WO2014146409A1 - 具有超声扫描监测功能的监护设备、超声装置及相应方法 - Google Patents

具有超声扫描监测功能的监护设备、超声装置及相应方法 Download PDF

Info

Publication number
WO2014146409A1
WO2014146409A1 PCT/CN2013/083100 CN2013083100W WO2014146409A1 WO 2014146409 A1 WO2014146409 A1 WO 2014146409A1 CN 2013083100 W CN2013083100 W CN 2013083100W WO 2014146409 A1 WO2014146409 A1 WO 2014146409A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
monitoring
function module
ultrasound
imaging mode
Prior art date
Application number
PCT/CN2013/083100
Other languages
English (en)
French (fr)
Inventor
李勇
刘硕
刘进
宋海波
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2014146409A1 publication Critical patent/WO2014146409A1/zh
Priority to US14/860,500 priority Critical patent/US20160183921A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/486Diagnostic techniques involving arbitrary m-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals

Definitions

  • the invention relates to the field of medical equipment, in particular to a monitoring device, an ultrasonic device and a corresponding method with an ultrasonic scanning monitoring function.
  • ECG monitoring ECG or EKG
  • blood pressure EKG
  • SPO2 oxygen saturation
  • the EKG parameters are easily disturbed. For example, poor electrode contact and improper human operation may cause the ECG measurement parameters to deviate from the actual situation, resulting in false alarms that may cause alarm fatigue and affect the timeliness of the doctor's handling of unexpected situations.
  • the blood pressure parameters generally appear on the display interface of the monitor with numerical parameters, and there is a problem of discontinuity, and the cardiac state cannot be intuitively reflected. For example, when hypotension occurs, it is impossible to determine whether it is heart failure or insufficient blood volume.
  • the SPO2 parameters are unstable and not real-time defects.
  • the traditional ultrasonic diagnostic system is only installed in the ultrasound department. It requires the doctor to hold the ultrasonic probe to scan the patient's examination site to obtain an ultrasound image for short-term diagnosis.
  • the existing ultrasonic diagnostic system cannot be applied to such long lengths. In time monitoring, it is difficult to meet the broader clinical needs.
  • the hemodynamic ultrasound scan of the heart the probe is often used in the probe of the patient's esophagus, if the patient is monitored by the transesophageal probe for a long time, it will bring great to the patient. Uncomfortable.
  • the present invention provides a monitoring device, an ultrasonic device and a corresponding method having an ultrasonic scanning monitoring function, which integrates the functions of the monitoring device and the ultrasonic scanning system, and can be periodically matched as needed.
  • the subject performs an ultrasound scan and displays the obtained ultrasound images and parameters on the monitoring device without causing discomfort to the patient.
  • an embodiment of the present invention provides a monitoring device having an ultrasonic scanning monitoring function, which includes a monitoring function module, an ultrasonic function module, a monitoring probe, an ultrasonic probe, and a display device, wherein
  • the ultrasonic function module is configured to perform ultrasonic scanning monitoring on the measured object at a specified time interval, obtain an echo signal of the measured object, and process the same;
  • the monitoring probe is coupled to the monitoring function module, and the ultrasonic probe is coupled to the ultrasonic function module;
  • the display device is coupled to the monitoring function module and the ultrasonic function module, and receives the conventional monitoring physiological parameter output by the monitoring function module and the processed echo signal output by the ultrasonic function module and displays.
  • the ultrasonic probe is directly attached to the fixed position of the body surface of the object to be tested to scan the same slice at the fixed position of the object to be tested.
  • the method further includes: a scan period setting module, configured to set a time interval during which the ultrasound function module starts the ultrasound scan and/or a duration of each scan.
  • the storage module is configured to store the processed echo signals obtained by the monitoring function module and the ultrasonic signal obtained by the monitoring function module within a preset time.
  • the ultrasonic function module processes the echo signal of the object to be measured as: digitally processing the echo signal to obtain a digital processing link signal, and calculating a numerical parameter, a waveform or a trend graph according to the digital processing link signal, and digitally processing
  • the link signal is one of a radio frequency signal, a baseband signal, and an envelope signal.
  • the ultrasonic function module processes the echo signal of the object to be tested as: the ultrasonic function module digitally processes the echo signal to generate a digital processing link signal, and the ultrasonic function module supports the digital processing link signal or the imaging supported by the ultrasonic function module.
  • the ultrasonic image obtained by the mode is automatically calculated and analyzed to obtain a numerical parameter, a waveform or a trend graph;
  • the digital processing link signal is at least one of the following: a radio frequency signal, a baseband signal, and an envelope signal;
  • the imaging mode supported by the ultrasonic function module is At least one of the following: B-type imaging mode, M-type imaging mode, color imaging mode, pulse wave imaging mode, elastography mode, 3D imaging mode, and 4D imaging mode.
  • the display device is further provided with:
  • a conventional monitoring information display unit for displaying a conventional physiological parameter monitored by the monitoring function module
  • the ultrasonic information display unit is configured to display the processed echo signal obtained by the ultrasonic function module.
  • the ultrasonic probe is a plurality of ultrasonic probes connected to the ultrasonic function module, and each ultrasonic probe is attached to different parts of the body surface of the ward, and synchronous ultrasonic testing is performed by using multiple ultrasonic probes.
  • the conventional physiological parameters monitored by the monitoring function module include: at least one of an electrocardiographic monitoring parameter, a blood pressure, a blood oxygen saturation parameter, and a breathing, and the ultrasonic function module processes the echo ejection according to the echo signal of the measured object to obtain a cardiac ejection. At least one of a score, a left intraventricular short axis shortening rate, a stroke volume per stroke, a cardiac output, a cardiac index, a left ventricular end-diastolic volume, and a left ventricular end-systolic volume.
  • ultrasonic function module and the monitoring function module are mutually independent modules.
  • the ultrasound function module is connected to the monitoring function module directly or through a monitoring host.
  • the ultrasonic function module and the monitoring function module are mutually independent detachable modules, which are all connected with a monitoring host, and a corresponding plug-in interface is reserved at a corresponding position on the monitoring host.
  • a monitoring method is provided, which is implemented on the foregoing monitoring device, for simultaneously implementing conventional monitoring physiological parameter monitoring and ultrasonic scanning monitoring, and the method comprises the following steps:
  • Ultrasonic scanning is performed on the human tissue through the ultrasonic function module to obtain an echo signal of the object to be measured, and processed according to the echo signal to form an image, a waveform or a numerical parameter, and displayed on the display device.
  • the step of ultrasonically scanning the human tissue through the ultrasonic function module to obtain the echo signal of the measured object is specifically as follows:
  • the at least one ultrasonic probe is directly attached to the corresponding fixed position of the body surface of the object to be tested, and the same slice at each corresponding position of the object to be tested is scanned to obtain an echo signal at the corresponding position.
  • the processing is performed according to the echo signal to form an image, a waveform or a numerical parameter, and the steps displayed on the display device include:
  • the echo signal is digitally processed to obtain a digital processing link signal, and a numerical parameter, waveform or trend graph is obtained according to the digital processing link signal.
  • the digital processing link signal is one of a radio frequency signal, a baseband signal, and an envelope signal.
  • the processing is performed according to the echo signal to form an image, a waveform or a numerical parameter, and the steps displayed on the display device are specifically:
  • the ultrasonic function module digitally processes the echo signal to generate a digital processing link signal, and the ultrasonic function module automatically calculates and analyzes the ultrasonic image obtained by the digital processing link signal or the imaging mode supported by the ultrasonic function module, and obtains a numerical parameter, waveform or trend.
  • the digital processing link signal is at least one of the following: a radio frequency signal, a baseband signal, and an envelope signal; and the imaging mode supported by the ultrasonic function module is at least one of the following: B-type imaging mode, M-type imaging mode, color imaging mode, pulse wave imaging mode, elastography mode, 3D imaging mode, and 4D imaging mode.
  • an ultrasound apparatus for monitoring includes an ultrasound function module, an ultrasound probe, and a display device, wherein:
  • the ultrasonic probe is coupled to the ultrasonic function module, and is configured to scan the same cut surface of the measured object to obtain an echo signal of the measured object;
  • the ultrasonic function module is configured to perform ultrasonic scanning monitoring on the measured object at a predetermined time interval, and obtain an echo signal of the measured object from the ultrasonic probe and process the same;
  • the display device is coupled to the ultrasonic function module, and receives the processed echo signal output by the ultrasonic function module and displays the signal.
  • the ultrasonic probe is directly attached to the fixed position of the body surface of the object to be tested to scan the same slice at the fixed position of the object to be tested.
  • the ultrasound function module further includes:
  • a scan period setting module is configured to set a time interval during which the ultrasound function module initiates an ultrasound scan and/or a duration of each scan.
  • the ultrasound function module further includes:
  • the storage module is configured to store the processed echo signals obtained by the ultrasonic function module within a preset time.
  • the ultrasonic function module processes the echo signal of the measured object, including: calculating according to the echo signal, and obtaining a numerical parameter, a waveform, or a trend graph.
  • the ultrasonic function module processes the echo signal of the object to be tested as: the ultrasonic function module digitally processes the echo signal to generate a digital processing link signal, and the ultrasonic function module supports the digital processing link signal or the imaging supported by the ultrasonic function module.
  • the ultrasonic image obtained by the mode is automatically calculated and analyzed to obtain a numerical parameter, a waveform or a trend graph;
  • the digital processing link signal is at least one of the following: a radio frequency signal, a baseband signal, and an envelope signal;
  • the imaging mode supported by the ultrasonic function module is At least one of the following: B-type imaging mode, M-type imaging mode, color imaging mode, pulse wave imaging mode, elastography mode, 3D imaging mode, and 4D imaging mode.
  • the display device is further provided with:
  • a monitoring information display unit configured to display a numerical parameter, a waveform or a trend graph obtained by the ultrasonic function module according to the echo signal
  • An ultrasonic image display unit is configured to display an ultrasound image obtained by the ultrasound function module on the selected imaging mode according to the echo signal.
  • the ultrasonic probe is a plurality of ultrasonic probes connected to the ultrasonic function module, and each ultrasonic probe is attached to different parts of the body surface of the ward, and synchronous ultrasonic testing is performed by using multiple ultrasonic probes.
  • the ultrasound function module processes the cardiac ejection fraction, the left indoor short axis shortening rate, the stroke volume per stroke, the cardiac output, the cardiac index, the left ventricular end diastolic volume, and the echo signal according to the measured object. At least one of the echo signals of the left ventricular end-systolic volume.
  • the display device is provided with a display screen, and at least one window of the display screen is used for the default display to display numerical parameter, waveform or trend graph according to the monitoring information display unit; the display screen is provided with a window, which can be triggered after being triggered The ultrasound image is displayed according to the ultrasound image display unit.
  • the window displaying the ultrasound image is a window independent of the numerical parameter, waveform or trend graph.
  • the window displaying the ultrasound image is one or a window displaying a numerical parameter, a waveform or a trend graph.
  • the monitoring device, the ultrasonic device and the corresponding method with the ultrasonic scanning monitoring function provided by the embodiments of the present invention have the following beneficial effects:
  • the function of the ultrasonic scanning monitoring is integrated into a conventional monitoring device, and the ultrasonic scanning measurement can be performed according to a preset set time period and duration, and the obtained ultrasonic image and physiological parameters are displayed on the monitoring device. Can better meet the needs of the clinic;
  • the ultrasonic probe used in the embodiments of the present invention can be attached to the patient's body surface for a long time to ensure that each scan is the same cut surface, so that the obtained ultrasonic image is more accurate, and the sound power risk caused by continuous scanning is avoided.
  • a plurality of ultrasonic probes can be connected to the ultrasonic function module to realize synchronous real-time scanning of the plurality of ultrasonic probes, so as to facilitate simultaneous ultrasonic scanning monitoring on multiple parts of the test subject.
  • FIG. 1 is a schematic structural view of an embodiment of a monitoring device with an ultrasonic scanning monitoring function according to the present invention
  • FIG. 2 is a schematic diagram of periodic scanning of the ultrasonic function module of FIG. 1;
  • FIG. 3 is a schematic view showing the structure of an embodiment of an ultrasonic device for monitoring according to the present invention.
  • FIG. 1 is a schematic structural diagram of an embodiment of a monitoring device with an ultrasonic scanning monitoring function according to the present invention
  • the monitoring device with an ultrasonic scanning monitoring function includes a monitoring function module 10 and an ultrasonic function module 12
  • Monitoring host 1 monitoring probe 20, ultrasonic probe 22, and display device 3, wherein:
  • the monitoring function module 10 is configured to monitor regular physiological parameters, such as: ECG parameters (electrocardiogram monitoring parameters), blood pressure, blood oxygen saturation parameters, breathing, etc.; specifically, the monitoring function module is integrated with monitoring at least the above A function module of a parameter, for example, a module integrated with an ECG monitoring function, a blood pressure monitoring function, a blood oxygen saturation parameter function, and a monitoring respiratory function.
  • ECG parameters further include parameters such as heart rate parameters, ventricular premature beats, and the like;
  • the ultrasonic function module 12 is configured to perform ultrasonic scanning monitoring on the measured object at a specified time interval, obtain an echo signal of the measured object, and perform processing; wherein the ultrasonic function module processes the echo signal of the measured object to obtain
  • hemodynamic parameters and cardiac parameters specifically, such as cardiac ejection fraction, left indoor short axis shortening rate, stroke volume per stroke, cardiac output, cardiac index, left ventricular end-diastolic volume, and left ventricle At least one of the end-systolic volume, wherein the ultrasonic function module 12 processes the echo signal of the object to be measured, which may be specifically: calculating according to the echo signal, obtaining a numerical parameter, a waveform or a trend graph, and the numerical parameter is blood.
  • the physiological parameter information such as the flow dynamics parameter and the cardiac dynamic parameter; in another embodiment, the ultrasonic function module 12 processes the echo signal of the measured object, and the ultrasonic function module can digitally process the echo signal to generate Digitally process the link signal and optionally further generate an ultrasound image of the selected or supported imaging mode, ultrasound
  • the energy module automatically calculates and analyzes the ultrasonic image obtained according to the digital processing link signal or the imaging mode supported by the ultrasonic function module, and obtains a numerical parameter, waveform or trend graph;
  • the digital processing link signal is at least one of the following: radio frequency signal, baseband Signal, envelope signal;
  • the imaging mode supported by the ultrasound function module is at least one of the following: Type B (Brightness) imaging mode, M type (Motion, one-dimensional spatial multi-point motion timing chart) imaging mode, color imaging mode, pulse wave (PW) imaging mode, elastography mode, 3D (three-dimensional) imaging mode And 4D (four-dimensional) imaging mode.
  • the monitoring probe 20 is coupled to the monitoring function module 10, and the ultrasonic probe 22 is coupled to the ultrasonic function module 12;
  • the display device 3 is coupled to the monitoring host 1 and receives the conventional monitoring physiological parameters output by the monitoring function module 10 and the processed echo signals output by the ultrasonic function module 12 and displays them.
  • the display device is further configured with:
  • the routine monitoring information display unit 30 is configured to display the normal physiological parameters monitored by the monitoring function module 10;
  • the ultrasonic information display unit 32 is configured to display the processed echo signals obtained by the ultrasonic function module 12.
  • conventional physiological parameters and processed echo signals are separately displayed by setting different display windows on the display screen of the display device 3.
  • monitoring host 1 further includes:
  • the storage module 16 is configured to store the conventional physiological parameters monitored by the monitoring function module 10 within a preset time period and/or The processed echo signals obtained by the ultrasound function module 12, the stored conventional physiological parameters and the processed echo signals can be played back on different display windows of the display device 3 for clinical diagnosis reference.
  • the ultrasonic probe 22 is an ultrasonic probe that can be closely attached to the body surface of the ward (patient), and the probe can be attached to a fixed position of the body surface of the object to be tested (such as a patient) for a long time, and can be guaranteed each time.
  • the scanning at the fixed position of the measured object is on the same cutting plane, so that the obtained ultrasonic image is more accurate.
  • a plurality of ultrasound probes 22 can be connected to the ultrasound function module 12, wherein each of the ultrasound probes 22 can be closely attached to different parts of the body surface of the ward, thereby facilitating the measurement of the subject. Ultrasound scan monitoring was performed simultaneously on multiple sites.
  • the ultrasound function module 12 can be integrated with the monitoring function module 10 and integrated in the monitoring host 1. It can be understood that, in another embodiment, the ultrasound function module 12 can be independent of the monitoring function module 10, for example, the ultrasound function module 12 and the monitoring function module 10 are fixedly connected to a monitoring host; or The ultrasound function module 12 and the monitoring function module 10 may also be independent and detachable modules, which are respectively connected to a monitoring host, and a corresponding plug-in interface is reserved at the corresponding position on the monitoring host. When you need to use some / some measurement modules, simply plug the corresponding measurement module into the monitoring host.
  • the ultrasound function module 12 can operate independently of the monitoring function module 10, which can be used alone as a portable ultrasound device.
