WO2014169358A1 - Composição sintática de polipropileno, uso de composição e tubo - Google Patents

Composição sintática de polipropileno, uso de composição e tubo Download PDF

Info

Publication number
WO2014169358A1
WO2014169358A1 PCT/BR2013/000123 BR2013000123W WO2014169358A1 WO 2014169358 A1 WO2014169358 A1 WO 2014169358A1 BR 2013000123 W BR2013000123 W BR 2013000123W WO 2014169358 A1 WO2014169358 A1 WO 2014169358A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
composition according
weight
copolymer
heterophasic
Prior art date
Application number
PCT/BR2013/000123
Other languages
English (en)
French (fr)
Inventor
Alexandre DI PINTOR DA LUZ
Marcelo FARAH
Alessandro CAUDURO LIMA
Original Assignee
Braskem S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Braskem S.A. filed Critical Braskem S.A.
Priority to PCT/BR2013/000123 priority Critical patent/WO2014169358A1/pt
Priority to ARP140101563A priority patent/AR095845A1/es
Publication of WO2014169358A1 publication Critical patent/WO2014169358A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0004Use of compounding ingredients, the chemical constitution of which is unknown, broadly defined, or irrelevant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/28Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides

Definitions

  • the present invention relates to the syntactic polypropylene composition for use in pipelines used in deep and ultra-deepwater oil exploration.
  • Oil exploration pipes are usually made of steel and coated with resin layers that provide protection against corrosion, thermal insulation, friction and impact wear, preserving their service life for several years. These properties are essential for the preservation of pipes, as their replacement is very costly. In addition, premature pipe system failure can lead to serious environmental damage associated with millionaire fines resulting from court convictions.
  • FIG. 1 The structures that make up a conventional deep or ultra-deepwater exploration pipe can be seen in Figure 1, where (1) is a steel pipe, (2) is a protective layer of epoxy resin, (3) is a layer of Adhesive, (4) is an inner layer, (5) is thermally insulating (may be syntactic) and (6) is an outer layer.
  • the combination of these layers gives the tube the necessary properties. to its good performance.
  • the epoxy resin layer is the primary protection against oxidation;
  • the adhesive layer has the function of joining the epoxy layer and the resin layers;
  • the outer layer is the outer protection of the structure.
  • PP foams For the thermal insulation layer some solutions can be approached, among them are polypropylene (PP) foams, polyurethane (PU) foams and polystyrene (PS) foams.
  • PP foams provide a greater barrier to oxygen and water penetration, resulting in a longer service life than other solutions.
  • PP foams may resist to a certain depth until the foam collapses due to high pressure. The breakdown of the foams reflects the abrupt increase in thermal conductivity (oil can reach up to 120 ° C) and the consequent increase in viscosity in the oil pumping, resulting in losses that can reach from the limitation of pumping capacity to line interruption.
  • hollow glass microspheres were essential for the feasibility of deep and ultra-deep oil exploration. Partnerships between large companies with an interest in the oil segment were crucial for the development of hollow glass microspheres with a diameter below 150 microns responsible for excellence. behavioral analysis of mechanical properties and thermal insulation of pipes.
  • the properties of polypropylene meet the processing conditions via extrusion, where the voltage transmission to the glass ball system is as minimal as possible and at the same time has a substantially high property ratio to meet all processing requirements.
  • maintaining the integrity of the hollow glass spheres is essential, since if they break in the processing stage, the insulation performance may be compromised.
  • US7091277 discloses the use of a syntactic polypropylene composition using beta-nucleatants to improve mechanical properties, achieving at least 10% elongation at break for the syntactic composition.
  • PP nucleation occurs naturally in the alpha phase, and the beta phase only appears in special cases with crystallizations occurring preferably between 130 and 135 ° C (temperature sensitive), or with the addition of specific nucleators.
  • specific nucleators such as triphenodithiazine, Gamma-quinacridone, N N'-dicyclohexyltephthalamide, and mixture of calcium stearate with pimelic acid or suberic acid.
  • beta-nucleated PP is disadvantageous mainly due to the complexity of its process of obtaining and sensitivity in processing conditions which results in process problems and high cost, besides having lower availability in the market when compared to PP.
  • Table 1 shows a comparison between the properties of the two types of crystallization.
  • Table 1. Comparison between alpha and beta crystallization.
  • US7462307 discloses a polyolefin foam for pipes comprising as a compulsory component a modified polypropylene with strain hardening behavior.
  • the modified polymer used presents an unusual melt index (IF) range.
  • IF melt index
  • anyone skilled in the art would recognize the base resin described in the US document as it is a unique and non-licensable process.
  • This technology is based on a loop reactor where propylene is in a supercritical state, where polymerization only occurs at high pressures and temperatures above 90 ° C. The discharge occurs in a cascade of gas phase reactors in series for synthesis of EPR (ethylene propylene rubber) or PP of different molecular weight.
  • EPR ethylene propylene rubber
  • the present invention comprises a simple composition for producing predominantly alpha-nucleated syntactic PP, with no need for nucleating, with the world's widespread process polymer blend for offshore pipeline application, used to transport oil during exploration in deep and ultra-deep waters.
  • the integrity of the hollow glass microspheres is preserved in an economical process, providing excellent mechanical properties and low thermal conductivity.
  • the objectives of the present invention are achieved from linear, unmodified, alpha-nucleated products derived from common and easily accessible technologies.
  • FIG. 1 Schematic representation of offshore pipes.
  • the present invention is directed to a synthetic polypropylene composition.
  • composition having a bimodal polymer matrix comprising (i) at least one propylene homopolymer, (ii) at least one heterophasic copolymer, (iii) at least one sliding agent, and (iv ) hollow glass microspheres.
  • the objectives of the present invention are also achieved by fabricating the thermal insulation layer of offshore pipelines.
  • the present invention provides a syntactic polypropylene composition having excellent mechanical properties and low thermal conductivity for use in pipelines for the purpose of deep or ultra-deepwater oil exploration.
  • the present invention discloses a predominantly alpha-nucleated syntactic PP production composition combining hollow glass polymers and microspheres to achieve excellent mechanical properties and low thermal conductivity in offshore pipelines.
  • the syntactic polymer composition disclosed herein has bimodal polymeric matrix and comprises (i) at least one propylene homopolymer, (ii) at least a heterophasic copolymer, (iii) at least one sliding agent, and (iv) hollow glass microspheres.
  • bimodal polymeric matrix any polymeric matrix with bimodal molecular weight distribution.
  • the polymeric matrix of the present invention exhibits predominantly alpha-nucleated crystallinity. Preferably, more than 90% of the polymer matrix is alpha nucleated.
