WO2014167904A1 - 反射型結像素子、及び反射型結像素子の製造方法 - Google Patents

反射型結像素子、及び反射型結像素子の製造方法 Download PDF

Info

Publication number
WO2014167904A1
WO2014167904A1 PCT/JP2014/054662 JP2014054662W WO2014167904A1 WO 2014167904 A1 WO2014167904 A1 WO 2014167904A1 JP 2014054662 W JP2014054662 W JP 2014054662W WO 2014167904 A1 WO2014167904 A1 WO 2014167904A1
Authority
WO
WIPO (PCT)
Prior art keywords
element substrate
flat plate
substrate
light
flat
Prior art date
Application number
PCT/JP2014/054662
Other languages
English (en)
French (fr)
Inventor
紳一郎 長尾
親彦 村田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/783,112 priority Critical patent/US9864178B2/en
Publication of WO2014167904A1 publication Critical patent/WO2014167904A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/006Systems in which light light is reflected on a plurality of parallel surfaces, e.g. louvre mirrors, total internal reflection [TIR] lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/002Arrays of reflective systems

Definitions

  • the present invention relates to a reflective imaging element and a manufacturing method of the reflective imaging element.
  • the reflective imaging element includes first and second light control panels in which a large number of strip-shaped planar light reflecting portions are arranged in the transparent flat plate so as to be perpendicular to one surface of the transparent flat plate.
  • One surface side of each of the first and second light control panels is configured to face each other with the planar light reflecting portions orthogonal to each other. Then, light from the projection object is incident on the planar light reflecting portion of the first light control panel, and the reflected light reflected by the planar light reflecting portion is reflected again by the planar light reflecting portion of the second light control panel.
  • the image of the projection object is formed on the opposite side of the reflective imaging element.
  • each of the first and second light control panels has a configuration in which a large number of planar light reflecting portions are arranged side by side perpendicularly to one surface of the transparent flat plate. Therefore, the smoothness of each plate surface of the first and second light control panels is low, and there is a concern that the optical performance deteriorates due to this. In order to improve the smoothness of each plate surface of the first and second light control panels, for example, polishing each plate surface can be considered.
  • the present invention has been completed based on the above-described circumstances, and aims to reduce costs and improve yield.
  • the reflective imaging element of the present invention includes a plurality of first planar reflecting portions that are orthogonal to the plate surface, and a plurality of first light transmitting portions that are translucent and extend in parallel with the first planar reflecting portion.
  • a first element substrate formed by alternately arranging a conductive base material and a second element substrate bonded to each other so that an inner plate surface faces an inner plate surface of the first element substrate,
  • a plurality of second planar reflecting portions orthogonal to the surface and perpendicular to the first planar reflecting portion, and a plurality of second transparent properties having translucency and extending parallel to the second planar reflecting portion.
  • the first element substrate and the second element substrate are alternately arranged in parallel with the first planar reflecting portion and the second planar reflecting portion, and the first light transmitting base material and the second light transmitting base material, respectively. Therefore, there is a concern that the smoothness of each plate surface tends to be low, and the optical performance deteriorates due to this.
  • the flat plate is bonded to the outer plate surface of at least one of the first element substrate and the second element substrate because the flat plates forming a single plate are opposed to each other. The incident light on the outer plate surface or the outgoing light from the outer plate surface is transmitted through the flat plate.
  • this flat plate has a single plate shape and has higher smoothness than the first element substrate and the second element substrate, there is a situation in which the traveling direction of transmitted light is changed irregularly. It has become difficult. Thereby, even if the smoothness on the outer plate surface to which the flat plate is bonded is not good, the optical performance of the reflective imaging element is hardly deteriorated. And at least on the outer plate surface on which the flat plates are bonded together, it is not necessary to perform a polishing operation for improving smoothness, so that the manufacturing cost can be reduced and the polishing operation can be reduced. Inconveniences that may occur with implementation can be avoided and yield can be improved.
  • the following configuration is preferable.
  • the flat plate, and at least one of the first element substrate and the second element substrate are bonded by a flat plate adhesive layer disposed in an intervening manner, and the flat plate and the first element substrate
  • the refractive indexes of at least one of the first light-transmitting base material of the one-element substrate and the second light-transmitting base material of the second element substrate on which the flat plate is bonded are equal to each other.
  • the flat plate adhesive layer has a refractive index of the flat plate, and the flat plate of the first translucent base material of the first element substrate and the second translucent base material of the second element substrate.
  • the light incident on the flat plate is transmitted through the flat plate adhesive layer and then the flat plate of the first light-transmitting base material of the first element substrate and the second light-transmitting base material of the second element substrate. Is transmitted through at least one of the bonded substrates.
  • At least one of the flat plate, the flat plate adhesive layer, and the first light-transmitting base material of the first element substrate and the second light-transmitting base material of the second element substrate bonded together is Since the refractive indexes are equal to each other, it is difficult for the light passing through them to be refracted at each interface to change the traveling direction, and the optical performance of the reflective imaging element is further deteriorated. It becomes difficult. Therefore, for example, even when the outer plate surface of at least one of the first element substrate and the second element substrate is used in an unpolished state, sufficiently high optical performance can be obtained.
  • the flat plate is bonded to the outer plate surface of the first element substrate and the outer plate surface of the second element substrate via the flat plate adhesive layer. If it does in this way, the light which permeate
  • the flat plate is bonded to one of the first element substrate and the second element substrate via the flat plate adhesive layer, the first element substrate and the second element substrate are bonded together.
  • the outer plate surface on the other side of the element substrate to which the flat plate is not bonded is a polished surface that has been subjected to a polishing process.
  • the flat plate is temporarily bonded to both element substrates.
  • the number of flat plates used can be reduced.
  • the outer plate surface is the polished surface that has been subjected to the polishing treatment. It is difficult for a situation in which the traveling direction of the light is irregularly changed when the light is transmitted, so that the optical performance of the reflective imaging element is further hardly deteriorated.
  • the first element substrate and the second element substrate are bonded by an inter-substrate adhesive layer disposed in an intervening manner, and the first light-transmitting substrate and the second light-transmitting group
  • the refractive indexes of the materials are equal to each other, and the inter-substrate adhesive layer is made of a material whose refractive index is equal to the refractive indexes of the first light-transmitting base material and the second light-transmitting base material.
  • the first light-transmitting base material, the inter-substrate adhesive layer, and the second light-transmitting base material have the same refractive index, light passing through them is refracted at each interface. As a result, a situation in which the traveling direction is changed is less likely to occur, and the optical performance of the reflective imaging element is less likely to deteriorate. Therefore, for example, even when the inner plate surfaces of the first element substrate and the second element substrate are both used in an unpolished state, sufficiently high optical performance can be obtained.
  • the inner plate surface of each of the first element substrate and the second element substrate is a surface to be polished.
  • the inner plate surface of each of the first element substrate and the second element substrate bonded by the inter-substrate adhesive layer is the polished surface, so that each inner plate that is the polished surface.
  • the manufacturing method of the reflective imaging element of the present invention has a plurality of first flat reflecting portions orthogonal to the plate surface, and has translucency and extends in parallel with the first flat reflecting portions.
  • the first element substrate formed by alternately arranging a plurality of first light-transmitting base materials in parallel, a plurality of second planar reflecting portions that are orthogonal to the plate surface and orthogonal to the first planar reflecting portion;
  • a second element substrate having translucency and alternately arranged in parallel with a plurality of second translucent base materials extending in parallel with the second planar reflecting portion, the inner plate surface thereof
  • An element substrate bonding step for bonding the first element substrate so as to face the inner plate surface of the first element substrate, and an outer plate surface of at least one of the first element substrate and the second element substrate.
  • a flat plate laminating step for laminating flat plates in the form of a plate to face each other
  • a reflective imaging element is manufactured by bonding a flat plate having a single plate shape to at least one of the second element substrate and facing the other plate surface.
  • the manufactured reflective imaging element for example, light incident on the outer surface of the first element substrate from the projection side is transmitted through the first light-transmitting substrate and is reflected by the first plane reflecting portion. After being reflected, the light passes through the second light-transmitting base material, is reflected by the second planar reflecting portion, and then exits from the outer plate surface of the second element substrate.
  • the traveling direction of the emitted light from the outer plate surface of the second element substrate is determined by the outer plate of the first element substrate. It becomes almost parallel to the traveling direction of the incident light with respect to the surface. As a result, it is possible to form a three-dimensional image obtained by projecting the projection object at a position opposite to the projection object with the reflective imaging element interposed therebetween.
  • the first element substrate and the second element substrate are alternately arranged in parallel with the first planar reflecting portion and the second planar reflecting portion, and the first light transmitting base material and the second light transmitting base material, respectively. Therefore, there is a concern that the smoothness of each plate surface tends to be low, and the optical performance deteriorates due to this.
  • the flat plate is bonded to the outer plate surface of at least one of the first element substrate and the second element substrate because the flat plates forming a single plate are opposed to each other. The incident light on the outer plate surface or the outgoing light from the outer plate surface is transmitted through the flat plate.
  • this flat plate has a single plate shape and has higher smoothness than the first element substrate and the second element substrate, there is a situation in which the traveling direction of transmitted light is changed irregularly. It has become difficult. Thereby, even if the smoothness on the outer plate surface to which the flat plate is bonded is not good, the optical performance of the reflective imaging element is hardly deteriorated. And at least on the outer plate surface on which the flat plates are bonded together, it is not necessary to perform a polishing operation for improving smoothness, so that the manufacturing cost can be reduced and the polishing operation can be reduced. Inconveniences that may occur with implementation can be avoided and yield can be improved.
  • the flat plate bonding step the flat plates are bonded to the first element substrate and the second element substrate, respectively. If it does in this way, a flat plate will be bonded together by both a 1st element substrate and a 2nd element substrate by passing through a flat plate bonding process. Therefore, for example, even when the outer plate surfaces of the first element substrate and the second element substrate are used in an unpolished state, sufficiently high optical performance can be obtained.
  • the element substrate bonding step is performed prior to the flat plate bonding step.
  • the first planar reflecting portion of the first element substrate and the second plane of the second element substrate Positioning with the reflecting portion can be performed more easily and accurately.
  • the flat plate bonding step is performed prior to the element substrate bonding step, and during the period from the flat plate bonding step to the element substrate bonding step, the first element.
  • the flat plates are bonded to the outer plate surfaces of the first element substrate and the second element substrate to be polished in the polishing step, the first element substrate and the second element substrate are reinforced by the respective flat plates. It is illustrated. This makes it difficult for the first light-transmitting base material and the second light-transmitting base material to peel off due to the force acting on the first element substrate and the second element substrate during polishing. Can do.
  • the flat plate bonding step the flat plate is bonded to one of the first element substrate and the second element substrate, and the flat plate bonding step and the element substrate bonding step are performed. And performing a polishing step of polishing the outer plate surface on the other side of the first element substrate and the second element substrate on which the flat plate is not bonded. If it does in this way, in the flat plate bonding process, since the flat plate is bonded only to either one of the first element substrate and the second element substrate, the flat plate is temporarily bonded to both element substrates. Compared to the case, the number of flat plates used can be reduced.
  • the outer plate surface is polished through the polishing step, so that deterioration of the optical performance is suppressed.
  • the flat plate is bonded to the outer plate surface on one side where the flat plate of the first element substrate and the second element substrate to be polished in the polishing step is bonded together,
  • the element substrate and the second element substrate are reinforced.
  • the first translucent base material and the second translucent base material due to the force acting on the other of the first element substrate and the second element substrate that are not bonded together with the polishing. It is possible to make it difficult for the other of the two to peel off.
  • FIG. 1 is a perspective view showing a schematic configuration of a reflective imaging element and a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 5 is a side view showing a first element substrate and a second element substrate for explaining an optical action in a reflective imaging element. It is drawing which shows the manufacturing method of a reflective type imaging element, Comprising: The perspective view which shows the state before bonding a 1st element substrate and a 2nd element substrate It is drawing which shows the manufacturing method of a reflective type imaging element, Comprising: Sectional drawing which shows the state before bonding a 1st element substrate and a 2nd element substrate It is drawing which shows the manufacturing method of a reflection type imaging element, Comprising: The perspective view which shows the state which bonded together the 1st element substrate and the 2nd element substrate It is drawing which shows the manufacturing method of a reflective type imaging element, Comprising: Sectional drawing which shows the state which bonded together the 1st element substrate and the 2nd element substrate It is drawing which shows the manufacturing method of a reflective type imaging element, Comprising: Sectional drawing which shows the state which bonded together the 1st element substrate and the 2nd element substrate It is drawing which shows
  • Sectional drawing of the reflective imaging element which concerns on Embodiment 2 of this invention It is drawing which shows the manufacturing method of a reflective type imaging element, Comprising: Sectional drawing which shows the state before bonding a 1st flat plate with respect to a 1st element board
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the reflective imaging element 10 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • FIG. 3 or the like is used as a reference, and the upper side of the figure is the front side and the lower side of the figure is the back side.
  • the reflective imaging element 10 is used in combination with a liquid crystal display device LCD disposed on the back side, and reflects an image displayed on the liquid crystal display device LCD.
  • the image is formed (projected) on the front side (the side opposite to the liquid crystal display device LCD side) of the mold imaging element 10 and can be visually recognized by the user as a stereoscopic image.
  • the liquid crystal display device LCD has a liquid crystal panel LCP having a display surface for displaying an image, and is disposed on the back side of the liquid crystal panel LCP (the side opposite to the reflective imaging element 10 side) to emit illumination light toward the liquid crystal panel LCP.
  • a backlight device BL to be supplied, which are integrally held by a holding member (not shown).
  • the liquid crystal panel LCP is formed by sandwiching a liquid crystal layer between a pair of substrates that are horizontally long when viewed in a plane, and the front substrate is a color filter or a grid-like light shielding layer that partitions the color filters (
  • the black substrate is a CF substrate (opposite substrate), while the back substrate has a large number of TFTs as switching elements and a large number of pixel electrodes charged by the TFTs arranged in a matrix.
  • an array substrate active matrix substrate is formed in which a large number of gate wirings and source wirings connected to each TFT are arranged in a grid pattern.
  • the backlight device BL is configured such that an LED serving as a light source and a light guide plate or an optical sheet serving as an optical member are accommodated in the chassis, and the chassis opens to the front side, thereby illuminating the liquid crystal panel LCP. Can be irradiated. Note that each component of the liquid crystal panel LCP and the backlight device BL is known, and detailed description and illustration are omitted in this embodiment.
  • the reflective imaging element 10 is a panel member having a horizontally long rectangular shape when viewed in plan as in the case of the liquid crystal panel LCP, and includes a first element substrate 11 and a first element. And a second element substrate 12 arranged in a stacked manner on the front side with respect to the substrate 11.
  • the first element substrate 11 and the second element substrate 12 are both flat plate members that are horizontally long when viewed in plan, and are bonded together so that the inner plate surfaces 11a and 12a face each other. Yes.
  • the first element substrate 11 is arranged on the liquid crystal display device LCD side which is a three-dimensional image supply source (projection object), and “light incident side element substrate” into which light irradiated from the liquid crystal display device LCD is incident.
  • the second element substrate 12 is disposed on the side opposite to the liquid crystal display device LCD side, that is, on the side on which a stereoscopic image is projected (imaged), and is incident on the first element substrate 11.
  • the “emitted light side element substrate” emits the emitted light to the projection side (image forming side).
  • the first element substrate 11 has a plurality of first translucency extending along the short side direction of the reflective imaging element 10 (first direction along the plate surface, Y-axis direction).
  • the base 13 and a plurality of first planar reflecting portions 14 that are disposed on one side surface of the first translucent base 13 and extend along the short side direction of the reflective imaging element 10 are connected in a reflective manner.
  • the image elements 10 are alternately arranged in parallel along the long side direction (second direction along the plate surface, X-axis direction).
  • the first light-transmitting substrate 13 is made of a glass material or a synthetic resin material (for example, acrylic resin such as PMMA) having a substantially transparent and excellent light-transmitting property, and its refractive index is, for example, 1.51 to 1.52. It is said to be about.
  • the first translucent base material 13 has an elongated prismatic shape (cuboid shape) extending along the Y-axis direction along the plate surface of the first element substrate 11 so that the cross-sectional shape is substantially rectangular. Is formed. As shown in FIG. 2 and FIG. 3, a plurality of first light-transmitting substrates 13 are arranged in parallel along the X-axis direction, and the height direction (Z) is greater than the width dimension in the parallel direction.
  • the height dimension in the (axial direction) is a large vertically long shape.
  • the height dimension is about three times the width dimension.
  • the first translucent substrate 13 has a width dimension of, for example, about 0.3 mm, and a height dimension of, for example, about 0.9 mm.
  • the first planar reflecting portion 14 is made of a metal material (silver, tin, aluminum, etc.) having excellent light reflectivity on the surface, and is integrally fixed to one side surface of the first translucent substrate 13 by a technique such as vapor deposition. Has been. The light that hits the surface can be specularly reflected by the first plane reflecting portion 14, and the traveling direction of the reflected light becomes regular.
  • the first planar reflecting portion 14 is a Y-axis direction that is an extending direction of the outer peripheral side surface of the first light-transmissive substrate 13 and a Z-axis direction that is a direction orthogonal to the plate surface of the first element substrate 11. It is arranged on one side along. Therefore, the first planar reflecting portion 14 forms a plane parallel to the Y-axis direction and the Z-axis direction.
  • the 1st plane reflection part 14 is distribute
  • sequence pitch is 1st transparency.
  • the width dimension of the optical base 13 is substantially equal.
  • the 1st translucent base material 13 is distribute
  • the second element substrate 12 has a plurality of second light-transmitting properties extending along the long side direction (second direction along the plate surface, X-axis direction) of the reflective imaging element 10.
  • the base material 15 and a plurality of second planar reflecting portions 16 that are disposed on one side surface of the second light-transmissive base material 15 and extend along the long side direction of the reflective imaging element 10 are connected in a reflective manner.
  • the image elements 10 are alternately arranged in parallel along the short side direction (first direction along the plate surface, Y-axis direction).
  • the second light-transmitting substrate 15 is made of a glass material or a synthetic resin material (for example, acrylic resin such as PMMA) that is substantially transparent and has an excellent light-transmitting property. Is done.
  • the second translucent base material 15 has an elongated prismatic shape (cuboid shape) extending along the X-axis direction along the plate surface of the second element substrate 12 so that the cross-sectional shape is substantially rectangular. Is formed. Therefore, the extending direction of the second light transmissive substrate 15 is in a relationship orthogonal to the extending direction of the first light transmissive substrate 13. As shown in FIG.2 and FIG.3, the 2nd translucent base material 15 is arranged in parallel along the Y-axis direction, and height direction (Z) rather than the width dimension about the parallel direction. The height dimension in the (axial direction) is a large vertically long shape.
  • the second light transmissive substrate 15 has a width dimension and a height dimension that are substantially the same as the width dimension and the height dimension of the first light transmissive substrate 13 described above.
  • the second planar reflecting portion 16 is made of a metal material (silver, tin, aluminum, etc.) having excellent light reflectivity on the surface, and is integrally fixed to one side surface of the second translucent substrate 15 by a technique such as vapor deposition. Has been.
  • the second flat reflecting portion 16 is made of the same material as the first flat reflecting portion 14. The light that hits the surface can be specularly reflected by the second planar reflecting portion 16, and the traveling direction of the reflected light becomes regular.
  • the second planar reflecting portion 16 includes the X-axis direction that is the extending direction and the Z-axis direction that is orthogonal to the plate surface of the second element substrate 12 on the outer peripheral side surface of the second light transmissive substrate 15. It is arranged on one side along. Therefore, the second planar reflection unit 16 forms a plane parallel to the X-axis direction and the Z-axis direction, and is in a relationship orthogonal to the first planar reflection unit 14.
  • the second planar reflecting portions 16 are arranged intermittently side by side in the Y-axis direction so as to be interposed between the second light-transmitting base materials 15 adjacent in the Y-axis direction, and the arrangement pitch thereof is the second transparency.
  • the width dimension of the optical base material 15 is substantially equal.
  • the arrangement pitch of the second planar reflection unit 16 is substantially equal to the arrangement pitch of the first planar reflection unit 14.
  • the 2nd translucent base material 15 is distribute
  • the basic structure of the second element substrate 12 is the same as that of the first element substrate 11, and the extending directions of the second light-transmitting base material 15 and the second planar reflecting portion 16 are the first transparent substrate. It is different in that it is orthogonal to the extending direction of the optical base material 13 and the first flat reflecting portion 14.
  • the basic structure of the first element substrate 11 and the second element substrate 12 is substantially the same, it can be manufactured by one of the following two manufacturing methods.
  • a plate-like light-transmitting base material TM made of a glass material or a synthetic resin material forming each light-transmitting base material 13, 15 is manufactured, and the transparent material is transmitted.
  • a reflection part base material RM made of a metal material that forms each of the planar reflection parts 14 and 16 is formed by vapor deposition or the like.
  • the base material block B is manufactured by fixing with a transparent adhesive or the like. Then, by cutting the base material block body B along the direction orthogonal to the plate surface of each translucent base material TM, the first element substrate 11 or the second element substrate 12 becomes as shown in FIG. can get.
  • the base material 15 is manufactured separately, and the first light-transmitting base material 13 or the second light-transmitting base material 15 is replaced with the first flat light reflecting portion 14 or the second flat light reflecting portion 16 and the first light transmitting light.
  • the first element substrate 11 or the second element substrate 12 is fixed by a substantially transparent adhesive (not shown) while being arranged in parallel so that the order of the conductive substrate 13 or the second translucent substrate 15 is alternate. can get.
  • some of the reflecting base material RM, the first flat reflecting portion 14, and the second flat reflecting portion 16 are shown in a shaded shape.
  • the first element substrate 11 and the second element substrate 12 are manufactured by cutting the base material block B or fixing the light-transmitting substrates 13 and 15 manufactured separately.
  • the translucent base materials 13 and 15 are intermittently partitioned by the plane reflecting portions 14 and 16 in the direction along the plate surface.
  • the smoothness of each plate surface tends to be low, and minute irregularities are likely to be generated on the surface, and there is a concern that the optical performance deteriorates due to this.
  • the first element substrate 11 and the second element substrate 12 are opposite to the inner plate surfaces (opposing plate surfaces) 11a and 12a facing each other.
  • a pair of flat plates 17 and 18 are bonded to each other on the outer plate surfaces (opposite plate surfaces) 11b and 12b.