  • the activation period and duration of the ultrasound function module 12 can be set.
  • the monitoring host 1 includes:
  • the scan period setting module 14 is configured to set a time interval during which the ultrasound function module 12 initiates scanning and/or a duration of each scan.
  • the scan period setting module 14 can also be used only to set the time interval for starting the scan or the duration of each scan.
  • the time parameter related to the scanning may be set, the parameter to be set may be directly input through the touch screen device of the display device or the keyboard, the main control board, etc., or multiple candidate supporting parameters may be stored in the system for the user.
  • each matching scan time parameter (including each scan time and scan interval) may further be preset to a default scan time parameter in a certain application scenario, for example, preset different types of alternate scan time according to different monitoring objects. Parameters, the doctor selects different scan time parameters by selecting different monitoring objects.
  • the scanning period referred to herein can be understood as a fixed interval time, a fixed scanning time, or an interval time and a scanning time which are changed according to a certain rule.
  • FIG. 2 a schematic diagram of the periodic scanning of the ultrasonic function module of FIG. 1 is shown; as can be seen from FIG. 2, the ultrasonic function module 12 is periodically activated (every time T1), and The T2 time is continuously scanned each time.
  • the user (such as a doctor or nurse) can set the values of T1 and T2 described above by the scan cycle setting module 14 in the B/M mode. For example, in a particular application, the user can set the T1 to 30 minutes, and the T2 is set to 30 seconds, then the ultrasound function module 12 will initiate the scan measurement every 30 minutes, each scan measurement lasts 30 In seconds, the results of each scan measurement can be stored in the storage module 16.
  • an embodiment of the present invention provides a monitoring method implemented on a monitoring device as described above in conjunction with FIG. 1 and FIG. 2 for simultaneously performing conventional monitoring physiological parameter monitoring and ultrasonic scanning monitoring, including The following steps:
  • the ultrasonic tissue is scanned by the ultrasonic function module 12 to obtain an echo signal of the object to be measured, and processed according to the echo signal to form an image, a waveform or a numerical parameter, and displayed on the display device 3.
  • the step of obtaining an echo signal of the measured object by ultrasonically scanning the human tissue through the ultrasonic function module is specifically as follows:
  • the at least one ultrasonic probe is directly attached to the corresponding fixed position of the body surface of the object to be tested, and the same slice at each corresponding position of the object to be tested is scanned to obtain an echo signal at the corresponding position.
  • the processing is performed according to the echo signal to form an image, a waveform or a numerical parameter, and the step of displaying on the display device is specifically:
  • the ultrasonic function module can digitally process the echo signal to generate a digital processing link signal, and can selectively further generate an ultrasonic image of the selected or supported imaging mode, and the ultrasonic function module is supported by the digital processing link signal or the ultrasonic function module.
  • the ultrasound image obtained by the imaging mode is automatically calculated and analyzed to obtain numerical parameters, waveforms or trend graphs;
  • the digital processing link signals are at least one of the following: radio frequency signals, baseband signals, envelope signals; imaging supported by the ultrasound function module
  • the mode is at least one of the following: B-type imaging mode, M-type imaging mode, color imaging mode, pulse wave imaging mode, elastography mode, 3D imaging mode, and 4D imaging mode.
  • the ultrasonic device includes an ultrasound function module 12, an ultrasound probe 22, and a display device 3, wherein:
  • the ultrasonic probe 22 is coupled to the ultrasonic function module 12 for scanning the same cut surface of the measured object to obtain an echo signal of the measured object.
  • the ultrasonic probe is directly attached to the body of the measured object.
  • the fixed position of the table is used to ensure that the same slice at the fixed position of the object to be tested is scanned, wherein the ultrasound function module 12 processes the echo signal of the object to be measured, such as a cardiac ejection fraction and a left indoor short axis. At least one of a shortening rate, a stroke volume, a cardiac output, a cardiac index, a left ventricular end-diastolic volume, and a left ventricular end-systolic volume;
  • the ultrasonic function module 12 is configured to perform ultrasonic scanning monitoring on the measured object at a predetermined time interval, and obtain an echo signal of the measured object from the ultrasonic probe 22 and process the same;
  • the display device 3 is coupled to the ultrasound function module 12 and receives the processed echo signals output by the ultrasound function module 12 and displays them.
  • the ultrasound function module 12 further includes:
  • the scanning period setting module 14 is configured to set a time interval for the ultrasound function module 12 to start the ultrasound scanning and/or a duration of each scanning.
  • a time interval for the ultrasound function module 12 to start the ultrasound scanning and/or a duration of each scanning.
  • the storage module 16 is configured to store the processed echo signals obtained by the ultrasound function module 12 within a preset time.
  • the ultrasonic function module 12 processes the echo signal of the object to be measured as: calculating according to the echo signal, and obtaining a numerical parameter, a waveform or a trend graph.
  • the ultrasonic function module 12 processes the echo signal of the object to be measured as: digitally processing the echo signal to generate a digital processing link signal, and calculating a numerical value according to the digital processing link signal. Parameters in the form of waveforms, trend graphs, etc., for monitoring purposes; or the ultrasound function module 12 obtains ultrasound images based on the digital processing link signals and according to the selected imaging mode, and then obtains numerical parameters, waveforms, or trends based on the ultrasound image calculations.
  • the imaging mode supported by the ultrasound function module 12 is at least one of the following: B-type imaging mode, M-type imaging mode, color imaging mode, pulse wave imaging mode, elastography mode, 3D imaging mode, and 4D imaging mode.
  • the display device 3 is further provided with:
  • the monitoring information display unit 34 is configured to display a numerical parameter, a waveform or a trend graph obtained by the ultrasound function module 12 according to the echo signal;
  • the ultrasonic image display unit 36 is configured to display an ultrasound image obtained by the ultrasound function module 12 on the selected imaging mode according to the echo signal.
  • the display device 3 is provided with a display screen, and at least one window of the display screen is used for displaying the numerical parameter, waveform or trend graph according to the monitoring information display unit 34 by default; the display screen is provided with a window, which can The ultrasound image is displayed according to the ultrasound image display unit 36 after being triggered.
  • the window displaying the ultrasound image is a window independent of the numerical parameter, waveform or trend graph.
  • the window displaying the ultrasound image is a window or one of the numerical parameters, waveforms or trend graphs, and the display window can be multiplexed to display the ultrasound image and the numerical parameters, waveforms or respectively in different time periods.
  • Trend is a window or one of the numerical parameters, waveforms or trend graphs, and the display window can be multiplexed to display the ultrasound image and the numerical parameters, waveforms or respectively in different time periods.
  • the triggering mentioned therein can be realized by using an operation key or an option, that is, by touching the operation key or selecting a corresponding option, the display screen of the display device displays an ultrasound image for the doctor to view.
  • the ultrasound probe 22 is a plurality of ultrasound probes connected to the ultrasound function module 12, each of the ultrasound probes 22 being attached to different parts of the body surface of the ward, and being implemented by the plurality of ultrasound probes 22 Simultaneous real-time scanning of different parts of the subject.
  • the function of the ultrasonic scanning monitoring is integrated into a conventional monitoring device, and the ultrasonic scanning measurement can be performed according to a preset set time period and duration, and the obtained ultrasonic image and physiological parameters are displayed on the monitoring device. Can better meet the needs of the clinic;
  • the ultrasonic probe used in the embodiments of the present invention can be attached to the patient's body surface for a long time to ensure that each scan is the same cut surface, so that the obtained ultrasonic image is more accurate, and the sound power risk caused by continuous scanning is avoided.
  • a plurality of ultrasonic probes 22 can be connected to the ultrasonic function module to realize synchronous real-time scanning of the plurality of ultrasonic probes, so as to facilitate simultaneous ultrasonic scanning monitoring on multiple parts of the test subject.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory (Read-Only) Memory, ROM) or random access memory (Random Access Memory, RAM), etc.
  • the coupling referred to herein includes various contact and contactless connections that can deliver signals/energy.
  • the ultrasound host and the monitoring function module integrated into the ultrasound host or the ultrasound function module and the monitoring function module can be integrated into other medical devices or In the system, for example, the ultrasound function module and the monitoring function module are integrated into the CT and MRI devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种具有超声扫描监测功能的监护设备,其包括监护功能模块(10)、监护探头(20)、超声功能模块(12)、超声探头(22)及显示设备(3),其中,监护功能模块(10)用于监测常规生理参数;超声功能模块(12)用于对被测者进行超声扫描监测并获得相应的超声图像及其生理参数;所述监护探头(20)耦接于所述监护功能模块(10)上,所述超声探头(22)耦接于所述超声功能模块(12)上;所述显示设备(3)耦接于所述监护功能模块(10)及超声功能模块(12),接收所述常规监护生理参数以及所述超声图像及其生理参数并显示。还公开了一种在上述监护设备上实现的监护方法以及一种用于监护的超声装置。通过上述设备和方法,可以在进行常规监护生理参数监测的同时,按照预先设置的时间周期和持续时间进行超声扫描,获得超声图像及生理参数并显示出来,更好地满足临床的需要。