  • alpha-nucleating agents selected from the group comprising sodium benzoate, talc, sorbitols and their salts, bi-cyclo (2,2,1) heptane dicarboxylate salts, phosphate salts and mixtures thereof are added.
  • propylene homopolymer any polypropylene consisting substantially of propylene monomers.
  • the propylene homopolymer of the present invention has IF ranging from 0.4 to 150 g / 100min and is present in an amount ranging from 5 to 70% by weight based on the total mass of the composition.
  • heterophasic copolymer any propylene / ethylene and / or ⁇ -olefin copolymer containing from 4 to 10 carbons, or mixtures.
  • the heterophasic copolymer of the present invention has IF which may range from 0.4 to 100 g / 100min and is present in amount which may range from 2 to 90% by weight based on the total mass of the composition.
  • the polymers used in the present invention are preferably unmodified, linear and obtained by common and widespread processes such as Spheripol® and Unipol®, not limited to these technologies.
  • Spheripol® technology for example, is based on reaction in 2 liquefied propylene loops, but with lower temperatures and pressure, the hydrogen level in the propylene is higher generating a resin IF limitation of approximately 0, 5 g / 10 min, and also a limitation in the synthesis of IF levate products, due to the limit of hydrogen solubility in liquefied propylene.
  • the sliding agent also treated as “lubricating agent”, “internal lubricating agent”, “decoupling agent” or “incompatibility agent”
  • the lubricating agents of the present invention are selected from the group comprising glycerol monostearate (GMS), mineral oils, polypropylene glycol, polyethylene glycol, fluoropolymers, silanes, oleoamides, eurucamide, glycerine monostearate, glyceryl monostearate, among others, and your mixtures.
  • the amount of lubricant may range from 0.05 to 3% by weight based on the total mass of the composition.
  • the hollow glass microspheres used in the present invention have a particle size of less than 150 microns, preferably less than 100 microns.
  • the hollow thin-walled microspheres of the Scotchlite® Glass Bubbles line sold by 3M are used.
  • the microspheres are present in the polymeric matrix in amounts ranging from 15 to 40 mass% based on the total mass of the composition.
  • composition of the present invention may comprise antioxidants, antacids, external sliders (flow aids), among other commonly used ingredients according to the desired application.
  • mineral fillers selected from the group comprising silica, talc, calcium carbonate, mica, zeolites, hydrotalcites, among others, of different particle sizes, shapes and aspect ratios.
  • the polymers used in the composition of the present invention should be selected such that the polymeric matrix of the composition has bimodal molecular weight distribution.
  • the polymers are selected such that their IF ratio is greater than 10. More preferably, the polymers are selected such that the polymeric matrix comprises a mixture of high IF heterophasic copolymers (between 30 and 100 g / 100min) and low IF homopolymers (between 0.4 and 5 g / 10min) or, conversely, high IF homopolymers (between 30 and 150 g / 100min) and low IF heterophasic copolymers (between 0.4 and 3 g / 10min).
  • a third polymer may be be added to the composition for possible application adjustment, which may be small fractions of low IF homopolymer (between 0.4 and 5 g / 10min) or high IF heterophasic copolymer (between 30 and 100 g / 100min).
  • the disclosed composition comprises:
  • the polypropylene composition comprises:
  • compositions of the present invention are prepared via common extrusion and are particularly suitable for application to offshore pipelines, ie pipelines used for deep or ultra-deepwater oil exploration. Preferably, said compositions are applied to the thermal insulation layer of these pipes. Furthermore, the composition of the present invention may be used in general extrusion (sheet, tube and profile), thermoforming and blowing processes.
  • composition must meet the following requirements:
  • composition of the present invention meets the normative standards of the segment, presenting improved mechanical properties, voltage above 9000 Mpa, thermal conductivity less than 0.18 W / m. K and deformations greater than 50% at break.
  • composition disclosed in the present invention are achieved using a mixture of usual, linear, unmodified resins and by widely diffused processes without the use of compatibilizers.
  • the disclosed composition comprises a PP with predominantly alpha-nucleated crystallization, the use of beta-nucleating being unnecessary.
  • compatibilizing agents are added to improve their properties.
  • the function of these agents is to change polarity to make the phases more compatible.
  • these compatibilizers mention may be made of grafted polypropylene grafted with maleic anhydride, acrylic acid, itaconic acid, silanes, etc., which confer the coupling of the glass beads to the polypropylene.
  • the purpose of compatibilizing agents is to transfer properties to the matrix imparting greater stiffness and fiber / polymer adhesion.
  • the use of compatibilizing agents in the present invention is unnecessary and may even be detrimental to the desired properties.
  • compositions / samples were prepared in a ZSK-18 extruder, with a flow rate of 4 kg / hr and 300 rpm rotation, with a final temperature of 220 ° C.
  • the hollow glass microsphere content values were checked from Thermogravimetry (TGA) analysis and the specimens were mechanically analyzed following ASTM D-638, with compression specimens made according to ASTM D4703.
  • the microsphere used was 3M HGM S38HS, the compatibilizing agent of these samples was the Orec CA100 supplied by Arkema and the internal lubricant was GMS-90.
  • the decoupling agent allows to meet the movements, bends and twists required for transport, installation and use while maintaining the integrity of the thermal insulation layer.
  • Example 2 The concepts and results obtained through Example 1 led to the redirection of the outlined strategy, as well as a new set of compositions for direct analysis in pipes.
  • the compositions / samples of Example 2 were prepared in specific quantities for piping and field testing:
  • Heterophasic Copolymer 1 75 100 15 73
  • Integral spheres (%) 99.55 99.21 99.4 99.25
  • sample 6 containing only Heterophasic Copolymer 1
  • sample 6 and 7 presented lower stiffness and greater impact for application, but less deformation at rupture than samples 6 and 7, where there is the concept of bimodal mixing.
  • compositions are those with bimodal concept, without compatibilizer and with internal sliding, through the mixture of usual linear and unmodified resins prepared by common processes and without need for special nucleators to achieve expected performance.
  • the mixture of high IF and low IF homopolymer copolymers or, in contrast, with high IF and low IF homopolymers was used.
  • a third polymer has been added for application adjustment, which may be small fractions of low IF homopolymer (sample 7) or high IF copolymer (sample 5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A presente invenção refere-se à uma composição de polipropileno sintático apresentando matriz polimérica bimodal e compreendendo (i) pelo menos um homopolímero de propileno, (ii) pelo menos um copolímero heterofasico, (iii) pelo menos um agente deslizante, e (iv) microesferas ocas de vidro. A presente invenção refere-se também ao uso de uma composição de polipropileno sintático e a tubos offshore. A composição revelada no presente pedido de patente apresenta polipropileno predominantemente alfanucleado, combinando polímeros e microesferas ocas de vidro a fim de alcançar excelentes propriedades mecânicas e baixa condutividade térmica para aplicação em tubulações com a finalidade de exploração de petróleo em águas profundas ou ultraprofundas.

