WO2019227329A1 - 一种血压测量的优化方法及血压测量装置 - Google Patents

一种血压测量的优化方法及血压测量装置 Download PDF

Info

Publication number
WO2019227329A1
WO2019227329A1 PCT/CN2018/088982 CN2018088982W WO2019227329A1 WO 2019227329 A1 WO2019227329 A1 WO 2019227329A1 CN 2018088982 W CN2018088982 W CN 2018088982W WO 2019227329 A1 WO2019227329 A1 WO 2019227329A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pulse wave
blood pressure
detected object
pressure measurement
Prior art date
Application number
PCT/CN2018/088982
Other languages
English (en)
French (fr)
Inventor
马强
刘三超
任健
何先梁
刘启翎
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2018/088982 priority Critical patent/WO2019227329A1/zh
Priority to CN201880093577.8A priority patent/CN112135559A/zh
Publication of WO2019227329A1 publication Critical patent/WO2019227329A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the invention relates to a method for optimizing blood pressure measurement and a blood pressure measurement device.
  • Blood pressure measurement may generally include invasive blood pressure measurement and non-invasive blood pressure measurement.
  • the so-called invasive blood pressure measurement refers to opening blood vessels to directly measure blood pressure; non-invasive blood pressure measurement is a technique for indirectly measuring blood pressure.
  • non-invasive blood pressure measurement based on the oscillation method is used as an example:
  • the inflatable and deflated cuffs are tied to the limb of the human body, such as the upper arm; then inflated so that the pressure inside the cuff is higher than the systolic pressure, and then gradually deflated in a certain step, the cuff forms after each deflation A steady state of pressure for a certain period of time.
  • the pressure sensor detects the pressure in the stable pressure state, as well as the pressure fluctuation caused by the human pulse, that is, the oscillating wave.
  • the cuff is deflated to make the cuff enter the next stable pressure status.
  • an amplitude value representing the oscillating wave in the pressure state can be calculated; by analyzing the amplitude value of the oscillating wave in each stable pressure state, Can get the blood pressure of the human body.
  • the blood pressure measuring device based on the above principle is easily affected by human movement during the blood pressure measurement, especially the movement of the arm bound by the sleeve.
  • the arm squeezes the cuff, causing the pressure in the cuff to oscillate, forming an interference waveform similar to the shape of the oscillating wave caused by the pulse beat, or causing the normal oscillating wave to be deformed by interference. Affects amplitude detection.
  • the usual processing method is to extend the maximum duration of the stress state in order to obtain the normal oscillating wave after the exercise is stopped; or, to the amplitude of a series of disturbed waveforms A simple averaging is performed as the amplitude value of the oscillating wave in this pressure state.
  • Such treatment measures have many limitations, such as long-term compression of the limbs, which affects measurement comfort.
  • the probability of limb damage may also increase; at the same time, it may not be effective To ensure measurement accuracy; in addition, it is generally only suitable for measurement and monitoring of non-mobile patients, and is not suitable for monitoring and measurement of mobile patients.
  • the present invention mainly provides an optimization method for blood pressure measurement and a blood pressure measurement device.
  • an embodiment provides a method for optimizing blood pressure measurement, including:
  • a pulse wave signal having a consistency with the heart motion information is searched in the signal segment based on the heart motion information.
  • the pulse wave signal and the motion signal of the detected object are acquired simultaneously.
  • determining the exercise intensity of the detected object according to the motion signal includes: determining the exercise intensity of the detected object based on the amplitude and / or frequency of the motion signal.
  • the signal segment is labeled.
  • the cardiac motion information includes at least one of a heart rate, a pulse rate, a heartbeat interval time, and a number of template waveforms within a first preset duration.
  • the pulse wave signal having consistency with the heart motion information includes at least one of the heart rate, pulse rate, heartbeat interval time, and number of template waveforms within a first preset duration. Consistent pulse wave signals.
  • the heart motion information is a heartbeat interval time
  • the acquiring heart motion information of the detected object includes:
  • a pulse rate signal of the detected object is acquired, and a heartbeat interval time of the detected object is calculated according to the pulse rate signal.
  • the pulse wave signal having consistency with the heart motion information includes a pulse wave signal having a pulse wave interval time consistent with the heartbeat interval time.
  • the acquiring the pulse wave signal of the detected object includes: sequentially acquiring the pulse wave signal of the detected object under different pressure states, wherein the longest duration in each of the pressure states is based on Determined based on the acquired heart motion information.
  • the longest duration in each of the stress states is determined based on a heartbeat interval time, wherein the heartbeat interval time is determined based on the heart motion information.
  • the longest duration of each of the stress states is a predetermined number of times the heartbeat interval time.
  • the method before acquiring the pulse wave signal of the detected object, the method further includes determining whether to start the blood pressure measurement: when receiving an instruction to start the blood pressure measurement, pre-acquire a motion signal of the detected object, It is determined whether the exercise intensity of the detected object is greater than a second intensity threshold according to the exercise signal, and if it is, then it is determined whether to start the blood pressure measurement again after a delay of a second preset time period; otherwise, the blood pressure measurement is started.
  • the blood pressure measurement after the delay for a second preset time period, it is determined whether to start the blood pressure measurement again. If the exercise intensity of the detected object is still greater than the second intensity threshold, the blood pressure measurement and / Or issue an alert message.
  • an embodiment provides a blood pressure measurement device, including:
  • the pulse wave sensing unit is used to sense the pulse wave of the detected object and output a pulse wave signal
  • a motion sensor that senses a motion state of the detected object by being attached to the detected object and outputs a motion signal
  • a processing unit configured to obtain cardiac motion information of the detected object; determine the exercise intensity of the detected object according to the motion signal; identify a pulse wave signal corresponding to a time period when the exercise intensity is greater than a first intensity threshold A signal segment in; searching for a pulse wave signal consistent with the heart motion information in the signal segment based on the heart motion information, and according to the searched pulse wave signal, consistent with the heart motion information Calculate blood pressure.
  • the processing unit is further configured to control the pulse wave sensing unit and the motion sensor to work synchronously to acquire the pulse wave signal and the motion signal of the detected object simultaneously.
  • the processing unit determines a motion intensity of the detected object based on the amplitude and / or frequency of the motion signal.
  • the processing unit after the processing unit recognizes a signal segment in a pulse wave signal corresponding to a time period in which the exercise intensity is greater than a first intensity threshold, the processing unit performs label processing on the signal segment.
  • the cardiac motion information includes at least one of a heart rate, a pulse rate, a heartbeat interval time, and a number of template waveforms within a first preset duration.
  • the pulse wave signal having consistency with the heart motion information includes: at least one of the heart rate, pulse rate, heartbeat interval time, and number of template waveforms within a first preset duration. Consistent pulse wave signal.
  • the blood pressure measurement device further includes an electrocardiogram signal detection unit for detecting and outputting an electrocardiogram signal of the detected object, and the processing unit calculates a heartbeat interval time according to the electrocardiogram signal; or And further includes a pulse rate signal detection unit for detecting and outputting a pulse rate signal of the detected object, and the processing unit calculates the heartbeat interval time according to the pulse rate signal.
  • the pulse wave signal having consistency with the heart motion information includes a pulse wave signal having a pulse wave interval time consistent with the heartbeat interval time.
  • the blood pressure measurement device further includes a setting unit; the pulse wave sensing unit sequentially acquires pulse wave signals of the detected object under different pressure states; and the setting unit is configured to The heart motion signal determines the longest duration in each of the stress states.
  • the setting unit determines a heartbeat interval time based on the heart motion information, and determines a longest duration in each of the stress states based on the heartbeat interval time.
  • the longest duration of each of the stress states is a predetermined number of times the heartbeat interval time.
  • the processing unit when the processing unit recognizes that the maximum duration of the exercise intensity is greater than the first intensity threshold value exceeds a time threshold value, the processing unit stops searching in the signal segment for the information that is consistent with the heart motion information. Pulse wave signals, and / or stop acquiring pulse wave signals of the detected object, and / or issue alarm prompt information.
  • the processing unit before acquiring the pulse wave signal of the detected object, the processing unit, when receiving an instruction to start blood pressure measurement, pre-obtains a motion signal of the detected object, and judges the motion signal based on the motion signal. Whether the exercise intensity of the detected object is greater than the second intensity threshold, and if yes, determine whether to start the blood pressure measurement again after a second preset time delay, and if not, start the blood pressure measurement.
  • the processing unit determines whether to start the blood pressure measurement again after the second preset time delay, and if the intensity of the detected object is still greater than the second intensity threshold, the process unit gives up.
  • the blood pressure is measured and / or an alarm prompt message is issued.
  • the blood pressure measurement device further includes an alarm unit for performing an alarm according to the alarm prompt information.
  • the blood pressure measurement device further includes a sleeve for covering the arm or wrist of the subject, and a charging and discharging unit for inflating and deflating the sleeve; the processing unit controls charging The deflation unit inflates the cuff, and then gradually deflate according to a certain step. After each deflation, a stable pressure state for a certain period of time is formed. In each stable pressure state, the processing unit controls the pulse wave sensing unit to obtain the Pulse wave signal under steady pressure.
  • the pulse wave sensing unit is disposed in the cuff; the motion sensor is disposed on the cuff, or is disposed on a detected object.
  • the motion sensor includes at least one of an acceleration sensor, an angular velocity sensor, or a gravity sensor.
  • an embodiment provides a computer-readable storage medium, characterized in that it includes a program that can be executed by a processor to implement the method according to any one of the foregoing embodiments.
  • the method for optimizing blood pressure measurement, the blood pressure measuring device, and the computer-readable storage medium mark the disturbed pulse wave signal segment according to the motion signal, and then search out the disturbed signal segment according to the heart motion information.
  • a pulse wave signal that is consistent with the heart motion information thereby effectively solving the influence and interference of the detected object motion on the measured blood pressure value.
  • FIG. 1 is a system frame diagram of a parameter processing module in a multi-parameter monitor
  • 2 is a system frame diagram of a parameter processing module in a single-parameter monitor
  • FIG. 3 is a schematic structural diagram of a monitor networking system used in a hospital
  • FIG. 4 is a flowchart of a method for optimizing blood pressure measurement according to an embodiment
  • FIG. 5 is a flowchart of a method for optimizing blood pressure measurement according to another embodiment
  • FIG. 6 is a schematic structural diagram of a blood pressure measurement device according to an embodiment
  • FIG. 7 is a schematic structural diagram of a blood pressure measurement device according to another embodiment.
  • FIG. 8 is a schematic structural diagram of a blood pressure measurement device according to another embodiment
  • FIG. 9 is a schematic structural diagram of a blood pressure measurement device according to still another embodiment.
  • connection and “connection” in this application include direct and indirect connections (connections) unless otherwise specified.
  • the invention improves the timing for starting the blood pressure measurement, so that when a blood pressure measurement is received, a suitable timing is selected to start the blood pressure measurement, or the blood pressure measurement is abandoned.
