WO2014169913A2 - Kühlvorrichtung und -verfahren für eine rotorintegrierte kupplung für hybridmodule - Google Patents

Kühlvorrichtung und -verfahren für eine rotorintegrierte kupplung für hybridmodule Download PDF

Info

Publication number
WO2014169913A2
WO2014169913A2 PCT/DE2014/200138 DE2014200138W WO2014169913A2 WO 2014169913 A2 WO2014169913 A2 WO 2014169913A2 DE 2014200138 W DE2014200138 W DE 2014200138W WO 2014169913 A2 WO2014169913 A2 WO 2014169913A2
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
cooling device
rotor
hybrid module
channel
Prior art date
Application number
PCT/DE2014/200138
Other languages
English (en)
French (fr)
Other versions
WO2014169913A3 (de
Inventor
Willi Ruder
Original Assignee
Schaeffler Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies Gmbh & Co. Kg filed Critical Schaeffler Technologies Gmbh & Co. Kg
Priority to DE112014002014.1T priority Critical patent/DE112014002014B4/de
Priority to CN201480019449.0A priority patent/CN105102250B/zh
Priority to US14/785,236 priority patent/US9770970B2/en
Publication of WO2014169913A2 publication Critical patent/WO2014169913A2/de
Publication of WO2014169913A3 publication Critical patent/WO2014169913A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/72Features relating to cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/02Overheat protection, i.e. means for protection against overheating
    • F16D2300/021Cooling features not provided for in group F16D13/72 or F16D25/123, e.g. heat transfer details
    • F16D2300/0212Air cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/006Structural association of a motor or generator with the drive train of a motor vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/912Drive line clutch

