WO2014169703A2 - 一种用于压缩式制冷或制热系统上的脉冲升温节能装置 - Google Patents

一种用于压缩式制冷或制热系统上的脉冲升温节能装置 Download PDF

Info

Publication number
WO2014169703A2
WO2014169703A2 PCT/CN2014/000405 CN2014000405W WO2014169703A2 WO 2014169703 A2 WO2014169703 A2 WO 2014169703A2 CN 2014000405 W CN2014000405 W CN 2014000405W WO 2014169703 A2 WO2014169703 A2 WO 2014169703A2
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
switch
temperature
hot
heating
Prior art date
Application number
PCT/CN2014/000405
Other languages
English (en)
French (fr)
Other versions
WO2014169703A3 (zh
Inventor
张小明
张鑫
Original Assignee
Zhang Xiaoming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51731906&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014169703(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from CN2013101332029A external-priority patent/CN103292531A/zh
Priority claimed from CN2013101332071A external-priority patent/CN103292530A/zh
Priority claimed from CN2013101331774A external-priority patent/CN103292533A/zh
Priority claimed from CN2013101332160A external-priority patent/CN103322738A/zh
Application filed by Zhang Xiaoming filed Critical Zhang Xiaoming
Priority to CN201480020984.8A priority Critical patent/CN105593619B/zh
Publication of WO2014169703A2 publication Critical patent/WO2014169703A2/zh
Publication of WO2014169703A3 publication Critical patent/WO2014169703A3/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves

Definitions

  • a pulse-temperature energy-saving device for a compression refrigeration or heating system [Just] Technical field: ifc «, heating field on a compression refrigeration or refrigeration heat equipment system;
  • refrigeration equipment and air-conditioning equipment industries include cold storage, refrigerators, supermarket cabinets, temperature and humidity experimental equipment, refrigerators, heating air conditioners, and various types of high, medium and low temperature defrosting compression refrigeration systems.
  • the thermal system basically uses:
  • thermocouple is required to heat the defrosting water, and a circulation pump is needed. When used for freezing and refrigerating goods, the air is dried and the energy consumption is high.
  • Weathering frost When entering the defrosting state, first exit the cooling or heating work, stop the compressor, stop the condenser fan, run the evaporator fan, and circulate the air to the evaporator with a temperature higher than zero. Said defrosting, suitable for high temperature systems.
  • Electric heating cream including direct cooling and air cooling.
  • the direct cooling type needs to stop the compressor and the condenser fan every time entering the defrosting;
  • the air-cooled type needs to stop the compressor, the evaporating fan and the condensing fan; and then power the book electric heating pipe distributed in the evaporator.
  • the frost is transmitted through the medium, and the distance between each electric heating tube is long.
  • the heat conducted by the electric heating tube needs to be carried out for a long distance, causing a long heating time, a local high temperature of the heating tube, and being affected by the cooling object.
  • the temperature of the cooling space rises, which increases the secondary energy consumption for cooling again.
  • the air is dried and the energy consumption is high;
  • Hot gas (hot rebel) defrosting system The device controller sends the control line 11 to manual defrost or enters the defrost control signal according to the set temperature or time parameter.
  • the direct control defrosting electromagnetic coil 8 is compressed by the compressor 2, so that heat generated by the working medium passes directly through the electromagnetic valve 7, and the evaporator 3 is supplied with hot air (hot fluorine) to achieve defrosting.
  • the system Once in the defrosting state, the system will be controlled by the return air temperature control of the evaporator 3 or the inter-time timer. Any function will reach the set parameters and control to exit the defrosting.
  • the hot gas (hot fluorine) that passes into the evaporator 3 is inevitably affected by the load, the system matching limit, the low evaporation environment temperature or the low condensing temperature, and the low ambient temperature, resulting in the system.
  • hot gas (hot gas) defrosting system second example: adding the pressure difference switch "12" of the present invention, see Figure 3, using the device controller, sent to 11 manual defrosting or according to the set temperature or The time parameter enters the control signal of the defrosting.
  • the temperature difference switch "12” cooperates with the system in the state of hot gas (hot oxygen) defrosting, and the pressure before the defrosting electromagnetic valve 7 reaches the temperature difference switch "12", the upper limit Pass, reach the lower line temperature difference switch” 12 ", disconnected, the generated switching pulse raises the defrosting temperature, 1. Reduces the defrosting time by 30% - 70%; 2. Reduces the temperature fluctuation of the cooled space and load by 30%-70%; 3.
  • Compressor 2 exhaust pipe, connected to condenser 9 inlet, condenser 9 outlet, connected to dry filter 6 inlet, dry filter 6 outlet, connected to throttle device 5 inlet, throttle device 5 outlet, connected to evaporator 3 inlet , the outlet of the evaporator 3 is connected to the inlet of the pressure regulating device 1 , the outlet of the pressure regulating device 1 is connected to the suction end of the compressor 2 to form a cooling or heating circuit;
  • FIG. 1 is a schematic diagram showing cooling or heating of a first example and a second example of the present invention, and a system schematic diagram. If cold and heat switching is required, a reversing valve needs to be added; Representing the first example of the present invention, the differential pressure switch pulse temperature defrosting refrigeration or heating, the system schematic diagram, if cold and hot switching is required, the reversing valve needs to be added; FIG. 3 is a second example of the present invention, the temperature difference Switch pulse temperature defrosting refrigeration, or heating, system schematic, if you need cold and hot switching, you need to increase the reversing valve;
  • Example 1 The closest to the prior art is shown in Fig. 1, a compression refrigeration or heating, hot gas (hot Buddha) defrosting system, and the pressure difference switch "12" of the present invention is added as shown in Fig. 2.
  • the compressor 2 exhaust pipe is connected to the ultra-high pressure protection switch 4, and the compressor 2 exhaust pipe is connected to the defrosting electromagnetic valve 7 inlet, the defrosting electromagnetic valve 7 outlet is connected to the evaporator 3 inlet, the evaporator 3 outlet, is connected to The inlet of the pressure regulating device 1 and the outlet of the pressure regulating device 1 are connected to the suction end of the compressor 2 to form a defrosting circuit.
  • Compressor 2 exhaust pipe, connected to condenser 9 inlet, condenser 9 outlet, connected to dry filter 6 inlet, dry filter 6 outlet, connected to throttle device 5 inlet, throttle device 5 outlet, connected to evaporator 3
  • the inlet, the outlet of the evaporator 3 is connected to the inlet of the pressure regulating device 1, the outlet of the pressure regulating device 1, and is connected to the suction end of the compressor 2 to form a refrigeration circuit;
  • Fig. 2 is the pressure change control connected to the defrosting electromagnetic valve 7 by using the differential pressure switch "12", according to the working pressure difference of the working medium used in the system, and at an ultra-high pressure Adjusted within the protection range of the protection switch control, the set differential pressure switch
