethyl) -3, 3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 6,6′-bis (trifluoromethyl) -3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′ , 5,5′-tetrakis (trifluoromethyl) -3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 6,6′-tetrakis (trifluoromethyl) -3, 3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 5,5 ′, 6,6′-tetrakis (trifluoromethyl) -3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride , And 2, 2 ', 5, 5', 6, '-Hexakis (trifluoromethyl) -3,3', 4,4'-biphenyltetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,3 ", 4 4 "-terphenyltetracarboxylic dianhydride, 3,3 '", 4,4' "-quaterphenyltetracarboxylic dianhydride, 3,3" ", 4,4" "-kinkphenyltetracarboxylic Acid dianhydride, methylene-4,4′-diphthalic dianhydride, 1,1-ethynylidene-4,4′-diphthalic dianhydride, 2,2-propylidene-4,4′-diphthalic dianhydride 1,2-ethylene-4,4′-diphthalic dianhydride, 1,3-trimethylene-4,4′-diphthalic dianhydride, 1,4-tetramethylene-4,4′-diphthalic acid Dianhydride, 1,5-pentamethylene-4,4'-di Phthalic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride, difluoromethylene-4,4′-diphthal Acid dianhydride, 1,1,2,2-tetrafluoro-1,2-ethylene-4,4′-diphthalic dianhydride, 1,1,2,2,3,3-hexafluoro-1, 3-trimethylene-4,4'-diphthalic dianhydride, 1,1,2,2,3,3,4,4-octafluoro-1,4-tetramethylene-4,4'-diphthalic dianhydride 1,1,2,2,3,3,4,4,5,5-decafluoro-1,5-pentamethylene-4,4′-diphthalic dianhydride, thio-4,4′- Diphthalic dianhydride, sulfonyl-4,4′-diphthalic dianhydride, 1,3-bis (3,4-dicarboxyl Nyl) -1,1,3,3-tetramethylsiloxane dianhydride, 1,3-bis (3,4-dicarboxyphenyl) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenyl) ) Benzene dianhydride, 1,3-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride, 1,3-bis [ 2- (3,4-dicarboxyphenyl) -2-propyl] benzene dianhydride, 1,4-bis [2- (3,4-dicarboxyphenyl) -2-propyl] benzene dianhydride, bis [ 3- (3,4-dicarboxyphenoxy) phenyl] methane dianhydride, bis [4- (3,4-dicarboxyphenoxy) phenyl] methane dianhydride, 2,2-bis [3- (3,4- Dicarboxyphenoxy ) Phenyl] propane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,2-bis [3- (3,4-dicarboxyphenoxy) phenyl ] -1,1,1,3,3,3-hexafluoropropane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, bis (3,4 -Dicarboxyphenoxy) dimethylsilane dianhydride, 1,3-bis (3,4-dicarboxyphenoxy) -1,1,3,3-tetramethyldisiloxane dianhydride, 2,3,6,7- Naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetra Carbo Acid dianhydride, 1,2,7,8-phenanthrenetetracarboxylic dianhydride, 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic acid Dianhydride, cyclopentanetetracarboxylic dianhydride, cyclohexane-1,2,3,4-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, 3,3 ', 4,4'-bicyclohexyltetracarboxylic dianhydride, carbonyl-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, methylene-4,4'-bis (cyclohexane-1) , 2-dicarboxylic acid) dianhydride, 1,2-ethylene-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,1-ethynylidene-4,4′-bis (cyclo Xanthane-1,2-dicarboxylic acid) dianhydride, 2,2-propylidene-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,1,1,3,3,3 -Hexafluoro-2,2-propylidene-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, oxy-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride Thio-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, sulfonyl-4,4′-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, 3,3 ′ -Difluorooxy-4,4'-diphthalic dianhydride, 5,5'-difluorooxy-4,4'-diphthalic dianhydride, 6,6'-difluorooxy-4,4'-diphthalic acid Anhydride, 3,3 ', 5,5', , 6′-hexafluorooxy-4,4′-diphthalic dianhydride, 3,3′-bis (trifluoromethyl) oxy-4,4′-diphthalic dianhydride, 5,5′-bis ( Trifluoromethyl) oxy-4,4′-diphthalic dianhydride, 6,6′-bis (trifluoromethyl) oxy-4,4′-diphthalic dianhydride, 3,3 ′, 5,5 ′ -Tetrakis (trifluoromethyl) oxy-4,4'-diphthalic dianhydride, 3,3 ', 6,6'-tetrakis (trifluoromethyl) oxy-4,4'-diphthalic dianhydride, 5 , 5 ′, 6,6′-tetrakis (trifluoromethyl) oxy-4,4′-diphthalic dianhydride, 3,3 ′, 5,5 ′, 6,6′-hexakis (trifluoromethyl) oxy -4,4'-diphthalic dianhydride, 3,3'-diph Fluorosulfonyl-4,4′-diphthalic dianhydride, 5,5′-difluorosulfonyl-4,4′-diphthalic dianhydride, 6,6′-difluorosulfonyl-4,4′-diphthalic acid Anhydride, 3,3 ′, 5,5 ′, 6,6′-hexafluorosulfonyl-4,4′-diphthalic dianhydride, 3,3′-bis (trifluoromethyl) sulfonyl-4,4 ′ Diphthalic dianhydride, 5,5′-bis (trifluoromethyl) sulfonyl-4,4′-diphthalic dianhydride, 6,6′-bis (trifluoromethyl) sulfonyl-4,4′-diphthal Acid dianhydride, 3,3 ′, 5,5′-tetrakis (trifluoromethyl) sulfonyl-4,4′-diphthalic dianhydride, 3,3 ′, 6,6′-tetrakis (trifluoromethyl) Sulfonyl-4,4'-diphthal Acid dianhydride, 5,5 ′, 6,6′-tetrakis (trifluoromethyl) sulfonyl-4,4′-diphthalic dianhydride, 3,3 ′, 5,5 ′, 6,6′-hexakis (Trifluoromethyl) sulfonyl-4,4′-diphthalic dianhydride, 3,3′-difluoro-2,2-perfluoropropylidene-4,4′-diphthalic dianhydride, 5,5′- Difluoro-2,2-perfluoropropylidene-4,4′-diphthalic dianhydride, 6,6′-difluoro-2,2-perfluoropropylidene-4,4′-diphthalic dianhydride, 3 , 3 ′, 5,5 ′, 6,6′-hexafluoro-2,2-perfluoropropylidene-4,4′-diphthalic dianhydride, 3,3′-bis (trifluoromethyl) -2 , 2-Perfluoropropylidene-4,4'-diph Luric dianhydride, 5,5′-bis (trifluoromethyl) -2,2-perfluoropropylidene-4,4′-diphthalic dianhydride, 6,6′-difluoro-2,2-par Fluoropropylidene-4,4′-diphthalic dianhydride, 3,3 ′, 5,5′-tetrakis (trifluoromethyl) -2,2-perfluoropropylidene-4,4′-diphthalic dianhydride 3,3 ′, 6,6′-tetrakis (trifluoromethyl) -2,2-perfluoropropylidene-4,4′-diphthalic dianhydride, 5,5 ′, 6,6′-tetrakis (Trifluoromethyl) -2,2-perfluoropropylidene-4,4′-diphthalic dianhydride, 3,3 ′, 5,5 ′, 6,6′-hexakis (trifluoromethyl) -2, 2-perfluoropropylidene-4,4'-di Phthalic dianhydride, 9-phenyl-9- (trifluoromethyl) xanthene-2,3,6,7-tetracarboxylic dianhydride, 9,9-bis (trifluoromethyl) xanthene-2,3, 6,7-tetracarboxylic dianhydride, bicyclo [2,2,2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 9,9-bis [4- (3 , 4-dicarboxy) phenyl] fluorene dianhydride, 9,9-bis [4- (2,3-dicarboxy) phenyl] fluorene dianhydride, ethylene glycol bistrimellitic dianhydride, 1,2- ( Ethylene) bis (trimellitic anhydride), 1,3- (trimethylene) bis (trimellitic anhydride), 1,4- (tetramethylene) bis (trimellitic anhydride), 1,5- (pentamethylene) bis (to Meritate anhydride), 1,6- (hexamethylene) bis (trimellitic anhydride), 1,7- (heptamethylene) bis (trimellitic anhydride), 1,8- (octamethylene) bis (trimellitic anhydride), 1,9- (nonamethylene) bis (trimellitic anhydride), 1,10- (decamethylene) bis (trimellitic anhydride), 1,12- (dodecamethylene) bis (trimellitic anhydride), 1,16- (hexadeca) Methylene) bis (trimellitate anhydride), 1,18- (octadecamethylene) bis (trimellitate anhydride), and the like.
 トリカルボン酸無水物としては、例えば、トリメリット酸無水物や核水添トリメリット酸無水物などが挙げられる。 Examples of the tricarboxylic acid anhydride include trimellitic acid anhydride and nuclear hydrogenated trimellitic acid anhydride.
 アミン成分としては、脂肪族ジアミンや芳香族ジアミンなどのジアミン、脂肪族ポリエーテルアミンなどの多価アミンを用いることができるが、これらのアミンに限定されるものではない。また、これらのアミン成分は、単独でまたは組み合わせて使用してもよい。 As the amine component, diamines such as aliphatic diamines and aromatic diamines, and polyvalent amines such as aliphatic polyether amines can be used, but are not limited to these amines. These amine components may be used alone or in combination.
 ジアミンとしては、例えば、p-フェニレンジアミン(PPD)、1,3-ジアミノベンゼン、2,4-トルエンジアミン、2,5-トルエンジアミン、2,6-トルエンジアミン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,4-ジアミノ安息香酸などのベンゼン核1つのジアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル類、4,4’-ジアミノジフェニルメタン、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス(4-アミノフェニル)スルフィド、4,4’-ジアミノベンズアニリド、3,3’-ジクロロベンジジン、3,3’-ジメチルベンジジン(o-トリジン)、2,2’-ジメチルベンジジン(m-トリジン)、3,3’-ジメトキシベンジジン、2,2’-ジメトキシベンジジン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,3’-ジアミノ-4,4’-ジクロロベンゾフェノン、3,3’-ジアミノ-4,4’-ジメトキシベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジカルボキシ-4,4’-ジアミノジフェニルメタン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホンなどのベンゼン核2つのジアミン、1,3-ビス(3-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(3-アミノフェニル)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)-4-トリフルオロメチルベンゼン、3,3’-ジアミノ-4-(4-フェニル)フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジ(4-フェニルフェノキシ)ベンゾフェノン、1,3-ビス(3-アミノフェニルスルフィド)ベンゼン、1,3-ビス(4-アミノフェニルスルフィド)ベンゼン、1,4-ビス(4-アミノフェニルスルフィド)ベンゼン、1,3-ビス(3-アミノフェニルスルホン)ベンゼン、1,3-ビス(4-アミノフェニルスルホン)ベンゼン、1,4-ビス(4-アミノフェニルスルホン)ベンゼン、1,3-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(3-アミノフェニル)イソプロピル〕ベンゼン、1,4-ビス〔2-(4-アミノフェニル)イソプロピル〕ベンゼン、1,3-ビス(4-アミノ-3-ヒドロキシフェノキシ)ベンゼンなどのベンゼン核3つのジアミン、3,3’-ビス(3-アミノフェノキシ)ビフェニル、3,3’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス〔3-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(3-アミノフェノキシ)フェニル〕エーテル、ビス〔4-(4-アミノフェノキシ)フェニル〕エーテル、ビス〔3-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(3-アミノフェノキシ)フェニル〕ケトン、ビス〔4-(4-アミノフェノキシ)フェニル〕ケトン、ビス〔3-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(3-アミノフェノキシ)フェニル〕スルフィド、ビス〔4-(4-アミノフェノキシ)フェニル〕スルフィド、ビス〔3-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン、ビス〔3-(3-アミノフェノキシ)フェニル〕メタン、ビス〔3-(4-アミノフェノキシ)フェニル〕メタン、ビス〔4-(3-アミノフェノキシ)フェニル〕メタン、ビス〔4-(4-アミノフェノキシ)フェニル〕メタン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,2-ビス〔3-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔3-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(3-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕-1,1,1,3,3,3-ヘキサフルオロプロパンなどのベンゼン核4つのジアミンなどの芳香族ジアミン、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、1,2-ジアミノシクロヘキサン等の脂肪族ジアミンが挙げられ、脂肪族ポリエーテルアミンとしては、エチレングリコール及び/又はプロピレングリコール系の多価アミン等が挙げられる。 