Definitions

  • the invention relates to a cooling device and a cooling method for cooling an integrated in a rotor of an electric motor of a hybrid module for a motor vehicle clutch and a hybrid module with such a cooling device.
  • a so-called hybrid module for a motor vehicle is shown in the valuable contribution to the state of the art DE 100 36 504 B4. It has a coupling, which is housed to reduce the axial space radially inside the rotor of an electric machine.
  • a disadvantage of this rotor integrated arrangement of the coupling is that the quality of the operating characteristics of the clutch or the coupling function compared. conventionally arranged couplings is reduced.
  • the object of the invention is to improve the prior art with respect to these disadvantages.
  • the object is achieved by a cooling device, wherein the cooling device a
  • Cooling device for a clutch integrated in a rotor of a hybrid module for motor vehicle and the cooling device comprises:
  • At least one fluid transport device which is adapted to transport a fluid to the clutch.
  • the invention makes it possible to cool the coupling by means of fluid in that the fluid in the coupling absorbs heat and preferably removes it.
  • a fluid movement can be generated, which degrades or prevents heat accumulation in the region of the coupling.
  • thermal conditions exist within the rotor of the electric motor, which have an overall negative effect on the clutch function, since the clutch is subject to higher thermal loads.
  • the clutch is subjected to additional thermal influences of the electric motor.
  • the invention improves the overall coupling function. For example. is introduced by means of the invention increased wear of the friction linings, over which it has been found that this is due to excessive temperatures of the clutch, prevented or at least mitigated.
  • the hybrid module is preferably a module, by means of which electrical energy can be transmitted as torque to a drive shaft, wherein the shaft can also be acted upon by an internal combustion engine with a moment.
  • the hybrid module preferably has an electric machine with a rotor, preferably an inner rotor, and a stator. Rotor and stator preferably have magnetic components, for. B. electric and / or permanent magnets and / or coils, by means of which an electrical energy in a moment is convertible.
  • the hybrid module preferably has a clutch that is integrated in the rotor.
  • the clutch is preferably a disconnect clutch or releasable clutch, in particular freewheel disconnect clutch.
  • it separably connects the internal combustion engine and the electrical machine.
  • It preferably has a pressure plate and a clutch disc, one of which is rotatably connected to the rotor, while the other is rotatable relative to the rotor in the open state of the clutch.
  • Pressure plate and / or clutch disc preferably have friction linings.
  • the coupling is preferably arranged radially and / or axially with respect to the axis of rotation of the rotor within the rotor, more preferably within the magnetic components of the rotor.
  • It preferably has a coupling housing, preferably bell housing, which is preferably connected in a rotationally fixed manner to the rotor.
  • the fluid transport device is preferably set up to convert an energy (eg kinetically and / or electrically) into a movement of a fluid. It is particularly preferably configured to transport fluid to the clutch, so that the fluid flows around and / or flows through the clutch, preferably the clutch housing, and / or the fluid flows past the clutch. It is preferably set up to also transport the fluid away from the coupling.
  • fluid by means of the fluid transport device in / with direct / m contact with / on the pressure plate and / or the clutch disc and / or the friction linings bringable /etz 2018,bar.
  • the fluid transport device preferably has a negative pressure side, at which a negative pressure is generated by the fluid transport device, and / or an overpressure side, at which an overpressure is generated by the fluid transport device.
  • Fluid is transported by means of the fluid transport device preferably from a point between it and the clutch to the clutch by means of overpressure. Particularly preferred is fluid from a point between which and the fluid transport device, the clutch is arranged in the direction the coupling can be transported by means of negative pressure.
  • the fluid transport device is z. B. one or a combination of the following options: pump, fan (rad), radial fan, axial fan, arrangement of one or more Fluidleitmaschinen or flow elements. As a fluid transport device is preferably also a static guide / inflow element to understand which z. B.
  • the fluid transport device is z. B. plastic and / or aluminum die-casting.
  • the fluid transport device is preferably arranged or arranged on the hybrid module, preferably on a component, in particular the rotor of the hybrid module, such that a fluid can be transported to the clutch.
  • the cooling device preferably has a plurality of fluid transport devices.
  • the fluid is z. B. cooling gas, more preferably air.
  • the fluid transport device is non-rotatably connected to the rotor.
  • it is connected via a gear to the rotor.
  • the rotational energy of the rotor can be transferred to the fluid transport device. This thus comes without a separate power supply or engine. It can thus be arranged to save space.
  • it is pluggable on a rotor shaft, z. B. she is a pluggable fan.
  • a further cooling device comprises at least one channel, which is arranged to lead the fluid to the coupling.
  • fluid can be brought specifically to the clutch components prone to overheating.
  • the flow resistance can be kept as low as possible by means of a channel.
  • the channel is in fluid communication with the fluid transport device.
  • the fluid transport direction is preferably located in the channel.
  • the channel preferably has radial and / or axial regions with respect to the axis of rotation, in which the fluid flow is radial (radial region) or axial (axial region).
  • the channel consists at least partially of open spaces, eg. B. holes, which are incorporated in the housing of the hybrid module and / or the rotor or are.
  • the coupling housing openings preferably holes and / or punched out areas, which serve as a channel and fluid into the coupling housing and / or lead out.
  • the cooling device has a coherent system of several channels.
  • the channel defines at least one circuit within the hybrid module. In this way, fluid can be guided and removed by means of a fluid transport device at the same time to the clutch.
  • the channel defines a closed circuit, so that fluid can not escape uncontrolled from the circulation and new, possibly polluted fluid can not uncontrollably get from the outside into the circulation.
  • the channel has a fluid supply leading from the outside into the hybrid module and / or a fluid discharge leading outward from the hybrid module.
  • fluid that z. B. otherwise available for cooling, z. B. from another cooling circuit, usable or it is a fresh air passage feasible fresh air is preferably prefiltered.
  • a filter is preferably arranged on the fluid supply.
  • the fluid supply and / or the fluid removal is coupled to the air conditioning and / or heating system of the vehicle.
  • air cooled by the air conditioner is directed into the duct via the fluid supply, and / or heated air through the clutch is directed to the vehicle interior via the fluid drain when heating is required.
  • the fluid is tempered via an external cooler with respect to the hybrid module.
  • the channel at least partially adjoins a wall of another, arranged for the guidance of a second fluid second channel of the hybrid module.
  • the fluid over the wall is cooled, also the heat transport capacity of an existing cooling circuit in the hybrid module for the removal of heat can be used.
  • the fluid is preferably cooled over the second channel of the electric machine.
  • the preferred heat-conducting wall is preferably a common wall of the channel and the second channel.
  • the stator of the hybrid module preferably has the second channel.
  • the latter preferably contains a secondary fluid, by means of which the stator z. B. whose magnetic components, in particular its electromagnets are coolable.
  • the fluid and the secondary fluid are spatially separated so that they do not mix.
  • an air flow in the bell housing of the coupling is made possible, in which the flowing air is cooled by passing the cooling channel of the electric motor.
  • cooling fins are arranged on the wall and project into the channel. In this way, the heat exchange to the Wall and thus increases the cooling of the fluid.
