WO2014167972A1 - 中空羽根車およびそれを用いた発電装置 - Google Patents
中空羽根車およびそれを用いた発電装置 Download PDFInfo
- Publication number
- WO2014167972A1 WO2014167972A1 PCT/JP2014/057661 JP2014057661W WO2014167972A1 WO 2014167972 A1 WO2014167972 A1 WO 2014167972A1 JP 2014057661 W JP2014057661 W JP 2014057661W WO 2014167972 A1 WO2014167972 A1 WO 2014167972A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- annular body
- tube
- hollow impeller
- blade
- hollow
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B3/00—Machines or engines of reaction type; Parts or details peculiar thereto
- F03B3/04—Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B17/00—Other machines or engines
- F03B17/06—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
- F03B17/061—Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2220/00—Application
- F05B2220/20—Application within closed fluid conduits, e.g. pipes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
Definitions
- the present invention relates to a hollow impeller and a power generation device using the same.
- micro hydropower generation system has a problem in profitability (energy balance ratio) and needs to be improved.
- profitability energy balance ratio
- unit price per unit power generation capacity of micro hydropower generators is high and the initial investment load is large.
- an object of the present invention is to suppress an increase in maintenance costs associated with outdoor operation of a fluid power generation system.
- the present invention provides a hollow impeller, a first tube extending from a first end, an annular body rotatably supported by the first end, and the annular body And a wing for applying a rotational force to the annular body by a fluid flowing through the first tube.
- the present invention provides the power generator, wherein the first tube extending from the first end, the annular body rotatably supported by the first end, and the inner surface of the annular body are attached to the A hollow impeller having wings that apply a rotational force to the annular body by a fluid flowing through the first pipe, and a generator having a shaft that rotates by the rotation of the annular body.
- FIG. 1 is a side view of a power generator using an embodiment of a hollow impeller according to the present invention.
- FIG. 2 is a cross-sectional view of the hollow impeller of the present embodiment.
- FIG. 3 is an enlarged cross-sectional view of a joint portion between the tube and the annular body of the hollow impeller of the present embodiment.
- FIG. 4 is a perspective view of a power generator using the hollow impeller of the present embodiment.
- the power generator of the present embodiment is a micro hydroelectric power generator that rotates a generator by driving a propeller (blade) in a circular pipe with a water flow.
- the hollow impeller has a first tube 12, a second tube 14, and an annular body 20.
- One end of the first tube 12 is disposed to face one end of the second tube 14.
- tube 14 are the circular tubes of the same diameter arrange
- the annular body 20 is a circular tube arranged coaxially with the first tube 12 and the second tube 14.
- the diameter of the annular body 20 is substantially the same as that of the first tube 12 and the second tube 14.
- the first tube 12, the second tube 14, and the annular body 20 are made of, for example, metal or resin.
- the first pipe 12, the second pipe 14, and the annular body 20 are, for example, a hard PVC pipe having a diameter of 200 mm that is small, light, and inexpensive.
- tube 14, and the annular body 20 shall be about 500 mm in total length, for example.
- a flange 18 is provided at the end of the first tube 12.
- a flange 24 is provided at the end of the annular body 20.
- the end portion of the first tube 12 and the end portion of the annular body 20 face each other so that the flanges 18 and 24 are hooked to each other, and are connected via a bearing 50.
- the bearing 50 shall be able to withstand the direction of water flow, that is, the axial load and the radial load.
- the end portion of the second tube 14 and the other end portion of the annular body 20 are coupled in the same structure. Therefore, the annular body 20 is rotatably supported at the ends of the first tube 12 and the second tube 14.
- tube 14 are being fixed to the ground, a water bottom, etc., for example.
- a blade 22 is fixed to the inner surface of the annular body 20.
- the blades 22 apply a rotational force to the annular body 20 by the water flowing in the direction of the arrow 40 in FIG.
- a guide vane 16 is fixed to the inner surface of the first pipe 12 on the upstream side of the annular body 20 to give the momentum in the swirling direction to the water flowing inside.
- the blades 22 and the guide vanes 16 are made of metal, for example.
- the blades 22 and the guide vanes 16 are preferably airfoils in order to effectively use the flow of water.
- the blades 22 are fixed to the inner surface of the annular body 20 with bolts (not shown), for example.
- bolts for example, two or more bolts are provided for one blade 22.
- the bolt is screwed into the blade 22 through a hole penetrating from the outer surface to the inner surface of the annular body 20, for example.