  • the disturbed pulse wave signal segment is marked according to the motion signal, and then the pulse wave signal that is consistent with the cardiac motion information is searched in the disturbed signal segment according to the heart motion information. Therefore, the influence and interference of the movement of the detected object on the measured blood pressure value are effectively solved, which will be specifically described below.
  • the multi-parameter monitor has an independent housing.
  • the housing panel has a sensor interface area, which integrates multiple sensor interfaces for connection with various external physiological parameter sensor accessories 111.
  • the housing panel also includes a small LCD display area and a display 119. , Input interface circuit 122 and alarm circuit 120 (such as LED alarm area) and so on.
  • the parameter processing module is used for external communication and power interface for communicating with the host and taking power from the host.
  • the parameter processing module also supports extrapolated parameter modules.
  • the plug-in monitor host can be formed by inserting the parameter module, as a part of the monitor, or connected to the host through a cable.
  • the extrapolated parameter module is used as an external accessory of the monitor.
  • the internal circuit of the parameter processing module is placed in a housing, as shown in FIG. 1, and includes at least two signal acquisition circuits 112, front-end signal processing circuits 113, and a main processor 115 corresponding to physiological parameters.
  • the signal acquisition circuit 112 may be selected from the heart. Electrical circuit, breathing circuit, body temperature circuit, blood oxygen circuit, non-invasive blood pressure circuit, invasive blood pressure circuit, etc. These signal acquisition circuits 112 are respectively electrically connected with corresponding sensor interfaces for electrically connecting to sensors corresponding to different physiological parameters Attachment 111, whose output end is coupled to the front-end signal processor, the communication port of the front-end signal processor is coupled to the main processor, and the main processor is electrically connected to the external communication and power interface.
  • the front-end signal processing circuit completes the sampling and analog-digital conversion of the output signal of the signal acquisition circuit, and outputs the control signal to control the measurement process of the physiological signal.
  • These parameters include but are not limited to : ECG, respiration, body temperature, blood oxygen, non-invasive blood pressure and invasive blood pressure parameters.
  • the front-end signal processor circuit can be implemented by a single-chip microcomputer or other semiconductor devices. For example, a single-chip microcomputer can be used, or an ASIC or FPGA can be used.
  • the front-end signal processor circuit can also include an isolated power supply. The sampled data is simply processed and packaged, and then sent to the main processor through an isolated communication interface.
  • the front-end signal processor circuit 113 can be coupled to the main through an isolated power and communication interface 114.
  • the reason that the front-end signal processor is powered by an isolated power source is the DC / DC power source isolated by the transformer, which plays a role in isolating the patient from the power supply equipment.
  • the main purposes are: 1. Isolate the patient, and isolate the application through the isolation transformer. Partially floating, so that the leakage current of the patient is small enough; 2. Prevent the voltage or energy during defibrillation or electrosurgical application from affecting the cards and components of the intermediate circuit such as the main control board (guaranteed with creepage distance and clearance).
  • the front-end signal processor circuit 113 may also be connected to the main processor 115 through a cable 124.
  • the main processor completes the calculation of physiological parameters, and sends the calculation results and waveforms of the parameters to the host (such as a host with a display, a PC, a central station, etc.) through an external communication and power interface 116, where the main processor 115 also It can be connected to the external communication and power interface 116 through the cable 125, and the external communication and power interface 116 can be Ethernet, Token Ring, Token Bus, and these three types of networks.
  • the host can be any computer equipment such as the host of the monitor, the electrocardiograph, the ultrasound diagnostic instrument, and the computer. By installing the matched software, a monitoring device can be formed.
  • the host can also be a communication device, such as a mobile phone.
  • the parameter processing module sends data to a mobile phone that supports Bluetooth communication through a Bluetooth interface to achieve remote transmission of data.
  • the main processor 115 After the main processor 115 finishes calculating the physiological parameters, it can also determine whether the physiological parameters are abnormal. If the physiological parameters are abnormal, an alarm can be performed through the alarm circuit 120.
  • the power and battery management circuit 117 in the figure is used to manage and process the power supply of the monitor.
  • the memory 118 can store intermediate and final data of the monitor, and store program instructions or code for execution by the main processor 115 and the like.
  • the monitor has a blood pressure measurement function, it may further include a pump valve driving circuit 121.
  • the pump valve driving circuit 121 is configured to perform inflation or deflation operations under the control of the main processor 115.
  • a network system for monitors used in the hospital is provided.
  • the system can be used to save the monitor data as a whole, centrally manage patient information and care information, and store them in association for easy historical data storage. And associated alarms.
  • a bedside monitor 212 can be provided for each bed, and the bedside monitor 212 can be the aforementioned multi-parameter monitor or a plug-in monitor.
  • each bedside monitor 212 can also be paired with a portable monitoring device 213.
  • the portable monitoring device 213 provides a simple and portable parameter processing module.
  • the simple and portable parameter processing module can be worn on the patient's body.
  • the physiological data generated by the mobile monitoring can be transmitted to the bedside monitor 212 for display, or through the bedside monitor 212
  • the data is transmitted to the central station 211 for viewing by a doctor or nurse, or transmitted to the data server 215 for storage through the bedside monitor 212.
  • the portable monitoring device 213 can also directly transmit the physiological data generated by mobile monitoring to the central station 211 for storage and display through the wireless network node 214 provided in the hospital, or the mobile monitoring device through the wireless network node 214 provided in the hospital.
  • the generated physiological data is transmitted to the data server 215 for storage.
  • the data corresponding to the physiological parameters displayed on the bedside monitor 212 can be derived from a sensor accessory directly connected to the monitor, or from a portable monitoring device 213, or from a data server.
  • the portable monitoring device 213 can be wired and / or wirelessly connected to the sensor accessory 111 and contains part or all of the circuit of the aforementioned parameter processing module.
  • isolation measures for patient isolation may not be provided in the portable monitoring device 213, but in a portable
  • the monitoring device 213 is, for example, provided on the sensor attachment 111.
  • the portable monitoring device 213 may have a display screen for displaying parameter calculation results and / or prompting alarm information.
  • the portable monitoring device 213 may be a wireless sensor patch attached to the body, or a transfer monitor, or a telemetry device. .
  • the present invention can introduce a motion sensor on the basis of the above-mentioned monitor, and optimize the monitor by using signals obtained by the motion sensor.
  • an embodiment of the present invention discloses an optimization method for blood pressure measurement (hereinafter referred to as an optimization method), which can be applied to a fixed blood pressure measurement device or a mobile blood pressure measurement device (such as a wearable monitor). ), Including steps S110 to S190, which will be described in detail below.
  • Step S110 Acquire heart motion information and a pulse wave signal of the detected object.
  • the following describes the heart motion information and its acquisition.
  • the cardiac motion information may include at least one of a heart rate, a pulse rate, a heartbeat interval time, and a number of template waveforms within a first preset duration.
  • Physiological signals such as heart rate and pulse rate can be obtained in real time through sensors attached to the detected object.
  • physiological signals such as heart rate and pulse rate can be acquired in synchronization with the pulse wave signal, or the detected Historical heart rate and pulse rate data.
  • the heartbeat interval time can be calculated from the heart rate or pulse rate. Therefore, when the heart motion information is the heartbeat interval time, obtaining the heart motion information of the detected object in step S110 may include: acquiring the ECG signal of the detected object , Calculating the heartbeat interval time of the detected object according to the electrocardiogram signal; or acquiring the pulse rate signal of the detected object and calculating the heartbeat interval time of the detected object according to the pulse rate signal.
  • obtaining the pulse wave signal of the detected object in step S110 includes: sequentially acquiring the pulse wave signals of the detected object under different pressure states, wherein the longest duration of each of the pressure states is It is determined based on the acquired heart motion information.
  • There are at least two or more different pressure states and the pressure on the detected object is different under each pressure state.
  • the longest duration of the pressure in each pressure state is constant or approximately constant.
  • there can be three pressure states namely a first pressure state, a second pressure state, and a third pressure state.
  • the pressure on the object under test in the first pressure state is the first pressure, and it is detected in the second pressure state.
  • the pressure on the object is the second pressure
  • the pressure on the detected object in the third pressure state is the third pressure
  • the pulse wave signal of the detected object may be acquired according to a process from which the detected object is subjected to different pressure states from large to small or from small to large.
  • the pulse wave signals of the detected object in the first pressure state, the second pressure state, and the third pressure state may be sequentially obtained, where the first pressure> the second pressure> the third pressure.
  • the maximum duration in each pressure state can be a constant value, or it can be determined based on the heart motion information of the detected object.
  • the longest duration under each stress state may be determined based on a heartbeat interval time, wherein the heartbeat interval time is determined based on the heart motion information.
  • the longest duration in each of the stress states may be a predetermined number of times the heartbeat interval time. For example, if the heartbeat interval time obtained through the heart motion information of the detected object is T, and the preset number of times is N times, the longest duration in each stress state is N ⁇ T.
  • everyone's heartbeat interval is different, some are longer and some are shorter.
  • the maximum duration in each stress state is a constant value t
  • an appropriate number for example, two
  • the pulse wave signals of the heartbeat signal can be obtained for a longer heartbeat interval time than the time t. Therefore, combining the heart motion information of the detected object to adaptively set the longest duration under each pressure state can effectively shorten the blood pressure measurement time, improve the measurement comfort, and reduce the possibility of the object being oppressed. Damage caused; measurement efficiency can also be improved.
  • Step S130 Acquire a motion signal of the detected object through a motion sensor attached to the detected object.
  • the motion sensor is a sensor for sensing the motion of the detected object.
  • the motion sensor may include at least one of an acceleration sensor, an angular velocity sensor (such as a gyroscope), or a gravity sensing sensor, and the corresponding motion signals are an acceleration signal, an angular velocity signal, and a gravity acceleration signal.
  • the motion sensor is attached to the detected object, which may be directly attached to the body or clothing of the detected object, or may be provided on a device (such as a sleeve) for detecting a pulse wave signal.
  • the pulse wave signal and the motion signal of the detected object may be acquired simultaneously, that is, the pulse wave signal of the detected object is acquired simultaneously with the acquisition of the pulse wave signal of the detected object.
  • Motion signal Synchronous acquisition can improve the accuracy of subsequent identification of signal segments affected by motion interference.
  • Step S150 Determine a motion intensity of the detected object according to the motion signal.