  • the pair of flat plates 17 and 18 the one bonded to the first element substrate 11 is referred to as a first flat plate (flat plate) 17, and the one bonded to the second element substrate 12 is referred to as a second flat plate (flat plate) 18.
  • Each of the pair of flat plates 17 and 18 is a single plate-like member having a horizontally long shape when seen in a plan view, and the inner plate surfaces 17a and 18a are the outer plate surfaces of the element substrates 11 and 12, respectively. While being opposed to 11b and 12b, they are bonded to each other through respective flat plate adhesive layers 19 and 20 described later.
  • the pair of flat plates 17 and 18 are made of a glass material or a synthetic resin material (for example, acrylic resin such as PMMA) having a substantially transparent and excellent translucency, and the refractive index thereof is different from that of the translucent base materials 13 and 15. It is almost the same.
  • the pair of flat plates 17 and 18 are made of the same material as each of the translucent base materials 13 and 15, and in this way, each of the translucent properties such as the thermal expansion coefficient is also transmitted in addition to the refractive index. It becomes equal to the physical property value of the base materials 13 and 15.
  • the pair of flat plates 17 and 18 includes the respective translucent base materials 13 and 15 in the direction along the plate surface like the element substrates 11 and 12.
  • , 16 is a seamless single-plate structure in which there is no seam in the middle in the direction along the plate surface.
  • , 12 is relatively high. More specifically, the smoothness of each plate surface of the pair of flat plates 17 and 18 is, for example, equal to or higher than the smoothness when the plate surfaces of the element substrates 11 and 12 are polished. Is done.
  • the pair of flat plates 17 and 18 are arranged so as to sandwich the element substrates 11 and 12 bonded to each other from the outside, and the outer plate surfaces 17 b and 18 b are the outermost plates in the reflective imaging element 10. Make up surface.
  • the outer plate surfaces 11b and 12b of the element substrates 11 and 12 are the outermost plate surfaces, and light is directly incident on the outer plate surfaces 11b and 12b, or the outer plate surfaces 11b. , 12b, the light is incident on the outer plate surfaces 17b, 18b of the pair of flat plates 17, 18, and the light is emitted from the outer plate surfaces 17b, 18b.
  • the smoothness of the outer plate surfaces 11b and 12b in the element substrates 11 and 12 is not good, the optical performance of the reflective imaging element 10 is hardly deteriorated.
  • the inner and outer (front side and back side) plate surfaces 11a, 11b, 12a, and 12b of each of the element substrates 11 and 12 are not polished, so that the manufacturing process and the polishing process are performed.
  • the polishing apparatus can be omitted from the manufacturing apparatus, which is extremely good in reducing the manufacturing cost and avoids problems that may occur with the implementation of the polishing operation, thereby improving the yield (good product rate). Improvements can be made.
  • the first flat plate 17 and the first element substrate 11 are provided between the first flat plate 17 and the first element substrate 11 and between the second flat plate 18 and the second element substrate 12, respectively.
  • a first flat-plate adhesive layer 19 for bonding the substrate 11 and a second flat-plate adhesive layer 20 for bonding the second flat plate 18 and the second element substrate 12 are arranged in an intervening manner.
  • Each of the flat adhesive layers 19 and 20 is made of an ultraviolet curable resin material (for example, an acrylic resin such as PMMA) having a substantially transparent and excellent translucency, which is a kind of photocurable resin material.
  • the ultraviolet curable resin material forming each of the flat adhesive layers 19 and 20 is in a liquid state having fluidity before being irradiated with ultraviolet rays, but has a property of being cured into a solid state when irradiated with ultraviolet rays. is doing.
  • the flat adhesive layers 19 and 20 are made of the same ultraviolet curable resin material.
  • the refractive indexes of the flat plate adhesive layers 19 and 20 are substantially equal to the refractive indexes of the flat plates 17 and 18 and the translucent base materials 13 and 15, respectively. Thereby, the light which goes back and forth between each flat plate 17 and 18 and each translucent base material 13 and 15 is the interface between each flat plate 17 and 18 and each flat plate adhesive layer 19 and 20, and each translucency. Since the situation in which the traveling direction is changed by being refracted at the interface between the conductive base materials 13 and 15 and the respective flat adhesive layers 19 and 20 is less likely to occur, the optical performance of the reflective imaging element 10 is further deteriorated. It becomes difficult.
  • an inter-substrate adhesive layer 21 for adhering the both 11 and 12 is disposed between the first element substrate 11 and the second element substrate 12 as described above.
  • the inter-substrate adhesive layer 21 is made of an ultraviolet curable resin material (for example, an acrylic resin such as PMMA) having a substantially transparent and excellent translucency, which is a kind of a photocurable resin material.
  • the ultraviolet curable resin material forming the inter-substrate adhesive layer 21 is in a liquid state having fluidity before being irradiated with ultraviolet rays, it has a property of being cured into a solid state when irradiated with ultraviolet rays. Yes.
  • the refractive index of the inter-substrate adhesive layer 21 is substantially equal to the refractive indexes of the first translucent base material 13 and the second translucent base material 15. Thereby, the light which goes back and forth between the 1st translucent base material 13 and the 2nd translucent base material 15 is the interface between the 1st translucent base material 13 and the board
  • the inter-substrate adhesive layer 21 is made of the same ultraviolet curable resin material as the flat plate adhesive layers 19 and 20.
  • the optical action in the reflective imaging element 10 having the above-described configuration will be described in detail.
  • the light displaying the image is supplied to the first element substrate 11 on the back side of the reflective imaging element 10 (see FIG. 1).
  • the light incident on the first translucent substrate 13 in the first element substrate 11 constituting the reflective imaging element 10 is, as shown in FIGS. 14 is specularly reflected.
  • the light reflected by the first planar reflecting portion 14 is given a reflection angle that is the same as the incident angle.
  • the reflected light from the first planar reflecting portion 14 enters the second light transmissive substrate 15 in the second element substrate 12 and is specularly reflected again by the second planar reflecting portion 16 disposed on the side surface.
  • the light reflected by the second planar reflecting portion 16 is given a reflection angle that is the same as the incident angle.
  • the second plane reflecting section 16 is in a positional relationship orthogonal to the first plane reflecting section 14, and thus the reflected light from the second plane reflecting section 16 is
  • the incident light with respect to the first planar reflecting portion 14 is substantially parallel to the plane when viewed in a plane. Accordingly, when the light reflected by the second planar reflecting portion 16 is emitted from the reflective imaging element 10 to the projection side (the side opposite to the liquid crystal display device LCD side), the liquid crystal display device LCD is sandwiched between the reflective imaging element 10 and A stereoscopic image is formed at the symmetrical position, and the user can visually recognize the stereoscopic image.
  • the pair of flat plates 17 and 18 are opposed to the outer plate surfaces 11b and 12b of the element substrates 11 and 12 as described above.
  • the light that is bonded to the reflective imaging element 10 from the liquid crystal display device LCD is incident on the first flat plate 17, and the light that is directed from the reflective imaging element 10 toward the projection side is emitted from the second flat plate 18. It has become. More specifically, the light traveling from the liquid crystal display device LCD toward the reflective imaging element 10 first enters the outer plate surface 17b of the first flat plate 17, as shown in FIG. Since the first flat plate 17 has higher smoothness on the plate surface than the first element substrate 11, it is difficult for incident light on the outer plate surface 17b to be irregularly refracted. It has become.
  • incident light on the outer plate surface 17 b of the first flat plate 17 is transmitted through the first flat plate 17 while being regularly refracted at the interface, and then the first flat plate 17 is directed to the first element substrate 11.
  • the light enters the first flat plate adhesive layer 19 to be bonded. Since the refractive index of the first flat plate adhesive layer 19 is substantially the same as that of the first flat plate 17, incident light on the first flat plate adhesive layer 19 is avoided from being refracted at the interface with the first flat plate 17.
  • the first flat plate adhesive layer 19 is transmitted while proceeding substantially straight.
  • the light transmitted through the first flat plate adhesive layer 19 is incident on the first translucent base material 13 of the first element substrate 11, and the refraction of the first flat plate adhesive layer 19 and the first translucent base material 13 is performed. Since the rate is substantially the same, it is avoided that the light is refracted at the interface even at the time of incidence, and the first plane reflecting portion 14 mirrors the first translucent base material 13 by proceeding almost straight. Reflected.
  • the light reflected by the first planar reflecting portion 14 passes through the first light-transmitting base material 13 and then enters the inter-substrate adhesive layer 21. Since the refractive index of the inter-substrate adhesive layer 21 is substantially the same as that of the first translucent base material 13, the incident light to the inter-substrate adhesive layer 21 is refracted at the interface with the first translucent base material 13. This is avoided, and passes through the inter-substrate adhesive layer 21 while proceeding almost straight.
  • the light transmitted through the inter-substrate adhesive layer 21 is incident on the second translucent base material 15 of the second element substrate 12, but the refractive index of the inter-substrate adhesive layer 21 and the second translucent base material 15 is high.
  • the light Since it is substantially the same, it is avoided that the light is refracted at the interface even at the time of incidence, and the light travels almost straight through the second light-transmitting substrate 15 and is specularly reflected by the second plane reflecting portion 16.
  • the light reflected by the second planar reflecting portion 16 is transmitted through the second light transmissive substrate 15 and then enters the second flat plate adhesive layer 20 that bonds the second flat plate 18 to the second element substrate 12. Since the refractive index of the second flat-plate adhesive layer 20 is substantially the same as that of the second translucent substrate 15, the incident light to the second flat-plate adhesive layer 20 enters the interface with the second translucent substrate 15. Therefore, the light passes through the second flat plate adhesive layer 20 while proceeding almost straight.
  • the light transmitted through the second flat plate adhesive layer 20 is incident on the second flat plate 18, but the refractive indexes of the second flat plate adhesive layer 20 and the second flat plate 18 are substantially the same. Refraction at the interface is avoided and the second flat plate 18 travels almost straight. And the light which permeate
  • the incident light to the reflective imaging element 10 and the outgoing light from the reflective imaging element 10 are both on the flat plates 17 and 18 having higher smoothness than the respective element substrates 11 and 12. Since the outer plate surfaces 17b and 18b are a light incident surface and a light output surface, the refraction action imparted at the time of incidence and at the time of emission becomes regular. As a result, the light emitted from the reflective imaging element 10 is used with high efficiency in the formation of a stereoscopic image, so that a clear stereoscopic image can be visually recognized by the user, and the reflective connection is thus achieved.
  • the optical performance of the image element 10 is high.
  • the light-transmitting base materials 13 and 15 of the element substrates 11 and 12, the flat plates 17 and 18, the flat plate adhesive layers 19 and 20, and the inter-substrate adhesive layer 21 are all configured to have substantially the same refractive index. Therefore, the light passing through these is hardly refracted at each interface, and therefore, it is difficult to cause a situation in which the traveling direction of the reflected light or the like by the planar reflecting portions 14 and 16 changes irregularly. As a result, it becomes possible to use a larger amount of light emitted from the reflective imaging element 10 for imaging a stereoscopic image, so that the use efficiency of light is increased and the optical performance of the reflective imaging element 10 is higher. Is done.
  • the reflective imaging element 10 includes a first element substrate manufacturing process for manufacturing the first element substrate 11 and a second element substrate manufacturing process for manufacturing the second element substrate 12.
  • the first flat plate 17 is manufactured through a flat plate bonding step in which the second flat plate 18 is bonded to the outer plate surface 12b of the second element substrate 12 while facing each other. Since the first element substrate manufacturing process and the second element substrate manufacturing process are as described above, a duplicate description is omitted (see FIGS. 4 to 6).
  • the extending direction of the transparent base material 13 and the extending direction of the second light transmissive base material 15 are arranged so that they are orthogonal to each other and the inner plate surfaces 11a and 12a are opposed to each other, and are then attached to each other.
  • the liquid state ultraviolet curable resin material constituting the inter-substrate adhesive layer 21 is applied to the entire or part of the inner plate surface 11a of the first element substrate 11 as shown in FIG. Therefore, when bonding is performed, the ultraviolet curable resin material is sandwiched between the first element substrate 11 and the second element substrate 12, as shown in FIGS. .
  • the ultraviolet curable resin material forming the inter-substrate adhesive layer 21 is irradiated with ultraviolet rays, whereby the ultraviolet curable resin material is cured from a liquid state to form the inter-substrate adhesive layer 21, whereby the first element is formed.
  • the substrate 11 and the second element substrate 12 are firmly fixed.
  • the inner plate surfaces 11a and 12a of the first element substrate 11 and the second element substrate 12 are not polished in advance, and both are left unpolished.
  • the element substrates 11 and 12 are bonded together. Therefore, in this manufacturing method, the polishing step for the inner plate surfaces 11a and 12a in each element substrate 11 and 12 is omitted, so that problems that may occur in each element substrate 11 and 12 due to polishing are avoided.
  • the yield is high.
  • the flat plates 17 and 18 are bonded to the first element substrate 11 and the second element substrate 12 integrated through the element substrate bonding step by a subsequent flat plate bonding step.
  • a liquid ultraviolet curable resin that forms the second flat plate adhesive layer 20 on the outer plate surface 12 b of the second element substrate 12.
  • the material is applied to all or part of the material.
  • the ultraviolet curable resin material is sandwiched between the second flat plate 18 and the second element substrate 12 while being expanded.
  • the ultraviolet curable resin material forming the second flat plate adhesive layer 20 is cured from the liquid state to form the second flat plate adhesive layer 20, thereby The two flat plates 18 and the second element substrate 12 are firmly fixed.
  • a liquid-state ultraviolet curable resin material constituting the first flat plate adhesive layer 19 is applied to the entire or a part of the outer plate surface 11 b of the first element substrate 11. .
  • FIG. 17 shows that when the first flat plate 17 is bonded to the first element substrate 11 while the inner plate surface 17a of the first flat plate 17 is opposed to the outer plate surface 11b of the first element substrate 11, FIG. As shown in FIG.
  • the ultraviolet curable resin material is sandwiched between the first flat plate 17 and the first element substrate 11 while being expanded. Thereafter, the ultraviolet curable resin material forming the first flat plate adhesive layer 19 is irradiated with ultraviolet rays, so that the ultraviolet curable resin material is cured from the liquid state, thereby forming the first flat plate adhesive layer 19.
  • One flat plate 17 and the first element substrate 11 are firmly fixed.
  • the outer plate surfaces 11b and 12b of the first element substrate 11 and the second element substrate 12 are not polished in advance and remain in an unpolished state.
  • the flat plates 17 and 18 are bonded together. Therefore, in this manufacturing method, the polishing step for the outer plate surfaces 11b and 12b in each element substrate 11 and 12 is omitted, so that problems that may occur in each element substrate 11 and 12 due to polishing are avoided.
  • the yield is high.
  • the reflective imaging element 10 of the present embodiment has a plurality of first planar reflecting portions 14 that are orthogonal to the plate surface, and has translucency and extends in parallel with the first planar reflecting portion 14.
  • the first element substrate 11 formed by alternately arranging a plurality of first light-transmitting base materials 13 in parallel, and the inner plate surface 12a are opposed to the inner plate surface 11a of the first element substrate 11.
  • a second element substrate 12 formed by alternately arranging a plurality of second light transmissive base materials 15 extending in parallel with each other, a single plate, and the first element substrate 11 and the second element substrate 11 With respect to the outer plate surfaces 11b and 12b in at least one of the element substrate 12 and It comprises a plate 17, 18 which are bonded in face to form a.
  • the light which injected into the board surface 11b outside the 1st element substrate 11 from the to-be-projected object side will be reflected in the 1st plane reflection part 14, passing the 1st translucent base material 13, for example.
  • the light is emitted from the outer plate surface 12 b of the second element substrate 12 after being reflected by the second planar reflecting portion 16 while being transmitted through the second light transmissive substrate 15. Since the first planar reflecting portion 14 and the second planar reflecting portion 16 are arranged so as to be orthogonal to each other, the traveling direction of the emitted light from the outer plate surface 12b of the second element substrate 12 is the first element substrate. 11 is substantially parallel to the traveling direction of the incident light with respect to the outer plate surface 11b. As a result, a three-dimensional image obtained by projecting the projection object can be formed at a position opposite to the projection object with the reflective imaging element 10 interposed therebetween.
  • the 1st element substrate 11 and the 2nd element substrate 12 are the 1st plane reflection part 14 and the 2nd plane reflection part 16, respectively, and the 1st translucent base material 13 and the 2nd translucent base material 15 respectively. Therefore, the smoothness of each of the plate surfaces 11a, 11b, 12a, 12b tends to be lowered, and there is a concern that the optical performance deteriorates due to this. .
  • flat plates 17 and 18 forming a single plate are bonded to the outer plate surfaces 11b and 12b of at least one of the first element substrate 11 and the second element substrate 12 so as to face each other.
  • the incident light to the outer plate surfaces 11b and 12b to which the flat plates 17 and 18 are bonded or the outgoing light from the outer plate surfaces 11b and 12b are transmitted through the flat plates 17 and 18. .
  • the flat plates 17 and 18 have a single plate shape and have higher smoothness than the first element substrate 11 and the second element substrate 12, the traveling direction of transmitted light changes irregularly. It is difficult for a situation to occur. Thereby, even if the smoothness of the outer plate surfaces 11b and 12b to which the flat plates 17 and 18 are bonded is not good, the optical performance of the reflective imaging element 10 is hardly deteriorated.
  • At least the outer plate surfaces 11b and 12b to which the flat plates 17 and 18 are bonded are not required to perform a polishing operation for improving the smoothness, thereby reducing the manufacturing cost.
  • the flat plates 17 and 18 and at least one of the first element substrate 11 and the second element substrate 12 are bonded by flat plate adhesive layers 19 and 20 that are arranged in an intervening manner, and the flat plate 17. , 18, and at least one of the first light-transmitting base material 13 of the first element substrate 11 and the second light-transmitting base material 15 of the second element substrate 12 to which the flat plates 17 and 18 are bonded.
  • the refractive indexes are equal to each other, and the flat plate adhesive layers 19 and 20 have the refractive indexes of the flat plates 17 and 18 and the first light-transmitting base material 13 of the first element substrate 11 and the second element substrate 12.
  • the optical performance of the reflective imaging element 10 is more difficult to deteriorate. Therefore, for example, even when the outer plate surfaces 11b and 12b on at least one of the first element substrate 11 and the second element substrate 12 are used in an unpolished state, sufficiently high optical performance can be obtained. .
  • the flat plates 17 and 18 are bonded to the outer plate surface 11b of the first element substrate 11 and the outer plate surface 12b of the second element substrate 12 via flat plate adhesive layers 19 and 20, respectively.
  • the flat plates 17 and 18, the flat plate adhesive layers 19 and 20, the first light transmissive substrate 13 of the first element substrate 11, and the second light transmissive substrate 15 of the second element substrate 12 are provided.
  • the situation in which the transmitted light is refracted at each interface and the traveling direction is changed is less likely to occur, and the optical performance of the reflective imaging element 10 is further unlikely to deteriorate. Therefore, for example, even when the outer plate surfaces 11b and 12b of the first element substrate 11 and the second element substrate 12 are both used in an unpolished state, sufficiently high optical performance can be obtained.
  • first element substrate 11 and the second element substrate 12 are bonded together by an inter-substrate adhesive layer 21 disposed in an intervening manner, and the first light transmissive base material 13 and the second light transmissive base material.
  • the refractive indexes at 15 are equal to each other, and the inter-substrate adhesive layer 21 is made of a material whose refractive index is equal to the refractive indexes of the first light transmitting base material 13 and the second light transmitting base material 15. In this way, for example, the light reflected by the first planar reflecting portion 14 while passing through the first light-transmitting base material 13 passes through the inter-substrate adhesive layer 21 and then the second light-transmitting base material.
  • the 1st translucent base material 13 the board
  • the manufacturing method of the reflective imaging element 10 of the present embodiment includes a plurality of first planar reflecting portions 14 that are orthogonal to the plate surface, a translucency, and extends in parallel with the first planar reflecting portion 14.
  • a plurality of second planes perpendicular to the plate surface and perpendicular to the first plane reflecting portion 14 with respect to the first element substrate 11 formed by alternately arranging a plurality of existing first light-transmitting base materials 13 in parallel.
  • a second element substrate 12 formed by alternately arranging the reflecting portions 16 and a plurality of second light-transmitting base materials 15 having translucency and extending in parallel with the second planar reflecting portion 16.
  • an element substrate bonding step in which the inner plate surface 12a is bonded to the inner plate surface 11a of the first element substrate 11 and at least one of the first element substrate 11 and the second element substrate 12 A flat plate that forms a single plate with respect to the outer plate surfaces 11b and 12b.
  • 17, 18 comprises a first flat plate bonding step and the second flat plate bonding step of bonding in a manner opposite (flat bonding step), the a.
  • the first element substrate 11 and the second element substrate 12 are bonded together so that the inner plate surfaces 11a and 12a face each other through the element substrate bonding step, and the first flat plate bonding step.
  • the flat plates 17 and 18 that form a single plate with respect to at least one of the first element substrate 11 and the second element substrate 12 through the second flat plate bonding step are opposed to the other plate surface.
  • the reflective imaging element 10 is manufactured. In the manufactured reflective imaging element 10, for example, light incident on the plate surface 11 b outside the first element substrate 11 from the projection object side is transmitted through the first translucent base material 13 and the first plane.
  • the traveling direction of the emitted light from the outer plate surface 12b of the second element substrate 12 is the first element substrate. 11 is substantially parallel to the traveling direction of the incident light with respect to the outer plate surface 11b.
  • the 1st element substrate 11 and the 2nd element substrate 12 are the 1st plane reflection part 14 and the 2nd plane reflection part 16, respectively, and the 1st translucent base material 13 and the 2nd translucent base material 15 respectively. Therefore, the smoothness of each plate surface tends to be lowered, and there is a concern that the optical performance deteriorates due to this.
  • flat plates 17 and 18 forming a single plate are bonded to the outer plate surfaces 11b and 12b of at least one of the first element substrate 11 and the second element substrate 12 so as to face each other. Therefore, the incident light to the outer plate surfaces 11b and 12b to which the flat plates 17 and 18 are bonded or the outgoing light from the outer plate surfaces 11b and 12b are transmitted through the flat plates 17 and 18. .
  • the traveling direction of transmitted light changes irregularly. It is difficult for a situation to occur. Thereby, even if the smoothness of the outer plate surfaces 11b and 12b to which the flat plates 17 and 18 are bonded is not good, the optical performance of the reflective imaging element 10 is hardly deteriorated. Then, at least the outer plate surfaces 11b and 12b to which the flat plates 17 and 18 are bonded are not required to perform a polishing operation for improving the smoothness, thereby reducing the manufacturing cost. In addition, it is possible to avoid the problems that may occur with the polishing operation and to improve the yield.
  • the flat plates 17 and 18 are bonded to the first element substrate 11 and the second element substrate 12, respectively.
  • the flat plates 17 and 18 are bonded to both the first element substrate 11 and the second element substrate 12 through the first flat plate bonding step and the second flat plate bonding step, respectively. Therefore, for example, even when the outer plate surfaces 11b and 12b of the first element substrate 11 and the second element substrate 12 are both used in an unpolished state, sufficiently high optical performance can be obtained.
  • the element substrate bonding step is performed prior to the first flat plate bonding step and the second flat plate bonding step. In this way, by performing the element substrate bonding step prior to the first flat plate bonding step and the second flat plate bonding step, the first planar reflecting portion of the first element substrate 11 in the element substrate bonding step. 14 and the second planar reflecting portion 16 of the second element substrate 12 can be positioned more easily and accurately.
  • the reflective imaging element 110 is polished on the inner plate surfaces 111 a and 112 a of the first element substrate 111 and the second element substrate 112, respectively.
  • the structure has relatively high smoothness compared to the unpolished outer plate surfaces 111b and 112b.
  • the inner plate surfaces 111 a and 112 a of the first element substrate 111 and the second element substrate 112 are opposed plate surfaces that face each other via the inter-substrate adhesive layer 121.
  • the plate surface 111a is a light exit surface that emits light incident on the first element substrate 111 from the outside toward the second element substrate 112, whereas the inner plate surface 112a of the second element substrate 112 is A light incident surface that receives light emitted from the one-element substrate 111 is used. Further, the smoothness of these inner plate surfaces 111a and 112a is enhanced by polishing processing, whereby the adhesion to the inter-substrate adhesive layer 121 may be enhanced, and the first element substrate 111 and the second element substrate 112 are also enhanced. Thus, the situation in which the traveling direction is irregularly changed due to light being refracted in the middle and the like is extremely unlikely to occur, so that the optical performance of the reflective imaging element 110 is further improved. Next, a method for manufacturing the reflective imaging element 110 having the above-described configuration will be described.