- the power generation device includes the hollow impeller, the generator 30, and the belt 34.
- the generator 34 generates power by the rotation of the shaft 32.
- the belt 34 is stretched over a shaft 32 of the generator 34 or a boss attached to the shaft 32.
- the belt 34 transmits the rotation of the annular body 20 of the hollow impeller to the generator 30.
- the belt 34 is made of synthetic rubber, for example. Alternatively, the belt 34 may be made of metal.
- the hollow impeller is submerged, for example, in flowing water.
- the generator 30 is disposed on water, for example.
- a method of arranging a generator in the center of a pipe through which water flows can be considered.
- the boss that supports the rotating blade is installed on the pipe axis, and the effective cross-sectional area of the cross section of the pipe through which the water flow passes becomes small. For this reason, when foreign matter such as leaves or twigs mixed in the water flow flows, the narrow flow path is blocked or the foreign matter is caught on the blade.
- the blades 22 are attached to the inner periphery of the annular body 20, and the annular body 20 that rotates together with the blades 22 at the ends of the first tube 12 and the second tube 14 through which water flows. Is supported by a bearing 50.
- the rotation of the annular body 20 is transmitted to the generator 30 by the belt 34.
- the effective cross-sectional area of the circular pipe is dramatically increased. That is, since it is not necessary to arrange a generator or the like in the center of the annular body 20, the first pipe 12, and the second pipe 14, foreign substances flowing from the upstream can be smoothly passed downstream. Therefore, the possibility that foreign matter is caught in the blade 22 or the flow path is blocked by the foreign matter is reduced. In addition, the energy balance ratio is improved.
- the hollow impeller and power generation device of the present embodiment which is a small and non-blocking water turbine, uses a water flow in a circular pipe as a driving source, so that not only micro hydroelectric power generation using rivers, but also water and sewage, drainage ditches, agriculture It can be installed in irrigation channels, factory piping, building piping, and water injection piping. Moreover, since the pressure of water falls by passing through this hollow impeller, it can be used as a substitute for the decompression device in various pipes. By arranging a large number of such power generators as self-sustained / distributed power sources, it is possible to contribute to regional industry creation during normal times as well as securing power during disasters.
- the design is simple, and the cost can be reduced by standardized mass production. Furthermore, since the outer diameter is small, a lightweight and low-priced hard PVC pipe can be used for the water channel. Therefore, construction is possible with only human power even in places where it is difficult to use machinery, such as in mountainous areas, leading to a significant reduction in construction costs.
- FIG. 5 is a cross-sectional view showing a longitudinal cross section of an annular body and blades in a modification of the present embodiment.
- FIG. 6 is a cross-sectional view of an annular body in a modification of the present embodiment. In FIG. 6, the illustration of the blade 22 is omitted.
- the annular body 20 includes an inner annular body 41 and an outer annular body 42.
- the inner annular body 41 is formed in a cylindrical shape.
- a blade 22 is fixed to the inner surface of the inner annular body 41.
- the inner annular body 41 and the blades 22 may be integrally formed with, for example, a 3D printer.
- the outer annular body 42 is formed in a cylindrical shape having an inner surface facing the outer surface of the inner annular body 41.
- the inner annular body 41 is fixed to the outer annular body 42 by, for example, four bolts 43 that pass through through holes formed in the outer annular body 42. Therefore, the inner annular body 41 and the outer annular body 42 rotate together by a rotational force generated by the blade 22 receiving a force from the water flow.
- the size and shape of the blades 22 of the hollow impeller and the diameter of the annular body 20 may be changed as appropriate in consideration of the water flow environment in which the hollow impeller is disposed and the desired power generation amount. If the combination of the hollow impeller and the generator is optimized for several typical water flow environments and unitized, the cost can be reduced.
- hollow impellers of various shapes according to the water flow environment, it is preferable to reduce the manufacturing cost and the manufacturing time. Therefore, for example, if a hollow impeller is manufactured using a 3D printer, it can be manufactured inexpensively and in a short time.
- FIG. 7 is a graph showing an example of the change in the turbine output with respect to the hollow ratio in the present embodiment.
- the hollow ratio is the ratio (D2 / D1) of the diameter D2 of the inscribed circle of the blade 22 to the inner diameter D1 of the annular body 20.
- FIG. 5 shows the test results when D1 is 100 mm, D2 is 0 to 80 mm, the effective head is 6 m, and the flow rate is 0.01 m 3 / s.