  • step S150 determines the exercise intensity of the detected object according to the motion signal, including: determining the exercise intensity of the detected object based on the amplitude and / or frequency of the motion signal. For example, the amplitude of the motion signal of the detected object is positively correlated with the intensity of the exercise. The greater the amplitude of the motion signal of the detected object, the greater the intensity of the motion of the detected object; similarly, the Frequency is also positively correlated with exercise intensity. The higher the frequency of the motion signal of the detected object, the greater the exercise intensity of the detected object.
  • the motion sensor is an acceleration sensor, or an angular velocity sensor (gyroscope) or a gravity sensing sensor
  • the corresponding motion signals are an acceleration signal, an angular velocity signal, and a gravity acceleration signal.
  • the acceleration signal, angular velocity signal, or gravity acceleration signal needs to be converted. It is converted into data for identifying exercise intensity through calculation.
  • Step S170 Identify a signal segment in a pulse wave signal corresponding to a time period when the exercise intensity is greater than a first intensity threshold.
  • the signal segment may also be labeled to indicate the signal segment. For a signal segment affected by motion, a subsequent search in step S190 is required.
  • Step S170 is to identify a signal segment affected by motion, but when the motion state lasts too long, it may not be suitable for blood pressure measurement at present, and further action is required.
  • the optimization method further includes: when it is identified that the longest duration of the exercise intensity greater than the first intensity threshold exceeds a time threshold, then stop performing the following step S190 on the signal segment Searching for the pulse wave signal that is consistent with the cardiac motion information, and / or stopping acquiring the pulse wave signal of the detected object, and / or issuing alarm prompt information.
  • Step S190 Based on the cardiac motion information, search for a pulse wave signal (that is, a valid pulse wave signal, hereinafter referred to as a valid pulse wave signal) consistent with the cardiac motion information in the signal segment.
  • a pulse wave signal that is, a valid pulse wave signal, hereinafter referred to as a valid pulse wave signal
  • the effective pulse wave signal or the normal pulse wave signal mentioned above, is a series of signals with the same heartbeat and regular interval time, and the oscillation wave caused by motion interference is a series of randomly spaced signals. Therefore, based on the heartbeat or heartbeat-related signals and parameters, an effective pulse wave signal can be searched out from the pulse wave signal segments affected by motion, which can effectively avoid the movement of the detected object on the blood pressure measurement. Impact and interference.
  • the effective pulse wave signal may include a pulse having a consistency with at least one of the heart rate, pulse rate, heartbeat interval time, and number of template waveforms within a first preset duration. Wave signal.
  • the effective pulse wave signal may include a pulse wave signal that is consistent with the heartbeat interval time, which refers to a pulse wave signal with a pulse wave interval time that is consistent with the heartbeat interval time.
  • the pulse wave is an oscillating wave caused by the pulse of the human body, and an oscillating wave may also be formed due to motion interference.
  • the oscillating wave formed by such motion interference is generally affected by the signal.
  • the oscillating waves caused by the human pulse pulse, that is, the pulse wave; whether the oscillating wave is caused by the human pulse pulse or formed by motion interference, these oscillating waves are collectively referred to as pulse waves in this article.
  • the oscillating wave caused by the human pulse is called an effective pulse wave, which means that it is a real pulse wave; the oscillating wave formed by motion disturbance is called an invalid pulse wave, which means that it is a false pulse wave.
  • Motion interference may also affect the position of effective pulse waves, that is, the interval between two adjacent effective pulse waves may change due to motion interference. Therefore, the effective pulse wave signal may include: a pulse wave signal whose pulse wave interval time is consistent with the heartbeat interval time, which refers to such a pulse wave signal: when the signal segment is disturbed, several intervals with the heartbeat are searched out Pulse waves with consistent time.
  • the intervals of these pulse waves may be the same or different, but they are integer multiples of the heartbeat interval time (for example, 1 or more times); these pulse waves are valid pulse wave signals. Therefore, the effective pulse wave signal may include a pulse wave signal with the same pulse wave interval time, or a pulse wave signal with the same pulse wave interval time and an integer multiple of the heartbeat interval time.
  • the effective pulse wave signal includes: a pulse wave signal consistent with the heart rate, which can be the number of heartbeats in a set time and the number of pulse wave signals, or the pulse wave interval A pulse wave signal whose time is consistent with the heartbeat interval time represented by the heart rate.
  • the effective pulse wave signal includes: a pulse wave signal consistent with the pulse rate, which may be the number of pulses in a set time and the number of pulse wave signals, or the pulse wave interval time and A pulse wave signal with a consistent heartbeat interval represented by the pulse rate.
  • the effective pulse wave signal includes: a pulse wave signal that is consistent with the number of template waveforms within the first preset time period, which may refer to when searching for a valid pulse wave signal in a disturbed signal segment
  • a pulse wave signal that is consistent with the number of template waveforms within the first preset time period, which may refer to when searching for a valid pulse wave signal in a disturbed signal segment
  • a wave is an oscillating wave caused by motion, that is, an invalid pulse wave referred to above. It may be useful to explain that the number of template waveforms is 2.
  • the first preset duration may be set with reference to the heartbeat interval time, that is, the first preset duration and the number of template waveforms are set with reference to the heartbeat interval time.
  • the searched-out valid pulse wave signal can be used to calculate blood pressure values.
  • the optimization method before the acquiring the pulse wave signal of the detected object, the optimization method further includes a step S100 of determining whether to start the blood pressure measurement, which is described in detail below.
  • Step S100 when receiving an instruction to start blood pressure measurement, pre-obtain a motion signal of the detected object, and determine whether the intensity of the detected object's exercise is greater than a second intensity threshold based on the motion signal, if otherwise, start the Blood pressure measurement, if yes, determine whether to start the blood pressure measurement again after a second preset time delay (that is, to obtain the motion signal of the detected object in advance again, and determine whether the exercise intensity of the detected object is based on the motion signal). Greater than the second intensity threshold). In an embodiment, after the delay for a second preset time period, it is determined whether to start the blood pressure measurement again. If the exercise intensity of the detected object is still greater than the second intensity threshold, the blood pressure measurement and / Or issue an alert message.
  • a second preset time delay that is, to obtain the motion signal of the detected object in advance again, and determine whether the exercise intensity of the detected object is based on the motion signal. Greater than the second intensity threshold.
  • the abandonment of the blood pressure measurement herein may be, for example, not activating the blood pressure measurement. That is, when receiving an instruction to start blood pressure measurement, it is first determined whether the detected object is performing more intense exercise (the exercise intensity is greater than the second intensity threshold) through the acquired motion signal, and it is delayed if it is determined that the more intense exercise is performed. After the second preset time period, it is judged again whether the detected object is performing more intense exercise, and if no more intense exercise is performed, the blood pressure measurement may be started. If it is determined again after the delay of the second preset time period that the detected object is performing more intense exercise, the blood pressure measurement is abandoned and / or an alarm prompt message is issued.
  • the monitor may be a blood pressure measurement device, for example, it may be applied to a fixed blood pressure measurement device or a mobile blood pressure measurement device (such as a wearable blood pressure measurement device).
  • Monitor which may include a pulse wave sensing unit 10, a motion sensor 20, and a processing unit 30, which are described in detail below.
  • the pulse wave sensing unit 10 is configured to sense a pulse wave of a detected object and output a pulse wave signal.
  • the pulse wave sensing unit 10 may include a sensor for sensing a pulse wave, such as a pressure sensor and / or a photoelectric sensor. Pulse wave sensors have been widely used and will not be described in detail here.
  • the motion sensor 20 senses a motion state of the detected object by being attached to the detected object, and outputs a motion signal.
  • the motion sensor 20 is a sensor for sensing a motion of a detected object.
  • the motion sensor 20 may include at least one of an acceleration sensor, an angular velocity sensor (such as a gyroscope), or a gravity sensing sensor, and the corresponding motion signals are an acceleration signal, an angular velocity signal, and a gravity acceleration signal.
  • the motion sensor is attached to the detected object, which may be directly attached to the body or clothing of the detected object, or may be provided on a device (such as a sleeve) for detecting a pulse wave signal.
  • the processing unit 30 is configured to determine the exercise intensity of the detected object according to the motion signal, identify a signal segment in a pulse wave signal corresponding to a time period in which the exercise intensity is greater than a first intensity threshold, and obtain the detected object Based on the cardiac motion information, a pulse wave signal (that is, the effective pulse wave signal referred to above) that is consistent with the cardiac motion information is searched in the signal segment based on the cardiac motion information.
  • the pulse wave signal having a consistency with the heart motion information is used to calculate a blood pressure value.
  • the processing unit 30 needs to identify the disturbed pulse wave signal segment; then, based on the cardiac motion information, search for a valid pulse wave signal in the disturbed signal segment; and then calculate the blood pressure based on the valid pulse wave signal The value is described in detail below.
  • the processing unit 30 identifies the disturbed pulse wave signal segment, and first determines the exercise intensity of the detected object according to the motion signal.
  • the processing unit 30 may be based on the amplitude of the motion signal and / or Frequency to determine the motion intensity of the detected object.
  • the amplitude of the motion signal of the detected object is positively correlated with the motion intensity.
  • the greater the amplitude of the motion signal of the detected object the greater the intensity of the motion of the detected object.
  • the frequency of the motion signal of the detected object is also positively correlated with the intensity of the exercise. The higher the frequency of the motion signal of the detected object, the greater the intensity of the motion of the detected object.
  • the processing unit 30 identifies the signal segment in the pulse wave signal corresponding to the time period when the exercise intensity is greater than the first intensity threshold. In one embodiment, the processing unit 30 recognizes that the exercise intensity is greater than the first intensity threshold. After the signal segment in the pulse wave signal corresponding to the time period, the signal segment can also be labeled to indicate that the signal segment is a signal segment affected by motion and needs to be used for subsequent search. In an embodiment, the processing unit 30 is further configured to control the pulse wave sensing unit 10 and the motion sensor 20 to work synchronously to acquire the pulse wave signal and the motion signal of the detected object synchronously.
  • the pulse wave signal and the motion signal are correlated in time, which simplifies the difficulty and technical requirements of identifying the signal segment in the pulse wave signal corresponding to the time period when the exercise intensity is greater than the first intensity threshold.
  • the motion sensor 20 is an acceleration sensor, or an angular velocity sensor (gyroscope) or a gravity sensing sensor
  • the corresponding motion signals are acceleration signals, angular velocity signals, and gravity acceleration signals, so when processing
  • the unit 30 determines the exercise intensity of the detected object according to the motion signal.
  • the acceleration signal, the angular velocity signal, or the gravity acceleration signal may be calculated and converted into data for identifying the exercise intensity, and then the detected object is determined. Exercise intensity.
  • the processing unit 30 searches for a valid pulse wave signal in the disturbed signal segment based on the heart motion information.
  • the processing unit 30 Before searching, the processing unit 30 first needs to obtain heart motion information of the detected object.
  • the cardiac motion information may include at least one of a heart rate, a pulse rate, a heartbeat interval time, and a number of template waveforms within a first preset duration.
