JPWO2017195347A1 - 眼科検査装置 - Google Patents

眼科検査装置 Download PDF

Info

Publication number
JPWO2017195347A1
JPWO2017195347A1 JP2018516308A JP2018516308A JPWO2017195347A1 JP WO2017195347 A1 JPWO2017195347 A1 JP WO2017195347A1 JP 2018516308 A JP2018516308 A JP 2018516308A JP 2018516308 A JP2018516308 A JP 2018516308A JP WO2017195347 A1 JPWO2017195347 A1 JP WO2017195347A1
Authority
JP
Japan
Prior art keywords
light
target
light emitting
brightness
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018516308A
Other languages
English (en)
Other versions
JP6473548B2 (ja
Inventor
博 遊亀
博 遊亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Seiki Co Ltd
Original Assignee
Shinko Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Seiki Co Ltd filed Critical Shinko Seiki Co Ltd
Publication of JPWO2017195347A1 publication Critical patent/JPWO2017195347A1/ja
Application granted granted Critical
Publication of JP6473548B2 publication Critical patent/JP6473548B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/024Subjective types, i.e. testing apparatus requiring the active assistance of the patient for determining the visual field, e.g. perimeter types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/02Subjective types, i.e. testing apparatus requiring the active assistance of the patient
    • A61B3/028Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
    • A61B3/032Devices for presenting test symbols or characters, e.g. test chart projectors

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

【課題】 面倒な調整が不要であり、また、装置全体の構成が簡素であり、しかも、特に緑内障の早期発見に寄与し得るようなより信頼性の高い検査を実現する。【解決手段】 マトリクス型の発光ダイオードユニット12から発せられた光は、液晶シャッタ16および主光学系14を介して、被検眼に入射される。ここで、発光ダイオードユニット12は、マトリクス状に配置された互いに同一仕様の複数の発光ダイオード素子12b,12b,…を有している。これら各発光ダイオード素子12b,12b,…は、互いに独立して制御され、これにより、円形状の視標100aとそれ以外の背景100bとから成る検査用の映像が形成される。視標100aは、1Hz〜200Hzの周波数で概略正弦波状に点滅する。これにより、緑内障の早期発見に寄与し得るような信頼性の高い検査が実現される。また、装置全体の構成が簡素であり、面倒な調整が不要である。