  • the reflective imaging element 110 has a first flat plate bonding step in which the first flat plate 117 is bonded to the first element substrate 111 manufactured through the first element substrate manufacturing step. (Flat plate bonding step), a first polishing step (polishing step) for polishing the inner plate surface 111a of the first element substrate 111 to which the first flat plate 117 is bonded, and a second element substrate manufacturing step.
  • a second flat plate bonding step flat plate bonding step for bonding the second flat plate 118 to the second element substrate 112, and an inner plate surface of the second element substrate 112 on which the second flat plate 118 is bonded.
  • a second polishing step for polishing 112a and an element for bonding the first element substrate 111 and the second element substrate 112 so that the inner plate surfaces 111a and 112a face each other. It is produced by passing through a plate bonding step.
  • the first flat plate bonding step As shown in FIG. 19, after applying the liquid ultraviolet curable resin material forming the first flat plate adhesive layer 119 to the outer plate surface 111 b of the first element substrate 111.
  • the 1st flat plate 117 is bonded together.
  • the ultraviolet curable resin material in a liquid state forming the first flat plate adhesive layer 119 with ultraviolet rays to cure the ultraviolet curable resin material to form the first flat plate adhesive layer 119, FIG.
  • the first flat plate 117 is firmly fixed to the first element substrate 111.
  • the inner plate surface 111a of the first element substrate 111 is polished over the entire area by a polishing apparatus (not shown).
  • an abrasive such as a grindstone is set in the polishing apparatus, and the inner plate surface is pressed by pressing the abrasive against the inner plate surface 111a of the first element substrate 111 while rotating at high speed. 111a is being polished.
  • a very large force acts on the first element substrate 111 in the direction along the inner plate surface 111a (the X-axis direction and the Y-axis direction), and the first transparent substrates fixed to each other due to this force.
  • the optical base materials 113 first flat reflecting portions 114 are peeled off.
  • the first flat plate bonding step is performed prior to the first polishing step, the first flat plate 117 has already been bonded to the first element substrate 111 to be polished. And is mechanically reinforced. Therefore, it is difficult for the first element substrate 111 to be damaged due to the polishing process performed in the first polishing process.
  • the inner plate surface 111a of the polished first element substrate 111 has the minute unevenness existing on the surface removed or more than the outer plate surface 111b. It is considered as small unevenness, and smoothness is improved.
  • a liquid UV curable resin material that forms the second flat plate adhesive layer 120 is applied to the outer plate surface 112 b of the second element substrate 112.
  • the 2nd flat plate 118 is bonded together.
  • the ultraviolet curable resin material in the liquid state forming the second flat plate adhesive layer 120 is irradiated with ultraviolet rays to cure the ultraviolet curable resin material, thereby forming the second flat plate adhesive layer 120.
  • the second flat plate 118 is firmly fixed to the second element substrate 112.
  • the inner plate surface 112a of the second element substrate 112 is polished over the entire area by a polishing apparatus (not shown).
  • an abrasive such as a grindstone is set in the polishing apparatus, and the inner plate surface is pressed by pressing the abrasive against the inner plate surface 112a of the second element substrate 112 while rotating at high speed. 112a is polished.
  • a very large force acts on the second element substrate 112 in the direction along the inner plate surface 112a (the X-axis direction and the Y-axis direction), and the second transparent substrates fixed to each other due to this force.
  • the optical base materials 115 second flat reflecting portions 116) may be separated from each other.
  • the second flat plate bonding step since the second flat plate bonding step is performed prior to the second polishing step, the second flat plate 118 has already been bonded to the second element substrate 112 to be polished. And is mechanically reinforced. Accordingly, it is difficult for the second element substrate 112 to be damaged due to the polishing process performed in the second polishing step. Then, as shown in FIG. 24, the inner plate surface 112a of the polished second element substrate 112 has a smaller unevenness on the surface removed or more than the outer plate surface 112b. It is considered as small unevenness, and smoothness is improved.
  • the first element substrate 111 and the second element substrate 112 in which the inner plate surfaces 111a and 112a have been subjected to the polishing process through the respective polishing processes are subjected to a subsequent element substrate bonding process.
  • the substrates are bonded to each other via the inter-substrate adhesive layer 121 as shown in FIG.
  • the element substrate bonding step is the same as that in the first embodiment described above, and a duplicate description is omitted.
  • the first element substrate 111 and the second element substrate 112 are polished surfaces in which the inner plate surfaces 111a and 112a are polished. It is said that.
  • the inner plate surfaces 111a and 112a of each of the first element substrate 111 and the second element substrate 112 bonded by the inter-substrate adhesive layer 121 are the surfaces to be polished.
  • the optical performance of the reflective imaging element 110 is more difficult to deteriorate.
  • the first flat plate bonding step and the second flat plate bonding step are performed prior to the element substrate bonding step.
  • the inner plate surfaces 111a and 112a of the first element substrate 111 and the second element substrate 112 are polished through the polishing process, so that light is transmitted through the inner plate surfaces 111a and 112a. In such a case, it is difficult to cause a situation in which the traveling direction of the light is irregularly changed.
  • the optical performance of the reflective imaging element 110 is more difficult to deteriorate.
  • the flat plates 117 and 118 are respectively bonded to the outer plate surfaces 111b and 112b of the first element substrate 111 and the second element substrate 112 that are polished in the polishing step, the flat plates 117 and 118 respectively The first element substrate 111 and the second element substrate 112 are reinforced.
  • the first light-transmitting base material 113 and the second light-transmitting base material 115 are peeled off due to the force acting on the first element substrate 111 and the second element substrate 112 along with the polishing. It can be made difficult to occur.
  • the reflective imaging element 210 includes a first flat plate 217 bonded to the outer plate surface 211b of the first element substrate 211, whereas the second element The second flat plate is not bonded to the outer plate surface 212b of the substrate 212 as in the first embodiment described above, and is exposed to the outside and is subjected to a polishing process to be a polished surface. Therefore, the outer plate surface 212 b of the second element substrate 212 has relatively high smoothness compared to the inner plate surface 212 a that is not polished and the both plate surfaces 211 a and 211 b of the first element substrate 211. is doing.
  • the outer plate surface 212b in the second element substrate 212 constitutes a light exit surface that emits light from the reflective imaging element 210 toward the projection side, the smoothness on the surface is enhanced, The optical performance related to the emitted light is sufficiently good. And since the 2nd flat plate is not required like above-mentioned Embodiment 1, the reduction of the member cost concerning a 2nd flat plate can be aimed at. Next, a method for manufacturing the reflective imaging element 210 having the above-described configuration will be described.
  • the reflective imaging element 210 includes a first element substrate 211 manufactured through the first element substrate manufacturing process and a second element substrate manufactured through the second element substrate manufacturing process. 212, an element substrate laminating step for laminating 212 with inner plate surfaces 211a and 212a facing each other, a flat plate laminating step for laminating a first flat plate 217 to the first element substrate 211, and a second element And a polishing step of polishing the outer plate surface 212b of the substrate 212.
  • the first element substrate 211 and the second element substrate 212 are bonded together after the element substrate bonding process, and then the flat plate bonding process is performed.
  • the first flat plate 217 is bonded to the outer plate surface 211b of the first element substrate 211. Since the element substrate bonding step and the flat plate bonding step are the same as the element substrate bonding step and the first flat plate bonding step described in the first embodiment, duplicate description is omitted.
  • the outer plate surface 212b of the second element substrate 212 is polished over the entire area by a polishing apparatus (not shown).
  • a polishing material such as a grindstone is set in the polishing device, and the outer plate surface is pressed against the outer plate surface 212b of the second element substrate 212 while rotating the polishing material at a high speed. 212b is polished.
  • a very large force acts on the second element substrate 212 in the direction along the outer plate surface 212b (the X-axis direction and the Y-axis direction), and the second transparent substrates fixed to each other due to this force.
  • the optical base materials 215 second flat reflecting portions 216) are peeled off.
  • the first element substrate 211 and the first flat plate 217 are already included in the second element substrate 212 to be polished. They are bonded together and mechanically reinforced by the first flat plate 217. Accordingly, it is difficult for the second element substrate 212 to be damaged due to the polishing process performed in the polishing process. And, as shown in FIG. 25, the outer plate surface 212b of the polished second element substrate 212 is less than the inner plate surface 212a. It is considered as small unevenness, and smoothness is improved.
  • the first element substrate 211 that is one of the first element substrate 211 and the second element substrate 212 has a first flat plate (flat plate). ) 217 is bonded via the first flat plate adhesive layer (flat plate adhesive layer) 219, while the flat plate of the first element substrate 211 and the second element substrate 212 is not bonded.
  • the outer plate surface 212b of the second element substrate 212 is a polished surface that has been subjected to a polishing process. In this way, the first flat plate 217 is bonded to the first element substrate 211, which is either the first element substrate 211 or the second element substrate 212, via the first flat plate adhesive layer 219.
  • the number of flat plates used can be reduced as compared with the case where flat plates are bonded to both element substrates.
  • the outer plate surface 212b is polished. Therefore, when the light passes through the outer plate surface 212b, it is difficult for the light traveling direction to be irregularly changed, so that the optical performance of the reflective imaging element 210 is reduced. It becomes harder to deteriorate.
  • the first element substrate 211 that is one of the first element substrate 211 and the second element substrate 212 is the first in the flat plate bonding step.
  • 1 flat plate (flat plate) 217 is bonded, and after performing the flat plate bonding step and the element substrate bonding step, the first flat plate 17 of the first element substrate 211 and the second element substrate 212 is bonded.
  • a polishing step of polishing the outer plate surface 212b of the second element substrate which is not the other. In this way, in the flat plate bonding step, the first flat plate 217 is bonded only to the first element substrate 211 that is either the first element substrate 211 or the second element substrate 212.
  • the number of flat plates used can be reduced.
  • the outer plate surface 212b is polished through a polishing process. As a result, deterioration of the optical performance is suppressed.
  • the outer plate surface 211b of the first element substrate 211 which is one side of the first element substrate 211 and the second element substrate 212 to be polished in the polishing step, which is one side bonded, Since the first flat plate 217 is attached, the first element substrate 211 and the second element substrate 212 are reinforced by the first flat plate 217.
  • the first transparent plate is caused by the force acting on the second element substrate 212 which is the other one of the first element substrate 211 and the second element substrate 212 to which the first flat plate 217 is not bonded. It is possible to make it difficult for the second light-transmitting substrate 215, which is the other of the light-transmitting substrate 213 and the second light-transmitting substrate 215, to peel off.
  • the reflective imaging element 310 includes a second flat plate 318 bonded to the outer plate surface 312b of the second element substrate 312, whereas the first element The first flat plate is not bonded to the outer plate surface 311b of the substrate 311 as in the first embodiment described above, and is exposed to the outside and is subjected to polishing to be a polished surface.
  • the inner plate surface 312a of the second element substrate 312 is polished to be a polished surface. Accordingly, the outer plate surface 311b of the first element substrate 311 and the inner plate surface 312a of the second element substrate 312 are unpolished, the inner plate surface 311a of the first element substrate 311 and the second element substrate 311 are unpolished.
  • the outer plate surface 312 b of 312 Compared to the outer plate surface 312 b of 312, it has relatively high smoothness. Since the outer plate surface 311b of the first element substrate 311 constitutes a light incident surface on which light is incident on the reflective imaging element 310, the smoothness on the surface is improved, so that the incident light The optical performance according to the above is sufficiently good. And since the 1st flat plate is not required like above-mentioned Embodiment 1, the reduction of the member cost which concerns on a 1st flat plate can be aimed at. Furthermore, the smoothness of the inner plate surface 312a facing the first element substrate 311 in the second element substrate 312 is enhanced, so that the optical performance is higher. Next, a method for manufacturing the reflective imaging element 310 having the above-described configuration will be described.
  • the reflective imaging element 310 includes a flat plate bonding step of bonding a second flat plate 318 to the second element substrate 312 manufactured through the second element substrate manufacturing step, A first polishing step (polishing step) for polishing the inner plate surface 312a of the second element substrate 312 to which the second flat plate 318 is bonded; a first element substrate 311 manufactured through the first element substrate manufacturing step; An element substrate bonding step for bonding the second element substrate 312 with the inner plate surfaces 311a and 312a facing each other, and a first polishing step (polishing) for polishing the outer plate surface 311b of the first element substrate 311. And (process).
  • the flat plate bonding step As shown in FIG. 29, after applying a liquid ultraviolet curable resin material forming the second flat plate adhesive layer 320 to the outer plate surface 312b of the second element substrate 312, Two flat plates 318 are bonded together. Thereafter, the second flat plate adhesive layer 320 is formed by irradiating the ultraviolet curable resin material forming the second flat plate adhesive layer 320 with ultraviolet rays to cure the ultraviolet curable resin material, thereby forming the second flat plate adhesive layer 320. 318 is firmly fixed to the second element substrate 312. In the subsequent first polishing step, the inner plate surface 312a of the second element substrate 312 is polished over the entire area by a polishing apparatus (not shown).
  • a polishing material such as a grindstone is set in the polishing device, and the inner plate surface is pressed against the inner plate surface 312a of the second element substrate 312 while rotating the abrasive at high speed. 312a is being polished.
  • a very large force acts on the second element substrate 312 in the direction along the inner plate surface 312a (the X-axis direction and the Y-axis direction), and the second transparent substrates fixed to each other due to this force.
  • the optical base materials 315 second flat reflecting portions 316
  • the second flat plate bonding step is performed prior to the second polishing step, the second flat plate 318 is already bonded to the second element substrate 312 to be polished. And is mechanically reinforced. Accordingly, the second element substrate 312 is unlikely to be damaged due to the polishing process performed in the first polishing process. Then, as shown in FIG. 30, the inner plate surface 312a of the polished second element substrate 312 has a smaller unevenness or is removed from the surface than the outer plate surface 312b. It is considered as small unevenness, and smoothness is improved.
  • the element substrate bonding step is performed, whereby the first element substrate 311 and the second element substrate 312 are bonded together as shown in FIG.
  • this element substrate bonding process is the same as the element substrate bonding process described in the first embodiment, a duplicate description is omitted.
  • the outer plate surface 311b of the first element substrate 311 is polished over the entire area by a polishing apparatus (not shown). Specifically, for example, a polishing material such as a grindstone is set in the polishing apparatus, and the outer plate surface is pressed against the outer plate surface 311b of the first element substrate 311 while rotating the abrasive at a high speed. 311b is being polished.
  • the polishing process a very large force acts on the first element substrate 311 in the direction along the outer plate surface 311b (the X-axis direction and the Y-axis direction), and as a result, the second transparent substrates fixed to each other are caused. There is a concern that the optical base materials 313 (second flat reflecting portions 314) may be separated from each other.
  • the flat plate bonding step since the flat plate bonding step is performed prior to the second polishing step, the second element substrate 312 and the second flat plate are already included in the first element substrate 311 to be polished. 318 is bonded together, and mechanical reinforcement is achieved by the second flat plate 318. Accordingly, it is difficult for the first element substrate 311 to be damaged due to the polishing process performed in the polishing process.
  • the outer plate surface 311b of the polished first element substrate 311 is less than the inner plate surface 311a because the minute unevenness existing on the surface is removed or more. It is considered as small unevenness, and smoothness is improved.
  • the reflective imaging element 410 includes a second flat plate 418 bonded to the outer plate surface 412b of the second element substrate 412, while the first element
  • the first flat plate is not bonded to the outer plate surface 411b of the substrate 411 as in the first embodiment described above, and is exposed to the outside and is subjected to a polishing process to be a polished surface. Therefore, the outer plate surface 411b of the first element substrate 411 has relatively high smoothness compared to the inner plate surface 411a that is not polished and the both plate surfaces 412a and 412b of the second element substrate 412. is doing.
  • the outer plate surface 411b of the first element substrate 411 constitutes a light incident surface on which light is incident on the reflective imaging element 410, the smoothness on the surface is improved, so that the incident light The optical performance according to the above is sufficiently good.
  • the reflective imaging element 410 includes a first element substrate 411 manufactured through a first element substrate manufacturing process and a second element substrate manufactured through a second element substrate manufacturing process. 412 is bonded to each other so that the inner plate surfaces 411a and 412a face each other, and a first flat plate bonding step of bonding the first flat plate 417 to the first element substrate 411 (flat plate bonding) Alignment step), a second flat plate bonding step (flat plate bonding step) for bonding the second flat plate 418 to the second element substrate 412, the first flat plate 417, the first flat plate adhesive layer 419, and the first element And a polishing step of polishing the outer plate surface 411b of the substrate 411.
  • each flat plate bonding step is performed, as shown in FIG. 33, after the first element substrate 411 and the second element substrate 412 are bonded together through the element substrate bonding step, each flat plate bonding step is performed, as shown in FIG.
  • the first flat plate 417 is provided on the outer plate surface 411b of the first element substrate 411 via the first flat plate adhesive layer 419
  • the second flat plate adhesive layer is provided on the outer plate surface 412b of the second element substrate 412.
  • the second flat plates 418 are bonded to each other through 420.
  • these element substrate bonding process and each flat plate bonding process are the same as the element substrate bonding process and each flat plate bonding process described in Embodiment 1 described above, a duplicate description is omitted.
  • the first flat plate 417, the first flat plate adhesive layer 419, and the outer plate surface 411b of the first element substrate 411 are polished over the entire area by a polishing apparatus (not shown).
  • a polishing material such as a grindstone is set in the polishing apparatus, and the first flat plate 417 and the first flat plate adhesive layer 419 are pressed against the first flat plate 417 while rotating the polishing material at a high speed.
  • the outer plate surface 411b of the first element substrate 411 is polished sequentially. Along with this polishing, the first flat plate 417 and the first flat plate adhesive layer 419 are removed.
  • the polishing process a very large force acts on the first element substrate 411 in the direction along the outer plate surface 411b (the X-axis direction and the Y-axis direction), and the first transparent substrates fixed to each other due to this force.
  • the optical base materials 413 first flat reflecting portions 414.
  • the second element substrate 412 and the second flat plate are already included in the first element substrate 411 to be polished. 418 is bonded together, and mechanical reinforcement is achieved by the second flat plate 418. Accordingly, it is difficult for the first element substrate 411 to be damaged due to the polishing process performed in the polishing process.
  • the outer plate surface 411b of the polished first element substrate 411 has the minute unevenness existing on the surface removed or more than the inner plate surface 411a. It is considered as small unevenness, and smoothness is improved.
  • the reflective imaging element 510 has flat plates bonded to the outer plate surfaces 511b and 512b of the first element substrate 511 and the second element substrate 512, respectively. Instead, it is exposed to the outside and is subjected to a polishing process to be a polished surface. Accordingly, the outer plate surfaces 511b and 512b of the first element substrate 511 and the second element substrate 512 have relatively high smoothness compared to the inner plate surfaces 511a and 512a that are not polished. .
  • the outer plate surfaces 511b and 512b of the first element substrate 511 and the second element substrate 512 respectively constitute a light incident surface on which light is incident on the reflective imaging element 510 and a light output surface from which light is emitted.
  • a second polishing step of polishing the second flat plate, the second flat plate adhesive layer, and the outer plate surface 512b of the second element substrate 512 is performed.
  • the second polishing step similarly to the polishing step described in the fifth embodiment, the second flat plate, the second flat plate adhesive layer, and the outer plate surface 512b of the second element substrate 512 are sequentially removed by a polishing apparatus.
  • the second flat plate and the second flat plate adhesive layer are removed by polishing.
  • the smoothness of each plate surface of each flat plate is equal to or higher than the smoothness when polishing is performed on each plate surface of each element substrate. If the smoothness on each plate surface of each flat plate is higher than the smoothness on each plate surface in each element substrate, polishing is performed on each plate surface of each element substrate. It may be lower than the smoothness in the case of applying.
  • the first element substrate is a “light incident side element substrate” into which light emitted from the liquid crystal display device is incident, whereas the second element substrate is an optical element.
  • the light emitting side element substrate is emitted to the projection side (imaging side).
  • the configuration of “element substrate” is also included in the present invention.
  • an ultraviolet curable resin material that forms an inter-substrate adhesive layer is applied to the inner plate surface of the first element substrate in the element substrate bonding step.
  • an ultraviolet curable resin material that forms an inter-substrate adhesive layer may be applied to the inner plate surface of the second element substrate. It is also possible to apply an ultraviolet curable resin material that forms an inter-substrate adhesive layer to both the first element substrate and the second element substrate in the element substrate bonding step.
  • each flat plate bonding step is performed after the element substrate bonding step is performed.
  • the element substrate bonding step is performed. You may make it perform.
  • the first flat plate bonding step second flat plate bonding step
  • the element substrate bonding step is performed, and then the second flat plate bonding step (first flat plate bonding step). ) May be performed.
  • the first flat plate bonding step and the second flat plate bonding step can be performed in parallel, or these can be performed in succession.
  • the first polishing step and the second polishing step can be performed in parallel, and these can be performed in succession.
  • polishing may be performed on the inner plate surface and the outer plate surface of the second element substrate. Also, polishing is performed on both the inner and outer plate surfaces of the first element substrate and the inner plate surface of the second element substrate, or the inner plate surface of the first element substrate and the inner surface of the second element substrate. It is also possible to polish the outer and both plate surfaces.
  • the translucent base material, the flat plate, and the flat plate adhesive layer in each element substrate have the same refractive index. It is also possible to adopt a configuration in which the refractive index is slightly different between the conductive substrate, each flat plate, and each flat plate adhesive layer.
  • the translucent base material in each element substrate and the adhesive layer between the substrates have the same refractive index, but each translucent base material in each element substrate. It is also possible to adopt a configuration in which the refractive index of the inter-substrate adhesive layer is slightly different.
  • each translucent base material in each element substrate is configured of the same material.
  • each translucent base material in each element substrate is configured of a different material. It is also possible to take.
  • each flat plate is composed of the same material.
  • each flat plate can be composed of different materials.
  • the inter-substrate adhesive layer, the first flat plate adhesive layer, and the second flat plate adhesive layer are each composed of an ultraviolet curable resin material.
  • a curable resin material for example, a photocurable resin material that is cured by visible light, a photocurable resin material that is cured by both ultraviolet rays and visible light, or heat that is cured by heat.
  • a curable resin material for example, a double-sided tape in which an adhesive is applied to both front and back surfaces of a substantially transparent base material can be used.
  • the reflective imaging element having a horizontally long rectangular shape when viewed in a plane has been exemplified. Applicable.
  • the specific planar shape of the reflective imaging element can be changed as appropriate, for example, a reflective imaging element that is square when viewed from the plane, or a circular or elliptical shape when viewed from the plane.
  • the present invention can also be applied to a reflection type imaging element formed.
  • two types of manufacturing methods are exemplified with respect to the manufacturing method of each element substrate.
  • each element substrate can also be manufactured by other manufacturing methods.