  • the processing unit 30 may obtain the heart motion information of the detected object. For example, referring to FIG. 7, taking the heart rate as an example, the blood pressure measurement device may further include an ECG signal for detecting and outputting the detected object.
  • the ECG signal detection unit 40 and the processing unit 30 acquire the heart rate of the detected object through the ECG signal detection unit 40 attached to the detected object; for example, the blood pressure measurement device may further include a device for detecting and outputting the detected
  • the pulse rate signal detection unit 50 and the processing unit 30 of the pulse rate signal of the object acquire the pulse rate of the detected object by the pulse rate signal detection unit 50 attached to the detected object.
  • the processing unit 30 may also directly access and obtain data of the historical heart rate or pulse rate of the detected object.
  • the processing unit 30 may calculate the heartbeat interval time according to the real-time acquired or historical heart rate or pulse rate; similarly, the processing unit 30 may directly access and obtain the historical heartbeat interval time of the detected object.
  • the processing unit 30 After acquiring the cardiac motion information of the detected object, the processing unit 30 searches for a valid pulse wave signal in the disturbed signal segment based on the cardiac motion information.
  • the valid pulse wave signal may be It includes a pulse wave signal that is consistent with at least one of the heart rate, pulse rate, heartbeat interval time, and the number of template waveforms within a first preset duration.
  • the effective pulse wave signal may include a pulse wave signal that is consistent with the heartbeat interval time, which refers to a pulse wave signal with a pulse wave interval time that is consistent with the heartbeat interval time.
  • an effective pulse wave signal refers to a pulse wave signal: when the signal segment is disturbed, several pulse waves consistent with the heartbeat interval time are searched out.
  • the interval time of these pulse waves may be the same. It may be different, but they are all integer multiples of the heartbeat interval time (such as 1 or more times); these pulse waves are valid pulse wave signals.
  • the effective pulse wave signal may include a pulse wave signal with the same pulse wave interval time, or a pulse wave signal with the same pulse wave interval time and an integer multiple of the heartbeat interval time.
  • the effective pulse wave signal may include: a pulse wave signal that is consistent with the heart rate, which may mean that the number of heartbeats in a set time is consistent with the number of pulse wave signals, or It is a pulse wave signal in which the pulse wave interval time is consistent with the heartbeat interval time represented by the heart rate.
  • the effective pulse wave signal includes: a pulse wave signal consistent with the pulse rate, which may mean that the number of pulses in a set time is consistent with the number of pulse wave signals, or may be a pulse wave A pulse wave signal whose interval time is consistent with the heartbeat interval time represented by the pulse rate.
  • the effective pulse wave signal includes: a pulse wave signal that is consistent with the number of template waveforms within the first preset time period, which may refer to when searching for a valid pulse wave signal in a disturbed signal segment In the signal segment, there are only pulse waves with the number of template waveforms in the first preset time period. If the signal segment has more pulse waves than the number of template waveforms in the first preset time period, the extra pulses are explained.
  • a wave is an oscillating wave caused by motion, that is, an invalid pulse wave referred to above. It may be useful to explain that the number of template waveforms is 2.
  • the processing unit 30 needs to identify the two valid pulse waves. The identification method can be based on the valid pulse waves that have been searched for before.
  • the amplitude and / or slope of the signal waveform (similar waveforms), etc., are used to find pulse waves of similar amplitude and / or slope among the 5 pulse waves as effective pulse waves.
  • the first preset duration may also be set with reference to the heartbeat interval time, that is, the first preset duration and the number of template waveforms are set with reference to the heartbeat interval time.
  • the pulse wave sensing unit 10 sequentially acquires pulse wave signals of the detected object under different pressure states.
  • the pressure on the detected object is different under each pressure state.
  • the longest duration of the pressure in each pressure state is constant or approximately constant.
  • the pressure on the object under test in the first pressure state is the first pressure, and it is detected in the second pressure state.
  • the pressure on the object is the second pressure
  • the pressure on the detected object in the third pressure state is the third pressure
  • the pulse wave signal of the detected object may be acquired according to a process from which the detected object is subjected to different pressure states from large to small or from small to large.
  • the pulse wave signals of the detected object in the first pressure state, the second pressure state, and the third pressure state may be sequentially obtained, where the first pressure> the second pressure> the third pressure.
  • the maximum duration in each pressure state can be a constant value, or it can be determined based on the heart motion information of the detected object. In an embodiment, please refer to FIG. 8.
  • the blood pressure measurement device further includes a setting unit 60, which is configured to determine a longest duration in each of the pressure states based on the acquired heart motion signal.
  • the setting unit 60 determines a heartbeat interval time based on the heart motion information, and determines a longest duration in each of the stress states based on the heartbeat interval time.
  • the longest duration in each of the stress states may be a predetermined number of times the heartbeat interval time. For example, if the heartbeat interval time obtained through the heart motion information of the detected object is T, and the preset number of times is N times, the longest duration in each stress state is N ⁇ T.
  • everyone's heartbeat interval is different, some are longer and some are shorter.
  • the maximum duration in each stress state is a constant value t, for the detected object with a short heartbeat interval time, an appropriate number (for example, two) may be obtained in a time shorter than t
  • the pulse wave signals of the heartbeat signal can be obtained for a longer heartbeat interval time than the time t.
  • the setting unit 60 combines the heart motion information of the detected object to adaptively set the longest duration under each pressure state, which can effectively shorten the blood pressure measurement time, improve the measurement comfort, and reduce the pressure on the detected object. Possible damage; also improves measurement efficiency.
  • the processing unit 30 may also optimize the stopping or starting of the blood pressure measurement. Therefore, referring to FIG. 9, in one embodiment, the blood pressure measurement device may further include an alarm unit 70 for performing an alarm according to the alarm prompt information of the processing unit 30, which will be specifically described below.
  • the processing unit 30 stops searching for the valid pulse wave signal in the signal segment when the maximum duration of the recognition exercise intensity is greater than the first intensity threshold value exceeds a time threshold value, and / or Stop acquiring the pulse wave signal of the detected object and / or issue an alarm prompt message.
  • the processing unit 30 before acquiring the pulse wave signal of the detected object, the processing unit 30 pre-acquires the motion signal of the detected object when receiving the instruction to start blood pressure measurement, and judges the subject based on the motion signal. Detect whether the exercise intensity of the object is greater than the second intensity threshold, and if yes, determine whether to start the blood pressure measurement again after a second preset time delay; if not, start the blood pressure measurement. In an embodiment, the processing unit 30 determines whether to start the blood pressure measurement again after the second preset time delay, and if the intensity of the detected object is still greater than the second intensity threshold, it discards the Comment on blood pressure measurements and / or alert messages.
  • the processing unit 30 when receiving the instruction to start blood pressure measurement, the processing unit 30 first determines whether the detected object is performing more intense exercise (the exercise intensity is greater than the second intensity threshold) through the acquired motion signal. After the exercise is delayed for a second preset time period, it is judged again whether the detected object is performing more intense exercise, and if no more intense exercise is performed, the blood pressure measurement may be started. If it is determined again after the delay of the second preset time period that the detected object is performing more intense exercise, the blood pressure measurement is abandoned and / or an alarm prompt message is issued.
  • the processing unit 30 first determines whether the detected object is performing more intense exercise (the exercise intensity is greater than the second intensity threshold) through the acquired motion signal. After the exercise is delayed for a second preset time period, it is judged again whether the detected object is performing more intense exercise, and if no more intense exercise is performed, the blood pressure measurement may be started. If it is determined again after the delay of the second preset time period that the detected object is performing more intense exercise, the blood pressure measurement is abandoned and /
  • the blood pressure measuring device of the present invention may further include some other components, for example, it may further include a sleeve for covering the arm or wrist of the subject to be detected, and a charging and discharging unit for inflating and deflating the sleeve,
  • the pulse wave sensing unit 10 may be provided in the cuff, and the motion sensor 20 may be provided on the cuff or placed on the detected object; the processing unit 30 controls the charging unit to inflate the cuff, and then according to a certain The step size is gradually deflated, and a stable pressure state is formed for a certain period of time after each deflation.
  • the processing unit 30 controls the charging and discharging unit according to the maximum duration of the pressure state set by the setting unit 60 to achieve each pressure state. It lasts for a corresponding time; in each stable pressure state, the processing unit 30 controls the pulse wave sensing unit 10 to obtain a pulse wave signal in the stable pressure state.
  • the blood pressure measuring device disclosed in FIGS. 6 to 9 is also a monitor, so some other structures and components of the blood pressure measuring device disclosed in FIGS. 6 to 9 can also be disclosed with reference to FIGS. 1 and 2.
  • the monitor for example, the setting unit 60 and the processing unit 30 in the monitor of FIGS. 6 to 9 may be implemented by the main processor 115 in FIGS. 1 and 2.
  • the pulse wave sensing unit 10, the ECG signal detection unit 40, The pulse rate signal detection unit 50 may also be a sensor attachment 111, the alarm unit 70 may be implemented by the alarm circuit 120, and the blood pressure measurement device disclosed in FIGS. 6 to 9 may further include those disclosed in FIGS. 1 and 2.
  • the blood pressure measuring device disclosed in FIG. 6 to FIG. 9 may also be all or part of the portable monitoring device 213 shown in FIG. 3.
  • part of the steps in FIG. 4 may be performed in the portable monitoring device 213, and some may be performed in The bedside monitor 212 is executed; or, all the steps in FIG. 4 are performed in the portable monitoring device 213, and the processed data is displayed and output through the central station 211 or the bedside monitor 212, and stored.
  • These computer program instructions can be loaded on a general-purpose computer, special-purpose computer, or other programmable data processing device to form a machine, so that these instructions executed on a computer or other programmable data processing device can generate a device that implements a specified function.
  • These computer program instructions can also be stored in a computer-readable memory, which can instruct a computer or other programmable data processing device to operate in a specific manner, so that the instructions stored in the computer-readable memory can form one piece Articles of manufacture including implements that implement specified functions.
  • Computer program instructions can also be loaded onto a computer or other programmable data processing device, thereby performing a series of operational steps on the computer or other programmable device to produce a computer-implemented process, which makes the computer or other programmable device execute Instructions can provide steps for implementing specified functions.
  • the term “including” and any other variations thereof are non-exclusive inclusions, such that a process, method, article, or device that includes a list of elements includes not only those elements, but also those that are not explicitly listed or are not part of the process , Method, system, article, or other element of equipment.
  • the term “coupled” and any other variations thereof as used herein refers to a physical connection, an electrical connection, a magnetic connection, an optical connection, a communication connection, a functional connection, and / or any other connection.