  • the pressure difference of the "12" on and off, the range of pressure and differential pressure meets RANGE, BAR7to30, (psi g ) (100to435).
  • air-cooled hot gas (hot Buddha) defrosting system running the compressor when entering the defrosting, stopping the condensing fan, evaporator fan; water-cooled hot gas (hot Buddha) defrosting system, entering In the case of frost, the compressor is operated, the condensate circulation is stopped, and the evaporating fan is stopped.
  • the pressure and temperature of the defrosting electromagnetic valve 7 are low, and the hot air (hot Buddha) The temperature is low, the defrosting efficiency is low, and the upper limit of the differential pressure set by the differential pressure switch "12" cannot be satisfied.
  • the differential pressure switch "12" is disconnected, and the defrosting solenoid valve coil 8 is not energized. At this time, the system is in defrosting. The state is not condensed, the pressure before the defrosting electromagnetic valve 7 rises rapidly, and the temperature before the defrosting electromagnetic valve 7 also rises.
  • Solenoid valve electromagnetic valve 7 When the front pressure rises to the upper limit of the differential pressure switch "12", the differential pressure switch "12" is turned on, and the "12" conduction period of the differential pressure switch increases with the temperature rise of the system. Repeatedly, to achieve the purpose of temperature difference switch pulse temperature defrosting, shortening defrosting time and improving energy efficiency. At the same time, at the suction end of the compressor 2, the crankcase pressure adjusting device 1 is used to balance and control the pressure pulse sucked during this period to protect the compressor from being impacted, to ensure the normal operation of the system, when the set defrosting temperature is met or When any time exits the request, exit the defrosting to complete the entire defrost cycle -
  • Figure 2 of the present invention in the refrigeration, heating system into the defrosting state, the air-cooled hot gas (hot Buddha) defrosting system compressor 2 operation, the condensing fan, the evaporator fan stops running; water-cooled hot gas (hot Buddha).
  • the defrosting system compressor 2 operates to stop the water circulation and the evaporator fan.
  • the differential pressure switch "12" is controlled according to the pressure difference in the tube before the defrosting solenoid valve 7, and the control output pressure difference rises to the upper limit conduction and differential pressure.
  • the exhaust pipe of the compressor 2 is connected to the inlet of the condenser 9, the outlet of the condenser 9, the inlet of the drying filter 6, the outlet of the drying filter 6, the inlet of the throttling device 5, the outlet of the throttling device 5 connected to the inlet of the evaporator 3, steaming
  • the outlet of the generator 3 is connected to the inlet of the pressure regulating device 1, and the outlet of the pressure regulating device 1 is connected to the suction end of the compressor 2 to form a cooling or heating circuit.
  • Example 2 using the compressor 2 exhaust end temperature control, according to the working pressure difference of the working fluid used by the system, within the protection range of the ultra-high pressure protection switch control, the temperature difference switch "12"
  • the on-off value is adjusted at a temperature of 6-80 degrees Celsius, and the temperature difference is adjusted at 0-30 degrees Celsius.
  • the temperature at the exhaust end of the compressor 2 is low, the temperature of the hot gas (hot Buddha) is low, the defrosting efficiency is low, and the "12" conduction switch of the temperature difference switch cannot be satisfied.
  • the limit value is set, the temperature difference switch "12" is disconnected, and the defrosting solenoid valve coil 8 is not energized.
  • the temperature difference switch "12" turns on, energizes the defrosting solenoid valve coil 8, the defrosting solenoid valve coil 8 is energized, the defrosting magnetic valve 7 is opened, the hot gas (Hot Buddha) The defrosting magnetic valve 7 is used to pass the hot air (heat Buddha) to the evaporator 3 to perform a circulating defrosting.
  • the temperature of the hot gas (hot Buddha) When the temperature of the hot gas (hot Buddha) enters the inlet of the evaporator 3, the temperature of the hot gas (hot Buddha) decreases with the heat consumed by the book defrosting load.
  • the temperature difference switch cannot be satisfied.
  • the temperature difference switch "12" When the 12" lower limit is reached, the temperature difference switch "12" is disconnected, the defrosting solenoid valve coil 8 is de-energized, the defrosting electromagnetic valve 7 is closed, and the temperature of the exhaust end of the compressor 2 is rapidly increased after the electromagnetic valve 7 is closed, and the compression is performed.
  • the temperature difference switch "12" When the temperature of the exhaust end of the machine 2 rises to the upper limit of the "12" of the temperature difference switch, the temperature difference switch "12" is turned on, and the conduction period increases as the temperature of the system increases, and the cycle is repeated, thereby increasing the defrosting temperature, shortening the defrosting time and improving
  • the crankcase pressure adjusting device At the suction end of the compressor, the crankcase pressure adjusting device is used to balance, control and inhale the pressure pulse during this period to protect the compressor from impact and ensure the normal operation of the system.
  • the defrosting temperature or time of any withdrawal request the system exits the defrosting, completes the entire defrosting week;
  • the temperature difference switch "12" When the temperature of the exhaust end of the compressor 2 is not satisfied, the temperature difference switch "12" is turned on. At the lower limit, the defrosting solenoid valve coil 8 is de-energized, the defrosting electromagnetic valve 7 is closed, and the hot gas (hot fluorine) entering the evaporator is turned off, and the cycle is repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