Abstract

反射型結像素子10は、板面と直交する複数の第1平面反射部14と、透光性を有するとともに第1平面反射部14に並行する形で延在する複数の第1透光性基材13とを交互に並列配置してなる第1素子基板11と、内側の板面12aが第1素子基板11における内側の板面11aと対向する形で貼り合わせられる第2素子基板12であって、板面と直交し且つ第1平面反射部14と直交する複数の第2平面反射部16と、透光性を有するとともに第2平面反射部16に並行する形で延在する複数の第2透光性基材15とを交互に並列配置してなる第2素子基板12と、一枚板状をなしていて、第1素子基板11と第2素子基板12との少なくともいずれか一方における外側の板面11b,12bに対して対向する形で貼り合わせられる平板17,18と、を備える。

Description

反射型結像素子、及び反射型結像素子の製造方法
 本発明は、反射型結像素子、及び反射型結像素子の製造方法に関する。
 従来、被投影物の像を結像させるための反射型結像素子の一例として下記特許文献1に記載されたものが知られている。この反射型結像素子は、透明平板の内部に、該透明平板の一方側の面に垂直に多数かつ帯状の平面光反射部を並べて形成した第1及び第2の光制御パネルを備え、第1及び第2の光制御パネルのそれぞれの一面側を、平面光反射部を直交させて向かい合わせた構成とされる。そして、第1の光制御パネルの平面光反射部に被投影物からの光を入射させ、該平面光反射部で反射した反射光を第2の光制御パネルの平面光反射部で再度反射させ、被投影物の像を反射型結像素子の反対側に結像させるようにしている。
特許第4865088号公報
(発明が解決しようとする課題)
 上記した特許文献1に記載された反射型結像素子では、第1及び第2の光制御パネルは、それぞれ平面光反射部が透明平板の一方側の面に垂直に多数並べて形成された構成であるため、第1及び第2の光制御パネルの各板面の平滑性が低く、それに起因して光学性能が劣化することが懸念されていた。第1及び第2の光制御パネルの各板面における平滑性を高めるには、例えば各板面を研磨することが考えられる。しかしながら、第1及び第2の光制御パネルにおける各板面をそれぞれ研磨するのには、製造工程に研磨工程を追加するとともに製造装置に研磨装置を追加する必要が生じ、また研磨工程のタクトタイムが長くかかることもあって製造コストが高くなるという問題が生じる。それに加えて、第1及び第2の光制御パネルの各板面に沿って研磨を行うと、その研磨方向が平面光反射部の並列方向と一致しているため、研磨に伴う力が平面光反射部を剥離するよう作用し、第1及び第2の光制御パネルが損壊し、歩留まりが低下するおそれがあった。
 本発明は上記のような事情に基づいて完成されたものであって、低コスト化を図るとともに歩留まりを向上させることを目的とする。
(課題を解決するための手段)
 本発明の反射型結像素子は、板面と直交する複数の第1平面反射部と、透光性を有するとともに前記第1平面反射部に並行する形で延在する複数の第1透光性基材とを交互に並列配置してなる第1素子基板と、内側の板面が前記第1素子基板における内側の板面と対向する形で貼り合わせられる第2素子基板であって、板面と直交し且つ前記第1平面反射部と直交する複数の第2平面反射部と、透光性を有するとともに前記第2平面反射部に並行する形で延在する複数の第2透光性基材とを交互に並列配置してなる第2素子基板と、一枚板状をなしていて、前記第1素子基板と前記第2素子基板との少なくともいずれか一方における外側の板面に対して対向する形で貼り合わせられる平板と、を備える。
 このようにすれば、例えば被投影物側から第1素子基板の外側の板面に入射した光は、第1透光性基材を透過しつつ第1平面反射部にて反射されてから、第2透光性基材を透過しつつ第2平面反射部にて反射された後に、第2素子基板の外側の板面から出射する。第1平面反射部と第2平面反射部とは互いに直交する形で配されているので、第2素子基板の外側の板面からの出射光の進行方向は、第1素子基板の外側の板面に対する入射光の進行方向に対してほぼ平行になる。これにより、被投影物に対して当該反射型結像素子を挟んだ反対側の位置に、被投影物を投影した立体像を結像させることが可能とされる。
 ここで、第1素子基板及び第2素子基板は、それぞれ第1平面反射部及び第2平面反射部と、第1透光性基材及び第2透光性基材とを交互に並列配置してなる構成とされているため、各板面の平滑性が低くなりがちとされ、それに起因して光学性能が劣化することが懸念されていた。その点、第1素子基板と第2素子基板との少なくともいずれか一方における外側の板面には、一枚板状をなす平板が対向する形で貼り合わせられているから、平板が貼り合わせられた外側の板面への入射光または同外側の板面からの出射光は、いずれも平板を透過することになる。この平板は、一枚板状をなしており、第1素子基板及び第2素子基板に比べて高い平滑性を有しているから、透過光の進行方向が不規則に変化させられる事態が生じ難いものとなっている。これにより、平板が貼り合わせられた外側の板面における平滑性が芳しくない場合であっても、当該反射型結像素子の光学性能が劣化し難くなる。そして、少なくとも平板が貼り合わせられた外側の板面に関しては、平滑性を高めるための研磨作業を行わなくても済むことになるから、それにより製造コストの削減を図ることができるとともに研磨作業の実施に伴って生じ得る不具合が回避されて歩留まりの向上を図ることができる。
 本発明の反射型結像素子の実施態様として、次の構成が好ましい。
(1)前記平板、及び前記第1素子基板と前記第2素子基板との少なくともいずれか一方は、間に介在する形で配される平板接着層により接着されるとともに、前記平板、及び前記第1素子基板の前記第1透光性基材と前記第2素子基板の前記第2透光性基材とのうち前記平板が貼り合わせられた少なくともいずれか一方における屈折率が互いに等しくされており、前記平板接着層は、その屈折率が、前記平板、及び前記第1素子基板の前記第1透光性基材と前記第2素子基板の前記第2透光性基材とのうち前記平板が貼り合わせられた少なくともいずれか一方における屈折率と等しい材料からなる。このようにすれば、例えば平板に入射した光は、平板接着層を透過した後に第1素子基板の第1透光性基材と第2素子基板の第2透光性基材とのうち平板が貼り合わせられた少なくともいずれか一方を透過する。ここで、平板、平板接着層、及び第1素子基板の第1透光性基材と第2素子基板の第2透光性基材とのうち平板が貼り合わせられた少なくともいずれか一方は、互いに屈折率が等しいものとされているから、これらを透過する光が各界面にて屈折されて進行方向が変化させられる事態が生じ難くなり、当該反射型結像素子の光学性能がより劣化し難くなる。従って、例えば第1素子基板と第2素子基板との少なくともいずれか一方における外側の板面が未研磨の状態で使用された場合でも、十分に高い光学性能を得ることができる。
(2)前記平板は、前記第1素子基板の前記外側の板面と、前記第2素子基板の前記外側の板面とにそれぞれ前記平板接着層を介して貼り合わせられている。このようにすれば、平板、各平板接着層、第1素子基板の第1透光性基材、及び第2素子基板の第2透光性基材を透過する光が各界面にて屈折されて進行方向が変化させられる事態が一層生じ難くなり、当該反射型結像素子の光学性能が一層劣化し難くなる。従って、例えば第1素子基板及び第2素子基板におけるそれぞれの外側の板面が共に未研磨の状態で使用された場合でも、十分に高い光学性能を得ることができる。
(3)前記第1素子基板と前記第2素子基板とのいずれか一方には、前記平板が前記平板接着層を介して貼り合わせられているのに対し、前記第1素子基板と前記第2素子基板とのうちの前記平板が貼り合わせられない他方における前記外側の板面は、研磨処理がなされた被研磨面とされている。このようにすれば、平板が第1素子基板と第2素子基板とのいずれか一方に対してのみ平板接着層を介して貼り合わせられるので、仮に両素子基板に対して平板をそれぞれ貼り合わせた場合に比べると、平板の使用枚数を削減することができる。第1素子基板と第2素子基板とのうちの平板が貼り合わせられない他方については、その外側の板面が、研磨処理がなされた被研磨面とされているので、外側の板面を光が透過する際に光の進行方向が不規則に変化させられる事態が生じ難いものとされ、もって当該反射型結像素子の光学性能が一層劣化し難くなる。
(4)前記第1素子基板及び前記第2素子基板は、間に介在する形で配される基板間接着層により接着されるとともに前記第1透光性基材及び前記第2透光性基材における屈折率が互いに等しくされており、前記基板間接着層は、その屈折率が前記第1透光性基材及び前記第2透光性基材における屈折率と等しい材料からなる。このようにすれば、例えば第1透光性基材を透過しつつ第1平面反射部にて反射された光は、基板間接着層を透過した後に、第2透光性基材を透過しつつ第2平面反射部にて反射される。ここで、第1透光性基材、基板間接着層、及び第2透光性基材は、互いに屈折率が等しいものとされているから、これらを透過する光が各界面にて屈折されて進行方向が変化させられる事態が生じ難くなり、当該反射型結像素子の光学性能がより劣化し難くなる。従って、例えば第1素子基板及び第2素子基板におけるそれぞれの内側の板面が共に未研磨の状態で使用された場合でも、十分に高い光学性能を得ることができる。
(5)前記第1素子基板及び前記第2素子基板は、それぞれにおける前記内側の板面が研磨処理をなされた被研磨面とされている。このようにすれば、基板間接着層により接着される第1素子基板及び第2素子基板のそれぞれにおける内側の板面が被研磨面とされることで、被研磨面とされた各内側の板面を光が透過する際に光の進行方向が不規則に変化させられる事態が生じ難いものとされる。これにより、当該反射型結像素子の光学性能が一層劣化し難くなる。
 次に、本発明の反射型結像素子の製造方法は、板面と直交する複数の第1平面反射部と、透光性を有するとともに前記第1平面反射部に並行する形で延在する複数の第1透光性基材とを交互に並列配置してなる第1素子基板に対して、板面と直交し且つ前記第1平面反射部と直交する複数の第2平面反射部と、透光性を有するとともに前記第2平面反射部に並行する形で延在する複数の第2透光性基材とを交互に並列配置してなる第2素子基板を、その内側の板面が前記第1素子基板における内側の板面と対向する形で貼り合わせる素子基板貼り合わせ工程と、前記第1素子基板と前記第2素子基板との少なくともいずれか一方における外側の板面に対して一枚板状をなす平板を対向する形で貼り合わせる平板貼り合わせ工程と、を備える。
 このようにすれば、素子基板貼り合わせ工程を経て互いに内側の板面が対向する形で第1素子基板と第2素子基板とが貼り合わせられるとともに、平板貼り合わせ工程を経て第1素子基板と第2素子基板との少なくともいずれか一方に対して一枚板状をなす平板が他方の板面に対して対向する形で貼り合わせられることで、当該反射型結像素子が製造される。製造された反射型結像素子においては、例えば被投影物側から第1素子基板の外側の板面に入射した光は、第1透光性基材を透過しつつ第1平面反射部にて反射されてから、第2透光性基材を透過しつつ第2平面反射部にて反射された後に、第2素子基板の外側の板面から出射する。第1平面反射部と第2平面反射部とは互いに直交する形で配されているので、第2素子基板の外側の板面からの出射光の進行方向は、第1素子基板の外側の板面に対する入射光の進行方向に対してほぼ平行になる。これにより、被投影物に対して当該反射型結像素子を挟んだ反対側の位置に、被投影物を投影した立体像を結像させることが可能とされる。
 ここで、第1素子基板及び第2素子基板は、それぞれ第1平面反射部及び第2平面反射部と、第1透光性基材及び第2透光性基材とを交互に並列配置してなる構成とされているため、各板面の平滑性が低くなりがちとされ、それに起因して光学性能が劣化することが懸念されていた。その点、第1素子基板と第2素子基板との少なくともいずれか一方における外側の板面には、一枚板状をなす平板が対向する形で貼り合わせられているから、平板が貼り合わせられた外側の板面への入射光または同外側の板面からの出射光は、いずれも平板を透過することになる。この平板は、一枚板状をなしており、第1素子基板及び第2素子基板に比べて高い平滑性を有しているから、透過光の進行方向が不規則に変化させられる事態が生じ難いものとなっている。これにより、平板が貼り合わせられた外側の板面における平滑性が芳しくない場合であっても、当該反射型結像素子の光学性能が劣化し難くなる。そして、少なくとも平板が貼り合わせられた外側の板面に関しては、平滑性を高めるための研磨作業を行わなくても済むことになるから、それにより製造コストの削減を図ることができるとともに研磨作業の実施に伴って生じ得る不具合が回避されて歩留まりの向上を図ることができる。
 本発明の反射型結像素子の製造方法の実施態様として、次の構成が好ましい。
(1)前記平板貼り合わせ工程では、前記第1素子基板及び前記第2素子基板に対してそれぞれ前記平板を貼り合わせている。このようにすれば、平板貼り合わせ工程を経ることで、第1素子基板及び第2素子基板の双方に平板がそれぞれ貼り合わせられる。従って、例えば第1素子基板及び第2素子基板におけるそれぞれの外側の板面が共に未研磨の状態で使用された場合でも、十分に高い光学性能を得ることができる。
(2)前記素子基板貼り合わせ工程は、前記平板貼り合わせ工程に先立って行われている。このようにすれば、平板貼り合わせ工程に先立って素子基板貼り合わせ工程を行うことで、素子基板貼り合わせ工程において、第1素子基板の第1平面反射部と、第2素子基板の第2平面反射部との位置決めをより容易に且つ精密に行うことが可能となる。
(3)前記平板貼り合わせ工程は、前記素子基板貼り合わせ工程に先立って行われており、前記平板貼り合わせ工程を行ってから前記素子基板貼り合わせ工程を行うまでの間に、前記第1素子基板及び前記第2素子基板における前記内側の板面をそれぞれ研磨する研磨工程を備える。このようにすれば、研磨工程を経て第1素子基板及び第2素子基板における内側の板面がそれぞれ研磨されることで、各内側の板面を光が透過する際に光の進行方向が不規則に変化させられる事態が生じ難いものとされる。これにより、当該反射型結像素子の光学性能が一層劣化し難くなる。しかも、研磨工程において研磨される第1素子基板及び第2素子基板における外側の板面には、それぞれ平板が貼り合わせられているので、各平板によって第1素子基板及び第2素子基板の補強が図られている。これにより、研磨に伴って第1素子基板及び第2素子基板に作用する力に起因して第1透光性基材及び第2透光性基材が剥離するなどといった事態を生じ難くすることができる。
(4)前記平板貼り合わせ工程では、前記第1素子基板と前記第2素子基板とのいずれか一方に対して前記平板を貼り合わせており、前記平板貼り合わせ工程及び前記素子基板貼り合わせ工程を行った後に、前記第1素子基板と前記第2素子基板とのうちの前記平板が貼り合わせられない他方における前記外側の板面を研磨する研磨工程を備える。このようにすれば、平板貼り合わせ工程において、平板が第1素子基板と第2素子基板とのいずれか一方に対してのみ貼り合わせられるので、仮に両素子基板に対して平板をそれぞれ貼り合わせた場合に比べると、平板の使用枚数を削減することができる。第1素子基板と第2素子基板とのうちの平板が貼り合わせられない他方については、研磨工程を経ることで外側の板面が研磨されることで、光学性能の劣化が抑制されている。しかも、研磨工程において研磨される第1素子基板と第2素子基板とのうちの平板が貼り合わせられた一方側における外側の板面には、平板が貼り合わせられているので、平板によって第1素子基板及び第2素子基板の補強が図られている。これにより、研磨に伴って第1素子基板と第2素子基板とのうちの平板が貼り合わせられない他方に作用する力に起因して第1透光性基材と第2透光性基材とのうちの他方が剥離する、などの事態を生じ難くすることができる。
(発明の効果)
 本発明によれば、低コスト化を図るとともに歩留まりを向上させることができる。
本発明の実施形態1に係る反射型結像素子及び液晶表示装置の概略構成を示す斜視図 反射型結像素子の概略構成を示す斜視図 反射型結像素子の概略的な断面構成を示す断面図 反射型結像素子を構成する各素子基板の第1の製造方法を示す図面であって、反射部母材を形成した透光性母材を積層して母材ブロック体を製造する途中の状態を示す斜視図 第1の製造方法において、母材ブロック体を切断して各素子基板を取り出した状態を示す斜視図 反射型結像素子を構成する各素子基板の第2の製造方法を示す図面であって、各平面反射部を形成した各透光性基材同士を固着する途中の状態を示す斜視図 反射型結像素子における光学作用を説明するための図面であって、第1素子基板及び第2素子基板を示す斜視図 反射型結像素子における光学作用を説明するための図面であって、第1素子基板及び第2素子基板を示す平面図 反射型結像素子における光学作用を説明するための図面であって、第1素子基板及び第2素子基板を示す側面図 反射型結像素子の製造方法を示す図面であって、第1素子基板と第2素子基板とを貼り合わせる前の状態を示す斜視図 反射型結像素子の製造方法を示す図面であって、第1素子基板と第2素子基板とを貼り合わせる前の状態を示す断面図 反射型結像素子の製造方法を示す図面であって、第1素子基板と第2素子基板とを貼り合わせた状態を示す斜視図 反射型結像素子の製造方法を示す図面であって、第1素子基板と第2素子基板とを貼り合わせた状態を示す断面図 反射型結像素子の製造方法を示す図面であって、貼り合わせた第1素子基板及び第2素子基板に対して第1平板及び第2平板を貼り合わせる前の状態を示す斜視図 反射型結像素子の製造方法を示す図面であって、貼り合わせた第1素子基板及び第2素子基板に対して第2平板を貼り合わせる前の状態を示す断面図 反射型結像素子の製造方法を示す図面であって、第1素子基板及び第2素子基板に対して第2平板を貼り合わせた状態を示す断面図 反射型結像素子の製造方法を示す図面であって、貼り合わせた第1素子基板、第2素子基板、及び第2平板に対して第1平板を貼り合わせる前の状態を示す断面図 本発明の実施形態2に係る反射型結像素子の断面図 反射型結像素子の製造方法を示す図面であって、第1素子基板に対して第1平板を貼り合わせる前の状態を示す断面図 反射型結像素子の製造方法を示す図面であって、第1素子基板に対して第1平板を貼り合わせた状態を示す断面図 反射型結像素子の製造方法を示す図面であって、第1素子基板における内側の板面を研磨した状態を示す断面図 反射型結像素子の製造方法を示す図面であって、第2素子基板に対して第2平板を貼り合わせる前の状態を示す断面図 反射型結像素子の製造方法を示す図面であって、第2素子基板に対して第2平板を貼り合わせた状態を示す断面図 反射型結像素子の製造方法を示す図面であって、第2素子基板における内側の板面を研磨した状態を示す断面図 本発明の実施形態3に係る反射型結像素子の断面図 反射型結像素子の製造方法を示す図面であって、貼り合わせた第1素子基板及び第2素子基板に対して第1平板を貼り合わせる前の状態を示す断面図 反射型結像素子の製造方法を示す図面であって、第1素子基板及び第2素子基板に対して第1平板を貼り合わせた状態を示す断面図 本発明の実施形態4に係る反射型結像素子の断面図 反射型結像素子の製造方法を示す図面であって、第2平板が貼り合わせられた第2素子基板における内側の板面を研磨する前の状態を示す断面図 反射型結像素子の製造方法を示す図面であって、内側の板面が研磨された第2素子基板に対して第1素子基板を貼り合わせる前の状態を示す断面図 反射型結像素子の製造方法を示す図面であって、第2素子基板に対して貼り合わせられた第1素子基板における外側の板面を研磨する前の状態を示す断面図 本発明の実施形態5に係る反射型結像素子の断面図 反射型結像素子の製造方法を示す図面であって、貼り合わせた第1素子基板及び第2素子基板に対して第1平板及び第2平板を貼り合わせる前の状態を示す断面図 反射型結像素子の製造方法を示す図面であって、貼り合わせた第1素子基板及び第2素子基板に対して第1平板及び第2平板を貼り合わせた状態を示す断面図 本発明の実施形態6に係る反射型結像素子の断面図
 <実施形態1>
 本発明の実施形態1を図1から図17によって説明する。本実施形態では、反射型結像素子10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、上下方向については、図3などを基準とし、且つ同図上側を表側とするとともに同図下側を裏側とする。
 本実施形態に係る反射型結像素子10は、図1に示すように、裏側に配された液晶表示装置LCDと組み合わせて使用されるものであり、液晶表示装置LCDに表示された画像を反射型結像素子10の表側(液晶表示装置LCD側とは反対側)に結像(投影)させて立体画像として使用者に視認させることが可能とされる。液晶表示装置LCDは、画像を表示する表示面を有する液晶パネルLCPと、液晶パネルLCPの裏側(反射型結像素子10側とは反対側)に配されて液晶パネルLCPに向けて照明光を供給するバックライト装置BLとを備えてなり、これらが図示しない保持部材により一体的に保持された構成とされている。液晶パネルLCPは、平面に視て横長の方形状をなす一対の基板間に液晶層を挟持してなるものとされ、表側の基板が、カラーフィルタやカラーフィルタ間を仕切る格子状の遮光層(ブラックマトリクス)などが形成されたCF基板(対向基板)とされるのに対し、裏側の基板が、スイッチング素子である多数のTFT、及びTFTによって充電される多数の画素電極がマトリクス状に並列配置されるとともに、各TFTに対して接続される多数本ずつのゲート配線及びソース配線が格子状に配索形成されてなるアレイ基板(アクティブマトリクス基板)とされる。バックライト装置BLは、内部に光源であるLED、及び光学部材である導光板や光学シートなどをシャーシ内に収容した構成とされ、シャーシが表側に開口することで、液晶パネルLCPへと照明光を照射することが可能とされる。なお、液晶パネルLCP及びバックライト装置BLの各構成部は、既知のものであり、本実施形態では詳しい説明及び図示を省略している。
 反射型結像素子10の詳しい構成について説明する。反射型結像素子10は、図2に示すように、全体として液晶パネルLCPと同様に平面に視て横長の方形状をなすパネル部材とされており、第1素子基板11と、第1素子基板11に対して表側に積層する形で配される第2素子基板12とを備えている。これら第1素子基板11及び第2素子基板12は、共に平面に視て横長の方形状をなす平板状部材とされており、互いに内側の板面11a,12aが対向する形で貼り合わせられている。第1素子基板11は、立体画像の供給源(被投影物)である液晶表示装置LCD側に配されており、液晶表示装置LCDから照射される光が入光される「入光側素子基板」とされるのに対し、第2素子基板12は、液晶表示装置LCD側とは反対側、つまり立体画像を投影する(結像させる)側に配されており、第1素子基板11に入射された光を投影側(結像側)に出射する「出光側素子基板」とされる。続いて、第1素子基板11及び第2素子基板12の詳しい構成について説明する。また、図1及び図2では、一部の第1平面反射部14及び第2平面反射部16を網掛け状にして図示している。
