WO2014167688A1 - 眼科検査装置 - Google Patents

眼科検査装置 Download PDF

Info

Publication number
WO2014167688A1
WO2014167688A1 PCT/JP2013/060925 JP2013060925W WO2014167688A1 WO 2014167688 A1 WO2014167688 A1 WO 2014167688A1 JP 2013060925 W JP2013060925 W JP 2013060925W WO 2014167688 A1 WO2014167688 A1 WO 2014167688A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
eye
examined
target
light source
Prior art date
Application number
PCT/JP2013/060925
Other languages
English (en)
French (fr)
Inventor
長太 松本
博 遊亀
Original Assignee
神港精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神港精機株式会社 filed Critical 神港精機株式会社
Priority to PCT/JP2013/060925 priority Critical patent/WO2014167688A1/ja
Priority to JP2015511028A priority patent/JPWO2014167688A1/ja
Publication of WO2014167688A1 publication Critical patent/WO2014167688A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/024Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types

Definitions

  • the present invention relates to an ophthalmic examination apparatus, and more particularly to an ophthalmic examination apparatus that presents an image including a test target to the eye and inspects the subject's eye based on the visual status of the target by the eye. .
  • this type of ophthalmic examination apparatus is disclosed in Patent Document 1.
  • the target light generating means for generating the target light for forming the target in the video presented to the eye to be examined, and the background that is the area other than the target in the video are formed.
  • Each of the target light and the background light is non-polarized light.
  • combination means synthesize
  • a target-presenting light source a collimator lens that corrects unpolarized light emitted from the target-presenting light source to parallel light, and light that has been corrected to parallel light by the collimator lens
  • a liquid crystal shutter for presenting a target having an incident surface forms a shutter pattern in accordance with the shutter control signal for target presentation given from the liquid crystal controller on its incident surface. Specifically, only a part of the incident surface is a transmission region. The other area is defined as a blocking area.
  • a light source for background presentation, a collimator lens that corrects unpolarized light emitted from the light source for background presentation into parallel light, and light that has been corrected to parallel light by the collimator lens are incident.
  • a liquid crystal shutter for background presentation having a light incident surface.
  • the liquid crystal shutter for background presentation forms a shutter pattern exactly opposite to the liquid crystal shutter for target presentation on the incident surface in accordance with the shutter control signal for background presentation given from the liquid crystal controller.
  • the light transmitted through each liquid crystal shutter (transmission region) is combined by a half prism as a combining unit, and the combined light is projected onto the eye to be examined.
  • the light source for background presentation emits light with a certain brightness.
  • the target-presenting light source alternates between a first state that emits light with the same brightness as the background-presenting light source and a second state that does not emit light, that is, blinks.
  • the image to be examined is alternately presented with an image having uniform brightness over the entire visual field and an image in which only a part of the field is dark, that is, missing.
  • an image composed of a target corresponding to the partial area and blinking and a background other than the target and having the same constant brightness as when the target is brightest is presented. Is done.
  • the visual target is presented to the eye to be examined with the same brightness as the background or lower (darker) brightness, that is, at least the brightness below the background. Accordingly, an increase in the amount of incident light on the eye to be examined due to the presentation of the optotype is suppressed, and consequently stimulation to the eye to be examined (retina) is suppressed.
  • This is particularly effective in improving the reliability of subjective examinations (examination based on the subject's awareness) including visual field examinations.
  • visual targets are presented at various positions in the visual field of a subject (eye to be examined). When the subject can actually visually recognize the presented target, the subject performs a predetermined intention display such as operating a response button.
  • the synthesized light projected on the eye to be examined in order to present the above image to the eye to be examined is unpolarized light that is the same as natural light, it is not affected by so-called polarization when the eye to be examined is examined. . That is, for example, when the synthesized light presented to the eye to be examined is polarized light, the appearance of the video (target and background) by the eye to be examined varies depending on the incident angle of the synthesized light with respect to the eye to be examined. This also leads to a decrease in inspection reliability. According to the prior art, since it is not affected by such polarization, a highly reliable inspection is realized.
  • the light source for the target presentation and the light source for the background presentation are provided separately from each other, so that the brightness (luminance) and color between the two light sources are matched. Adjustments are necessary and extremely cumbersome.
  • the optical system for target presentation and from the light source for background presentation to the half prism through the collimator lens and the liquid crystal shutter are also troublesome because it is necessary to adjust the optical axes of the optical system for background presentation.
  • an object of the present invention is to provide an ophthalmic examination apparatus that has a simpler configuration than the conventional one and does not require troublesome adjustment.
  • the present invention provides an ophthalmic examination apparatus that presents an image including a test target to the subject's eye and inspects the subject's eye based on the visual status of the target by the subject's eye.
  • One light source means is provided.
  • the light source means has an incident surface on which the light is incident, and modulates the light incident on the incident surface and projects the modulated image onto the eye to be examined.
  • Presenting light valve means is provided.
  • a target of the image is formed by the light incident on a part of the incident surface of the light valve means, and the light incident on a part other than the part of the incident surface of the light valve means.
  • Light valve control means is provided for controlling the light valve means so that a background which is an area other than the target in the video is formed.
  • the video presented to the eye to be examined consists of a visual target and a background that is an area other than the visual target.
  • the visual target and the background are formed by presenting light emitted from one common light source means to the eye to be examined through the common light valve means. Therefore, for example, since there are two light sources, that is, a target-presenting light source and a background-presenting light source, the above-described conventional technology that requires adjustment for adjusting the brightness and color between the two light sources is necessary. Unlike that, no such adjustment is necessary.
  • the optical system for displaying the target including the liquid crystal shutter for displaying the target and the optical system for displaying the background including the liquid crystal shutter for displaying the background have two optical systems.
  • the light valve control means alternately changes the brightness of the visual target presented to the eye to be examined to a first level and a second level lower than the first level. It is desirable to control the light valve control means so that the brightness of the presented background is the same constant level as the first level.
  • an image having uniform brightness over the entire visual field and an image in which only the visual target is darkly dropped are alternately presented on the eye to be examined.
  • an image composed of a blinking target and a background having the same constant brightness as that when the target is brightest is presented.
  • the visual target is presented at the same brightness as the background or lower, that is, at least the brightness below the background. Therefore, an increase in the amount of incident light on the eye to be examined due to the presentation of the visual target is suppressed, and consequently stimulation to the eye to be examined is suppressed. This is particularly effective in improving the reliability of subjective inspections such as visual field inspections.
  • the light valve control means controls the light valve means so that the brightness of the target changes continuously between the first level and the second level.
  • the brightness of the target changes in a sine curve.
  • the light valve means may be a liquid crystal shutter which is a kind of liquid crystal panel, for example.
  • a transmissive type is particularly suitable.
  • a light splitting means may be provided between the light valve means and the eye to be examined. This light splitting means splits the modulated light modulated by the light valve means into two. Then, one of the two divided lights divided by the light dividing means is presented to the eye to be examined. Furthermore, a monitoring unit that monitors the other of the two divided lights divided by the light dividing unit may be provided. According to this configuration, the same image as that presented to the eye to be examined is simultaneously monitored by the monitoring means, that is, in real time. Therefore, the operator who operates the ophthalmic examination apparatus according to the present invention can grasp the video presentation status to the eye to be examined based on the monitoring result by the monitoring means.
  • light source control means for controlling the light source means so that the intensity of light emitted from the light source means is constant may be provided.
  • the light source control means controls the light source means based on the monitoring result by the monitoring means. According to this configuration, since the brightness of the video presented to the eye to be examined is stabilized, the examination reliability can be further improved.
  • Such an embodiment of the present invention is suitable for a perimeter for measuring the visual field of an eye to be examined.
  • FIG. 3 is an illustrative view showing an image presented to an eye to be examined when the shutter pattern of FIG. 2 is formed. It is a figure which shows schematic structure of the perimeter based on 2nd Embodiment of this invention.
  • the perimeter 10 includes one light source 12.
  • the light source 12 is, for example, a white light emitting diode (LED) that emits substantially white light close to natural light, and the brightness (luminance) can be arbitrarily adjusted by control by the light source controller 14 connected to the light source 12.
  • LED white light emitting diode
  • the light emitted from the light source 12 is corrected to parallel light by the collimator lens 16 and then incident on an incident surface 20 (left surface in FIG. 1) of a transmissive liquid crystal (LCD) shutter 18 as a light valve means. Is done.
  • the liquid crystal shutter 18 has its entrance surface (strictly speaking, the entrance surface and the exit surface (right surface in FIG. 1) in accordance with a shutter control signal provided from a liquid crystal controller 20 serving as a light valve control means connected thereto.
  • a shutter pattern as shown in FIG. 2 is formed on the effective area 20 of the shutter surface.
  • the second pattern in which only some small circular portions 20a of 20 are in a cut-off state (minimum transmittance) are alternately formed.
  • One of the first pattern and the second pattern does not change abruptly but changes gradually over an appropriate time. Accordingly, in the process of changing from one of the first pattern and the second pattern to the other, as shown in FIG. 2 (c), a so-called halfway pattern is formed in which the circular portion 20a becomes a semi-transmissive state (semi-blocked state). Is done.
  • the transmittance of the circular portion 20a changes in a substantially sinusoidal manner as shown in FIG.
  • the cycle in which the transmittance of the circular portion 20a is repeatedly highest or lowest in other words, the cycle in which each of the first pattern shown in FIG. 2A and the second pattern shown in FIG. 2B is repeatedly formed
  • the repetition period T can be arbitrarily adjusted within a range of, for example, 5 [ms] to 1 [s].
  • the liquid crystal shutter 18 is, for example, a so-called FHD (Full High Definition) type whose incident surface 20 has a horizontal resolution of 1920 pixels and a vertical resolution of 1080 pixels.
  • the dimension (diagonal dimension) of the incident surface 20 is about 18.7 mm (0.74 inches).
  • FHD Full Definition
  • the magnifying optical system 24 includes a lens for focus adjustment. Then, the focus adjustment lens allows the eye to be examined (retina) and the exit surface of the liquid crystal shutter 18 to be conjugate with each other, that is, the focus of the subject eye meets the exit surface of the liquid crystal shutter 18. Adjustments are made.
  • the light modulated by the liquid crystal shutter 18 is projected onto the eye to be examined through the magnifying optical system 24, so that an image 100 as shown in FIG. 4 is presented to the eye to be examined. That is, for example, when the first pattern shown in FIG. 2A is formed by the liquid crystal shutter 18, as shown in FIG. 4A, an image 100 having uniform brightness over the entire visual field of the eye to be examined. Is presented. In other words, the visual target 100a that is an area corresponding to the above-described circular portion 20a of the video 100 and the background 100b that is an area other than the visual target 100a of the video 100 are presented with the same brightness. Is done.
  • the second pattern shown in FIG. 2B is formed by the liquid crystal shutter 18, as shown in FIG. 4B, an image 100 in which only the target 100a is darkly dropped is presented. . That is, the target 100a is darker than the background 100b, so that it is distinguished from the background 100b, that is, the surface is formed.
  • the video 100 shown in FIG. 4 (a) and the video 100 shown in FIG. 4 (b) are alternately presented according to the repetition period T described above.
  • the target 100a blinks.
  • the transmittance of the circular portion 20a corresponding to the target 100a changes in a substantially sinusoidal manner as shown in FIG. 3, the target 100a also blinks slowly in a so-called approximate sinusoidal manner.
  • . 4C corresponding to the halfway pattern shown in FIG. 2C in the process of transition from one to the other of the video 100 shown in FIG. 4A and the video 100 shown in FIG. 4B.
  • the angle of view of the image 100 presented to the eye to be examined is sufficiently wider than the visual field of the eye to be examined, for example, about 60 degrees on each of the left and right in the horizontal direction (120 degrees in total), and up and down in the vertical direction. Each is about 60 degrees (total of 120 degrees). Of course, it is not limited to this.
  • a fixation target gaze point
  • a fixation target gaze point for fixing the eye to be examined is also presented separately from the target 100a.
  • the position of the target 100a that is, the position of the circular portion 20a can be arbitrarily changed.
  • the size and shape of the target 100a can be arbitrarily changed.
  • a plurality of visual targets 100a can be presented simultaneously.
  • the blinking cycle (repetition cycle) T of the target 100a can be arbitrarily changed in the range of 5 [ms] to 1 [s] as described above. That is, in frequency conversion, the blinking frequency f of the target 100a can be arbitrarily changed in the range of 1 [Hz] to 200 [Hz].
  • the visual field inspection is performed in the following procedure. That is, the target 100a is presented to the subject's eye with the subject's eye being placed on the exit surface side (right side in FIG. 1) of the magnifying optical system 24.
  • the subject operates a response button (not shown), for example, when the target 100a can be actually visually recognized.
  • the operator who is the examiner determines whether or not the subject can visually recognize the target 100a based on the operation state of the response button by the subject, that is, based on the intention display of the subject. Check. This operation is repeated while the position of the target 100a is appropriately changed. At that time, the flashing cycle T (flashing frequency f) of the target 100a is changed as necessary. Thereby, the visual field of the eye to be examined is measured.
  • the target 100a is presented with a brightness of at least the background 100b. Therefore, an increase in the amount of incident light on the eye to be examined due to the presentation of the optotype 100a is suppressed, and consequently stimulation to the eye to be examined is suppressed. This is extremely effective in improving the reliability of the subjective inspection based on the subject's awareness, ie, visual field inspection. This is the same as the above-described prior art.
  • the light emitted from the light source 12 is non-polarized light.
  • the non-polarized light is maintained in the non-polarized state, and the collimator lens 16, the liquid crystal shutter 18, and the magnifying optical system 24.
  • Through the eye Therefore, for example, unlike the case where the light incident on the eye to be examined is polarized light, it is not affected by polarization. This also greatly contributes to the improvement of inspection reliability. This is also the same as in the prior art.
  • a highly reliable visual field inspection can be realized as in the conventional technique.
  • the conventional technique has two light sources, a light source for target presentation and a light source for background presentation, it is necessary to adjust the brightness and color of the two light sources to match each other.
  • an optical system for displaying the target including a liquid crystal shutter for displaying the target and an optical system for displaying the background including a liquid crystal shutter for displaying the background. Adjustment for aligning the optical axes of the two optical systems is necessary, but according to the perimeter 10 according to the first embodiment, such adjustment is not necessary at all.
  • the perimeter 10 unlike the prior art, there is one light source 12, and from this light source 12, a collimator lens 16, a liquid crystal shutter 18, and an enlarging optical system 24 are provided.
  • a collimator lens 16 a liquid crystal shutter 18, and an enlarging optical system 24 are provided.
  • the configuration of the entire perimeter 10 can be further simplified. That is, the perimeter 10 is realized with a simpler configuration than that of the prior art and does not require troublesome adjustment.
  • a white light emitting diode is used as the light source 12, but the present invention is not limited to this.
  • a so-called RGB-LED light source in which a large number of red light emitting diodes, a large number of green light emitting diodes, and a large number of blue light emitting diodes are two-dimensionally arranged may be employed.
  • the color emitted from the light source 12 can be arbitrarily changed.
  • Other than light emitting diodes such as incandescent bulbs and halogen lamps can also be used.
  • a collimator lens 16 for correcting light emitted from the light source 12 into parallel light is provided, but the collimator lens 16 is not an essential element.
  • the collimator lens 16 is not an essential element.
  • the collimator lens 16 may not be provided.
  • the transmissive liquid crystal shutter 18 is adopted as the light valve means, it is not limited to this.
  • a reflective liquid crystal shutter may be employed.
  • the reflected light (modulated light) from the reflective liquid crystal shutter is presented to the eye to be examined via the magnifying optical system 24.
  • a micromirror device having a configuration in which a large number of micromirrors are two-dimensionally arranged may be employed. Also in this case, the reflected light from the micromirror device is presented to the eye to be examined via the magnifying optical system 24.
  • the perimeter 110 according to the second embodiment includes, for example, a cube-shaped half prism 30 as a light splitting unit, and a monitoring unit in the configuration of the perimeter 10 according to the first embodiment.
  • a CCD (Charge Coupled Device) camera 32 and a feedback circuit 34 as a light source control means are added.
  • the second embodiment is the same as the first embodiment. Therefore, the same parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the half prism 30 is provided between the liquid crystal shutter 18 and the magnifying optical system 24 in the optical path from the light source 12 to the eye to be examined.
  • the half prism 30 has a boundary surface 30a inside, and this boundary surface 30a is a traveling direction of light modulated by the liquid crystal shutter 18 with respect to the optical path from the light source 12 to the eye to be examined. With respect to the angle of 45 degrees.
  • the light modulated by the liquid crystal shutter 18 is incident on the boundary surface 30a of the half prism 30, and is divided equally into transmitted light and reflected light.
  • the transmitted light is incident on the eye to be examined via the magnifying optical system 24.
  • the reflected light from the boundary surface 30a travels in a direction perpendicular to the traveling direction of the transmitted light, enters the CCD camera 32, and in detail enters an imaging surface (not shown) in the CCD camera 32.
  • the CCD camera 32 includes a lens for focus adjustment. With this lens for focus adjustment, focus adjustment can be performed so that the imaging surface in the CCD camera 32 and the exit surface of the liquid crystal shutter 18 are conjugated with each other. Made. As a result, the same image 100 as that presented to the eye to be examined is projected onto the imaging surface in the CCD camera 32. Therefore, the operator can grasp the same image 100 that is presented to the eye to be examined in real time by monitoring the imaging result by the CCD camera 32, that is, the captured image.
  • the imaging result (for example, luminance signal) by the CCD camera 32 is given to the feedback circuit 34.
  • the feedback circuit 34 is based on the imaging result of the CCD camera 32 so that the brightness of the video image taken by the CCD camera 32 is constant, in other words, the brightness of the video image 100 presented to the eye to be examined is constant.
  • the light source controller 14 is controlled, and consequently the brightness of the light source 12 is controlled. Thereby, the brightness of the image 100 presented to the eye to be examined is stabilized, and the reliability of the visual field inspection is further improved.
  • the cube-shaped half prism 30 is employed as the light splitting means, but the present invention is not limited to this.
  • a flat half mirror may be employed.
  • a deviation occurs in the optical axis on the transmitted light side due to light refraction according to its thickness. In view of this, it is more convenient to employ the half prism 30 than the half prism.
  • CMOS Complementary A CMOS camera equipped with a metal oxide semiconductor
  • an appropriate optical system is provided, and an image similar to that projected onto the eye to be examined is directly monitored via this appropriate optical system, or a screen or the like. May be projected on the
  • a monitoring means such as a CCD camera 32 or the like.
  • a light detection means such as a light sensor for detecting the intensity of light may be provided, and a detection result by this light detection means may be provided to the feedback circuit 34.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

【課題】 従来よりも簡素な構成であると共に面倒な調整を必要としない眼科検査装置を提供する。 【解決手段】 光源12から発せられた光は、コリメータレンズ16によって平行光に補正された後、液晶シャッタ18の入射面20に入射される。液晶シャッタ18の入射面20には、その全体が透過状態(最高透過率)となる第1パターンと、当該入射面20の一部の小さい部分20aのみが遮断状態(最低透過率)となる第2パターンと、が交互に形成される。そして、この液晶シャッタ18の入射面20を透過した光が、拡大光学系24を介して被検眼に投射される。これにより、被検眼には、その視野の全体にわたって一様な明るさの映像と、液晶シャッタ18の入射面20の一部分20aに対応する視標のみが暗く抜け落ちたような映像と、が交互に呈示される。即ち、点滅する視標が呈示される。

Description

眼科検査装置
 本発明は、眼科検査装置に関し、特に、検査用の視標を含む映像を被検眼に呈示すると共にこの被検眼による視標の視認状況に基づいて当該被検眼の検査を行う、眼科検査装置に関する。
 この種の眼科検査装置として、従来、例えば特許文献1に開示されたものがある。この従来技術によれば、被検眼に呈示される映像のうち視標を形成するための視標光を生成する視標光生成手段と、当該映像のうち視標以外の領域である背景を形成するための背景光を生成する背景光生成手段と、これら視標光および背景光を合成して被検眼に投射する合成手段と、が具備されている。なお、視標光および背景光のそれぞれは、無偏光の光である。そして、合成手段は、当該無偏光の状態を維持したまま、これら視標光および背景光を合成する。
 具体的には、視標呈示用の光源と、この視標呈示用の光源から発せられた無偏光の光を平行光に補正するコリメータレンズと、このコリメータレンズによって平行光に補正された光が入射される入射面を有する視標呈示用の液晶シャッタと、が設けられている。視標呈示用の液晶シャッタは、その入射面に、液晶コントローラから与えられる視標呈示用のシャッタ制御信号に従うシャッタパターンを形成し、詳しくは当該入射面のうち一部の領域のみを透過領域とし、それ以外の領域を遮断領域とする。これとは別に、背景呈示用の光源と、この背景呈示用の光源から発せられた無偏光の光を平行光に補正するコリメータレンズと、このコリメータレンズによって平行光に補正された光が入射される入射面を有する背景呈示用の液晶シャッタと、が設けられている。背景呈示用の液晶シャッタは、液晶コントローラから与えられる背景呈示用のシャッタ制御信号に従って、その入射面に、視標呈示用の液晶シャッタとは全く正反対のシャッタパターンを形成する。その上で、各液晶シャッタ(透過領域)を透過した光が合成手段としてのハーフプリズムによって合成されて、その合成光が被検眼に投射される。ここで、背景呈示用の光源は、一定の明るさで発光する。一方、視標呈示用の光源は、背景呈示用の光源と同じ明るさで発光する第1の状態と、非発光の第2の状態と、に交互に遷移し、つまり点滅する。この結果、被検眼には、その視野の全体にわたって一様な明るさの映像と、一部の領域のみが暗く言わば抜け落ちたような映像と、が交互に呈示される。言い換えれば、当該一部の領域に対応すると共に点滅する視標と、この視標以外の領域であって当該視標が最も明るいときと同じ一定の明るさの背景と、から成る映像が、呈示される。
 即ち、視標は、背景と同じ明るさか、それよりも低い(暗い)明るさで、つまり少なくとも背景以下の明るさで、被検眼に呈示される。従って、この視標が呈示されることによる被検眼への入射光量の増大が抑制され、ひいては当該被検眼(網膜)への刺激が抑制される。このことは特に、視野検査をはじめとする自覚的検査(被検者の自覚に基づく検査)において、その信頼性の向上を図る上で極めて有効である。例えば、視野検査においては、被検者(被検眼)の視野の様々な位置に視標が呈示される。被検者は、この呈示された視標を実際に視認し得たときに、応答ボタンを操作する等の所定の意思表示をする。ここで例えば、被検者の視野の一部が欠損しており、この欠損部分に視標が呈示される、とする。このときもし、視標の明るさが背景の明るさよりも高い(明るい)、とすると、被検者は、視標を実際に視認し得ていないにも拘らず、背景よりも明るい当該視標が呈示されることによる刺激を受けて、あたかも当該視標を実際に視認し得ているものと勘違する、つまり誤認識する、恐れがある。この誤認識は言うまでもなく、検査の信頼性の低下を招く。これに対して、従来技術によれば、視標が少なくとも背景以下の明るさで被検眼に呈示されるので、この視標が呈示されることによる当該被検眼への刺激が抑制され、ひいては誤認識が防止される。この結果、信頼性の高い検査が実現される。
 加えて、被検眼に上述の映像を呈示するために当該被検眼に投射される合成光は、自然光と同じ無偏光の光であるので、当該被検眼の検査に際して、いわゆる偏光の影響を受けない。即ち例えば、被検眼に呈示される合成光が偏光光である場合には、この合成光の被検眼に対する入射角度によって、当該被検眼による映像(視標および背景)の見え方が変わる。このこともまた、検査の信頼性の低下を招く。従来技術によれば、このような偏光の影響を受けないので、信頼性の高い検査が実現される。
国際公開第2009/001458号
 しかし、上述の従来技術では、視標呈示用の光源と背景呈示用の光源とが互いに別個に設けられているので、これら2つの光源間で互いの明るさ(輝度)や色を合わせるための調整が必要であり、極めて面倒である。また、視標呈示用の光源からコリメータレンズおよび液晶シャッタを経てハーフプリズムに至るまでの言わば視標呈示用の光学系と、背景呈示用の光源からコリメータレンズおよび液晶シャッタを経て当該ハーフプリズムに至るまでの言わば背景呈示用の光学系と、の間で、互いの光軸を合わせるための調整も必要であるので、やはり面倒である。加えて、これら2つの光学系やハーフプリズムを含む従来技術よりも、装置全体の構成のさらなる簡素化を実現したい、という希望もある。
 そこで、本発明は、従来よりも簡素な構成であると共に面倒な調整を必要としない眼科検査装置を提供することを、目的とする。
 この目的を達成するために、本発明は、検査用の視標を含む映像を被検眼に呈示すると共にこの被検眼による視標の視認状況に基づいて当該被検眼の検査を行う眼科検査装置において、1つの光源手段を、具備する。そして、この光源手段から発せられた光が入射される入射面を有しており、当該入射面に入射された光を変調して被検眼に投射することで視標を含む映像を被検眼に呈示する、ライトバルブ手段を、具備する。さらに、このライトバルブ手段の入射面の一部に入射された光によって当該映像のうちの視標が形成されると共に、当該ライトバルブ手段の入射面の一部以外の部分に入射された光によって当該映像のうちの視標以外の領域である背景が形成されるように、当該ライトバルブ手段を制御する、ライトバルブ制御手段を、具備する。
 即ち、本発明によれば、被検眼に呈示される映像は、視標と当該視標以外の領域である背景とから成る。そして、これら視標と背景とは、互いに共通の1つの光源手段から発せられた光が互いに共通のライトバルブ手段を介して被検眼に呈示されることによって形成される。従って例えば、視標呈示用の光源と背景呈示用の光源との2つの光源を有するがゆえに、これら2つの光源間で互いの明るさや色を合わせるための調整が必要である上述の従来技術とは異なり、そのような調整は必要ない。また、視標呈示用の液晶シャッタを含む当該視標呈示用の光学系と背景呈示用の液晶シャッタを含む当該背景呈示用の光学系との2つの光学系を有するがゆえに、これら2つの光学系の間で互いの光軸を合わせるための調整が必要である当該従来技術とは異なり、そのような調整も必要ない。加えて、従来技術とは異なり、光源手段が1つであり、併せて、この光源手段からライトバルブ手段を介して被検眼に至るまでの光学系が1つであり、しかも、ハーフプリズムが不要であるので、当該従来技術と比べて、装置全体の構成のさらなる簡素化が実現される。
 なお、本発明において、ライトバルブ制御手段は、被検眼に呈示される視標の明るさが第1レベルと当該第1レベルよりも低い第2レベルとに交互に変化すると共に、当該被検眼に呈示される背景の明るさが当該第1レベルと同じ一定のレベルとなるように、ライトバルブ制御手段を制御するのが、望ましい。この構成によれば、被検眼には、その視野の全体にわたって一様な明るさの映像と、視標のみが暗く抜け落ちたような映像と、が交互に呈示される。言い換えれば、点滅する視標と、この視標が最も明るいときと同じ一定の明るさの背景と、から成る映像が、呈示される。要するに、視標は、背景と同じ明るさか、それよりも低い明るさで、つまり少なくとも背景以下の明るさで、呈示される。従って、この視標が呈示されることによる被検眼への入射光量の増大が抑制され、ひいては当該被検眼への刺激が抑制される。このことは特に、視野検査をはじめとする自覚的検査において、その信頼性の向上を図る上で極めて有効である。
 また、ライトバルブ制御手段は、視標の明るさが第1レベルと第2レベルとの間で連続的に変化するようにライトバルブ手段を制御するのが、望ましい。特に、当該視標の明るさが正弦曲線(sinカーブ)的に変化するのが、望ましい。
 ここで言うライトバルブ手段は、例えば液晶パネルの一種である液晶シャッタであってもよい。この液晶シャッタとしては、特に透過型のものが、好適である。
 さらに、ライトバルブ手段と被検眼との間に、光分割手段が設けられてもよい。この光分割手段は、ライトバルブ手段によって変調された変調後光を2つに分割する。そして、この光分割手段によって分割された2つの分割後光の一方が、被検眼に呈示される。さらに、当該光分割手段によって分割された2つの分割後光の他方を監視する監視手段が、設けられてもよい。この構成によれば、被検眼に呈示されるのと同じ映像が、監視手段によって同時に、言わばリアルタイムで、監視される。従って、本発明の眼科検査装置を操作するオペレータは、この監視手段による監視結果を基に被検眼への映像の呈示状況を把握することができる。
 加えて、光源手段から発せられる光の強度が一定となるように当該光源手段を制御する光源制御手段が、設けられてもよい。この場合、当該光源制御手段は、監視手段による監視結果に基づいて光源手段を制御するのが、望ましい。この構成によれば、被検眼に呈示される映像の明るさが安定化されるので、検査の信頼性のさらなる向上が図られる。
 このような本発明は、被検眼の視野を測定するための視野計に、好適である。
本発明の第1実施形態に係る視野計の概略構成を示す図である。 同第1実施形態における液晶シャッタの入射面に形成されるシャッタパターンの一例を示す図解図である。 図2のシャッタパターンのうち視標に対応する部分の透過率の時間に対する変化を示す図解図である。 図2のシャッタパターンが形成されたときに被検眼に呈示される映像を示す図解図である。 本発明の第2実施形態に係る視野計の概略構成を示す図である。
 本発明の第1実施形態について、図1~図4を参照して説明する。
 図1に示すように、本第1実施形態に係る視野計10は、1つの光源12を備えている。この光源12は、例えば自然光に近い概略白色の光を発する白色発光ダイオード(LED)であり、その明るさ(輝度)は、当該光源12に接続された光源コントローラ14による制御によって任意に調整可能とされている。
 この光源12から発せられた光は、コリメータレンズ16によって平行光に補正された後、ライトバルブ手段としての透過型の液晶(LCD)シャッタ18の入射面20(図1において左側の面)に入射される。液晶シャッタ18は、これに接続されたライトバルブ制御手段としての液晶コントローラ20から与えられるシャッタ制御信号に従って、その入射面(厳密には当該入射面と出射面(図1において右側の面)とを含むシャッタ面の有効エリア)20に、例えば図2に示すようなシャッタパターンを形成する。
 具体的には、図2(a)に示すように、方形の入射面20の全体が透過状態(最高透過率)となる第1パターンと、図2(b)に示すように、当該入射面20のうち一部の小さい円形の部分20aのみが遮断状態(最低透過率)となる第2パターンと、が交互に形成される。これら第1パターンおよび第2パターンの一方から他方へは、急激に変化するのではなく、適当な時間を掛けて緩やかに変化する。従って、これら第1パターンおよび第2パターンの一方から他方に変化する過程で、図2(c)に示すように、円形の部分20aが半透過状態(半遮断状態)となる言わば中途パターンが形成される。より詳しくは、円形部分20aに注目すると、この円形部分20aの透過率が、図3に示すように、概略正弦曲線的に変化する。なお、この円形部分20aの透過率が繰り返し最高または最低となる周期、言い換えれば図2(a)に示す第1パターンおよび図2(b)に示す第2パターンのそれぞれが繰り返し形成される周期、言わば繰り返し周期Tは、例えば5[ms]~1[s]の範囲で任意に調整可能である。液晶シャッタ18は、例えばその入射面20の水平方向解像度が1920画素、垂直方向解像度が1080画素の、いわゆるFHD(Full High Definition)タイプのものである。そして、当該入射面20の寸法(対角寸法)は、約18.7mm(0.74インチ)である。勿論、これらの解像度や寸法、さらにはアスペクト比を含め、これ以外のものが採用されてもよい。
 この液晶シャッタ18の入射面20を透過した(液晶シャッタ18の出射面から出射された)光、言わば変調後光は、拡大光学系24を介して被検眼に投射される。なお、詳しい図示は省略するが、拡大光学系24は、フォーカス調整用のレンズを含んでいる。そして、このフォーカス調整用のレンズによって、被検眼(網膜)と液晶シャッタ18の出射面とが互いに共役になるように、つまり当該被検眼の焦点が液晶シャッタ18の出射面に会うように、フォーカス調整が成される。
 このようにして液晶シャッタ18による変調後光が拡大光学系24を介して被検眼に投射されることによって、当該被検眼には、図4に示すような映像100が呈示される。即ち、液晶シャッタ18によって例えば図2(a)に示した第1パターンが形成されているときには、図4(a)に示すように、被検眼の視野の全体にわたって一様な明るさの映像100が呈示される。言い換えれば、当該映像100のうちの上述した円形部分20aに対応する領域である視標100aと、当該映像100のうちの視標100a以外の領域である背景100bとが、互いに同じ明るさで呈示される。
 一方、液晶シャッタ18によって図2(b)に示した第2パターンが形成されているときには、図4(b)に示すように、視標100aのみが暗く抜け落ちたような映像100が呈示される。即ち、視標100aは、背景100bよりも暗くなることで、当該背景100bと区別化され、言わば表面化される。
 これら図4(a)に示す映像100と図4(b)に示す映像100とは、上述の繰り返し周期Tに応じて交互に呈示される。この結果、視標100aが点滅する。詳しくは、視標100aに対応する上述の円形部分20aの透過率が図3に示した如く概略正弦曲線的に変化するので、当該視標100aもまた、概略正弦曲線的に言わば緩やかに点滅する。従って、図4(a)に示す映像100と図4(b)に示す映像100との一方から他方に遷移する過程で、図2(c)に示した中途パターンに対応する図4(c)に示すような映像100が被検眼に呈示される。
 なお、被検眼に呈示される映像100の画角は、当該被検眼の視野よりも十分に広く、例えば水平方向において左右のそれぞれに約60度ずつ(合計120度)、垂直方向においても上下のそれぞれに約60度ずつ(合計120度)である。勿論、これに限定されることはない。また、図示は省略するが、視標100aとは別に、被検眼を固定させておくための固視用の視標(注視点)も呈示される。
 さらに、視標100aの位置、つまり円形部分20aの位置は、任意に変更可能である。加えて、当該視標100aの大きさや形状も、任意に変更可能である。極端には、複数の視標100aが同時に呈示されるようにすることも可能である。また、この視標100aの点滅周期(繰り返し周期)Tは、上述の如く5[ms]~1[s]の範囲で任意に変更可能である。即ち、周波数換算では、当該視標100aの点滅周波数fは、1[Hz]~200[Hz]の範囲で任意に変更可能である。
 このような構成の視野計10によれば、次の手順で視野検査が行われる。即ち、拡大光学系24の出射面側(図1において右側)に被検者の被検眼が置かれた状態で、当該被検眼に視標100aが呈示される。被検者は、この視標100aを実際に視認し得たときに、例えば図示しない応答ボタンを操作する。検者であるオペレータは、この被検者による応答ボタンの操作状況に基づいて、つまり当該被検者の意思表示に基づいて、当該被検者が視標100aを視認し得ているか否かを確認する。この作業は、視標100aの位置が適宜に変更されながら繰り返される。その際、必要に応じて、視標100aの点滅周期T(点滅周波数f)が変更される。これによって、被検眼の視野が測定される。
 ここで、視標100aは、少なくとも背景100b以下の明るさで呈示される。従って、この視標100aが呈示されることによる被検眼への入射光量の増大が抑制され、ひいては当該被検眼への刺激が抑制される。このことは、視野検査という被検者の自覚に基づく自覚的検査において、その信頼性の向上を図る上で極めて有効である。そして、これについては、上述した従来技術と同様である。
 また、上述の光源12から発せられた光は、無偏光の光であるが、この無偏光の光は、当該無偏光の状態を維持したまま、コリメータレンズ16,液晶シャッタ18および拡大光学系24を介して被検眼に入射される。従って例えば、被検眼に入射される光が偏光光である場合とは異なり、偏光の影響を受けない。このこともまた、検査の信頼性の向上に大きく貢献する。そして、これについても、従来技術と同様である。
 このように、本第1実施形態に係る視野計10によれば、従来技術と同様、信頼性の高い視野検査を実現することができる。その上で、当該従来技術では、視標呈示用の光源と背景呈示用の光源との2つの光源を有するがゆえに、これら2つの光源間で互いの明るさや色を合わせるための調整が必要であり、併せて、視標呈示用の液晶シャッタを含む当該視標呈示用の光学系と背景呈示用の液晶シャッタを含む当該背景呈示用の光学系との2つの光学系を有するがゆえに、これら2つの光学系の間で互いの光軸を合わせるための調整が必要であるが、本第1実施形態に係る視野計10によれば、そのような調整が一切不要である。加えて、本第1実施形態に係る視野計10によれば、従来技術とは異なり、光源12が1つであり、また、この光源12からコリメータレンズ16,液晶シャッタ18および拡大光学系24を介して被検眼に至るまでの光学系が1つであり、しかも、ハーフプリズムが不要であるので、視野計10全体の構成のさらなる簡素化が実現される。即ち、従来よりも簡素な構成であると共に面倒な調整を必要としない視野計10が実現される。
 なお、本第1実施形態においては、光源12として、白色発光ダイオードが採用されたが、これに限らない。例えば、多数の赤色発光ダイオードと、多数の緑色発光ダイオードと、多数の青色発光ダイオードと、が2次元に配列された、いわゆるRGB-LED光源が、採用されてもよい。この場合、当該光源12から発せられる色を任意に変更することが可能となる。また、白熱球やハロゲンランプ等の発光ダイオード以外のものも採用可能である。
 さらに、光源12から発せられた光を平行光に補正するためのコリメータレンズ16が設けられたが、このコリメータレンズ16は、必須の要素ではない。例えば、光源12と液晶シャッタ18との相互間距離が短い場合には、当該光源12から発せられた光が平行光に補正されなくとも、つまり液晶シャッタ18に入射される光が平行光でなくとも、被検眼には図4に示したのと同様の適切な映像が呈示され、精確な視野検査が実現される。従って、このような場合には、コリメータレンズ16は、設けられなくてもよい。
 そして、ライトバルブ手段として、透過型の液晶シャッタ18が採用されたが、これに限らない。例えば、反射型の液晶シャッタが採用されてもよい。この場合、当該反射型の液晶シャッタによる反射光(変調後光)が、拡大光学系24を介して被検眼に呈示される。加えて、多数の微小ミラーが2次元的に配置された構成のマイクロミラーデバイスが採用されてもよい。この場合も、当該マイクロミラーデバイスによる反射光が、拡大光学系24を介して被検眼に呈示される。
 続いて、本発明の第2実施形態について、図5を参照して説明する。
 図5に示すように、本第2実施形態に係る視野計110は、上述の第1実施形態に係る視野計10の構成に、光分割手段としての例えばキューブ型のハーフプリズム30と、監視手段としての例えばCCD(Charge Coupled Device)カメラ32と、光源制御手段としてのフィードバック回路34と、が付加されたものである。これ以外は、第1実施形態と同様であるので、これらの同様の部分については、同一符号を付して、その詳細な説明は省略する。
 ハーフプリズム30は、光源12から被検眼に至る光路中の液晶シャッタ18と拡大光学系24との間に設けられている。そして、当該ハーフプリズム30は、その内部に境界面30aを有しており、この境界面30aは、光源12から被検眼に至る光路に対して、言い換えれば液晶シャッタ18による変調後光の進行方向に対して、45度の角度を成している。即ち、液晶シャッタ18による変調後光は、このハーフプリズム30の境界面30aに入射されて、ここで、透過光と反射光とに等分される。そして、このうちの透過光が、拡大光学系24を介して被検眼に入射される。一方、境界面30aによる反射光は、当該透過光の進行方向に対して直角な方向に向かって進行し、CCDカメラ32に入射され、詳しくは当該CCDカメラ32内の図示しない撮像面に入射される。
 CCDカメラ32は、フォーカス調整用のレンズを含んでおり、このフォーカス調整用のレンズによって、当該CCDカメラ32内の撮像面と液晶シャッタ18の出射面とが互いに共役になるように、フォーカス調整が成される。これにより、被検眼に呈示されるのと同様の映像100が、CCDカメラ32内の撮像面に投影される。従って、オペレータは、このCCDカメラ32による撮像結果、つまり撮影映像、を監視することで、被検眼に呈示されるのと同じ映像100をリアルタイムで把握することができる。
 さらに、CCDカメラ32による撮像結果(例えば輝度信号)は、フィードバック回路34に与えられる。フィードバック回路34は、CCDカメラ32による撮像結果に基づいて、当該CCDカメラ32による撮影映像の明るさが一定となるように、言い換えれば被検眼に呈示される映像100の明るさが一定となるように、光源コントローラ14を制御し、ひいては光源12の明るさを制御する。これにより、被検眼に呈示される映像100の明るさが安定化され、視野検査の信頼性のさらなる向上が図られる。
 即ち、本第2実施形態に係る視野計110によれば、より信頼性の高い視野検査を実現することができる。
 なお、本第2実施形態においては、光分割手段として、キューブ型のハーフプリズム30が採用されたが、これに限らない。例えば、平板状のハーフミラーが採用されてもよい。ただし、ハーフミラーが採用される場合には、その厚みに応じた光の屈折によって透過光側の光軸にズレが生じる。このことを鑑みると、ハーフプリズムよりもハーフプリズム30が採用される方が好都合である。
 また、監視手段として、CCDカメラ32が採用されたが、これ以外の例えばCMOS(Complementary
Metal Oxide Semiconductor)型のイメージセンサを搭載したCMOSカメラが採用されてもよい。さらに例えば、これらのカメラに代えて、適当な光学系が設けられると共に、この適当な光学系を介して、被検眼に投射されるのと同様の映像が直接的に監視され、または、スクリーン等に投影されるようにしてもよい、
 加えて例えば、被検眼に呈示される映像100(光源12)を監視する必要はなく、当該映像100の明るさを安定化することにのみ特化するのであれば、CCDカメラ32等の監視手段に代えて、光の強度を検出するための光センサ等の光検出手段が設けられると共に、この光検出手段による検出結果が、フィードバック回路34に与えられるようにしてもよい。
 10 視野計
 12 光源
 18 液晶シャッタ
 22 液晶コントローラ

Claims (7)

  1.  検査用の視標を含む映像を被検眼に呈示すると共に該被検眼による該視標の視認状況に基づいて該被検眼の検査を行う眼科検査装置において、
     1つの光源手段と、
     上記光源手段から発せられた光が入射される入射面を有しており該入射面に入射された該光を変調して上記被検眼に投射することで上記映像を該被検眼に呈示するライトバルブ手段と、
     上記ライトバルブ手段の上記入射面の一部に入射された上記光によって上記映像のうちの上記視標が形成されると共に該入射面の一部以外の部分に入射された上記光によって該映像のうちの該視標以外の領域である背景が形成されるように該ライトバルブ手段を制御するライトバルブ制御手段と、
    を具備することを特徴とする、眼科検査装置。
  2.  上記ライトバルブ制御手段は上記被検眼に呈示される上記視標の明るさが第1レベルと該第1レベルよりも低い第2レベルとに交互に変化すると共に該被検眼に呈示される上記背景の明るさが該第1レベルと同じ一定のレベルとなるように上記ライトバルブ制御手段を制御する、
    請求項1に記載の眼科検査装置。
  3.  上記ライトバルブ制御手段は上記視標の明るさが上記第1レベルと上記第2レベルとの間で連続的に変化するように上記ライトバルブ手段を制御する、
    請求項2に記載の眼科検査装置。
  4.  上記ライトバルブ手段は透過型の液晶シャッタを含む、
    請求項1に記載の眼科検査装置。
  5.  上記ライトバルブ手段と上記被検眼との間に設けられ該ライトバルブ手段によって変調された変調後光を2つに分割する光分割手段をさらに備え、
     上記光分割手段によって分割された2つの分割後光の一方が上記被検眼に呈示され、
     上記光分割手段によって分割された2つの分割後光の他方を監視する監視手段をさらに備える、
    請求項1に記載の眼科検査装置。
  6.  上記監視手段による監視結果に基づいて上記光の強度が一定となるように上記光源手段を制御する光源制御手段をさらに備える、
    請求項5に記載の眼科検査装置。
  7.  上記被検眼の視野を測定するための視野計である、
    請求項1に記載の眼科検査装置。
PCT/JP2013/060925 2013-04-11 2013-04-11 眼科検査装置 WO2014167688A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/060925 WO2014167688A1 (ja) 2013-04-11 2013-04-11 眼科検査装置
JP2015511028A JPWO2014167688A1 (ja) 2013-04-11 2013-04-11 眼科検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060925 WO2014167688A1 (ja) 2013-04-11 2013-04-11 眼科検査装置

Publications (1)

Publication Number Publication Date
WO2014167688A1 true WO2014167688A1 (ja) 2014-10-16

Family

ID=51689121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060925 WO2014167688A1 (ja) 2013-04-11 2013-04-11 眼科検査装置

Country Status (2)

Country Link
JP (1) JPWO2014167688A1 (ja)
WO (1) WO2014167688A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195347A1 (ja) 2016-05-13 2017-11-16 神港精機株式会社 眼科検査装置
WO2019069578A1 (ja) * 2017-10-05 2019-04-11 株式会社Qdレーザ 視覚検査装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235800A (ja) * 2002-02-20 2003-08-26 Nidek Co Ltd 眼の検査用機器
JP2004121707A (ja) * 2002-10-07 2004-04-22 Yamanashi Tlo:Kk 視野検査方法および装置
JP2006061461A (ja) * 2004-08-27 2006-03-09 Canon Inc 眼底検査装置
JP2006340755A (ja) * 2005-06-07 2006-12-21 Shinko Seiki Co Ltd 眼科検査装置
WO2009001458A1 (ja) * 2007-06-28 2008-12-31 Shinko Seiki Company, Limited 眼科検査装置
JP2012511344A (ja) * 2008-12-12 2012-05-24 カール ツァイス メディテック アクチエンゲゼルシャフト 視覚刺激のための高精度コントラスト比ディスプレイ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235800A (ja) * 2002-02-20 2003-08-26 Nidek Co Ltd 眼の検査用機器
JP2004121707A (ja) * 2002-10-07 2004-04-22 Yamanashi Tlo:Kk 視野検査方法および装置
JP2006061461A (ja) * 2004-08-27 2006-03-09 Canon Inc 眼底検査装置
JP2006340755A (ja) * 2005-06-07 2006-12-21 Shinko Seiki Co Ltd 眼科検査装置
WO2009001458A1 (ja) * 2007-06-28 2008-12-31 Shinko Seiki Company, Limited 眼科検査装置
JP2012511344A (ja) * 2008-12-12 2012-05-24 カール ツァイス メディテック アクチエンゲゼルシャフト 視覚刺激のための高精度コントラスト比ディスプレイ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195347A1 (ja) 2016-05-13 2017-11-16 神港精機株式会社 眼科検査装置
JPWO2017195347A1 (ja) * 2016-05-13 2018-08-09 神港精機株式会社 眼科検査装置
US10791921B2 (en) 2016-05-13 2020-10-06 Shinko Seiki Co., Ltd Ophthalmologic examination apparatus
WO2019069578A1 (ja) * 2017-10-05 2019-04-11 株式会社Qdレーザ 視覚検査装置
JPWO2019069578A1 (ja) * 2017-10-05 2020-10-22 株式会社Qdレーザ 視覚検査装置
JP6993722B2 (ja) 2017-10-05 2022-01-14 株式会社Qdレーザ 視覚検査装置
US11445903B2 (en) 2017-10-05 2022-09-20 Qd Laser, Inc. Vision test device

Also Published As

Publication number Publication date
JPWO2014167688A1 (ja) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5156014B2 (ja) 眼科検査装置
US20060114425A1 (en) Lens device and projector having diaphragm mechanisms with substantially trapezoidal apertures
TWI608248B (zh) Microscope device
US20060170880A1 (en) Brightness and colour control of a projection appliance
CN103315706B (zh) 辅助凝视与成像对焦装置
JP5378474B2 (ja) 視力検査装置
CN111988519B (zh) 一种用于提供高质量图像的焊接引导系统
US11782268B2 (en) Eyeball tracking system for near eye display apparatus, and near eye display apparatus
JP2013252185A (ja) 内視鏡及び内視鏡装置
US9016873B2 (en) Three dimensional image projector stabilization circuit
WO2014167688A1 (ja) 眼科検査装置
JP3785539B2 (ja) 広視域網膜投影型表示システム
JP4764664B2 (ja) 眼科検査装置
EP2177150B1 (en) Visual field tester
US20210307604A1 (en) Ophthalmic photographing apparatus
US20210106218A1 (en) Visual field test device
JP7094268B2 (ja) 眼底撮影装置
JP6473548B2 (ja) 眼科検査装置
JPWO2016163338A1 (ja) 光学素子の作製方法及び光学素子、並びに、色覚特性の検査プログラム、検査装置及び色覚検査画像セット
JP2016000137A (ja) フリッカー値計測装置及び照明装置
JP6737993B2 (ja) 眼科検査装置
KR102194289B1 (ko) 청색 또는 보라색 광을 차단하는 차단 성능을 검사하는 검사장치 및 그 검사방법
JP7302924B2 (ja) 眼科撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015511028

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881743

Country of ref document: EP

Kind code of ref document: A1