一种用于压缩式制冷或制热系统上的脉冲升温节能装置,是利用压差开关"12"或温差开关"12"受控在化霜电磁阀门7前的压力或温度变化,控制温度或压力开关"12",当系统进入化霜时,控制化霜电磁阀通、断开关脉冲,提高能效的升温热气(热佛)化霜,缩短大、中小型压缩式高、中、低温制冷或制热系统的热气(热佛)化霜时间35%−70%降低化霜能耗26−70%,减小负荷波动23%−70,降低冷藏货品干耗7.1%,降低制冷二次能耗3.3%。

Description

一种用于压縮式制冷或制热系统上的脉冲升温节能装置 [讓]技术领域: 压缩式制冷或制冷热设备系统上的 ifc«、 加热领域;
[0002]背景技术: 目前, 制冷设备和空调设备行业有冷库、 冷柜、 超市柜、 温湿度实验设备、 制冷机、制 热空调及各种高、 中、 低温需化霜的压缩式制冷、 制热系统, 基本上采用:
[0003]水冲霜: 需热电耦给化霜水加热、 需要用循环泵, 在用于冷冻、 冷藏货物时风干严重, 且能耗高。
[0004]风化霜: 在进入化霜状态时, 先要退出制冷或制热工作、 停掉压縮机、 停掉冷凝器风机、 运行蒸发 器风机、 用温度高于零度的空气循环给蒸发器说化霜, 适用于高温系统。
[0005]电加热化霜: 含直冷式和风冷式。直冷式每次进入化霜时需停掉压縮机、 冷凝器风机; 风冷式需停 掉压縮机、 蒸发风机、 冷凝风机; 再给分布在蒸发器中的书电热管加电, 电热管发热后通过媒体传导化霜, 每根电热管间距离较远, 电热管传导的热量需长距离进行, 造成加热时间长、 加热管的局部高温、 受其影 咱, 导致被冷却物及冷却空间温度上升,给再次降温增加了二次能耗,在用于冷冻、冷藏货物时风干严重, 能耗高;
[0006] 最接近的现有背景技术见: 图 1、 热气(热叛)化霜系统: 设备控制器送往控制线 11经手动化霜 或依设定温度或时间参数进入化霜控制信号, 直接控制化霜电磁闽线圈 8利用压縮机 2压縮, 使(工质) 产生热量直接通过电磁阀门 7, 给蒸发器 3通入热气 (热氟)实现化霜。 一旦进入化霜状态, 系统将受蒸 发器 3的回气温度控制温度控制器或吋间定时器控制, 任意一种功能到达设定参数, 控制退出化霜。 在进 入化霜后, 通入蒸发器 3的化霜的热气 (热氟)不可避免的受负荷重、 系统匹配限制、 蒸发环境温度低或 冷凝温度低、 环境温度低等影响, 造成系统内的化霜压力低、 化霜热气 (热氟)温度低、 化霜时间长、化 霜能效比有很大不同程度降低的影响, 尽管化霜效率优于 1、 2、 3、 但在化霜时仍浪费大部分能源;
[0007]发明内容: 给最接近的现有背景技术见: 图 1, 热气(热氣)化霜系统, 第 1例: 加入本发明, 压 差开关 " 12", 见图 2, 利用经设备控制器, 送往 11的手动化霜或依设定温度或时间参数进入化霜的控制 信号, 进入化霜状态后压差开关 " 12"配合系统在热气(热集)化霜化霜状态下, 化霜电磁阀门 7前压力 到达压差开关 " 12", 上限导通, 到达下线压差开关 " 12", 断开, 产生的开关脉冲提升化霜温度, 最接近 的现有背景技术见: 图 1、 热气(热氣)化霜系统, 第 2例: 加入本发明压温差开关 " 12", 见图 3, 利用 经设备控制器, 送往 11的手动化霜或依设定温度或时间参数进入化霜的控制信号, 进入化霜状态后温差 开关 " 12"配合系统在热气(热氧)化霜化霜状态下, 化霜电磁阀门 7前压力到达温差开关 " 12", 上限 导通, 到达下线温差开关" 12", 断开,产生的开关脉冲提升化霜温度, 1、使化霜时间縮短 30%- 70% ; 2、 被冷却空间及负荷的温度波动减小 30%-70%; 3、降低化霜能耗 26%— 70%; 4、缩短大、 中、 小型压缩式高、 中、 低温, 制冷、 制热、 系统热气(热氟)化霜时间 35%~70%; 5、 减小负荷波动 23%-70%; 6、 可降低冷 冻冷藏货品干耗 7. 1%; 7、 降低二次降温能耗 3. 3%: 8、 加宽压缩式化霜的系统匹配范围 30%;
[0008]最接近现有背景技术的压缩式制冷或制热、 热气 (热佛)化霜系统见: 图 1、 压缩机 2排气管连接 超高压保护开关 4, 同时连接到化霜电磁阚门 7入口, 化霜电磁阀 7出口, 连接蒸发器 3入口, 蒸发器 3 出口, 连接到压力调节装置 1入口, 压力调节装置 1出口, 连接压缩机 2吸气端, 形成化霜回路。 压縮机 2排气管, 连接冷凝器 9入口, 冷凝器 9出口, 接干燥过滤器 6入口, 干燥过滤器 6出口, 连接节流装置 5入口, 节流装置 5出口, 连接蒸发器 3入口, 蒸发器 3出口, 连接压力调节装置 1入口, 压力调节装置 1出口, 连接压縮机 2吸气端, 形成制冷或制热、 回路; 说 明 书
[0009]附图说明: 图 1、 是代表本发明的第 1例、 第 2例背景技术制冷或制热、 系统原理图, 如需冷、 热 切换, 需增加换向阀; 图 2、 是代表本发明的第 1例, 压差开关脉冲升温化霜制冷或制热、 系统原理图, 如需冷、 热切换, 需增加换向阀; 图 3、 是代表本发明的第 2例, 温差开关脉冲升温化霜制冷、 或制热、 系统原理图, 如需冷、 热切换, 需增加换向阀;
[0010]具体实施方式: 第 1例: 给最接近现有背景技术见图 1 , 压缩式制冷或制热、 热气 (热佛) 化霜系 统, 加入本发明压差开关 " 12"见图 2, 压缩机 2排气管连接超高压保护开关 4, 同时压縮机 2排气管连 接到化霜电磁阀门 7入口, 化霜电磁阀门 7出口连接蒸发器 3入口, 蒸发器 3出口, 连接到压力调节装置 1入口, 压力调节装置 1出口, 连接压縮机 2吸气端, 形成化霜回路。 压縮机 2排气管, 连接冷凝器 9入 口, 冷凝器 9出口, 接千燥过滤器 6入口, 干燥过滤器 6出口, 连接节流装置 5入口, 节流装置 5出口, 连接蒸发器 3入口, 蒸发器 3出口, 连接压力调节装置 1入口, 压力调节装置 1出口, 连接压缩机 2吸气 端, 形成制冷回路;
[0011]工作原理: 第 1例: 图 2是利用压差开关 " 12"连接在化霜电磁阀门 7前的压力变化控制, 根据系 统所使用的工质的工作压力差异, 并在超高压力保护开关控制的保护范围内调整, 经设定好的压差开关
" 12"通断的压差值, 压力、压差范围满足 RANGE, BAR7to30, (psig) (100to435)。 当系统进入化霜请求时: 风冷式热气(热佛)化霜系统, 进入化霜时运行压缩机, 停掉冷凝风机、蒸发器风机; 水冷式热气(热佛) 化霜系统, 进入化霜时, 运行压缩机, 停掉冷凝水循环、 蒸发风机, 因起始化霜时受系统内压力低、 环境 温度低等影响, 导致化霜电磁阀门 7前压力和温度低、 热气 (热佛)温度低, 化霜效率低, 不能满足压差 开关 " 12"设定的压差上限, 压差开关 " 12"断开, 不给化霜电磁阀线圈 8通电, 此时, 因系统处于化霜 状态无冷凝, 化霜电磁阀门 7前压力迅速上升, 化霜电磁阀门 7前温度也随之上升, 当化霜电磁阀门 7前 压力升至压差幵关" 12 "上限时压差开关" 12 "导通, 给化霜电磁阀线圈 8通电, 化霜电磁阀线圈 8得电, 化霜电磁阀 7门打开, 热气(热佛)通过电磁阀门 7, 给蒸发器通入热气 (热佛)进行循环化霜。 当热气
(热佛)进入蒸发器 3化霜后, 热气 (热佛)温度、 压力随化霜负载消耗热量而降低, 化霜电磁阀门 7阀 前压力, 降至化霜效率不能满足压差开关 " 12"压差下限时, 压差开关 " 12"被断开, 使化霜电磁阀线圈 8失电, 化霜电磁阀门 7关闭。 化霜电磁阀门 7阀前端压力, 在化霜电磁阀门 7关闭后快速升高, 电磁阀 门 7前温度随之升高。 电磁阀电磁阀门 7前压力升至压差开关 "12"上限时, 压差开关 " 12"导通, 压差 开关 " 12"导通周期随系统温度升髙而增长。 周而复始, 从而达到压差开关脉冲升温化霜、 縮短化霜时间 和提高能效的目的。 同时在压缩机 2吸气端, 用曲轴箱压力调节装置 1配合, 平衡控制在此期间吸入的 压力脉冲, 保护压缩机不被冲击, 保证系统正常运行, 当满足了设定的化霜温度或时间任一退出要求时, 退出化霜完成整个化霜周期 -
[0012]本发明图 2 在制冷、 制热系统进入化霜状态下,风冷式热气(热佛)化霜系统压缩机 2运行, 冷凝 风机、 蒸发器风机停止运行; 水冷式热气(热佛)化霜系统压縮机 2运行, 停止水循环、 蒸发器风机。加 入压差开关 " 12", 受化霜电磁阀 7前管内压力控制, 压差开关 " 12"根据化霜电磁阀 7前的管内压差状 态, 控制输出压差升至上限导通、 压差降到下限断开, 当化霜电磁阀 7前压力满足压差开关 "12 "导通上 限导通, 压差开关 " 12"给化霜电磁阀线圈 8供电, 化霜电磁阀门 7打开, 热气 (热氟)进入蒸发器 3入 口, 进行循环化霜; 化霜电磁阀 7前压力, 不能满足于压差开关 " 12"导通下限时, 压差开关" 12"断开, 使化霜电磁阀线圈 8失电, 化霜电磁阓门 7关闭, 断开进入蒸发器的热气(热氟)。 周而复始。
〔0013]给最接近现有背景技术见: 图 1、 压縮式制冷或制热、 热气(热佛)化霜系统, 例 2、 见图 3、 加入 温差开关 " 12"。 利用压缩机 2排气端温度, 控制温差开关 " 12", 压缩机 2排气端连接到化霜电磁阀门 7 入口, 化霜电磁阀门 7出口, 连接蒸发器 3入口, 蒸发器 3出口, 连接到压力调节装置 1入口, 压力调节 装置 1出口, 连接压缩机 2吸气端, 形成化霜回路。 压縮机 2排气管连接冷凝器 9入口, 冷凝器 9出口, 接干燥过滤器 6入口, 干燥过滤器 6出口, 连接节流装置 5入口, 节流装置 5出口连接蒸发器 3入口, 蒸 发器 3出口, 连接压力调节装置 1入口, 压力调节装置 1出口, 连接压缩机 2吸气端形成制冷或制热、 回 路。
[0014]工作原理: 例 2、 利用压縮机 2排气端温度控制, 根据系统所使用的工质的工作压力差异, 在超高 压力保护开关控制的保护范围内调整, 温差开关 "12"其通断值在温度 6-80摄氏度调整, 温差在 0-30摄 氏度调整。 当系统进入化霜请求时: 风冷式热气 (热佛)化霜系统进入化霜时, 运行压縮机, 停掉冷凝风 机、 蒸发器风机。 水冷式热气 (热佛)化霜系统进入化霜, 运行压缩机, 停掉冷凝水循环、 蒸发器风机。 因起始化霜时受系统内温度低、 环境温度低等影响, 导致压缩机 2排气端温度低、 热气 (热佛)温度低, 化霜效率低, 不能满足温差开关 " 12"导通下说限设定值, 温差开关 " 12"断开, 不给化霜电磁阀线圈 8通 电, 此时, 因系统处于化霜状态无冷凝, 压缩机 2排气端温度迅速上升, 压縮机 2排气端温度升至温差开 关 " 12"温差上限时, 温差开关 " 12"导通, 给化霜电磁阀线圈 8通电, 化霜电磁阀线圈 8得电, 化霜磁 阀门 7打开, 热气 (热佛) 通过化霜磁阀门 7给蒸发器 3通入热气 (热佛), 进行循环化霜。 当热气 (热 佛)温度进入蒸发器 3入口化霜后, 热气 (热佛)温度随书化霜负载消耗热量而降低, 当压缩机 2排气端温 度降至化霜效率不能满足温差开关 " 12"下限时, 温差开关 " 12"被断开, 使化霜电磁阀线圈 8失电, 化 霜电磁阀门 7关闭, 压缩机 2排气端温度在电磁阀门 7关闭后快速升高, 压縮机 2排气端温度升至温差开 关 " 12"上限时, 温差开关 " 12"导通, 导通周期随系统温度升高而增长, 周而复始, 从而达到提升化霜 温度、 縮短化霜时间和提高能效的目的, 同时在压縮机吸气端, 用曲轴箱压力调节装置配合, 平衡、 控 制、 在此期间吸入的压力脉冲, 保护压缩机不被冲击, 保证系统正常运行, 当满足了设定的化霜温度或时 间任一退出要求时, 系统退出化霜, 完成整个化霜周斯;
[0015]本发明例 2、 图 3、 在制冷或制热、 系统进入化霜状态下,风冷式热气 (热佛)化霜系统, 运行压縮 机 2, 停掉冷凝风机、 蒸发器风机; 水冷式热气 (热佛) 化霜系统运行压缩机 2, 停掉水循环、 蒸发器风 机,温差开关" 12"受压缩机 2排气端温度控制,温差开关" 12"根据排气端温度状态,控制温差开关 "12" 上限导通、 温度降到下限, 温差开关 " 12"断开, 当压縮机排气端温度, 满足温差开关 "12"上限导通, 温差开关 " 12"给化霜电磁阀线圈 8供电, 化霜电磁阀门 7打开, 热气 (热氟)进入蒸发器 3入口, 进行 循环化霜, 当压縮机 2排气端温度, 不能满足于温差开关 " 12"导通下限时, 使化霜电磁阀线圈 8失电, 化霜电磁阀门 7截止, 断开进入蒸发器的热气 (热氟), 周而复始。

Claims

ft 利 要 求 书
1、 给最接近的现有背景技术见耐图 1翁气(热鎮)化 «系缝, 加入本发明见附 β 2、 压差开关 " 12 , 利屬压差开关 " 12"配合系统在翁气 (HA)化霸化霜状态下, 差到&上限导邋, 到达下载麵幵产生翁 关赚冲揚升 ft霜设†e
2、 给最接 ¾的现有背景技术见跗图 1热气(热氧)化霜系统, 加入本发明见附 ffl 3、濠差幵关 " 12",利 扁温差幵关 面合系统在鶴气(热镢)化霜化霜我态下, 湿差到达上隱导通, 到¾下线断开产生麵开 关隱 攝升 ft霜《计
3、 利用温差开关热气 (热佛)脉冲, 化霜的制冷或制热的系统部分设 i +。
4、 囊用 fi差开关热气 (热佛) * , 化霜《翻冷或制龜的系统部 设 i†e
5、 一种用于 缩式翻冷或制 系统上的脉冲升温节能装置。
6、 一种用于压缩式制冷或制热 *统的, 麄气(热鉱)脉冲升濕设计。
7、 -种用于—Κ缩式制冷纖制热系纖的, 电纖阔翁气(翁鎮》脉冲升《设计 *
PCT/CN2014/000405 2013-04-17 2014-04-14 一种用于压缩式制冷或制热系统上的脉冲升温节能装置 WO2014169703A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480020984.8A CN105593619B (zh) 2013-04-17 2014-04-14 一种用于压缩式制冷或制热系统上的脉冲升温节能装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN2013101332029A CN103292531A (zh) 2013-04-17 2013-04-17 一种用于压缩式制热系统上的压差开关升温化霜设计
CN2013101332071A CN103292530A (zh) 2013-04-17 2013-04-17 一种用于压缩式制冷系统上的压差开关脉冲升温化霜设计
CN201310133207.1 2013-04-17
CN2013101331774A CN103292533A (zh) 2013-04-17 2013-04-17 一种用于压缩式制冷系统上的温差开关脉冲升温化霜设计
CN201310133216.0 2013-04-17
CN201310133177.4 2013-04-17
CN2013101332160A CN103322738A (zh) 2013-04-17 2013-04-17 一种用于压缩式制热系统上的温差开关升温化霜设计
CN201310133202.9 2013-04-17

Publications (2)

Publication Number Publication Date
WO2014169703A2 true WO2014169703A2 (zh) 2014-10-23
WO2014169703A3 WO2014169703A3 (zh) 2014-12-11

Family

ID=51731906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000405 WO2014169703A2 (zh) 2013-04-17 2014-04-14 一种用于压缩式制冷或制热系统上的脉冲升温节能装置

Country Status (2)