 第1素子基板11は、図2に示すように、反射型結像素子10の短辺方向(板面に沿う第1方向、Y軸方向)に沿って延在する複数の第1透光性基材13と、第1透光性基材13の一側面に配されて反射型結像素子10の短辺方向に沿って延在する複数の第1平面反射部14と、を反射型結像素子10の長辺方向(板面に沿う第2方向、X軸方向)に沿って交互に並列配置してなる。第1透光性基材13は、ほぼ透明で優れた透光性を有するガラス材料または合成樹脂材料(例えばPMMAなどのアクリル樹脂など)からなり、その屈折率が例えば1.51~1.52程度とされる。第1透光性基材13は、第1素子基板11の板面に沿うY軸方向に沿って延在する細長い角柱状(直方体状)をなしており、断面形状が略方形状になるよう形成されている。第1透光性基材13は、図2及び図3に示すように、X軸方向に沿って複数が並列して配されるとともに、その並列方向についての幅寸法よりも高さ方向(Z軸方向)についての高さ寸法の方が大きな縦長形状とされており、例えば高さ寸法が幅寸法の3倍程度とされている。より具体的には、第1透光性基材13は、幅寸法が例えば0.3mm程度とされるのに対し、高さ寸法が例えば0.9mm程度とされる。第1平面反射部14は、表面における光反射性に優れた金属材料(銀、錫、アルミニウムなど)からなり、第1透光性基材13における一側面に蒸着などの手法により一体的に固着されている。この第1平面反射部14により表面に当たった光を鏡面反射することが可能とされ、その反射光の進行方向が規則的なものとなる。第1平面反射部14は、第1透光性基材13の外周側面のうち、その延在方向であるY軸方向と、第1素子基板11の板面と直交する方向であるZ軸方向とに沿う片方の側面に配されている。従って、第1平面反射部14は、Y軸方向及びZ軸方向に並行する平面を構成している。第1平面反射部14は、X軸方向について隣り合う第1透光性基材13の間に介在するよう、X軸方向について間欠的に並んで配されており、その配列ピッチが第1透光性基材13の幅寸法とほぼ等しいものとされている。また、第1透光性基材13は、X軸方向について隣り合う第1平面反射部14の間に介在する形で配されている。
 第2素子基板12は、図2に示すように、反射型結像素子10の長辺方向(板面に沿う第2方向、X軸方向)に沿って延在する複数の第2透光性基材15と、第2透光性基材15の一側面に配されて反射型結像素子10の長辺方向に沿って延在する複数の第2平面反射部16と、を反射型結像素子10の短辺方向(板面に沿う第1方向、Y軸方向)に沿って交互に並列配置してなる。第2透光性基材15は、ほぼ透明で優れた透光性を有するガラス材料または合成樹脂材料(例えばPMMAなどのアクリル樹脂など)からなり、第1透光性基材13と同一材料とされる。従って、第1透光性基材13及び第2透光性基材15は、屈折率がほぼ等しくなっている。第2透光性基材15は、第2素子基板12の板面に沿うX軸方向に沿って延在する細長い角柱状(直方体状)をなしており、断面形状が略方形状になるよう形成されている。従って、第2透光性基材15の延在方向は、第1透光性基材13の延在方向と直交する関係にある。第2透光性基材15は、図2及び図3に示すように、Y軸方向に沿って複数が並列して配されるとともに、その並列方向についての幅寸法よりも高さ方向(Z軸方向)についての高さ寸法の方が大きな縦長形状とされており、例えば高さ寸法が幅寸法の3倍程度とされている。第2透光性基材15は、幅寸法及び高さ寸法が上記した第1透光性基材13の幅寸法及び高さ寸法とそれぞれほぼ同じとされる。第2平面反射部16は、表面における光反射性に優れた金属材料(銀、錫、アルミニウムなど)からなり、第2透光性基材15における一側面に蒸着などの手法により一体的に固着されている。第2平面反射部16は、第1平面反射部14と同一材料とされる。この第2平面反射部16により表面に当たった光を鏡面反射することが可能とされ、その反射光の進行方向が規則的なものとなる。第2平面反射部16は、第2透光性基材15の外周側面のうち、その延在方向であるX軸方向と、第2素子基板12の板面と直交する方向であるZ軸方向とに沿う片方の側面に配されている。従って、第2平面反射部16は、X軸方向及びZ軸方向に並行する平面を構成しており、第1平面反射部14とは直交する関係にある。第2平面反射部16は、Y軸方向について隣り合う第2透光性基材15の間に介在するよう、Y軸方向について間欠的に並んで配されており、その配列ピッチが第2透光性基材15の幅寸法とほぼ等しいものとされている。つまり、第2平面反射部16は、その配列ピッチが第1平面反射部14の配列ピッチとほぼ等しい。また、第2透光性基材15は、Y軸方向について隣り合う第2平面反射部16の間に介在する形で配されている。以上のように第2素子基板12は、基本構造が第1素子基板11と同様とされており、第2透光性基材15及び第2平面反射部16の延在方向が、第1透光性基材13及び第1平面反射部14の延在方向と直交する点で相違している。
 上記したように第1素子基板11及び第2素子基板12は、基本構造がほぼ同じとされているため、次に示す2通りの製造方法のいずれかによって製造することが可能とされる。第1の製造方法では、図4に示すように、まず、各透光性基材13,15をなすガラス材料または合成樹脂材料からなる平板状の透光性母材TMを製造し、その透光性母材TMにおける表裏いずれか一方の板面上に、各平面反射部14,16をなす金属材料からなる反射部母材RMを蒸着などによって形成する。次に、反射部母材RMが形成された透光性母材TMを、透光性母材TMと反射部母材RMとの順番が交互になるよう多数枚積層するとともに相互を図示しないほぼ透明な接着材などによって固着することで、母材ブロック体Bを製造する。そして、母材ブロック体Bを、各透光性母材TMの板面と直交する方向に沿って切断することで、図5に示すように、第1素子基板11または第2素子基板12が得られる。一方、第2の製造方法では、図6に示すように、一側面に第1平面反射部14または第2平面反射部16が形成された第1透光性基材13または第2透光性基材15を別個に製造しておき、それら第1透光性基材13または第2透光性基材15を、第1平面反射部14または第2平面反射部16と、第1透光性基材13または第2透光性基材15との順番が交互になるよう並列しつつ図示しないほぼ透明な接着材などにより固着することで、第1素子基板11または第2素子基板12が得られる。なお、図4から図6では、一部の反射部母材RM、第1平面反射部14、及び第2平面反射部16を網掛け状にして図示している。
 このように第1素子基板11及び第2素子基板12は、母材ブロック体Bを切断したり、或いは別個に製造した各透光性基材13,15同士を固着することで製造されており、板面に沿う方向について各透光性基材13,15が各平面反射部14,16により断続的に仕切られた構造とされているため、第1素子基板11及び第2素子基板12における各板面の平滑性が低くなりがちとされ、その表面に微小な凹凸が生じ易くなっており、それに起因して光学性能が劣化することが懸念されていた。それを回避するには、例えば第1素子基板11及び第2素子基板12について表裏両方の板面をそれぞれ研磨することが考えられる。しかしながら、第1素子基板11及び第2素子基板12について表裏両方の板面をそれぞれ研磨するのには、製造工程に研磨工程を追加するとともに製造装置に研磨装置を追加する必要が生じ、しかも研磨工程のタクトタイムが長くかかることもあって製造コストが高くなるという問題が生じる。それに加えて、第1素子基板11及び第2素子基板12の各板面に沿って研磨を行うと、その研磨方向が各透光性基材13,15及び各平面光反射部14,16の並列方向と一致しているため、研磨に伴う力が各透光性基材13,15及び各平面光反射部14,16を剥離させるよう作用して第1素子基板11及び第2素子基板12が損壊などする事態の発生が懸念され、歩留まりが低下するおそれがあった。
 そこで、本実施形態では、図2及び図3に示すように、第1素子基板11及び第2素子基板12のうち、互いに対向する内側の板面(対向板面)11a,12aとは反対側の外側の板面(反対板面)11b,12bに対して、一対の平板17,18がそれぞれ対向する形で貼り合わせられている。一対の平板17,18のうち、第1素子基板11に貼り合わせられるものを第1平板(平板)17とし、第2素子基板12に貼り合わせられるものを第2平板(平板)18とする。一対の平板17,18は、共に平面に視て横長の方形状をなす一枚板状部材とされており、それぞれの内側の板面17a,18aが各素子基板11,12における外側の板面11b,12bと対向されつつ後述する各平板接着層19,20を介して貼り合わせられている。一対の平板17,18は、ほぼ透明で優れた透光性を有するガラス材料または合成樹脂材料(例えばPMMAなどのアクリル樹脂など)からなり、その屈折率が各透光性基材13,15とほぼ同じとされている。好ましくは、一対の平板17,18は、各透光性基材13,15と同一材料とされており、そのようにすれば屈折率以外にも熱膨張率などの物性値についても各透光性基材13,15の物性値と等しくなる。
 そして、一対の平板17,18は、図2及び図3に示すように、各素子基板11,12のように板面に沿う方向について各透光性基材13,15が各平面反射部14,16により断続的に仕切られた構造とは異なり、板面に沿う方向について途中に継ぎ目が存在しない、シームレスな一枚板構造とされているので、その板面における平滑性が各素子基板11,12に比べて相対的に高いものとされる。より詳しくは、一対の平板17,18の各板面における平滑性は、例えば各素子基板11,12の各板面に研磨加工を施した場合の平滑性と同等、或いはそれ以上に高いものとされる。一対の平板17,18は、互いに貼り合わせられた各素子基板11,12を外側から挟み込む形で配されており、それぞれの外側の板面17b,18bが反射型結像素子10における最外板面を構成している。従って、仮に各素子基板11,12における外側の板面11b,12bが最外板面とされ、その外側の板面11b,12bに対して直接光が入射したり、或いは同外側の板面11b,12bから直接光が外部へと出射した場合に比べると、一対の平板17,18の外側の板面17b,18bに光が入射したり、同外側の板面17b,18bから光が出射する際にその界面において光の進行方向が不規則に変化させられ難くなる。これにより、各素子基板11,12における外側の板面11b,12bの平滑性が芳しくない場合であっても、反射型結像素子10の光学性能が劣化し難いものとなる。そして、本実施形態では、各素子基板11,12のそれぞれにおける内側及び外側(表側及び裏側)の両板面11a,11b,12a,12bについて研磨加工が施されていないため、製造工程から研磨工程を省略し且つ製造装置から研磨装置を省略することができて製造コストの低減を図る上で極めて良好であるとともに、研磨作業の実施に伴って生じ得る不具合が回避されて歩留まり(良品率)の向上を図ることができる。
 上記した第1平板17と第1素子基板11との間と、第2平板18と第2素子基板12との間とには、図3に示すように、それぞれ第1平板17と第1素子基板11とを接着するための第1平板接着層19と、第2平板18と第2素子基板12とを接着するための第2平板接着層20とがそれぞれ介在する形で配されている。各平板接着層19,20は、光硬化性樹脂材料の一種であるほぼ透明で優れた透光性を有する紫外線硬化性樹脂材料(例えばPMMAなどのアクリル樹脂など)からなる。各平板接着層19,20をなす紫外線硬化性樹脂材料は、紫外線の照射を受ける前では流動性を有する液体状態とされるものの、紫外線の照射を受けると硬化して固体状態となる性質を有している。各平板接着層19,20は、同一の紫外線硬化性樹脂材料からなる。各平板接着層19,20は、その屈折率が各平板17,18及び各透光性基材13,15の各屈折率とほぼ等しくなっている。これにより、各平板17,18と各透光性基材13,15との間を行き来する光は、各平板17,18と各平板接着層19,20との間の界面、及び各透光性基材13,15と各平板接着層19,20との間の界面にて屈折されて進行方向が変化させられる事態が生じ難くなるので、反射型結像素子10の光学性能がより劣化し難くなる。
 また、上記した第1素子基板11と第2素子基板12との間には、図3に示すように、両者11,12を接着するための基板間接着層21が介在する形で配されている。基板間接着層21は、光硬化性樹脂材料の一種であるほぼ透明で優れた透光性を有する紫外線硬化性樹脂材料(例えばPMMAなどのアクリル樹脂など)からなる。基板間接着層21をなす紫外線硬化性樹脂材料は、紫外線の照射を受ける前では流動性を有する液体状態とされるものの、紫外線の照射を受けると硬化して固体状態となる性質を有している。基板間接着層21は、その屈折率が第1透光性基材13及び第2透光性基材15の屈折率とほぼ等しくなっている。これにより、第1透光性基材13と第2透光性基材15との間を行き来する光は、第1透光性基材13と基板間接着層21との間の界面、及び第2透光性基材15と基板間接着層21との間の界面にて屈折されて進行方向が変化させられる事態が生じ難くなるので、反射型結像素子10の光学性能がより劣化し難くなる。基板間接着層21は、各平板接着層19,20と同一の紫外線硬化性樹脂材料からなる。
 次に、上記した構成の反射型結像素子10における光学作用について詳しく説明する。液晶表示装置LCDにおける表示面に画像が表示されると、その画像を表示させている光が反射型結像素子10における裏側の第1素子基板11へと供給される(図1を参照)。反射型結像素子10を構成する第1素子基板11における第1透光性基材13に入射した光は、図7及び図9に示すように、その側面に配された第1平面反射部14により鏡面反射される。この第1平面反射部14により反射された光には、入射角と同じ反射角が付与される。第1平面反射部14による反射光は、第2素子基板12における第2透光性基材15に入射し、その側面に配された第2平面反射部16により再び鏡面反射される。この第2平面反射部16により反射された光には、入射角と同じ反射角が付与される。ここで、第2平面反射部16は、図8及び図9に示すように、第1平面反射部14に対して直交する位置関係とされているため、第2平面反射部16による反射光は、第1平面反射部14に対する入射光と平面に視てほぼ平行になる。従って、第2平面反射部16による反射光が反射型結像素子10から投影側(液晶表示装置LCD側とは反対側)に出射すると、反射型結像素子10を挟んで液晶表示装置LCDと対称位置に立体画像が結像し、使用者に立体画像を視認させることができる。
 上記のような光学作用を奏する反射型結像素子10においては、既述した通り、各素子基板11,12における外側の板面11b,12bに対して対向する形で一対の平板17,18が貼り合わせられており、液晶表示装置LCDから反射型結像素子10へ向かう光が第1平板17に入射し、反射型結像素子10から投影側に向かう光が第2平板18から出射するようになっている。より詳しくは、液晶表示装置LCDから反射型結像素子10へ向かう光は、図3に示すように、まず第1平板17の外側の板面17bに入射する。この第1平板17は、その板面における平滑性が第1素子基板11に比べると高いものとされているので、外側の板面17bへの入射光が不規則に屈折される事態が生じ難くなっている。このように第1平板17の外側の板面17bに対する入射光は、その界面にて規則的に屈折されつつ第1平板17を透過した後、第1平板17を第1素子基板11に対して接着する第1平板接着層19に入射する。第1平板接着層19は、その屈折率が第1平板17とほぼ同じであるから、第1平板接着層19への入射光は第1平板17との界面にて屈折されることが避けられ、ほぼ真っ直ぐに進行しつつ第1平板接着層19を透過する。第1平板接着層19を透過した光は、第1素子基板11の第1透光性基材13に入射するのだが、第1平板接着層19と第1透光性基材13との屈折率がほぼ同じとされているので、この入射時にも界面にて屈折されることが避けられ、第1透光性基材13内をほぼ真っ直ぐに進行して第1平面反射部14にて鏡面反射される。
 第1平面反射部14による反射光は、図3に示すように、第1透光性基材13を透過した後、基板間接着層21に入射する。基板間接着層21は、その屈折率が第1透光性基材13とほぼ同じであるから、基板間接着層21への入射光は第1透光性基材13との界面にて屈折されることが避けられ、ほぼ真っ直ぐに進行しつつ基板間接着層21を透過する。基板間接着層21を透過した光は、第2素子基板12の第2透光性基材15に入射するのだが、基板間接着層21と第2透光性基材15との屈折率がほぼ同じとされているので、この入射時にも界面にて屈折されることが避けられ、第2透光性基材15内をほぼ真っ直ぐに進行して第2平面反射部16にて鏡面反射される。第2平面反射部16による反射光は、第2透光性基材15を透過した後、第2平板18を第2素子基板12に対して接着する第2平板接着層20に入射する。第2平板接着層20は、その屈折率が第2透光性基材15とほぼ同じであるから、第2平板接着層20への入射光は第2透光性基材15との界面にて屈折されることが避けられ、ほぼ真っ直ぐに進行しつつ第2平板接着層20を透過する。第2平板接着層20を透過した光は、第2平板18に入射するのだが、第2平板接着層20と第2平板18との屈折率がほぼ同じとされているので、この入射時にも界面にて屈折されることが避けられ、第2平板18内をほぼ真っ直ぐに進行する。そして、第2平板18を透過した光は、第2平板18の外側の板面18bから外部(投影側)へと出射する。この第2平板18は、その板面における平滑性が第2素子基板12に比べると高いものとされているので、外側の板面18bからの入射光が不規則に屈折される事態が生じ難くなっている。このように第2平板18の外側の板面18bからの出射光は、その界面にて規則的に屈折されつつ外部へと出射される。
 以上のように、反射型結像素子10に対する入射光、及び反射型結像素子10からの出射光は、いずれも各素子基板11,12に比べて高い平滑性を備える各平板17,18の外側の板面17b,18bが入光面及び出光面とされているから、入射時及び出射時に付与される屈折作用が規則的なものとなる。これにより、反射型結像素子10からの出射光が立体画像の結像に利用される利用効率が高いものとなるので、明瞭な立体画像を使用者に視認させることができ、もって反射型結像素子10の光学性能が高いものとなっている。しかも、各素子基板11,12の各透光性基材13,15、各平板17,18、各平板接着層19,20、及び基板間接着層21における屈折率が全てほぼ等しくなるよう構成されているので、これらを透過する光が各界面において屈折され難く、それにより各平面反射部14,16による反射光などの進行方向が不規則に変化する事態が生じ難くなっている。これにより、反射型結像素子10からの出射光をより多く立体画像の結像に用いることが可能となり、光の利用効率が高くなるとともに反射型結像素子10の光学性能がより高いものとされる。
 続いて、反射型結像素子10の製造方法について詳しく説明する。この反射型結像素子10は、図10から図17に示すように、第1素子基板11を製造する第1素子基板製造工程と、第2素子基板12を製造する第2素子基板製造工程と、第1素子基板11と第2素子基板12とを互いの内側の板面11a,12aが対向する形で貼り合わせる素子基板貼り合わせ工程と、第1素子基板11における外側の板面11bに対して第1平板17を、第2素子基板12における外側の板面12bに対して第2平板18を、それぞれ対向させつつ貼り合わせる平板貼り合わせ工程と、を経ることで製造される。なお、第1素子基板製造工程及び第2素子基板製造工程に関しては、既述した通りなので重複する説明は省略する(図4から図6を参照)。
 第1素子基板製造工程及び第2素子基板製造工程を経てそれぞれ製造された第1素子基板11及び第2素子基板12は、図10に示すように、素子基板貼り合わせ工程において、第1透光性基材13の延在方向と第2透光性基材15の延在方向とが互いに直交する姿勢で且つ互いに内側の板面11a,12aが対向する形で配されてから、相互に貼り合わされる。この貼り合わせに先立って第1素子基板11における内側の板面11aには、図11に示すように、基板間接着層21を構成する液体状態の紫外線硬化性樹脂材料が全域または一部に塗布されているので、貼り合わせが行われると、図12及び図13に示すように、第1素子基板11と第2素子基板12との間で紫外線硬化性樹脂材料が押し拡げられつつ挟持される。その後、基板間接着層21をなす紫外線硬化性樹脂材料に対して紫外線を照射することで、紫外線硬化性樹脂材料が液体状態から硬化して基板間接着層21が形成され、それにより第1素子基板11と第2素子基板12とが強固に固着される。この素子基板貼り合わせ工程を行うに際し、第1素子基板11及び第2素子基板12における内側の板面11a,12aには、事前に研磨加工が施されておらず、未研磨の状態のまま両素子基板11,12同士が貼り合わせられている。従って、この製造方法では、各素子基板11,12における内側の板面11a,12aに対する研磨工程が省略されているから、研磨に伴って各素子基板11,12に生じ得る不具合が回避され、もって歩留まりが高いものとなっている。
 素子基板貼り合わせ工程を経て一体化された第1素子基板11及び第2素子基板12には、続いて行われる平板貼り合わせ工程により各平板17,18が貼り合わせられる。平板貼り合わせ工程においては、例えば、図14及び図15に示すように、まず第2素子基板12における外側の板面12bに対して第2平板接着層20を構成する液体状態の紫外線硬化性樹脂材料を全域または一部に塗布される。続いて、第2素子基板12における外側の板面12bに対して第2平板18における内側の板面18aを対向させつつ、第2平板18を第2素子基板12に対して貼り合わせると、図16に示すように、第2平板18と第2素子基板12との間に紫外線硬化性樹脂材料が押し拡げられつつ挟持される。その後、第2平板接着層20をなす紫外線硬化性樹脂材料に対して紫外線を照射することで、紫外線硬化性樹脂材料が液体状態から硬化して第2平板接着層20が形成され、それにより第2平板18と第2素子基板12とが強固に固着される。次に、図17に示すように、第1素子基板11における外側の板面11bに対して第1平板接着層19を構成する液体状態の紫外線硬化性樹脂材料を全域または一部に塗布される。続いて、第1素子基板11における外側の板面11bに対して第1平板17における内側の板面17aを対向させつつ、第1平板17を第1素子基板11に対して貼り合わせると、図3に示すように、第1平板17と第1素子基板11との間に紫外線硬化性樹脂材料が押し拡げられつつ挟持される。その後、第1平板接着層19をなす紫外線硬化性樹脂材料に対して紫外線を照射することで、紫外線硬化性樹脂材料が液体状態から硬化して第1平板接着層19が形成され、それにより第1平板17と第1素子基板11とが強固に固着される。この平板基板貼り合わせ工程を行うに際し、第1素子基板11及び第2素子基板12における外側の板面11b,12bには、事前に研磨加工が施されておらず、未研磨の状態のまま各平板17,18が貼り合わせられている。従って、この製造方法では、各素子基板11,12における外側の板面11b,12bに対する研磨工程が省略されているから、研磨に伴って各素子基板11,12に生じ得る不具合が回避され、もって歩留まりが高いものとなっている。