  • the cooling fins are arranged along the flow direction of the fluid. This reduces the flow resistance.
  • the fluid transport device is additionally set up to transport the fluid to electrical and / or magnetic components of the rotor and / or the channel leads at least partially past such components of the rotor.
  • electrical components are preferably those which are traversed by current
  • magnetic components are those which can or can generate a magnetic field.
  • the gap or existing gaps between the rotor and stator is part of the channel or channel system.
  • the object is also achieved by a hybrid module for a motor vehicle, wherein the hybrid module has a cooling device according to the invention.
  • a hybrid module has over other thermal conditions improved for the clutch.
  • the object is also achieved by a cooling method in which a clutch (60) integrated in a rotor (50) of a hybrid module (40) for a motor vehicle is cooled, the following step being carried out:
  • the fluid transport device (10) is driven by the rotor (50).
  • fluid is conducted via at least one channel (20, 20.1, 20.2) to the coupling (60).
  • the fluid is transported in a channel loop within the hybrid module (40) defined by the channel (20, 20.1, 20.2).
  • fluid is transported via a fluid supply into the channel (20) to the coupling (60) and / or away from the coupling (60) and via a fluid discharge from the channel (20, 20.1, 20.2).
  • the fluid is cooled via a wall (72) of another, arranged for the guidance of a second fluid second channel (71) of the hybrid module (40).
  • the fluid is transported past cooling fins, which are arranged on the wall (72).
  • the fluid is transported in addition to electrical and / or magnetic components of the rotor (50) and / or the fluid is at least partially passed through such a component of the rotor (50) via a channel (20, 20.1, 20.2).
  • FIGS. 1 -3 show cooling devices 1 and hybrid modules 40 according to the invention
  • FIG. 4 shows a fluid transport device 10, wherein FIG. 1 shows a schematic illustration
  • FIG. 1 shows a schematic illustration
  • the cooling device 1 additionally has a channel 20,
  • FIG. 3 shows a fluid flow of the cooling device 1 according to the invention
  • Fig. 4 is a slightly perspective view of a Fluidtransporteinnchtung 10 is shown.
  • FIG. 1 the cooling device 1 to a Fluidtransporteinnchtung 10.
  • a hybrid module 40 has a stator 70 and a rotor 50, in which a clutch 60 is integrated.
  • the Fluidtransporteinnchtung 10 is on one side of the coupling 60, z. B. the transmission side, arranged on the rotor 50. Shown dashed is an alternative in which the Fluidtransporteinnchtung 10 on the other side, the coupling 60, z. B. the engine side, is arranged.
  • the Fluidtransporteinnchtung 10 is rotatably connected to the rotor 50. In the alternative arrangement (dashed) it is non-rotatably connected to the shaft driven by the internal combustion engine.
  • fluid is transported by means of the Fluidtransporteinnchtung 10 in the direction of the clutch 60, which takes place by suction of fluid from the region of the coupling 60, so that new, cooler fluid flows from farther to the clutch 60, and / or by introducing Fluid from the Fluidtransporteinnchtung 10 to the clutch 60 by means of a generated by the Fluidtransporteinnchtung 10 overpressure.
  • the Fluidtransporteinnchtung 10 by the rotation of the rotor 50 or the combustion engine side clutch shaft (left in the drawing, dashed variant) is driven.
  • the cooling device 1 has a channel 20 and a fluid transport device 10, which has a flow element 1 1.
  • the channel 20 has at least one radial section 20.2 and at least one axial section 20.1.
  • the hybrid module 40 additionally has a hybrid module housing 41, which encloses the hybrid module 40, preferably seals it substantially airtight.
  • an axial portion 20.1 of the channel 20 by an additional outer, a free space between it and the hybrid module housing 41 forming Delusion formed.
  • a radial section 20.2 of the channel 20 or radial channel 20.2 can be formed.
  • an already existing ribbing eg radial ribbing or axial ribbing
  • the intermediate space of such a (rigidity) ribbing preferably forms a channel (eg radial or axial).
  • the stator 70 also has a stator cooling in the form of adjacent second channels 71 which a second fluid, for. B. coolant, for cooling the stator 70 contains.
  • a heat-conducting wall 72 which preferably has ribs on one side (as shown), more preferably on both sides, separates the channel 20 from the second fluid of the stator cooling.
  • the parallel arranged rectangles, which are opposite to the stator 70 and the rotor 50, constitute magnetic components of the stator 70 and the respective rotor 50.
  • the coupling 60 additionally has friction linings 61 and a coupling housing 62, which is preferably one Bell housing is. It has holes which form part of the channel 20 and are adapted to bring fluid in and out of the clutch housing 62. Between the rotor 50 and the stator 70, in particular between the magnetic components, there is a gap 42. In a variant, the gap 42 is a part of the channel 20.
  • Fig. 3 show the same cooling device 1 and the same hybrid module 40 as Fig. 2, but for clarity without reference numerals.
  • an exemplary movement of the fluid is illustrated by arrows.
  • the fluid transport device 10 transported by movement of the flow element 1 1 fluid in the axial direction. It is diverted into a radial channel 20.2, then into an axial channel 20.1. There it is transported along the wall 72.
  • the wall 72 is cooled by the secondary fluid circulating in the second passage 71 to cool the stator 70.
  • the fluid is cooled in the axial channel 20.1.
  • the now cooled fluid is transported further into another radial channel section 20.2 and flows there radially inward.
  • the clutch 60 It is then deflected again in the axial direction to the clutch 60 and flows through one or more openings of the clutch housing 62. It passes through the interior of the clutch housing 62 and flows around in particular the friction linings 61 of the clutch 60, the heat emitted absorbs the fluid before it by one or more more Openings of the clutch housing 62 again emerges from the clutch housing 62 and flows to the Fluidtransportein- direction 10. From there, the fluid moves again in the cycle shown. In a variant (not shown), the fluid is also transported through the gap 42 and thus cools the magnetic components of the stator 70 and rotor 50, preferably also possibly existing electrical components.
  • the fluid is transported in a circuit which on the one hand enables cooling of the fluid at a cooling circuit which is preferably already present in the hybrid module and, on the other hand, prefers heat absorption by the fluid in the region of the clutch 60, in particular in the region of the friction linings 61 of the clutch within the coupling housing 62, allows.
  • the fluid transport device 10 is a fan, which has flow elements 1 1. At the hub of the fan 10 at least one projection 12 is arranged. In this way, the fan 10 is rotatably plugged onto a shaft, in particular on the drive-side rotor shaft of the hybrid module 40.
  • a shaft of the hybrid module 40, to which the fluid transport device 10 is plugged, preferably has at least one corresponding groove.
  • the fluid is brought into direct contact with the bell housing of the clutch or the friction linings.
  • the fluid is preferably circulated by means of the cooling device and a channel system set up for this purpose within the hybrid module. In this way, the heat is effectively removed and fluid is not exposed to the danger of polluting.
  • the fluid circulating in the hybrid module is cooled at a location of the hybrid module, e.g. B. by a stator cooling.
  • the cooling of the motor-side separating clutch of a hybrid module or the bell air in the entire hybrid module is made possible.
  • the cooling of the bell air or in particular of the friction components of the separating clutch is preferably achieved in that a specific air flow in the hybrid module takes place by means of different rotating elements.
  • the air flow is preferably directed explicitly over the cooling channel of the electric motor, which is flowed through by a cooling medium.
  • a cooling medium As a result, the air flowing around is particularly cooled whereby cooling of the entire air in the bell housing and in particular the friction elements of the clutch is achieved.
  • a further improvement of the thermal state in the hybrid module is achieved, in particular also by an (additionally targeted) passage of the fluid past the rotor and / or stator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)
  • General Details Of Gearings (AREA)