Description

本発明は、眼科検査装置に関し、特に、明滅する視標を含む検査用の映像を被検眼に呈示すると共にこの被検眼による視標の視認状況に基づいて当該被検眼の検査を行う、眼科検査装置に関する。
この種の眼科検査装置として、従来、例えば特許文献1に開示されたものがある。この従来技術によれば、被検眼に呈示される検査用の映像のうち視標を形成するための視標光を生成する視標光生成手段と、当該映像のうち視標以外の領域である背景を形成するための背景光を生成する背景光生成手段と、これら視標光および背景光を合成して被検眼に投射する合成手段と、が具備されている。なお、視標光および背景光のそれぞれは、無偏光の光である。そして、合成手段は、この無偏光の状態を維持したまま、視標光および背景光を合成する。
具体的には、視標呈示用の光源と、この光源から発せられた無偏光の光を平行光に補正する視標呈示用のコリメータレンズと、このコリメータレンズによって平行光に補正された光が入射される入射面を有する視標呈示用の液晶シャッタと、が設けられている。視標呈示用の液晶シャッタは、その入射面に、液晶コントローラから与えられる視標呈示用のシャッタ制御信号に従うシャッタパターンを形成し、詳しくは当該入射面のうちの一部の領域のみを透過領域とし、それ以外の領域を遮断領域とする。これとは別に、背景呈示用の光源と、この光源から発せられた無偏光の光を平行光に補正する背景呈示用のコリメータレンズと、このコリメータレンズによって平行光に補正された光が入射される入射面を有する背景呈示用の液晶シャッタと、が設けられている。背景呈示用の液晶シャッタは、液晶コントローラから与えられる背景呈示用のシャッタ制御信号に従って、その入射面に、視標呈示用の液晶シャッタのものとは全く正反対のシャッタパターンを形成する。その上で、各液晶シャッタ(透過領域)を透過した光が合成手段としての例えばハーフプリズムによって合成されて、その合成光が被検眼に投射される。ここで、背景呈示用の光源は、一定の明るさで発光する。一方、視標呈示用の光源は、背景呈示用の光源と同じ明るさで発光する第1の状態と、非発光の第2の状態と、に交互に遷移し、つまり点滅する。この結果、被検眼には、その視野の全体にわたって一様な明るさの映像と、一部の領域のみが暗く言わば抜け落ちたような映像と、が交互に呈示される。言い換えれば、当該一部の領域に対応すると共に点滅する視標と、この視標以外の領域であって当該視標が最も明るいときと同じ一定の明るさの背景と、から成る映像が、被検眼に呈示される。
即ち、視標は、背景と同じ明るさか、それよりも低い(暗い)明るさで、つまり背景以下の明るさで、被検眼に呈示される。従って、この視標が呈示されることによる被検眼への入射光量の増大が抑制され、ひいては当該被検眼(網膜)への刺激が抑制される。このことは特に、視野検査等の自覚的検査(被検者の自覚に基づく検査)において、その信頼性の向上を図る上で極めて有効である。例えば、視野検査においては、被検者(被検眼)の視野の様々な位置に視標が呈示される。被検者は、一定の(一般には被検眼の正面に呈示される)固視点を注視した状態で、この視標を実際に視認し得たときに、応答ボタンを操作する等の所定の意思表示をする。ここで例えば、被検者の視野の一部が欠損しており、この欠損部分に視標が呈示される、とする。このときもし、背景が真っ暗であり、この真っ暗な背景に明るい視標が重なって呈示されるような構成である、つまり視標の明るさが背景の明るさよりも高い(明るい)構成である、とすると、被検者は、この視標を実際に視認し得ていないにも拘らず、背景よりも高い明るさの視標が呈示されることによる刺激を受けて、あたかも当該視標を実際に視認し得ているものと勘違いする、言わば誤認識する、虞がある。この誤認識は、言うまでもなく検査の信頼性の低下を招く。これに対して、従来技術によれば、視標が背景以下の明るさで被検眼に呈示されるので、この視標が呈示されることによる被検眼への刺激が抑制され、ひいては誤認識が防止される。これにより、信頼性の高い検査が実現される。
加えて、被検眼に投射される合成光は、自然光と同じ無偏光の光である。従って例えば、被検眼に呈示される合成光が偏光光である場合に比べて、信頼性の高い検査が実現される。即ち、被検眼に呈示される合成光が偏光光である場合には、この合成光の被検眼に対する入射角度によって、当該被検眼による検査用の映像(特に視標)の見え方が変わる。従来技術によれば、このような偏光の影響がない。このこともまた、信頼性の高い検査の実現に大きく貢献する。
さらに、従来技術によれば、上述の如く視標呈示用の光源が点滅することによって、視標が点滅するが、より詳細には、視標呈示用の光源が正弦波状(sinカーブ的)に言わば緩やかに点滅することによって、視標もまた正弦波状に緩やかに点滅する。このように視標が緩やかに点滅することによって、つまり当該視標の明るさが緩やかに変化することによって、例えば視標が単に矩形波状(言わばON/OFF的)に点滅する場合に比べて、つまり当該視標の明るさが急激に変化する場合に比べて、視標が呈示されることによる被検眼への刺激がさらに抑制される。この結果、より信頼性の高い検査の実現が期待され、特に緑内障の早期発見に大きく寄与することが期待される。なお、視標の点滅周波数は、被検者の個人差等の様々な状況に適宜に対応し得るように、例えば1Hz〜120Hzの範囲で任意に制御可能とされている。
ところで上述したように、この従来技術では、被検眼に呈示される検査用の映像は、視標とそれ以外の領域である背景とから成る。そして、これら視標と背景とは、視標光生成手段と背景光生成手段という互いに別個の手段によって形成される。このため、視標光生成手段と背景光生成手段との相互の位置関係が適切であることが必要とされるが、その調整が極めて面倒である。具体的には、視標呈示用の光源から視標呈示用のコリメータレンズおよび視標呈示用の液晶シャッタを介して合成手段としてのハーフプリズムに至るまでの言わば視標光の経路(光路)と、背景呈示用の光源から背景呈示用のコリメータレンズおよび背景呈示用の液晶シャッタを介して当該ハーフプリズムに至るまでの言わば背景光の経路と、の相互の位置関係が適切であることが必要とされるが、特に各液晶シャッタの相互の位置関係の調整が極めて面倒である。また、視標光の経路と背景光の経路との互いの光学的特性等の不均衡に起因して、視標と背景とに互いの明るさや色等の差異が生じることがあり、これを是正するための調整も極めて面倒である。加えて、装置全体の構成として、視標光生成手段と背景光生成手段との他にハーフプリズム等の合成手段も必要であることから、当該装置全体の構成のさらなる簡素化を実現したい、という希望もある。
そこで、別の従来技術として、例えば特許文献2に開示されたものがある。この特許文献2に開示された言わば第2の従来技術によれば、1つの光源手段と、この光源手段から発せられた光が入射される入射面を有するライトバルブ手段と、このライトバルブ手段を制御するライトバルブ制御手段と、が具備されている。ライトバルブ手段は、例えば液晶シャッタであり、その入射面に入射された光を変調して被検眼に投射することで、視標を含む検査用の映像を被検眼に呈示する。ライトバルブ制御手段は、ライトバルブ手段の入射面の一部に入射された光によって検査用の映像のうちの視標が形成され、併せて、ライトバルブ手段の入射面の当該一部以外の部分に入射された光によって検査用の映像のうちの視標以外の領域である背景が形成されるように、ライトバルブ手段を制御する。
より具体的には、光源手段は、例えば白色発光ダイオードであり、一定の明るさで発光する。この光源手段としての白色発光ダイオードから発せられた光は、コリメータレンズによって平行光に補正された後、ライトバルブ手段としての液晶シャッタの入射面に入射される。液晶シャッタは、その入射面に、ライトバルブ制御手段としての液晶コントローラから与えられるシャッタ制御信号に従うシャッタパターンを形成し、詳しくは当該入射面全体が透過状態となる第1パターンと、当該入射面の一部の領域のみが遮断状態となる第2パターンとを、交互に形成する。言い換えれば、液晶シャッタの入射面の当該一部の領域については、透過状態と遮断状態とに交互に遷移し、液晶シャッタの入射面のそれ以外の領域については、透過状態を維持する。この液晶シャッタの入射面を透過した光は、拡大光学系を介して、被検眼に投射される。この結果、液晶シャッタの入射面の当該一部の領域に対応すると共に点滅する視標と、液晶シャッタの入射面のそれ以外の領域に対応すると共に視標が最も明るいときと同じ一定の明るさの背景と、から成る映像が、被検眼に呈示される。
即ち、この第2従来技術においても、上述の特許文献1に開示された言わば第1の従来技術におけるのと同様の検査用の映像が、被検眼に呈示される。ただし、第1従来技術においては、この検査用の映像の呈示のために、視標光生成手段と背景光生成手段と合成手段とが用いられ、特に視標の形成を担う視標光生成手段と背景の形成を担う背景光生成手段との互いに別個の手段が用いられるが、第2従来技術によれば、当該映像の呈示のために、1つの光源手段とライトバルブ手段とライトバルブ制御手段とが用いられ、つまり視標と背景とに共通の手段が用いられる。従って、第1従来技術では、視標光生成手段と背景光生成手段との相互の位置関係の調整が必要であるが、第2従来技術によれば、そのような調整は不要である。また、第1従来技術では、視標光の経路と背景光の経路との互いの光学的特性等の不均衡に起因して、視標と背景とに互いの明るさや色等の差異が生じることがあるが、第2従来技術によれば、そのような差異は生じず、ゆえに、これを是正するための調整も不要である。加えて、第2従来技術によれば、第1従来技術におけるような合成手段が不要であることを含め、装置全体の構成のさらなる簡素化が図られる。