Abstract

一种血压测量的优化方法及血压测量装置,获取被检测对象的心脏运动信息和脉搏波信号(S110);通过依附在被检测对象的运动传感器(20)获取被检测对象的运动信号(S130);根据运动信号确定被检测对象的运动强度(S150);识别运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段(S170);基于心脏运动信息在信号段中搜索出与心脏运动信息具有一致性的脉搏波信号(S190)。

Description

一种血压测量的优化方法及血压测量装置 技术领域
本发明涉及一种血压测量的优化方法及血压测量装置。
背景技术
血压测量一般可以包括有创血压测量和无创血压测量。所谓有创血压测量指的是在血管上开口来直接对血压进行测量;而无创血压测量是一种间接测量血压的技术,例如以基于振荡法的无创血压测量为例:
将可充气和放气的袖套绑缚在人体的肢体上,比如上臂;然后充气使得袖套内压力高于收缩压,其后按一定步长逐步放气,每次放气后袖套形成一个持续一定时间的稳定压力状态。在每个稳定压力状态下,压力传感器检测该稳定压力状态的压力,以及由于人体脉搏搏动而引起的压力波动,即振荡波。一般地,在每个压力状态下,检测到连续两个正常的振荡波,或该压力状态最长持续时间达到设定阈值后,则对袖套进行放气以使得袖套进入下一个稳定压力状态。对于任意一个稳定压力状态,根据该稳定压力状态下检测到的振荡波,可以计算得到一个代表该压力状态下振荡波的幅度值;通过对各个稳定压力状态下的振荡波的幅度值进行分析,可以得到人体的血压值。
但是上述原理的血压测量装置,在测量血压的过程中,很容易受到人体运动的影响,尤其是袖套所绑缚的手臂的运动的影响。例如,当手臂有运动时,手臂对袖套产生挤压,引起袖套内压力的振荡,形成了与脉搏搏动导致的振荡波形态类似的干扰波形,或使正常的振荡波受到干扰产生形变,影响幅度检测。
目前的血压测量装置在有运动的情况下,通常的处理方式是:延长压力状态的最长持续时间,意图得到运动停止后的正常的振荡波;或者,还对一系列受干扰的波形的幅度进行简单平均,作为该压力状态下的振荡波的幅度值。
这样的处理措施有许多局限性,例如会导致肢体受到较大压力的长时间压迫,影响测量舒适性;对于有血管疾病的测量者,还可能会增加肢体受损伤的概率;同时,也无法有效地保证测量准确性;另外,也一般只适用于非移动病人的测量监护,不适合用于移动病人的监护测量等。
技术问题
考虑到上述处理措施的局限性,本发明主要提供一种血压测量的优化方法及血压测量装置。
技术解决方案
根据第一方面,一种实施例中提供一种血压测量的优化方法,包括:
获取被检测对象的心脏运动信息和脉搏波信号;
通过依附在所述被检测对象的运动传感器获取所述被检测对象的运动信号;
根据所述运动信号确定所述被检测对象的运动强度;
识别所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段;
基于所述心脏运动信息在所述信号段中搜索出与所述心脏运动信息具有一致性的脉搏波信号。
在一实施例中,同步获取所述被检测对象的所述脉搏波信号和所述运动信号。
在一实施例中,,所述根据所述运动信号确定所述被检测对象的运动强度,包括:基于所述运动信号的幅度和/或频率来确定所述被检测对象的运动强度。
在一实施例中,识别出所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段后,对该信号段进行标记处理。
在一实施例中,所述心脏运动信息包括心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中的至少一者。
在一实施例中,所述与所述心脏运动信息具有一致性的脉搏波信号包括:与所述心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中的至少一者具有一致性的脉搏波信号。
在一实施例中,所述心脏运动信息为心跳间隔时间,所述获取被检测对象的心脏运动信息包括:
获取被检测对象的心电信号,根据心电信号计算所述被检测对象的心跳间隔时间;或者,
获取被检测对象的脉率信号,根据脉率信号计算所述被检测对象的心跳间隔时间。
在一实施例中,所述与所述心脏运动信息具有一致性的脉搏波信号包括:脉搏波间隔时间与所述心跳间隔时间一致的脉搏波信号。
在一实施例中,所述获取被检测对象的脉搏波信号包括:依次获取所述被检测对象在不同压力状态下的脉搏波信号,其中每个所述压力状态下的最长持续时间是基于已获取的所述心脏运动信息而确定的。
在一实施例中,每个所述压力状态下的最长持续时间是基于心跳间隔时间而确定的,其中,所述心跳间隔时间是基于所述心脏运动信息而确定的。
在一实施例中,每个所述压力状态下的最长持续时间是预设数量倍数的所述心跳间隔时间。
在一实施例中,当识别所述运动强度大于所述第一强度阈值的最长持续时间超过时间阈值时,则停止在所述信号段中搜索所述与所述心脏运动信息具有一致性的脉搏波信号、和/或停止获取被检测对象的脉搏波信号、和/或发出警报提示信息。
在一实施例中,在所述获取被检测对象的脉搏波信号之前,还包括判断是否启动所述血压测量:当接收到启动血压测量的指令时,预获取所述被检测对象的运动信号,根据所述运动信号判断所述被检测对象的运动强度是否大于第二强度阈值,若是则延时第二预设时长后再次判断是否启动所述血压测量,若否则启动所述血压测量。
在一实施例中,所述延时第二预设时长后再次判断是否启动所述血压测量,若所述被检测对象的运动强度仍然大于所述第二强度阈值,则放弃所述血压测量和/或发出警报提示信息。
根据第二方面,一种实施例中提供一种血压测量装置,包括:
脉搏波感应单元,用于感应被检测对象的脉搏波,并输出脉搏波信号;
运动传感器,通过依附于所述被检测对象来感应所述被检测对象的运动状态,并输出运动信号;
处理单元,用于获得所述被检测对象的心脏运动信息;根据所述运动信号确定所述被检测对象的运动强度;识别所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段;基于所述心脏运动信息在所述信号段中搜索出与所述心脏运动信息具有一致性的脉搏波信号,根据搜索出的与所述心脏运动信息具有一致性的脉搏波信号计算血压值。
在一实施例中,所述处理单元还用于控制所述脉搏波感应单元和所述运动传感器同步工作,以同步获取所述被检测对象的所述脉搏波信号以及所述运动信号。
在一实施例中,所述处理单元基于所述运动信号的幅度和/或频率来确定所述被检测对象的运动强度。
在一实施例中,所述处理单元识别出所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段后,对该信号段进行标记处理。
在一实施例中,所述心脏运动信息包括心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中的至少一者。
在一实施例中,所述与所述心脏运动信息具有一致性的脉搏波信号包括:与所述心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中至少一者具有一致性的脉搏波信号。
在一实施例中,所述血压测量装置还包括用于检测并输出所述被检测对象的心电信号的心电信号检测单元,所述处理单元根据所述心电信号计算心跳间隔时间;或者,还包括用于检测并输出所述被检测对象的脉率信号的脉率信号检测单元,所述处理单元根据所述脉率信号计算所述心跳间隔时间。
在一实施例中,所述与所述心脏运动信息具有一致性的脉搏波信号包括:脉搏波间隔时间与所述心跳间隔时间一致的脉搏波信号。
在一实施例中,所述血压测量装置还包括设置单元;所述脉搏波感应单元依次获取所述被检测对象在不同压力状态下的脉搏波信号;所述设置单元用于基于已获取的所述心脏运动信号而确定每个所述压力状态下的最长持续时间。
在一实施例中,所述设置单元基于所述心脏运动信息确定心跳间隔时间,基于所述心跳间隔时间确定每个所述压力状态下的最长持续时间。
在一实施例中,每个所述压力状态下的最长持续时间是预设数量倍数的所述心跳间隔时间。
在一实施例中,所述处理单元当识别运动强度大于所述第一强度阈值的最长持续时间超过时间阈值时,则停止在所述信号段中搜索所述与所述心脏运动信息具有一致性的脉搏波信号、和/或停止获取被检测对象的脉搏波信号、和/或发出警报提示信息。
在一实施例中,在获取被检测对象的脉搏波信号之前,所述处理单元当接收到启动血压测量的指令时,预获取所述被检测对象的运动信号,根据所述运动信号判断所述被检测对象的运动强度是否大于第二强度阈值,若是则延时第二预设时长后再次判断是否启动所述血压测量,若否则启动所述血压测量。
在一实施例中,所述处理单元在所述延时第二预设时长后再次判断是否启动所述血压测量,若所述被检测对象的运动强度仍然大于所述第二强度阈值,则放弃所述血压测量和/或发出警报提示信息。
在一实施例中,所述血压测量装置还包括警报单元,用于根据所述警报提示信息进行警。
在一实施例中,所述血压测量装置还包括用于套在被检测对象的手臂或手腕上的袖套,以及用于给袖套充气和放气的充放单元;所述处理单元控制充放单元给袖套充气,再按照一定步长逐步放气,每次放气后形成持续一定时间的稳定的压力状态;在每个稳定的压力状态下,处理单元都控制脉搏波感应单元获取该稳定的压力状态下的脉搏波信号。
在一实施例中,所述脉搏波感应单元设置于所述袖套内;所述运动传感器设置于所述袖套上,或者被安置在被检测对象上。
在一实施例中,所述运动传感器包括加速度传感器、角速度传感器或重力感应传感器中的至少一者。
根据第三方面,一种实施例中提供一种计算机可读存储介质,其特征在于,包括程序,所述程序能够被处理器执行以实现如上述任一实施例所述的方法。
有益效果
依据上述实施例的血压测量的优化方法及血压测量装置、计算机可读存储介质,根据运动信号来标记出受干扰的脉搏波信号段,然后根据心脏运动信息来在受干扰的信号段中搜索出与所述心脏运动信息具有一致性的脉搏波信号,从而有效解决了被检测对象运动对所测量的血压值的影响和干扰。
附图说明
图1为一种多参数监护仪中参数处理模块的系统框架图;
图2为一种单参数监护仪中参数处理模块的系统框架图;
图3为一种院内使用的监护仪联网系统的结构示意图;
图4为一种实施例的血压测量的优化方法的流程图;
图5为另一种实施例的血压测量的优化方法的流程图;
图6为一种实施例的血压测量装置的结构示意图;
图7为另一种实施例的血压测量装置的结构示意图;
图8为又一种实施例的血压测量装置的结构示意图;
图9为再一种实施例的血压测量装置的结构示意图。
本发明的实施方式
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本发明对血压测量启动的时机进行了改进,从而当接收到启动血压测量,选择一个合适的时机来启动血压测量,或者放弃血压测量。而当血压测量开始后,则根据运动信号来标记出受干扰的脉搏波信号段,然后根据心脏运动信息来在受干扰的信号段中搜索出与所述心脏运动信息具有一致性的脉搏波信号,从而有效解决了被检测对象运动对所测量的血压值的影响和干扰,下面具体说明。
本文的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法或设备固有的其他步骤或单元。
如图1所示,提供了一种多参数监护仪中参数处理模块的系统框架图。多参数监护仪具有独立的外壳,外壳面板上具有传感器接口区,其中集成了多个传感器接口,用于与外部的各个生理参数传感器附件111连接,外壳面板上还包括小型IXD显示器区,显示器119,输入接口电路122和报警电路120(如LED报警区)等。参数处理模块用于与主机进行通讯和从主机取电的对外通讯和电源接口。参数处理模块还支持外插参数模块,可以通过插入参数模块形成插件式监护仪主机,作为监护仪的一部分,也可以通过电缆与主机连接,外插参数模块作为监护仪外置的一个配件。
参数处理模块的内部电路置于外壳内,如图1所示,包括至少两个生理参数对应的信号采集电路112、前端信号处理电路113和主处理器115,信号采集电路112可以选自于心电电路、呼吸电路、 体温电路、血氧电路、无创血压电路、有创血压电路等等,这些信号采集电路112分别与相应的传感器接口电连接,用于电连接到不同的生理参数对应的传感器附件111,其输出端耦合到前端信号处理器,前端信号处理器的通讯口耦合到主处理器,主处理器与对外通讯和电源接口电连接。各种生理参数测量电路可采用现有技术中的通用电路,前端信号处理电路完成信号采集电路输出信号的采样和模数转换,并输出控制信号控制生理信号的测量过程,这些参数包括但不限于:心电,呼吸,体温,血氧,无创血压和有创血压参数。前端信号处理器电路可采用单片机或其它半导体器件实现,例如可以选用单片机,也可以采用ASIC或FPGA实现。前端信号处理器电路也可包括隔离电源供电,采样得到的数据经过简单处理打包后,通过隔离通讯接口发送至主处理器,例如前端信号处理器电路113可以通过隔离电源和通讯接口114耦合到主处理器115上,前端信号处理器由隔离电源供电的原因是通过变压器隔离的DC/DC电源,起到了隔离患者与供电设备的作用,主要目的是:1、隔离患者,通过隔离变压器,将应用部分浮地,使患者漏电流足够小;2、 防止除颤或电刀应用时的电压或能量影响主控板等中间电路的板卡及器件(用爬电距离和电气间隙保证)。当然,前端信号处理器电路113也可以通过线缆124与主处理器115连接。主处理器完成生理参数的计算,并通过对外通讯和电源接口116将参数的计算结果和波形发送到主机(如带显示器的主机、PC机、中央站等等),其中,主处理器115也可以通过线缆125与对外通讯和电源接口116连接,而对外通讯和电源接口116可以是以太网(Ethernet)、令牌环(Token Ring)、令牌总线(Token Bus)以及作为这三种网的骨干网光纤分布数据接口(FDDI)构成的局域网接口中的一个或其组合,还可以是红外、蓝牙、wifi、WMTS通讯等无线接口中的一个或其组合,或者还可以是RS232、USB等有线数据连接接口中的一个或其组合。对外通讯和电源接口116也可以是无线数据传输接口和有线数据传输接口中的一种或两种的组合。主机可以是监护仪的主机、心电图机,超声诊断仪,计算机等任何一个计算机设备,安装配合的软件, 就能够组成一个监护设备。主机还可以是通讯设备,例如手机,参数处理模块通过蓝牙接口将数据发送到支持蓝牙通讯的手机上,实现数据的远程传输。主处理器115完成生理参数的计算后,还可判断生理参数是否异常,若异常,可以通过报警电路120进行报警。另外,图中电源和电池管理电路117用于管理和处理监护仪的供电,存储器118可以存储监护仪的中间和最终的数据,以及存储用于被主处理器115等执行的程序指令或代码。若监护仪具有血压测量的功能,则还可以包括一个泵阀驱动电路121,泵阀驱动电路121用于在主处理器115的控制下进行充气或放气操作。