Abstract

Die Erfindung betrifft eine Kühlvorrichtung, wobei die Kühlvorrichtung eine Kühlvorrichtung für eine in einem Rotor eines Hybridmoduls für Kraftfahrzeug integrierte Kupplung ist und die Kühlvorrichtung umfasst: mindestens eine Fluidtransporteinrichtung, welche eingerichtet ist, ein Fluid zu der Kupplung zu transportieren. Die Erfindung betrifft weiterhin ein Hybridmodul für ein Kraftfahrzeug, wobei das Hybridmodul eine erfindungsgemäße Kühlvorrichtung aufweist. Ein solches Hybridmodul weist gegenüber anderen z. B. einen geringeren Verschleiß der integrierten Kupplung auf. Außerdem betrifft die Erfindung ein Kühlverfahren, bei dem eine in einem Rotor eines Hybridmoduls für ein Kraftfahrzeug integrierte Kupplung gekühlt wird, wobei folgender Schritt durchgeführt wird: Transportieren eines Fluids zu der Kupplung mittels mindestens einer Fluidtransporteinrichtung.

Description

Kühlvorrichtung und -verfahren für eine rotorintegrierte Kupplung für Hvbridmodule
Die Erfindung betrifft eine Kühlvorrichtung und ein Kühlverfahren zur Kühlung einer in einem Rotor einer E-Maschine eines Hybridmoduls für ein Kraftfahrzeug integrierten Kupplung sowie ein Hybridmodul mit einer solchen Kühlvorrichtung.
Ein sog. Hybridmodul für ein Kraftfahrzeug ist in dem wertvollen Beitrag zum Stand der Technik DE 100 36 504 B4 gezeigt. Es weist eine Kupplung auf, die zur Verringerung des axialen Bauraums radial innerhalb des Rotors einer elektrischen Maschine untergebracht ist.
Ein Nachteil dieser rotorintegrierten Anordnung der Kupplung ist, dass die Qualität der Betriebseigenschaften der Kupplung bzw. die Kupplungsfunktion ggü. konventionell angeordneten Kupplungen vermindert ist.
Aufgabe der Erfindung ist, den Stand der Technik bezüglich dieser Nachteile zu verbessern.
Die Aufgabe wird gelöst durch eine Kühlvorrichtung, wobei die Kühlvorrichtung eine
Kühlvorrichtung für eine in einem Rotor eines Hybridmoduls für Kraftfahrzeug integrierte Kupplung ist und die Kühlvorrichtung umfasst:
- mindestens eine Fluidtransporteinrichtung, welche eingerichtet ist, ein Fluid zu der Kupplung zu transportieren.
Die Erfindung ermöglicht, die Kupplung mittels Fluid zu kühlen, indem das Fluid in der Kupplung entstehende Wärme aufnimmt und bevorzugt abtransportiert. Durch die Fluidtransporteinrichtung ist eine Fluidbewegung erzeugbar, welche einen Hitzestau im Bereich der Kupplung abbaut oder unterbindet. Im Rahmen der Erfindung wurde herausgefunden, dass thermische Bedingungen innerhalb des Rotors der E-Maschine vorliegen, die sich insgesamt negativ auf die Kupplungsfunktion auswirken, da die Kupplung thermisch höher belastet wird. Es liegt eine der integrierten Bauform geschuldete, schlechtere Wärmeabfuhr vor und aufgrund ihrer rotorintegrierten Anordnung wird die Kupplung mit zusätzlichen thermischen Einflüssen der E-Maschine beaufschlagt. Weiterhin erfolgt in bestimmten Betriebsformen des Hybridmoduls ein im Vergleich zu einem Antriebsstrang ohne Modul höherer Reibenergieeintrag in die Kupplung, der zusätzlich zu einer höheren Wärmeentwicklung führt. Durch die Erfindung wird die Kupplungsfunktion insgesamt verbessert. Bspw. wird mittels der Erfindung ein erhöhter Verschleiß der Reibbeläge, über den herausgefunden wurde, dass dieser auf überhöhte Temperaturen der Kupplung zurückzuführen ist, verhindert oder zumindest abgemildert.
Das Hybridmodul ist bevorzugt ein Modul, mittels welchem elektrische Energie als Moment auf eine Antriebswelle übertragbar ist, wobei die Welle außerdem von einer Brennkraftmaschine mit einem Moment beaufschlagbar ist. Das Hybridmodul weist bevorzugt eine elektrische Maschine mit einem Rotor, bevorzugt ein Innenläufer, und einem Stator auf. Rotor und Stator weisen bevorzugt magnetische Komponenten auf, z. B. Elektro- und/oder Permanentmagnete und/oder Spulen, mittels welchen eine elektrische Energie in ein Moment umwandelbar ist. Das Hybridmodul weist bevorzugt eine Kupplung auf, die in dem Rotor integriert ist.
Die Kupplung ist bevorzugt eine Trennkupplung bzw. lösbare Kupplung, insbesondere Freilauftrennkupplung. Bevorzugt verbindet sie trennbar den Verbrennungsmotor und die e- lektrische Maschine. Sie weist bevorzugt eine Druckplatte und eine Kupplungsscheibe auf, wobei eine dieser beiden mit dem Rotor drehfest verbunden ist, während die andere im geöffneten Zustand der Kupplung gegenüber dem Rotor drehbar ist. Druckplatte und/oder Kupplungsscheibe weisen bevorzugt Reibbeläge auf. Die Kupplung ist bevorzugt radial und/oder axial bezüglich der Rotationsachse des Rotors innerhalb des Rotors angeordnet, besonders bevorzugt innerhalb der magnetischen Komponenten des Rotors. Sie weist bevorzugt ein Kupplungsgehäuse, bevorzugt Glockengehäuse, auf, welches bevorzugt drehfest mit dem Rotor verbunden ist.
Die Fluidtransporteinrichtung ist bevorzugt eingerichtet, eine Energie (z. B. kinetisch und/oder elektrisch) in eine Bewegung eines Fluids umzuwandeln. Besonders bevorzugt ist sie eingerichtet, Fluid zu der Kupplung zu transportieren, so dass das Fluid die Kupplung, bevorzugt das Kupplungsgehäuse, umströmt und/oder durchströmt und/oder das Fluid an der Kupplung vorbeiströmt. Sie ist bevorzugt eingerichtet das Fluid von der Kupplung auch wegzutranspor- tieren. Bevorzugt ist Fluid mittels der Fluidtransporteinrichtung in/mit direkten/m Kontakt mit/an der Druckplatte und/oder der Kupplungsscheibe und/oder den Reibbelägen bringbar/vorbeiführbar. Die Fluidtransporteinrichtung weist bevorzugt eine Unterdruckseite auf, an der durch die Fluidtransporteinrichtung ein Unterdruck erzeugt wird, und/oder eine Überdruckseite, an der durch die Fluidtransporteinrichtung ein Überdruck erzeugt wird. Fluid ist mittels der Fluidtransporteinrichtung bevorzugt von einem Punkt zwischen ihr und der Kupplung zu der Kupplung mittels Überdruck transportierbar. Besonders bevorzugt ist Fluid von einem Punkt, zwischen welchem und der Fluidtransporteinrichtung die Kupplung angeordnet ist, in Richtung der Kupplung mittels Unterdruck transportierbar. Die Fluidtransporteinrichtung ist z. B. eine oder eine Kombination folgender Möglichkeiten: Pumpe, Lüfter(rad), Radiallüfter, Axiallüfter, Anordnung von einem oder mehreren Fluidleitelementen bzw. Strömungselementen. Als Fluidtransporteinrichtung ist bevorzugt auch ein statisches Leit-/Einströmelement zu verstehen, welches z. B. den Fahrtwind nutzt und somit Luft während der Fahrt von außerhalb des Fahrzeugs zur Kupplung umleitet. Die Fluidtransporteinrichtung ist z. B. aus Kunststoff und/oder Alu-Druckguss. Die Fluidtransporteinrichtung ist bevorzugt am Hybridmodul, bevorzugt an einem Bauteil, insbesondere dem Rotor des Hybridmoduls anordenbar oder angeordnet, derart, dass ein Fluid zu der Kupplung transportierbar ist. Bevorzugt weist die Kühlvorrichtung mehrere Fluidtransporteinrichtungen auf.
Das Fluid ist z. B. Kühlgas, besonders bevorzugt Luft.
In einer weiteren erfindungsgemäßen Kühlvorrichtung ist die Fluidtransporteinrichtung drehfest mit dem Rotor verbunden. Alternativ ist sie über ein Getriebe mit dem Rotor verbunden. In beiden Fällen ist die Rotationsenergie des Rotors auf die Fluidtransporteinrichtung ü- bertragbar. Diese kommt somit ohne separate Stromzufuhr oder Motor aus. Sie kann damit auch platzsparend angeordnet werden. Z. B. ist sie auf eine Rotorwelle steckbar, z. B. ist sie ein steckbares Lüfterrad.