 以上説明したように本実施形態の反射型結像素子10は、板面と直交する複数の第1平面反射部14と、透光性を有するとともに第1平面反射部14に並行する形で延在する複数の第1透光性基材13とを交互に並列配置してなる第1素子基板11と、内側の板面12aが第1素子基板11における内側の板面11aと対向する形で貼り合わせられる第2素子基板12であって、板面と直交し且つ第1平面反射部14と直交する複数の第2平面反射部16と、透光性を有するとともに第2平面反射部16に並行する形で延在する複数の第2透光性基材15とを交互に並列配置してなる第2素子基板12と、一枚板状をなしていて、第1素子基板11と第2素子基板12との少なくともいずれか一方における外側の板面11b,12bに対して対向する形で貼り合わせられる平板17,18と、を備える。
 このようにすれば、例えば被投影物側から第1素子基板11の外側の板面11bに入射した光は、第1透光性基材13を透過しつつ第1平面反射部14にて反射されてから、第2透光性基材15を透過しつつ第2平面反射部16にて反射された後に、第2素子基板12の外側の板面12bから出射する。第1平面反射部14と第2平面反射部16とは互いに直交する形で配されているので、第2素子基板12の外側の板面12bからの出射光の進行方向は、第1素子基板11の外側の板面11bに対する入射光の進行方向に対してほぼ平行になる。これにより、被投影物に対して当該反射型結像素子10を挟んだ反対側の位置に、被投影物を投影した立体像を結像させることが可能とされる。
 ここで、第1素子基板11及び第2素子基板12は、それぞれ第1平面反射部14及び第2平面反射部16と、第1透光性基材13及び第2透光性基材15とを交互に並列配置してなる構成とされているため、各板面11a,11b,12a,12bの平滑性が低くなりがちとされ、それに起因して光学性能が劣化することが懸念されていた。その点、第1素子基板11と第2素子基板12との少なくともいずれか一方における外側の板面11b,12bには、一枚板状をなす平板17,18が対向する形で貼り合わせられているから、平板17,18が貼り合わせられた外側の板面11b,12bへの入射光または同外側の板面11b,12bからの出射光は、いずれも平板17,18を透過することになる。この平板17,18は、一枚板状をなしており、第1素子基板11及び第2素子基板12に比べて高い平滑性を有しているから、透過光の進行方向が不規則に変化させられる事態が生じ難いものとなっている。これにより、平板17,18が貼り合わせられた外側の板面11b,12bにおける平滑性が芳しくない場合であっても、当該反射型結像素子10の光学性能が劣化し難くなる。そして、少なくとも平板17,18が貼り合わせられた外側の板面11b,12bに関しては、平滑性を高めるための研磨作業を行わなくても済むことになるから、それにより製造コストの削減を図ることができるとともに研磨作業の実施に伴って生じ得る不具合が回避されて歩留まりの向上を図ることができる。
 また、平板17,18、及び第1素子基板11と第2素子基板12との少なくともいずれか一方は、間に介在する形で配される平板接着層19,20により接着されるとともに、平板17,18、及び第1素子基板11の第1透光性基材13と第2素子基板12の第2透光性基材15とのうち平板17,18が貼り合わせられた少なくともいずれか一方における屈折率が互いに等しくされており、平板接着層19,20は、その屈折率が、平板17,18、及び第1素子基板11の第1透光性基材13と第2素子基板12の第2透光性基材15とのうち平板17,18が貼り合わせられた少なくともいずれか一方における屈折率と等しい材料からなる。このようにすれば、例えば平板17,18に入射した光は、平板接着層19,20を透過した後に第1素子基板11の第1透光性基材13と第2素子基板12の第2透光性基材15とのうち平板17,18が貼り合わせられた少なくともいずれか一方を透過する。ここで、平板17,18、平板接着層19,20、及び第1素子基板11の第1透光性基材13と第2素子基板12の第2透光性基材15とのうち平板17,18が貼り合わせられた少なくともいずれか一方は、互いに屈折率が等しいものとされているから、これらを透過する光が各界面にて屈折されて進行方向が変化させられる事態が生じ難くなり、当該反射型結像素子10の光学性能がより劣化し難くなる。従って、例えば第1素子基板11と第2素子基板12との少なくともいずれか一方における外側の板面11b,12bが未研磨の状態で使用された場合でも、十分に高い光学性能を得ることができる。
 また、平板17,18は、第1素子基板11の外側の板面11bと、第2素子基板12の外側の板面12bとにそれぞれ平板接着層19,20を介して貼り合わせられている。このようにすれば、平板17,18、各平板接着層19,20、第1素子基板11の第1透光性基材13、及び第2素子基板12の第2透光性基材15を透過する光が各界面にて屈折されて進行方向が変化させられる事態が一層生じ難くなり、当該反射型結像素子10の光学性能が一層劣化し難くなる。従って、例えば第1素子基板11及び第2素子基板12におけるそれぞれの外側の板面11b,12bが共に未研磨の状態で使用された場合でも、十分に高い光学性能を得ることができる。
 また、第1素子基板11及び第2素子基板12は、間に介在する形で配される基板間接着層21により接着されるとともに第1透光性基材13及び第2透光性基材15における屈折率が互いに等しくされており、基板間接着層21は、その屈折率が第1透光性基材13及び第2透光性基材15における屈折率と等しい材料からなる。このようにすれば、例えば第1透光性基材13を透過しつつ第1平面反射部14にて反射された光は、基板間接着層21を透過した後に、第2透光性基材15を透過しつつ第2平面反射部16にて反射される。ここで、第1透光性基材13、基板間接着層21、及び第2透光性基材15は、互いに屈折率が等しいものとされているから、これらを透過する光が各界面にて屈折されて進行方向が変化させられる事態が生じ難くなり、当該反射型結像素子10の光学性能がより劣化し難くなる。従って、例えば第1素子基板11及び第2素子基板12におけるそれぞれの内側の板面11a,12aが共に未研磨の状態で使用された場合でも、十分に高い光学性能を得ることができる。
 また、本実施形態の反射型結像素子10の製造方法は、板面と直交する複数の第1平面反射部14と、透光性を有するとともに第1平面反射部14に並行する形で延在する複数の第1透光性基材13とを交互に並列配置してなる第1素子基板11に対して、板面と直交し且つ第1平面反射部14と直交する複数の第2平面反射部16と、透光性を有するとともに第2平面反射部16に並行する形で延在する複数の第2透光性基材15とを交互に並列配置してなる第2素子基板12を、その内側の板面12aが第1素子基板11における内側の板面11aと対向する形で貼り合わせる素子基板貼り合わせ工程と、第1素子基板11と第2素子基板12との少なくともいずれか一方における外側の板面11b,12bに対して一枚板状をなす平板17,18を対向する形で貼り合わせる第1平板貼り合わせ工程及び第2平板貼り合わせ工程(平板貼り合わせ工程)と、を備える。
 このようにすれば、素子基板貼り合わせ工程を経て互いに内側の板面11a,12aが対向する形で第1素子基板11と第2素子基板12とが貼り合わせられるとともに、第1平板貼り合わせ工程及び第2平板貼り合わせ工程を経て第1素子基板11と第2素子基板12との少なくともいずれか一方に対して一枚板状をなす平板17,18が他方の板面に対して対向する形で貼り合わせられることで、当該反射型結像素子10が製造される。製造された反射型結像素子10においては、例えば被投影物側から第1素子基板11の外側の板面11bに入射した光は、第1透光性基材13を透過しつつ第1平面反射部14にて反射されてから、第2透光性基材15を透過しつつ第2平面反射部16にて反射された後に、第2素子基板12の外側の板面12bから出射する。第1平面反射部14と第2平面反射部16とは互いに直交する形で配されているので、第2素子基板12の外側の板面12bからの出射光の進行方向は、第1素子基板11の外側の板面11bに対する入射光の進行方向に対してほぼ平行になる。これにより、被投影物に対して当該反射型結像素子10を挟んだ反対側の位置に、被投影物を投影した立体像を結像させることが可能とされる。
 ここで、第1素子基板11及び第2素子基板12は、それぞれ第1平面反射部14及び第2平面反射部16と、第1透光性基材13及び第2透光性基材15とを交互に並列配置してなる構成とされているため、各板面の平滑性が低くなりがちとされ、それに起因して光学性能が劣化することが懸念されていた。その点、第1素子基板11と第2素子基板12との少なくともいずれか一方における外側の板面11b,12bには、一枚板状をなす平板17,18が対向する形で貼り合わせられているから、平板17,18が貼り合わせられた外側の板面11b,12bへの入射光または同外側の板面11b,12bからの出射光は、いずれも平板17,18を透過することになる。この平板17,18は、一枚板状をなしており、第1素子基板11及び第2素子基板12に比べて高い平滑性を有しているから、透過光の進行方向が不規則に変化させられる事態が生じ難いものとなっている。これにより、平板17,18が貼り合わせられた外側の板面11b,12bにおける平滑性が芳しくない場合であっても、当該反射型結像素子10の光学性能が劣化し難くなる。そして、少なくとも平板17,18が貼り合わせられた外側の板面11b,12bに関しては、平滑性を高めるための研磨作業を行わなくても済むことになるから、それにより製造コストの削減を図ることができるとともに研磨作業の実施に伴って生じ得る不具合が回避されて歩留まりの向上を図ることができる。
 また、第1平板貼り合わせ工程及び第2平板貼り合わせ工程では、第1素子基板11及び第2素子基板12に対してそれぞれ平板17,18を貼り合わせている。このようにすれば、第1平板貼り合わせ工程及び第2平板貼り合わせ工程を経ることで、第1素子基板11及び第2素子基板12の双方に平板17,18がそれぞれ貼り合わせられる。従って、例えば第1素子基板11及び第2素子基板12におけるそれぞれの外側の板面11b,12bが共に未研磨の状態で使用された場合でも、十分に高い光学性能を得ることができる。
 また、素子基板貼り合わせ工程は、第1平板貼り合わせ工程及び第2平板貼り合わせ工程に先立って行われている。このようにすれば、第1平板貼り合わせ工程及び第2平板貼り合わせ工程に先立って素子基板貼り合わせ工程を行うことで、素子基板貼り合わせ工程において、第1素子基板11の第1平面反射部14と、第2素子基板12の第2平面反射部16との位置決めをより容易に且つ精密に行うことが可能となる。
 <実施形態2>
 本発明の実施形態2を図18から図24によって説明する。この実施形態2では、各素子基板111,112における内側の板面111a,112aに対してのみ研磨加工を施したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る反射型結像素子110は、図18に示すように、第1素子基板111及び第2素子基板112における内側の板面111a,112aがそれぞれ研磨加工を施されて被研磨面とされることで、未研磨とされる外側の板面111b,112bに比べて相対的に高い平滑性を有する構成となっている。第1素子基板111及び第2素子基板112における内側の板面111a,112aは、基板間接着層121を介して互いに対向する対向板面とされており、このうち第1素子基板111における内側の板面111aは、外部から第1素子基板111に入射した光を第2素子基板112に向けて出射させる出光面とされるのに対し、第2素子基板112における内側の板面112aは、第1素子基板111からの出射光を受け入れる入光面とされる。そして、これらの内側の板面111a,112aが研磨加工により平滑性が高められることで、基板間接着層121に対する密着性が高められることもあって、第1素子基板111と第2素子基板112との間を行き来する光が途中で屈折などされて進行方向が不規則に変化される事態が極めて生じ難くなり、もって反射型結像素子110の光学性能が一層高いものとなる。続いて、上記した構成の反射型結像素子110の製造方法について説明する。
 反射型結像素子110は、図19から図24に示すように、第1素子基板製造工程を経て製造された第1素子基板111に対して第1平板117を貼り合わせる第1平板貼り合わせ工程(平板貼り合わせ工程)と、第1平板117が貼り合わせられた第1素子基板111における内側の板面111aを研磨する第1研磨工程(研磨工程)と、第2素子基板製造工程を経て製造された第2素子基板112に対して第2平板118を貼り合わせる第2平板貼り合わせ工程(平板貼り合わせ工程)と、第2平板118が貼り合わせられた第2素子基板112における内側の板面112aを研磨する第2研磨工程(研磨工程)と、第1素子基板111と第2素子基板112とを互いの内側の板面111a,112aが対向する形で貼り合わせる素子基板貼り合わせ工程と、を経ることで製造される。
 第1平板貼り合わせ工程では、図19に示すように、第1素子基板111における外側の板面111bに対して第1平板接着層119をなす液体状態の紫外線硬化性樹脂材料を塗布してから、第1平板117が貼り合わせられる。その後、第1平板接着層119をなす液体状態の紫外線硬化性樹脂材料に対して紫外線を照射して紫外線硬化性樹脂材料を硬化させて第1平板接着層119を形成することで、図20に示すように、第1平板117が第1素子基板111に対して強固に固着される。続いて行われる第1研磨工程では、第1素子基板111における内側の板面111aが図示しない研磨装置により全域にわたって研磨される。具体的には、例えば研磨装置には砥石などの研磨材がセットされており、その研磨材を高速回転させつつ第1素子基板111における内側の板面111aに押し当てることで、内側の板面111aを研磨している。この研磨加工では、第1素子基板111には、内側の板面111aに沿う方向(X軸方向及びY軸方向)に非常に大きな力が作用し、それに起因して互いに固着された第1透光性基材113(第1平面反射部114)同士が剥離させられることが懸念される。ところが、本実施形態では、第1研磨工程に先立って第1平板貼り合わせ工程を行うようにしているから、研磨加工が施される第1素子基板111には、既に第1平板117が貼り合わせられていて機械的な補強が図られている。従って、第1研磨工程において行われる研磨加工に伴って第1素子基板111が損傷を受ける事態が発生し難いものとされている。そして、研磨された第1素子基板111における内側の板面111aは、図21に示すように、外側の板面111bに比べると、表面に存在していた微小な凹凸が除去されるか若しくはより小さな凹凸とされていて、平滑性が高められている。
 第2平板貼り合わせ工程では、図22に示すように、第2素子基板112における外側の板面112bに対して第2平板接着層120をなす液体状態の紫外線硬化性樹脂材料を塗布してから、第2平板118が貼り合わせられる。その後、第2平板接着層120をなす液体状態の紫外線硬化性樹脂材料に対して紫外線を照射して紫外線硬化性樹脂材料を硬化させて第2平板接着層120を形成することで、図23に示すように、第2平板118が第2素子基板112に対して強固に固着される。続いて行われる第2研磨工程では、第2素子基板112における内側の板面112aが図示しない研磨装置により全域にわたって研磨される。具体的には、例えば研磨装置には砥石などの研磨材がセットされており、その研磨材を高速回転させつつ第2素子基板112における内側の板面112aに押し当てることで、内側の板面112aを研磨している。この研磨加工では、第2素子基板112には、内側の板面112aに沿う方向(X軸方向及びY軸方向)に非常に大きな力が作用し、それに起因して互いに固着された第2透光性基材115(第2平面反射部116)同士が剥離させられることが懸念される。ところが、本実施形態では、第2研磨工程に先立って第2平板貼り合わせ工程を行うようにしているから、研磨加工が施される第2素子基板112には、既に第2平板118が貼り合わせられていて機械的な補強が図られている。従って、第2研磨工程において行われる研磨加工に伴って第2素子基板112が損傷を受ける事態が発生し難いものとされている。そして、研磨された第2素子基板112における内側の板面112aは、図24に示すように、外側の板面112bに比べると、表面に存在していた微小な凹凸が除去されるか若しくはより小さな凹凸とされていて、平滑性が高められている。
 上記のように各研磨工程を経ることでそれぞれ内側の板面111a,112aに研磨加工が施された第1素子基板111と第2素子基板112とは、その後に行われる素子基板貼り合わせ工程を経ることで、図18に示すように、基板間接着層121を介して互いに貼り合わせられる。なお、素子基板貼り合わせ工程は、上記した実施形態1と同様であるから、重複する説明は省略する。
 以上説明したように本実施形態の反射型結像素子110によれば、第1素子基板111及び第2素子基板112は、それぞれにおける内側の板面111a,112aが研磨処理をなされた被研磨面とされている。このようにすれば、基板間接着層121により接着される第1素子基板111及び第2素子基板112のそれぞれにおける内側の板面111a,112aが被研磨面とされることで、被研磨面とされた各内側の板面111a,112aを光が透過する際に光の進行方向が不規則に変化させられる事態が生じ難いものとされる。これにより、当該反射型結像素子110の光学性能が一層劣化し難くなる。
 また、本実施形態の反射型結像素子110の製造方法は、第1平板貼り合わせ工程及び第2平板貼り合わせ工程(平板貼り合わせ工程)は、素子基板貼り合わせ工程に先立って行われており、第1平板貼り合わせ工程及び第2平板貼り合わせ工程を行ってから素子基板貼り合わせ工程を行うまでの間に、第1素子基板111及び第2素子基板112における内側の板面111a,112aをそれぞれ研磨する研磨工程を備える。このようにすれば、研磨工程を経て第1素子基板111及び第2素子基板112における内側の板面111a,112aがそれぞれ研磨されることで、各内側の板面111a,112aを光が透過する際に光の進行方向が不規則に変化させられる事態が生じ難いものとされる。これにより、当該反射型結像素子110の光学性能が一層劣化し難くなる。しかも、研磨工程において研磨される第1素子基板111及び第2素子基板112における外側の板面111b,112bには、それぞれ平板117,118が貼り合わせられているので、各平板117,118によって第1素子基板111及び第2素子基板112の補強が図られている。これにより、研磨に伴って第1素子基板111及び第2素子基板112に作用する力に起因して第1透光性基材113及び第2透光性基材115が剥離するなどといった事態を生じ難くすることができる。
 <実施形態3>
 本発明の実施形態3を図25から図27によって説明する。この実施形態3では、上記した実施形態1から、第2平板を省略し、第2素子基板212における外側の板面212bに研磨加工を施した点を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る反射型結像素子210は、図25に示すように、第1素子基板211における外側の板面211bに第1平板217が貼り合わせられているのに対して、第2素子基板212における外側の板面212bには上記した実施形態1のように第2平板が貼り合わせられておらず、外部に露出するとともに研磨加工が施されることで被研磨面とされている。従って、第2素子基板212における外側の板面212bは、未研磨とされる内側の板面212aや第1素子基板211における両板面211a,211bに比べると、相対的に高い平滑性を有している。第2素子基板212における外側の板面212bは、反射型結像素子210から投影側に向けて光を出射する出光面を構成していることから、その表面における平滑性が高められることで、出射光に係る光学性能が十分に良好なものとされる。しかも、上記した実施形態1のように、第2平板を要しないことから第2平板に係る部材コストの低減を図ることができる。続いて、上記した構成の反射型結像素子210の製造方法について説明する。
 反射型結像素子210は、図26及び図27に示すように、第1素子基板製造工程を経て製造された第1素子基板211と第2素子基板製造工程を経て製造された第2素子基板212とを互いの内側の板面211a,212aが対向する形で貼り合わせる素子基板貼り合わせ工程と、第1素子基板211に対して第1平板217を貼り合わせる平板貼り合わせ工程と、第2素子基板212における外側の板面212bを研磨する研磨工程と、を経ることで製造される。
 詳しくは、図26に示すように、素子基板貼り合わせ工程を経て第1素子基板211と第2素子基板212とを貼り合わせた後に、平板貼り合わせ工程を行うことで、図27に示すように、第1素子基板211における外側の板面211bに対して第1平板217が貼り合わせられる。なお、これら素子基板貼り合わせ工程及び平板貼り合わせ工程は、上記した実施形態1に記載した素子基板貼り合わせ工程及び第1平板貼り合わせ工程と同様であるから、重複する説明は省略する。その後に行われる研磨工程では、第2素子基板212における外側の板面212bが図示しない研磨装置により全域にわたって研磨される。具体的には、例えば研磨装置には砥石などの研磨材がセットされており、その研磨材を高速回転させつつ第2素子基板212における外側の板面212bに押し当てることで、外側の板面212bを研磨している。この研磨加工では、第2素子基板212には、外側の板面212bに沿う方向(X軸方向及びY軸方向)に非常に大きな力が作用し、それに起因して互いに固着された第2透光性基材215(第2平面反射部216)同士が剥離させられることが懸念される。ところが、本実施形態では、研磨工程に先立って平板貼り合わせ工程を行うようにしているから、研磨加工が施される第2素子基板212には、既に第1素子基板211及び第1平板217が貼り合わせられていて第1平板217により機械的な補強が図られている。従って、研磨工程において行われる研磨加工に伴って第2素子基板212が損傷を受ける事態が発生し難いものとされている。そして、研磨された第2素子基板212における外側の板面212bは、図25に示すように、内側の板面212aに比べると、表面に存在していた微小な凹凸が除去されるか若しくはより小さな凹凸とされていて、平滑性が高められている。