如图2所示,提供的是单个生理参数的监护仪的处理系统架构。相同内容可参见上述内容。
如图3所示,提供一种院内使用的监护仪联网系统,利用该系统可以将监护仪的数据进行整体保存,集中管理病人信息和看护信息,两者进行关联存储,便于进行历史数据的保存和关联报警。在图3所示的系统中,针对病床均可以提供一个床边监护仪212,该床边监护仪212可以是前述多参数监护仪或者插件式监护仪。另外,每个床边监护仪212还可以与一个便携式监护设备213进行配对传输,便携式监护设备213提供简便、可携带的参数处理模块,简便、可携带的参数处理模块可以穿戴在病人身体上对应病人进行移动式监护,通过便携式监护设备213与床边监护仪212进行有线或无线通讯后可以将移动式监护产生的生理数据传输到床边监护仪212上进行显示,或通过床边监护仪212传输到中央站211供医生或护士查看,或通过床边监护仪212传输到数据服务器215进行存储。另外,便携式监护设备213还可以直接通过设置在院内的无线网络节点214将移动式监护产生的生理数据传输到中央站211进行存储和显示,或者通过设置在院内的无线网络节点214将移动式监护产生的生理数据传输到数据服务器215进行存储。可见,床边监护仪212上显示的生理参数对应的数据可以是源自直接连接到监护以上的传感器附件,或者源自便携式监护设备213,或者源自数据服务器。便携式监护设备213可以与传感器附件111有线和/或无线连接,并且包含前述参数处理模块的部分电路或全部电路,例如,对于隔离病人的隔离措施可以不设置在便携式监护设备213,而设置在便携式监护设备213之外,如设置在传感器附件111上。便携式监护设备213可以自带显示屏用于显示参数计算结果和/或提示报警信息,例如,便携式监护设备213可以是贴在身体上的无线传感器贴片,或者是转运监护仪,或者是遥测设备。
本发明可以在上述监护仪的基础上,引入运动传感器,通过运动传感器获取的信号来对监护仪进行优化。例如请参照图4,本发明一实施例中公开了一种血压测量的优化方法(以下简称优化方法),可以应用于固定式的血压测量装置或移动式的血压测量装置(例如可穿戴监护仪),包括步骤S110~S190,下面具体说明。
步骤S110:获取被检测对象的心脏运动信息和脉搏波信号。
下面对心脏运动信息及其获取作一个说明。
在一实施例中,所述心脏运动信息可以包括心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中的至少一者。心率和脉率等生理信号可以通过依附在所述被检测对象的传感器来实时获取,较优地,心率和脉率等生理信号可以与所述脉搏波信号同步获取,也可以使用被检测对象的历史的心率和脉率的数据。
而所述心跳间隔时间可以由心率或脉率来计算得到,因此当所述心脏运动信息为心跳间隔时间时,步骤S110获取被检测对象的心脏运动信息可以包括:获取被检测对象的心电信号,根据心电信号计算所述被检测对象的心跳间隔时间;或者,获取被检测对象的脉率信号,根据脉率信号计算所述被检测对象的心跳间隔时间。
下面对脉搏波信号的获取作一个说明。
在一实施例中,步骤S110获取被检测对象的脉搏波信号,包括:依次获取所述被检测对象在不同压力状态下的脉搏波信号,其中每个所述压力状态下的最长持续时间是基于已获取的所述心脏运动信息而确定的。至少有两个或以上的不同的压力状态,每种压力状态下被检测对象受到的压力不同。每个压力状态下的最长持续时间被检测对象受到的压力是恒定的或大致恒定的。例如,可以有三种压力状态,分别为第一压力状态、第二压力状态和第三压力状态,在第一压力状态下被检测对象受到的压力为第一压力,在第二压力状态下被检测对象受到的压力为第二压力,在第三压力状态下被检测对象受到的压力为第三压力,其中第一压力、第二压力和第三压力各不相等。在一实施例中,可以根据被检测对象在不同压力状态下受到的压力从大到小或从小到大的过程获取被检测对象的脉搏波信号。例如,可以依次获取被检测对象在第一压力状态、第二压力状态和第三压力状态下的脉搏波信号,其中,第一压力>第二压力>第三压力。
每个压力状态下的最长持续时间可以是恒定值,也可以根据被检测对象的心脏运动信息来确定。在一实施例中,每个所述压力状态下的最长持续时间可以是基于心跳间隔时间而确定的,其中所述心跳间隔时间是基于所述心脏运动信息而确定的。在一实施例中,每个所述压力状态下的最长持续时间可以是预设数量倍数的所述心跳间隔时间。例如,通过被检测对象的心脏运动信息获取到心跳间隔时间为T,预设数量倍数为N倍,则每个压力状态下的最长持续时间为N×T。每个人的心跳间隔时间都不一样,有些较长有些较短。如果每个压力状态下的最长持续时间为恒定值t,则对于较短的心跳间隔时间的被检测对象而言,可能在短于t的时间内就可以获取到适当数量(例如两个)的脉搏波信号;而对于较长的心跳间隔时间的被检测对象而言,可能在长于t的时间内才可以获取到适当数量的脉搏波信号。因此,结合被检测对象的心脏运动信息来自适应地设定各压力状态下的最长持续时间,可以有效地缩短血压测量时间,提升了测量的舒适性,亦减少了被检测对象受压迫有可能导致的损伤;也可以提高测量效率。
步骤S130:通过依附在所述被检测对象的运动传感器获取所述被检测对象的运动信号。运动传感器,是用于感测被检测对象的运动的传感器。在一实施例中,所述运动传感器可以包括加速度传感器、角速度传感器(例如陀螺仪)或重力感应传感器中的至少一者,分别对应着的运动信号是加速度信号、角速度信号和重力加速度信号。运动传感器依附在被检测对象,可以是直接附着在被检测对象的肌体上或者衣物上,也可以设置在检测脉搏波信号的装置(例如袖套)上。在一实施例中,可以同步获取所述被检测对象的所述脉搏波信号和所述运动信号,也即在获取被检测对象的所述脉搏波信号的同时,同步获取被检测对象的所述运动信号。同步获取可以提高后续识别受运动干扰的信号段的准确性。
步骤S150:根据所述运动信号确定所述被检测对象的运动强度。在一实施例中,步骤S150根据所述运动信号确定所述被检测对象的运动强度,包括:基于所述运动信号的幅度和/或频率来确定所述被检测对象的运动强度。例如,被检测对象的运动信号的幅度与运动强度呈正相关,所获取的被检测对象的运动信号的幅度越大,说明被检测对象的运动强度越大;类似地,被检测对象的运动信号的频率与运动强度也呈正相关,所获取的被检测对象的运动信号的频率越高,说明被检测对象的运动强度越大。当运动传感器为加速度传感器、或角速度传感器(陀螺仪)或重力感应传感器时,分别对应着的运动信号是加速度信号、角速度信号和重力加速度信号,此时需要将加速度信号、角速度信号或重力加速度信号通过计算转换成用于标识运动强度的数据。
步骤S170:识别所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段。在一实施例中,步骤S170识别出所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段后,还可以对该信号段进行标记处理,用于示意该信号段为受运动干扰的信号段,需要进行后续的步骤S190中的搜索。
步骤S170是识别出受运动干扰的信号段,但是当该运动状态持续时间太久时,则可能当前不太适宜进行血压测量,则需要进一步的动作。例如在一实施例中,所述优化方法还包括:当识别所述运动强度大于所述第一强度阈值的最长持续时间超过时间阈值时,则停止进行下面的步骤S190中在所述信号段中搜索所述与所述心脏运动信息具有一致性的脉搏波信号、和/或停止获取被检测对象的脉搏波信号、和/或发出警报提示信息。
步骤S190:基于所述心脏运动信息在所述信号段中搜索出与所述心脏运动信息具有一致性的脉搏波信号(即有效的脉搏波信号,下文均简称有效的脉搏波信号)。由于有效的脉搏波信号,或者说是上述提及的正常的脉搏波信号,是一系列与心搏同源的、间隔时间规律的信号,而运动干扰导致的振荡波是一系列随机间隔的信号,因此可以基于心搏或心搏相关的信号和参数等来从受运动干扰的脉搏波信号段中,搜索出有效的脉搏波信号,这就可以有效地避免被检测对象的运动对血压测量的影响和干扰。
因此,在一实施例中,所述有效的脉搏波信号可以包括:与所述心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中的至少一者具有一致性的脉搏波信号。
不妨以心跳间隔时间为例进行说明。例如,所述有效的脉搏波信号可以包括与所述心跳间隔时间具有一致性的脉搏波信号,这指的是脉搏波间隔时间与所述心跳间隔时间一致的脉搏波信号。如背景技术中所提及的,脉搏波是由人体脉搏搏动而引起的振荡波,而由于运动干扰也可能会形成振荡波,由于这种运动干扰所形成的振荡波一般在信号处时会被当成的由人体脉搏搏动而引起的振荡波,即脉搏波;不管振荡波是由人体脉搏搏动引起的,还是由运动干扰所形成的,本文统称这些振荡波为脉搏波,但是为了加以区别,本文称由人体脉搏搏动而引起的振荡波为有效的脉搏波,意为这是真正的脉搏波;称由于运动干扰形成的振荡波为无效的脉搏波,意为这是假的脉搏波。运动干扰还有可能会使得有效的脉搏波的位置受到影响,即相邻的两个有效的脉搏波,其间隔时间可能会由于受运动干扰而发生变化。所以,有效的脉搏波信号可以包括:脉搏波间隔时间与所述心跳间隔时间一致的脉搏波信号,指的是这样的脉搏波信号:在受干扰的信号段时,搜索出若干个与心跳间隔时间具有一致性的脉搏波,这些脉搏波的间隔时间可能相同也可能不相同,但是均是心跳间隔时间的整数倍(例如1倍或多倍);这些脉搏波即为有效的脉搏波信号。因此,有效的脉搏波信号可以包括:脉搏波间隔时间相同的脉搏波信号,或者脉搏波间隔时间相同且是所述心跳间隔时间的整数倍的脉搏波信号。
类似地,所述有效的脉搏波信号包括:与所述心率具有一致性的脉搏波信号,可以是设定时间内的心跳次数与脉搏波信号个数一致,也可以指的是脉搏波间隔时间与所述心率所代表的心跳间隔时间一致的脉搏波信号。所述有效的脉搏波信号包括:与所述脉率具有一致性的脉搏波信号,可以是设定时间内的脉动次数与脉搏波信号个数一致,也可以指的是脉搏波间隔时间与所述脉率所代表的心跳间隔时间一致的脉搏波信号。
所述有效的脉搏波信号包括:与所述第一预设时长内的模版波形数量具有一致性的脉搏波信号,可以指的是,当在受干扰的信号段中搜索有效的脉搏波信号时,在信号段中第一预设时间长内只存在模版波形数量的脉搏波,若信号段在这第一预设时间长内存在多于模版波形数量的脉搏波,则说明这多出的脉搏波是由运动所引起的振荡波,即上文所称的无效的脉搏波。不妨以模版波形数量为2来说明,当在受干扰的信号段中第一预设时长内存在大于2个的脉搏波,例如5个,则说明其中有2个是有效的脉搏波,有3个是无效的脉搏波,即有3个是由运动所引起的振荡波,需要将这2个有效的脉搏波识别出来,识别方法可以是根据之前已经搜索出的有效的脉搏波信号的波形的幅度和/或斜率等,来在这5个脉搏波中寻找相似幅度和/或斜率(相似波形)的脉搏波,作为有效的脉搏波。当然,第一预设时长可以参照心跳间隔时间来设置,即参照心跳间隔时间来设置第一预设时长及模版波形数量。
搜索出的有效的脉搏波信号可以用于计算血压值等。
以上是被检测对象血压测量过程中,对血压测量进行的优化;在一实施例中,还可以在血压测量启动前的阶段进行一个优化,即血压测量启动的时机进行了改进。在一实施例,请参照图5,所述优化方法在所述获取被检测对象的脉搏波信号之前,还包括判断是否启动所述血压测量的步骤S100,下面具体说明。
步骤S100:当接收到启动血压测量的指令时,预获取所述被检测对象的运动信号,根据所述运动信号判断所述被检测对象的运动强度是否大于第二强度阈值,若否则启动所述血压测量,若是则延时第二预设时长后再次判断是否启动所述血压测量(即再次预获取所述被检测对象的运动信号,根据所述运动信号判断所述被检测对象的运动强度是否大于第二强度阈值)。在一实施例中,所述延时第二预设时长后再次判断是否启动所述血压测量,若所述被检测对象的运动强度仍然大于所述第二强度阈值,则放弃所述血压测量和/或发出警报提示信息。这里所说的放弃所述血压测量,例如可以是不启动所述血压测量。也就是说,在接收到启动血压测量的指令时,首先通过获取的运动信号判断被检测对象是否在做较为激烈的运动(运动强度大于第二强度阈值),若判断做较为激烈的运动则延时第二预设时长后再次判断被检测对象是否在做较为激烈的运动,若没有做较为激烈的运动则可以启动所述血压测量。如果延时第二预设时长后再次判断被检测对象在做较为激烈的运动,则放弃所述血压测量和/或发出警报提示信息。
 