Eine weitere erfindungsgemäße Kühlvorrichtung umfasst mindestens einen Kanal, welcher eingerichtet ist, das Fluid zu der Kupplung führen. Auf diese Weise ist Fluid gezielt an die zur Überhitzung neigenden Kupplungskomponenten heranführbar. Ferner kann mittels eines Kanals der Strömungswiderstand möglichst niedrig gehalten werden. Bevorzugt steht der Kanal mit der Fluidtransporteinrichtung in fluidischer Verbindung. Bevorzugt befindet sich die Flu- idtransportrichtung in dem Kanal. Der Kanal weist bevorzugt radiale und/oder axiale Bereiche bzgl. der Rotationsachse auf, in denen die Fluidströmung radial (radialer Bereich) bzw. axial (axialer Bereich) ist. Bevorzugt besteht der Kanal zumindest teilweise aus Freiräumen, z. B. Bohrungen, welche in dem Gehäuse des Hybridmoduls und/oder dem Rotor eingebracht sind oder werden. Insbesondere weist das Kupplungsgehäuse Öffnungen, bevorzugt Bohrungen und/oder ausgestanzte Bereiche auf, welche als Kanal dienen und Fluid in das Kupplungsgehäuse hinein und/oder herausführen. Bevorzugt weist die Kühlvorrichtung ein zusammenhängendes System aus mehreren Kanälen auf. In einer weiteren erfindungsgemäßen Kühlvorrichtung definiert der Kanal mindestens einen Kreislauf innerhalb des Hybridmoduls. Auf diese Weise ist Fluid mittels einer Fluidtranspor- teinrichtung zugleich zu der Kupplung hinführbar und wegführbar. Bevorzugt definiert der Kanal einen geschlossenen Kreislauf, so dass Fluid nicht unkontrolliert aus dem Kreislauf entweichen kann und neues, evtl. verschmutztes Fluid nicht unkontrolliert von außen in den Kreislauf gelangen kann.
In einer weiteren erfindungsgemäßen Kühlvorrichtung weist der Kanal eine von außen in das Hybridmodul führende Fluidzufuhr und/oder eine nach außen aus dem Hybridmodul führende Fluidabfuhr auf. Auf diese Weise ist Fluid, das z. B. anderweitig zur Kühlung vorhanden ist, z. B. aus einem anderen Kühlkreislauf, verwendbar oder es ist ein Frischluftdurchzug realisierbar, wobei Frischluft bevorzugt vorgefiltert wird. Hierfür ist bevorzugt ein Filter an der Fluidzufuhr angeordnet. Bevorzugt ist die Fluidzufuhr und/oder die Fluidabfuhr an die Klimaanlage und/oder Heizanlage des Fahrzeugs gekoppelt. Z. B. wird durch die Klimaanlage gekühlte Luft über die Fluidzufuhr in den Kanal geleitet und/oder durch die Kupplung erwärmte Luft wird über die Fluidabfuhr bei Heizbedarf in den Fahrzeuginnenraum geleitet. Bevorzugt wird das Fluid über einen bzgl. des Hybridmoduls externen Kühlers temperiert.
In einer weiteren erfindungsgemäßen Kühlvorrichtung grenzt der Kanal zumindest teilweise an eine Wand eines anderen, für die Führung eines Zweitfluids eingerichteten Zweitkanals des Hybridmoduls an. Auf diese Weise ist das Fluid über die Wand kühlbar, zudem ist die Wärmetransportkapazität eines bereits vorhandenen Kühlkreislaufs im Hybridmodul für den Abtransport von Wärme nutzbar. Somit wird das Fluid bevorzugt über dem Zweitkanal der elektrischen Maschine gekühlt. Die bevorzugt wärmeleitende Wand ist bevorzugt eine gemeinsame Wand des Kanals und des Zweitkanals. Bevorzugt weist der Stator des Hybridmoduls den Zweitkanal auf. Letzterer enthält bevorzugt ein Zweitfluid, mittels welchem der Stator z. B. dessen magnetische Komponenten, insbesondere dessen Elektromagnete kühlbar sind. Bevorzugt befindet sich eine durchgehende, wärmeleitende Wand zwischen dem Kanal und dem Zweitkanal. Bevorzugt sind das Fluid und das Zweitfluid räumlich voneinander getrennt, so dass sie sich nicht vermischen. Bevorzugt wird eine Luftströmung in dem Glockengehäuse der Kupplung ermöglicht, bei der die strömende Luft durch vorbeiführen am Kühlkanal der E- Maschine gekühlt wird.
In einer weiteren erfindungsgemäßen Kühlvorrichtung sind an der Wand Kühlrippen angeordnet, welche in den Kanal ragen. Auf diese Weise wird der Wärmeaustausch zu der Wand und somit die Kühlung des Fluids erhöht. Bevorzugt sind die Kühlrippen längs der Strömungsrichtung des Fluids angeordnet. Dies vermindert den Strömungswiderstand.
In einer weiteren erfindungsgemäßen Kühlvorrichtung ist die Fluidtransporteinrichtung zusätzlich eingerichtet, das Fluid zu elektrischen und/oder magnetischen Komponenten des Rotors zu transportieren und/oder der Kanal führt zumindest teilweise an solchen Komponenten des Rotors vorbei. Somit sind in einfacher Weise auch die evtl. sich überhitzenden Bauteile eines Rotors kühlbar. Elektrische Komponenten sind bevorzugt solche, die von Strom durchflössen werden, magnetische Komponenten solche, welche ein Magnetfeld erzeugen können oder besitzen. Bevorzugt ist der Spalt oder sind vorhandene Spalten zwischen Rotor und Stator ein Teil des Kanals oder Kanalsystems.
Die Aufgabe wird zudem gelöst durch ein Hybridmodul für ein Kraftfahrzeug, wobei das Hybridmodul eine erfindungsgemäße Kühlvorrichtung aufweist. Ein solches Hybridmodul weist gegenüber anderen für die Kupplung verbesserte thermische Bedingungen auf.
Die Aufgabe wird zudem gelöst durch ein Kühlverfahren, bei dem eine in einem Rotor (50) eines Hybridmoduls (40) für ein Kraftfahrzeug integrierte Kupplung (60) gekühlt wird, wobei folgender Schritt durchgeführt wird:
- Transportieren eines Fluids zu der Kupplung (60) mittels mindestens einer Fluidtransporteinrichtung (10).
Die nachfolgenden Verfahren sind jeweils auf eines oder mehrere der Verfahren, die vor dem jeweiligen Verfahren genannt sind, rückbezogen. Merkmale der bereits beschriebenen Kühlvorrichtung und des Hybridmoduls sind analog auch in dem Verfahren bevorzugt vorhanden.
In einem zweiten Kühlverfahren wird die Fluidtransporteinrichtung (10) durch den Rotor (50) angetrieben. In einem dritten Kühlverfahren wird Fluid über mindestens einen Kanal (20, 20.1 , 20.2) zu der Kupplung (60) geführt. In einem vierten Kühlverfahren wird das Fluid in einem Kanalkreislauf innerhalb des Hybridmoduls (40), welchen der Kanal (20, 20.1 , 20.2) definiert, transportiert. In einem fünften Kühlverfahren wird Fluid über eine Fluidzufuhr in den Kanal (20) zur Kupplung (60) transportiert und/oder von der Kupplung (60) weg und über eine Fluidabfuhr aus dem Kanal (20, 20.1 , 20.2) transportiert. In einem sechsten Kühlverfahren wird das Fluid über eine Wand (72) eines anderen, für die Führung eines Zweitfluids eingerichteten Zweitkanals (71 ) des Hybridmoduls (40) abgekühlt. In einem siebten Kühlverfahren wird das Fluid an Kühlrippen vorbeitransportiert, welche an der Wand (72) angeordnet sind. In einem achten Kühlverfahren wird das Fluid zusätzlich zu elektrischen und/oder magnetischen Komponenten des Rotors (50) transportiert und/oder das Fluid wird über einen Kanal (20, 20.1 , 20.2) zumindest teilweise an solchen Komponenten des Rotors (50) vorbeiführt.
Beispielhaft für mögliche Ausführungsformen zeigen die Figuren 1 -3 Kühlvorrichtungen 1 und erfindungsgemäße Hybridmodule 40, Fig. 4 eine Fluidtransporteinnchtung 10, wobei in Fig. 1 eine schematische Darstellung gewählt ist,
Fig. 2 die erfindungsgemäße Kühlvorrichtung 1 zusätzlich einen Kanal 20 aufweist,
Fig. 3 ein Fluidstrom der erfindungsgemäßen Kühlvorrichtung 1 gezeigt ist,
Fig. 4 eine leicht perspektivische Darstellung einer Fluidtransporteinnchtung 10 gezeigt ist.
In Fig. 1 weist die Kühlvorrichtung 1 eine Fluidtransporteinnchtung 10 auf. Ein Hybridmodul 40 weist einen Stator 70 auf und einen Rotor 50, in den eine Kupplung 60 integriert ist. Die Fluidtransporteinnchtung 10 ist an einer Seite der Kupplung 60, z. B. der Getriebeseite, am Rotor 50 angeordnet. Gestrichelt gezeigt ist eine Alternative, bei der die Fluidtransporteinnchtung 10 an der anderen Seite, der Kupplung 60, z. B. der Verbrennungsmotorseite, angeordnet ist. Bevorzugt ist die Fluidtransporteinnchtung 10 drehfest mit dem Rotor 50 verbunden. In der alternativen Anordnung (gestrichelt) ist sie drehfest mit der durch den Verbrennungsmotor angetriebenen Welle verbunden.