Examples of the diamine include p-phenylenediamine (PPD), 1,3-diaminobenzene, 2,4-toluenediamine, 2,5-toluenediamine, 2,6-toluenediamine, 3,5-diaminobenzoic acid, One diamine nucleus diamine such as 2,5-diaminobenzoic acid and 3,4-diaminobenzoic acid, diaminodiphenyl ether such as 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, and 3,4′-diaminodiphenyl ether 4,4′-diaminodiphenylmethane, 3,3′-dimethyl-4,4′-diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl ) -4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodi Phenylmethane, 3,3′-dicarboxy-4,4′-diaminodiphenylmethane, 3,3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane, bis (4-aminophenyl) sulfide, 4, 4'-diaminobenzanilide, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine (o-tolidine), 2,2'-dimethylbenzidine (m-tolidine), 3,3'-dimethoxybenzidine, 2 , 2'-dimethoxybenzidine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 4 , 4'-Diaminodiphenyl sulfide, 3,3'-diaminodiphenyl Lufone, 3,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 3,3'-diaminobenzophenone, 3,3'-diamino-4,4'-dichlorobenzophenone, 3,3'-diamino- 4,4'-dimethoxybenzophenone, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 2,2-bis (3-aminophenyl) propane, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3-aminophenyl) -1,1,1,3,3,3-hexafluoropropane, 2,2-bis (4-aminophenyl) -1, 1,1,3,3,3-hexafluoropropane, 3,3′-diaminodiphenyl sulfoxide, 3,4′-diaminodiphenyl sulfoxide Hydroxide, 4,4′-diaminodiphenyl sulfoxide, 3,3′-dicarboxy-4,4′-diaminodiphenylmethane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 3,3 ′ -Two diamine diamines such as diamino-4,4'-dihydroxydiphenylsulfone, 1,3-bis (3-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (3-aminophenyl) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (3-aminophenoxy) benzene, 1,4 -Bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) -4-trifluoromethylbenzene, 3, '-Diamino-4- (4-phenyl) phenoxybenzophenone, 3,3'-diamino-4,4'-di (4-phenylphenoxy) benzophenone, 1,3-bis (3-aminophenyl sulfide) benzene, 1 , 3-bis (4-aminophenylsulfide) benzene, 1,4-bis (4-aminophenylsulfide) benzene, 1,3-bis (3-aminophenylsulfone) benzene, 1,3-bis (4-amino) Phenylsulfone) benzene, 1,4-bis (4-aminophenylsulfone) benzene, 1,3-bis [2- (4-aminophenyl) isopropyl] benzene, 1,4-bis [2- (3-aminophenyl) ) Isopropyl] benzene, 1,4-bis [2- (4-aminophenyl) isopropyl] benzene, 1,3-bis (4-a) -3-nucleophenoxy) benzene and other benzene nuclei, 3 diamines, 3,3′-bis (3-aminophenoxy) biphenyl, 3,3′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, bis [3- (3-aminophenoxy) phenyl] ether, bis [3- (4-aminophenoxy) phenyl] ether, Bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ether, bis [3- (3-aminophenoxy) phenyl] ketone, bis [3- (4-amino Phenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (4-aminophenyl) Enoxy) phenyl] ketone, bis [3- (3-aminophenoxy) phenyl] sulfide, bis [3- (4-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [ 4- (4-aminophenoxy) phenyl] sulfide, bis [3- (3-aminophenoxy) phenyl] sulfone, bis [3- (4-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) Phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [3- (3-aminophenoxy) phenyl] methane, bis [3- (4-aminophenoxy) phenyl] methane, bis [4- (3-Aminophenoxy) phenyl] methane, bis [4- (4-aminophenoxy) phenyl Methane, 2,2-bis [3- (3-aminophenoxy) phenyl] propane, 2,2-bis [3- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (3-amino Phenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [3- (3-aminophenoxy) phenyl] -1,1,1,3,3 , 3-hexafluoropropane, 2,2-bis [3- (4-aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (3 -Aminophenoxy) phenyl] -1,1,1,3,3,3-hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] -1,1,1,3,3 3-hexafluoropropane Aromatic diamines such as four diamines of benzene, 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7 Aliphatic diamines such as -diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,2-diaminocyclohexane, etc. Examples of the aliphatic polyether amine include ethylene glycol and / or propylene glycol polyvalent amine.
 イソシアネート成分としては、芳香族ジイソシアネート及びその異性体や多量体、脂肪族ジイソシアネート類、脂環式ジイソシアネート類及びその異性体などのジイソシアネートやその他汎用のジイソシアネート類を用いることができるが、これらのイソシアネートに限定されるものではない。また、これらのイソシアネート成分は、単独でまたは組み合わせて使用してもよい。
 ジイソシアネートとして、例えば4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、キシリレンジイソシアネート、ビフェニルジイソシアネート、ジフェニルスルホンジイソシアネート、ジフェニルエーテルジイソシアネートなどの芳香族ジイソシアネート及びその異性体、多量体、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシシレンジイソシアネートなどの脂肪族ジイソシアネート類、あるいは前記芳香族ジイソシアネートを水添した脂環式ジイソシアネート類及び異性体、もしくはその他汎用のジイソシアネート類が挙げられる。
As the isocyanate component, aromatic diisocyanates and their isomers and multimers, aliphatic diisocyanates, alicyclic diisocyanates and isomers thereof, and other general-purpose diisocyanates can be used. It is not limited. These isocyanate components may be used alone or in combination.
Examples of diisocyanates include aromatic diisocyanates such as 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, xylylene diisocyanate, biphenyl diisocyanate, diphenyl sulfone diisocyanate, diphenyl ether diisocyanate, and isomers, multimers, hexamethylene diisocyanate, and isophorone. Examples thereof include aliphatic diisocyanates such as diisocyanate, dicyclohexylmethane diisocyanate, and xylylene diisocyanate, alicyclic diisocyanates and isomers obtained by hydrogenation of the aromatic diisocyanate, and other general-purpose diisocyanates.
 以上説明したようなイミド環を有するアルカリ溶解性樹脂はアミド結合を有していてもよい。これはイソシアネートとカルボン酸を反応させて得られるアミド結合であってもよく、それ以外の反応によるものでもよい。さらにその他の付加および縮合からなる結合を有していてもよい。 The alkali-soluble resin having an imide ring as described above may have an amide bond. This may be an amide bond obtained by reacting an isocyanate and a carboxylic acid, or may be caused by other reaction. Furthermore, you may have the coupling | bonding which consists of another addition and condensation.
 また、このアルカリ溶解性樹脂へのイミド環の導入には、公知慣用のカルボキシル基及び/又は酸無水物基を有するアルカリ溶解性ポリマー、オリゴマー、モノマーを用いてもよく、例えばこれらの公知慣用のアルカリ溶解性樹脂類を単独でもしくは上記のカルボン酸無水物成分と組み合わせて、上記のアミン/イソシアネート類と反応させて得られる樹脂であってもよい。 In addition, for the introduction of the imide ring into the alkali-soluble resin, a known and commonly used alkali-soluble polymer, oligomer or monomer having a carboxyl group and / or an acid anhydride group may be used. It may be a resin obtained by reacting an alkali-soluble resin alone or in combination with the above carboxylic anhydride component and reacting with the above amine / isocyanate.
 このようなアルカリ溶解性基とイミド環を有するアルカリ溶解性樹脂の合成においては、公知慣用の有機溶剤を用いることができる。かかる有機溶媒としては、原料であるカルボン酸無水物類、アミン類、イソシアネート類と反応せず、かつこれら原料が溶解する溶媒であれば問題はなく、特にその構造は限定されない。具体的に例示すると、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、カプロラクタム等のラクタム溶媒、ジオキサン等のエーテル系溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノ-ル、4-クロロフェノ-ル、4-メトキシフェノール、2,6-ジメチルフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシド、テトラメチルウレアなどが挙げられる。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども添加して使用することができる。なかでも原料の溶解性が高いことから、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン等の非プロトン性溶媒が好ましい。 In the synthesis of such an alkali-soluble resin having an alkali-soluble group and an imide ring, a known and commonly used organic solvent can be used. Such an organic solvent is not particularly limited as long as it is a solvent that does not react with the carboxylic acid anhydrides, amines, and isocyanates that are raw materials and that dissolves these raw materials, and the structure is not particularly limited. Specific examples include amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone. Cyclic ester solvents such as α-methyl-γ-butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, lactam solvents such as caprolactam, ether solvents such as dioxane, glycol solvents such as triethylene glycol, m-cresol, phenolic solvents such as p-cresol, 3-chlorophenol, 4-chlorophenol, 4-methoxyphenol, 2,6-dimethylphenol, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, dimethyl Sulfo Sid, such as tetramethylurea. In addition, other common organic solvents such as phenol, o-cresol, butyl acetate, ethyl acetate, isobutyl acetate, propylene glycol methyl acetate, ethyl cellosolve, butyl cellosolve, 2-methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, tetrahydrofuran , Dimethoxyethane, diethoxyethane, dibutyl ether, diethylene glycol dimethyl ether, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, methyl ethyl ketone, acetone, butanol, ethanol, xylene, toluene, chlorobenzene, terpene, mineral spirit, petroleum naphtha solvents, etc. Can also be used. Of these, aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and γ-butyrolactone are preferred because of the high solubility of the raw materials.
 以上説明したようなカルボキシル基又は酸無水物基などのアルカリ溶解性基とイミド環を有するアルカリ溶解性樹脂は、フォトリソグラフィー工程に対応するために、その酸価が20~200mgKOH/gであることが好ましく、より好適には60~150mgKOH/gであることが好ましい。この酸価が20mgKOH/g以上の場合、アルカリに対する溶解性が増加し、現像性が良好となり、さらには、光照射後の熱硬化成分との架橋度が高くなるため、十分な現像コントラストを得ることができる。また、この酸価が200mgKOH/g以下の場合には、後述する光照射後のPEB(POST EXPOSURE BAKE)工程でのいわゆる熱かぶりを抑制でき、プロセスマージンが大きくなる。 The alkali-soluble resin having an alkali-soluble group such as a carboxyl group or an acid anhydride group and an imide ring as described above has an acid value of 20 to 200 mgKOH / g in order to cope with the photolithography process. And more preferably 60 to 150 mgKOH / g. When the acid value is 20 mgKOH / g or more, the solubility in alkali increases, the developability becomes good, and further, the degree of crosslinking with the thermosetting component after light irradiation becomes high, so that sufficient development contrast is obtained. be able to. Moreover, when this acid value is 200 mgKOH / g or less, what is called a heat | fever fog in the PEB (POST EXPOSURE BAKE) process after light irradiation mentioned later can be suppressed, and a process margin becomes large.
 また、このアルカリ溶解性樹脂の分子量は、現像性と硬化塗膜特性を考慮すると、質量平均分子量1,000~100,000が好ましく、さらに2,000~50,000がより好ましい。
 この分子量が1,000以上の場合、露光・PEB後に十分な耐現像性と硬化物性を得ることができる。また、分子量が100,000以下の場合、アルカリ溶解性が増加し、現像性が向上する。
The molecular weight of the alkali-soluble resin is preferably from 1,000 to 100,000, more preferably from 2,000 to 50,000, considering developability and cured coating film characteristics.
When the molecular weight is 1,000 or more, sufficient development resistance and cured properties can be obtained after exposure and PEB. On the other hand, when the molecular weight is 100,000 or less, alkali solubility increases and developability improves.
(光塩基発生剤)
 樹脂層(B)において用いる光塩基発生剤は、紫外線や可視光等の光照射により分子構造が変化するか、または、分子が開裂することにより、後述する熱反応性化合物の重合反応の触媒として機能しうる1種以上の塩基性物質を生成する化合物である。塩基性物質として、例えば2級アミン、3級アミンが挙げられる。
 光塩基発生剤として、例えば、α-アミノアセトフェノン化合物、オキシムエステル化合物や、アシルオキシイミノ基,N-ホルミル化芳香族アミノ基、N-アシル化芳香族アミノ基、ニトロベンジルカーバメイト基、アルコオキシベンジルカーバメート基等の置換基を有する化合物等が挙げられる。なかでも、オキシムエステル化合物、α-アミノアセトフェノン化合物が好ましい。α-アミノアセトフェノン化合物としては、特に、2つ以上の窒素原子を有するものが好ましい。
(Photobase generator)
The photobase generator used in the resin layer (B) is used as a catalyst for the polymerization reaction of a thermoreactive compound, which will be described later, when the molecular structure is changed by light irradiation such as ultraviolet light or visible light, or when the molecule is cleaved. It is a compound that produces one or more basic substances that can function. Examples of basic substances include secondary amines and tertiary amines.
Examples of photobase generators include α-aminoacetophenone compounds, oxime ester compounds, acyloxyimino groups, N-formylated aromatic amino groups, N-acylated aromatic amino groups, nitrobenzyl carbamate groups, alkoxybenzyl carbamates. And compounds having a substituent such as a group. Of these, oxime ester compounds and α-aminoacetophenone compounds are preferred. As the α-aminoacetophenone compound, those having two or more nitrogen atoms are particularly preferable.