Description

具有超声扫描监测功能的监护设备、超声装置及相应方法 技术领域
本发明涉及医疗设备领域,尤其涉及一种具有超声扫描监测功能的监护设备、超声装置及相应方法。
背景技术
在急危重症患者的诊断和临床监护中,经常会使用可以监测病人生命体征的监护仪。现有监护仪提供的心脏监测信息,包含有心电监护(ECG或EKG)、血压、血氧饱和度(SPO2)等参数。其中,EKG参数很容易受到干扰,例如电极接触不良、人为操作不当等都可能导致心电测量参数偏离实际情况,从而产生的虚警会导致报警疲劳,影响医生对突发状况处理的及时性。另一方面,血压参数一般以数值型参数出现在监护仪显示界面上,存在不连续的问题,且不能直观的反应心动状态。例如出现低血压时,无法判断出是心衰还是血容量不足。而SPO2参数存在不稳定及不实时的缺陷。
在一些临床场合,例如非心脏的手术中对心脏的监测、转运病人的监测、重症监护(ICU)科室中的监测等,需要长时间监测病人心脏组织运动的实时参数,如对射血分数、左室短轴缩短率等血流动力学参数进行无创监测。另外,还需要在第一时间准确判断病人的心动状态。这类参数不能通过一般的监护仪检测到,需要靠超声诊断系统才能获得。
而传统的超声诊断系统仅设置在超声科室内,其需要医生手持超声探头对病人检查部位进行扫描后获得超声图像,供进行短时间诊断使用。对于上述一些需要对病人各项生理参数(其中包括器官组织的实时信息,如血流动力学参数)进行长时间的监测的临床场合,现有这种超声诊断系统尚不能应用到这类的长时间监护中,很难满足临床更广泛的需求。另外,在现有技术中,对心脏的血流动力学的超声扫描,其探头常采用放置于病人食道的探头,如果长时间采用经食道的探头对病人进行监护,会给病人带来很大的不舒适性。
发明内容
为了消除现有技术的上述缺陷,本发明提出了一种具有超声扫描监测功能的监护设备、超声装置及相应方法,其综合了监护仪及超声扫描系统的功能,可以根据需要周期性地对被测者进行超声扫描,并将获得的超声图像及参数在该监护设备上显示出来,且不会给病人带来不舒适。
为了解决上述技术问题,本发明实施例提供了一种具有超声扫描监测功能的监护设备,其包含有监护功能模块、超声功能模块、监护探头、超声探头和显示设备,其中,
监护功能模块,用于监测常规生理参数;
超声功能模块,用于对被测对象在指定时间间隔下进行超声扫描监测,获得被测对象的回波信号并进行处理;
监护探头耦接于监护功能模块上,超声探头耦接于超声功能模块上;
显示设备耦接于监护功能模块及超声功能模块,接收监护功能模块输出的常规监护生理参数以及超声功能模块输出的经处理后的回波信号并显示。
进一步地,超声探头直接紧密贴合在被测对象的体表的固定位置上,以对被测对象固定位置处的同一切面进行扫描。
进一步的,进一步包括:扫描周期设置模块,用于设置超声功能模块启动超声扫描的时间间隔和/或每次扫描的持续时间。
进一步的,进一步包括:
存储模块,用于存储预设时间内监护功能模块所监测到常规生理参数和/或超声功能模块所获得的经处理后的回波信号。
进一步的,超声功能模块对被测对象的回波信号进行处理为:对回波信号进行数字处理获得数字处理环节信号,并根据数字处理环节信号计算获得数值型参数、波形或趋势图,数字处理环节信号为射频信号、基带信号、包络信号其中之一。
进一步的,超声功能模块对被测对象的回波信号进行处理为:超声功能模块对回波信号进行数字处理生成数字处理环节信号,超声功能模块对数字处理环节信号或超声功能模块所支持的成像模式获得的超声图像进行自动计算分析,获得数值型参数、波形或趋势图;数字处理环节信号为如下的至少一种:射频信号、基带信号、包络信号;超声功能模块所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
进一步的,显示设备上进一步设置有:
常规监护信息显示单元,用于显示监护功能模块所监测到常规生理参数;
超声信息显示单元,用于显示超声功能模块所获得的经处理后的回波信号。
进一步的,超声探头为连接在超声功能模块上的多个超声探头,每一超声探头贴合在被监护者体表的不同部位,通过多个超声探头实现同步实时扫描。
进一步的,监护功能模块所监测的常规生理参数包括:心电监护参数、血压、血氧饱和度参数及呼吸中至少一个,超声功能模块根据被测对象的回波信号进行处理后得到心脏射血分数、左室内短轴缩短率、每搏排血量、心排血量、心脏指数、左室舒张末期容积及左室收缩末期容积中至少一个。
进一步的,超声功能模块与监护功能模块为相互独立的模块。
进一步的,超声功能模块与监护功能模块直接或者通过一监护主机相连。
进一步的,超声功能模块与监护功能模块为相互独立的可拆卸的模块,其均与一监护主机实现插拨连接,在监护主机上相应位置上预留有相对应的插拨接口。
相应地,本发明实施例另一方面,提供一种监护方法,其在前述的监护设备上实现,用于同时实现常规监护生理参数监测以及超声扫描监测,方法,包括如下步骤:
通过监护功能模块对被监测对象的常规生理参数进行监测,并对所获得的常规生理参数在显示设备上进行显示;
通过超声功能模块对人体组织进行超声扫描,获得被测对象的回波信号,并根据回波信号进行处理,形成图像、波形或数值型参数,并在显示设备上显示。
通过超声功能模块对人体组织进行超声扫描,获得被测对象的回波信号的步骤具体为:
将至少一个超声探头直接紧密贴合在被测对象的体表的对应的固定位置上,对被测对象各对应位置处的同一切面进行扫描,获得对应的位置处的回波信号。
进一步的,并根据回波信号进行处理,形成图像、波形或数值型参数,并在显示设备上显示的步骤包括:
对回波信号进行数字处理获得数字处理环节信号,并根据数字处理环节信号计算获得数值型参数、波形或趋势图。
进一步的,数字处理环节信号为射频信号、基带信号、包络信号其中之一。
进一步的,并根据回波信号进行处理,形成图像、波形或数值型参数,并在显示设备上显示的步骤具体为:
超声功能模块对回波信号进行数字处理生成数字处理环节信号,超声功能模块对数字处理环节信号或超声功能模块所支持的成像模式获得的超声图像进行自动计算分析,获得数值型参数、波形或趋势图;数字处理环节信号为如下的至少一种:射频信号、基带信号、包络信号;超声功能模块所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
相应地,本发明实施例再一方面,提供一种用于监护的超声装置,超声装置包括有超声功能模块、超声探头以及显示设备,其中:
超声探头耦接于超声功能模块上,用于对被测对象的同一切面进行扫描,获得被测对象的回波信号;
超声功能模块,用于对被测对象在预定时间间隔下进行超声扫描监测,对从超声探头获得被测对象的回波信号并进行处理;
显示设备耦接于超声功能模块上,接收超声功能模块输出的经处理后的回波信号并显示。
进一步的,超声探头系直接紧密贴合在被测对象的体表的固定位置上,以对被测对象固定位置处的同一切面进行扫描。
进一步的,超声功能模块进一步包括:
扫描周期设置模块,用于设置超声功能模块启动超声扫描的时间间隔和/或每次扫描的持续时间。
进一步的,超声功能模块进一步包括:
存储模块,用于存储预设时间内超声功能模块所获得的经处理后的回波信号。
进一步的,超声功能模块对被测对象的回波信号进行处理包括:根据回波信号进行计算,获得数值型参数、波形或趋势图。
进一步的,超声功能模块对被测对象的回波信号进行处理为:超声功能模块对回波信号进行数字处理生成数字处理环节信号,超声功能模块对数字处理环节信号或超声功能模块所支持的成像模式获得的超声图像进行自动计算分析,获得数值型参数、波形或趋势图;数字处理环节信号为如下的至少一种:射频信号、基带信号、包络信号;超声功能模块所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
进一步的,显示设备上进一步设置有:
监护信息显示单元,用于显示超声功能模块根据回波信号获得的数值型参数、波形或趋势图;
超声图像显示单元,用于显示超声功能模块根据回波信号在所选择的成像模式上获得的超声图像。
进一步的,超声探头为连接在超声功能模块上的多个超声探头,每一超声探头贴合在被监护者体表的不同部位,通过多个超声探头实现同步实时扫描。
进一步的,超声功能模块根据被测对象的回波信号进行处理后得到心脏射血分数、左室内短轴缩短率、每搏排血量、心排血量、心脏指数、左室舒张末期容积及左室收缩末期容积的回波信号中至少一个。
进一步的,显示设备上设置有显示屏幕,显示屏幕的至少一个窗口用于默认的显示根据监护信息显示单元显示数值型参数、波形或趋势图;显示屏幕设置有一个窗口,其可以在经触发后根据超声图像显示单元显示超声图像。
进一步的,显示超声图像的窗口为独立于显示数值型参数、波形或趋势图的窗口。
进一步的,显示超声图像的窗口为显示数值型参数、波形或趋势图的窗口或其中之一。
本发明实施例提供的具有超声扫描监测功能的监护设备、超声装置及相应方法,具有如下有益效果:
本发明的实施例中,将超声扫描监测的功能集成到常规的监护设备中,可以按照预先的设置时间周期和持续时间进行超声扫描测量,将获得超声图像及生理参数在监护设备上显示出来,可以更好地满足临床的需要;
本发明实施例中所采用的超声探头,可以长时间贴合于病人体表,保证每次扫描都是同一切面,使获得的超声图像更加准确,避免了连续扫描带来的声功率风险以及现有技术中经食道探头的不舒适感;
另外,本发明的实施例中,在超声功能模块上可以连接多个超声探头,以实现多个超声探头的同步实时扫描,便于对被测者的多个部位同时进行超声扫描监测。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种具有超声扫描监测功能的监护设备的一个实施例的结构示意图;
图2为图1中超声功能模块进行周期性扫描的示意图;
图3为本发明一种用于监护的超声装置的一个实施例的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,是本发明一种具有超声扫描监测功能的监护设备的一个实施例的结构示意图;该具有超声扫描监测功能的监护设备,其包括包含有监护功能模块10及超声功能模块12的监护主机1、监护探头20、超声探头22以及显示设备3,其中:
监护功能模块10,用于监测常规生理参数,常规生理参数包括诸如:ECG参数(心电监护参数)、血压、血氧饱和度参数及呼吸等;具体地,监护功能模块为集成有监测上述至少一种参数的功能模块,具体例如集成有ECG监护的功能、监护血压功能、监护血氧饱和度参数功能及监护呼吸功能等的模块。其中,ECG参数进一步包括诸如心率参数、室性早搏参数等;
超声功能模块12,用于对被测对象在指定时间间隔下进行超声扫描监测,获得被测对象的回波信号并进行处理;其中,超声功能模块对被测对象的回波信号进行处理后得到诸如血流动力学参数及心动参数等,具体地,包括诸如心脏射血分数、左室内短轴缩短率、每搏排血量、心排血量、心脏指数、左室舒张末期容积及左室收缩末期容积中至少一个,其中,超声功能模块12对被测对象的回波信号进行处理可以具体为:根据回波信号进行计算,获得数值型参数、波形或趋势图,数值型参数即为血流动力学参数及心动参数等生理参数信息;在另一个实施例中,超声功能模块12对被测对象的回波信号进行处理可以具体为:超声功能模块可以对回波信号进行数字处理以生成数字处理环节信号,并可选择性的进一步生成所选或者所支持成像模式的超声图像,超声功能模块根据数字处理环节信号或超声功能模块所支持的成像模式获得的超声图像进行自动计算分析,获得数值型参数、波形或趋势图;数字处理环节信号为如下的至少一种:射频信号、基带信号、包络信号;超声功能模块所支持的成像模式为如下的至少一种: B型(Brightness,辉度)成像模式、M型(Motion,一维空间多点运动时序图)成像模式、彩色成像模式、脉冲波(PW)成像模式、弹性成像模式、3D(三维)成像模式及4D(四维)成像模式。
监护探头20耦接于监护功能模块10上,超声探头22耦接于超声功能模块12上;
显示设备3,其耦接于监护主机1上,接收监护功能模块10输出的常规监护生理参数以及超声功能模块12输出的经处理后的回波信号并显示。
具体地,显示设备上进一步设置有:
常规监护信息显示单元30,用于显示监护功能模块10所监测到的常规生理参数;
超声信息显示单元32,用于显示超声功能模块12所获得的经处理后的回波信号。
在一个具体的实施中,通过在显示设备3的显示屏幕上设置不同的显示窗口,来分别显示常规生理参数及经处理后的回波信号(图像、波形或数值型参数)。
进一步的,监护主机1还包括:
存储模块16,用于存储预设时间内监护功能模块10所监测到的常规生理参数和/或 超声功能模块12所获得的经处理后的回波信号,上述存储的常规生理参数及经处理后的回波信号,可以在显示设备3的不同显示窗口上进行回放,供临床诊断参考。
其中,超声探头22为可紧密贴合在被监护者(病人)体表的超声探头,该探头可以长时间地贴合在被测对象(如病人)体表的固定位置上,可以保证每次对被测对象固定位置处的扫描都是在同一切面上,使获得的超声图像更加准确。
另外,在一个实施例中,在超声功能模块12上可连接多个超声探头22,其中每一超声探头22均可紧密贴合在被监护者体表的不同部位,从而便于对被测者的多个部位同时进行超声扫描监测。
在上述的实施例中,超声功能模块12可以与监护功能模块10集成为一体,集成在监护主机1中。可以理解的是,在另外的实施例中,超声功能模块12可以与监护功能模块10为相互独立的模块,例如,超声功能模块12与监护功能模块10均固定连接在一监护主机上;或者,超声功能模块12与监护功能模块10也可以是相互独立的可拆卸的模块,其均与一监护主机实现插拨连接,在该监护主机上相应位置上预留有相对应的插拨接口,当需要使用某个/某些测量模块时,只需将相应的测量模块插接到该监护主机上即可。
可以理解的是,在其他的实施例中,超声功能模块12可独立于监护功能模块10工作,超声功能模块12可作为便携超声设备单独使用。
在一些实施例中,可以对超声功能模块12启动周期以及持续时间进行设置,具体地,监护主机1包括有:
扫描周期设置模块14,用于设置超声功能模块12启动扫描的时间间隔和/或每次扫描的持续时间。当然,扫描周期设置模块14也可以仅用于设置启动扫描的时间间隔或者每次扫描的持续时间。设置上述与扫描相关的时间参数时,可以通过显示设备的触摸屏装置或者键盘、主控板等装置直接输入想要设定的参数,也可以在系统中存储多个备选的配套参数供使用者选择,每一配套的扫描时间参数(包括每次扫描时间和扫描间隔)进一步可以对应预设为某一种应用场景下的默认扫描时间参数,比如根据不同监护对象预设不同类型备选扫描时间参数,医生通过选择不同监护对象即对应选择不同的扫描时间参数。另一方面,这里所说的扫描周期,可以理解为将其设定成固定间隔时间、固定扫描时间,也可以是根据一定规则进行变化的间隔时间和扫描时间。
可参见图2所示,示出了图1中超声功能模块进行周期性扫描的一个示意图;从图2中可以看出,该超声功能模块12周期性地进行启动(每隔T1时间),且每次持续扫描T2时间。使用者(如医生或护士)在B/M模式下可以通过上述的扫描周期设置模块14设置上述T1及T2的值。例如,在一种特定应用场合中,使用者可以将该T1设置为30分钟,该T2设置为30秒,则该超声功能模块12就会每隔30分钟启动扫描测量,每次扫描测量持续30秒,每次扫描测量的结果均可以在存储模块16中存储。
相应地,本发明实施例提供了一种监护方法,其在如前述结合附图1及附图2所说明的监护设备上实现,用于同时实现常规监护生理参数监测以及超声扫描监测,其包括如下步骤:
通过监护功能模块10对被监测对象的常规生理参数进行监测,并对所获得的常规生理参数在显示设备上进行显示;
通过超声功能模块12对人体组织进行超声扫描,获得被测对象的回波信号,并根据回波信号进行处理,形成图像、波形或数值型参数,并在显示设备3上显示。
其中,通过超声功能模块对人体组织进行超声扫描,获得被测对象的回波信号的步骤具体为:
将至少一个超声探头直接紧密贴合在被测对象的体表的对应的固定位置上,对被测对象各对应位置处的同一切面进行扫描,获得对应的位置处的回波信号。
其中,并根据回波信号进行处理,形成图像、波形或数值型参数,并在显示设备上显示的步骤具体为:
根据回波信号直接进行计算,获得数值型参数、波形或趋势图,并在显示设备上进行显示。
或者,在另一个实施例中,并根据回波信号进行处理,形成图像、波形或数值型参数,并在显示设备上显示的步骤具体为:
超声功能模块可以对回波信号进行数字处理以生成数字处理环节信号,并可选择性的进一步生成所选或者所支持成像模式的超声图像,超声功能模块根据数字处理环节信号或超声功能模块所支持的成像模式获得的超声图像进行自动计算分析,获得数值型参数、波形或趋势图;数字处理环节信号为如下的至少一种:射频信号、基带信号、包络信号;超声功能模块所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
其中,更进一步的细节可以参考对附图1及附图2的说明,在此不进行赘述。
如图3所示,示出了本发明一种用于监护的超声装置的一个实施例的结构示意图。从中可以看出,该超声装置包括有超声功能模块12、超声探头22以及显示设备3,其中:
超声探头22耦接于超声功能模块12上,用于对被测对象的同一切面进行扫描,获得被测对象的回波信号,具体地,超声探头系直接紧密贴合在被测对象的体表的固定位置上,以保证对被测对象固定位置处的同一切面进行扫描,其中,超声功能模块12根据被测对象的回波信号进行处理后得到诸如心脏射血分数、左室内短轴缩短率、每搏排血量、心排血量、心脏指数、左室舒张末期容积及左室收缩末期容积中至少一个;
超声功能模块12,用于对被测对象在预定时间间隔下进行超声扫描监测,对从超声探头22获得被测对象的回波信号并进行处理;
显示设备3耦接于超声功能模块12上,接收超声功能模块12输出的经处理后的回波信号并显示。
其中,超声功能模块12进一步包括:
扫描周期设置模块14,用于设置超声功能模块12启动超声扫描的时间间隔和/或每次扫描的持续时间,具体的设置可以参见前述对图2的说明;
存储模块16,用于存储预设时间内超声功能模块12所获得的经处理后的回波信号。
其中,超声功能模块12对被测对象的回波信号进行处理为:根据回波信号进行计算,获得数值型参数、波形或趋势图。
或者,在另一个实施例中,,超声功能模块12对被测对象的回波信号进行处理为:将回波信号进行数字处理以生成数字处理环节信号,根据数字处理环节信号计算获得数值型、波形、趋势图等形式的参数,以用于监护目的;或者超声功能模块12根据数字处理环节信号并根据所选择的成像模式获得超声图像,再根据超声图像计算,获得数值型参数、波形或趋势图;超声功能模块12所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
显示设备3上进一步设置有:
监护信息显示单元34,用于显示超声功能模块12根据回波信号获得的数值型参数、波形或趋势图;
超声图像显示单元36,用于显示超声功能模块12根据回波信号在所选择的成像模式上获得的超声图像。
在具体实施例中,显示设备3上设置有显示屏幕,显示屏幕的至少一个窗口用于默认显示根据监护信息显示单元34的数值型参数、波形或趋势图;显示屏幕设置有一个窗口,其可以在经触发后根据超声图像显示单元36显示超声图像。
其中,显示超声图像的窗口为独立于显示数值型参数、波形或趋势图的窗口。或者
显示超声图像的窗口为显示数值型参数、波形或趋势图的窗口或其中之一,即可对对显示窗口进行复用,用于在不同的时间段分别显示超声图像以及数值型参数、波形或趋势图。
其中所提到的经触发可以通过采用操作键或选项来实现,即通过触动操作键或选择一个对应的选项,使显示设备的显示屏幕显示超声图像,以利医生进行查看。
在其他的一些实施例中,超声探头22为连接在超声功能模块12上的多个超声探头,每一超声探头22贴合在被监护者体表的不同部位,通过多个超声探头22实现对被测者不同部位的同步实时扫描。
本发明的实施例中,将超声扫描监测的功能集成到常规的监护设备中,可以按照预先的设置时间周期和持续时间进行超声扫描测量,将获得超声图像及生理参数在监护设备上显示出来,可以更好地满足临床的需要;
本发明实施例中所采用的超声探头,可以长时间贴合于病人体表,保证每次扫描都是同一切面,使获得的超声图像更加准确,避免了连续扫描带来的声功率风险以及现有技术中经食道探头的不舒适感;
另外,本发明的实施例中,在超声功能模块上可以连接多个超声探头22,以实现多个超声探头的同步实时扫描,便于对被测者的多个部位同时进行超声扫描监测。
可以理解的是,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。本文所称的耦接,包括可以传递信号/能量的各种接触式和非接触式连接方式。本文虽然定义了监护主机,但可以理解的是,也可以通过超声主机和集成到超声主机的监护功能模块来实现相似的目的,还可以是超声功能模块和监护功能模块一同集成到其他医疗设备或系统中,比如将超声功能模块和监护功能模块集成到CT、MRI设备中。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (30)