Im Betrieb der Erfindung wird mittels der Fluidtransporteinnchtung 10 Fluid in Richtung der Kupplung 60 transportiert, was durch Ansaugen von Fluid aus dem Bereich der Kupplung 60 erfolgt, so dass neues, kühleres Fluid von weiter entfernt zur Kupplung 60 nachströmt, und/oder durch Hinführen von Fluid von der Fluidtransporteinnchtung 10 zur Kupplung 60 mittels eines durch die Fluidtransporteinnchtung 10 erzeugten Überdrucks. Bevorzugt wird die Fluidtransporteinnchtung 10 durch die Drehung des Rotors 50 oder der verbrennungsmotor- seitigen Kupplungswelle (links in der Zeichnung, gestrichelte Variante) angetrieben.
Auf diese Weise wird Hitze, welche bspw. durch Reibung in der Kupplung 60 entsteht und aufgrund der die Kupplung 60 umschließenden Bauweise nicht ausreichend abgeleitet wird, mittels des Fluids von der Kupplung 60 aufgenommen und sie kann weitertransportiert werden. In Fig. 2 weist die Kühlvorrichtung 1 einen Kanal 20 und eine Fluidtransporteinrichtung 10 auf, die ein Strömungselement 1 1 aufweist. Der Kanal 20 weist mindestens einen radialen Abschnitt 20.2 und mindestens einen axialen Abschnitt 20.1 auf. In dem Kanal befindet sich Luft als Fluid. Das Hybridmodul 40 weist im Vergleich zu Fig. 1 zusätzlich ein Hybridmodulgehäuse 41 auf, welches das Hybridmodul 40 umschließt, bevorzugt im Wesentlichen luftdicht abdichtet. Der Kanal 20, z. B. der obere axiale Abschnitt 20.1 des Kanals 20 bzw. axiale Kanal 20.1 , ist eine axiale Bohrung durch das Hybridmodulgehäuse 41. Alternativ oder zusätzlich ist ein axialer Abschnitt 20.1 des Kanals 20 durch eine zusätzliche äußere, einen Freiraum zwischen ihr und dem Hybridmodulgehäuse 41 bildende Verblendung gebildet. Analog ist auch ein radialer Abschnitt 20.2 des Kanals 20 bzw. radialer Kanal 20.2 bildbar. Bevorzugt wird zur Bildung eines (z. B. radialen oder axialen) Kanals 20 eine bereits vorhandene Verrip- pung (z. B. Radialverrippung oder Axialverripppung), welche z. B. üblicherweise zur Förderung der Steifigkeit am Hybridmodulgehäuse 41 eingebracht ist, ausgenutzt. Der Zwischenraum einer solchen (Steifigkeits-)Verrippung bildet bevorzugt einen Kanal (z. B. radial oder a- xial). Der Stator 70 weist außerdem eine Statorkühlung in Form aneinander liegender Zweitkanäle 71 auf, welche ein Zweitfluid, z. B. Kühlflüssigkeit, zur Kühlung des Stators 70 enthält. Eine wärmeleitende Wand 72, die bevorzugt auf einer Seite (wie gezeigt) Rippen aufweist, besonders bevorzugt auf beiden Seiten, trennt den Kanal 20 von dem Zweitfluid der Statorkühlung. Die parallel angeordneten Rechtecke, welche sich an Stator 70 und Rotor 50 gegenüberliegen, stellen magnetische Komponenten jeweils des Stators 70 und jeweils Rotors 50 dar. Die Kupplung 60 weist im Vergleich zu Fig. 1 zusätzlich Reibbeläge 61 auf und ein Kupplungsgehäuse 62, das bevorzugt ein Glockengehäuse ist. Es weist Löcher auf, die einen Teil des Kanals 20 darstellen und eingerichtet sind, Fluid in das Kupplungsgehäuse 62 heraus- und hereinzuführen. Zwischen dem Rotor 50 und dem Stator 70, insbesondere zwischen den magnetischen Komponenten, besteht ein Spalt 42. In einer Variante ist der Spalt 42 ein Teil des Kanals 20.
Der Betrieb der Erfindung wird anhand von Fig. 3 erläutert, welche dieselbe Kühlvorrichtung 1 und dasselbe Hybridmodul 40 wie Fig. 2 zeigen, jedoch zur besseren Übersicht ohne Bezugszeichen. Außerdem ist eine beispielhafte Bewegung des Fluids durch Pfeile veranschaulicht. Die Fluidtransporteinrichtung 10 transportiert durch Bewegung des Strömungselements 1 1 Fluid in axialer Richtung. Es wird in einen radialen Kanal 20.2, dann in einen axialen Kanal 20.1 umgeleitet. Dort wird es entlang der Wand 72 transportiert. Die Wand 72 ist gekühlt durch das Zweitfluid, welches im Zweitkanal 71 zirkuliert, um den Stator 70 zu kühlen. An der Wand 72 wird das Fluid im axialen Kanal 20.1 gekühlt. Das nun gekühlte Fluid wird weiter in einen weiteren radialen Kanalabschnitt 20.2 transportiert und strömt dort radial nach innen. Es wird dann wieder in Axialrichtung zur Kupplung 60 abgelenkt und strömt durch eine oder mehrere Öffnungen des Kupplungsgehäuses 62. Es durchsetzt das Innere des Kupplungsgehäuses 62 und umströmt insbesondere die Reibbeläge 61 der Kupplung 60, deren abgegebene Wärme das Fluid aufnimmt bevor es durch eine oder mehrere weitere Öffnungen des Kupplungsgehäuses 62 wieder aus dem Kupplungsgehäuse 62 austritt und zur Fluidtransportein- richtung 10 strömt. Von dort bewegt sich das Fluid erneut in dem gezeigten Kreislauf. In einer (nicht gezeigten) Variante wird das Fluid außerdem durch den Spalt 42 transportiert und kühlt auf diese Weise die magnetischen Komponenten des Stators 70 und Rotors 50, bevorzugt auch evtl. vorhandene elektrische Komponenten.
Auf diese Weise wird das Fluid in einem Kreislauf transportiert, der einerseits eine Kühlung des Fluids an einem in dem Hybridmodul bevorzugt bereits vorhandenen Kühlkreislauf ermöglicht und andererseits eine Wärmeaufnahme durch das Fluid im Bereich der Kupplung 60, insbesondere im Bereich der Reibbeläge 61 der Kupplung, bevorzugt innerhalb des Kupplungsgehäuses 62, ermöglicht.
In Fig. 4 ist die Fluidtransporteinrichtung 10 ein Lüfterrad, welches Strömungselemente 1 1 aufweist. An der Nabe des Lüfterrads 10 ist mindestens ein Vorsprung 12 angeordnet. Auf diese weise ist das Lüfterrad 10 auf eine Welle drehfest steckbar, insbesondere auf die ge- triebeseitige Rotorwelle des Hybridmoduls 40. Eine Welle des Hybridmoduls 40, auf weiche die Fluidtransporteinrichtung 10 steckbar ist, weist bevorzugt mindestens eine entsprechende Vernutung auf.
Mit dieser Erfindung ist erstmals erkannt worden, dass die Funktion einer rotorintegrierten Kupplung des Hybridmoduls unter erhöhten thermischen Bedingungen leidet und wie dem begegnet werden kann. Bspw. ist auf diese Bedingungen ein höherer Verschleiß der Kupplung zurückzuführen. Es wurde erkannt, wie die Kupplungsfunktion verbessert werden kann. Mittels einer Kühlvorrichtung bzw. eines Kühlverfahrens ist erstmals eine rotorintegrierte Kupplung eines Hybridmoduls kühlbar, wodurch die Gesamtfunktion der Kupplung verbessert wird, bspw. Verschleiß unterbunden oder zumindest vermindert wird. Mittels einer Transporteinrichtung ist eine Fluidbewegung erzwingbar, wobei das Fluid Wärme bevorzugt aus der direkten Umgebung der Kupplung 60 aufnimmt, z. B. indem das Fluid in direkten Kontakt zum Glockengehäuse der Kupplung oder den Reibbelägen gebracht wird. Das Fluid ist bevorzugt mittels der Kühlvorrichtung und einem dafür eingerichteten Kanalsystem innerhalb des Hybridmoduls zirkulierbar. Auf diese Weise wird die Wärme effektiv abtransportiert und Fluid ist nicht der Gefahr ausgesetzt zu verschmutzen. Besonders bevorzugt wird das im Hybridmodul zirkulierende Fluid an einer Stelle des Hybridmoduls gekühlt, z. B. durch eine Statorkühlung. Die Kühlung der motorseitigen Trennkupplung eines Hybridmoduls bzw. der Glockenluft im gesamten Hybridmodul wird ermöglicht. Die Kühlung der Glockenluft bzw. im speziellen der Reibkomponenten der Trennkupplung wird bevorzugt dadurch erreicht, dass durch verschiedene rotierende Elemente eine gezielte Luftströmung im Hybridmodul erfolgt. Die Luftströmung wird bevorzugt explizit über den Kühlkanal der E-Maschine geleitet, welcher mit einem Kühlmedium durchströmt wird. Dadurch wird die umströmende Luft besonders gekühlt wodurch eine Kühlung der gesamten Luft in dem Glockengehäuse und im Speziellen der Reibelemente der Kupplung erreicht wird. Es wird, insbesondere auch durch eine (zusätzlich gezielte) Vorbeiführung des Fluids am Rotor und/oder Stator, eine weitere Verbesserung des thermischen Zustande im Hybridmodul erreicht.
Bezugszeichenliste
I Kühlvorrichtung
10 Fluidtransporteinrichtung
I I Strömungselement
12 Vorsprung
20 Kanal
20.1 axialer Kanal
20.2 radialer Kanal
40 Hybridmodul
41 Hybridmodulgehäuse
42 Spalt zwischen Rotor und Stator im Hybridmodul 50 Rotor
60 Kupplung
61 Reibbeläge
62 Kupplungsgehäuse
70 Stator
71 Zweitkanal
72 Wand