 その他の光塩基発生剤として、WPBG-018(商品名:9-anthrylmethylN,N’-diethylcarbamate),WPBG-027(商品名:(E)-1-[3-(2-hydroxyphenyl)-2-propenoyl]piperidine),WPBG-082(商品名:guanidinium2-(3-benzoylphenyl)propionate),WPBG-140(商品名:1-(anthraquinon-2-yl)ethyl imidazolecarboxylate)等を使用することもできる。 As other photobase generators, WPBG-018 (trade name: 9-anthrylmethylN, N′-diethylcarbamate), WPBG-027 (trade name: (E) -1- [3- (2-hydroxyphenyl) -2-propenoyl Piperidine), WPBG-082 (trade name: guanidinium2- (3-benzoylphenyl) propionate), WPBG-140 (trade name: 1- (anthraquinon-2-yl) ethyl imidazole carbonate).
 α―アミノアセトフェノン化合物は、分子中にベンゾインエーテル結合を有し、光照射を受けると分子内で開裂が起こり、硬化触媒作用を奏する塩基性物質(アミン)が生成する。α-アミノアセトフェノン化合物の具体例としては、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン(イルガキュア369、商品名、BASFジャパン社製)や4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタン(イルガキュア907、商品名、BASFジャパン(株)社製)、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン(イルガキュア379、商品名、BASFジャパン(株)社製)などの市販の化合物またはその溶液を用いることができる。 The α-aminoacetophenone compound has a benzoin ether bond in the molecule, and when irradiated with light, cleavage occurs in the molecule to produce a basic substance (amine) that exhibits a curing catalytic action. Specific examples of α-aminoacetophenone compounds include (4-morpholinobenzoyl) -1-benzyl-1-dimethylaminopropane (Irgacure 369, trade name, manufactured by BASF Japan Ltd.) and 4- (methylthiobenzoyl) -1-methyl. -1-morpholinoethane (Irgacure 907, trade name, manufactured by BASF Japan Ltd.), 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) A commercially available compound such as phenyl] -1-butanone (Irgacure 379, trade name, manufactured by BASF Japan Ltd.) or a solution thereof can be used.
 オキシムエステル化合物としては、光照射により塩基性物質を生成する化合物であればいずれをも使用することができる。かかるオキシムエステル化合物としては、市販品として、BASFジャパン(株)社製のCGI-325、イルガキュアーOXE01、イルガキュアーOXE02、(株)アデカ社製N-1919、NCI-831などが挙げられる。また、特許第4344400号公報に記載された、分子内に2個のオキシムエステル基を有する化合物も好適に用いることができる。 As the oxime ester compound, any compound that generates a basic substance by light irradiation can be used. Examples of such oxime ester compounds include CGI-325, Irgacure OXE01, Irgacure OXE02 manufactured by BASF Japan Ltd., N-1919, NCI-831 manufactured by Adeka Corp., and the like. Moreover, the compound which has two oxime ester groups in a molecule | numerator described in the patent 4344400 gazette can also be used suitably.
 その他、特開2004-359639号公報、特開2005-097141号公報、特開2005-220097号公報、特開2006-160634号公報、特開2008-094770号公報、特表2008-509967号公報、特表2009-040762号公報、特開2011-80036号公報記載のカルバゾールオキシムエステル化合物等を挙げることができる。 In addition, JP-A-2004-359639, JP-A-2005-097141, JP-A-2005-220097, JP-A-2006-160634, JP-A-2008-094770, JP-A-2008-509967, Specific examples include carbazole oxime ester compounds described in JP-T-2009-040762 and JP-A-2011-80036.
 このような光塩基発生剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。熱硬化性樹脂組成物中の光塩基発生剤の配合量は、好ましくは熱反応性化合物100質量部に対して0.1~40質量部であり、さらに好ましくは、0.1~30質量部である。0.1質量部以上の場合、光照射部/未照射部の耐現像性のコントラストを良好に得ることができる。また、40質量部以下の場合、硬化物特性が向上する。 Such photobase generators may be used alone or in combination of two or more. The blending amount of the photobase generator in the thermosetting resin composition is preferably 0.1 to 40 parts by mass, more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the thermoreactive compound. It is. In the case of 0.1 parts by mass or more, the development resistance contrast of the light irradiated part / non-irradiated part can be favorably obtained. Moreover, in 40 mass parts or less, hardened | cured material characteristic improves.
(熱反応性化合物)
 樹脂層(B)において用いる熱反応性化合物は、熱による硬化反応が可能な官能基を有する樹脂であり、好ましくは、環状(チオ)エーテル基を有する樹脂であり、より好ましくは、エポキシ樹脂、多官能オキセタン化合物等が挙げられる。なお、環状(チオ)エーテル基とは、環状エーテル基及び環状チオエーテル基のうちの少なくともいずれか1方を意味する。
(Thermo-reactive compound)
The heat-reactive compound used in the resin layer (B) is a resin having a functional group capable of undergoing a curing reaction by heat, preferably a resin having a cyclic (thio) ether group, more preferably an epoxy resin, Examples include polyfunctional oxetane compounds. The cyclic (thio) ether group means at least one of a cyclic ether group and a cyclic thioether group.
 上記エポキシ樹脂は、エポキシ基を有する樹脂であり、公知のものをいずれも使用できる。分子中にエポキシ基を2個有する2官能性エポキシ樹脂、分子中にエポキシ基を多数有する多官能エポキシ樹脂等が挙げられる。なお、水素添加された2官能エポキシ化合物であってもよい。 The epoxy resin is a resin having an epoxy group, and any known one can be used. Examples thereof include a bifunctional epoxy resin having two epoxy groups in the molecule, and a polyfunctional epoxy resin having many epoxy groups in the molecule. In addition, a hydrogenated bifunctional epoxy compound may be used.
 多官能エポキシ化合物としては、ビスフェノールA型エポキシ樹脂、ブロム化エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビキシレノール型もしくはビフェノール型エポキシ樹脂又はそれらの混合物;ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、複素環式エポキシ樹脂、ジグリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、グリシジルメタアクリレート共重合系エポキシ樹脂、シクロヘキシルマレイミドとグリシジルメタアクリレートの共重合エポキシ樹脂、CTBN変性エポキシ樹脂等が挙げられる。 Polyfunctional epoxy compounds include bisphenol A type epoxy resin, brominated epoxy resin, novolac type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, glycidylamine type epoxy resin, hydantoin type epoxy resin, alicyclic ring Epoxy resin, trihydroxyphenylmethane type epoxy resin, bixylenol type or biphenol type epoxy resin or a mixture thereof; bisphenol S type epoxy resin, bisphenol A novolak type epoxy resin, tetraphenylolethane type epoxy resin, heterocyclic epoxy Resin, diglycidyl phthalate resin, tetraglycidyl xylenoyl ethane resin, naphthalene group-containing epoxy resin, epoxy resin having dicyclopentadiene skeleton, glycidyl methacrylate Acrylate copolymer epoxy resins, copolymerized epoxy resins of cyclohexylmaleimide and glycidyl methacrylate, and a CTBN modified epoxy resin.
 その他の液状2官能性エポキシ樹脂としては、ビニルシクロヘキセンジエポキシド、(3’,4’-エポキシシクロヘキシルメチル)-3,4-エポキシシクロヘキサンカルボキシレート、(3’,4’-エポキシ-6’-メチルシクロヘキシルメチル)-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート等の脂環族エポキシ樹脂を挙げることができる。これらのエポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。 Other liquid bifunctional epoxy resins include vinylcyclohexene diepoxide, (3 ′, 4′-epoxycyclohexylmethyl) -3,4-epoxycyclohexanecarboxylate, (3 ′, 4′-epoxy-6′-methyl) And alicyclic epoxy resins such as (cyclohexylmethyl) -3,4-epoxy-6-methylcyclohexanecarboxylate. These epoxy resins may be used individually by 1 type, and may use 2 or more types together.
 上記多官能オキセタン化合物としては、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマー又は共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、又はシルセスキオキサンなどの水酸基を有する樹脂とのエーテル化物などが挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。 Examples of the polyfunctional oxetane compound include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl -3-Oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3-oxetanyl) In addition to polyfunctional oxetanes such as methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin, Poly (p-hydroxystyrene), cardo-type bisphe Lumpur acids, calixarenes, calix resorcin arenes, or the like ethers of a resin having a hydroxyl group such as silsesquioxane and the like. In addition, a copolymer of an unsaturated monomer having an oxetane ring and an alkyl (meth) acrylate is also included.
 上記熱反応性化合物の配合量としては、アルカリ溶解性樹脂との当量比(カルボキシル基などのアルカリ溶解性基:エポキシ基などの熱反応性基)が1:0.1~1:10であることが好ましい。このような配合比の範囲とすることにより、現像が良好となり、容易に微細パターンを形成できる。上記当量比は、1:0.2~1:5であることがさらに好ましい。 The amount of the heat-reactive compound is such that the equivalent ratio with the alkali-soluble resin (alkali-soluble group such as carboxyl group: heat-reactive group such as epoxy group) is 1: 0.1 to 1:10. It is preferable. By setting the blending ratio in such a range, development becomes favorable and a fine pattern can be easily formed. The equivalent ratio is more preferably 1: 0.2 to 1: 5.
(高分子樹脂)
 以上説明したような樹脂層(A)および樹脂層(B)において用いる樹脂組成物には、得られる硬化物の可撓性、指触乾燥性の向上を目的に公知慣用の高分子樹脂を配合することができる。このような高分子樹脂としてはセルロース系、ポリエステル系、フェノキシ樹脂系ポリマー、ポリビニルアセタール系、ポリビニルブチラール系、ポリアミド系、ポリアミドイミド系バインダーポリマー、ブロック共重合体、エラストマー等が挙げられる。
 この高分子樹脂は、1種類を単独で用いてもよく、2種類以上を併用してもよい。
(Polymer resin)
The resin composition used in the resin layer (A) and the resin layer (B) as described above is blended with a known and commonly used polymer resin for the purpose of improving the flexibility and dryness of the cured product obtained. can do. Examples of such polymer resins include cellulose-based, polyester-based, phenoxy-resin-based polymers, polyvinyl acetal-based, polyvinyl butyral-based, polyamide-based, polyamide-imide-based binder polymers, block copolymers, and elastomers.
This polymer resin may be used individually by 1 type, and may use 2 or more types together.
(無機充填剤)
 また、樹脂層(A)および樹脂層(B)において用いる樹脂組成物には、硬化物の硬化収縮を抑制し、密着性、硬度などの特性を向上させるために、無機充填剤を配合することができる。このような無機充填剤としては、例えば、硫酸バリウム、無定形シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム、窒化ホウ素、ノイブルグシリシャスアース等が挙げられる。
(Inorganic filler)
In addition, the resin composition used in the resin layer (A) and the resin layer (B) is blended with an inorganic filler in order to suppress curing shrinkage of the cured product and improve properties such as adhesion and hardness. Can do. Examples of such inorganic fillers include barium sulfate, amorphous silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, aluminum nitride, boron nitride, Neuburg Sicilius Earth etc. are mentioned.
(着色剤)
 さらに、樹脂層(A)および樹脂層(B)において用いる樹脂組成物には、公知慣用の着色剤を配合することができる。
 従来、プリント配線板における銅回路のエッジ部では、パターン層の着色力が不十分な場合、パターン層の形成後の熱履歴において、銅が変色し、外観上、薄い部分だけ変色して見える。代表的な熱履歴としてはマーキングの熱硬化、反り直し、実装前の予備加熱、実装などがある。
 このため、従来はパターン層に着色剤を多く配合して着色力を高めることにより、銅回路のエッジ部分だけ変色して見えるという問題を解消していた。
 しかし、着色剤は、光吸収性を有するため、光が深部にまで透過することを阻害してしまう。その結果、着色剤を含有する組成物では、アンダーカットが生じやすいため、十分な密着性を得ることが難しい。
(Coloring agent)
Furthermore, a well-known and usual colorant can be mix | blended with the resin composition used in the resin layer (A) and the resin layer (B).
Conventionally, at the edge portion of a copper circuit in a printed wiring board, when the coloring power of the pattern layer is insufficient, copper is discolored in the heat history after the formation of the pattern layer, and only a thin portion appears discolored in appearance. Typical thermal history includes marking thermosetting, warping, preheating before mounting, mounting, and the like.
For this reason, conventionally, a problem has been solved that only the edge portion of the copper circuit looks discolored by adding a large amount of colorant to the pattern layer to enhance the coloring power.