なお、第2従来技術においても、第1従来技術と同様、視標が正弦波状(概略正弦曲線的)に点滅する。そのために、第2従来技術においては、液晶シャッタの入射面に形成されるシャッタパターンが上述の第1パターンと第2パターンとに交互に遷移する際の態様が正弦波状とされ、つまり液晶シャッタの入射面のうちの視標に対応する領域の透過率が正弦波状に緩やかに変化する。この視標の点滅周期は、例えば5ms〜1sの範囲で任意に制御可能とされている。言い換えれば、当該視標の点滅周波数は、1Hz〜200Hzの範囲で任意に制御可能とされている。
ところで、この第2従来技術におけるライトバルブ手段としての液晶シャッタは、例えばその入射面の水平方向の画素数(解像度)が1920であり、垂直方向の画素数が1080である、いわゆるFHD(Full High Definition)と呼ばれる仕様の画面解像度を有するものであり、より詳しくは(特許文献2には明記されていないが)液晶プロジェクタ用の透過型のモノクローム液晶パネルを利用したものである。ここで周知のように、液晶プロジェクタ用のものを含む表示装置用の液晶パネルにおいては、その画面の書き換え速度、いわゆるリフレッシュレート、が決まっている。このリフレッシュレートは、一般に60Hz前後であり、最高でも240Hz程度である。従って例えば、この第2従来技術における液晶シャッタとして、リフレッシュレートが240Hzである液晶パネルが採用される、とすると、当該液晶シャッタの入射面に形成されるシャッタパターンの更新周波数は、240Hzとなる。これは即ち、視標が例えば単に矩形波状に点滅する場合には、当該視標の点滅周波数が最高で120Hz(=240Hz/2)となることを、意味する。そうすると、視標が例えば上述の如く正弦波状に緩やかに点滅する場合には、当該視標の点滅周波数の上限はこの120Hzという周波数よりも遥かに低くなる。これでは、緑内障の早期発見に寄与し得るようなより信頼性の高い検査の実現は不可能である。
国際公開第2009/001458号 国際公開第2014/167688号
このように、第1従来技術では、緑内障の早期発見に寄与し得るようなより信頼性の高い検査を実現することはできるものの、極めて面倒な調整が必要であり、また、装置全体の構成が複雑である、という問題がある。そして、第2従来技術では、第1従来技術における問題を解決することはできるものの、緑内障の早期発見に寄与し得るようなより信頼性の高い検査を実現することができない、という問題がある。
これらのことを鑑みて、本発明は、面倒な調整が不要であり、また、装置全体の構成が簡素であり、しかも、緑内障の早期発見に寄与し得るようなより信頼性の高い検査を実現できる、新規な眼科検査装置を提供することを、目的とする。
この目的を達成するために、本発明は、明滅する視標を含む検査用の映像を被検眼に呈示すると共にこの被検眼による視標の視認状況に基づいて当該被検眼の検査を行う眼科検査装置において、発光手段と、発光制御手段と、を具備する。このうちの発光手段は、複数の発光素子を有している。これら複数の発光素子は、互いに同一仕様のものであり、被検眼に呈示される映像を形成するように2次元状に配置されている。また、これら複数の発光素子の明るさは、互いに並行して個別に被制御可能とされている。一方、発光制御手段は、発光手段が有する複数の発光素子の明るさを、互いに並行して個別に制御する。具体的には、発光制御手段は、複数の発光素子のうちの一部が明滅することによって検査用の映像のうちの視標が形成され、併せて、当該複数の発光素子のうちのそれ以外の明るさが一定となることによって検査用の映像のうちの視標以外の領域である背景が形成されるように、制御を行う。
即ち、本発明によれば、被検眼に呈示される検査用の映像は、視標と当該視標以外の領域である背景とから成る。この視標と背景とから成る検査用の映像は、発光手段が有する2次元状に配置された複数の発光素子によって形成される。具体的には、これら複数の発光素子の一部が明滅することによって視標が形成され、当該複数の発光素子の当該一部以外の明るさが一定となることによって背景が形成される。言い換えれば、予め2次元状に配置された複数の発光素子の一部によって視標が形成され、当該複数の発光素子のそれ以外によって背景が形成される。従って例えば、上述の第1従来技術においては、視標と背景とが互いに別個の手段によって形成されるがゆえに、これら互いに別個の手段の相互の位置関係の調整が必要とされるが、本発明によれば、そのような調整は全く不要である。また、本発明における複数の発光素子は、互いに同一仕様のものであり、つまり(基本的には)互いに同一の性状を有する。従って例えば、第1従来技術では、視標光の経路と背景光の経路との互いの光学的特性等の不均衡に起因して、視標と背景とに互いの明るさや色等の差異が生じることがあるが、本発明によれば、そのような差異は生じず、ゆえに、これを是正するための調整も不要である。加えて、本発明によれば、例えば第1従来技術におけるような合成手段が不要であることを含め、装置全体の構成のさらなる簡素化が図られる。要するに、本発明によれば、第1従来技術における問題を解決することができる。この点は、上述の第2従来技術と同様である。
ただし上述したように、第2従来技術では、視標を緩やかに点滅させる場合の当該視標の点滅周波数(の上限)が極めて低いために、特に緑内障の早期発見に寄与し得るようなより信頼性の高い検査を実現することができない、という問題がある。この第2従来技術における問題を解決するべく、本発明によれば、複数の発光素子の明るさが、互いに並行して個別に、言わば互いに独立して、被制御可能とされている。言い換えれば、これら複数の発光素子を有する発光手段は、そのような態様とされている。そして、発光制御手段は、これら複数の発光素子の明るさを、互いに並行して個別に、つまり互いに独立して、制御する。これは即ち、複数の発光素子の明るさが、個々に自在に変化し得ること、例えば個々に比較的に高速で変化し得ること、を意味する。従って、本発明によれば、視標を緩やかに点滅させる場合であっても、当該視標を比較的に高い周波数で、とりわけ第2従来技術における視標の点滅周波数よりも高い周波数で、点滅させることができる。これにより、緑内障の早期発見に寄与し得るようなより信頼性の高い検査を実現することができ、つまりは第2従来技術における問題を解決することができる。なお、本発明によれば、視標を点滅させること(つまり視標を点灯させたり消灯させたりすること)に限らず、より広い意味で、当該視標を明滅させること(つまり視標を明るくしたり暗くしたりすること)もできる。
このような本発明における発光手段は、例えば複数の発光素子として複数の発光ダイオード素子を有する2次元発光ダイオードユニット、とりわけ当該複数の発光ダイオード素子がマトリクス状に配置されたいわゆるマトリクス型発光ダイオードユニット、であってもよい。この場合、複数の発光ダイオード素子は、それぞれの明るさが上述の如く互いに並行して個別に被制御可能とされるために、例えば個別の被制御端子を備えるものであってもよく、詳しくは個別の陽極端子と個別の陰極端子とを備えるものであってもよく、つまりはそのような態様のものであってもよい。そして、発光制御手段は、例えばこれら複数の発光ダイオード素子それぞれの被制御端子に接続される複数の制御端子を備えるものであってもよく、つまりはそのような態様のものであってもよい。ただし、この構成では、発光ダイオード素子の数が多いほど、当該発光ダイオード素子が備える被制御端子の数が多くなり、これに伴い、発光制御手段が備える制御端子の数もまた多くなり、その結果、これらの端子を含む装置全体の構成が複雑になる。
この装置全体の構成の複雑化を抑制するべく、例えば、複数の発光ダイオード素子は、2以上の適当な数のブロックに分割されてもよい。そして、それぞれのブロックごとに、当該ブロックに属する各発光ダイオード素子は、マトリクス状に配置されているものとし、つまり複数の行と複数の列とを形成するように配置されているものとする。その上で、それぞれのブロックごとに、互いに同じ行に属する各発光ダイオード素子の例えば各陽極端子(または各陰極端子)は、互いに共通の行側被接続端子によって一纏めに接続され、併せて、互いに同じ列に属する各発光ダイオード素子の各陰極端子(または各陽極端子)は、互いに共通の列側被接続端子によって一纏めに接続されるものとする。一方、発光制御手段は、それぞれの行側被制御端子に接続される複数の行側制御端子と、それぞれの列側被制御端子に接続される複数の列側制御端子と、を備え、それぞれのブロックごとに、各発光ダイオード素子を公知のダイナミック方式で制御するものとする。この構成によれば、各発光ダイオード素子と発光制御手段とを相互に接続する端子の数が削減され、これらの端子を含む装置全体の構成の簡素化が図られる。ただし、この構成では、それぞれのブロックごとに、各発光ダイオード素子がダイナミック方式で制御されることから、2以上の(特に全ての)発光ダイオード素子を同時に点灯させることができない場合があり、この場合は、当該2以上の発光ダイオード素子があたかも同時に点灯しているように見せ掛けるための適宜の設計が成される。また、それぞれのブロックごとの発光ダイオード素子の数が過多であると、当該発光ダイオード素子の明るさが不足することがある。このような不都合が生じないように、それぞれのブロックごとの発光ダイオード素子の数、換言すれば当該ブロックの数は、適宜に定められる。
本発明においては、光弁手段と、光弁制御手段と、がさらに具備されてもよい。このうちの光弁手段は、複数の光弁画素を有している。そして、これら複数の光弁画素は、発光手段が有する複数の発光素子に対応するように2次元状に配置される。さらに、光弁手段は、複数の発光素子によって形成された検査用の映像がこれら複数の光弁画素を介して被検眼に呈示されるように、設けられる。その上で、この検査用の映像の呈示のために複数の発光素子から発せられる光の複数の光弁画素を介しての被検眼への伝達率は、個別に被制御可能とされている。一方、光弁制御手段は、これら複数の光弁画素を介しての光の伝達率を個別に制御する。
この構成によれば、複数の発光素子によって形成された検査用の映像は、複数の光弁画素を介して、被検眼に呈示される。具体的には、複数の発光素子から発せられた光が複数の光弁画素を介して被検眼に伝達されることで、当該被検眼に検査用の映像が呈示される。ここで、複数の光弁手段を介しての光の伝達率は、個別に被制御可能とされている。そして、この伝達率の制御は、光弁制御手段が担う。この伝達率の制御によって、被検眼に呈示される検査用の映像の明るさが複数の光弁画素のそれぞれに対応する箇所ごとに調整可能となり、例えば視標の明るさと背景の明るさとの個別の微調整が可能となる。即ち、視標の明るさと背景の明るさとは、複数の発光素子それぞれの発光強度(輝度)、つまりは当該複数の発光素子それぞれの明るさ、によって個別に制御することができるが、これとは別個に、複数の光弁画素を介しての光の伝達率によっても個別に微調整することができる。このこともまた、より信頼性の高い検査の実現に大きく貢献する。
さらに、ここで言う光弁手段は、例えば液晶を利用した液晶シャッタであってもよく、より詳しくは表示装置用の透過型のモノクローム液晶パネルであってもよい。即ち、ここで言う光弁手段は、上述の如く例えば視標の明るさと背景の明るさとを個別に微調整する機能を発揮する。このような用途であれば、光弁手段として、その動作に特段な高速性は求められず、ゆえに、リフレッシュレートに起因して動作速度が制限される表示装置用の液晶パネルであっても十分に適用することができる。また、表示装置用の液晶パネルは、相当数(数百万個以上)の光弁画素を有しているので、ここで言う光弁手段としての用途に好適である。
加えて、発光制御手段は、複数の発光素子のうち視標の形成を担う言わば視標形成素子の明るさが、つまり視標の明るさが、緩やかに変化するように、制御を行うものであってもよい。このような制御が行われることによって、例えば視標の明るさが急激に変化する場合に比べて、当該視標が呈示されることによる被検眼への刺激が抑制される。この結果、より信頼性の高い検査の実現が期待され、特に緑内障の早期発見に寄与し得ることが期待される。
また、発光制御手段は、複数の発光素子のうち背景の形成を担う言わば背景形成素子の明るさが、つまり背景の明るさが、視標の最も明るいときの明るさと略同等になるように、制御を行うものであってもよい。このような制御が行われることによって、視標は、背景と略同等の明るさか、それよりも低い明るさとなり、つまり背景以下の明るさとなる。これにより例えば、視標が背景よりも明るい場合に比べて、当該視標が呈示されることによる被検眼への刺激が抑制される。このことは特に、視野検査等の自覚的検査において、その信頼性の向上を図るのに極めて有効である。
そして、本発明は、被検眼の視野を測定するための視野計に好適である。
本発明の一実施形態に係る視野計の概略構成を示す図解図である。 同実施形態におけるマトリクス型発光ダイオードユニットの概略構成を示す図解図である。 同実施形態における液晶シャッタの概略構成を示す図解図である。 同実施形態におけるマトリクス型発光ダイオードユニットと液晶シャッタとの相互の位置関係を示す図解図である。 同マトリクス型発光ダイオードユニットによって形成される視標の態様を示す図解図である。 同視標を形成する発光ダイオード素子の被制御態様を示す図解図である。 同実施形態における検査用の映像の一例を示す図解図である。 同検査用の映像の被検眼による見え方の一例を示す図解図である。 同検査用の映像の明るさを概念的に示す図解図である。 図8に係る映像の不都合を解消するための手順を示す図解図である。 図10に続く手順を示す図解図である。 図11に係る手順を経た後の映像の明るさを概念的に示す図解図である。 同実施形態におけるマトリクス型発光ダイオードユニットの別の例を示す図解図である。 同マトリクス型発光ダイオードユニットのさらに別の例を液晶パネルとの相互の位置関係と併せて示す図解図である。 同実施形態の別の例を示す図解図である。
本発明の一実施形態について、視野計を例に挙げて説明する。
図1に示すように、本実施形態に係る視野計10は、発光手段としてのマトリクス型発光ダイオードユニット(以下、「LEDユニット」と言う。)12を具備している。このLEDユニット12は、図2に示すように、概略四角形状の発光面12aを有しており、この発光面12aは、マトリクス状に配置された互いに同一仕様(規格)の複数の発光素子としての複数の発光ダイオード素子(以下、「LED素子」という。)12b,12b,…によって形成されている。なお、LEDユニット12(発光面12a)の水平方向におけるLED素子12bの配置個数Hは、例えばH=1920である。そして、LEDユニット12の垂直方向におけるLED素子12bの配置個数Vは、例えばV=1080である。また、それぞれのLED素子12bは、特にその発光部は、例えばこれを正面(図2の紙面の表面側)から見たときの形状が円形状のものであるが、当該発光部の形状が概略楕円形状のものや概略四角形状のものであってもよい。
図1に戻って、LEDユニット12は、その発光面12aを後述する主光学系14に向けた状態で、当該主光学系14の光軸14a上に配置されている。より具体的には、LEDユニット12は、主光学系14の光軸14aが当該LEDユニット12の発光面12aと直交し、かつ、当該光軸14aが発光面12aの中心を通るように、配置されている。そして、主光学系14の光軸14a上であって、LEDユニット12と当該主光学系14との間に、光弁手段としての液晶シャッタ14が配置されている。
液晶シャッタ16は、例えば液晶プロジェクタ用の透過型のモノクローム液晶パネルを利用したものであり、上述したFHD仕様の画面解像度を有するものである。即ち、液晶シャッタ16は、図3に示すように、概略四角形状の画面、詳しくは入射面から液晶等の各層を介して出射面に至る言わば光弁面16a、を有しており、この光弁面16aは、マトリクス状に配置された複数の概略四角形状の光弁画素(以下、単に「画素」と言う。)16b,16b,…に区画されている。この液晶シャッタ16(光弁面16a)の水平方向における画素16bの数H’は、H’=1920であり、つまりLEDユニット12の同方向におけるLED素子12bの配置個数Hと同じ(H’=H)である。そして、当該液晶シャッタ16の垂直方向における画素数V’は、V’=1080であり、つまりLEDユニット12の同方向におけるLED素子12bの配置個数Vと同じ(V’=V)である。なお、この液晶シャッタ16のリフレッシュレートは、例えば60Hzである。
改めて図1に戻って、液晶シャッタ16は、主光学系14の光軸14が当該液晶シャッタ16の光弁面16aと直交し、かつ、当該光軸14aが光弁面16aの中心を通るように、上述の如くLEDユニット12と主光学系14との間に、配置されている。なお、LEDユニット12と液晶シャッタ16とは、互いに比較的に近接して配置されており、例えば当該LEDユニット12の発光面12aと液晶シャッタ16の光弁面16aとが主光学系14の被写界深度内に入るように配置されている。また、これらLEDユニット12と液晶シャッタ16とは、図4に示すように、当該LEDユニット12の各LED素子12b,12b,…と液晶シャッタ16の各画素16b,16b,…とが互いに1対1で対応するように配置されている。なお、図4は、液晶シャッタ16を介してLEDユニット12を見た図である。
再び図1に戻って、LEDユニット12は、それ専用の駆動手段としてのLED駆動回路18に接続されている。ここで詳しい図示は省略するが、LEDユニット12の各LED素子12b,12b,…は、個別の被制御端子を備えており、つまり個別の陽極端子と個別の陰極端子とを備えている。なお、各LED素子12b,12b,…の各陽極端子と当該各LED素子12b,12b,…の各陰極端子とのいずれかは、互いに共通の端子によって一纏めに接続されていてもよく、つまり互いに共通化されていてもよい。そして、これら各LED素子12b,12b,…の各被制御端子は、LED駆動回路18と個別に接続されている。言い換えれば、LED駆動回路18は、各LED素子12b,12b,…の各被制御端子と個別に接続される複数の制御端子を備えている。そして、LED駆動回路18は、制御手段としての制御回路20から与えられるLED制御信号Saに従って、各LED素子12b,12b,…を個別に駆動するためのLED駆動信号Sa’を生成する。このLED駆動信号Sa’は、各LED素子12b,12b,…に対して個別に、詳しくは互いに並行して個別に、与えられる。これにより、各LED素子12b,12b,…は、互いに並行して個別に動作し、つまり互いに独立して動作する。
一方、液晶シャッタ16は、それ専用の駆動手段としての液晶駆動回路22に接続されている。液晶駆動回路22は、制御回路20から与えられる液晶制御信号Sbに従って、液晶シャッタ16を駆動するための液晶駆動信号Sb’を生成する。この液晶駆動信号Sb’は、液晶シャッタ16に与えられる。これにより、液晶シャッタ16が動作し、詳しくは当該液晶シャッタ16の各画素16b,16b,…それぞれの透過率が個別に制御される。なお、この各画素16b,16b,…それぞれの透過率は、上述した60Hzというリフレッシュレートに従う周波数で更新される。
そして、主光学系14は、その被写界深度内にあるLEDユニット12の発光面12aと液晶シャッタ16の光弁面16aとを含む仮想的な平面、つまりは次に説明する検査用の映像100を形成する言わば映像形成面と、図示しない被検者の被検眼(網膜)とが、互いに共役になるように、これら両者間に、配置されている。また、この主光学系14は、その焦点を調整するための図示しない焦点調整用レンズを備えている。
検査用の映像100は、上述の映像形成面によって形成され、主にLEDユニット12の各LED素子12b,12b,…によって形成される。具体的には、図5に示すように、各LED素子12b,12b,…の一部によって、概略円形状の視標100aが形成され、当該各LED素子12b,12b,…のそれ以外によって、視標100a以外の領域である後述する背景100bが形成される。なお、視標100aのサイズは、公知のゴールドマン視野計のものに準ずる。また、図5においては、視標100aの周縁を示す2点鎖線上にあるそれぞれのLED素子12bについては、その半分以上が当該2点鎖線内にある場合に、視標100aを形成するものとされ、そうでない場合には、背景100bを形成するものとされている。この2点鎖線上にあるそれぞれのLED素子12bの取り扱いについては、これに限らず、視標100aのサイズを含む諸状況に応じて、適宜に定められる。
視標100aを形成するそれぞれのLED素子12bは、上述したLED駆動信号Sa’に従って、例えば図6に示すように、その明るさ(発光強度)が概略正弦波状に変化するように動作し、言わば緩やかに明滅する。なお、図6においては、LED素子12bの明るさの最低値はゼロであり、ゆえに厳密に言えば、当該LED素子12bは点滅する。このLED素子12bの点滅周期T、換言すれば当該点滅周期Tの逆数(1/T)である点滅周波数fは、例えば1Hz〜200Hzの範囲で任意に設定可能とされている。このような比較的に高い周波数fでLED素子12bが概略正弦波状に点滅し得るのは、当該LED素子12bが上述の如く独立して動作可能とされていること、つまりはそのような態様とされていること、による。また、このLED素子12bの明るさの最高値と最低値とについても、所定の範囲内で任意に設定可能とされている。
一方、背景100bを形成するそれぞれのLED素子12bについては、視標100aを形成するそれぞれのLED素子12bの明るさの最高値と同等の一定の明るさで点灯する。つまりはそうなるように、背景100bを形成するそれぞれのLED素子12bに上述のLED駆動信号Sa’が個別に与えられ、そのためのLED制御信号Saが生成される。
なお、液晶シャッタ16については、その光弁面16aの全ての画素16b,16b,…の透過率が最高となるように、言わば当該全ての画素16b,16b,…が開口状態となるように、動作する。つまりはそうなるように、液晶シャッタ16に上述の液晶駆動信号Sb’が与えられ、そのための液晶制御信号Sbが生成される。
この構成によれば、LEDユニット12の各LED素子12b,12b,…から発せられた光は、液晶シャッタ16の各画素16b,16b,…と主光学系14とを介して、被検眼に入射される。因みに、各LED素子12b,12b,…の発光光は、例えば概略白色の無偏光の光である。この結果、被検眼には、図7に示すような検査用の映像100が呈示される。この検査用の映像100は、視標100aと当該視標100a以外の背景100bとから成る。そして、視標100aについては、正弦波状に緩やかに点滅し、背景100bについては、当該視標100aが最も明るいときと同じ一定の明るさを維持する。なお、図7(a)は、視標100aが最も明るいときの状態を示し、図7(b)は、視標100aが最も暗いときの状態を示し、図7(c)は、図7(a)の状態と図7(b)の状態との一方から他方に遷移する途中の或る時点の状態を示す。また、視標100aの点滅周波数fは、1Hz〜200Hzの範囲で任意に設定可能とされている。
このように本実施形態によれば、視標100aと背景100bとから成る検査用の映像100が被検眼に呈示される。そして、視標100aについては、正弦波状に緩やかに点滅し、その点滅周波数fは、1Hz〜200Hzの範囲で任意に設定可能とされている。この点は、上述した第1従来技術と概ね(視標100aの点滅周波数fの上限を除いて)同様である。従って、本実施形態によれば、第1従来技術と同様、特に緑内障の早期発見に寄与し得るようなより信頼性の高い検査を実現することができる。その上で、第1従来技術では、視標と背景とが互いに別個の手段によって形成されるがゆえに、これら互いに別個の手段の相互の位置関係の調整が必要とされるが、本実施形態によれば、予めマトリクス状に配置された複数のLED素子12b,12b,…の一部によって視標100aが形成され、当該複数のLED素子12b,12b,…のそれ以外によって背景100bが形成されるので、当該第1従来技術におけるような調整は全く不要である。また、第1従来技術では、視標光の経路と背景光の経路との互いの光学的特性等の不均衡に起因して、視標と背景とに互いの明るさや色等の差異が生じることがあるが、本実施形態によれば、視標100aと背景100bとの形成を担う複数のLED素子12b,12b,…は、互いに同一仕様のものであり、つまり互いに同一の性状を有するので、当該第1従来技術におけるような差異は生じず、ゆえに、これを是正するための調整も不要である。加えて、本実施形態によれば、第1従来技術におけるような合成手段が不要であることを含め、視野計10全体の構成のさらなる簡素化が図られる。なお上述したように、第2従来技術によれば、第1従来技術におけるような調整が不要であり、また、当該第1従来技術よりも装置全体の構成のさらなる簡素化が図られるが、緑内障の早期発見に寄与し得るようなより信頼性の高い検査を実現することができない、という問題がある。これに対して、本実施形態によれば、上述の如く緑内障の早期発見に寄与し得るようなより信頼性の高い検査を実現することができる。
即ち、本実施形態によれば、面倒な調整が不要であり、また、視野計10全体の構成のさらなる簡素化が図られ、しかも、緑内障の早期発見に寄与し得るようなより信頼性の高い検査を実現することができる。言い換えれば、第1従来技術および第2従来技術それぞれの問題を解決しつつ、当該第1従来技術および第2従来技術それぞれの利点を奏することができる。
ところで、本実施形態においては、視標100aの点滅周波数fや被検眼の応答性等によっては、当該被検眼にとって、例えば図8に示すように、視標100aが点滅しているのではなく、当該視標100aが背景100bよりも少し暗い一定の明るさで呈示されるように見受けられることがある。この現象を別の観点で図示すると、例えば図9のようになる。即ち、図9(a)に示す如く視標100aが背景100bと同等のAという最高の明るさで呈示されている状態と、図9(b)に示す如く視標100aが背景100bよりも遥かに暗いゼロという最低の明るさで呈示されている状態とが、被検眼に交互に現れることによって、当該被検眼にとって、図9(c)に示す如く視標100aが背景100bよりも少し暗いB(<A)という一定の明るさで呈示されているように見受けられることがある。なお、図9(a)は、図7(a)に示した状態に対応し、図9(b)は、図7(b)に示した状態に対応する。そして、図9(c)は、図8に示した状態に対応する。このような現象が生じると、検査の信頼性(精度)に支障を来たす虞がある。
この不都合を解消するべく、本実施形態においては、図10に示すように、被検眼によって見受けられる映像100上で、背景100bの明るさが視標100aの明るさと同等になるように、当該背景100bの明るさが抑制される。この背景100の明るさの抑制は、上述の液晶シャッタ16によって行われる。即ち、液晶シャッタ16の各画素16b,16b,…のうちの背景100bに対応するものの透過率が適当に下げられ、それ以外の(視標100aに対応する)ものは開放状態を維持する。つまりはそうなるように、上述の液晶制御信号Sbが生成され、これに応じた液晶駆動信号Sb’が液晶シャッタ16に与えられる。これにより、図8に示したような不都合な現象は生じず、検査の信頼性が保たれる。
ただし、図10に示した状態では、視標100aと背景100bとを含む映像100全体の明るさが低下し、つまりAという本来の明るさからBという明るさに低下し、これもまた、不都合である。この一種の副次的な不都合を解消するべく、本実施形態においてはさらに、図11に示すように、視標100aと背景100bとを含む映像100全体の明るさが増大され、言わば底上げされる。この映像100全体の明るさの底上げは、LEDユニット12によって行われる。即ち、LEDユニット12の全てのLED素子12a,12a,…の明るさが、Aという本来の明るさとBという低下した明るさとの差分相当分Δ(=A−B)だけ底上げされる。つまりはそうなるように、上述のLED制御信号Saが生成され、これに応じたLED駆動信号Sa’が各LED素子12a,12a,…に個別に与えられる。これにより、検査用の映像100全体の明るさが本来のAという明るさに補償され、本来の検査の信頼性が保たれる。
なお、図11に示した如く映像100全体の明るさが補償された場合には、例えば図12(a)に示すように、視標100aが最高の明るさで呈示されているときに、当該視標100aの明るさが背景100bの明るさよりも高くなり、単純にはAという本来の明るさに上述の底上げ分Δが足し合わされたC(=A+Δ)という明るさになる。そして、図12(b)に示すように、視標100aが最低の明るさで呈示されているときにも、当該視標100aの明るさが本来のゼロという明るさよりも高くなり、単純には底上げ分Δに相当するD(=Δ)という明るさになる。従って、このことによる何らかの不都合が懸念される。しかしながら、図12(a)における視標100aの明るさCと、図12(b)における当該視標100aの明るさDとには、相当の差があり、また、ここで言う底上げ分Δは、映像100全体の明るさに比べて、特に背景100bの明るさに比べて、相当に小さいことから、そのような懸念はない。
本実施形態は、本発明の1つの具体例であり、本発明の範囲を限定するものではない。
例えば、LEDユニット16に注目すると、上述したように、LEDユニット16の各LED素子16b,16b,…は、個別の被制御端子を備えており、つまり当該LED素子16b,16b,…の総数(=1920×1080)に応じた膨大な数の被制御端子を備えている。このようなLEDユニット16は、例えば集積回路の積層技術を応用することで実現することはできるが、たとえそうであるとしても、当該被制御端子の数は膨大である。そして、LED駆動回路18についても、各LED素子16b,16b,…の各被制御端子と個別に接続される複数の制御端子を備えており、つまり当該被制御端子と同数の制御端子を備えている。このため、これら各LED素子16b,16b,…の各被制御端子とLED駆動回路18の各制御端子とを含む視野計10全体の構成が極めて複雑になる。この不都合を抑制するべく、次のような構成が採用されてもよい。
即ち、図13に示すように、各LED素子16b,16b,…が複数のブロック16c,16c,…に分割されてもよい。好ましくは、それぞれのブロック16cごとに、当該ブロック16cに属する各LED素子16b,16b,…がマトリクスを成すように、つまり複数の行と複数の列とを形成するように、分割されてもよい。なお、図13(a)は、LEDユニット16の垂直方向においてm(m:2以上の整数)分割され、当該LEDユニット16の水平方向においてn(n:2以上の整数)分割された状態を示す。その上で、図13(b)に示すように、それぞれのブロック16cごとに、互いに同じ行に属する各LED素子16b,16b,…の例えば各陽極端子は、互いに共通の行側被接続端子16dによって一纏めに接続され、併せて、互いに同じ列に属する各LED素子16b,16b,…の各陰極端子は、互いに共通の列側被接続端子16eによって一纏めに接続されるものとする。因みに、互いに同じ行に属する各LED素子16b,16b,…の各陰極端子が、互いに共通の行側被接続端子16dによって一纏めに接続され、併せて、互いに同じ列に属する各LED素子16b,16b,…の各陽極端子が、互いに共通の列側被接続端子16eによって一纏めに接続されてもよい。これに対して、LED駆動回路18は、詳しい図示は省略するが、各行側被接続端子16d,16d,…に個別に接続される複数の行側制御端子と、各列側被接続端子16e,16e,…に個別に接続される複数の列側接続端子と、を備えるものとする。そして、LED駆動回路18は、それぞれのブロック16cごとに、各LED素子16b,16b,…を公知のダイナミック方式で制御するものとする。この構成によれば、各LED素子16b,16b,…とLED駆動回路18とを接続する端子の数が削減され、これらの端子を含む視野計10全体の構成の簡素化が図られる。
ただし、この構成では、それぞれのブロック16cごとに、各LED素子16b,16b,…が上述の如くダイナミック方式で制御されることから、2以上の(特に全ての)LED素子16b,16b,…を同時に点灯させることができない場合があり、この場合は、当該2以上のLED素子16b,16b,…があたかも同時に点灯しているように見せ掛けるための適宜の設計が成される。また、それぞれのブロック16cごとのLED素子16bの数が過多であると、当該LED素子16bの明るさが不足することがある。これらのことを考慮して、それぞれのブロック16cごとのLED素子16bの数、換言すれば当該ブロック16cの数(m×n)は、適宜に定められる。
また、LEDユニット12のLED素子12bの数と、液晶シャッタ16の画素16bの数とは、互いに同一であり、併せて、図4に示したように、LEDユニット12の各LED素子12b,12b,…と、液晶シャッタ16の各画素16b,16b,…とは、互いに1対1で対応付けられるものとされたが、これに限らない。例えば、LEDユニット12のそれぞれのLED素子12bのサイズと、液晶シャッタ16のそれぞれの画素16bのサイズと、を比較すると、一般には、前者の方が後者よりも大きい。そこで、図14に示すように、1個のLED素子12bに対して複数個の画素16b,16b,…が対応付けられてもよい。即ち、LEDユニット12のLED素子12bの数が、液晶シャッタ16の画素16bの数よりも少ないものとされてもよい。なお、図14(a)は、1個のLED素子12bに対して4(2×2)個の画素16b,16b,…が対応付けられている状態を示し、図14(b)は、1個のLED素子12bに対して16(4×4)個の画素16b,16b,…が対応付けられている状態を示し、図14(c)は、1個のLED素子12bに対して64(8×8)個の画素16b,16b,…が対応付けられている状態を示す。勿論、これとは反対に、液晶シャッタ16の画素16bの数の方が、LEDユニット12のLED素子12bの数よりも多くてもよい。
さらに、液晶シャッタ16については、例えばその光弁面(画面)16aのサイズ(対角寸法)が1インチ前後の比較的に小さいものが採用される場合がある。この場合は大抵、LEDユニット12の発光面12aのサイズの方が、液晶シャッタ16の光弁面16aのサイズよりも大きくなる。そこで例えば、図15に示すように、LEDユニット12と液晶シャッタ16との間に、当該LEDユニット12の発光面12aから発せられた光を液晶シャッタ16の光弁面16aのサイズに整合させるための適宜の整合手段30が設けられてもよい。なお、図15は、整合手段16として、収束レンズ群32と発散レンズ群34とから成る無焦点系のコンバージョンレンズが設けられた例を示す。
また、液晶シャッタ16として、例えばその光弁面16aのサイズが10インチ以上の比較的に大きいものが採用され、併せて、LEDユニット12として、その発光面12aのサイズが当該液晶シャッタ16の光弁面16aのサイズと同等のものが採用されてもよい。そして、これらLEDユニット12と液晶シャッタ12とは、互いに比較的に近接して設けられ、極端には互いに密着されてもよい。この構成によれば、上述した主光学系14が設けられなくとも、当該LEDユニット12と液晶シャッタ12と(による上述の映像形成面)を直接的に見ることによる視野の検査が実現される。即ち、装置全体の構成から主光学系14が排除され、当該装置全体の構成のさらなる簡素化が実現される。
本実施形態においては、発光手段として、複数のLED素子12b,12b,…がマトリクス状に配置されたマトリクス型のLEDユニット12が採用されたが、これに限らない。例えば、各LED素子12b,12b,…が概略ハニカム状に配置されたものが採用されてもよい。また、各LED素子12b,12b,…は、白色のものに限らず、カラーのものであってもよい。さらに、EL(Electroluminescence)ディスプレイ、とりわけ有機ELディスプレイや、それ以外のものが、発光手段として採用されてもよい。
そして、視標100aについては、概略円形状とされたが、これに限らない。例えば、三角形状や四角形状等の多角形状であってもよいし、棒状や環状等であってもよく、つまり適宜の形状とされてもよい。また、複数の視標100a,100a,…が同時に呈示されてもよい。さらに、視標100aは、概略正弦波状に明滅(点滅)するものとしたが、これに限らず、概略鋸歯状や概略三角形状等の当該概略正弦波状以外の態様で明滅するものとしてもよい。
加えて、背景100bについては、(図12に示した場合を除いて)視標100aが最も明るいときと同等の一定の明るさとされたが、これに限らない。例えば、背景100bの形成を担う各LED素子12b,12b,…が常に消灯状態とされることで、当該背景100bが真っ暗な状態で呈示され、つまり当該背景100bが視標100a以下の明るさで呈示されてもよい。ただし、本実施形態で説明したように、背景100bについては、視標100aが最も明るいときと同等の一定の明るさとされることで、当該視標100aが呈示されることによる被検眼への刺激の抑制が図られ、ひいては信頼性の高い検査の実現が図られる。
さらに、光弁手段としての液晶シャッタ16については、上述の如く背景100bの明るさを抑制する機能、換言すれば当該背景100bの明るさを微調整する機能、を発揮する。そして、この液晶シャッタ16は、背景100bの明るさのみ成らず、視標100aの明るさをも微調整することができる。即ち、液晶シャッタ16は、視標100aの明るさと背景100bの明るさとを個別に微調整する機能を発揮する。ここで、視標100aの明るさと背景100bの明るさとは、これらの形成を担うLEDユニット12の各LED素子12b,12b,…それぞれの発光強度によって制御できることを鑑みると、これとは別個に、液晶シャッタ16によっても個別に微調整できることは、より信頼性の高い検査の実現に大きく貢献する。
また、液晶シャッタ16は、視標100aと背景100bとを含む検査用の映像100の画質の向上にも、大きく貢献する。例えば、LEDユニット12の各LED素子12b,12b,…の性状等の相違によって、検査用の映像100の明るさに斑が生じた場合、この液晶シャッタ16によって、当該斑を解消することができる。つまりはそうなるように、液晶シャッタ16の各画素16b,16b,…の透過率が個別に制御されることで、検査用の映像100の画質の向上が図られる。このような用途であれば、リフレッシュレートに起因して動作速度が制限される液晶シャッタ16であっても、本発明における光弁手段として十分に適用することができる。
加えて、光源手段としては、透過型の液晶シャッタ16に限らず、例えば反射型の液晶シャッタが採用されてもよい。この場合、LEDユニット12から発せられた光は、当該反射型の液晶シャッタによって反射される。そして、この反射型の液晶シャッタによる反射光が、主光学系14を介して被検眼に呈示される。また、多数の微小ミラーが2次元状に配置されたマイクロミラーデバイスという電子光学部品が知られているが、このマイクロミラーデバイスが、光弁手段として採用されてもよい。この場合も、LEDユニット12から発せられた光は、当該マイクロミラーデバイスによって反射され、この反射光が、主光学系14を介して被検眼に呈示される。
なお、本実施形態で説明した視野計10は、静的視野測定に供されるものであるが、これに限らず、動的視野測定に供されるものにも、本発明を適用することができる。また、本発明は、視野計10に限らず、それ以外の眼科検査装置にも適用することができる。
10 視野計
12 LEDユニット
12b LED素子
18 LED駆動回路
20 制御回路
100 映像
100a 視標
100b 背景

Claims (7)

  1. 明滅する視標を含む検査用の映像を被検眼に呈示すると共に該被検眼による該視標の視認状況に基づいて該被検眼の検査を行う眼科検査装置において、
    上記映像を形成するように2次元状に配置された互いに同一仕様の複数の発光素子を有しており該複数の発光素子の明るさが互いに並行して個別に被制御可能な発光手段と、
    上記複数の発光素子の明るさを互いに並行して個別に制御する発光制御手段と、
    を具備し、
    上記発光制御手段は、上記複数の発光素子の一部が明滅することによって上記映像のうちの上記視標が形成され、併せて、該複数の発光素子の該一部以外の明るさが一定となることによって該映像のうちの該視標以外の領域である背景が形成されるように、制御を行うこと、
    を特徴とする、眼科検査装置。
  2. 上記発光手段は、上記複数の発光素子として複数の発光ダイオード素子を有する2次元発光ダイオードユニットである、
    請求項1に記載の眼科検査装置。
  3. 上記複数の発光素子に対応するように2次元状に配置された複数の光弁画素を有しており該複数の発光素子によって形成された上記映像が該複数の光弁画素を介して上記被検眼に呈示されるように設けられ該映像の呈示のために該複数の発光素子から発せられる光の該複数の光弁画素を介しての該被検眼への伝達率が個別に被制御可能な光弁手段と、
    上記複数の光弁画素を介しての上記伝達率を個別に制御する光弁制御手段と、
    をさらに具備する、
    請求項1に記載の眼科検査装置。
  4. 上記光弁手段は、液晶を利用した上記複数の光弁画素を有する液晶シャッタである、
    請求項3に記載の眼科検査装置。
  5. 上記発光制御手段は、上記複数の発光素子の上記一部である視標形成素子の明るさが緩やかに変化するように、制御を行う、
    請求項1に記載の眼科検査装置。
  6. 上記発光制御手段は、上記複数の発光素子の上記一部以外である背景形成素子の明るさが該複数の発光素子の上記一部である視標形成素子の最も明るいときの明るさと略同等となるように、制御を行う、
    請求項1に記載の眼科検査装置。
  7. 上記被検眼の視野を測定するための視野計である、
    請求項1に記載の眼科検査装置。
JP2018516308A 2016-05-13 2016-05-13 眼科検査装置 Active JP6473548B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/064270 WO2017195347A1 (ja) 2016-05-13 2016-05-13 眼科検査装置

Publications (2)

Publication Number Publication Date
JPWO2017195347A1 true JPWO2017195347A1 (ja) 2018-08-09
JP6473548B2 JP6473548B2 (ja) 2019-02-20

Family

ID=60267678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018516308A Active JP6473548B2 (ja) 2016-05-13 2016-05-13 眼科検査装置

Country Status (4)

Country Link
US (1) US10791921B2 (ja)
EP (1) EP3456241A4 (ja)
JP (1) JP6473548B2 (ja)
WO (1) WO2017195347A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121707A (ja) * 2002-10-07 2004-04-22 Yamanashi Tlo:Kk 視野検査方法および装置
JP2006340755A (ja) * 2005-06-07 2006-12-21 Shinko Seiki Co Ltd 眼科検査装置
WO2009001458A1 (ja) * 2007-06-28 2008-12-31 Shinko Seiki Company, Limited 眼科検査装置
JP2012511344A (ja) * 2008-12-12 2012-05-24 カール ツァイス メディテック アクチエンゲゼルシャフト 視覚刺激のための高精度コントラスト比ディスプレイ
WO2014167688A1 (ja) * 2013-04-11 2014-10-16 神港精機株式会社 眼科検査装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100237686B1 (ko) * 1997-11-06 2000-01-15 윤종용 플리커 레벨 측정 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121707A (ja) * 2002-10-07 2004-04-22 Yamanashi Tlo:Kk 視野検査方法および装置
JP2006340755A (ja) * 2005-06-07 2006-12-21 Shinko Seiki Co Ltd 眼科検査装置
WO2009001458A1 (ja) * 2007-06-28 2008-12-31 Shinko Seiki Company, Limited 眼科検査装置
JP2012511344A (ja) * 2008-12-12 2012-05-24 カール ツァイス メディテック アクチエンゲゼルシャフト 視覚刺激のための高精度コントラスト比ディスプレイ
WO2014167688A1 (ja) * 2013-04-11 2014-10-16 神港精機株式会社 眼科検査装置

Also Published As

Publication number Publication date
US10791921B2 (en) 2020-10-06
JP6473548B2 (ja) 2019-02-20
WO2017195347A1 (ja) 2017-11-16
EP3456241A4 (en) 2019-08-07
US20190209004A1 (en) 2019-07-11
EP3456241A1 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
JP5555252B2 (ja) 視覚刺激のための高精度コントラスト比ディスプレイ装置及び方法
JP5814966B2 (ja) 画像表示装置及びその制御方法
US8896766B2 (en) Display apparatus, light emitting device, and method for controlling display apparatus
JP2013015846A (ja) カラー表示装置
TW200523870A (en) Method and device for visual masking of defects in matrix displays by using characteristics of the human vision system
US20160292921A1 (en) System, apparatus, and method for displaying an image using light of varying intensities
JP2020517986A (ja) 投影システム及び投影方法
JP6473548B2 (ja) 眼科検査装置
JP5907335B2 (ja) 視標呈示装置
DE102015217682A1 (de) Vorrichtung zur Augenuntersuchung
US9482935B2 (en) Projection apparatus, method for controlling projection apparatus, and program therefor
JP2013519103A (ja) 軸外ハロ低減方法および装置
US20210106218A1 (en) Visual field test device
CN110710201A (zh) 用于激光投影单元的运行方法和控制单元以及激光投影单元
WO2014167688A1 (ja) 眼科検査装置
JP2016029487A (ja) 画像表示装置及びその制御方法
WO2016152637A1 (ja) 画像表示装置
US20240130613A1 (en) Automated vision testing
JP2013160839A (ja) 画像表示システム、制御装置、プロジェクターおよびスクリーン
Bayer et al. A tetrachromatic display for the spatiotemporal
JP2006323169A (ja) 画像表示装置、プロジェクタ及びプロジェクタの駆動方法
JP2005202419A (ja) カラー表示装置およびカラー表示方法
JP2012150314A (ja) 表示装置、その制御方法及び電子機器
JP2008083533A (ja) 画像表示装置における第1光変調素子と第2光変調素子の位置調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190125

R150 Certificate of patent or registration of utility model

Ref document number: 6473548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250