- the turbine output decreases monotonically as the hollowness increases. This is because, as the area of the blade 22 decreases, the amount of water flowing through the blade 22 is reduced, so that the force for rotating the annular body 20 is reduced. However, the decrease is small when the hollow ratio is low, and is substantially the same when the hollow ratio is about 30% or less. In addition, when the hollow ratio is about 60% or less, the turbine output is 50% or more of the maximum value, so that it is considered that there is no practical problem.
- the hollow ratio becomes small, foreign matter may collide with the blades 22 or the narrowed flow path may be blocked, so change as appropriate according to the installation location.
- the hollow rate may be set to 0% in a clear stream with almost no foreign matter.
- the blades 22 may be formed such that the total winding angle exceeds 360 degrees.
- Four blades 22 each having a winding angle of 90 degrees or more are provided.
- the winding angle is an angle at which the blades 22 block the flow path around the central axis of the annular body 20.
- the winding angle is 90 degrees or more, there is no gap between adjacent blades 22 when the blades 22 are projected in the axial direction of the annular body 20. For this reason, since all the water flows which flow outside the circle (inscribed circle) formed by the inner ends of the blades 22 collide with the blades 22, the water flow can be used more effectively.
- gears may be provided on the annular body 20 and the shaft 32 of the generator 30.
- the rotation of the annular body 20 is transmitted to the shaft 32 of the generator 30 using only one belt 34, but a gear may be inserted between them.
- first tube 12, the second tube 14, the annular body 20, the belt 34, and the generator 30 may be integrated (unitized).
- the opposite ends of the first pipe 12 and the second pipe 14 with respect to the annular body 20 should be easily combined with standardized pipes that are widely available in the market. .
- the second pipe 14 is provided on the downstream side of the annular body 20.
- the annular body 20 is supported only by the first pipe 12 on the upstream side, and the downstream end of the annular body 20 is provided. The part may simply be opened. Further, even if the first tube 12, the second tube 14, and the annular body 20 are deviated from the same axis or have different diameters, the annular body 20 can be rotated, and the rotation of the annular body 20 is caused by the generator. As long as transmission to 30 is possible, the arrangement and diameter of the shafts may be appropriately selected.
- the generator 30 may not have a shaft. If a magnet is disposed on the outer surface of the annular body 20 and a coil is disposed so as to surround the annular body 20, power can be generated by the rotation of the annular body 20.
- power generation is performed using a hollow impeller, but by replacing the generator 30 with a motor, the hollow impeller 20 can be rotated by external power to function as a pump.
- the hollow impeller is submerged in water, but may be installed on the ground as long as the water tightness of the bearing 50 can be secured.
- the medium that rotates the annular body 20 via the blades 22 is water, other fluids may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hydraulic Turbines (AREA)
Abstract
屋外運用に伴うメンテナンスコストの増加を抑制するという課題をかいけつするため、発電装置に、中空羽根車とベルト34と発電機30とを備える。中空羽根車は、第1の管12と第2の管14と環状体20とを有している。第1の管12および第2の管14は、互いに端部が対向するように配置されている。環状体20は、第1の管12の端部および第2の管14の端部に回転可能に支持されている。環状体20は、矢印40の方向に流れる水によって回転する。環状体20の回転は、ベルト34を介して発電機30のシャフト32に伝達される。
Description
本発明は、中空羽根車およびそれを用いた発電装置に関する。
再生可能エネルギーを用いた分散型独立電源の開発は、地球温暖化防止や放射能汚染防止を目的とした、化石燃料や原子力による電源の代替はもちろんのこと、大災害時の非常用電源を確保するためにも極めて重要である。とくに、地産池消エネルギーは地理的特徴を活かした地域資源を活用し、「自立」、「小規模」、「分散」、「多数」の電源が有機的に結合し連携していることが大切である。中でも、CO2削減効果が最も大きい水力発電、特にマイクロ水力発電は、災害時に地形的に被災者が分散し孤立する可能性が高い地域・自治体に適した電力源であり、安定した小規模の自立電源が数多くあることが重要である。
マイクロ水力発電は、その豊富なエネルギー賦存量にも関わらず、その開発・実運用が遅れている。特に、事業採算性の観点から、従来のマイクロ水力発電システムでは収益性(エネルギー収支比)に課題があり、改善が必要である。たとえば、マイクロ水力発電機の単位発電容量当たりの単価が高く初期投資の負荷が大きいこと、屋外使用時に、落ち葉・枯れ枝・土砂などを巻き込み、運転障害を引き起こすため設備稼働率が低下すること、保守・メンテナンスにかかる人件費が大きいこと、などの課題がある。
特に、山間部に設置されたマイクロ水力発電の運転では、水流中に含まれる小枝、木葉、小石、小動物の死体などが水車の回転する羽根に巻き込まれて流路を閉塞し、運転を停止させる深刻な問題が多発している。従来、水車の閉塞を防止するため、スクリーンやネットなどを水車上流の流路に敷設し、上記の水流中の異物を除去する対策がとられている。これにより一定の効果はもたらされるが、効率的な水車の運転を維持するためには、高い頻度で定期的にスクリーンやネットに捕捉された異物を取り除く作業が必要とされる。これに要する手間と人件費は小さくなく、マイクロ水力発電の有効な運用と普及の大きな障害となっている。
そこで、本発明は、流体による発電システムの屋外運用に伴うメンテナンスコストの増加を抑制することを目的とする。
上述の課題を解決するため、本発明は、中空羽根車において、第1の端部から延びる第1の管と、前記第1の端部に回転可能に支持された環状体と、前記環状体の内面に取り付けられて前記第1の管を流れる流体によって前記環状体に回転力を付与する羽と、を有することを特徴とする。
また、本発明は、発電装置において、第1の端部から延びる第1の管と、前記第1の端部に回転可能に支持された環状体と、前記環状体の内面に取り付けられて前記第1の管を流れる流体によって前記環状体に回転力を付与する羽と、を有する中空羽根車と、前記環状体の回転によって回転するシャフトを持つ発電機と、を有することを特徴とする。
本発明によれば、流体による発電システムの屋外運用に伴うメンテナンスコストの増加を抑制することができる。
本発明に係る中空羽根車の一実施の形態を、図面を参照して説明する。
図1は、本発明に係る中空羽根車の一実施の形態を用いた発電装置の側面図である。図2は、本実施の形態の中空羽根車の横断面図である。図3は、本実施の形態の中空羽根車の管と環状体との結合部分の拡大断面図である。図4は、本実施の形態の中空羽根車を用いた発電装置の斜視図である。
本実施の形態の発電装置は,円管内のプロペラ(羽根)を水流により駆動して発電機を回すマイクロ水力発電装置である。中空羽根車は、第1の管12と第2の管14と環状体20とを有している。第1の管12の一方の端部は、第2の管14の一方の端部に対向して配置されている。第1の管12と第2の管14は、同軸に配置された同径の円管である。環状体20は、第1の管12および第2の管14と同軸に配置された円管である。環状体20の径は、第1の管12および第2の管14とほぼ同じである。