 以上説明したように本実施形態の反射型結像素子210によれば、第1素子基板211と第2素子基板212とのいずれか一方である第1素子基板211には、第1平板(平板)217が第1平板接着層(平板接着層)219を介して貼り合わせられているのに対し、第1素子基板211と第2素子基板212とのうちの平板が貼り合わせられない他方である第2素子基板212における外側の板面212bは、研磨処理がなされた被研磨面とされている。このようにすれば、第1平板217が第1素子基板211と第2素子基板212とのいずれか一方である第1素子基板211に対してのみ第1平板接着層219を介して貼り合わせられるので、仮に両素子基板に対して平板をそれぞれ貼り合わせた場合に比べると、平板の使用枚数を削減することができる。第1素子基板211と第2素子基板212とのうちの第1平板217が貼り合わせられない他方である第2素子基板212については、その外側の板面212bが、研磨処理がなされた被研磨面とされているので、外側の板面212bを光が透過する際に光の進行方向が不規則に変化させられる事態が生じ難いものとされ、もって当該反射型結像素子210の光学性能が一層劣化し難くなる。
 また、本実施形態の反射型結像素子210の製造方法は、平板貼り合わせ工程では、第1素子基板211と第2素子基板212とのいずれか一方である第1素子基板211に対して第1平板(平板)217を貼り合わせており、平板貼り合わせ工程及び素子基板貼り合わせ工程を行った後に、第1素子基板211と第2素子基板212とのうちの第1平板17が貼り合わせられない他方である第2素子基板における外側の板面212bを研磨する研磨工程を備える。このようにすれば、平板貼り合わせ工程において、第1平板217が第1素子基板211と第2素子基板212とのいずれか一方である第1素子基板211に対してのみ貼り合わせられるので、仮に両素子基板に対して平板をそれぞれ貼り合わせた場合に比べると、平板の使用枚数を削減することができる。第1素子基板211と第2素子基板212とのうちの第1平板217が貼り合わせられない他方である第2素子基板212については、研磨工程を経ることで外側の板面212bが研磨されることで、光学性能の劣化が抑制されている。しかも、研磨工程において研磨される第1素子基板211と第2素子基板212とのうちの第1平板217が貼り合わせられた一方側である第1素子基板211における外側の板面211bには、第1平板217が貼り合わせられているので、第1平板217によって第1素子基板211及び第2素子基板212の補強が図られている。これにより、研磨に伴って第1素子基板211と第2素子基板212とのうちの第1平板217が貼り合わせられない他方である第2素子基板212に作用する力に起因して第1透光性基材213と第2透光性基材215とのうちの他方である第2透光性基材215が剥離する、などの事態を生じ難くすることができる。
 <実施形態4>
 本発明の実施形態4を図28から図31によって説明する。この実施形態4では、上記した実施形態1から、第1平板を省略し、第1素子基板311における外側の板面311b、及び第2素子基板312における内側の板面312aに研磨加工を施した点を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る反射型結像素子310は、図28に示すように、第2素子基板312における外側の板面312bに第2平板318が貼り合わせられているのに対して、第1素子基板311における外側の板面311bには上記した実施形態1のように第1平板が貼り合わせられておらず、外部に露出するとともに研磨加工が施されることで被研磨面とされている。その上で、第2素子基板312における内側の板面312aには、研磨加工を施されて被研磨面とされている。従って、第1素子基板311における外側の板面311b、及び第2素子基板312における内側の板面312aは、未研磨とされる第1素子基板311における内側の板面311a、及び第2素子基板312における外側の板面312bに比べると、相対的に高い平滑性を有している。第1素子基板311における外側の板面311bは、反射型結像素子310に対して光が入射する入光面を構成していることから、その表面における平滑性が高められることで、入射光に係る光学性能が十分に良好なものとされる。しかも、上記した実施形態1のように、第1平板を要しないことから第1平板に係る部材コストの低減を図ることができる。さらには、第2素子基板312のうち第1素子基板311と対向する内側の板面312aにおける平滑性が高められることで、光学性能がより高いものとされる。続いて、上記した構成の反射型結像素子310の製造方法について説明する。
 反射型結像素子310は、図29から図31に示すように、第2素子基板製造工程を経て製造された第2素子基板312に対して第2平板318を貼り合わせる平板貼り合わせ工程と、第2平板318が貼り合わせられた第2素子基板312における内側の板面312aを研磨する第1研磨工程(研磨工程)と、第1素子基板製造工程を経て製造された第1素子基板311と第2素子基板312とを互いの内側の板面311a,312aが対向する形で貼り合わせる素子基板貼り合わせ工程と、第1素子基板311における外側の板面311bを研磨する第1研磨工程(研磨工程)と、を経ることで製造される。
 平板貼り合わせ工程では、図29に示すように、第2素子基板312における外側の板面312bに対して第2平板接着層320をなす液体状態の紫外線硬化性樹脂材料を塗布してから、第2平板318が貼り合わせられる。その後、第2平板接着層320をなす液体状態の紫外線硬化性樹脂材料に対して紫外線を照射して紫外線硬化性樹脂材料を硬化させて第2平板接着層320を形成することで、第2平板318が第2素子基板312に対して強固に固着される。続いて行われる第1研磨工程では、第2素子基板312における内側の板面312aが図示しない研磨装置により全域にわたって研磨される。具体的には、例えば研磨装置には砥石などの研磨材がセットされており、その研磨材を高速回転させつつ第2素子基板312における内側の板面312aに押し当てることで、内側の板面312aを研磨している。この研磨加工では、第2素子基板312には、内側の板面312aに沿う方向(X軸方向及びY軸方向)に非常に大きな力が作用し、それに起因して互いに固着された第2透光性基材315(第2平面反射部316)同士が剥離させられることが懸念される。ところが、本実施形態では、第2研磨工程に先立って第2平板貼り合わせ工程を行うようにしているから、研磨加工が施される第2素子基板312には、既に第2平板318が貼り合わせられていて機械的な補強が図られている。従って、第1研磨工程において行われる研磨加工に伴って第2素子基板312が損傷を受ける事態が発生し難いものとされている。そして、研磨された第2素子基板312における内側の板面312aは、図30に示すように、外側の板面312bに比べると、表面に存在していた微小な凹凸が除去されるか若しくはより小さな凹凸とされていて、平滑性が高められている。
 次に、素子基板貼り合わせ工程が行われることで、図31に示すように、第1素子基板311と第2素子基板312とが貼り合わせられる。なお、この素子基板貼り合わせ工程は、上記した実施形態1に記載した素子基板貼り合わせ工程と同様であるから、重複する説明は省略する。その後に行われる第2研磨工程では、第1素子基板311における外側の板面311bが図示しない研磨装置により全域にわたって研磨される。具体的には、例えば研磨装置には砥石などの研磨材がセットされており、その研磨材を高速回転させつつ第1素子基板311における外側の板面311bに押し当てることで、外側の板面311bを研磨している。この研磨加工では、第1素子基板311には、外側の板面311bに沿う方向(X軸方向及びY軸方向)に非常に大きな力が作用し、それに起因して互いに固着された第2透光性基材313(第2平面反射部314)同士が剥離させられることが懸念される。ところが、本実施形態では、第2研磨工程に先立って平板貼り合わせ工程を行うようにしているから、研磨加工が施される第1素子基板311には、既に第2素子基板312及び第2平板318が貼り合わせられていて第2平板318により機械的な補強が図られている。従って、研磨工程において行われる研磨加工に伴って第1素子基板311が損傷を受ける事態が発生し難いものとされている。そして、研磨された第1素子基板311における外側の板面311bは、図28に示すように、内側の板面311aに比べると、表面に存在していた微小な凹凸が除去されるか若しくはより小さな凹凸とされていて、平滑性が高められている。
 <実施形態5>
 本発明の実施形態5を図32から図34によって説明する。この実施形態5では、上記した実施形態1から、第1素子基板411における外側の板面411bに研磨加工を施した点を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る反射型結像素子410は、図32に示すように、第2素子基板412における外側の板面412bに第2平板418が貼り合わせられているのに対して、第1素子基板411における外側の板面411bには上記した実施形態1のように第1平板が貼り合わせられておらず、外部に露出するとともに研磨加工が施されることで被研磨面とされている。従って、第1素子基板411における外側の板面411bは、未研磨とされる内側の板面411aや第2素子基板412における両板面412a,412bに比べると、相対的に高い平滑性を有している。第1素子基板411における外側の板面411bは、反射型結像素子410に対して光が入射する入光面を構成していることから、その表面における平滑性が高められることで、入射光に係る光学性能が十分に良好なものとされる。続いて、上記した構成の反射型結像素子410の製造方法について説明する。
 反射型結像素子410は、図33及び図34に示すように、第1素子基板製造工程を経て製造された第1素子基板411と第2素子基板製造工程を経て製造された第2素子基板412とを互いの内側の板面411a,412aが対向する形で貼り合わせる素子基板貼り合わせ工程と、第1素子基板411に対して第1平板417を貼り合わせる第1平板貼り合わせ工程(平板貼り合わせ工程)と、第2素子基板412に対して第2平板418を貼り合わせる第2平板貼り合わせ工程(平板貼り合わせ工程)と、第1平板417、第1平板接着層419、及び第1素子基板411における外側の板面411bを研磨する研磨工程と、を経ることで製造される。
 詳しくは、図33に示すように、素子基板貼り合わせ工程を経て第1素子基板411と第2素子基板412とを貼り合わせた後に、各平板貼り合わせ工程を行うことで、図34に示すように、第1素子基板411における外側の板面411bに対して第1平板接着層419を介して第1平板417が、第2素子基板412における外側の板面412bに対して第2平板接着層420を介して第2平板418が、それぞれ貼り合わせられる。なお、これら素子基板貼り合わせ工程及び各平板貼り合わせ工程は、上記した実施形態1に記載した素子基板貼り合わせ工程及び各平板貼り合わせ工程と同様であるから、重複する説明は省略する。その後に行われる研磨工程では、第1平板417、第1平板接着層419、及び第1素子基板411における外側の板面411bの順番でこれらが図示しない研磨装置により全域にわたって研磨される。具体的には、例えば研磨装置には砥石などの研磨材がセットされており、その研磨材を高速回転させつつ第1平板417に押し当てることで、第1平板417、第1平板接着層419、及び第1素子基板411における外側の板面411bを順次に研磨している。この研磨に伴い、第1平板417及び第1平板接着層419については、除去される。この研磨加工では、第1素子基板411には、外側の板面411bに沿う方向(X軸方向及びY軸方向)に非常に大きな力が作用し、それに起因して互いに固着された第1透光性基材413(第1平面反射部414)同士が剥離させられることが懸念される。ところが、本実施形態では、研磨工程に先立って第1平板貼り合わせ工程を行うようにしているから、研磨加工が施される第1素子基板411には、既に第2素子基板412及び第2平板418が貼り合わせられていて第2平板418により機械的な補強が図られている。従って、研磨工程において行われる研磨加工に伴って第1素子基板411が損傷を受ける事態が発生し難いものとされている。そして、研磨された第1素子基板411における外側の板面411bは、図32に示すように、内側の板面411aに比べると、表面に存在していた微小な凹凸が除去されるか若しくはより小さな凹凸とされていて、平滑性が高められている。
 <実施形態6>
 本発明の実施形態6を図35によって説明する。この実施形態6では、上記した実施形態5から、さらに第2平板及び第2平板接着層を研磨により除去したものを示す。なお、上記した実施形態5と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る反射型結像素子510は、図35に示すように、第1素子基板511及び第2素子基板512における外側の板面511b,512bに対してそれぞれ平板が貼り合わせられておらず、外部に露出するとともに研磨加工が施されることで被研磨面とされている。従って、第1素子基板511及び第2素子基板512における外側の板面511b,512bは、未研磨とされる内側の板面511a,512aに比べると、相対的に高い平滑性を有している。第1素子基板511及び第2素子基板512における外側の板面511b,512bは、反射型結像素子510に対して光が入射する入光面と光が出射する出光面とをそれぞれ構成していることから、その表面における平滑性が高められることで、入射光及び出射光に係る光学性能が十分に良好なものとされる。この反射型結像素子510の製造方法に関しては、上記した実施形態5に記載したものにおいて、第1平板、第1平板接着層、及び第1素子基板511における外側の板面511bを研磨する研磨工程(第1研磨工程)に加えて、第2平板、第2平板接着層、及び第2素子基板512における外側の板面512bを研磨する第2研磨工程を行うようにしている。第2研磨工程は、上記した実施形態5に記載した研磨工程と同様に、第2平板、第2平板接着層、及び第2素子基板512における外側の板面512bの順番でこれらを研磨装置により研磨し、第2平板及び第2平板接着層を除去している。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した各実施形態では、各平板の各板面における平滑性が、各素子基板の各板面に研磨加工を施した場合の平滑性と同等、或いはそれ以上に高いものとされる場合を示したが、各平板の各板面における平滑性が、各素子基板において未研磨状態とされた各板面における平滑性よりも高いのであれば、各素子基板の各板面に研磨加工を施した場合の平滑性よりも低くても構わない。
 (2)上記した各実施形態では、第1素子基板が、液晶表示装置から照射される光が入光される「入光側素子基板」とされるのに対し、第2素子基板が、光を投影側(結像側)に出射する「出光側素子基板」とされる構成のものを例示したが、第1素子基板を「出光側素子基板」とし、第2素子基板を「入光側素子基板」とした構成のものも本発明に含まれる。
 (3)上記した各実施形態では、素子基板貼り合わせ工程において第1素子基板における内側の板面に対して基板間接着層をなす紫外線硬化性樹脂材料を塗布した場合を示したが、素子基板貼り合わせ工程において第2素子基板における内側の板面に対して基板間接着層をなす紫外線硬化性樹脂材料を塗布するようにしてもよい。また、素子基板貼り合わせ工程において第1素子基板と第2素子基板との両方に対して基板間接着層をなす紫外線硬化性樹脂材料を塗布することも可能である。
 (4)上記した実施形態1では、第2平板貼り合わせ工程を行った後に第1平板貼り合わせ工程を行った場合を示したが、先に第1平板貼り合わせ工程を行った後に第2平板貼り合わせ工程を行うようにしてもよい。
 (5)上記した実施形態1では、素子基板貼り合わせ工程を行った後に各平板貼り合わせ工程を行った場合を示したが、先に各平板貼り合わせ工程を行ってから素子基板貼り合わせ工程を行うようにしてもよい。それ以外にも、例えば先に第1平板貼り合わせ工程(第2平板貼り合わせ工程)を行った後に素子基板貼り合わせ工程を行い、さらにその後に第2平板貼り合わせ工程(第1平板貼り合わせ工程)を行うようにしてもよい。
 (6)上記した実施形態2において、第1平板貼り合わせ工程と第2平板貼り合わせ工程とを並行して行うことも可能であり、またこれらを相前後して行うことも可能である。同様に第1研磨工程と第2研磨工程とを並行して行うことも可能であり、またこれらを相前後して行うことも可能である。
 (7)上記した実施形態3では、第1素子基板に対して第1平板を貼り合わせるのに対して第2素子基板における外側の板面にのみ研磨加工を施す場合を示したが、第2素子基板に対して第2平板を貼り合わせるのに対して第1素子基板における外側の板面にのみ研磨加工を施すようにすることも可能である。
 (8)上記した実施形態4では、第1素子基板における外側の板面と、第2素子基板における内側の板面とに対して研磨加工を施した場合を示したが、第1素子基板における内側の板面と、第2素子基板における外側の板面とに対して研磨加工を施すようにしてもよい。また、第1素子基板における内側及び外側の両板面と、第2素子基板における内側の板面とに研磨加工を施したり、第1素子基板における内側の板面と、第2素子基板における内側及び外側の両板面とに研磨加工を施すことも可能である。
 (9)上記した実施形態5では、製造途中において第1平板、第1接着層、及び第1素子基板における外側の板面を研磨した場合を示したが、製造途中において第2平板、第2接着層、及び第2素子基板における外側の板面を研磨することも可能である。
 (10)上記した各実施形態では、各素子基板における各透光性基材と各平板と各平板接着層とで屈折率が同一とされたものを示したが、各素子基板における各透光性基材と各平板と各平板接着層とで屈折率が多少異なる構成を採ることも可能である。
 (11)上記した各実施形態では、各素子基板における各透光性基材と基板間接着層とで屈折率が同一とされたものを示したが、各素子基板における各透光性基材と基板間接着層とで屈折率が多少異なる構成を採ることも可能である。
 (12)上記した各実施形態では、各素子基板における各透光性基材が同一材料からなる構成のものを示したが、各素子基板における各透光性基材を異なる材料からなる構成を採ることも可能である。
 (13)上記した各実施形態では、各平板が同一材料からなる構成のものを示したが、各平板を異なる材料からなる構成を採ることも可能である。
 (14)上記した各実施形態では、基板間接着層、第1平板接着層、及び第2平板接着層が共に紫外線硬化性樹脂材料からなる構成のものを示したが、これらの材料として他の硬化性樹脂材料を用いることも可能であり、例えば可視光線により硬化する光硬化性樹脂材料を用いたり、紫外線及び可視光線の双方によって硬化する光硬化性樹脂材料を用いたり、熱によって硬化する熱硬化性樹脂材料を用いることも可能である。また、硬化性樹脂材料以外にも、例えばほぼ透明な基材の表裏両面に粘着剤が塗布されてなる両面テープを用いることも可能である。
 (15)上記した各実施形態では、第1平板接着層及び第2平板接着層が同一の紫外線硬化性樹脂材料からなる場合を示したが、第1平板接着層と第2平板接着層とで用いる材料の種類を変更することも可能である。
 (16)上記した各実施形態では、基板間接着層と各平板接着層とが同一の紫外線硬化性樹脂材料からなる場合を示したが、基板間接着層と各平板接着層とで用いる材料の種類を変更することも可能である。
 (17)上記した各実施形態では、平面に視て横長の方形状をなす反射型結像素子を例示したが、平面に視て縦長の方形状をなす反射型結像素子にも本発明は適用可能である。それ以外にも、反射型結像素子の具体的な平面形状は適宜に変更可能であり、例えば平面に視て正方形状をなす反射型結像素子や、平面に視て円形状または楕円形状をなす反射型結像素子などにも本発明は適用可能である。また、上記した各実施形態では、各素子基板の製造方法に関して2通りの製造方法を例示したが、その他の製造方法によって各素子基板を製造することも可能である。
 (18)上記した各実施形態では、反射型結像素子を、液晶表示装置と組み合わせて用いた場合について示したが、液晶表示装置を構成する液晶パネル及びバックライト装置の具体的な構成については適宜に変更することが可能である。
 (19)上記した各実施形態では、反射型結像素子を、液晶パネルを備えた液晶表示装置と組み合わせて用いた場合について例示したが、例えば有機ELパネルを備えた表示装置やプラズマディスプレイパネル(PDP)を備えた表示装置などの他の表示装置と反射型結像素子を組み合わせて用いることも勿論可能である。
 (20)上記した各実施形態では、表示装置に表示された画像を立体画像として投影する目的で本発明に係る反射型結像素子を用いた場合を示したが、表示装置以外の被投影物(例えば美術品など)を反射型結像素子に対して投影側とは反対側に配置し、その被投影物の立体画像を投影する目的で本発明に係る反射型結像素子を使用することも勿論可能である。
 10,110,210,310,410,510…反射型結像素子、11,111,211,311,411,511…第1素子基板、11a,111a,211a,311a,411a,511a…内側の板面、11b,111b,211b,311b,411b,511b…外側の板面、12,112,212,312,412,512…第2素子基板、12a,112a,212a,312a,412a,512a…内側の板面、12b,112b,212b,312b,412b,512b…外側の板面、13,113,213,313,413…第1透光性基材、14,114,314,414…第1平面反射部、15,115,215,315…第2透光性基材、16…第2平面反射部、17,117,217…第1平板(平板)、18,118,318,418…第2平板(平板)、19,119,219…第1平板接着層(平板接着層)、20,120,320,420…第2平板接着層(平板接着層)、21,121…基板間接着層