However, since the colorant has light absorptivity, it prevents light from penetrating to the deep part. As a result, in a composition containing a colorant, undercut is likely to occur, and it is difficult to obtain sufficient adhesion.
 これに対して、本発明で用いる樹脂組成物では、深部まで塩基が化学的に増殖することにより、樹脂層の深部まで十分硬化できる。
 従って、本発明において用いる樹脂組成物によれば、着色剤を含有する場合でも、銅回路の隠蔽性に優れ、かつ、密着性に優れたパターン層を形成できる。
On the other hand, in the resin composition used in the present invention, the base can be sufficiently cured to the deep part of the resin layer by the chemical growth of the base to the deep part.
Therefore, according to the resin composition used in the present invention, even when a colorant is contained, a pattern layer having excellent copper circuit concealing property and excellent adhesion can be formed.
 (有機溶剤)
 樹脂層(A)および樹脂層(B)において用いる樹脂組成物には、樹脂組成物の調製のためや、基材やキャリアフィルムに塗布するための粘度調整のために、有機溶剤を使用することができる。
 このような有機溶剤としては、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤などを挙げることができる。このような有機溶剤は、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。
(Organic solvent)
For the resin composition used in the resin layer (A) and the resin layer (B), an organic solvent should be used for preparing the resin composition and adjusting the viscosity for application to a substrate or carrier film. Can do.
Examples of such organic solvents include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like. Such an organic solvent may be used individually by 1 type, and may be used as a 2 or more types of mixture.
(その他の任意成分)
 樹脂層(A)および樹脂層(B)において用いる樹脂組成物には、必要に応じてさらに、メルカプト化合物、密着促進剤、酸化防止剤、紫外線吸収剤などの成分を配合することができる。これらは、電子材料の分野において公知慣用のものを用いることができる。また、微粉シリカ、ハイドロタルサイト、有機ベントナイト、モンモリロナイトなどの公知慣用の増粘剤、シリコーン系、フッ素系、高分子系などの消泡剤及び/又はレベリング剤、シランカップリング剤、防錆剤などのような公知慣用の添加剤類を配合することができる。
(Other optional ingredients)
The resin composition used in the resin layer (A) and the resin layer (B) can further contain components such as a mercapto compound, an adhesion promoter, an antioxidant, and an ultraviolet absorber as necessary. As these, those commonly used in the field of electronic materials can be used. In addition, known and commonly used thickeners such as finely divided silica, hydrotalcite, organic bentonite, montmorillonite, defoamers and / or leveling agents such as silicones, fluorines and polymers, silane coupling agents, rust inhibitors Known and conventional additives such as can be blended.
 次に、本発明のフレキシブルプリント配線板の製造方法の実施の形態について詳述する。本発明のフレキシブルプリント配線板の製造方法は、フレキシブルプリント配線板上に、アルカリ現像型感光性樹脂組成物(A1)からなる樹脂層(A)を少なくとも一層形成する工程、前記樹脂層(A)上に、イミド環を有するアルカリ溶解性樹脂、光塩基発生剤、及び熱反応性化合物を含む感光性熱硬化性樹脂組成物(B1)からなる樹脂層(B)を少なくとも一層形成する工程、前記工程にて形成した樹脂層(A)と(B)に、パターン状に光を照射する工程、前記工程にて光照射した樹脂層(A)と(B)を加熱する工程、及び、前記光照射された樹脂層(A)と(B)をアルカリ現像して、カバーレイ、及びソルダーレジストのうちの少なくともいずれか一方を形成する工程、を含むことを特徴とするものである。 Next, an embodiment of the method for producing a flexible printed wiring board of the present invention will be described in detail. The method for producing a flexible printed wiring board of the present invention includes a step of forming at least one resin layer (A) made of an alkali-developable photosensitive resin composition (A1) on the flexible printed wiring board, the resin layer (A) A step of forming at least one resin layer (B) comprising a photosensitive thermosetting resin composition (B1) containing an alkali-soluble resin having an imide ring, a photobase generator, and a thermoreactive compound; A step of irradiating the resin layers (A) and (B) formed in the step with light in a pattern, a step of heating the resin layers (A) and (B) irradiated with the light in the step, and the light A step of alkali-developing the irradiated resin layers (A) and (B) to form at least one of a coverlay and a solder resist.
 本発明では、樹脂層(B)において、(1)イミド環が分子中に存在する樹脂を用いること、(2)アルカリ溶解性樹脂と熱反応性化合物との付加反応を起こす組成物を用いることにより、樹脂層(B)を強化層として機能させることができる。
 すなわち、従前のソルダーレジスト組成物からなる樹脂層(A)を形成し、その樹脂層(A)上に樹脂層(B)を積層することにより、耐衝撃性、屈曲性、及び低反り性などの信頼性と加工精度に優れたカバーレイとソルダーレジストをフレキシブルプリント配線板上に一括して形成することができる。なお、絶縁膜として層間絶縁膜を形成してもよい。
In the present invention, in the resin layer (B), (1) a resin having an imide ring in the molecule is used, and (2) a composition that causes an addition reaction between an alkali-soluble resin and a thermally reactive compound is used. Thus, the resin layer (B) can function as a reinforcing layer.
That is, by forming a resin layer (A) made of a conventional solder resist composition and laminating the resin layer (B) on the resin layer (A), impact resistance, flexibility, low warpage, etc. A cover lay and a solder resist having excellent reliability and processing accuracy can be collectively formed on a flexible printed wiring board. Note that an interlayer insulating film may be formed as the insulating film.
 以下、本発明のフレキシブルプリント配線板の製造方法の一例を図3に基づき説明する。
[樹脂層(A)の形成工程]
 この工程では、フレキシブルプリント配線板上に、アルカリ現像型感光性樹脂組成物(A1)からなる樹脂層(A)を少なくとも一層形成する。樹脂層(A)はアルカリ現像が可能であるためパターン形成が可能となる。また樹脂層(A)を積層することにより回路追従性と基板との密着性を向上させることができる。
 フレキシブルプリント配線板は、フレキシブル基材1上に銅回路2が形成されたものである。樹脂層(A)を形成する位置は、屈曲部及び非屈曲部のうちのいずれか一方でよいが、屈曲部と非屈曲部の両方であることが好ましい。屈曲部とは、繰り返し折り曲げされ、屈曲性が要求される部分であり、非屈曲部とは、チップ実装部などの折り曲げされない部分である。
Hereinafter, an example of the manufacturing method of the flexible printed wiring board of this invention is demonstrated based on FIG.
[Formation step of resin layer (A)]
In this step, at least one resin layer (A) made of the alkali development type photosensitive resin composition (A1) is formed on the flexible printed wiring board. Since the resin layer (A) can be alkali-developed, a pattern can be formed. Further, by laminating the resin layer (A), the circuit followability and the adhesion to the substrate can be improved.
The flexible printed wiring board is obtained by forming a copper circuit 2 on a flexible substrate 1. The position where the resin layer (A) is formed may be one of a bent portion and a non-bent portion, but is preferably both a bent portion and a non-bent portion. The bent portion is a portion that is repeatedly bent and requires flexibility, and the non-bent portion is a portion that is not bent, such as a chip mounting portion.
 樹脂層(A)の形成方法としては、塗布法と、ラミネート法が挙げられる。
 塗布法の場合、スクリーン印刷法、カーテンコート法、スプレーコート法、ロールコート法等の方法により、アルカリ現像型感光性樹脂組成物(A1)をフレキシブルプリント配線板上に塗布し、50~130℃程度の温度で15~60分間程度加熱することにより樹脂層(A)を形成する。
 ラミネート法の場合、まずは、アルカリ現像型感光性樹脂組成物(A1)を有機溶剤で希釈して適切な粘度に調整し、キャリアフィルム上に塗布、乾燥して樹脂層(A)を有するドライフィルムを作成する。次に、ラミネーター等により樹脂層(A)が、フレキシブルプリント配線板と接触するように貼り合わせた後、キャリアフィルムを剥離する。
Examples of the method for forming the resin layer (A) include a coating method and a laminating method.
In the case of the coating method, the alkali-developable photosensitive resin composition (A1) is coated on the flexible printed wiring board by a screen printing method, a curtain coating method, a spray coating method, a roll coating method or the like, and 50 to 130 ° C. The resin layer (A) is formed by heating at about a temperature for about 15 to 60 minutes.
In the case of the laminating method, first, the alkali developing type photosensitive resin composition (A1) is diluted with an organic solvent to adjust to an appropriate viscosity, applied onto a carrier film and dried to have a resin layer (A). Create Next, after bonding together so that a resin layer (A) may contact a flexible printed wiring board with a laminator etc., a carrier film is peeled.
 [樹脂層(B)の形成工程]
 この工程では、樹脂層(A)上に、イミド環を有するアルカリ溶解性樹脂、光塩基発生剤、及び熱反応性化合物を含む感光性熱硬化性樹脂組成物(B1)からなる樹脂層(B)を少なくとも一層形成する。樹脂層(B)は、アルカリ現像が可能であるため、微細なパターン形成が可能となり、加工精度に優れる。また、樹脂層(B)を積層することにより、耐衝撃性と屈曲性と低反り性を向上させることができる。
 樹脂層(B)を形成する位置は、樹脂層(A)上で、屈曲部と非屈曲部の両方であることが好ましい。ただし、樹脂層(A)上のうち、屈曲部のみ、又は、非屈曲部のみに樹脂層(B)を形成してもよい。
 また、樹脂層(B)と樹脂層(A)との間には、更なる層を介在させてもよい。
 樹脂層(B)は、樹脂層(A)の形成方法と同様の方法で形成できる。
 なお、樹脂層(A)と(B)は、これらを1つの積層型ドライフィルムとした後、その積層型ドライフィルムをフレキシブルプリント配線板にラミネートすることにより形成してもよい。
 本発明では、銅回路への追従性の観点より、樹脂層(A)を樹脂層(B)よりも厚く形成することが好ましい。
[Formation step of resin layer (B)]
In this step, a resin layer (B) comprising a photosensitive thermosetting resin composition (B1) containing an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound on the resin layer (A). ) At least one layer. Since the resin layer (B) can be alkali-developed, a fine pattern can be formed and the processing accuracy is excellent. Further, by laminating the resin layer (B), it is possible to improve impact resistance, flexibility and low warpage.
The position where the resin layer (B) is formed is preferably both a bent portion and a non-bent portion on the resin layer (A). However, the resin layer (B) may be formed only on the bent portion or only on the non-bent portion of the resin layer (A).
Further, a further layer may be interposed between the resin layer (B) and the resin layer (A).
The resin layer (B) can be formed by the same method as the method for forming the resin layer (A).
The resin layers (A) and (B) may be formed by laminating the laminated dry film on a flexible printed wiring board after making them into one laminated dry film.
In the present invention, the resin layer (A) is preferably formed thicker than the resin layer (B) from the viewpoint of followability to the copper circuit.
 [光照射工程]
 この工程では、樹脂層(A)と(B)に対して、ネガ型のパターン状に光照射する。この工程により、感光性熱硬化性樹脂組成物に含まれる光塩基発生剤を活性化して光照射部を硬化できる。このようにして塩基が発生することにより樹脂層の深部まで化学的に増殖することにより、樹脂層の深部まで十分に硬化することができると考えられる。その後の熱硬化の際には、この塩基がアルカリ現像性樹脂と熱反応性化合物との付加反応の触媒として作用しながら、付加反応が進行するため、光照射部では、深部まで樹脂層が十分に硬化する。このように、本発明における硬化性樹脂組成物の硬化は、例えば、熱反応によるエポキシの開環反応であるため、光反応で進行する場合と比べてひずみや硬化収縮を抑えることができる。
 光照射機としては、直接描画装置(例えばコンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)、メタルハライドランプを搭載した光照射機、(超)高圧水銀ランプを搭載した光照射機、水銀ショートアークランプを搭載した光照射機、もしくは(超)高圧水銀ランプ等の紫外線ランプを使用した直接描画装置を用いることができる。
[Light irradiation process]
In this step, the resin layers (A) and (B) are irradiated with light in a negative pattern. By this step, the photobase generator contained in the photosensitive thermosetting resin composition can be activated to cure the light irradiation part. Thus, it is thought that it can fully harden to the deep part of a resin layer by chemically growing to the deep part of a resin layer by generating a base. In subsequent thermosetting, this base acts as a catalyst for the addition reaction between the alkali-developable resin and the heat-reactive compound, and the addition reaction proceeds. Therefore, in the light irradiation part, the resin layer is sufficiently deep. To harden. Thus, since hardening of the curable resin composition in this invention is a ring-opening reaction of the epoxy by thermal reaction, distortion and hardening shrinkage | contraction can be suppressed compared with the case where it progresses by photoreaction.