请参照图6,本发明一实施例中公开了一种监护仪,该监护仪可以是一种血压测量装置,例如可以应用于固定式的血压测量装置或移动式的血压测量装置(例如可穿戴监护仪),其可以包括脉搏波感应单元10、运动传感器20和处理单元30,下面具体说明。
脉搏波感应单元10用于感应被检测对象的脉搏波,并输出脉搏波信号。脉搏波感应单元10可以包括用于感应脉搏波的传感器,例如压力传感器和/或光电传感器。感应脉搏波的传感器已经应用广泛,在此不深入描述。
运动传感器20通过依附于所述被检测对象来感应所述被检测对象的运动状态,并输出运动信号。运动传感器20是用于感测被检测对象的运动的传感器。在一实施例中,运动传感器20可以包括加速度传感器、角速度传感器(例如陀螺仪)或重力感应传感器中的至少一者,分别对应着的运动信号是加速度信号、角速度信号和重力加速度信号。运动传感器依附在被检测对象,可以是直接附着在被检测对象的肌体上或者衣物上,也可以设置在检测脉搏波信号的装置(例如袖套)上。
处理单元30用于根据所述运动信号确定所述被检测对象的运动强度,识别所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段;获得所述被检测对象的心脏运动信息,基于所述心脏运动信息在所述信号段中搜索出与所述心脏运动信息具有一致性的脉搏波信号(即上文所称的有效的脉搏波信号),根据搜索出的所述与所述心脏运动信息具有一致性的脉搏波信号计算血压值。可以看到,处理单元30需要识别出受干扰的脉搏波信号段;然后基于心脏运动信息来在受干扰的信号段中搜索出有效的脉搏波信号;再基于该有效的脉搏波信号来计算血压值,下面具体说明。
处理单元30识别出受干扰的脉搏波信号段,先是根据运动信号来确定所述被检测对象的运动强度,在一实施例中,所述处理单元30可以基于所述运动信号的幅度和/或频率来确定所述被检测对象的运动强度,例如,被检测对象的运动信号的幅度与运动强度呈正相关,所获取的被检测对象的运动信号的幅度越大,说明被检测对象的运动强度越大;类似地,被检测对象的运动信号的频率与运动强度也呈正相关,所获取的被检测对象的运动信号的频率越高,说明被检测对象的运动强度越大。接着,处理单元30再识别所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段,在一实施例中,处理单元30识别出所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段后,还可以对该信号段进行标记处理,用于示意该信号段为受运动干扰的信号段,需要被用于进行后续的搜索。在一实施例中,处理单元30还用于控制所述脉搏波感应单元10和所述运动传感器20同步工作,以同步获取所述被检测对象的所述脉搏波信号以及所述运动信号,这样有利在将脉搏波信号和运动信号在时间上对应起来,简化了识别运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段的难度和技术要求。需要说明的是,如上所述,当运动传感器20为加速度传感器、或角速度传感器(陀螺仪)或重力感应传感器时,分别对应着的运动信号是加速度信号、角速度信号和重力加速度信号,因此当处理单元30根据运动信号来确定所述被检测对象的运动强度,具体实现时,可以将加速度信号、角速度信号或重力加速度信号通过计算转换成用于标识运动强度的数据,再来确定所述被检测对象的运动强度。
处理单元30再基于心脏运动信息来在受干扰的信号段中搜索出有效的脉搏波信号。
在搜索之前,处理单元30先要获取所述被检测对象的心脏运动信息。在一实施例中,所述心脏运动信息可以包括心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中的至少一者。处理单元30获取所述被检测对象的心脏运动信息有多种方式,例如,请参照图7,以心率为例,血压测量装置还可以包括用于检测并输出所述被检测对象的心电信号的心电信号检测单元40,处理单元30通过附着于被检测对象的心电信号检测单元40来获取被检测对象的心率;再例如,血压测量装置还可以包括用于检测并输出所述被检测对象的脉率信号的脉率信号检测单元50,处理单元30通过附着于被检测对象的脉率信号检测单元50来获取被检测对象的脉率。当然,处理单元30也可以直接访问并获取被检测对象的历史心率或脉率的数据。而对于心跳间隔时间,处理单元30可以根据实时获取或历史的心率或脉率,来计算心跳间隔时间;同样地,处理单元30也可以直接访问并获取被检测对象的历史的心跳间隔时间。
处理单元30在获取所述被检测对象的心脏运动信息后,基于心脏运动信息来在受干扰的信号段中搜索出有效的脉搏波信号,在一实施例中,所述有效的脉搏波信号可以包括:与所述心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中至少一者具有一致性的脉搏波信号。
不妨以心跳间隔时间为例进行说明。例如,所述有效的脉搏波信号可以包括与所述心跳间隔时间具有一致性的脉搏波信号,这指的是脉搏波间隔时间与所述心跳间隔时间一致的脉搏波信号。具体地,有效的脉搏波信号,指的是这样的脉搏波信号:在受干扰的信号段时,搜索出若干个与心跳间隔时间具有一致性的脉搏波,这些脉搏波的间隔时间可能相同也可能不相同,但是均是心跳间隔时间的整数倍(例如1倍或多倍);这些脉搏波即为有效的脉搏波信号。因此,有效的脉搏波信号可以包括:脉搏波间隔时间相同的脉搏波信号,或者脉搏波间隔时间相同且是所述心跳间隔时间的整数倍的脉搏波信号。类似地,所述有效的脉搏波信号可以包括:与所述心率具有一致性的脉搏波信号,这可以指的是设定时间内的心跳次数与脉搏波信号个数一致,也可以指的是脉搏波间隔时间与所述心率所代表的心跳间隔时间一致的脉搏波信号。所述有效的脉搏波信号包括:与所述脉率具有一致性的脉搏波信号,这可以指的是设定时间内的脉动次数与脉搏波信号个数一致,也可以指的是脉搏波间隔时间与所述脉率所代表的心跳间隔时间一致的脉搏波信号。所述有效的脉搏波信号包括:与所述第一预设时长内的模版波形数量具有一致性的脉搏波信号,可以指的是,当在受干扰的信号段中搜索有效的脉搏波信号时,在信号段中第一预设时间长内只存在模版波形数量的脉搏波,若信号段在这第一预设时间长内存在多于模版波形数量的脉搏波,则说明这多出的脉搏波是由运动所引起的振荡波,即上文所称的无效的脉搏波。不妨以模版波形数量为2来说明,当在受干扰的信号段中第一预设时长内存在大于2个的脉搏波,例如5个,则说明其中有2个是有效的脉搏波,有3个是无效的脉搏波,即有3个是由运动所引起的振荡波,则处理单元30需要将这2个有效的脉搏波识别出来,识别方法可以是根据之前已经搜索出的有效的脉搏波信号的波形的幅度和/或斜率(相似波形)等,来在这5个脉搏波中寻找相似幅度和/或斜率的脉搏波,作为有效的脉搏波。当然,第一预设时长也可以参照心跳间隔时间来设置,即参照心跳间隔时间来设置第一预设时长及模版波形数量。
以上是处理单元30对血压测量过程中被检测对象的脉搏波信号进行优化的过程。在具体血压测量过程中,脉搏波感应单元10依次获取所述被检测对象在不同压力状态下的脉搏波信号。至少有两个或以上的不同的压力状态,每种压力状态下被检测对象受到的压力不同。每个压力状态下的最长持续时间被检测对象受到的压力是恒定的或大致恒定的。例如,可以有三种压力状态,分别为第一压力状态、第二压力状态和第三压力状态,在第一压力状态下被检测对象受到的压力为第一压力,在第二压力状态下被检测对象受到的压力为第二压力,在第三压力状态下被检测对象受到的压力为第三压力,其中第一压力、第二压力和第三压力各不相等。在一实施例中,可以根据被检测对象在不同压力状态下受到的压力从大到小或从小到大的过程获取被检测对象的脉搏波信号。例如,可以依次获取被检测对象在第一压力状态、第二压力状态和第三压力状态下的脉搏波信号,其中,第一压力>第二压力>第三压力。每个压力状态下的最长持续时间可以是恒定值,也可以根据被检测对象的心脏运动信息来确定。在一实施例中,请参照图8,血压测量装置还包括设置单元60,设置单元60用于基于已获取的所述心脏运动信号而确定每个所述压力状态下的最长持续时间。在一实施例中,设置单元60基于所述心脏运动信息确定心跳间隔时间,基于所述心跳间隔时间确定每个所述压力状态下的最长持续时间。在一实施例中,每个所述压力状态下的最长持续时间可以是预设数量倍数的所述心跳间隔时间。例如,通过被检测对象的心脏运动信息获取到心跳间隔时间为T,预设数量倍数为N倍,则每个压力状态下的最长持续时间为N×T。每个人的心跳间隔时间都不一样,有些较长有些较短。如果每个压力状态下的最长持续时间为恒定值t,则对于较短的心跳间隔时间的被检测对象而言,可能在短于t的时间内就可以获取到适当数量(例如两个)的脉搏波信号;而对于较长的心跳间隔时间的被检测对象而言,可能在长于t的时间内才可以获取到适当数量的脉搏波信号。设置单元60结合被检测对象的心脏运动信息来自适应地设定各压力状态下的最长持续时间,可以有效地缩短血压测量时间,提升了测量的舒适性,亦减少了被检测对象受压迫有可能导致的损伤;也可以提高测量效率。
处理单元30还可以对血压测量的停止或启动进行优化。因此,请参照图9,在一实施例中血压测量装置还可以包括警报单元70,用于根据处理单元30的警报提示信息进行警报,下面具体说明。
在一实施例中,处理单元30当识别运动强度大于所述第一强度阈值的最长持续时间超过时间阈值时,则停止在所述信号段中搜索所述有效的脉搏波信号、和/或停止获取被检测对象的脉搏波信号、和/或发出警报提示信息。
在一实施例中,在获取被检测对象的脉搏波信号之前,处理单元30当接收到启动血压测量的指令时,预获取所述被检测对象的运动信号,根据所述运动信号判断所述被检测对象的运动强度是否大于第二强度阈值,若是则延时第二预设时长后再次判断是否启动所述血压测量,若否则启动所述血压测量。在一实施例中,处理单元30在所述延时第二预设时长后再次判断是否启动所述血压测量,若所述被检测对象的运动强度仍然大于所述第二强度阈值,则放弃所述血压测量和/或发出警报提示信息。也就是说,处理单元30在接收到启动血压测量的指令时,首先通过获取的运动信号判断被检测对象是否在做较为激烈的运动(运动强度大于第二强度阈值),若判断做较为激烈的运动则延时第二预设时长后再次判断被检测对象是否在做较为激烈的运动,若没有做较为激烈的运动则可以启动所述血压测量。如果延时第二预设时长后再次判断被检测对象在做较为激烈的运动,则放弃所述血压测量和/或发出警报提示信息。
本发明的血压测量装置还可以包括一些其他的部件,例如,还可以包括用于套在被检测对象的手臂或手腕上的袖套,以及用于给袖套充气和放气的充放单元,脉搏波感应单元10可以设置于所述袖套内,运动传感器20可以设置于所述袖套上,或者被安置在被检测对象上;处理单元30控制充放单元给袖套充气,再按照一定步长逐步放气,每次放气后形成持续一定时间的稳定的压力状态,例如,处理单元30根据设置单元60设置的压力状态的最长持续时间,来控制充放单元,实现各压力状态持续相应的时间;在每个稳定的压力状态下,处理单元30都控制脉搏波感应单元10获取该稳定的压力状态下的脉搏波信号。
需要说明的是,图6到图9所公开的血压测量装置也是一种监护仪,因此图6到图9所公开的血压测量装置的一些其他结构和部件也可以参照图1及图2公开的监护仪,例如图6至图9的监护仪中设置单元60和处理单元30可以是由图1及图2中的主处理器115来实现,脉搏波感应单元10、心电信号检测单元40、脉率信号检测单元50也分别可以是一种传感器附件111,警报单元70可以是报警电路120来实现,并且,图6到图9所公开的血压测量装置还可以包括图1及图2中公开的其他部件,例如隔离电源和通讯接口114、对外通讯和电源接口116等等,在此不再赘述。 此外,图6到图9所公开的血压测量装置也可以是图3所示的便携监护设备213的全部或部分,例如,图4的步骤中部分可以在便携监护设备213中执行,部分可以在床边监护仪212中执行;或者,图4的步骤中的全部都在便携监护设备213中执行,而处理后的数据通过中央站211或者床边监护仪212显示输出、及存储。
本文参照了各种示范实施例进行说明。然而,本领域的技术人员将认识到,在不脱离本文范围的情况下,可以对示范性实施例做出改变和修正。例如,各种操作步骤以及用于执行操作步骤的组件,可以根据特定的应用或考虑与系统的操作相关联的任何数量的成本函数以不同的方式实现(例如一个或多个步骤可以被删除、修改或结合到其他步骤中)。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。另外,如本领域技术人员所理解的,本文的原理可以反映在计算机可读存储介质上的计算机程序产品中,该可读存储介质预装有计算机可读程序代码。任何有形的、非暂时性的计算机可读存储介质皆可被使用,包括磁存储设备(硬盘、软盘等)、光学存储设备(CD-ROM、DVD、Blu Ray盘等)、闪存和/或诸如此类。这些计算机程序指令可被加载到通用计算机、专用计算机或其他可编程数据处理设备上以形成机器,使得这些在计算机上或其他可编程数据处理装置上执行的指令可以生成实现指定的功能的装置。这些计算机程序指令也可以存储在计算机可读存储器中,该计算机可读存储器可以指示计算机或其他可编程数据处理设备以特定的方式运行,这样存储在计算机可读存储器中的指令就可以形成一件制造品,包括实现指定功能的实现装置。计算机程序指令也可以加载到计算机或其他可编程数据处理设备上,从而在计算机或其他可编程设备上执行一系列操作步骤以产生一个计算机实现的进程,使得在计算机或其他可编程设备上执行的指令可以提供用于实现指定功能的步骤。
虽然在各种实施例中已经示出了本文的原理,但是许多特别适用于特定环境和操作要求的结构、布置、比例、元件、材料和部件的修改可以在不脱离本披露的原则和范围内使用。以上修改和其他改变或修正将被包含在本文的范围之内。
前述具体说明已参照各种实施例进行了描述。然而,本领域技术人员将认识到,可以在不脱离本披露的范围的情况下进行各种修正和改变。因此,对于本披露的考虑将是说明性的而非限制性的意义上的,并且所有这些修改都将被包含在其范围内。同样,有关于各种实施例的优点、其他优点和问题的解决方案已如上所述。然而,益处、优点、问题的解决方案以及任何能产生这些的要素,或使其变得更明确的解决方案都不应被解释为关键的、必需的或必要的。本文中所用的术语“包括”和其任何其他变体,皆属于非排他性包含,这样包括要素列表的过程、方法、文章或设备不仅包括这些要素,还包括未明确列出的或不属于该过程、方法、系统、文章或设备的其他要素。此外,本文中所使用的术语“耦合”和其任何其他变体都是指物理连接、电连接、磁连接、光连接、通信连接、功能连接和/或任何其他连接。
具有本领域技术的人将认识到,在不脱离本发明的基本原理的情况下,可以对上述实施例的细节进行许多改变。因此,本发明的范围应仅由以下权利要求确定。
 