  1. 一种具有超声扫描监测功能的监护设备,其包含有监护功能模块(10)、超声功能模块(12)、监护探头(20)、超声探头(22)和显示设备(3),其特征在于:
    所述监护功能模块(10),用于监测常规生理参数;
    所述超声功能模块(12),用于对被测对象在预定时间间隔下进行超声扫描监测,获得被测对象的回波信号并进行处理;
    所述监护探头(20)耦接于所述监护功能模块上,所述超声探头耦接于所述超声功能模块上;
    所述显示设备(3)耦接于所述监护功能模块及超声功能模块上,接收所述监护功能模块输出的常规监护生理参数以及所述超声功能模块输出的经处理后的回波信号并显示。
  2. 如权利要求1所述的具有超声扫描检测功能的监护设备,其特征在于,所述超声探头(22)直接紧密贴合在被测对象的体表的固定位置上,以对被测对象所述固定位置处的同一切面进行扫描。
  3. 如权利要求1所述的具有超声扫描监测功能的监护设备,其特征在于,进一步包括:
    扫描周期设置模块(14),用于设置所述超声功能模块启动超声扫描的时间间隔和/或每次扫描的持续时间。
  4. 如权利要求3所述的具有超声扫描监测功能的监护设备,其特征在于,进一步包括:
    存储模块(16),用于存储预设时间内所述监护功能模块所监测到常规生理参数和/或所述超声功能模块所获得的经处理后的回波信号。
  5. 如权利要求3所述的具有超声扫描监测功能的监护设备,其特征在于,所述超声功能模块(12)对被测对象的回波信号进行处理为:对所述回波信号进行数字处理获得数字处理环节信号,并根据数字处理环节信号计算获得数值型参数、波形或趋势图,所述数字处理环节信号为射频信号、基带信号、包络信号其中之一。
  6. 如权利要求3所述的具有超声扫描监测功能的监护设备,其特征在于,所述超声功能模块(12)对被测对象的回波信号进行处理为:将所述回波信号进行数字处理以获得数字处理环节信号,根据数字处理环节信号及所选择的成像模式获得超声图像,并根据所述超声图像计算获得数值型参数、波形或趋势图;所述超声功能模块所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
  7. 如权利要求1所述的具有超声扫描监测功能的监护设备,其特征在于,所述显示设备上进一步设置有:
    常规监护信息显示单元(30),用于显示所述监护功能模块所监测到常规生理参数;
    超声信息显示单元(32),用于显示所述超声功能模块所获得的经处理后的回波信号。
  8. 如权利要求1至7任一项所述的具有超声扫描监测功能的监护设备,其特征在于,所述超声探头为连接在所述超声功能模块上的多个超声探头,所述每一超声探头贴合在被监护者体表的不同部位,通过所述多个超声探头实现同步实时扫描。
  9. 如权利要求1至7任一项所述的具有超声扫描监测功能的监护设备,其特征在于,所述监护功能模块所监测的常规生理参数包括:心电监护参数、血压、血氧饱和度参数及呼吸中至少一个,所述超声功能模块根据被测对象的回波信号进行处理后得到心脏射血分数、左室内短轴缩短率、每搏排血量、心排血量、心脏指数、左室舒张末期容积及左室收缩末期容积中至少一个。
  10. 如权利要求要8所述的具有超声扫描监测功能的监护设备,其特征在于,所述监护功能模块与超声功能模块集成在一监护主机中。
  11. 如权利要求8所述的具有超声扫描监测功能的监护设备,其特征在于,所述超声功能模块与所述监护功能模块为相互独立的模块。
  12. 如权利要求11所述的具有超声扫描监测功能的监护设备,其特征在于,所述超声功能模块与所述监护功能模块直接或者通过一监护主机相连。
  13. 如权利要求8所述的具有超声扫描监测功能的监护设备,其特征在于,所述超声功能模块与所述监护功能模块为相互独立的可拆卸的模块,其均与一监护主机实现插拨连接,在所述监护主机上相应位置上预留有相对应的插拨接口。
  14. 一种监护方法,其在如权利要求1至权利要求13任一项所述的监护设备上实现,用于同时实现常规监护生理参数监测以及超声扫描监测,其特征在于,包括如下步骤:
    通过监护功能模块对被监测对象的常规生理参数进行监测,并对所获得的常规生理参数在显示设备上进行显示;
    通过超声功能模块对人体组织进行超声扫描,获得被测对象的回波信号,并根据所述回波信号进行处理,形成图像、波形或数值型参数,并在所述显示设备上显示。
  15. 如权利要求14所述的监护方法,其特征在于,所述通过超声功能模块对人体组织进行超声扫描,获得被测对象的回波信号的步骤具体为:
    将至少一个超声探头直接紧密贴合在被测对象的体表的对应的固定位置上,对所述被测对象各对应位置处的同一切面进行扫描,获得对应的位置处的回波信号。
  16. 如权利要求14或15所述的监护方法,其特征在于,所述根据回波信号进行处理,形成图像、波形或数值型参数的步骤包括:
    对所述回波信号进行数字处理获得数字处理环节信号,并根据数字处理环节信号计算获得数值型参数、波形或趋势图。
  17. 如权利要求16所述的监护方法,其特征在于,所述数字处理环节信号为射频信号、基带信号、包络信号其中之一。
  18. 如权利要求14或15所述的监护方法,其特征在于,所述根据回波信号进行处理,形成图像、波形或数值型参数,并在所述显示设备上显示的步骤具体包括:
    将所述回波信号进行数字处理以获得数字处理环节信号,根据数字处理环节信号及所选择的成像模式获得超声图像,并根据所述超声图像计算获得数值型参数、波形或趋势图;所述超声功能模块所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
  19. 一种用于监护的超声装置,其特征在于,所述超声装置包括有超声功能模块(12)、超声探头(22)以及显示设备(3),其中:
    所述超声探头(22)耦接于所述超声功能模块上,用于对被测对象的同一切面进行扫描,获得被测对象的回波信号;
    所述超声功能模块(12),用于对被测对象在预定时间间隔下进行超声扫描监测,对从所述超声探头获得被测对象的回波信号并进行处理;
    所述显示设备(3)耦接于所述超声功能模块上,接收所述超声功能模块输出的经处理后的回波信号并显示。
  20. 如权利要求19所述的一种用于监护的超声装置,其特征在于,所述超声探头直接紧密贴合在被测对象的体表的固定位置上,以对被测对象所述固定位置处的同一切面进行扫描。
  21. 如权利要求20所述的一种用于监护的超声装置,其特征在于,所述超声功能模块进一步包括:
    扫描周期设置模块(14),用于设置所述超声功能模块启动超声扫描的时间间隔和/或每次扫描的持续时间。
  22. 如权利要求21所述的一种用于监护的超声装置,其特征在于,所述超声功能模块进一步包括:
    存储模块(16),用于存储预设时间内所述超声功能模块所获得的经处理后的回波信号。
  23. 如权利要求22所述的一种用于监护的超声装置,其特征在于,所述超声功能模块对被测对象的回波信号进行处理包括:根据所述回波信号进行计算,获得数值型参数、波形或趋势图。
  24. 如权利要求22所述的一种用于监护的超声装置,其特征在于,所述超声功能模块对被测对象的回波信号进行处理包括:将所述回波信号进行数字处理以获得数字处理环节信号,根据数字处理环节信号及所选择的成像模式获得超声图像,并根据所述超声图像或者数字处理环节信号计算获得数值型参数、波形或趋势图;所述超声功能模块所支持的成像模式为如下的至少一种: B型成像模式、M型成像模式、彩色成像模式、脉冲波成像模式、弹性成像模式、3D成像模式及4D成像模式。
  25. 如权利要求23或24所述的一种用于监护的超声装置,其特征在于,所述显示设备上进一步设置有:
    监护信息显示单元(34),用于显示所述超声功能模块根据所述回波信号获得的数值型参数、波形或趋势图;
    超声图像显示单元(36),用于显示所述超声功能模块根据所述回波信号在所选择的成像模式上获得的超声图像。
  26. 如权利要求19至24任一项所述的一种用于监护的超声装置,其特征在于,所述超声探头为连接在所述超声功能模块上的多个超声探头,所述每一超声探头贴合在被监护者体表的不同部位,通过所述多个超声探头实现同步实时扫描。
  27. 如权利要求26所述的一种用于监护的超声装置,其特征在于,所述超声功能模块根据被测对象的回波信号进行处理后得到心脏射血分数、左室内短轴缩短率、每搏排血量、心排血量、心脏指数、左室舒张末期容积及左室收缩末期容积中至少一个。
  28. 如权利要求25所述的一种用于监护的超声装置,其特征在于,所述显示设备上设置有显示屏幕,所述显示屏幕的至少一个窗口用于默认的根据所述监护信息显示单元显示所述数值型参数、波形或趋势图;所述显示屏幕设置有一个窗口,其可以在经触发后根据所述超声图像显示单元显示所述超声图像。
  29. 如权利要求28所述的一种用于监护的超声装置,其特征在于,所述显示所述超声图像的窗口为独立于所述显示数值型参数、波形或趋势图的窗口。
  30. 如权利要求28所述的一种用于监护的超声装置,其特征在于,所述显示所述超声图像的窗口为所述显示数值型参数、波形或趋势图的窗口或其中之一。
PCT/CN2013/083100 2013-03-19 2013-09-09 具有超声扫描监测功能的监护设备、超声装置及相应方法 WO2014146409A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/860,500 US20160183921A1 (en) 2013-03-19 2015-09-21 Monitor with Ultrasonic Scanning and Monitoring Functions, Ultrasonic Apparatus, and Corresponding Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310087441.5 2013-03-19
CN201310087441.5A CN104055532A (zh) 2013-03-19 2013-03-19 具有超声扫描监测功能的监护设备、超声装置及相应方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/860,500 Continuation US20160183921A1 (en) 2013-03-19 2015-09-21 Monitor with Ultrasonic Scanning and Monitoring Functions, Ultrasonic Apparatus, and Corresponding Method