As a light irradiation device, a direct drawing device (for example, a laser direct imaging device that directly draws an image with a laser using CAD data from a computer), a light irradiation device equipped with a metal halide lamp, or a light irradiation device equipped with a (ultra) high pressure mercury lamp In addition, a light irradiator equipped with a mercury short arc lamp or a direct drawing apparatus using an ultraviolet lamp such as a (super) high pressure mercury lamp can be used.
 光照射に用いる活性エネルギー線としては、最大波長が350~450nmの範囲にあるレーザー光又は散乱光を用いることが好ましい。また、その光照射量は膜厚等によって異なるが、一般には50~1500mJ/cm、好ましくは100~1000mJ/cmの範囲内とすることができる。 As the active energy ray used for light irradiation, it is preferable to use laser light or scattered light having a maximum wavelength in the range of 350 to 450 nm. The amount of light irradiation varies depending on the film thickness and the like, but can generally be in the range of 50 to 1500 mJ / cm 2 , preferably 100 to 1000 mJ / cm 2 .
 [加熱工程]
 この工程では、樹脂層(A)と(B)を加熱する。これにより、光照射で発生した塩基によって深部まで十分硬化できる。この工程は、いわゆるPEB(POST EXPOSURE BAKE)工程と言われる工程である。
 加熱温度は、熱硬化性樹脂組成物のうち光照射部は熱硬化するが、未照射部は熱硬化しない温度であることが好ましい。
 例えば、加熱工程は、未照射の熱硬化性樹脂組成物の発熱開始温度または発熱ピーク温度よりも低く、かつ、光照射した熱硬化性樹脂組成物の発熱開始温度または発熱ピーク温度よりも高い温度で加熱することが好ましい。このように加熱することにより、光照射部のみを選択的に硬化することができる。
 加熱温度は、例えば、80~140℃である。加熱温度を80℃以上とすることにより、光照射部を十分に硬化できる。一方、加熱温度を140℃以下とすることにより、光照射部のみを選択的に硬化できる。加熱時間は、例えば、10~100分である。なお、未照射部では、光塩基発生剤から塩基が発生しないため、熱硬化が抑制される。
[Heating process]
In this step, the resin layers (A) and (B) are heated. Thereby, it can fully harden | cure to a deep part with the base generate | occur | produced by light irradiation. This process is a so-called PEB (POST EXPOSURE BAKE) process.
The heating temperature is preferably a temperature at which the light-irradiated portion of the thermosetting resin composition is thermally cured, but the non-irradiated portion is not thermally cured.
For example, the heating step is a temperature lower than the heat generation start temperature or the heat generation peak temperature of the unirradiated thermosetting resin composition and higher than the heat generation start temperature or the heat generation peak temperature of the light irradiated thermosetting resin composition. It is preferable to heat with. By heating in this way, only the light irradiation part can be selectively cured.
The heating temperature is, for example, 80 to 140 ° C. By setting the heating temperature to 80 ° C. or higher, the light irradiation part can be sufficiently cured. On the other hand, by setting the heating temperature to 140 ° C. or lower, only the light irradiation part can be selectively cured. The heating time is, for example, 10 to 100 minutes. In the unirradiated portion, no base is generated from the photobase generator, so that thermosetting is suppressed.
 [現像工程]
 この工程では、光照射された樹脂層(A)と(B)を現像して、カバーレイ、及びソルダーレジストのうちの少なくともいずれか一方を形成する。この現像により、パターン状のカバーレイとソルダーレジストを一括して得ることができる。
 現像方法としては、アルカリ現像であり、ディッピング法、シャワー法、スプレー法、ブラシ法等公知の方法によることができる。
 アルカリ現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、エタノールアミン、イミダゾールなどのアミン類、水酸化テトラメチルアンモニウム水溶液(TMAH)等のアルカリ水溶液またはこれらの混合液を用いることができる。
[Development process]
In this step, the resin layers (A) and (B) irradiated with light are developed to form at least one of a coverlay and a solder resist. By this development, a patterned coverlay and solder resist can be obtained in a lump.
The development method is alkali development, and can be performed by a known method such as a dipping method, a shower method, a spray method, or a brush method.
Examples of the alkaline developer include potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, ethanolamine, amines such as imidazole, tetramethylammonium hydroxide aqueous solution (TMAH), etc. An alkaline aqueous solution or a mixed solution thereof can be used.
[その他の工程]
 本発明では、必要に応じて以下の工程を追加してもよい。
(第2光照射工程)
 現像工程の後に、樹脂層(A)と(B)に光照射してもよい。この光照射により、先の光照射工程において、樹脂層(B)内で活性化せずに残った光塩基発生剤を活性化して、塩基を十分に発生させる。
 この光照射における紫外線の波長および光照射量(露光量)は、前記光照射工程と同じであってもよく、異なっていてもよい。光照射量は、例えば、150~2000mJ/cmである。
[Other processes]
In the present invention, the following steps may be added as necessary.
(Second light irradiation process)
After the development step, the resin layers (A) and (B) may be irradiated with light. By this light irradiation, the photobase generator remaining without being activated in the resin layer (B) in the previous light irradiation step is activated to sufficiently generate a base.
The wavelength of ultraviolet rays and the light irradiation amount (exposure amount) in this light irradiation may be the same as or different from those in the light irradiation step. The light irradiation amount is, for example, 150 to 2000 mJ / cm 2 .
(熱硬化工程)
 また、現像工程の後に、さらに、加熱により樹脂層(A)と(B)を熱硬化(ポストキュア)してもよい。この熱硬化工程は、光照射工程、または光照射工程および第2光照射工程により光塩基発生剤から発生した塩基により、パターン層を十分に熱硬化させる。熱硬化工程の時点では、未照射部を既に除去しているため、熱硬化工程は、未照射の熱硬化性樹脂組成物の硬化反応開始温度以上の温度で行うことができる。熱硬化することにより、樹脂層(A)と(B)を十分に熱硬化させることができる。加熱温度は、例えば、150℃以上である。
(Thermosetting process)
Further, after the development step, the resin layers (A) and (B) may be further thermally cured (post-cured) by heating. In this thermosetting step, the pattern layer is sufficiently thermoset by the light irradiation step or the base generated from the photobase generator in the light irradiation step and the second light irradiation step. Since the unirradiated part has already been removed at the time of the thermosetting process, the thermosetting process can be performed at a temperature equal to or higher than the curing reaction start temperature of the unirradiated thermosetting resin composition. By thermosetting, the resin layers (A) and (B) can be sufficiently thermoset. The heating temperature is, for example, 150 ° C. or higher.
 以下に実施例及び比較例を示して本発明について具体的に説明するが、本発明が下記実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(実施例1,2、比較例1,2)
 下記表1に示す種々の成分を同表1に示す割合(質量部)にて配合し、攪拌機にて予備混合した後、3本ロールミルで混練し、感光性樹脂組成物を調製した。
(Examples 1 and 2, Comparative Examples 1 and 2)
Various components shown in Table 1 below were blended in the proportions (parts by mass) shown in Table 1, premixed with a stirrer, and then kneaded with a three-roll mill to prepare a photosensitive resin composition.
Figure JPOXMLDOC01-appb-T000001
*1:カルボキシル基含有クレゾールノボラック型エポキシアクリレート(DIC(株)社製)
*2:ジペンタエリスリトール ヘキサアクリレート(日本化薬(株)社製)
*3:ビスフェノールA型ノボラックエポキシ樹脂(DIC(株)社製)
*4:テトラメチルビフェニル型エポキシ樹脂(三菱化学(株)社製)
*5:アミノアルキルフェノン光重合開始剤(BASFジャパン(株)社製)
*6:ジエチルチオキサントン増感剤(日本化薬(株)社製)
*7:硫酸バリウム(堺化学工業(株)社製)
*8:ポリイミドフィルム(東レ・デュポン(株)社製)
*9:カルボキシル基含有ビスフェノールF型エポキシアクリレート(日本化薬(株)社製)
*10:トリメチロールプロパンEO変性トリアクリレート(東亞合成(株)社製)
*11:ビスフェノールA型エポキシ樹脂(分子量:1600)(三菱化学(株)社製)
*12:ビスフェノールA型エポキシ樹脂(分子量:900)(三菱化学(株)社製)
*13:ビスフェノールA型エポキシ樹脂(分子量:500)(三菱化学(株)社製)
*14:エチルメチルイミダゾール(四国化成工業(株)社製)
Figure JPOXMLDOC01-appb-T000001
* 1: Carboxyl group-containing cresol novolac epoxy acrylate (manufactured by DIC Corporation)
* 2: Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.)
* 3: Bisphenol A type novolak epoxy resin (manufactured by DIC Corporation)
* 4: Tetramethylbiphenyl type epoxy resin (Mitsubishi Chemical Corporation)
* 5: Aminoalkylphenone photopolymerization initiator (BASF Japan Ltd.)
* 6: Diethylthioxanthone sensitizer (manufactured by Nippon Kayaku Co., Ltd.)
* 7: Barium sulfate (manufactured by Sakai Chemical Industry Co., Ltd.)
* 8: Polyimide film (manufactured by Toray DuPont Co., Ltd.)
* 9: Carboxyl group-containing bisphenol F type epoxy acrylate (manufactured by Nippon Kayaku Co., Ltd.)
* 10: Trimethylolpropane EO-modified triacrylate (manufactured by Toagosei Co., Ltd.)
* 11: Bisphenol A type epoxy resin (molecular weight: 1600) (Mitsubishi Chemical Corporation)
* 12: Bisphenol A type epoxy resin (Molecular weight: 900) (Mitsubishi Chemical Corporation)
* 13: Bisphenol A type epoxy resin (Molecular weight: 500) (Mitsubishi Chemical Corporation)
* 14: Ethylmethylimidazole (manufactured by Shikoku Chemicals Co., Ltd.)
(実施例1)
 実施例1についてはラミネート法を用いた。実施例1では、キャリアフィルムに(b)層用の感光性樹脂組成物を塗布、乾燥して、現像性保護層を形成した後、その表面に、(a)層用の感光性樹脂組成物を塗布、乾燥してドライフィルムを得た。そのドライフィルムを120℃でフレキシブルプリント配線板に圧着して、感光性樹脂構造体を形成した。膜厚を表1に示す。
(実施例2)
 実施例2については全面印刷法を用い、(a)層用の感光性樹脂組成物をフレキシブルプリント配線板上に塗布、乾燥した後、その表面に(b)層用の感光性樹脂組成物を塗布、乾燥し、感光性樹脂構造体を形成した。各膜厚を表1に示す。
(比較例1)
 比較例1については全面印刷法を用い、(b)層用の感光性樹脂組成物をフレキシブルプリント配線板上に塗布、乾燥して、(b)層のみのフレキシブルプリント配線板を得た。膜厚を表1に示す。
(比較例2)
 比較例2については全面印刷法を用い、(a)層用の感光性樹脂組成物をフレキシブルプリント配線板上に塗布、乾燥して、(a)層のみのフレキシブルプリント配線板を得た。膜厚を表1に示す。
(比較例3)
 比較例3についてはラミネート法を用いた。比較例3では、パンチング加工により、5mm×5mmの開口パターンを形成したポリイミドフィルムに、(a)層用の樹脂を塗布、乾燥した後、120℃でフレキシブルプリント配線板に圧着した。これにより、パターンを有するフレキシブルプリント配線板を得た。その膜厚を表1に示す。
(比較例4)
 比較例4ではパターン印刷法を用い、(b)層用の樹脂を開口5mm×5mmのパターン印刷によりフレキシブルプリント配線板上に塗布、乾燥し、(b)層のみのパターンを有するフレキシブルプリント配線板を得た。膜厚を表1に示す。
(Example 1)
For Example 1, the laminating method was used. In Example 1, after the photosensitive resin composition for (b) layer was applied to a carrier film and dried to form a developable protective layer, the photosensitive resin composition for (a) layer was formed on the surface. Was applied and dried to obtain a dry film. The dry film was pressure-bonded to a flexible printed wiring board at 120 ° C. to form a photosensitive resin structure. Table 1 shows the film thickness.
(Example 2)
For Example 2, the whole surface printing method was used, and after the photosensitive resin composition for layer (a) was applied on a flexible printed wiring board and dried, the photosensitive resin composition for layer (b) was applied to the surface. Application and drying were performed to form a photosensitive resin structure. Each film thickness is shown in Table 1.
(Comparative Example 1)
About the comparative example 1, the whole surface printing method was used, the photosensitive resin composition for (b) layer was apply | coated and dried on the flexible printed wiring board, and the flexible printed wiring board only of (b) layer was obtained. Table 1 shows the film thickness.
(Comparative Example 2)
For Comparative Example 2, the whole surface printing method was used, and the photosensitive resin composition for (a) layer was applied onto the flexible printed wiring board and dried to obtain a flexible printed wiring board having only the (a) layer. Table 1 shows the film thickness.
(Comparative Example 3)
For Comparative Example 3, the laminating method was used. In Comparative Example 3, the resin for (a) layer was applied to a polyimide film having an opening pattern of 5 mm × 5 mm formed by punching, dried, and then pressed onto a flexible printed wiring board at 120 ° C. Thereby, the flexible printed wiring board which has a pattern was obtained. The film thickness is shown in Table 1.
(Comparative Example 4)