Description

Relatório Descritivo da Patente de Invenção para "COMPOSIÇÃO SINTÁTICA DE POLIPROPILENO, USO DE COMPOSIÇÃO E TUBO".
CAMPO DA INVENÇÃO
A presente invenção refere-se a composição sintática de poli- propileno para aplicação em tubulações utilizadas na exploração de petróleo em águas profundas e ultraprofundas.
DESCRIÇÃO DO ESTADO DA TÉCNICA
A exploração comercial de petróleo em águas profundas ou ultraprofundas é uma atividade que cada vez mais se torna inevitável, tanto pelo declínio da capacidade de sua extração em águas rasas ou em terra, quanto pelo avanço tecnológico nos conceitos de isolamento e bombeamento.
O ambiente ao qual estão sujeitas as tubulações offshore é extremamente hostil, pois os tubos podem ter contato com um leito marinho irregular, o que demandaria a necessidade de as tubulações apresentarem, por exemplo, resistência mecânica ao contato com rochas, flexibilidade para seguir os acidentes do terreno, bom isolamento térmico devido à temperatura da água próxima de 0°C, resistência mecânica para suportar pressões acima de 100 bar e resistência à fadiga pela oscilação do oceano.
Os tubos utilizados na exploração de petróleo normalmente são constituídos de aço e revestidos com camadas de resinas que lhes conferem proteção contra corrosão, isolamento térmico, desgaste por atrito e impacto, preservando o seu tempo de vida útil por vários anos. Estas propriedades são essenciais para a conservação dos tubos, pois a sua substituição é bastante onerosa. Além disso, uma falha prematura no sistema de tubulações pode acarretar sérios danos ambientais associados a multas milionárias decorrentes de condenações judiciais.
As estruturas que compõem um tubo convencional de exploração em águas profundas ou ultraprofundas podem ser vistas na Figura 1 , onde (1) é um tubo de aço, (2) é uma camada de proteção de resina epóxi, (3) é uma camada de adesivo, (4) é uma camada interna, (5) é uma de isolamento térmico (podendo ser sintática) e (6) é uma camada externa. A combinação dessas camadas confere ao tubo as propriedades necessárias ao seu bom desempenho. A camada de resina epóxi é a proteção primária contra oxidação; a camada de adesivo tem a função de juntar a camada e- póxi e as camadas de resina; a camada externa é a proteção externa da estrutura.
Para a camada de isolamento térmico algumas soluções podem ser abordadas, dentre elas estão as espumas de polipropileno (PP), espumas de poliuretano (PU) e espumas de poliestireno (PS). Entre os benefícios conferidos por tais soluções, as espumas de PP proporcionam uma maior barreira à penetração de oxigénio e à água, resultando em uma vida útil maior que as demais soluções. Porém, devido à necessidade de suportar elevadas pressões e ainda possuir elevada propriedade de isolamento, o uso de espumas de PP limita algumas aplicações de acordo com a estrutura escolhida. Por exemplo, espumas de PP podem resistir até uma determinada profundidade, até que ocorra o colapso das espumas devido à alta pres- são. O colapso das espumas reflete o abrupto aumento da condutividade térmica (óleo podendo atingir até 120°C) e o consequente aumento de viscosidade no bombeamento do óleo, resultando em prejuízos que podem alcançar desde a limitação da capacidade de bombeamento até a interrupção da linha.
Com a finalidade de melhorar a resistência mecânica e o isolamento térmico proporcionados pelas espumas de PP, foram desenvolvidas novas soluções, em que se destaca a composição de PP sintático, consistindo de um polipropileno misturado à microesferas ocas de vidro. Neste caso, a solução apresenta propriedades mecânicas superiores às espumas de PP e, mesmo sob pressão elevada, os poros das microesferas mantêm a condutividade baixa o suficiente para evitar a perda de propriedade de isolamento térmico com o aumento de pressão.
O desenvolvimento de microesferas ocas de vidro foi essencial para a viabilização da exploração de petróleo em águas profundas e ultra- profundas. Parcerias entre grandes empresas com interesse no segmento petrolífero foram determinantes para o desenvolvimento de microesferas ocas de vidro com diâmetro abaixo de 150 micra responsáveis pela excelên- cia comportamental das propriedades mecânicas e do isolamento térmico de tubulações.
Para a aplicação final da solução de PP sintático, é necessário que as propriedades do polipropileno atendam às condições de processa- mento via extrusão, em que a transmissão de tensão para o sistema com esferas de vidro seja a mínima possível e, ao mesmo tempo, apresente uma relação de propriedades substancialmente elevada para atender a todos os requisitos do processamento. Ademais, a manutenção da integridade das esferas de vidro ocas é fundamental, pois, caso ocorra a ruptura das mes- mas na etapa de processamento, o desempenho de isolamento poderá ser comprometido.
No estado da técnica encontram-se os documentos de patentes EP1541622B1 , US2004/048015A1 e US20070240781A1 que tratam de variações de produtos sintáticos de PU, demonstrando que o uso de esferas ocas de vidro é de significante interesse comercial, mesmo quando utilizadas em combinação com outros polímeros.
O documento de patente US7091277 descreve a utilização de uma composição de polipropileno sintático usando beta-nucleantes para melhoria das propriedades mecânicas, atingindo elongação na ruptura de pelo menos 10% para a composição sintática. Contudo, é sabido que a nuclea- ção do PP ocorre naturalmente na fase alfa, e a fase beta somente aparece em casos especiais com cristalizações ocorrendo preferencialmente entre 130 e 135°C (sensível a temperatura), ou ainda com a adição de nucleantes específicos como trifenoditiazina, Gama-quinacridona, N N'-diciclohexilte- reftalamida, e mistura de estearato de cálcio com ácido pimélico ou acido subérico. Assim, o uso de PP beta-nucleado é desvantajoso principalmente devido à complexidade de seu processo de obtenção e sensibilidade nas condições de processamento o que resulta em problemas no processo e elevado custo, além de apresentar menor disponibilidade no mercado quan- do comparado ao PP em fase alfa. A Tabela 1 mostra uma comparação entre as propriedades dos dois tipos de cristalização. Tabela 1. Comparação entre cristalização alfa e beta.
Alfa Beta
Célula unitária Monoclínica Hexagonal
Densidade de fase cristalina(g/cm3) 0,936 0,922
Densidade final(60% cristalino)(g/cm3) 0,901 0,893
Temperatura de fusão(°C) 160 154
O documento de patente US7462307 descreve uma espuma de poliolefinas para tubulações compreendendo como componente obrigatório um polipropileno modificado com comportamento strain hardening. Neste caso, além de possuir ramificações, o polímero modificado utilizado apresenta uma faixa de índice de fluidez (IF) não usual. Adicionalmente, qualquer técnico no assunto saberia reconhecer a resina base descrita no documento americano, visto tratar-se de um processo exclusivo e não licenciável. Esta tecnologia é baseada em um reator tipo loop onde o propeno encontra-se em estado supercrítico, no qual a polimerização só ocorre a elevadas pressões e temperaturas acima de 90°C. O descarregamento se dá em uma cascata de reatores fase gás em série para síntese de EPR (borracha etile- no-propileno) ou PP de diferente peso molecular. O uso de propeno supercrítico permite baixíssimos níveis de hidrogénio no sistema e com isso pode- se fazer produtos de elevadíssimo peso molecular. Os reatores fase gás podem sintetizar não só o EPR necessário para a aplicação, como também gerar produtos de baixíssimo peso molecular, permitindo ao processo gerar PP copolímero de elevada bimodalidade na matriz.
Diferentemente dos produtos descritos no estado da técnica, a presente invenção compreende uma composição simples para a produção de PP sintático, predominantemente alfa-nucleado, sem a necessidade de nucleantes, com a mistura de polímeros de processos difundidos no mundo para aplicação em tubulações offshore, utilizados no transporte de petróleo durante a exploração em aguas profundas e ultraprofundas.
Com a composição aqui revelada, a integridade das microesfe- ras ocas de vidro são preservadas em um processo económico, proporcionando excelentes propriedades mecânicas e baixa condutividade térmica. Assim, os objetivos da presente invenção são alcançados a partir de produtos lineares, sem modificações, alfa-nucleados, oriundos de tecnologias comuns e de fácil acesso.
DESCRIÇÃO DAS FIGURAS
Figura 1 - representação esquemática de tubos offshore.
Figuras 2.1 , 2.2, 2.3 e 2.4 - integridade das microesferas testadas no Exemplo 1.
OBJETIVOS DA INVENÇÃO
A presente invenção tem por objetivo uma composição de poli- propileno sintático.
É também um objetivo da presente invenção o uso de uma composição de polipropileno sintático.
Por fim, é um objetivo da presente invenção obter tubos offshore. BREVE DESCRIÇÃO DA INVENÇÃO
Os objetivos da presente invenção são alcançados por meio de uma composição apresentando uma matriz polimérica bimodai, compreendendo (i) pelo menos um homopolímero de propileno, (ii) pelo menos um copolímero heterofasico, (iii) pelo menos um agente deslizante, e (iv) microesferas ocas de vidro.
Os objetivos da presente invenção são também alcançados pela fabricação da camada de isolamento térmico das tubulações offshore.
A presente invenção apresenta como vantagem uma composição de polipropileno sintático com excelentes propriedades mecânicas e baixa condutividade térmica para aplicação em tubulações com a finalidade de exploração de petróleo em águas profundas ou ultraprofundas.
DESCRIÇÃO DETALHADA DA INVENÇÃO
A presente invenção revela uma composição para a produção de PP sintático, predominantemente alfa-nucleado, combinando polímeros e microesferas ocas de vidro a fim de alcançar excelentes propriedades me- cânicas e baixa condutividade térmica em tubulações offshore. A composição polimérica sintática aqui revelada apresenta matriz polimérica bimodai e compreende (i) pelo menos um homopolímero de propileno, (ii) pelo menos um copolímero heterofásico, (iii) pelo menos um agente deslizante, e (iv) microesferas ocas de vidro.
Por matriz polimérica bimodal entende-se qualquer matriz poli- mérica com distribuição de peso molecular bimodal. A matriz polimérica da presente invenção apresenta cristalinidade predominantemente alfa-nucleada. Preferencialmente, mais de 90% da matriz polimérica apresenta-se alfa- nucleada. Opcionalmente, são adicionados agentes alfa-nucleantes selecio- nados do grupo que compreende benzoato de sódio, talco, sorbitois e seus sais, sais de dicarboxilato de bi-ciclo(2,2,1)heptano, sais de fosfato e mistura entre eles.
Por homopolímero de propileno entende-se qualquer polipropile- no constituído substancialmente de monômeros de propileno. O homopolímero de propileno da presente invenção apresenta IF que pode variar entre 0,4 e 150 g/100min e está presente em quantidade que pode variar entre 5 e 70% em massa, com base na massa total da composição.
Por copolímero heterofásico entende-se qualquer copolímero propileno/etileno e/ou α-olefina contendo de 4 a 10 carbonos, ou misturas O copolímero heterofásico da presente invenção apresenta IF que pode variar entre 0,4 e 100 g/100min e está presente em quantidade que pode variar entre 2 e 90% em massa, com base na massa total da composição.
Os polímeros utilizados na presente invenção são preferencialmente não-modificados, lineares e obtidos por meio de processos comuns e amplamente difundidos, como Spheripol® e Unipol®, não se limitando a estas tecnologias. A tecnologia Spheripol®, por exemplo, baseia-se em reação em 2 loops de propeno liquefeito, porém, com as temperaturas e pressão são menores, o nível de hidrogénio presente no propeno é maior gerando uma limitação do IF da resina de aproximadamente 0,5 g/10min, e também uma limitação na síntese de produtos de levado IF, devido ao limite de solubilidade de hidrogénio no propeno liquefeito.
Na presente invenção, o agente deslizante, também tratado como "agente lubrificante", "agente lubrificante interno", "agente de desacoplamento" ou "descompatibilizante", tem a função de reduzir o atrito entre as microesferas ocas de vidro e a matriz polimérica, de modo a manter a integridade das mesmas. Os agentes lubrificantes da presente invenção são selecionados do grupo que compreende monoestearato de glicerol (GMS), óleos minerais, polipropileno glicol, polietileno glicol, fluorpolímeros, silanos, oleoamidas, eurucamida, monoestearato de glicerina, monoestearato de gli- cerila, entre outros, e suas misturas. A quantidade de lubrificante pode variar de 0,05 a 3% em massa, com base na massa total da composição.
As microesferas ocas de vidro utilizadas na presente invenção possuem tamanho de partícula menor que 150 micra, preferencialmente me- nor que 100 micra. Preferencialmente, são utilizadas as microesferas ocas de parede fina da linha Scotchlite® Glass Bubbles comercializadas pela empresa 3M. As microesferas estão presentes na matriz polimérica em quanti- dade que pode variar entre 15 e 40% em massa, baseado na massa total da composição.
Opcionalmente, a composição da presente invenção pode compreender antioxidantes, antiácidos, deslizantes externos (auxiliares de fluxo), entre outros ingredientes comumente utilizados de acordo com a aplicação desejada.
Ainda, à composição aqui revelada podem ser adicionadas car- gas minerais selecionadas do grupo que compreende sílica, talco, carbonato de cálcio, mica, zeolitas, hidrotalcitas, entre outras, de diferentes tamanhos de partículas, formas e razões de aspecto.
Os polímeros utilizados na composição da presente invenção devem ser selecionados de modo que a matriz polimérica da composição apresente distribuição de peso molecular bimodal. Preferencialmente, os polímeros são selecionados de modo que a razão de IF entre eles seja maior que 10. Mais preferencialmente, os polímeros são selecionados de modo que a matriz polimérica compreenda uma mistura de copolímeros heterofási- cos de alto IF (entre 30 e 100 g/100min) e homopolímeros de baixo IF (entre 0,4 e 5 g/10min ) ou, ao contrário, homopolímeros de alto IF (entre 30 e 150 g/100min) e copolímeros heterofásicos baixo IF (entre 0,4 e 3 g/10min). Para a compensação das limitações da resina base, um terceiro polímero pode ser adicionado à composição para um possível ajuste da aplicação, podendo ser pequenas frações de homopolímero de baixo IF (entre 0,4 e 5 g/10min) ou copolímero heterofásico de alto IF (entre 30 e 100 g/100min).
Em uma concretização preferencial da presente invenção, a composição revelada compreende:
a. Um copolímero heterofásico de IF entre 30 e 100 g/10min em quantidade que varia entre 25 e 50% em massa,
b. Um homopolímero de propileno de IF entre 0,4 e 5 g/10min em quantidade que varia entre 35 e 70% em massa,
c. Um homopolímero de propileno de IF entre 30 e 150 g/100min em quantidade que varia entre 5 a 35% em massa,
d. Microesferas ocas de vidro com teores entre 15 e 40% em massa,
e. Agente deslizante nos teores de 0,05 a 3% em massa, com base na massa total da composição.
Em outra concretização preferencial da invenção, a composição de polipropileno compreende:
f. Um copolímero heterofásico de IF entre 0,4 e 3 g/10min em quantidade que varia entre 60 e 90% em massa,
g. Um homopolímero de propileno com IF entre 30 e 150 g/10min em quantidade que varia entre 5 e 25% em massa,
h. Um copolímero heterofásico de IF entre 30 e 100 g/100min em quantidade que varia entre 2 a 15% em massa,
i. Microesferas ocas de vidro com teores entre 15 e 40% em massa,
j. Agente deslizante nos teores de 0,05 a 3% em massa, com base na massa total da composição.
As composições da presente invenção são preparadas via extru- são comum e são particularmente indicadas para aplicação em tubulações offshore, ou seja, tubulações utilizadas para exploração de petróleo em águas profundas ou ultraprofundas. Preferencialmente, ditas composições são aplicadas na camada de isolamento térmico destas tubulações. Ainda, a composição da presente invenção pode ser utilizada em processos de extrusão em geral (chapas, tubos e perfis), termoformagem e sopro.
Cumpre ressaltar que para atender aos requisitos normativos de aplicações em tubulações offshore, é necessário que composição atenda os seguintes requisitos:
• Boa processabilidade - obtida através de mistura entre polímeros de diferentes massas moleculares, gerando matrizes de maior distribuição de peso molecular e tornando a composição mais adequada ao processo;
· Manter a integridade das esferas ocas de vidro - é necessário que a tensão interna de processamento não destrua as esferas e mantenha sua função primária de isolamento sem perdas de estruturas;
• Suportar deformações de transporte, instalação e fadiga dinâmica em leito marinho -a resina compostada deve apresentar deforma- ções nas rupturas elevadas;
• Excelente desempenho mecânico - atingir adequado balanço entre rigidez e impacto requisitados para a aplicação;
• Baixa condutividade térmica - valores baixos são requeridos para reduzir a troca térmica entre o fluido e o ambiente marinho, cuja tempe- ratura da água pode ser tão baixa quanto 0°C.
Os testes realizados mostraram que a composição da presente invenção atende aos padrões normativos do segmento, apresentando propriedades mecânicas melhoradas, tensão acima de 9000 Mpa, condutividade térmica menor que 0,18 W/m. K e deformações maiores que 50% na ruptura.
Destaca-se que as propriedades da composição revelada na presente invenção são alcançadas utilizando uma mistura de resinas usuais, lineares, não modificadas e por meio de processos amplamente difundidos dispensando o uso de compatibilizantes.
Adicionalmente, a composição revelada compreende um PP com cristalização predominantemente alfa-nucleada, sendo desnecessário o uso de beta-nucleantes.
Outro fator essencial para o sucesso da presente invenção é a interação entre a matriz polipropileno e as microesferas ocas de vidro. Geralmente, em compostos de duas ou mais fases são adicionados agentes compatibilizantes para melhorar suas propriedades. A função destes agentes, normalmente produtos sintetizados ou enxertados com comonômeros polares, é alterar a polaridade de modo a tornar as fases mais compatíveis. Dentre estes compatibilizantes, podem ser citados o polipropileno enxertado com anidrido maléico, acido acrílico, acido itacônico, silanos, etc, que conferem a acoplagem das esferas de vidro ao polipropileno. Em compostos com fibra de vidro, por exemplo, o objetivo dos agentes de compatibilização é a transferência de propriedades para a matriz conferindo maior rigidez e adesão fibra/polímero. No entanto, o uso de agentes compatibilizantes na presente invenção é desnecessário e pode ser inclusive ser prejudicial às propriedades desejadas.
Os exemplos descritos a seguir não são limitativos, e tem a finalidade de apenas demonstrar o excelente desempenho alcançado por meio da composição revelada na presente invenção.
EXEMPLOS
Exemplo 1. Análise de deformação na ruptura
Tabela 2. Componentes utilizados nas composições/amostras testadas no Exemplo .
Material IF (g/10min) %EPR
Copolímero Heterofásico 1 2 13
Copolímero Heterofásico 2 60 23
Homopolímero 1 0,8 -
Homopolímero 2 80 -
A partir dos componentes descritos na Tabela 2, quatro composições/ amostras foram preparadas em extrusora ZSK-18, com vazão de 4 kg/h e rotação de 300 rpm, com temperatura final de 220°C.
Tabela 3. Amostras 1 , 2, 3 e 4 utilizadas no teste de deformação na ruptura
Polímero Amostra 1 Amostra 2 Amostra 3 Amostra 4
Copolímero Heterofásico 1 75 75 75 15
Copolímero Heterofásico 2 - - 25 -
Homopolímero 1 - - - 60 Polímero Amostra 1 Amostra 2 Amostra 3 Amostra 4
Homopolímero 2 25 25 - 25
Agente de acoplamento - 3 - -
Lubrificante interno - - 0,3 -
Os valores do teor de microesferas ocas de vidro foram conferidos a partir de análises de Termogravimetria (TGA) e os corpos de prova foram a- nalisados mecanicamente seguindo a norma ASTM D-638, com corpos de prova feitos por compressão segundo norma ASTM D4703. A microesfera utilizada foi a 3M HGM S38HS, o agente de compatibilização destas amostras foi o Ore- vac CA100 fornecido pela Arkema e o lubrificante interno foi o GMS-90.
Tabela 4. Teor de microesferas e resultado de deformação na ruptura
Polímero Amostra 1 Amostra 2 Amostra 3 Amostra 4
Teor de Microesferas (%) 32,5 33,8 35,9 33,1
Deformação na ruptura (%) 18 1 41 26
O resultado do teste de deformação na ruptura mostra que a integridade das microesferas foi mantida, como pode ser observado por meio das figuras 2.1-2.4.
Diante dos resultados obtidos nos testes realizados no Exemplo 1 é possível concluir que o uso de agente de acoplagem deteriora o desempenho para a aplicação. Devido à alta compatibilidade, a adesão das esferas torna o composto rígido e de baixa deformabilidade.
Por outro lado, o uso de lubrificantes internos permite o desacoplamento entre o PP e as microesferas de vidro, permitindo baixa transferência de tensão para as esferas, mantendo sua integridade e permitindo deformabilidade à matriz.
Para a aplicação em tubos offshore, o agente de desacoplamen- to permite atender às solicitações de movimentações, dobramentos e torções necessários para transporte, instalação e uso, mantendo a integridade da camada de isolamento térmico.
O uso de copolímero heterofásico de alto IF resultou em maior deformabilidade antes da ruptura, o que é desejável para aplicações em tu- bos offshore. Exemplo 2.
Os conceitos e resultados obtidos por meio do Exemplo 1 levaram ao redirecionamento da estratégia traçada, bem como de um novo conjunto de composições para análise direta em tubulações. As composi- ções/amostras do Exemplo 2 foram preparadas em quantidades específicas para a aplicação em tubulações e testes de campo:
Tabela 5. Componentes utilizados nas composições/amostras testadas no Exemplo 2
Polímero Amostra Amostra Amostra Amostra
5 6 7 8
Copolímero Heterofásico 1 75 100 15 73
Copolímero Heterofásico 2 5 - 35 5
Homopolímero 1 - - 50 -
Homopolímero 2 20 - - 19
Agente de compatibilização (%) - - - 3
Lubrificante interno (phr) 0,3 0,3 0,3 0,3
Teor de microesferas além da com¬
25 25 25 25 posição de polímero (% em peso)
Tabela 6. Propriedades mecânicas observadas
Amostra Amostra Amostra Amostra
5 6 7 8
Resina Base
Densidade (kg/m3) 0,902 0,902 0,902 0,902 índice de Fluidez (g/10min) 1 ,9 1 ,1 2,6 1 ,8
Modulo de Flexão (MPa) 1370 1270 1320 1480
Impacto a 23°C 160 NB 200 300
Impacto a -20°C 40 60 40 40
Alongamento na ruptura (%) 187 721 1256 1051
Condutividade térmica (W/m. K) 0,22 0,22 0,22 0,22
Propriedades do Composto
Densidade (kg/m3) 667 660 667 677
Tensão de escoamento (MPa) 9768 8847 9319 10166
Elongação na ruptura (%) 96,9 81 ,4 96,5 44,8
Esferas integras (%) 99,55 99,21 99,4 99,25
Condutividade térmica (W/m. K) 23° 0,171 0,172 0,172 0,184
Observa-se que para todas as composições (amostras 5-8) pro- postas obteve-se boa manutenção da integridade das microesferas ocas de vidro. Para a amostra 8 com compatibilizante, a maior adesão às microesferas gerou produtos mais rígidos e com menor deformabilidade, explicável pela forte adesão das microesferas ocas de vidro com a matriz. Esta adesão também gerou valores de condutividade térmica pouco superior às demais provavelmente por uma interface mais forte, evitando-se esferas descoladas. Porém, esta forte adesão não fornece ao composto a deformabilidade adequada ao sistema.
Como referência, a amostra 6, contendo apenas Copolímero He- terofásico 1 , apresentou menor rigidez e maior impacto para a aplicação, porém deformação na ruptura menor que as amostras 6 e 7 onde têm-se o conceito de mistura bimodal.
Assim, conclui-se que, para a aplicação, as melhores composições são aquelas com conceito bimodal, sem compatibilizante e com desli- zante interno, através da mistura de resinas usuais, lineares e não modificadas, preparadas por meio de processos comuns e sem a necessidade de nucleantes especiais para atingir o desempenho esperado. Neste caso, utili- zou-se a mistura de copolímeros de alto IF e homopolímero de baixo IF ou, ao contrário, com homopolímeros de alto IF e baixo IF. Para a compensação das limitações da resina base, foi adicionado um terceiro polímero para o ajuste da aplicação, podendo ser pequenas frações de homopolímero de baixo IF (amostra 7) ou copolímero de alto IF(amostra 5).

Claims

REIVINDICAÇÕES
1. Composição de polipropileno sintático caracterizada pelo fato de apresentar matriz polimérica bimodal e compreender (i) pelo menos um homopolímero de propileno, (ii) pelo menos um copolímero heterofásico, (iii) pelo menos um agente deslizante, e (iv) microesferas ocas de vidro.
2. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de o homopolímero de propileno apresentar IF que varia entre 0,4 e 150 g/100min e estar presente em quantidade que varia entre 5 e 70% em massa, com base na massa total da composição.
3. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de o copolímero heterofásico ser um copolímero propileno/etileno ou α-olefina contendo de 4 a 10 carbonos, ou misturas.
4. Composição de acordo a reivindicação 3 caracterizada pelo fato de o copolímero heterofásico apresentar IF que varia entre 0,4 e 100 g/100min e estar presente em quantidade que varia entre 2 e 90% em massa, com base na massa total da composição.
5. Composição de acordo com a reivindicação 1 .caracterizada pelo fato de o agente deslizante ser selecionado do grupo que compreende monoestearato de glicerol, óleos minerais, polipropileno glicol, polietileno glicol, fluorpolímeros, silanos, oleoamidas, eurucamida, monoestearato de glicerina, monoestearato de glicerila, e suas misturas.
6. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de o agente deslizante estar presente em quantidade que varia de 0,05 a 3% em massa, com base na massa total da composição.
7. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de as microesferas ocas de vidro possuírem tamanho de partícula menor que 150 micra.
8. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de as microesferas ocas de vidro estarem presentes em quantidade que varia entre 15 e 40% em massa, baseado na massa total da composição.
9. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de a matriz polimérica apresentar cristalinidade a-nucleada.
10. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de compreender pelo menos um copolímero heterofásico de IF entre 30 e 100 g/100min, pelo menos um homopolímero de IF entre 0,4 e 5 g/10min e pelo menos um homopolímero de propileno de IF entre 30 e 150 g/100min.
11. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de compreender pelo menos um homopolímero de IF entre 30 e 150 g/100min, pelo menos um copolímero heterofásico de IF 0,4 e 3 g/10min e pelo menos um copolímero heterofásico de IF entre 30 e 100 g/100min.
12. Composição de acordo com a reivindicação 10, caracterizada pelo fato de compreender:
a. Um copolímero heterofásico de IF entre 30 e 100 g/10min em quantidade que varia entre 25 e 50% em massa,
b. Um homopolímero de propileno de IF entre 0,4 e 5 g/10min em quantidade que varia entre 35 e 70% em massa,
c. Um homopolímero de propileno de IF entre 30 e 150 g/100min em quantidade que varia entre 5 a 35% em massa,
d. Microesferas ocas de vidro com teores entre 15 e 40% em massa,
e. Agente deslizante nos teores de 0,05 a 3% em massa, com base na massa total da composição.
13. Composição de acordo com a reivindicação 11 , caracterizada pelo fato de compreender:
k. Um copolímero heterofásico de IF entre 0,4 e 3 g/10min em quantidade que varia entre 60 e 90% em massa,
I. Um homopolímero de propileno com IF entre 30 e 150 g/10min em quantidade que varia entre 5 e 25% em massa,
m. Um copolímero heterofásico de IF entre 30 e 100 g/100min em quantidade que varia entre 2 a 15% em massa,
n. Microesferas de vidro ocas com teores entre 15 e 40% em massa, o. Agente deslizante nos teores de 0,05 a 3% em massa, com base na massa total da composição.
14. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de compreender aditivos selecionados entre antioxidantes, antiáci- dos, deslizantes externos, e misturas;
15. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de compreender cargas selecionadas entre sílica, talco, carbonato de cálcio, mica, zeolitas, hidrotalcitas.
16. Composição de acordo com a reivindicação 1 , caracterizada pelo fato de apresentar tensão acima de 9000 Mpa, condutividade térmica menor que 0,18 W/m. K e deformações maiores que 50% na ruptura.
17. Uso da composição como definida em qualquer uma das reivindicações de 1 a 16, caracterizado pelo fato de ser para a fabricação de tubulações offshore.
18. Uso de acordo com a reivindicação 17, caracterizado pelo fato de a composição ser para a fabricação da camada de isolamento térmico das tubulações.
19. Uso da composição como definida em qualquer uma das reivindicações de 1 a 16, caracterizado pelo fato de ser em processos de ter- moformagem, sopro ou extrusão.
20. Tubo offshore caracterizado pelo fato de compreender uma camada de isolamento térmico que compreende a composição como definida em qualquer uma das reivindicações de 1 a 16.
PCT/BR2013/000123 2013-04-17 2013-04-17 Composição sintática de polipropileno, uso de composição e tubo WO2014169358A1 (pt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/BR2013/000123 WO2014169358A1 (pt) 2013-04-17 2013-04-17 Composição sintática de polipropileno, uso de composição e tubo
ARP140101563A AR095845A1 (es) 2013-04-17 2014-04-11 Composición sintáctica de polipropileno, uso de la composición y tubo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/BR2013/000123 WO2014169358A1 (pt) 2013-04-17 2013-04-17 Composição sintática de polipropileno, uso de composição e tubo

Publications (1)

Publication Number Publication Date
WO2014169358A1 true WO2014169358A1 (pt) 2014-10-23

Family

ID=51730619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000123 WO2014169358A1 (pt) 2013-04-17 2013-04-17 Composição sintática de polipropileno, uso de composição e tubo

Country Status (2)

Country Link
AR (1) AR095845A1 (pt)
WO (1) WO2014169358A1 (pt)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176209A (zh) * 2015-10-29 2015-12-23 上海海隆赛能新材料有限公司 用于管道保温的高强度低导热系数聚丙烯复合材料层
CN109679214A (zh) * 2018-12-28 2019-04-26 滁州美业机械制造有限公司 一种冰箱顶盖的制备成型方法
CN110467776A (zh) * 2019-07-30 2019-11-19 武汉金发科技有限公司 一种聚丙烯复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2048348A1 (en) * 1990-08-06 1992-02-07 Seetha M. L. Coleman-Kammula Polyolefin syntactic foams for pipeline insulation use
WO1993019927A1 (en) * 1992-03-31 1993-10-14 W.R. Grace & Co.-Conn. Thermoplastic syntactic foam pipe insulation
WO1997028213A1 (en) * 1996-01-31 1997-08-07 Montell North America Inc. Polyolefin composition suited for metal coating by flame spraying
WO2003087205A1 (en) * 2002-04-16 2003-10-23 Borealis Technology Oy Syntactic polyolefin composition for pipe coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2048348A1 (en) * 1990-08-06 1992-02-07 Seetha M. L. Coleman-Kammula Polyolefin syntactic foams for pipeline insulation use
WO1993019927A1 (en) * 1992-03-31 1993-10-14 W.R. Grace & Co.-Conn. Thermoplastic syntactic foam pipe insulation
WO1997028213A1 (en) * 1996-01-31 1997-08-07 Montell North America Inc. Polyolefin composition suited for metal coating by flame spraying
WO2003087205A1 (en) * 2002-04-16 2003-10-23 Borealis Technology Oy Syntactic polyolefin composition for pipe coating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105176209A (zh) * 2015-10-29 2015-12-23 上海海隆赛能新材料有限公司 用于管道保温的高强度低导热系数聚丙烯复合材料层
CN109679214A (zh) * 2018-12-28 2019-04-26 滁州美业机械制造有限公司 一种冰箱顶盖的制备成型方法
CN110467776A (zh) * 2019-07-30 2019-11-19 武汉金发科技有限公司 一种聚丙烯复合材料及其制备方法

Also Published As

Publication number Publication date
AR095845A1 (es) 2015-11-18

Similar Documents

Publication Publication Date Title
EP1985660B1 (en) Pipe comprising super slow crack growth resistant polyethylene
EP2771399B1 (en) Process for the preparation of a high density polyethylene blend
BR112018070597B1 (pt) Tubo submerso
WO2016005301A1 (en) Mineral-filled polypropylene compositions for foaming
BRPI0718922A2 (pt) Película de barreira para o empacotamento de alimento
US20070048472A1 (en) Polymeric pipe and method of making a polymeric pipe
EP0473215A1 (en) Polyolefin syntactic foams for pipeline insulation use
US10626243B2 (en) Polymer resin composition and articles formed with the composition
US7091277B2 (en) Syntactic polyolefin composition for pipe coating
WO2014169358A1 (pt) Composição sintática de polipropileno, uso de composição e tubo
US11725098B2 (en) Thermoplastic vulcanizate conduits for transporting hydrocarbon fluids
BRPI0712855A2 (pt) cobertura superior de pe de baixa temperatura
Nie et al. High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion
KR101494528B1 (ko) 저온 충격성이 향상된 가요전선관용 폴리프로필렌 수지 조성물 및 이로부터 제조된 가요전선관
CN102453271B (zh) 高强度耐压聚乙烯组合物及其制备方法
CN111117031A (zh) 一种高抗冲、良好韧性、耐候耐老化改性管材用聚乙烯复合材料及其制备方法
KR101066534B1 (ko) 프로필렌계 수지조성물을 이용하여 성형한 배관부재
CN101717544A (zh) 一种黑色聚丙烯防腐材料及其制备方法
Bakshi et al. Influence of plasticized UHMWPE on melt processability and supercritical CO2-assisted microcellular foaming of HDPE/UHMWPE blends
BRPI0620336A2 (pt) espuma de polipropileno reforçada com fibra
Ma et al. Study on viscoelastic, crystallization, and mechanical properties of HDPE/EVA/Mg (OH) 2 composites
CN114213750A (zh) 一种多层管路
WO2020232006A1 (en) Polyolefin pressure pipe resin
BR112019015073A2 (pt) Polietileno modificado por peróxido, composições e aplicações
CN112961435B (zh) 一种聚丙烯发泡材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882236

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13882236

Country of ref document: EP

Kind code of ref document: A1