第1の管12と第2の管14と環状体20とは、たとえば金属あるいは樹脂で形成されている。第1の管12と第2の管14と環状体20は、たとえば小型・軽量でコストが安い直径200mmの硬質塩ビパイプである。第1の管12と第2の管14と環状体20は、たとえば全長500mm程度とする。
第1の管12の端部には、フランジ18が設けられている。環状体20の端部には、フランジ24が設けられている。第1の管12の端部と環状体20の端部とは、フランジ18,24が互いに引っかかるように対向し、ベアリング50を介して結合されている。ベアリング50は、水の流れの方向、すなわち軸方向の荷重、および半径方向の荷重に耐えられるものとする。第2の管14の端部と環状体20の他方の端部とも同様の構造で結合されている。したがって、環状体20は、第1の管12および第2の管14の端部に、回転可能に支持されている。第1の管12および第2の管14は、たとえば地面、水底などに固定されている。
環状体20の内面には、羽根22が固定されている。羽根22は、第1の管12の内部を図1の矢印40の方向に流れる水によって環状体20に回転力を付与する。また、環状体20の上流側の第1の管12の内面には、内部を流れる水に旋回方向の運動量を与えるガイドベーン16が固定されている。羽根22およびガイドベーン16は、たとえば金属製である。羽根22およびガイドベーン16は、水の流れを有効に活用するため、翼型であることが好ましい。
羽根22は、たとえば図示しないボルトで環状体20の内面に固定されている。ボルトは、たとえば1枚の羽根22に対して2以上設ける。ボルトは、たとえば環状体20の外面から内面に貫通する孔を通して羽根22にねじ込まれる。羽根22を、ボルトなどを用いて環状体20に着脱可能に設けておくことにより、メンテナンスが容易でメンテナンスコストが小さくなる。
発電装置は、この中空羽根車と発電機30とベルト34とを有している。発電機34は、シャフト32の回転によって発電する。ベルト34は、発電機34のシャフト32あるいはそのシャフト32に取り付けられたボスに架け渡されている。ベルト34は、中空羽根車の環状体20の回転を発電機30に伝達する。ベルト34は、たとえば合成ゴム製である。あるいはベルト34を、金属で形成してもよい。
中空羽根車は、たとえば流れを有する水中に沈められる。発電機30は、たとえば水上に配置される。
このような発電装置では、図1の矢印40の方向に流れる水が羽根22にぶつかることによって環状体20に回転力が与えられる。この回転力によって環状体20は回転し、ベルト34を動かす。ベルト34を介して、環状体20の運動エネルギーは伝達されて、発電機30のシャフト32が回転する。これにより発電機30が発電して電気エネルギーに変換される。
水流を用いて発電する発電装置の場合、水が流れる管の中央に発電機を配置する方法が考えられる。しかし、このように管の中央に発電機を配置すると、回転する羽根を支持するボスが円管軸上に設置されており、水流が通過する円管断面の有効断面積は小さくなってしまう。このため、水流に混入した木の葉や小枝などの異物が流れてくると、狭い流路を閉塞したり、羽根に異物が引っかかったりする。
しかし、本実施の形態の発電装置は、環状体20の内周に羽根22を取付け、水が流れる第1の管12および第2の管14の端部に、羽根22とともに回転する環状体20を、ベアリング50によって支持している。環状体20の回転はベルト34により発電機30に伝えられる。発電機20のシャフト32およびそれに取り付けたボスなどを水流中以外の別の場所に移動することにより、円管の有効断面積が飛躍的に増大する。つまり、環状体20、第1の管12および第2の管14の中央に発電機などを配置する必要がないため、上流から流れる異物を下流側に円滑に素通りさせることができる。したがって、羽根22に異物が巻き込まれたり、異物によって流路が閉塞される可能性が低減される。また、エネルギー収支比が向上する。
つまり、水流中に含まれる小枝、木葉、小石、小動物の死体などが水車の回転する羽根に巻き込まれて流路を閉塞し、運転を停止させる可能性が低減される。また、水車の閉塞を防止するため、スクリーンやネットなどを水車上流の流路に敷設し、上記の水流中の異物を除去する対策を取らなくても、あるいは、高い頻度で定期的にスクリーンやネットに捕捉された異物を取り除く作業行わなくても、効率的な発電装置の運転を維持できる。
したがって、異物が多い水流中でも清水時と同様の運転を継続することができる。さらに水車上流にスクリーンやネットを設置しなくても、実質的に問題がない。落ち葉・ゴミ・土砂の除去作業等、日常の保守・メンテ作業が不要となるため、人件費・交換部品等の大幅削減が可能となる。すなわち,山間部の小規模河川での連続運転にも耐えうる、メンテナンスフリーのマイクロ水車であり、広域への普及が期待される。
よって、本実施の形態によれば、流体による発電システムの屋外運用に伴うメンテナンスコストの増加を抑制することができる。
小型・無閉塞水車である本実施の形態の中空羽根車および発電装置は、円管中の水流を駆動源とするため、河川を利用したマイクロ水力発電のみならず、上下水道、排水溝、農業用水路、工場内配管、ビル内配管・注水用配管等への設置が可能である。また、この中空羽根車を通過することにより水の圧力が低下するため、各種配管における減圧装置の代替品としても用いることができる。このような発電装置を多数、自立・分散型電源として配置しておくことにより、災害緊急時の電力確保と同時に、通常時の地域産業創生にも貢献できる。
また、設計がシンプルであり、規格化大量生産を行うことにより、コストダウンを図ることができる。さらに、外径が小さいため、軽量・低価格な硬質塩ビ管を水路に使用できる。そのため、山間部など機械使用が困難な場所でも人的パワーのみで工事が可能となり、建設コストの大幅削減につながる。
図5は、本実施の形態の一変形例における環状体および羽根の縦断面を示す断面図である。図6は、本実施の形態の一変形例における環状体の横断面図である。図6において、羽根22の図示は省略した。