In Comparative Example 4, a pattern printing method is used, and a resin for layer (b) is applied and dried on a flexible printed wiring board by pattern printing with an opening of 5 mm × 5 mm, and (b) a flexible printed wiring board having a pattern of only the layer Got. Table 1 shows the film thickness.
<アルカリ現像性試験>
 実施例1,2及び比較例1,2の感光性樹脂構造体については、メタルハライドランプ搭載の露光装置(HMW-680-GW20)を用いてネガマスクを介して露光量500mJ/cmで光照射し、現像(30℃、0.2MPa、1質量%炭酸ナトリウム水溶液)を行い、アルカリ現像の可否を調べた。
<Alkali developability test>
The photosensitive resin structures of Examples 1 and 2 and Comparative Examples 1 and 2 were irradiated with light at an exposure amount of 500 mJ / cm 2 through a negative mask using an exposure apparatus (HMW-680-GW20) equipped with a metal halide lamp. Then, development (30 ° C., 0.2 MPa, 1 mass% sodium carbonate aqueous solution) was carried out to examine whether alkali development was possible.
<屈曲性試験>
 実施例1,2の感光性樹脂構造体及び比較例1,2の樹脂層については、上記アルカリ現像性試験と同様に、光照射及び現像により、開口部(5×5mm)を有するパターンを形成した。
 実施例1,2及び比較例1~4のパターンを有するフレキシブルプリント配線板を、180°折り曲げた。割れが発生しない場合を良好とし、割れが発生しなかった場合を不良とした。
<Flexibility test>
For the photosensitive resin structures of Examples 1 and 2 and the resin layers of Comparative Examples 1 and 2, a pattern having an opening (5 × 5 mm) was formed by light irradiation and development as in the alkali developability test. did.
The flexible printed wiring boards having the patterns of Examples 1 and 2 and Comparative Examples 1 to 4 were bent 180 °. The case where no crack occurred was considered good, and the case where no crack occurred was regarded as defective.
<電気特性試験>
 クシ型電極(ライン/スペース=100μm/100μm)が形成されたフレキシブルプリント配線板に、上記アルカリ現像性試験と同様に、光照射及び現像により、実施例1、2及び比較例1~4のパターンを形成し、評価基板を作成した。この評価基板を、130℃、湿度85%の雰囲気下の高温高湿槽に入れ、電圧50Vを荷電し、1000時間、槽内HAST試験を行った。ショートしなかった場合を良好とし、ショートした場合を不良とした。
<Electrical characteristics test>
Patterns of Examples 1 and 2 and Comparative Examples 1 to 4 were applied to a flexible printed wiring board on which comb-shaped electrodes (line / space = 100 μm / 100 μm) were formed by light irradiation and development in the same manner as in the alkali developability test. To form an evaluation substrate. This evaluation board | substrate was put into the high-temperature, high-humidity tank of the atmosphere of 130 degreeC and humidity 85%, the voltage 50V was charged, and the in-chamber HAST test was done for 1000 hours. A case where no short circuit occurred was considered good, and a case where a short circuit occurred was regarded as defective.
<開口部滲み試験>
 実施例1,2の感光性樹脂構造体及び比較例1,2の樹脂層については、上記アルカリ現像性試験と同様に、光照射及び現像により、開口部(5×5mm)を有するパターンを形成した。
 実施例1,2及び比較例1~4のパターンについて、開口部(5×5mm)内側への滲み出しの有無を評価した。前記各評価試験の結果を表2に示す。
<Opening bleeding test>
For the photosensitive resin structures of Examples 1 and 2 and the resin layers of Comparative Examples 1 and 2, a pattern having an opening (5 × 5 mm) was formed by light irradiation and development as in the alkali developability test. did.
The patterns of Examples 1 and 2 and Comparative Examples 1 to 4 were evaluated for the presence or absence of oozing into the opening (5 × 5 mm). Table 2 shows the results of the evaluation tests.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表2に示す結果から、実施例1および2の感光性樹脂構造体は、フレキシブルプリント配線板上において現像による微細なパターンの形成が可能であることがわかった。また、実施例1,2の保護膜は、屈曲性及び電気絶縁性にも優れていることがわかった。
 これに対し、比較例1の保護膜では、屈曲性が得られず、比較例2の保護膜では、絶縁性が不十分であった。一方、比較例3,4の保護膜は、いずれもフレキシブルプリント配線板上において、開口部への滲み出しが生じ、微細なパターンを形成するには適していないことが分かった。
From the results shown in Table 2 above, it was found that the photosensitive resin structures of Examples 1 and 2 can form a fine pattern by development on a flexible printed wiring board. Moreover, it turned out that the protective film of Example 1, 2 is excellent also in flexibility and electrical insulation.
On the other hand, the protective film of Comparative Example 1 did not provide flexibility, and the protective film of Comparative Example 2 had insufficient insulation. On the other hand, it was found that the protective films of Comparative Examples 3 and 4 were not suitable for forming a fine pattern because bleeding to the opening occurred on the flexible printed wiring board.
 以下、実施例、比較例により本発明をさらに詳細に説明するが、本発明は、これら実施例、比較例によって制限されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples and Comparative Examples.
(実施例3、4、比較例5)
合成例:<イミド環・カルボキシル基含有樹脂の合成>
 撹拌機、窒素導入管、分留環、冷却環を取り付けたセパラブル3つ口フラスコに、3,5-ジアミノ安息香酸を12.2g、2,2’-ビス[4―(4―アミノフェノキシ)フェニル]プロパン8.2g、NMPを30g、γ-ブチロラクトンを30g、4,4’-オキシジフタル酸無水物を27.9g、トリメリット酸無水物を3.8g加え、窒素雰囲気下、室温、100rpmで4時間撹拌した。次いで、トルエンを20g加え、シリコン浴温度180℃、150rpmでトルエンおよび水を留去しながら4時間撹拌してポリイミド溶液を得た。
 <各樹脂層を構成する樹脂組成物の調製>
 下記表3に記載の配合に従って、実施例および比較例に記載の材料をそれぞれ配合、攪拌機にて予備混合した後、3本ロールミルにて混練し、各樹脂層を構成する樹脂組成物を調製した。表中の値は、特に断りが無い限り、質量部である。
(Examples 3 and 4 and Comparative Example 5)
Synthesis example: <Synthesis of imide ring / carboxyl group-containing resin>
12.2 g of 3,5-diaminobenzoic acid, 2,2′-bis [4- (4-aminophenoxy) in a separable three-necked flask equipped with a stirrer, nitrogen inlet tube, fractional ring, and cooling ring Phenyl] propane 8.2 g, NMP 30 g, γ-butyrolactone 30 g, 4,4′-oxydiphthalic anhydride 27.9 g and trimellitic anhydride 3.8 g were added at room temperature under a nitrogen atmosphere at 100 rpm. Stir for 4 hours. Next, 20 g of toluene was added and stirred for 4 hours while distilling off toluene and water at a silicon bath temperature of 180 ° C. and 150 rpm to obtain a polyimide solution.
<Preparation of resin composition constituting each resin layer>
In accordance with the formulation shown in Table 3 below, the materials described in Examples and Comparative Examples were respectively blended, premixed with a stirrer, and then kneaded with a three-roll mill to prepare resin compositions constituting each resin layer. . The values in the table are parts by mass unless otherwise specified.
<樹脂層(A)の形成>
 銅厚18μmの回路が形成されているフレキシブルプリント配線基材を用意し、メック社CZ-8100を使用して、前処理を行った。その後、前記前処理を行ったフレキシブルプリント配線基材に、実施例3、4および比較例5の樹脂組成物を夫々表3に示すコーティング方法にて乾燥後で膜厚が25μmになるようにコーティングを行った。その後、熱風循環式乾燥炉にて90℃/30分にて乾燥し、樹脂組成物からなる樹脂層(A)を形成した。
<Formation of resin layer (A)>
A flexible printed wiring substrate on which a circuit having a copper thickness of 18 μm was formed was prepared, and pre-treatment was performed using MEC CZ-8100. Thereafter, the pre-treated flexible printed wiring board was coated with the resin compositions of Examples 3 and 4 and Comparative Example 5 by a coating method shown in Table 3 so that the film thickness was 25 μm after drying. Went. Then, it dried at 90 degreeC / 30 minutes with the hot-air circulation type drying furnace, and formed the resin layer (A) which consists of a resin composition.
<樹脂層(B)の形成>
 上記で形成された樹脂層(A)上に実施例3および4の樹脂組成物を表3に示すコーティング方法にて乾燥後で10μmになるようにコーティングを行った。その後、熱風循環式乾燥炉にて90℃/30分にて乾燥し、樹脂組成物からなる樹脂層(B)を形成した。なお、比較例1には、樹脂層(B)の形成は行わなかった。
<Formation of resin layer (B)>
On the resin layer (A) formed as described above, the resin compositions of Examples 3 and 4 were coated by the coating method shown in Table 3 so as to be 10 μm after drying. Then, it dried at 90 degreeC / 30 minutes with the hot-air circulation type drying furnace, and formed the resin layer (B) which consists of a resin composition. In Comparative Example 1, the resin layer (B) was not formed.
<現像性(パターニング)、硬化特性評価>
 実施例3,4では、上記で得られた樹脂層(A)と(B)を備えるフレキシブルプリント配線板に対して、ORC社HMW680GW(メタルハライドランプ、散乱光)にて表3に示す露光量でネガ型のパターン状に光照射した。次いで90℃で60分間加熱処理を行った。その後、30℃の、1質量%の炭酸ナトリウム水溶液中に基材を浸漬して3分間現像を行い、現像性の可否を評価した。比較例5では、上記で得られた樹脂層(A)を備えるフレキシブルプリント配線板に対して、実施例3と同様に、現像性の可否を評価した。得られた結果を表3に示す。
<Developability (patterning) and evaluation of curing characteristics>
In Examples 3 and 4, with respect to the flexible printed wiring board provided with the resin layers (A) and (B) obtained above, the exposure amount shown in Table 3 with ORC HMW680GW (metal halide lamp, scattered light) Light was irradiated in a negative pattern. Next, heat treatment was performed at 90 ° C. for 60 minutes. Thereafter, the substrate was immersed in a 1% by mass sodium carbonate aqueous solution at 30 ° C. and developed for 3 minutes to evaluate the developability. In Comparative Example 5, the possibility of developability was evaluated in the same manner as in Example 3 for the flexible printed wiring board provided with the resin layer (A) obtained above. The obtained results are shown in Table 3.
 次いで、熱風循環式乾燥炉を用いて150℃/60分間熱処理を行い、パターン状の硬化塗膜を得た。得られた硬化塗膜に対し、MIT試験(R=0.38mm/宇部興産(株)製ユーピレックス12.5μmの基材使用)および表面硬度試験(鉛筆硬度試験)を実施し、屈曲性及び表面硬度を評価した。得られた結果を下記の表3に示す。 Next, heat treatment was performed at 150 ° C./60 minutes using a hot air circulation drying oven to obtain a patterned cured coating film. An MIT test (R = 0.38 mm / Upilex 12.5 μm base material used) and a surface hardness test (pencil hardness test) were conducted on the obtained cured coating film, and the flexibility and surface Hardness was evaluated. The results obtained are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
*11:酸価86mgKOH/g MW:10000
*12:ビスフェノールA型エポキシ樹脂(分子量:380)(三菱化学(株)製)
*13:オキシム型光重合開始剤(BASFジャパン(株)社製)
*14:ビスフェノールF型エポキシアクリレート(日本化薬(株)製)
*15:トリメチロールプロパンEO変性トリアクリレート(東亞合成(株)製)
*16:ビスフェノールA型エポキシ樹脂(分子量:900)(三菱化学(株)製)
*17:ビスフェノールA型エポキシ樹脂(分子量:500)(三菱化学(株)製)
*18:アシルフォスフィンオキサイド系光重合開始剤(BASFジャパン(株)社製)
Figure JPOXMLDOC01-appb-T000003
* 11: Acid value 86 mgKOH / g MW: 10,000
* 12: Bisphenol A type epoxy resin (Molecular weight: 380) (Mitsubishi Chemical Corporation)
* 13: Oxime type photopolymerization initiator (manufactured by BASF Japan Ltd.)
* 14: Bisphenol F type epoxy acrylate (manufactured by Nippon Kayaku Co., Ltd.)
* 15: Trimethylolpropane EO-modified triacrylate (manufactured by Toagosei Co., Ltd.)
* 16: Bisphenol A epoxy resin (molecular weight: 900) (Mitsubishi Chemical Corporation)
* 17: Bisphenol A epoxy resin (molecular weight: 500) (Mitsubishi Chemical Corporation)
* 18: Acylphosphine oxide photopolymerization initiator (BASF Japan Ltd.)
 表3に示す評価結果から明らかなように、実施例3および4のフレキシブルプリント配線板は、比較例5のフレキシブルプリント配線板と同様に現像することができ、屈曲性及び表面硬度については大幅に優れていることが分かる。 As is apparent from the evaluation results shown in Table 3, the flexible printed wiring boards of Examples 3 and 4 can be developed in the same manner as the flexible printed wiring board of Comparative Example 5, and the flexibility and surface hardness are greatly increased. It turns out that it is excellent.
1 感光性樹脂構造体
2 フレキシブル基材
3 銅回路
a 現像性接着層
b 現像性保護層
11 フレキシブルプリント配線基材
12 銅回路
13 樹脂層
14 樹脂層
15 マスク
DESCRIPTION OF SYMBOLS 1 Photosensitive resin structure 2 Flexible base material 3 Copper circuit a Developable adhesive layer b Developable protective layer 11 Flexible printed wiring base material 12 Copper circuit 13 Resin layer 14 Resin layer 15 Mask

Claims (16)

  1.  現像性接着層(a)と、
     該現像性接着層(a)を介してフレキシブルプリント配線板に積層される現像性保護層(b)と、を有する感光性樹脂構造体であって、
     少なくとも前記現像性保護層(b)は、光照射によりパターニングが可能であり、かつ、前記現像性接着層(a)と前記現像性保護層(b)は、現像によりパターンを一括して形成することが可能であることを特徴とする感光性樹脂構造体。
    A developable adhesive layer (a);
    A developable protective layer (b) laminated on the flexible printed wiring board via the developable adhesive layer (a), and a photosensitive resin structure comprising:
    At least the developable protective layer (b) can be patterned by light irradiation, and the developable adhesive layer (a) and the developable protective layer (b) collectively form a pattern by development. A photosensitive resin structure characterized in that
  2.  前記現像性接着層(a)と前記現像性保護層(b)が共に、光照射によりパターニングが可能である請求項1に記載の感光性樹脂構造体。 The photosensitive resin structure according to claim 1, wherein both the developable adhesive layer (a) and the developable protective layer (b) can be patterned by light irradiation.
  3.  前記現像性接着層(a)が、前記現像性保護層(b)よりも厚い請求項1に記載の感光性樹脂構造体。 The photosensitive resin structure according to claim 1, wherein the developable adhesive layer (a) is thicker than the developable protective layer (b).
  4.  フレキシブルプリント配線板の屈曲部及び非屈曲部のうちの少なくともいずれか一方に用いられる請求項1に記載の感光性樹脂構造体。 The photosensitive resin structure according to claim 1, wherein the photosensitive resin structure is used for at least one of a bent portion and a non-bent portion of the flexible printed wiring board.
  5.  フレキシブルプリント配線板のカバーレイ及びソルダーレジストのうちの少なくともいずれか一方を形成するために用いられる請求項1に記載の感光性樹脂構造体。 The photosensitive resin structure according to claim 1, which is used for forming at least one of a cover lay and a solder resist of a flexible printed wiring board.
  6.  請求項1に記載の感光性樹脂構造体の少なくとも片面が、フィルムで支持又は保護されていることを特徴とするドライフィルム。 A dry film, wherein at least one surface of the photosensitive resin structure according to claim 1 is supported or protected by a film.
  7.  フレキシブルプリント配線板上に形成された請求項1に記載の感光性樹脂構造体を光照射によりパターニングし、現像によりパターンを一括して形成してなる保護膜を有することを特徴とするフレキシブルプリント配線板。 A flexible printed wiring comprising a protective film formed by patterning the photosensitive resin structure according to claim 1 formed on a flexible printed wiring board by light irradiation and forming the pattern collectively by development. Board.
  8.  前記現像性接着層(a)は、フレキシブルプリント配線板上に、感光性又は非感光性の樹脂組成物(a1)を塗布して形成される請求項7に記載のフレキシブルプリント配線板。 The flexible printed wiring board according to claim 7, wherein the developable adhesive layer (a) is formed by applying a photosensitive or non-photosensitive resin composition (a1) on the flexible printed wiring board.
  9.  アルカリ現像型樹脂組成物からなる樹脂層(A)と、
     該樹脂層(A)を介してフレキシブルプリント配線板に積層される樹脂層(B)と、
    を有する積層構造体であって、
     前記樹脂層(B)が、イミド環を有するアルカリ溶解性樹脂と光塩基発生剤と熱反応性化合物を含む感光性熱硬化性樹脂組成物からなることを特徴とする積層構造体。
    A resin layer (A) comprising an alkali developing resin composition;
    A resin layer (B) laminated on the flexible printed wiring board via the resin layer (A);
    A laminated structure comprising:
    The said resin layer (B) consists of a photosensitive thermosetting resin composition containing the alkali-soluble resin which has an imide ring, a photobase generator, and a thermoreactive compound, The laminated structure characterized by the above-mentioned.
  10.  前記樹脂層(A)と前記樹脂層(B)が共に、光照射によりパターニングが可能である請求項9に記載の積層構造体。 The laminated structure according to claim 9, wherein both the resin layer (A) and the resin layer (B) can be patterned by light irradiation.
  11.  フレキシブルプリント配線板の屈曲部および非屈曲部のうちの少なくともいずれか一方に用いられる請求項9に記載の積層構造体。 The laminated structure according to claim 9, which is used for at least one of a bent portion and a non-bent portion of the flexible printed wiring board.
  12.  フレキシブルプリント配線板のカバーレイ、ソルダーレジストおよび層間絶縁材料のうちの少なくともいずれか1つの用途として用いられる請求項9に記載の積層構造体。 The laminated structure according to claim 9, which is used as at least one of a cover lay, a solder resist, and an interlayer insulating material of a flexible printed wiring board.
  13.  請求項9に記載の積層構造体の少なくとも片面が、フィルムで支持または保護されていることを特徴とするドライフィルム。 A dry film characterized in that at least one surface of the laminated structure according to claim 9 is supported or protected by a film.
  14.  フレキシブルプリント配線板上に請求項9に記載の積層構造体の層を形成し、光照射によりパターニングし、現像液にてパターンを一括して形成してなる絶縁膜を有することを特徴とするフレキシブルプリント配線板。 A flexible printed circuit board comprising: an insulating film formed on the flexible printed wiring board by forming a layer of the laminated structure according to claim 9, patterning by light irradiation, and forming a pattern in a batch with a developer; Printed wiring board.
  15.  フレキシブルプリント配線板上に、アルカリ現像型感光性樹脂組成物(A1)からなる樹脂層(A)を少なくとも一層形成する工程、
     前記樹脂層(A)上に、イミド環を有するアルカリ溶解性樹脂、光塩基発生剤、及び熱反応性化合物を含む感光性熱硬化性樹脂組成物(B1)からなる樹脂層(B)を少なくとも一層形成する工程、
     前記工程にて形成した樹脂層(A)と(B)に、パターン状に光を照射する工程、
     前記工程にて光照射した樹脂層(A)と(B)を加熱する工程、及び、
     前記光照射された樹脂層(A)と(B)をアルカリ現像して、カバーレイ、及びソルダーレジストのうちの少なくともいずれか一方を形成する工程、
    を含むことを特徴とするフレキシブルプリント配線板の製造方法。
    A step of forming at least one resin layer (A) made of the alkali-developable photosensitive resin composition (A1) on the flexible printed wiring board;
    On the resin layer (A), at least a resin layer (B) comprising a photosensitive thermosetting resin composition (B1) containing an alkali-soluble resin having an imide ring, a photobase generator, and a heat-reactive compound. A step of forming one layer,
    Irradiating the resin layers (A) and (B) formed in the step with light in a pattern;
    Heating the resin layers (A) and (B) irradiated with light in the step; and
    A step of alkali-developing the light-irradiated resin layers (A) and (B) to form at least one of a coverlay and a solder resist;
    The manufacturing method of the flexible printed wiring board characterized by including.
  16.  請求項15に記載のフレキシブルプリント配線板の製造方法により製造されたことを特徴とするフレキシブルプリント配線板。 A flexible printed wiring board manufactured by the method for manufacturing a flexible printed wiring board according to claim 15.
PCT/JP2014/060986 2013-04-18 2014-04-17 Laminate structure, flexible printed wiring board and method for manufacturing same WO2014171525A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157028866A KR102229343B1 (en) 2013-04-18 2014-04-17 Laminate structure, flexible printed wiring board and method for manufacturing same
CN201480021937.5A CN105164585B (en) 2013-04-18 2014-04-17 Laminated structure, flexible printed circuit board, and method for manufacturing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-087826 2013-04-18
JP2013087826A JP5847754B2 (en) 2013-04-18 2013-04-18 Photosensitive resin structure, dry film, and flexible printed wiring board
JP2013-107520 2013-05-21
JP2013107519A JP6050180B2 (en) 2013-05-21 2013-05-21 Laminated structure and flexible printed wiring board
JP2013107520A JP6050181B2 (en) 2013-05-21 2013-05-21 Method for manufacturing flexible printed wiring board and flexible printed wiring board
JP2013-107519 2013-05-21

Publications (1)

Publication Number Publication Date
WO2014171525A1 true WO2014171525A1 (en) 2014-10-23

Family

ID=51731460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060986 WO2014171525A1 (en) 2013-04-18 2014-04-17 Laminate structure, flexible printed wiring board and method for manufacturing same

Country Status (4)

Country Link
KR (1) KR102229343B1 (en)
CN (1) CN105164585B (en)
TW (1) TWI614571B (en)
WO (1) WO2014171525A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060237A1 (en) * 2014-10-16 2016-04-21 太陽インキ製造株式会社 Laminate structure, dry film, and flexible printed wiring board
WO2016060137A1 (en) * 2014-10-14 2016-04-21 太陽インキ製造株式会社 Laminate structure
CN107850847A (en) * 2015-08-05 2018-03-27 太阳油墨制造株式会社 laminate structure, dry film and flexible printed circuit board
US11140768B2 (en) 2019-04-10 2021-10-05 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with high passive intermodulation performance

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122744A1 (en) * 2016-01-13 2017-07-20 太陽ホールディングス株式会社 Photosensitive resin composition, dry film, cured product, and printed wiring board
CN105977170B (en) * 2016-07-01 2018-06-05 京东方科技集团股份有限公司 Attaching method and wire structures, the display panel of wiring protective film layer
KR101947150B1 (en) * 2016-08-09 2019-02-12 주식회사 엘지화학 Method for manufacturing insulating film and multilayered printed circuit board
JP2019056824A (en) * 2017-09-21 2019-04-11 株式会社タムラ製作所 Photocured film of photosensitive resin composition and printed wiring board having photocured film of photosensitive resin composition
JP7255788B2 (en) * 2018-04-04 2023-04-11 住友電工プリントサーキット株式会社 Cover film for flexible printed wiring board and flexible printed wiring board
CN110519936A (en) * 2019-08-01 2019-11-29 中国电子科技集团公司第二十九研究所 A kind of the high-precision ultrathin welding resistance film layer and its process for making on ltcc substrate surface
CN110673441B (en) * 2019-11-11 2023-05-26 新东方油墨有限公司 Photosensitive solder resist resin and preparation method thereof
KR20230126600A (en) 2022-02-23 2023-08-30 정지훈 Secondary battery, wireless Bluetooth

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255534A (en) * 2002-02-28 2003-09-10 Mitsui Chemicals Inc Multilayer photosensitive resin film and insulating film comprising the same
JP2005300857A (en) * 2004-04-09 2005-10-27 Fuji Photo Film Co Ltd Photosensitive transfer sheet, photosensitive laminate, image pattern forming method, and wiring pattern forming method
JP2009025699A (en) * 2007-07-23 2009-02-05 Kaneka Corp Photosensitive dry film resist, printed wiring board using same, and method for producing printed wiring board
JP2009048170A (en) * 2007-07-24 2009-03-05 Kaneka Corp Photosensitive dry film resist, and printed wiring board and method for producing printed wiring board using the same
JP2010204174A (en) * 2009-02-27 2010-09-16 Fujifilm Corp Photosensitive laminate and photosensitive film, and production method of printed board

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263692A (en) 1986-05-12 1987-11-16 ニツポン高度紙工業株式会社 Heat-resistant printed wiring board and manufacture of the same
JPS63110224A (en) 1986-10-27 1988-05-14 Dainippon Printing Co Ltd Flexible overlay film
JP2007071966A (en) * 2005-09-05 2007-03-22 Hitachi Chem Co Ltd Method for producing permanent resist and method for producing printed wiring board
JP5567290B2 (en) * 2009-05-12 2014-08-06 太陽ホールディングス株式会社 Photosensitive resin composition, dry film and cured product thereof, and printed wiring board using them
JP5740915B2 (en) * 2010-10-28 2015-07-01 東レ株式会社 Film laminate
KR20140027185A (en) 2011-03-30 2014-03-06 우베 고산 가부시키가이샤 Polyimide film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003255534A (en) * 2002-02-28 2003-09-10 Mitsui Chemicals Inc Multilayer photosensitive resin film and insulating film comprising the same
JP2005300857A (en) * 2004-04-09 2005-10-27 Fuji Photo Film Co Ltd Photosensitive transfer sheet, photosensitive laminate, image pattern forming method, and wiring pattern forming method
JP2009025699A (en) * 2007-07-23 2009-02-05 Kaneka Corp Photosensitive dry film resist, printed wiring board using same, and method for producing printed wiring board
JP2009048170A (en) * 2007-07-24 2009-03-05 Kaneka Corp Photosensitive dry film resist, and printed wiring board and method for producing printed wiring board using the same
JP2010204174A (en) * 2009-02-27 2010-09-16 Fujifilm Corp Photosensitive laminate and photosensitive film, and production method of printed board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060137A1 (en) * 2014-10-14 2016-04-21 太陽インキ製造株式会社 Laminate structure
WO2016060237A1 (en) * 2014-10-16 2016-04-21 太陽インキ製造株式会社 Laminate structure, dry film, and flexible printed wiring board
CN107850847A (en) * 2015-08-05 2018-03-27 太阳油墨制造株式会社 laminate structure, dry film and flexible printed circuit board
CN107850847B (en) * 2015-08-05 2021-04-13 太阳油墨制造株式会社 Laminated structure, dry film, and flexible printed circuit board
US11140768B2 (en) 2019-04-10 2021-10-05 At&S Austria Technologie & Systemtechnik Aktiengesellschaft Component carrier with high passive intermodulation performance

Also Published As

Publication number Publication date
CN105164585B (en) 2020-02-21
TW201510643A (en) 2015-03-16
KR102229343B1 (en) 2021-03-19
KR20150143480A (en) 2015-12-23
TWI614571B (en) 2018-02-11
CN105164585A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2014171525A1 (en) Laminate structure, flexible printed wiring board and method for manufacturing same
KR102372561B1 (en) Photosensitive thermosetting resin composition and flexible printed circuit board
KR102277203B1 (en) Photosensitive thermosetting resin composition and flexible printed circuit board
TWI654250B (en) Photosensitive thermosetting resin composition and flexible printed wiring board
JP6549848B2 (en) Laminated structure
JP6387444B1 (en) Laminated structure, dry film and flexible printed wiring board
KR102288053B1 (en) Photosensitive thermosetting resin composition and flexible printed wiring board
TWI685281B (en) Laminated structure
JP6050180B2 (en) Laminated structure and flexible printed wiring board
JP6050181B2 (en) Method for manufacturing flexible printed wiring board and flexible printed wiring board
WO2016060138A1 (en) Dry film and flexible printed wiring board
JP6383525B2 (en) Pattern formation method, photosensitive thermosetting resin composition, dry film, and flexible printed wiring board
JP6547025B2 (en) Photosensitive thermosetting resin composition and flexible printed wiring board
WO2022181764A1 (en) Multilayer structure and flexible printed wiring board

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021937.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14784973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157028866

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14784973

Country of ref document: EP

Kind code of ref document: A1