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (33)

  1. 一种血压测量的优化方法,其特征在于,包括:
    获取被检测对象的心脏运动信息和脉搏波信号;
    通过依附在所述被检测对象的运动传感器获取所述被检测对象的运动信号;
    根据所述运动信号确定所述被检测对象的运动强度;
    识别所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段;
    基于所述心脏运动信息在所述信号段中搜索出与所述心脏运动信息具有一致性的脉搏波信号。
  2. 如权利要求1所述的优化方法,其特征在于,同步获取所述被检测对象的所述脉搏波信号和所述运动信号。
  3. 如权利要求1所述的优化方法,其特征在于,所述根据所述运动信号确定所述被检测对象的运动强度,包括:基于所述运动信号的幅度和/或频率来确定所述被检测对象的运动强度。
  4. 如权利要求1所述的优化方法,其特征在于,识别出所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段后,对该信号段进行标记处理。
  5. 如权利要求1所述的优化方法,其特征在于,所述心脏运动信息包括心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中的至少一者。
  6. 如权利要求5所述的优化方法,其特征在于,所述与所述心脏运动信息具有一致性的脉搏波信号包括:与所述心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中的至少一者具有一致性的脉搏波信号。
  7. 如权利要求5所述的优化方法,其特征在于,所述心脏运动信息为心跳间隔时间,所述获取被检测对象的心脏运动信息包括:
        获取被检测对象的心电信号,根据心电信号计算所述被检测对象的心跳间隔时间;或者,
        获取被检测对象的脉率信号,根据脉率信号计算所述被检测对象的心跳间隔时间。
  8. 如权利要求5或7所述的优化方法,其特征在于,所述与所述心脏运动信息具有一致性的脉搏波信号包括:脉搏波间隔时间与所述心跳间隔时间一致的脉搏波信号。
  9. 如权利要求1所述的优化方法,其特征在于,所述获取被检测对象的脉搏波信号包括:依次获取所述被检测对象在不同压力状态下的脉搏波信号,其中每个所述压力状态下的最长持续时间是基于已获取的所述心脏运动信息而确定的。
  10. 如权利要求9所述的优化方法,其特征在于,每个所述压力状态下的最长持续时间是基于心跳间隔时间而确定的,其中,所述心跳间隔时间是基于所述心脏运动信息而确定的。
  11. 如权利要求10所述的优化方法,其特征在于,每个所述压力状态下的最长持续时间是预设数量倍数的所述心跳间隔时间。
  12. 如权利要求1所述的优化方法,其特征在于,当识别所述运动强度大于所述第一强度阈值的最长持续时间超过时间阈值时,则停止在所述信号段中搜索所述与所述心脏运动信息具有一致性的脉搏波信号、和/或停止获取被检测对象的脉搏波信号、和/或发出警报提示信息。
  13. 如权利要求1所述的优化方法,其特征在于,在所述获取被检测对象的脉搏波信号之前,还包括判断是否启动所述血压测量:当接收到启动血压测量的指令时,预获取所述被检测对象的运动信号,根据所述运动信号判断所述被检测对象的运动强度是否大于第二强度阈值,若是则延时第二预设时长后再次判断是否启动所述血压测量,若否则启动所述血压测量。
  14. 如权利要求13所述的优化方法,其特征在于,所述延时第二预设时长后再次判断是否启动所述血压测量,若所述被检测对象的运动强度仍然大于所述第二强度阈值,则放弃所述血压测量和/或发出警报提示信息。
  15. 一种计算机可读存储介质,其特征在于,包括程序,所述程序能够被处理器执行以实现如权利要求1至14中任一项所述的方法。
  16. 一种血压测量装置,其特征在于,包括:
    脉搏波感应单元,用于感应被检测对象的脉搏波,并输出脉搏波信号;
    运动传感器,通过依附于所述被检测对象来感应所述被检测对象的运动状态,并输出运动信号;
    处理单元,用于获得所述被检测对象的心脏运动信息;根据所述运动信号确定所述被检测对象的运动强度;识别所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段;基于所述心脏运动信息在所述信号段中搜索出与所述心脏运动信息具有一致性的脉搏波信号,根据搜索出的与所述心脏运动信息具有一致性的脉搏波信号计算血压值。
  17. 如权利要求16所述的血压测量装置,其特征在于,所述处理单元还用于控制所述脉搏波感应单元和所述运动传感器同步工作,以同步获取所述被检测对象的所述脉搏波信号以及所述运动信号。
  18. 如权利要求16所述的血压测量装置,其特征在于,所述处理单元基于所述运动信号的幅度和/或频率来确定所述被检测对象的运动强度。
  19. 如权利要求16所述的血压测量装置,其特征在于,所述处理单元识别出所述运动强度大于第一强度阈值的时间段所对应的脉搏波信号中的信号段后,对该信号段进行标记处理。
  20. 如权利要求16所述的血压测量装置,其特征在于,所述心脏运动信息包括心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中的至少一者。
  21. 如权利要求20所述的血压测量装置,其特征在于,所述与所述心脏运动信息具有一致性的脉搏波信号包括:与所述心率、脉率、心跳间隔时间、第一预设时长内的模版波形数量中至少一者具有一致性的脉搏波信号。
  22. 如权利要求20所述的血压测量装置,还包括用于检测并输出所述被检测对象的心电信号的心电信号检测单元,所述处理单元根据所述心电信号计算心跳间隔时间;或者,还包括用于检测并输出所述被检测对象的脉率信号的脉率信号检测单元,所述处理单元根据所述脉率信号计算所述心跳间隔时间。
  23. 如权利要求20或22所述的血压测量装置,其特征在于,所述与所述心脏运动信息具有一致性的脉搏波信号包括:脉搏波间隔时间与所述心跳间隔时间一致的脉搏波信号。
  24. 如权利要求16所述的血压测量装置,其特征在于,还包括设置单元;所述脉搏波感应单元依次获取所述被检测对象在不同压力状态下的脉搏波信号;所述设置单元用于基于已获取的所述心脏运动信号而确定每个所述压力状态下的最长持续时间。
  25. 如权利要求24所述的血压测量装置,其特征在于,所述设置单元基于所述心脏运动信息确定心跳间隔时间,基于所述心跳间隔时间确定每个所述压力状态下的最长持续时间。
  26. 如权利要求25所述的血压测量装置,其特征在于,每个所述压力状态下的最长持续时间是预设数量倍数的所述心跳间隔时间。
  27. 如权利要求16所述的血压测量装置,其特征在于,所述处理单元当识别运动强度大于所述第一强度阈值的最长持续时间超过时间阈值时,则停止在所述信号段中搜索所述与所述心脏运动信息具有一致性的脉搏波信号、和/或停止获取被检测对象的脉搏波信号、和/或发出警报提示信息。
  28. 如权利要求16所述的血压测量装置,其特征在于,在获取被检测对象的脉搏波信号之前,所述处理单元当接收到启动血压测量的指令时,预获取所述被检测对象的运动信号,根据所述运动信号判断所述被检测对象的运动强度是否大于第二强度阈值,若是则延时第二预设时长后再次判断是否启动所述血压测量,若否则启动所述血压测量。
  29. 如权利要求28所述的血压测量装置,其特征在于,所述处理单元在所述延时第二预设时长后再次判断是否启动所述血压测量,若所述被检测对象的运动强度仍然大于所述第二强度阈值,则放弃所述血压测量和/或发出警报提示信息。
  30. 如权利要求27或29所述的血压测量装置,其特征在于,还包括警报单元,用于根据所述警报提示信息进行警报。
  31. 如权利要求16或24所述的血压测量装置,其特征在于,还包括用于套在被检测对象的手臂或手腕上的袖套,以及用于给袖套充气和放气的充放单元;所述处理单元控制充放单元给袖套充气,再按照一定步长逐步放气,每次放气后形成持续一定时间的稳定的压力状态;在每个稳定的压力状态下,所述处理单元都控制脉搏波感应单元获取该稳定的压力状态下的脉搏波信号。
  32. 如权利要求31所述的血压测量装置,其特征在于,所述脉搏波感应单元设置于所述袖套内;所述运动传感器设置于所述袖套上,或者被安置在被检测对象上。
  33. 如权利要求16所述的血压测量装置,其特征在于,所述运动传感器包括加速度传感器、角速度传感器或重力感应传感器中的至少一者。
PCT/CN2018/088982 2018-05-30 2018-05-30 一种血压测量的优化方法及血压测量装置 WO2019227329A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/088982 WO2019227329A1 (zh) 2018-05-30 2018-05-30 一种血压测量的优化方法及血压测量装置
CN201880093577.8A CN112135559A (zh) 2018-05-30 2018-05-30 一种血压测量的优化方法及血压测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/088982 WO2019227329A1 (zh) 2018-05-30 2018-05-30 一种血压测量的优化方法及血压测量装置

Publications (1)

Publication Number Publication Date
WO2019227329A1 true WO2019227329A1 (zh) 2019-12-05

Family

ID=68697746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088982 WO2019227329A1 (zh) 2018-05-30 2018-05-30 一种血压测量的优化方法及血压测量装置

Country Status (2)

Country Link
CN (1) CN112135559A (zh)
WO (1) WO2019227329A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117017249B (zh) * 2023-10-07 2024-01-12 深圳市爱保护科技有限公司 血压检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2707188Y (zh) * 2004-03-22 2005-07-06 洪明 一种新型电子血压计
CN1985750A (zh) * 2005-12-21 2007-06-27 深圳迈瑞生物医疗电子股份有限公司 一种利用心跳象征信号检测脉搏波的方法及装置
CN101296651A (zh) * 2005-10-24 2008-10-29 皇家飞利浦电子股份有限公司 用于确定患者血压的系统和方法
CN102626308A (zh) * 2012-04-23 2012-08-08 西安理邦科学仪器有限公司 一种抗运动干扰的血压测量方法及系统
CN103892816A (zh) * 2012-12-27 2014-07-02 深圳迈瑞生物医疗电子股份有限公司 一种血压测量仪
CN104757957A (zh) * 2015-04-23 2015-07-08 传世未来(北京)信息科技有限公司 一种血压连续测量方法及可穿戴血压连续测量装置
CN107348954A (zh) * 2016-08-09 2017-11-17 吕晓东 血压计
WO2018043692A1 (ja) * 2016-09-05 2018-03-08 日本電気株式会社 血圧測定装置、血圧測定方法及び血圧測定プログラムを記録した記録媒体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2707188Y (zh) * 2004-03-22 2005-07-06 洪明 一种新型电子血压计
CN101296651A (zh) * 2005-10-24 2008-10-29 皇家飞利浦电子股份有限公司 用于确定患者血压的系统和方法
CN1985750A (zh) * 2005-12-21 2007-06-27 深圳迈瑞生物医疗电子股份有限公司 一种利用心跳象征信号检测脉搏波的方法及装置
CN102626308A (zh) * 2012-04-23 2012-08-08 西安理邦科学仪器有限公司 一种抗运动干扰的血压测量方法及系统
CN103892816A (zh) * 2012-12-27 2014-07-02 深圳迈瑞生物医疗电子股份有限公司 一种血压测量仪
CN104757957A (zh) * 2015-04-23 2015-07-08 传世未来(北京)信息科技有限公司 一种血压连续测量方法及可穿戴血压连续测量装置
CN107348954A (zh) * 2016-08-09 2017-11-17 吕晓东 血压计
WO2018043692A1 (ja) * 2016-09-05 2018-03-08 日本電気株式会社 血圧測定装置、血圧測定方法及び血圧測定プログラムを記録した記録媒体

Also Published As

Publication number Publication date
CN112135559A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
EP3612082B1 (en) Noninvasive blood pressure measurement and monitoring
US10342438B2 (en) Body-worn vital sign monitor
US8364250B2 (en) Body-worn vital sign monitor
US8527038B2 (en) Body-worn vital sign monitor
US8321004B2 (en) Body-worn vital sign monitor
US10806351B2 (en) Body-worn vital sign monitor
US10420476B2 (en) Body-worn vital sign monitor
TWI644650B (zh) 偵測心律異常的方法及裝置
EP3551059B1 (en) An apparatus and method for determining a calibration parameter for a blood pressure measurement device
US20140180144A1 (en) Oscillometric non-invasive blood pressure measurements in patients experiencing abnormal heartbeats
JP2015531261A (ja) 生理的パラメータ測定の信頼性を向上させる装置及び方法
CN106793964A (zh) 无创血压监测器、操作无创血压监测器的方法和计算机程序产品
CN102711599A (zh) 快速血压循环中的超收缩测量
CN112203584A (zh) 一种基于运动传感器的生理参数优化方法及监护装置
WO2019227329A1 (zh) 一种血压测量的优化方法及血压测量装置
US20150032012A1 (en) Non-invasive Blood Pressure Measurement System and Methods of Use
US20220400967A1 (en) Noninvasive blood pressure monitoring system and method
CN208447576U (zh) 多参数检测仪
WO2014018024A1 (en) Combined oscillometric and auscultatory non-invasive blood pressure monitor system
EP4173555A1 (en) Device, system and method for calibrating a blood pressure surrogate for use in monitoring a subject's blood pressure
CN205054184U (zh) 探头无线数传的动脉硬化测定仪
WO2020133426A1 (zh) 移动监测装置、监护设备、监护系统及病人状态监测方法
CN117617917A (zh) 一种医疗设备及评估容量反应性的方法
CN117653050A (zh) 一种医疗设备及心血管参数的计算方法
CN116250813A (zh) 血压监测方法及监护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18920986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 02.02.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18920986

Country of ref document: EP

Kind code of ref document: A1