この変形例において、環状体20は、内環状体41および外環状体42とからなっている。内環状体41は、円筒状に形成されている。内環状体41の内面には、羽根22が固定されている。内環状体41と羽根22とは、たとえば3Dプリンターなどで一体成型されていてもよい。
外環状体42は、内環状体41の外面に対向する内面を持つ円筒状に形成されている。内環状体41は、たとえば外環状体42に形成された貫通孔を通る4本のボルト43によって、外環状体42に固定されている。したがって、内環状体41と外環状体42とは、羽根22が水流から力を受けて生じる回転方向の力によって、一体となって回転する。
中空羽根車が配置される水流環境や、所望の発電量を考慮し、中空羽根車の羽根22の大きさ、形状、環状体20の径は適宜変更してもよい。中空羽根車と発電機との組み合わせを、典型的ないくつかの水流環境に対して最適化してユニット化しておけば、コストダウンを図ることができる。
また、水流環境に応じて様々な形状の中空羽根車を製造するには、製作コストを低減し、製作時間を短縮しておく方が好ましい。そこで、たとえば3Dプリンターを用いて、中空羽根車を製造すれば、安く、短時間で製造することができる。
図7は、本実施の形態における中空率に対する水車出力の変化の例を示すグラフである。ここで、中空率とは、環状体20の内直径D1に対する羽根22の内接円の直径D2の比(D2/D1)である。図5は、D1が100mm、D2が0~80mm、有効落差6m、流量0.01m3/sでの試験結果である。
図7に示すように、水車出力は中空率の増加に伴い単調に減少する。これは、羽根22の面積の減少に伴って中を流れる水のうち羽根22にあたる量が減少するため、環状体20を回転させる力が小さくなるためである。しかし、その低下は中空率が低い範囲では小さく、中空率が30%程度以下では実質的に同程度である。また、中空率が60%程度以下では、水車出力は最大値の50%以上はあるため、実用上問題ないと考えられる。
ただし、中空率が小さくなると、異物が羽根22に衝突したり、狭くなった流路が閉塞される可能性があるため、設置場所に応じて適宜変更する。たとえば、異物がほとんどない清流では中空率を0%にしてもよい。また、異物が多い流に設置する場合には、水車出力があまり低下しない範囲で中空率を大きくするとよい。
また、環状体20の内径が80mmで、羽根22の内接円の直径が24mmである中空羽根車と、回転軸にプロペラを取り付けた比較例の羽根車との比較実験を行った。この比較実験では、落ち葉などを含む異物が流れ落ちる用水路に、これらの2種類の水車を設置して、経過を観察した。その結果、比較例では、落ち葉で流路が閉塞する様子が観察され、短時間でその回転が乱れ、最終的には回転が停止した。一方、本実施の形態の羽根車では、異物は中空部を通過し、安定して回転が持続した。
なお、この実施の形態は単なる例示であり、本発明はこれに限定されない。
たとえば、羽根22は、巻き角度の合計が360度を超えるように形成してもよい。羽根22として、それぞれの巻き角度が90度以上のものを4枚設ける。ここで巻き角度とは、環状体20の中心軸の周りの流路を羽根22が塞ぐ角度である。羽根22を4枚設けた場合、巻き角度を90度以上とすると、羽根22を環状体20の軸方向に投影したときに隣り合う羽根22の間に隙間が生じない。このため、羽根22の内端が形成する円(内接円)よりも外側を流れる水流はすべて羽根22にぶつかることになるため、水の流れをより有効に活用することができる。
ベルト34によって動力を効率よく伝達するため、環状体20および発電機30のシャフト32に歯車を設けてもよい。また、上述の実施の形態では、環状体20の回転を一つのベルト34のみを用いて発電機30のシャフト32に伝達しているが、間にギアを挿入するなどしてもよい。
また、第1の管12、第2の管14、環状体20、ベルト34および発電機30を一体化(ユニット化)してもよい。この場合、第1の管12、第2の管14の環状体20に対して反対側の端部を、規格化され、市場に多く出回っている管と容易に結合するようにしておくとよい。
上述の実施の形態では、環状体20の下流側に第2の管14を設けているが、環状体20を上流側の第1の管12だけで支持し、環状体20の下流側の端部は、単に開放してもよい。また、第1の管12、第2の管14および環状体20は、同軸からずれていて、あるいは径が異なっていても、環状体20が回転可能であり、環状体20の回転を発電機30に伝達できれば、軸の配置および径は適宜選択してもよい。
さらに、発電機30は軸を持っていなくてもよい。環状体20の外面に磁石を配置し、環状体20を囲むようにコイルを配置しておけば、環状体20の回転により発電することができる。
ここでは、中空羽根車を用いて発電することとしているが、発電機30をモータに代えることによって、外部の動力で中空羽根車20を回転させてポンプとして機能させることもできる。
また、上述の実施の形態は、中空羽根車を水中に沈めることとしているが、ベアリング50の水密性を確保できれば、地上に設置してもよい。羽根22を介して環状体20を回転させる媒体が水であるとして説明したが、他の流体であってもよい。
12…第1の管、14…第2の管、16…ガイドベーン、18…フランジ、20…環状体、22…羽根、24…フランジ、30…発電機、32…シャフト、34…ベルト、41…内環状体、42…外環状体、43…ボルト、50…ベアリング
Claims (8)
- 第1の端部から延びる第1の管と、
前記第1の端部に回転可能に支持された環状体と、
前記環状体の内面に取り付けられて前記第1の管を流れる流体によって前記環状体に回転力を付与する羽根と、
を有することを特徴とする中空羽根車。 - 前記第1の端部に対向する第2の端部から延びる第2の管をさらに有し、
前記環状体は前記第2の端部にも回転可能に支持されていることを特徴とする請求項1に記載の中空羽根車。 - 前記第1の管および前記第2の管は円管であって、同軸に配置されていることを特徴とする請求項2に記載の中空羽根車。
- 第1の管の内面に前記流体の流れに旋回方向の運動量を与えるガイドベーンをさらに有することを特徴とする請求項1ないし請求項3のいずれか1項に記載の中空羽根車。
- 前記環状体の内直径に対する前記羽根の内接円の直径の比が0.6以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の中空羽根車。
- 前記羽根は前記環状体の軸方向へ投影したときに隣り合う前記羽根の間に隙間が生じないように設けられていることを特徴とする請求項1ないし請求項5のいずれか1項に記載の中空羽根車。
- 前記環状体は前記羽根が固定された内環状体と前記内環状体の外面と対向する内面を持ち前記内環状体に固定された外環状体とを有することを特徴とする請求項1ないし請求項6のいずれか1項に記載の中空羽根車。
- 第1の端部から延びる第1の管と、前記第1の端部に回転可能に支持された環状体と、前記環状体の内面に取り付けられて前記第1の管を流れる流体によって前記環状体に回転力を付与する羽根と、を有する中空羽根車と、
前記環状体の回転によって発電する発電機と、
を有することを特徴とする発電装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014544292A JP5696296B1 (ja) | 2013-04-10 | 2014-03-20 | 中空羽根車およびそれを用いた発電装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-081716 | 2013-04-10 | ||
JP2013081716 | 2013-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014167972A1 true WO2014167972A1 (ja) | 2014-10-16 |
Family
ID=51689384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/057661 WO2014167972A1 (ja) | 2013-04-10 | 2014-03-20 | 中空羽根車およびそれを用いた発電装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5696296B1 (ja) |
WO (1) | WO2014167972A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20180926A1 (en) * | 2018-06-29 | 2019-05-06 | Jungminds As | Fluid machines |
JP2019210922A (ja) * | 2018-06-08 | 2019-12-12 | 株式会社東芝 | 水力機械用エネルギ回収装置、水力機械および水力機械の運転方法 |
JP2020146673A (ja) * | 2019-03-15 | 2020-09-17 | 株式会社リコー | 流体取り込みシステム及び発電システム |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TR201706299A2 (tr) * | 2017-04-28 | 2017-09-21 | Yildiz Suat | Akişkanlarin hareket enerji̇si̇nden elektri̇k elde edi̇lmesi̇ni̇ sağlayan hassas kanatli türbi̇nlerde yeni̇li̇k |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09105395A (ja) * | 1995-10-09 | 1997-04-22 | Fujita Corp | 羽根体の回転駆動方法とその装置ならびに流体の運動エネルギの取り出し方法とその装置 |
JPH1070858A (ja) * | 1996-05-07 | 1998-03-10 | Tadakatsu Yamamoto | 中空回転子を有する回転電機 |
US20050031442A1 (en) * | 2003-08-05 | 2005-02-10 | Williams Herbert Lehman | Hydroelectric turbine |
JP2006152711A (ja) * | 2004-11-30 | 2006-06-15 | Takenaka Komuten Co Ltd | 排水管構造 |
WO2011019094A1 (ko) * | 2009-08-11 | 2011-02-17 | 크리티컬퍼실리티서비스 | 유체 배관을 이용한 발전장치 |
JP2013040568A (ja) * | 2011-08-11 | 2013-02-28 | Sankyu Kogyo:Kk | 発電用回転管、回転管用軸受構造、回転発生構造および流液発電システム |
-
2014
- 2014-03-20 JP JP2014544292A patent/JP5696296B1/ja active Active
- 2014-03-20 WO PCT/JP2014/057661 patent/WO2014167972A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09105395A (ja) * | 1995-10-09 | 1997-04-22 | Fujita Corp | 羽根体の回転駆動方法とその装置ならびに流体の運動エネルギの取り出し方法とその装置 |
JPH1070858A (ja) * | 1996-05-07 | 1998-03-10 | Tadakatsu Yamamoto | 中空回転子を有する回転電機 |
US20050031442A1 (en) * | 2003-08-05 | 2005-02-10 | Williams Herbert Lehman | Hydroelectric turbine |
JP2006152711A (ja) * | 2004-11-30 | 2006-06-15 | Takenaka Komuten Co Ltd | 排水管構造 |
WO2011019094A1 (ko) * | 2009-08-11 | 2011-02-17 | 크리티컬퍼실리티서비스 | 유체 배관을 이용한 발전장치 |
JP2013040568A (ja) * | 2011-08-11 | 2013-02-28 | Sankyu Kogyo:Kk | 発電用回転管、回転管用軸受構造、回転発生構造および流液発電システム |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019210922A (ja) * | 2018-06-08 | 2019-12-12 | 株式会社東芝 | 水力機械用エネルギ回収装置、水力機械および水力機械の運転方法 |
NO20180926A1 (en) * | 2018-06-29 | 2019-05-06 | Jungminds As | Fluid machines |
NO343685B1 (en) * | 2018-06-29 | 2019-05-06 | Jungminds As | Fluid machines |
CN112352105A (zh) * | 2018-06-29 | 2021-02-09 | 流经股份有限公司 | 具有经由叶轮的边缘驱动的叶轮的无轴流体机械 |
JP2020146673A (ja) * | 2019-03-15 | 2020-09-17 | 株式会社リコー | 流体取り込みシステム及び発電システム |
JP7244815B2 (ja) | 2019-03-15 | 2023-03-23 | 株式会社リコー | 流体取り込みシステム及び発電システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014167972A1 (ja) | 2017-02-16 |
JP5696296B1 (ja) | 2015-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9803614B2 (en) | Systems and methods for hydroelectric systems | |
AU2014333398B2 (en) | In-pipe turbine and hydro-electric power generation system | |
US8616829B2 (en) | Shrouded turbine assembly | |
JP5696296B1 (ja) | 中空羽根車およびそれを用いた発電装置 | |
KR101196357B1 (ko) | 에너지 집약형 자력가동식 수직축 수류수차 장치 | |
KR101654899B1 (ko) | 소수력 발전장치 | |
JP7142191B2 (ja) | 水力発電装置 | |
KR101765188B1 (ko) | 수력발전일체형수문 | |
KR101503727B1 (ko) | 소수력발전장치 | |
WO2010086958A1 (ja) | 水力発電装置 | |
Farriz et al. | Evolution of simple reaction type turbines for pico-hydro applications | |
EP2487362A1 (en) | Underground watermill | |
KR20200028795A (ko) | 양식장을 이용한 소수력 발전 시스템 | |
KR101772017B1 (ko) | 무축 배관형 발전기 | |
KR101959887B1 (ko) | 노 형상을 갖는 블레이드를 구비한 관로형 소수력 발전장치 | |
JP2015140802A (ja) | 水力発電装置 | |
US20190032625A1 (en) | Systems and methods for hydroelectric systems incorporating artificial barriers with cross-flow turbines | |
US20200400113A1 (en) | Systems and methods for hydroelectric systems | |
JP2014224459A (ja) | 水力発電装置 | |
KR101649872B1 (ko) | 관로 유동수를 이용한 소수력 발전모듈 | |
US9057354B1 (en) | Hydro energy-offset turbine insert generator | |
US20060108808A1 (en) | System and method for generating electricity using well pressures | |
TWM600343U (zh) | 供應用於水管末端之水力發電裝置 | |
Sahebrao et al. | Design and manufacturing of Bulb Turbine | |
KR20070021292A (ko) | 다중나선형 수차 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014544292 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14782630 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14782630 Country of ref document: EP Kind code of ref document: A1 |