Claims (11)

  1.  板面と直交する複数の第1平面反射部と、透光性を有するとともに前記第1平面反射部に並行する形で延在する複数の第1透光性基材とを交互に並列配置してなる第1素子基板と、
     内側の板面が前記第1素子基板における内側の板面と対向する形で貼り合わせられる第2素子基板であって、板面と直交し且つ前記第1平面反射部と直交する複数の第2平面反射部と、透光性を有するとともに前記第2平面反射部に並行する形で延在する複数の第2透光性基材とを交互に並列配置してなる第2素子基板と、
     一枚板状をなしていて、前記第1素子基板と前記第2素子基板との少なくともいずれか一方における外側の板面に対して対向する形で貼り合わせられる平板と、を備える反射型結像素子。
  2.  前記平板、及び前記第1素子基板と前記第2素子基板との少なくともいずれか一方は、間に介在する形で配される平板接着層により接着されるとともに、前記平板、及び前記第1素子基板の前記第1透光性基材と前記第2素子基板の前記第2透光性基材とのうち前記平板が貼り合わせられた少なくともいずれか一方における屈折率が互いに等しくされており、
     前記平板接着層は、その屈折率が、前記平板、及び前記第1素子基板の前記第1透光性基材と前記第2素子基板の前記第2透光性基材とのうち前記平板が貼り合わせられた少なくともいずれか一方における屈折率と等しい材料からなる請求項1記載の反射型結像素子。
  3.  前記平板は、前記第1素子基板の前記外側の板面と、前記第2素子基板の前記外側の板面とにそれぞれ前記平板接着層を介して貼り合わせられている請求項2記載の反射型結像素子。
  4.  前記第1素子基板と前記第2素子基板とのいずれか一方には、前記平板が前記平板接着層を介して貼り合わせられているのに対し、前記第1素子基板と前記第2素子基板とのうちの前記平板が貼り合わせられない他方における前記外側の板面は、研磨処理がなされた被研磨面とされている請求項2記載の反射型結像素子。
  5.  前記第1素子基板及び前記第2素子基板は、間に介在する形で配される基板間接着層により接着されるとともに前記第1透光性基材及び前記第2透光性基材における屈折率が互いに等しくされており、
     前記基板間接着層は、その屈折率が前記第1透光性基材及び前記第2透光性基材における屈折率と等しい材料からなる請求項1から請求項4のいずれか1項に記載の反射型結像素子。
  6.  前記第1素子基板及び前記第2素子基板は、それぞれにおける前記内側の板面が研磨処理をなされた被研磨面とされている請求項5記載の反射型結像素子。
  7.  板面と直交する複数の第1平面反射部と、透光性を有するとともに前記第1平面反射部に並行する形で延在する複数の第1透光性基材とを交互に並列配置してなる第1素子基板に対して、板面と直交し且つ前記第1平面反射部と直交する複数の第2平面反射部と、透光性を有するとともに前記第2平面反射部に並行する形で延在する複数の第2透光性基材とを交互に並列配置してなる第2素子基板を、その内側の板面が前記第1素子基板における内側の板面と対向する形で貼り合わせる素子基板貼り合わせ工程と、
     前記第1素子基板と前記第2素子基板との少なくともいずれか一方における外側の板面に対して一枚板状をなす平板を対向する形で貼り合わせる平板貼り合わせ工程と、を備える反射型結像素子の製造方法。
  8.  前記平板貼り合わせ工程では、前記第1素子基板及び前記第2素子基板に対してそれぞれ前記平板を貼り合わせている請求項7記載の反射型結像素子の製造方法。
  9.  前記素子基板貼り合わせ工程は、前記平板貼り合わせ工程に先立って行われている請求項8記載の反射型結像素子の製造方法。
  10.  前記平板貼り合わせ工程は、前記素子基板貼り合わせ工程に先立って行われており、
     前記平板貼り合わせ工程を行ってから前記素子基板貼り合わせ工程を行うまでの間に、前記第1素子基板及び前記第2素子基板における前記内側の板面をそれぞれ研磨する研磨工程を備える請求項8記載の反射型結像素子の製造方法。
  11.  前記平板貼り合わせ工程では、前記第1素子基板と前記第2素子基板とのいずれか一方に対して前記平板を貼り合わせており、
     前記平板貼り合わせ工程及び前記素子基板貼り合わせ工程を行った後に、前記第1素子基板と前記第2素子基板とのうちの前記平板が貼り合わせられない他方における前記外側の板面を研磨する研磨工程を備える請求項7記載の反射型結像素子の製造方法。
PCT/JP2014/054662 2013-04-12 2014-02-26 反射型結像素子、及び反射型結像素子の製造方法 WO2014167904A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/783,112 US9864178B2 (en) 2013-04-12 2014-02-26 Reflection imaging device and method of producing reflection imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013083866 2013-04-12
JP2013-083866 2013-04-12

Publications (1)

Publication Number Publication Date
WO2014167904A1 true WO2014167904A1 (ja) 2014-10-16

Family

ID=51689320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054662 WO2014167904A1 (ja) 2013-04-12 2014-02-26 反射型結像素子、及び反射型結像素子の製造方法

Country Status (2)

Country Link
US (1) US9864178B2 (ja)
WO (1) WO2014167904A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132984A1 (ja) * 2015-02-18 2016-08-25 コニカミノルタ株式会社 光学素子、それを用いた反射型空中結像素子及びこれらの製造方法
JP2017053922A (ja) * 2015-09-08 2017-03-16 松浪硝子工業株式会社 光制御パネルの製造方法、光制御パネル、光学結像装置、及び、空中映像形成システム
JP2017167326A (ja) * 2016-03-16 2017-09-21 株式会社千代田テクニカルアーツ 光学結像装置の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089445B (zh) * 2022-01-19 2022-04-29 像航(如东)科技有限公司 具有磁性反射层成像单元的光学成像元件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276699A (ja) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology 2面コーナーリフレクタアレイ
JP2009276698A (ja) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology 2面コーナーリフレクタアレイ
JP4865088B2 (ja) * 2008-04-22 2012-02-01 株式会社アスカネット 光学結像方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2748659A (en) * 1951-02-26 1956-06-05 Jenaer Glaswerk Schott & Gen Light source, searchlight or the like for polarized light
DE19511593C2 (de) * 1995-03-29 1997-02-13 Siemens Ag Mikrooptische Vorrichtung
US6404550B1 (en) * 1996-07-25 2002-06-11 Seiko Epson Corporation Optical element suitable for projection display apparatus
EP1612584A1 (en) * 2004-07-02 2006-01-04 Sony Deutschland GmbH Arrangement for illumination
JP5143898B2 (ja) * 2008-05-09 2013-02-13 パイオニア株式会社 空間映像表示装置
WO2013061619A1 (ja) * 2011-10-24 2013-05-02 株式会社アスカネット 光学結像装置
JP5921243B2 (ja) * 2012-02-14 2016-05-24 シャープ株式会社 反射型結像素子および光学システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865088B2 (ja) * 2008-04-22 2012-02-01 株式会社アスカネット 光学結像方法
JP2009276699A (ja) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology 2面コーナーリフレクタアレイ
JP2009276698A (ja) * 2008-05-16 2009-11-26 National Institute Of Information & Communication Technology 2面コーナーリフレクタアレイ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132984A1 (ja) * 2015-02-18 2016-08-25 コニカミノルタ株式会社 光学素子、それを用いた反射型空中結像素子及びこれらの製造方法
JP2017053922A (ja) * 2015-09-08 2017-03-16 松浪硝子工業株式会社 光制御パネルの製造方法、光制御パネル、光学結像装置、及び、空中映像形成システム
WO2017043456A1 (ja) * 2015-09-08 2017-03-16 松浪硝子工業株式会社 光制御パネルの製造方法、光制御パネル、光学結像装置、及び、空中映像形成システム
CN107636496A (zh) * 2015-09-08 2018-01-26 松浪硝子工业株式会社 光控制面板的制造方法、光控制面板、光学成像装置以及空中影像形成系统
JP2017167326A (ja) * 2016-03-16 2017-09-21 株式会社千代田テクニカルアーツ 光学結像装置の製造方法

Also Published As

Publication number Publication date
US20160062097A1 (en) 2016-03-03
US9864178B2 (en) 2018-01-09

Similar Documents

Publication Publication Date Title
JP7317800B2 (ja) 光学デバイス
JP5237437B2 (ja) 表示装置
JP6165206B2 (ja) 光制御パネルの製造方法、光制御パネル、光学結像装置、及び、空中映像形成システム
US10434746B2 (en) Laminated optical member, lighting device, display device, and television device with spacers defined in linear shapes along a plate surface with axes tilted relative to an arrangement direction of pixels
TWI495931B (zh) Liquid crystal display device
WO2016088389A1 (ja) 半透過型反射シート、導光板および表示装置
WO2013146783A1 (ja) 配列型表示装置
WO2014167904A1 (ja) 反射型結像素子、及び反射型結像素子の製造方法
WO2011093388A1 (ja) 導光シートおよび表示装置
CN106462000B (zh) 液晶显示装置
US11119359B2 (en) Optical composite film layer, display panel, and display device
JP2017134151A (ja) 空中映像表示デバイスおよび空中映像表示装置
JP5693541B2 (ja) 光照射装置
WO2016132984A1 (ja) 光学素子、それを用いた反射型空中結像素子及びこれらの製造方法
KR20100067252A (ko) 나노 와이어 그리드 편광판 및 그 제조 방법
JP2006349972A (ja) 偏光分離シート及びそれを用いた発光ユニット
JP2018045052A (ja) ルーバーフィルム、表示装置、液晶表示装置、有機el表示装置、ルーバーフィルムの製造方法、液晶表示装置の製造方法、および有機el表示装置の製造方法
TW201250303A (en) Optical sheet and method for manufacturing the same and liquid crystal display device using the same
JP6105465B2 (ja) 立体像形成装置の製造方法
JP2012215674A (ja) 立体液晶表示装置
JP6700106B2 (ja) 光学素子の製造方法及び反射型空中結像素子の製造方法
TWM510466U (zh) 具有光分配結構之偏振模組以及其液晶顯示器
JP6324096B2 (ja) 偏光ビームスプリッタ及び偏光分離素子の製造方法
JP2018097230A (ja) 光学素子の製造方法及び反射型空中結像素子の製造方法
JP2023113670A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783123

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14783112

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14783123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP