WO2014169555A1 - 一种支持多探头同步扫描的超声诊断设备及方法 - Google Patents

一种支持多探头同步扫描的超声诊断设备及方法 Download PDF

Info

Publication number
WO2014169555A1
WO2014169555A1 PCT/CN2013/083107 CN2013083107W WO2014169555A1 WO 2014169555 A1 WO2014169555 A1 WO 2014169555A1 CN 2013083107 W CN2013083107 W CN 2013083107W WO 2014169555 A1 WO2014169555 A1 WO 2014169555A1
Authority
WO
WIPO (PCT)
Prior art keywords
probes
probe
ultrasonic diagnostic
imaging system
body surface
Prior art date
Application number
PCT/CN2013/083107
Other languages
English (en)
French (fr)
Inventor
刘硕
李勇
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2014169555A1 publication Critical patent/WO2014169555A1/zh
Priority to US14/884,490 priority Critical patent/US20160030003A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • A61B8/145Echo-tomography characterised by scanning multiple planes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • A61B8/4227Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames characterised by straps, belts, cuffs or braces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • A61B8/4236Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames characterised by adhesive patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties

Definitions

  • the present invention relates to the field of medical devices, and in particular to an ultrasonic diagnostic apparatus and method for supporting simultaneous scanning of multiple probes.
  • the probe is an important part of the ultrasound diagnostic equipment. Responsible for converting electrical signals into acoustic signals and transmitting them into the human body; then converting the acoustic signals reflected back from the human tissue into electrical signals for transmission to the signal processing links in the ultrasonic diagnostic equipment for imaging.
  • the probes are designed to have different working frequencies and different shapes to match the corresponding diagnostic sites.
  • the doctor can only hold one probe during the diagnosis process, and only one part of the patient can be scanned at the same time. Therefore, to complete a complete ultrasound diagnosis of a different body part of a patient, the doctor often switches the probe, for example, using a phased array first.
  • the probe scans the heart, switches the probe, and scans the peripheral blood vessels using a line probe.
  • a traditional ultrasonic diagnostic device can connect multiple probes through multiple slots (one slot connects one probe), but only one probe can be activated at a time, that is, one probe for scanning imaging. Therefore, when a doctor needs to scan images of different parts with different probes, it is necessary to sequentially switch the working probes to sequentially obtain image data of different parts.
  • the two-plane probe has two acoustic heads (see head A and head B of Figure 1) for simultaneous scanning of different sections.
  • head A and head B of Figure 1 For a transrectal prostate examination, simultaneous scanning of the longitudinal and transverse sections can be performed simultaneously. Because it is the two heads of a probe, the different sections that can be scanned synchronously are close together and cannot meet the broader clinical needs.
  • European Patent No. 0528693 A1 proposes an ultrasonic diagnostic apparatus that supports a plurality of probes connected to one slot such that the ultrasonic diagnostic apparatus can simultaneously connect a number of probes that exceed the number of system slots.
  • the ultrasonic diagnostic system is composed of a host, a connector, and a plurality of probes.
  • the connector is a pair of plugs and slots for connecting the probe to the host.
  • the probe structure includes a first level connector and a second level connector.
  • the first-level connector is connected to the host or another probe; the second-stage connector is connected to the first-stage connector through the interconnecting cable, the connector of the other probe is connected, and the interconnecting cable can also be connected (connecting the first and second connectors) Level connector) branches out of the probe.
  • the ultrasonic diagnostic apparatus disclosed in the patent has a slot for connecting a plurality of probes.
  • all probes can also be connected to the host at the same time, so that it is not necessary to plug and replace the probes on the slots during use.
  • the existing patented technology has a limited application range and has the following defects:
  • the dual-plane probe has two acoustic heads for simultaneous scanning of different sections. However, since it is a two-headed head of a probe, the different sections of the synchronous scanning can be closely spaced, which cannot meet the broader clinical needs.
  • the ultrasonic diagnostic apparatus disclosed in European Patent No. 0528693 A1 supports a plurality of probes connected in one slot, and can simultaneously connect probes in a number exceeding the number of system slots.
  • the ultrasonic diagnostic apparatus can only make the system connect multiple probes at the same time, and does not support simultaneous operation of multiple probes and synchronous scanning, which cannot meet the doctor's need for simultaneous diagnosis of different parts of the human body.
  • the present invention provides an ultrasonic diagnostic apparatus and method for supporting multi-probe synchronous scanning, which can support multiple probes to work independently at the same time, so that the ultrasonic diagnostic equipment can simultaneously obtain different probes. Scan image data to meet the needs of simultaneous diagnosis of different parts of the human body.
  • the invention provides an ultrasonic diagnostic apparatus, which comprises a display module, an imaging system and a plurality of probes;
  • Multiple probes are used to fit different parts of the body surface of the person being diagnosed, and different parts of the body surface of the diagnosed person are synchronously and real-time scanned by a plurality of probes; multiple probes are scanned to obtain an echo signal and then transmitted to the imaging system. ;
  • An imaging system is configured to convert a plurality of echo signals transmitted from the plurality of probes into a plurality of ultrasound images
  • the display module is coupled to the imaging system, and receives the processed plurality of ultrasound images output by the imaging system and displays them synchronously.
  • the probe is directly attached to the fixed position of the body surface of the diagnosed object to scan the same cut surface at the fixed position of the measured object.
  • the device further comprises: a slot for plugging the plurality of probes;
  • the probe high-voltage switch with the same number of slots is used to control multiple probes to switch within the scan pulse repetition time interval, and alternately scan different parts of the body surface of the diagnosed person at a predetermined scan timing.
  • the predetermined scanning timing is: a plurality of probes alternately scan different parts of the body surface of the diagnosed person in units of scanning lines.
  • the predetermined scanning timing is: a plurality of probes alternately scan different parts of the body surface of the diagnosed body in units of frames.
  • the probe further includes an array element high voltage switch, wherein the array element high voltage switch is used to control each array element of the probe to alternately scan the body surface portion corresponding to the probe.
  • the probe high voltage switch and the array element high voltage switch are controlled by the control circuit.
  • the imaging system specifically processes the plurality of echo signals to obtain a digital processing link signal, and obtains a plurality of ultrasound images according to the digital processing link signal and the selected imaging mode;
  • the imaging mode supported by the imaging system is at least one of the following Kind: B-type imaging mode, M-type imaging mode, color imaging mode, pulse wave imaging mode, elastography mode, 3D imaging mode, and 4D imaging mode.
  • the ultrasonic diagnostic apparatus further includes: an operation panel for receiving a trigger signal;
  • the display module includes a plurality of display windows for synchronously displaying a plurality of ultrasound images obtained by the imaging system on the selected imaging mode according to the plurality of echo signals in real time under the trigger of the operation panel.
  • the number of probes is greater than or equal to the number of slots.
  • the present invention also provides an ultrasonic diagnostic method, which is implemented in the ultrasonic diagnostic apparatus as described above, and includes the following steps:
  • the processed plurality of ultrasound images output by the imaging system are received by the display module and displayed simultaneously.
  • the method also includes:
  • the plurality of probes are controlled by a plurality of probe high-voltage switches to switch between the scan pulse repetition time intervals, and the different parts of the body surface of the diagnosed person are alternately scanned at a predetermined scan timing.
  • the predetermined scanning timing is: a plurality of probes alternately scan different parts of the body surface of the diagnosed person in units of scanning lines.
  • the predetermined scanning timing is such that a plurality of probes alternately scan different parts of the body surface of the diagnosed object in units of frames.
  • the method also includes:
  • the array element of the probe in which the detector is placed is controlled by the array element high voltage switch disposed in the probe to alternately scan the body surface portion corresponding to the probe.
  • control circuit controls the opening of the high voltage switch of the probe and the high voltage switch of the array element.
  • the plurality of echo signals transmitted from the plurality of probes are converted into a plurality of ultrasound images by the imaging system, including:
  • the plurality of echo signals are digitally processed by the imaging system to obtain a digital processing link signal, and the plurality of ultrasound images are obtained according to the digital processing link signal and the selected imaging mode;
  • the imaging mode supported by the imaging system is at least one of the following: B-type imaging mode, M-type imaging mode, color imaging mode, pulse wave imaging mode, elastography mode, 3D imaging mode, and 4D imaging mode.
  • the ultrasonic diagnostic apparatus is provided with a plurality of slots, and the plurality of slots are connected with a plurality of probes, and the probes can synchronously scan in real time, so as to facilitate simultaneous ultrasonic scanning monitoring on multiple parts of the tested subject. ;
  • the probe used in the embodiment of the invention can be attached to the patient's body surface for a long time, ensuring that each scan is the same cut surface, so that the obtained ultrasonic image is more accurate, and the sound power risk caused by continuous scanning is avoided.
  • FIG. 1 is a schematic view of a prior art dual plane probe
  • FIG. 2 is a schematic structural view of an embodiment of an ultrasonic diagnostic apparatus according to the present invention.
  • FIG. 3 is a schematic diagram of a display module of an ultrasonic diagnostic apparatus according to the present invention for synchronous display;
  • FIG. 4 is a schematic diagram of synchronous scanning performed by an ultrasonic diagnostic apparatus according to the present invention.
  • FIG. 5 is a schematic view showing the working principle of a high voltage switch of an ultrasonic diagnostic apparatus according to the present invention.
  • FIG. 6 is a schematic diagram of timings of synchronous scanning of multiple probes of an ultrasonic diagnostic apparatus according to the present invention.
  • FIG. 7 is a schematic diagram of scanning timings of different modes of a plurality of probes of an ultrasonic diagnostic apparatus according to the present invention.
  • Embodiment 8 is a schematic flow chart of Embodiment 1 of an ultrasonic diagnostic method according to the present invention.
  • Embodiment 9 is a schematic flow chart of Embodiment 2 of an ultrasonic diagnostic method according to the present invention.
  • FIG. 10 is a schematic flow chart of a third embodiment of an ultrasonic diagnostic method according to the present invention.
  • an ultrasonic diagnostic apparatus supporting multi-probe synchronous scanning includes a display module 1, an imaging system 3, and a plurality of probes (such as probe A, probe B, probe C, and probe shown in the figure).
  • the device may further include an operation panel 2 and a slot (for example, a plurality of the illustrations may be one or more in an actual implementation), and multiple probes are connected to the slot; Simultaneous real-time scanning of different parts of the body surface of the diagnosed person by a plurality of probes in different parts of the body surface of the diagnosed person; multiple probes are scanned to obtain an echo signal and then transmitted to the imaging system 3; a preferred embodiment
  • the number of probes is greater than or equal to the number of slots. It should be noted that the number of slots is small, for example, when one is connected, it can be connected to multiple probes through the adapter.
  • the probe is directly attached to the fixed position of the body surface of the diagnosed object to scan the same cut surface at the fixed position of the measured object. In this way, it is ensured that each scan is the same slice, which makes the obtained ultrasound image more accurate, avoids the risk of sound power caused by continuous scanning and the discomfort of the transesophageal probe in the prior art.
  • the imaging system 3 is configured to convert a plurality of echo signals transmitted from the plurality of probes into a plurality of ultrasound images
  • the display module 1 is coupled to the imaging system 3, and receives the processed plurality of ultrasound images output by the imaging system 3 and displays them synchronously.
  • the display device/module in various ultrasonic devices such as desktop, portable, and portable devices may be used.
  • the operation panel 2 is configured to receive a trigger signal;
  • the display module 1 includes a plurality of display windows, and the plurality of display windows are used for real-time synchronous display of the imaging system under the trigger of the operation panel according to the plurality of echo signals in the selected imaging mode. Multiple ultrasound images obtained on.
  • the ultrasonic diagnostic apparatus of the present invention is further provided with a probe high voltage switch.
  • the number of the high-voltage switches of the probe is the same as the number of slots, and is used for controlling multiple probes to switch within the scan pulse repetition time interval, and alternately scanning different parts of the body surface of the diagnosed person at a predetermined scan timing.
  • each probe includes a plurality of array elements (as shown in FIG. 4, probe A includes array elements 1, 2, 3, ..., N...N), if the number of array elements of the probe is greater than the slot (ie, physical channel)
  • the number further includes an array element high voltage switch, and the array element high voltage switch is used to control each array element of the probe to alternately scan the body surface portion corresponding to the probe.
  • the probe high voltage switch and the array element high voltage switch are controlled by the control circuit.
  • the probe high voltage switch and the array element high voltage switch are controlled by the control circuit 4.
  • the probe B operates when the probe B is in communication with the physical channel; similarly, when the array element high voltage switch is switched to the probe under the control of the control circuit 4
  • the contact point a1 of the array element A1 of A is such that the array element A1 of the probe A is in communication with the probe A, the array element A1 of the probe A operates; when the array element high voltage switch is controlled by the control circuit 4, the array element A2 of the probe A is switched.
  • the contact point a2 when the array element A2 of the probe A is in communication with the probe A, the array element A2 of the probe A operates;
  • the switching time is on the order of microseconds, and the switching can be completed within the normal scan pulse repetition time interval of the probe. This is different from conventional probe switching, where the conventional switching probe uses a relay and the switching time is too long.
  • the present invention provides two scanning timings as follows:
  • the first predetermined scanning timing is that a plurality of probes alternately scan different parts of the body surface of the diagnosed person in units of scanning lines.
  • the second probe scans the first scan line of the corresponding body surface portion until the plurality of probes
  • the first probe of the plurality of probes first scans the second scan line of the corresponding body surface portion; The probe scans to obtain a complete image of the corresponding body surface portion.
  • the second predetermined scanning timing is that a plurality of probes alternately scan different parts of the body surface of the diagnosed object in units of frames.
  • the second probe scans one frame of the corresponding body surface portion, and sequentially cycles through the plurality of probes.
  • the last probe scans a frame of image of its corresponding body surface.
  • probe A and probe B two probes (probe A and probe B) will be taken as an example, and will be described with reference to FIG. 6.
  • the probe A is attached to the A portion of the body surface of the person being diagnosed
  • the probe B is attached to the B portion of the body surface of the person being diagnosed.
  • the first scanning timing the probe A scans the first scan line of the A portion, the probe B scans the first scan line of the B portion, the probe A scans the second scan line of the A portion, and the probe B scans the second scan line of the B portion... ... alternately scans in sequence until probe A gets all the scan lines of part A to form a frame of scanned image of part A, and probe B gets all the scan lines of part B to form a frame of scanned image of part B.
  • the loop is sequentially performed until the probe A obtains the multi-frame scan image of the A portion, and the probe B obtains the multi-frame scan image of the B portion.
  • the second scanning timing the probe A scans the A part to obtain one frame image, and the probe B scans the B part to obtain one frame image; the probe A scans one frame in turn, and then the probe B scans one frame in sequence... Until the probe A obtains the multi-frame scanned image of the A portion, the probe B obtains the multi-frame scanned image of the B portion.
  • the probe high voltage switch and the array high voltage switch of the invention can adjust the multi-probe scanning timing to support synchronous scanning imaging of different modes of the multi-probe.
  • Each probe can be freely selected to use at least one of the following imaging modes: B-type (Brightness) imaging mode, M-type (Motion, one-dimensional spatial multi-point motion timing chart) imaging mode, color imaging mode, pulse wave ( PW) imaging mode, elastography mode, 3D (three-dimensional) imaging mode, and 4D (four-dimensional) imaging mode.
  • probe B selects M imaging mode as an example, and its scanning timing is shown in Fig. 7.
  • the imaging system converts the plurality of echo signals transmitted from the plurality of probes into a plurality of ultrasound images as:
  • the plurality of echo signals are digitally processed to obtain a digital processing link signal, and a plurality of ultrasonic images are obtained according to the digital processing link signal and the selected imaging mode;
  • the imaging mode supported by the imaging system is at least one of the following: Type B ( Brightness, Brightness imaging mode, M-type (Motion, 1D spatial multi-point motion timing diagram) imaging mode, color imaging mode, pulse wave (PW) imaging mode, elastography mode, 3D (3D) imaging mode and 4D ( Four-dimensional imaging mode.
  • the present invention also provides an ultrasonic diagnostic method, which is implemented in the ultrasonic diagnostic apparatus as described above.
  • a flowchart of Embodiment 1 of the ultrasonic diagnostic method includes the following steps:
  • Step 100 synchronously real-time scanning different parts of the body surface of the diagnosed object through a plurality of probes, and obtaining an echo signal, and transmitting the same to the imaging system;
  • Step 101 Convert, by the imaging system, a plurality of echo signals transmitted by the plurality of probes into a plurality of ultrasound images;
  • Step 102 Receive, by the display module, the processed plurality of ultrasound images output by the imaging system and display them synchronously.
  • FIG. 9 is a schematic flowchart diagram of Embodiment 2 of an ultrasonic diagnosis method according to the present invention.
  • step 200 a plurality of probes are controlled by a plurality of probe high-voltage switches to switch between scan pulse repetition time intervals, and different portions of the body surface of the diagnosed person are alternately scanned at a predetermined scan timing.
  • Step 201 synchronously real-time scanning different parts of the body surface of the diagnosed object through a plurality of probes, and obtaining an echo signal, and transmitting the same to the imaging system;
  • Step 202 Convert, by the imaging system, a plurality of echo signals transmitted by the plurality of probes into a plurality of ultrasound images;
  • Step 203 Receive, by the display module, the processed plurality of ultrasound images output by the imaging system and display them synchronously.
  • the predetermined scanning sequence in step 200 is that a plurality of probes alternately scan different parts of the body surface of the diagnosed person in units of scanning lines.
  • the predetermined scanning timing is such that a plurality of probes alternately scan different parts of the body surface of the diagnosed object in units of frames.
  • FIG. 10 is a schematic flowchart diagram of Embodiment 3 of an ultrasonic diagnostic method according to the present invention.
  • step 300 multiple probes are controlled by a plurality of probe high-voltage switches to switch between scan pulse repetition time intervals, and different portions of the body surface of the diagnosed person are alternately scanned at a predetermined scan timing.
  • Step 301 The array element high voltage switch disposed in the probe controls the array elements of the probe in which the probe is located to alternately scan the body surface portion corresponding to the probe.
  • control circuit controls the opening of the high voltage switch of the probe and the high voltage switch of the array element.
  • Step 302 synchronously real-time scanning different parts of the body surface of the diagnosed object through a plurality of probes, and obtaining an echo signal, and transmitting the same to the imaging system;
  • Step 303 converting, by the imaging system, the plurality of echo signals transmitted by the plurality of probes into a plurality of ultrasound images
  • Step 304 Receive, by the display module, the processed plurality of ultrasound images output by the imaging system and display them synchronously.
  • the plurality of echo signals transmitted from the plurality of probes are converted into a plurality of ultrasound images by the imaging system, including:
  • the plurality of echo signals are digitally processed by the imaging system to obtain a digital processing link signal, and the plurality of ultrasound images are obtained according to the digital processing link signal and the selected imaging mode;
  • the imaging mode supported by the imaging system is at least one of the following: B-type imaging mode, M-type imaging mode, color imaging mode, pulse wave imaging mode, elastography mode, 3D imaging mode, and 4D imaging mode.
  • the ultrasonic diagnostic apparatus is provided with a plurality of slots, and the plurality of slots are connected with a plurality of probes, and the probes can synchronously scan in real time, so as to facilitate simultaneous ultrasonic scanning monitoring on multiple parts of the tested subject. ;
  • the probe used in the embodiment of the invention can be attached to the patient's body surface for a long time, ensuring that each scan is the same cut surface, so that the obtained ultrasonic image is more accurate, and the sound power risk caused by continuous scanning is avoided.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory (Read-Only) Memory, ROM) or random access memory (Random Access Memory, RAM), etc.
  • the coupling referred to herein includes various contact and contactless connections that can deliver signals/energy.
  • the ultrasound host and the monitoring function module integrated into the ultrasound host or the ultrasound function module and the monitoring function module can be integrated into other medical devices or In the system, for example, the ultrasound function module and the monitoring function module are integrated into the CT and MRI devices.