Publications (1)

Publication Number Publication Date
WO2014146409A1 true WO2014146409A1 (zh) 2014-09-25

Family

ID=51543665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083100 WO2014146409A1 (zh) 2013-03-19 2013-09-09 具有超声扫描监测功能的监护设备、超声装置及相应方法

Country Status (3)

Country Link
US (1) US20160183921A1 (zh)
CN (1) CN104055532A (zh)
WO (1) WO2014146409A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654292A (zh) * 2018-09-13 2021-04-13 深圳迈瑞生物医疗电子股份有限公司 台式超声设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6382174B2 (ja) * 2015-11-13 2018-08-29 日本光電工業株式会社 生体情報モニタ、生体情報測定システム、及びプログラム
JP6811595B2 (ja) * 2015-12-07 2021-01-13 日本光電工業株式会社 生体情報モニタ、生体情報ソフトウェア制御方法、及びプログラム
CN105769468B (zh) * 2016-01-30 2018-08-24 张美玲 一种超声监护外科手术护理装置
CN105763702B (zh) * 2016-03-30 2019-07-26 努比亚技术有限公司 基于移动终端的三维成像方法和装置
CN106713771A (zh) * 2017-03-30 2017-05-24 努比亚技术有限公司 一种拍照处理方法及装置、终端
CN110090015B (zh) * 2018-01-31 2023-07-04 深圳迈瑞生物医疗电子股份有限公司 一种监护设备及其防干扰装置
USD911516S1 (en) 2018-06-19 2021-02-23 Merit Medical Systems, Inc. Hemostasis device
CN111096746A (zh) * 2018-10-25 2020-05-05 四川大学华西医院 微波热声超声双模态成像评估肝脏水分含量的装置和方法
CN113040823B (zh) * 2019-12-27 2023-03-21 深圳迈瑞生物医疗电子股份有限公司 一种超声成像设备及超声图像的分析方法
CN112790788B (zh) * 2021-03-17 2021-06-29 广东恒腾科技有限公司 一种便携紧凑式无线超声检测器
CN113261989A (zh) * 2021-04-15 2021-08-17 西安吾一界电子科技有限公司 便携式超声波坐姿监控系统及方法
CN114434447A (zh) * 2022-02-19 2022-05-06 四川大学 一种gis检修机器人电控系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083156A (en) * 1998-11-16 2000-07-04 Ronald S. Lisiecki Portable integrated physiological monitoring system
CN100558299C (zh) * 2007-04-30 2009-11-11 陆尧胜 一种产程监护装置
US20100113905A1 (en) * 2008-10-31 2010-05-06 Medison Co., Ltd. Ultrasound Image Display With Additional Information Using PPG and ECG Signals
CN202128485U (zh) * 2011-06-16 2012-02-01 华南理工大学 一种骨折实时监护装置
CN102688070A (zh) * 2012-06-08 2012-09-26 深圳市理邦精密仪器股份有限公司 胎儿监护数据处理方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4805155A (en) * 1985-12-16 1989-02-14 Matsushita Electric Industrial Co., Ltd. Speed control circuit for mechanical scan ultrasonic imaging apparatus
CN1745697A (zh) * 2005-07-21 2006-03-15 高春平 围产期个性化健康助理装置
US8548174B2 (en) * 2007-03-23 2013-10-01 3M Innovative Properties Company Modular electronic biosensor with interface for receiving disparate modules
US8348847B2 (en) * 2008-08-05 2013-01-08 Guardsman Scientific, Inc. System and method for managing a patient
CN102068248B (zh) * 2009-11-20 2012-05-30 北京大学 心肌兴奋收缩耦联时间诊断仪及其应用
JP5689662B2 (ja) * 2009-12-09 2015-03-25 株式会社東芝 超音波診断装置、超音波画像処理装置、超音波画像処理プログラム、医用画像診断装置、医用画像処理装置及び医用画像処理プログラム
US20120116218A1 (en) * 2010-11-10 2012-05-10 Jennifer Martin Method and system for displaying ultrasound data
KR101323329B1 (ko) * 2011-11-22 2013-10-29 삼성메디슨 주식회사 초음파 영상 표시 방법 및 초음파 영상 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083156A (en) * 1998-11-16 2000-07-04 Ronald S. Lisiecki Portable integrated physiological monitoring system
CN100558299C (zh) * 2007-04-30 2009-11-11 陆尧胜 一种产程监护装置
US20100113905A1 (en) * 2008-10-31 2010-05-06 Medison Co., Ltd. Ultrasound Image Display With Additional Information Using PPG and ECG Signals
CN202128485U (zh) * 2011-06-16 2012-02-01 华南理工大学 一种骨折实时监护装置
CN102688070A (zh) * 2012-06-08 2012-09-26 深圳市理邦精密仪器股份有限公司 胎儿监护数据处理方法及系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654292A (zh) * 2018-09-13 2021-04-13 深圳迈瑞生物医疗电子股份有限公司 台式超声设备

Also Published As

Publication number Publication date
CN104055532A (zh) 2014-09-24
US20160183921A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
WO2014146409A1 (zh) 具有超声扫描监测功能的监护设备、超声装置及相应方法
WO2014169555A1 (zh) 一种支持多探头同步扫描的超声诊断设备及方法
EP3053518A1 (en) System for monitoring blood pressure in real-time
US20030163045A1 (en) Ultrasound imaging enhancement to clinical patient monitoring functions
WO2015109539A1 (zh) 超声监护设备及方法
JP6382174B2 (ja) 生体情報モニタ、生体情報測定システム、及びプログラム
Antognoli et al. Assessment of cardio-respiratory rates by non-invasive measurement methods in hospitalized preterm neonates
JP6811595B2 (ja) 生体情報モニタ、生体情報ソフトウェア制御方法、及びプログラム
Buraioli et al. A new noninvasive system for clinical pulse wave velocity assessment: The Athos device
WO2019085359A1 (zh) 一种晕厥检测系统
JP6761003B2 (ja) 生体情報モニタ、生体情報測定システム、及びプログラム
TW201306795A (zh) 用於耳部之多通道生理訊號量測裝置及其方法
US20210321886A1 (en) Portable monitoring apparatus, monitoring device, monitoring system and patient status monitoring method
CN211985476U (zh) 一种超声诊断仪
CN111466955A (zh) 心肺复苏辅助监测头及心肺复苏辅助监测装置
Vengadeshwaran et al. Design and development of self-service telemedicine kiosk for remote towns
CN114027868A (zh) 具有生理信号检测功能的超声诊断设备
Ismail Internet of medical things (IoMT) for patient healthcare monitoring system
JP2002125938A (ja) 医療システム
WO2016000185A1 (zh) 临床参数展示方法和系统
WO2018159915A1 (ko) 초음파 진단 장치 및 그 제어방법
WO2019227329A1 (zh) 一种血压测量的优化方法及血压测量装置
CN214804851U (zh) 具有生理信号检测功能的超声诊断设备
JP2001079006A (ja) 超音波画像診断装置
CN108272430A (zh) 一种用于牙科临床监护的投影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 25/11/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13878898

Country of ref document: EP

Kind code of ref document: A1