Claims

P130307-10 WO 2014/169913 PCT/DE2014/200138 - 1 1 - Patentansprüche
1 . Kühlvorrichtung (1 ), dadurch gekennzeichnet, dass
die Kühlvorrichtung (1 ) eine Kühlvorrichtung (1 ) für eine in einem Rotor (50) eines Hybridmoduls (40) für ein Kraftfahrzeug integrierte Kupplung (60) ist und die Kühlvorrichtung umfasst:
- mindestens eine Fluidtransporteinrichtung (10), welche eingerichtet ist, ein Fluid zu der Kupplung (60) zu transportieren.
2. Kühlvorrichtung (1 ) nach Anspruch 1 , wobei die Fluidtransporteinrichtung (10) drehfest mit dem Rotor (50) verbunden ist.
3. Kühlvorrichtung (1 ) nach einem der vorhergehenden Ansprüche, wobei die Kühlvorrichtung (1 ) mindestens einen Kanal (20, 20.1 , 20.2) umfasst, welcher eingerichtet ist, das Fluid zu der Kupplung (60) führen.
4. Kühlvorrichtung (1 ) nach Anspruch 3, wobei der Kanal (20, 20.1 , 20.2) mindestens einen Kreislauf innerhalb des Hybridmoduls (40) definiert.
5. Kühlvorrichtung (1 ) nach einem der Ansprüche 3 bis 4, wobei der Kanal (20, 20.1 , 20.2) eine von außen in das Hybridmodul (40) führende Fluidzufuhr und/oder eine nach außen aus dem Hybridmodul (40) führende Fluidabfuhr aufweist.
6. Kühlvorrichtung (1 ) nach einem der Ansprüche 3 bis 5, wobei der Kanal (20, 20.1 , 20.2) zumindest teilweise an eine Wand (72) eines anderen, für die Führung eines Zweitfluids eingerichteten Zweitkanals (71 ) des Hybridmoduls (40) angrenzt.
7. Kühlvorrichtung (1 ) nach Anspruch 6, wobei an der Wand (72) Kühlrippen angeordnet sind, welche in den Kanal (20, 20.1 , 20.2) ragen.
8. Kühlvorrichtung (1 ) nach einem der vorhergehenden Ansprüche, wobei die Fluidtransporteinrichtung (10) zusätzlich eingerichtet ist, das Fluid zu elektrischen und/oder magnetischen Komponenten des Rotors (50) zu transportieren, und/oder der P130307-10
WO 2014/169913 PCT/DE2014/200138
- 12 -
Kanal (20, 20.1 , 20.2) zumindest teilweise an solchen Komponenten des Rotors vorbeiführt.
Hybridmodul (40) für ein Kraftfahrzeug, dadurch gekennzeichnet dass,
das Hybridmodul (40) eine Kühlvorrichtung (1 ) nach einem der Ansprüche 1 bis 8 aufweist.
Kühlverfahren, dadurch gekennzeichnet, dass
eine in einem Rotor (50) eines Hybridmoduls (40) für ein Kraftfahrzeug integrierte Kupplung (60) gekühlt wird, wobei folgender Schritt durchgeführt wird:
- Transportieren eines Fluids zu der Kupplung (60) mittels mindestens einer Flu- idtransporteinrichtung (10).
PCT/DE2014/200138 2013-04-19 2014-03-24 Kühlvorrichtung und -verfahren für eine rotorintegrierte kupplung für hybridmodule WO2014169913A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014002014.1T DE112014002014B4 (de) 2013-04-19 2014-03-24 Hybridmodul für Kraftfahrzeug
CN201480019449.0A CN105102250B (zh) 2013-04-19 2014-03-24 用于混合动力模块的与转子集成的离合器的冷却设备和冷却方法
US14/785,236 US9770970B2 (en) 2013-04-19 2014-03-24 Cooling device and cooling method for a rotor-integrated clutch for hybrid modules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013207071 2013-04-19
DE102013207071.3 2013-04-19

Publications (2)

Publication Number Publication Date
WO2014169913A2 true WO2014169913A2 (de) 2014-10-23
WO2014169913A3 WO2014169913A3 (de) 2015-07-30

Family

ID=50729325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2014/200138 WO2014169913A2 (de) 2013-04-19 2014-03-24 Kühlvorrichtung und -verfahren für eine rotorintegrierte kupplung für hybridmodule

Country Status (4)

Country Link
US (1) US9770970B2 (de)
CN (1) CN105102250B (de)
DE (2) DE112014002014B4 (de)
WO (1) WO2014169913A2 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014204841A1 (de) * 2014-03-14 2015-09-17 Magna Powertrain Ag & Co. Kg Kupplungsmodul
DE102015211528B3 (de) * 2015-06-23 2016-07-07 Schaeffler Technologies AG & Co. KG Kupplungseinrichtung mit axial wirkender Fluidfördereinrichtung
DE102015224753B3 (de) * 2015-12-09 2017-01-19 Magna powertrain gmbh & co kg Trockenkupplungsanordnung
US11336138B2 (en) * 2016-05-09 2022-05-17 Borgwarner Inc. Hybrid rotor module cooling
WO2018077332A1 (de) * 2016-10-24 2018-05-03 Schaeffler Technologies AG & Co. KG Hybridmodul und antriebsstrang
DE112018000454T5 (de) * 2017-03-28 2019-10-10 Aisin Aw Co., Ltd. Fahrzeugantriebsvorrichtung
JP2019180127A (ja) * 2018-03-30 2019-10-17 アイシン・エィ・ダブリュ株式会社 回転電機
DE102018109022A1 (de) 2018-04-17 2019-10-17 Schaeffler Technologies AG & Co. KG Hybridmodul mit einer Kühlvorrichtung zur aktiven Kühlung eines Stators
DE102019109429A1 (de) 2018-06-04 2019-12-05 Schaeffler Technologies AG & Co. KG Antriebsstrangeinheit für ein Hybridfahrzeug; Getriebeeinheit sowie Antriebsstrang
DE102018114789A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs sowie damit ausgestattete Antriebsanordnung
DE102018116301A1 (de) * 2018-07-05 2020-01-09 Schaeffler Technologies AG & Co. KG Leitungselement, Hybridmodul und Antriebsanordnung
DE102019118124A1 (de) * 2019-07-04 2021-01-07 Schaeffler Technologies AG & Co. KG Filtereinheit zum Filtern eines Fluids einer hydraulischen Strecke sowie Kupplungssystem mit der Filtereinheit
US11261921B2 (en) * 2020-02-19 2022-03-01 Schaeffler Technologies AG & Co. KG Hybrid module cooling flow

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036504B4 (de) 1999-08-02 2011-05-19 Schaeffler Technologies Gmbh & Co. Kg Antriebsstrang

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2782354B1 (fr) * 1998-07-28 2001-03-30 Valeo Equip Electr Moteur Embrayage a friction portant le rotor d'une machine electrique, notamment pour vehicule automobile
DE10149710A1 (de) * 2001-10-09 2003-05-15 Zf Sachs Ag Mehrfach-Kupplungsanordnung
DE102008043367A1 (de) * 2008-10-31 2010-05-06 Robert Bosch Gmbh Hybridantriebseinrichtung
JP5499998B2 (ja) 2010-08-31 2014-05-21 日産自動車株式会社 駆動力伝達装置
JP2012086826A (ja) * 2010-09-24 2012-05-10 Aisin Aw Co Ltd 車両用駆動装置
DE102010063973A1 (de) * 2010-12-22 2012-06-28 Bayerische Motoren Werke Aktiengesellschaft Elektrische Maschine mit einer Kühleinrichtung
WO2013054827A1 (ja) 2011-10-12 2013-04-18 日産自動車株式会社 駆動力伝達装置
DE102011120809A1 (de) 2011-12-10 2013-06-13 Volkswagen Aktiengesellschaft Mehrfachkupplungssystem für ein Kraftfahrzeug mit einem Ölkühlsystem
DE102012106740A1 (de) * 2012-07-25 2014-01-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektromaschine für ein Hybrid- oder Elektrofahrzeug

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036504B4 (de) 1999-08-02 2011-05-19 Schaeffler Technologies Gmbh & Co. Kg Antriebsstrang

Also Published As

Publication number Publication date
US9770970B2 (en) 2017-09-26
DE102014205380A1 (de) 2014-10-23
CN105102250B (zh) 2019-06-14
CN105102250A (zh) 2015-11-25
WO2014169913A3 (de) 2015-07-30
DE112014002014B4 (de) 2018-10-04
US20160082825A1 (en) 2016-03-24
DE112014002014A5 (de) 2015-12-31

Similar Documents

Publication Publication Date Title
DE112014002014B4 (de) Hybridmodul für Kraftfahrzeug
DE102014220835A1 (de) Antriebsvorrichtung für einen Kraftfahrzeugantriebsstrang
DE102018218815A1 (de) Elektrische Maschine mit einer Fluid-Kühleinrichtung
EP2537235A1 (de) Elektrische antriebseinheit
DE102011087602A1 (de) Elektrische Maschine
DE102010001212A1 (de) Kreiselpumpe
EP1317790A2 (de) Flüssigkeitsgekühlter elektromotor
DE102013020331A1 (de) Elektrische Maschine, insbesondere Asynchronmaschine
DE102017202752A1 (de) Rotor für eine elektrische Maschine
DE102017213960A1 (de) Rotor einer elektrischen Antriebsmaschine sowie Kühlvorrichtung
DE102018113319A1 (de) Elektromotor mit flüssigkeitsgekühltem Stator und luftgekühltem Rotor
DE102010063973A1 (de) Elektrische Maschine mit einer Kühleinrichtung
EP3332470A1 (de) Luftgekühlter elektromotor mit einer parallelschaltung zweier lüfterräder
WO2010088985A1 (de) Antriebseinrichtung
WO2018059929A1 (de) Kühlsystem
DE102008061449A1 (de) Antriebsachse
DE202011110551U1 (de) Kühlerzarge und Kühlerverbund
DE102008061450A1 (de) Elektrische Maschine
EP2805403A2 (de) Kühleinrichtung für einen rotor einer elektrischen maschine
DE102006006839A1 (de) Elektrische Maschine (Generator oder Motor)
EP3729611B1 (de) Rollenmotor mit geschlossenem kühlkreislauf
DE102009055273A1 (de) Elektromaschine
DE102017202801A1 (de) Rotorblechpaket für einen Rotor
DE102017103631A1 (de) Elektrische Maschine hoher Leistungsdichte sowie Kraftfahrzeug
AT518218B1 (de) Luftgekühlte elektrische Maschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019449.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 14785236

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002014

Country of ref document: DE

Ref document number: 1120140020141

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14723987

Country of ref document: EP

Kind code of ref document: A2