Abstract

一种支持多探头同步扫描的超声诊断设备和超声诊断方法。超声诊断设备包含有显示模块(1)、成像系统(3)、多个探头(A、B、C、D);多个探头(A、B、C、D)用于贴合在被诊断者体表的不同部位,通过多个探头(A、B、C、D)对被诊断者体表的不同部位进行同步实时扫描;多个探头(A、B、C、D)扫描得到回波信号后将其传递给成像系统(3);成像系统(3)用于将多个探头(A、B、C、D)传送回来的多个回波信号转换成多个超声图像;显示模块(1)耦接于成像系统(3)上,接收成像系统(3)输出的经处理后的多个超声图像并同步显示。在同一时刻多个探头(A、B、C、D)同时独立工作,使超声诊断设备同时得到不同探头各自的扫描图像数据,满足对人体不同部位同时诊断的需求。

Description

一种支持多探头同步扫描的超声诊断设备及方法 技术领域
本发明涉及医疗设备领域,尤其涉及一种支持多探头同步扫描的超声诊断设备及方法。
背景技术
探头是超声诊断设备中重要的部件。负责将电信号转换为声信号,发射到人体内;再将人体组织反射回来的声信号转换为电信号,传输到超声诊断设备中的信号处理环节,用于成像。
随着现代科技发展,超声诊断技术日趋完善。超声诊断设备在临床领域得到广泛使用,各种不同工作频率、不同外形的探头也投入到临床应用中。
针对不同诊断部位的深度、形状、结构,探头被设计成不同工作频率,不同外形,以匹配相应的诊断部位。医生在诊断过程中只能手持一个探头,同一时刻只能对病人的一个部位进行扫描,因此,要完成对一个病人不同身体部位的完整超声诊断,医生时常要切换探头,例如先使用相控阵探头扫描心脏,在切换探头,使用线阵探头扫描外周血管。
传统的超声诊断设备,可通过多个插槽连接多个探头(一个插槽连接一个探头),但同一时刻只能激活一个探头,即一个探头进行扫描成像。因此,当医生需要用不同探头扫描不同部位的图像时,必须顺次切换工作探头,依次得到不同部位的图像数据。
目前,针对不同切面的同步扫描,仅能通过双平面探头来实现。双平面探头拥有两个声头(见图1的声头A和声头B),分别对不同切面进行同步扫描。如经直肠的前列腺检查,可同时进行纵切面与横切面的同步扫描。由于是一个探头的两个声头,所以能进行同步扫描的不同切面相距很近,无法满足临床更广泛的需求。
欧洲专利0528693A1,提出了一种支持多个探头连接在一个插槽上的超声诊断设备,使得该超声诊断设备可以同时连接数目超过系统插槽数的探头。该专利公开的技术方案中,超声诊断系统由主机、连接器,和若干探头组成。其中连接器为一对插头、插槽,连接探头和主机。其中探头结构包含有第一级连接器、第二级连接器。第一级连接器与主机或另一个探头相联;第二级连接器通过互联电缆连接第一级连接器,连接另外一个探头的连接器,还可以连接从互联电缆(连接第一、第二级连接器)分支出来的探头。
该专利公开的超声诊断设备,一个插槽可连接多个探头。当探头数目大于主机插槽数时,也可以使所有探头同时与主机连接,从而不需要在使用过程中去插拔、替换插槽上的探头。
现有专利技术的应用范围有限,并存在如下一些缺陷:
双平面探头,拥有两个声头,分别对不同切面进行同步扫描。但是由于是一个探头的两个声头,所以能进行同步扫描的不同切面相距很近,无法满足临床更广泛的需求。
欧洲专利0528693A1公开的超声诊断设备,支持多个探头连接在一个插槽上,可以同时连接数目超过系统插槽数的探头。但是,该超声诊断设备只能使系统同时连接多个探头,并不支持多探头同时工作、同步扫描,无法满足医生对人体不同部位同时诊断的需求。
发明内容
为了消除现有技术的上述缺陷,本发明提出了一种支持多探头同步扫描的超声诊断设备及方法,其可以在同一时刻支持多个探头同时独立工作,使超声诊断设备同时得到不同探头各自的扫描图像数据,满足对人体不同部位同时诊断的需求。
本发明提供的一种超声诊断设备,其包含有显示模块、成像系统、多个探头;
多个探头用于贴合在被诊断者体表的不同部位,通过多个探头对被诊断者体表的不同部位进行同步实时扫描;多个探头扫描得到回波信号后将其传送给成像系统;
成像系统用于将多个探头传送回来的多个回波信号转换成多个超声图像;
显示模块耦接于成像系统上,接收成像系统输出的经处理后的多个超声图像并同步显示。
其中,探头为直接紧密贴合在被诊断者体表的固定位置上,以对被测对象固定位置处的同一切面进行扫描。
其中,设备进一步包括:用于插接多个探头的插槽;
与插槽数量相同的探头高压开关,用于控制多个探头在扫描脉冲重复时间间隙内切换,以预定的扫描时序对被诊断者体表的不同部位进行交替扫描。
其中,预定的扫描时序为:多个探头以扫描线为单位,依次交替扫描被诊断者体表的不同部位。
其中,预定的扫描时序为:多个探头以帧为单位,依次交替扫描被诊断者体表的不同部位。
其中,探头中进一步包括阵元高压开关,该阵元高压开关用于控制其所在探头的各个阵元对该探头对应的体表部位进行交替扫描。
其中,探头高压开关和阵元高压开关由控制电路控制。
其中,成像系统具体将多个回波信号进行数字处理以获得数字处理环节信号,根据数字处理环节信号及所选择的成像模式获得多个超声图像;成像系统所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
其中,超声诊断设备还包括:用于接收触发信号的操作面板;
显示模块包括多个显示窗口,多个显示窗口用于在操作面板的触发下实时同步显示成像系统根据多个回波信号在所选择的成像模式上获得的多个超声图像。
其中,探头的数量大于等于插槽的数量。
相应的,本发明还提供一种超声诊断方法,其在如前所述的超声诊断设备中实现,包括如下步骤:
通过多个探头对被诊断者体表的不同部位进行同步实时扫描并得到回波信号后将其传送给成像系统;
通过成像系统将多个探头传送回来的多个回波信号转换成多个超声图像;
通过显示模块接收成像系统输出的经处理后的多个超声图像并同步显示。
其中,方法还包括:
通过多个探头高压开关控制多个探头在扫描脉冲重复时间间隙内切换,以预定的扫描时序对被诊断者体表的不同部位进行交替扫描。
其中,预定的扫描时序为:多个探头以扫描线为单位,依次交替扫描被诊断者体表的不同部位。
或者,预定的扫描时序为:多个探头以帧为单位,依次交替扫描被诊断者体表的不同部位。
其中,方法还包括:
通过设置在探头中的阵元高压开关控制其所在探头的各个阵元对该探头对应的体表部位进行交替扫描。
其中,通过控制电路控制探头高压开关和阵元高压开关的开断。
其中,通过成像系统将多个探头传送回来的多个回波信号转换成多个超声图像,包括:
通过成像系统将多个回波信号进行数字处理以获得数字处理环节信号,根据数字处理环节信号及所选择的成像模式获得多个超声图像;成像系统所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
本发明的实施例中,超声诊断设备上设置有多个插槽,该多个插槽连接有多个探头,该探头可以同步实时扫描,便于对被测者的多个部位同时进行超声扫描监测;
本发明实施例中所采用的探头,可以长时间贴合于病人体表,保证每次扫描都是同一切面,使获得的超声图像更加准确,避免了连续扫描带来的声功率风险。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术的双平面探头的示意图;
图2为本发明一种超声诊断设备的一个实施例的结构示意图;
图3为本发明一种超声诊断设备的显示模块进行同步显示的示意图;
图4为本发明一种超声诊断设备进行同步扫描的示意图;
图5为本发明一种超声诊断设备的高压开关工作原理示意图;
图6为本发明一种超声诊断设备的多个探头同步扫描时序示意图;
图7为本发明一种超声诊断设备的多个探头不同模式扫描时序的示意图;
图8为本发明一种超声诊断方法实施例一的流程示意图;
图9为本发明一种超声诊断方法实施例二的流程示意图;
图10为本发明一种超声诊断方法实施例三的流程示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下将结合图2~图7,说明本发明实施例提供的一种支持多探头同步扫描的超声诊断设备的具体实现。
参见图2,本发明实施例提供的一种支持多探头同步扫描的超声诊断设备包含有显示模块1、成像系统3、多个探头(如图所示的探头A、探头B、探头C、探头D等等),该设备还可以包括操作面板2以及插槽(图示中以多个为例,实际实现中可以为一个或多个),多个探头连接在插槽上;多个探头贴合在被诊断者体表的不同部位,通过多个探头对被诊断者体表的不同部位进行同步实时扫描;多个探头扫描得到回波信号后将其传送给成像系统3;优选的实施方式中,探头的数量大于等于插槽的数量。需要说明的是,插槽数量较少,例如为一个时,可以通过转接头与多个探头连接。
在具体实现中,探头是直接紧密贴合在被诊断者体表的固定位置上,以对被测对象固定位置处的同一切面进行扫描。如此,可以保证每次扫描都是同一切面,使获得的超声图像更加准确,避免了连续扫描带来的声功率风险以及现有技术中经食道探头的不舒适感。
成像系统3用于将多个探头传送回来的多个回波信号转换成多个超声图像;
显示模块1耦接于成像系统3上,接收成像系统3输出的经处理后的多个超声图像并同步显示。
需要说明的是,显示模块1具体实现中,可以是台式、便携、手提等各种超声设备中的显示装置/模块。
具体的,操作面板2用于接收触发信号;显示模块1包括多个显示窗口,多个显示窗口用于在操作面板的触发下实时同步显示成像系统根据多个回波信号在所选择的成像模式上获得的多个超声图像。
具体参见图3,当有探头A和探头B两个探头同时扫描时,显示窗口相应有两个,分别为探头A图像窗口,探头B图像窗口;当有探头A、探头B、探头C、探头D四个探头同时扫描时,显示窗口相应有四个,分别为探头A图像窗口,探头B图像窗口,探头C图像窗口,探头D图像窗口;依次类推,当有n个探头同时扫描时,显示窗口相应的就有n个。
为了使得本发明提供的超声诊断设备的多个探头同步扫描,本发明的超声诊断设备中还设置有探头高压开关。
其中,该探头高压开关的数量与插槽数量相同,用于控制多个探头在扫描脉冲重复时间间隙内切换,以预定的扫描时序对被诊断者体表的不同部位进行交替扫描。
另外,每个探头包括多个阵元(如图4所示的,探头A包括阵元1、2、3……N……N),如果探头的阵元数量大于插槽(即物理通道)数量,则探头中进一步包括阵元高压开关,该阵元高压开关用于控制其所在探头的各个阵元对该探头对应的体表部位进行交替扫描。
其中,探头高压开关和阵元高压开关由控制电路控制。如图5所示,探头高压开关和阵元高压开关由控制电路4控制。当探头高压开关在控制电路4的控制下切换到探头A的接点b,使得探头B与物理通道联通时,探头B工作;同理,当阵元高压开关在控制电路4的控制下切换到探头A的阵元A1的接点a1,使得探头A的阵元A1与探头A联通时,探头A的阵元A1工作;当阵元高压开关在控制电路4的控制下切换到探头A的阵元A2的接点a2,使得探头A的阵元A2与探头A联通时,探头A的阵元A2工作;
需要说明的是:不管是探头高压开关还是阵元高压开关,其切换时间数量级为微秒,完全可以在探头正常扫描脉冲重复时间间隙内完成切换。这与常规的探头切换不同,常规切换探头使用继电器,切换时间太长。
为了支持探头在正常扫描脉冲重复时间间隙内完成切换,本发明提供两种扫描时序,如下:
第一种预定的扫描时序为:多个探头以扫描线为单位,依次交替扫描被诊断者体表的不同部位。
具体的,多个探头的第一个探头首先扫描其对应的体表部位的第一条扫描线之后,由第二个探头扫描其对应的体表部位的第一条扫描线,直至多个探头中的最后一个探头扫描得到其对应的体表部位的第一条扫描线后,再由多个探头的第一个探头首先扫描其对应的体表部位的第二条扫描线;依次循环直至多个探头扫描得到其对应的体表部位的完整一帧图像。
第二种预定的扫描时序为:多个探头以帧为单位,依次交替扫描被诊断者体表的不同部位。
具体为:多个探头的第一个探头首先扫描其对应的体表部位的一帧图像之后,由第二个探头扫描其对应的体表部位的一帧图像,依次循环直至多个探头中的最后一个探头扫描得到其对应的体表部位的一帧图像。
以下以两个探头(探头A和探头B)为例,结合图6进行说明。其中,探头A贴合在被诊断者体表的A部位,探头B贴合在被诊断者体表的B部位。
第一种扫描时序:探头A扫描A部位的第一扫描线,探头B扫描B部位的第一扫描线,探头A扫描A部位的第二扫描线,探头B扫描B部位的第二扫描线……依次交替扫描,直至探头A得到A部位所有的扫描线组成一帧关于A部位的扫描图像,探头B得到B部位所有的扫描线组成一帧关于B部位的扫描图像。依次循环,直至探头A得到A部位的多帧扫描图像,探头B得到B部位的多帧扫描图像。
第二种扫描时序:探头A扫描A部位得到一帧图像,紧接着探头B扫描B部位得到一帧图像;探头A再依次扫描一帧,紧接着探头B再依次扫描一帧……依次循环,直至探头A得到A部位的多帧扫描图像,探头B得到B部位的多帧扫描图像。
另外,本发明中的探头高压开关和阵元高压开关可以对多探头扫描时序进行调整,以支持多探头不同模式的同步扫描成像。各探头可自由选择使用成像模式为如下的至少一种:B型(Brightness,辉度)成像模式、M型(Motion,一维空间多点运动时序图)成像模式、彩色成像模式、脉冲波(PW)成像模式、弹性成像模式、3D(三维)成像模式及4D(四维)成像模式。
以探头A选择B成像模式,探头B选择M成像模式为例,其扫描时序见图7所示。
相应的,成像系统将多个探头传送回来的多个回波信号转换成多个超声图像为:
将多个回波信号进行数字处理以获得数字处理环节信号,根据数字处理环节信号及所选择的成像模式获得多个超声图像;成像系统所支持的成像模式为如下的至少一种:B型(Brightness,辉度)成像模式、M型(Motion,一维空间多点运动时序图)成像模式、彩色成像模式、脉冲波(PW)成像模式、弹性成像模式、3D(三维)成像模式及4D(四维)成像模式。
本发明还提供一种超声诊断方法,其在如前所述的超声诊断设备中实现,参见图8,为一种超声诊断方法实施例一的流程图,其包括如下步骤:
步骤100,通过多个探头对被诊断者体表的不同部位进行同步实时扫描并得到回波信号后将其传送给成像系统;
步骤101,通过成像系统将多个探头传送回来的多个回波信号转换成多个超声图像;
步骤102,通过显示模块接收成像系统输出的经处理后的多个超声图像并同步显示。
参见图9,为本发明提供的一种超声诊断方法实施例二的流程示意图。
本实施例二包括以下步骤:
步骤200,通过多个探头高压开关控制多个探头在扫描脉冲重复时间间隙内切换,以预定的扫描时序对被诊断者体表的不同部位进行交替扫描。
步骤201,通过多个探头对被诊断者体表的不同部位进行同步实时扫描并得到回波信号后将其传送给成像系统;
步骤202,通过成像系统将多个探头传送回来的多个回波信号转换成多个超声图像;
步骤203,通过显示模块接收成像系统输出的经处理后的多个超声图像并同步显示。
其中,步骤200中预定的扫描时序为:多个探头以扫描线为单位,依次交替扫描被诊断者体表的不同部位。或者,预定的扫描时序为:多个探头以帧为单位,依次交替扫描被诊断者体表的不同部位。
参见图10,为本发明提供的一种超声诊断方法实施例三的流程示意图。
本实施例三包括以下步骤:
步骤300,通过多个探头高压开关控制多个探头在扫描脉冲重复时间间隙内切换,以预定的扫描时序对被诊断者体表的不同部位进行交替扫描。
步骤301,通过设置在探头中的阵元高压开关控制其所在探头的各个阵元对该探头对应的体表部位进行交替扫描。
具体实现中,通过控制电路控制探头高压开关和阵元高压开关的开断。
步骤302,通过多个探头对被诊断者体表的不同部位进行同步实时扫描并得到回波信号后将其传送给成像系统;
步骤303,通过成像系统将多个探头传送回来的多个回波信号转换成多个超声图像;
步骤304,通过显示模块接收成像系统输出的经处理后的多个超声图像并同步显示。
上述实施例一至实施例三中,通过成像系统将多个探头传送回来的多个回波信号转换成多个超声图像,包括:
通过成像系统将多个回波信号进行数字处理以获得数字处理环节信号,根据数字处理环节信号及所选择的成像模式获得多个超声图像;成像系统所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
其中,更进一步的细节可以参考对附图2至附图7的说明,在此不进行赘述。
本发明的实施例中,超声诊断设备上设置有多个插槽,该多个插槽连接有多个探头,该探头可以同步实时扫描,便于对被测者的多个部位同时进行超声扫描监测;
本发明实施例中所采用的探头,可以长时间贴合于病人体表,保证每次扫描都是同一切面,使获得的超声图像更加准确,避免了连续扫描带来的声功率风险。
可以理解的是,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。本文所称的耦接,包括可以传递信号/能量的各种接触式和非接触式连接方式。本文虽然定义了监护主机,但可以理解的是,也可以通过超声主机和集成到超声主机的监护功能模块来实现相似的目的,还可以是超声功能模块和监护功能模块一同集成到其他医疗设备或系统中,比如将超声功能模块和监护功能模块集成到CT、MRI设备中。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (17)

  1. 一种超声诊断设备,其包含有显示模块( 1 )、成像系统( 3 )、多个探头( A 、 B 、 C 、 D ),其特征在于:
    所述多个探头( A 、 B 、 C 、 D )用于贴合在被诊断者体表的不同部位,通过所述多个探头对所述被诊断者体表的不同部位进行同步实时扫描;所述多个探头扫描得到回波信号后将其传送给所述成像系统;
    所述成像系统( 3 )用于将所述多个探头传送回来的多个回波信号转换成多个超声图像;
    所述显示模块( 1 )耦接于所述成像系统( 3 )上,接收所述成像系统输出的经处理后的多个超声图像并同步显示。
  2. 如权利要求 1 所述的超声诊断设备,其特征在于,所述探头( A 、 B 、 C 、 D )为直接紧密贴合在被诊断者体表的固定位置上,以对被测对象所述固定位置处的同一切面进行扫描。
  3. 如权利要求 1 所述的超声诊断设备,其特征在于,进一步包括:用于插接所述多个探头的插槽;
    与所述插槽数量相同的探头高压开关,用于控制所述多个探头在扫描脉冲重复时间间隙内切换,以预定的扫描时序对被诊断者体表的不同部位进行交替扫描。
  4. 如权利要求 3 所述的超声诊断设备,其特征在于,所述预定的扫描时序为:所述多个探头以扫描线为单位,依次交替扫描被诊断者体表的不同部位。
  5. 如权利要求 3 所述的超声诊断设备,其特征在于,所述预定的扫描时序为:所述多个探头以帧为单位,依次交替扫描被诊断者体表的不同部位。
  6. 如权利要求 4 或 5 所述的超声诊断设备,其特征在于,所述探头中进一步包括阵元高压开关,该阵元高压开关用于控制其所在探头的各个阵元对该探头对应的体表部位进行交替扫描。
  7. 如权利要求 6 所述的超声诊断设备,其特征在于,所述探头高压开关和阵元高压开关由控制电路( 4 )控制。
  8. 如权利要求 7 所述的超声诊断设备,其特征在于,所述成像系统( 3 )具体将所述多个回波信号进行数字处理以获得数字处理环节信号,根据数字处理环节信号及所选择的成像模式获得多个超声图像;所述成像系统所支持的成像模式为如下的至少一种: B 型成像模式、 M 型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、 3D 成像模式及 4D 成像模式。
  9. 如权利要求 8 所述的超声诊断设备,其特征在于,所述超声诊断设备还包括:用于接收触发信号的操作面板( 2 );
    所述显示模块( 1 )包括多个显示窗口,所述多个显示窗口用于在所述操作面板的触发下实时同步显示所述成像系统根据所述多个回波信号在所选择的成像模式上获得的多个超声图像。
  10. 如权利要求 9 所述的超声诊断设备,其特征在于,所述探头的数量大于等于所述插槽的数量。
  11. 一种超声诊断方法,其特征在于,其在如权利要求 1 所述的超声诊断设备中实现,包括如下步骤:
    通过所述多个探头对所述被诊断者体表的不同部位进行同步实时扫描并得到回波信号后将其传送给所述成像系统;
    通过所述成像系统将所述多个探头传送回来的多个回波信号转换成多个超声图像;
    通过所述显示模块接收所述成像系统输出的经处理后的多个超声图像并同步显示。
  12. 如权利要求 11 所述的超声诊断方法,其特征在于,所述方法还包括:
    通过多个探头高压开关控制所述多个探头在扫描脉冲重复时间间隙内切换,以预定的扫描时序对被诊断者体表的不同部位进行交替扫描。
  13. 如权利要求 12 所述的超声诊断方法,其特征在于,所述预定的扫描时序为:所述多个探头以扫描线为单位,依次交替扫描被诊断者体表的不同部位。
  14. 如权利要求 12 所述的超声诊断方法,其特征在于,所述预定的扫描时序为:所述多个探头以帧为单位,依次交替扫描被诊断者体表的不同部位。
  15. 如权利要求 12 或 13 所述的超声诊断方法,其特征在于,所述方法还包括:
    通过设置在所述探头中的阵元高压开关控制其所在探头的各个阵元对该探头对应的体表部位进行交替扫描。
  16. 如权利要求 15 所述的超声诊断方法,其特征在于,通过控制电路控制所述探头高压开关和阵元高压开关的开断。
  17. 如权利要求16所述的超声诊断方法,其特征在于,通过所述成像系统将所述多个探头传送回来的多个回波信号转换成多个超声图像,包括:
    通过所述成像系统将所述多个回波信号进行数字处理以获得数字处理环节信号,根据数字处理环节信号及所选择的成像模式获得多个超声图像;所述成像系统所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
PCT/CN2013/083107 2013-04-16 2013-09-09 一种支持多探头同步扫描的超声诊断设备及方法 WO2014169555A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/884,490 US20160030003A1 (en) 2013-04-16 2015-10-15 Ultrasonic diagnostic device and method for supporting synchronous scanning with multiple probes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310130584.X 2013-04-16
CN201310130584.XA CN104107067A (zh) 2013-04-16 2013-04-16 一种支持多探头同步扫描的超声诊断设备及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/884,490 Continuation US20160030003A1 (en) 2013-04-16 2015-10-15 Ultrasonic diagnostic device and method for supporting synchronous scanning with multiple probes

Publications (1)

Publication Number Publication Date
WO2014169555A1 true WO2014169555A1 (zh) 2014-10-23

Family

ID=51704192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083107 WO2014169555A1 (zh) 2013-04-16 2013-09-09 一种支持多探头同步扫描的超声诊断设备及方法

Country Status (3)

Country Link
US (1) US20160030003A1 (zh)
CN (1) CN104107067A (zh)
WO (1) WO2014169555A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110833432A (zh) * 2018-08-15 2020-02-25 深南电路股份有限公司 超声波模拟前端装置及超声波成像设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8872818B2 (en) 2013-03-15 2014-10-28 State Farm Mutual Automobile Insurance Company Methods and systems for capturing the condition of a physical structure
CN106934807B (zh) * 2015-12-31 2022-03-01 深圳迈瑞生物医疗电子股份有限公司 一种医学影像分析方法、系统及医疗设备
US10176527B1 (en) 2016-04-27 2019-01-08 State Farm Mutual Automobile Insurance Company Providing shade for optical detection of structural features
CN106073821A (zh) * 2016-05-27 2016-11-09 深圳华声医疗技术有限公司 超声设备切换方法及装置
CN105997151B (zh) * 2016-06-23 2019-04-12 北京智影技术有限公司 一种三维超声成像装置
CN106872986B (zh) * 2017-02-13 2019-07-26 飞依诺科技(苏州)有限公司 支持双探头同步扫查的超声成像方法及系统
EP3513733A1 (en) * 2018-01-23 2019-07-24 Koninklijke Philips N.V. Ultrasound imaging apparatus and method
US11607199B2 (en) * 2018-11-20 2023-03-21 Siemens Medical Solutions Usa, Inc. Switched capacitor for elasticity mode imaging with ultrasound
KR20200059910A (ko) * 2018-11-22 2020-05-29 삼성메디슨 주식회사 초음파 영상 장치 및 그 제어 방법
CN111227863B (zh) * 2018-11-29 2021-03-23 深圳迈瑞生物医疗电子股份有限公司 一种超声成像方法以及超声成像相关设备
CN109805957A (zh) * 2019-02-22 2019-05-28 无锡海斯凯尔医学技术有限公司 成像模式切换中数据传输的方法、装置、设备及存储介质
CN110297436A (zh) * 2019-07-15 2019-10-01 无锡海斯凯尔医学技术有限公司 检测模式控制电路
CN110786881A (zh) * 2019-10-23 2020-02-14 苏州佳世达电通有限公司 超音波系统
CN111544038B (zh) * 2020-05-12 2024-02-02 上海深至信息科技有限公司 一种云平台超声成像系统
CN112237444B (zh) * 2020-12-18 2021-12-07 深圳华声医疗技术股份有限公司 超声成像系统的控制方法、控制装置及介质
CN112807125A (zh) * 2021-01-28 2021-05-18 复旦大学 一种多通道的小动物超声刺激装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101032412A (zh) * 2007-04-17 2007-09-12 王敏岐 超声成像方法及妇科处置用实时超声监视装置
JP2008055087A (ja) * 2006-09-04 2008-03-13 Toshiba Corp 超音波診断装置
CN101516271A (zh) * 2006-10-03 2009-08-26 奥林巴斯医疗株式会社 超声波图像处理装置以及超声波诊断装置
CN202408951U (zh) * 2011-12-28 2012-09-05 东南大学 一种分体式超声诊断装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817359B1 (zh) * 1970-05-15 1973-05-29
JP2683966B2 (ja) * 1991-08-20 1997-12-03 富士通株式会社 スタック接続方式の超音波プローブおよび超音波診断装置ならびに超音波診断システム
US7497828B1 (en) * 1992-01-10 2009-03-03 Wilk Ultrasound Of Canada, Inc. Ultrasonic medical device and associated method
US6120453A (en) * 1997-11-17 2000-09-19 Sharp; William A. Three-dimensional ultrasound system based on the coordination of multiple ultrasonic transducers
US7090643B2 (en) * 2003-01-23 2006-08-15 3G Ultrasound, Inc. Ultrasonic imaging device, system and method of use
JP5294687B2 (ja) * 2008-05-02 2013-09-18 キヤノン株式会社 超音波測定装置およびその制御方法
US9649091B2 (en) * 2011-01-07 2017-05-16 General Electric Company Wireless ultrasound imaging system and method for wireless communication in an ultrasound imaging system
EP2756330B1 (en) * 2011-09-12 2018-09-05 B-K Medical ApS Ultrasound imaging console

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055087A (ja) * 2006-09-04 2008-03-13 Toshiba Corp 超音波診断装置
CN101516271A (zh) * 2006-10-03 2009-08-26 奥林巴斯医疗株式会社 超声波图像处理装置以及超声波诊断装置
CN101032412A (zh) * 2007-04-17 2007-09-12 王敏岐 超声成像方法及妇科处置用实时超声监视装置
CN202408951U (zh) * 2011-12-28 2012-09-05 东南大学 一种分体式超声诊断装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110833432A (zh) * 2018-08-15 2020-02-25 深南电路股份有限公司 超声波模拟前端装置及超声波成像设备
CN110833432B (zh) * 2018-08-15 2023-04-07 深南电路股份有限公司 超声波模拟前端装置及超声波成像设备

Also Published As

Publication number Publication date
CN104107067A (zh) 2014-10-22
US20160030003A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
WO2014169555A1 (zh) 一种支持多探头同步扫描的超声诊断设备及方法
WO2014146409A1 (zh) 具有超声扫描监测功能的监护设备、超声装置及相应方法
WO2015016403A1 (ko) 융합 영상을 획득하는 장치 및 방법
WO2016186279A1 (en) Method and apparatus for synthesizing medical images
WO2015130070A2 (en) Ultrasound diagnostic apparatus and method of operating the same
EP2931133A1 (en) Ultrasound probe cap and method for testing ultrasound probe using the same and ultrasound diagnosis system thereof
WO2016052817A1 (en) Method and medical imaging apparatus for generating elastic image by using curved array probe
JPH04332546A (ja) 超音波走査ヘッド
CN103519841A (zh) 用于温度管理的超声成像系统和方法
WO2015115676A1 (ko) 서브 어레이를 갖는 트랜스듀서에서 평면파를 이용한 이미지 합성 방법 및 장치
JPH01214348A (ja) 眼科用超音波診断装置
WO2016047895A1 (en) Ultrasound imaging apparatus and method using synthetic aperture focusing
WO2013133484A1 (ko) 비침습적 초음파 방광내압 측정시스템 및 그 방법
KR101515809B1 (ko) 휴대용 초음파 진단장치의 저전력모드를 수행하는 수행방법 및 이를 적용하기 위한 휴대용 초음파 진단장치
WO2015141913A1 (en) Ultrasonic diagnostic apparatus and method of operating the same
WO2018221865A1 (ko) 신체 부착형 맥파 측정 장치
WO2015167122A1 (ko) 다양한 해상도를 갖는 무선통신단말기에 적용이 가능한 초음파 진단시스템 및 진단방법
WO2015002400A1 (en) Ultrasonic diagnostic apparatus and method of operating the same
WO2017131280A1 (ko) 초음파 프로브 및 이를 포함한 초음파 진단 시스템
WO2017135500A1 (ko) 대상체의 속도를 출력하는 방법 및 이를 위한 초음파 진단 장치
CN113208653A (zh) 一种超声图像采集处理系统
WO2016072542A1 (ko) 초음파 장치 및 그 빔포밍 방법
CN100475156C (zh) 超声成像方法及妇科处置用实时超声监视装置
WO2020004855A1 (ko) 초음파 영상의 디스플레이 장치와 시스템 및 이를 이용한 생체조직의 사이즈 검출방법
WO2015102194A1 (en) Photoacoustic probe and photoacoustic diagnostic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02.03.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13882460

Country of ref document: EP

Kind code of ref document: A1