Country Link
CN (1) CN105593619B (zh)
WO (1) WO2014169703A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021126837A1 (de) 2021-10-15 2023-04-20 Audi Aktiengesellschaft Betriebsverfahren für eine Kälteanlage im Wärmepumpenbetrieb bei tiefen Umgebungstemperaturen und Kraftfahrzeug mit einer derart betriebenen Kälteanlage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410976A (zh) * 2019-07-31 2019-11-05 广东美的暖通设备有限公司 风冷热泵系统及风冷热泵系统的控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4248726B2 (ja) * 2000-03-21 2009-04-02 福島工業株式会社 ホットガス除霜式の冷凍冷蔵装置
CN1325858C (zh) * 2003-08-28 2007-07-11 浙江盾安人工环境设备股份有限公司 一种风冷热泵系统的除霜方法及其除霜装置
CN2842320Y (zh) * 2005-11-02 2006-11-29 佛山市确正冷热设备有限公司 高效除霜型热泵热水机组
CN101526288B (zh) * 2009-04-20 2012-05-30 广东志高空调有限公司 一种空调器除霜装置
CN201425395Y (zh) * 2009-05-22 2010-03-17 深圳市风驰热泵技术有限公司 一种热泵热水器的自动除霜装置
KR100987705B1 (ko) * 2010-06-04 2010-10-13 주식회사 창신 핫가스 제상용 시스템이 적용된 냉동 사이클장치
CN103322738A (zh) * 2013-04-17 2013-09-25 张小明 一种用于压缩式制热系统上的温差开关升温化霜设计
CN103292530A (zh) * 2013-04-17 2013-09-11 张小明 一种用于压缩式制冷系统上的压差开关脉冲升温化霜设计
CN103292533A (zh) * 2013-04-17 2013-09-11 张小明 一种用于压缩式制冷系统上的温差开关脉冲升温化霜设计
CN103292531A (zh) * 2013-04-17 2013-09-11 张小明 一种用于压缩式制热系统上的压差开关升温化霜设计

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021126837A1 (de) 2021-10-15 2023-04-20 Audi Aktiengesellschaft Betriebsverfahren für eine Kälteanlage im Wärmepumpenbetrieb bei tiefen Umgebungstemperaturen und Kraftfahrzeug mit einer derart betriebenen Kälteanlage

Also Published As

Publication number Publication date
WO2014169703A3 (zh) 2014-12-11
CN105593619A (zh) 2016-05-18
CN105593619B (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
CN102235777A (zh) 热泵式热水供给装置
CN201706831U (zh) 节能型恒温恒湿保鲜冷库系统
CN109269011B (zh) 一种空调器
KR101155497B1 (ko) 히트펌프식 급탕장치
CN103868309A (zh) 利用冷藏库外界空气辅助电加热除霜的装置及其运行方式
KR20140050825A (ko) 자동 제상 기능을 갖는 냉난방 히트펌프 전기보일러 및 제상 방법
CN106322595A (zh) 一种数据中心用制冷除湿系统、方法及空调
CN104236234A (zh) 热回收式冰箱
CN203072796U (zh) 一种谷物干燥冷却机
CN110836554A (zh) 热泵系统及其控制方法、化霜控制方法
CN110081635A (zh) 带有蓄热装置的空气源热泵除霜系统
WO2014169703A2 (zh) 一种用于压缩式制冷或制热系统上的脉冲升温节能装置
CN203744542U (zh) 一种具有双模式热泵热水机
CN109520170A (zh) 一种具有双级过冷和液体脉冲融霜功能的空气源热泵机组
CN203203293U (zh) 空气源热泵制冷制热系统
CN105135728A (zh) 一种低温风冷热泵系统
WO2019085837A1 (zh) 一种空调控制系统及其控制方法
CN108224873B (zh) 一种冰箱热水器一体机
CN110145914A (zh) 一种引入自然冷源的家用冰箱
CN106858271B (zh) 一种热泵型低温高湿空气解冻装置
CN207094913U (zh) 一种空调系统
CN207065949U (zh) 一种管翅式蒸发器下端预留管道辅助除霜防冻系统
CN205332587U (zh) 热泵系统及空调器
CN201028919Y (zh) 内藏蒸发器单制冷系统的双温双控结构
CN103141570A (zh) 一种谷物干燥冷却机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785792

Country of ref document: EP

Kind code of ref document: A2

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/04/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14785792

Country of ref document: EP

Kind code of ref document: A2