WO2014166454A1 - 一种信道信息的获取方法及装置 - Google Patents

一种信道信息的获取方法及装置 Download PDF

Info

Publication number
WO2014166454A1
WO2014166454A1 PCT/CN2014/077937 CN2014077937W WO2014166454A1 WO 2014166454 A1 WO2014166454 A1 WO 2014166454A1 CN 2014077937 W CN2014077937 W CN 2014077937W WO 2014166454 A1 WO2014166454 A1 WO 2014166454A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
antenna
matrix
channel information
index
Prior art date
Application number
PCT/CN2014/077937
Other languages
English (en)
French (fr)
Inventor
陈宪明
朱登魁
肖华华
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/906,010 priority Critical patent/US9647739B2/en
Priority to EP14783089.7A priority patent/EP3026823B1/en
Publication of WO2014166454A1 publication Critical patent/WO2014166454A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to a Massive antenna array transmission technique, and more particularly to a method and apparatus for acquiring channel information on a receiving side in a wireless communication system using a large-scale antenna array. Background technique
  • B4G (Beyond Fourth Generation) /5G (Five Generation) mobile communication systems will face the transmission requirements and ubiquitous coverage requirements of massive information.
  • the use of advanced multi-antenna technology and channel adaptive technology in the 4G (4th Generation) mobile communication standard has brought the spectrum efficiency of the system closer to the channel capacity.
  • Cell miniaturization and isomerization are the development trend of wireless networks in the future.
  • the path loss of signals can be significantly reduced, thereby improving the spectrum efficiency and power efficiency of the system, and also enhancing network coverage. , but need to solve complex interference problems.
  • configuring a larger antenna array is considered to be another low-cost implementation that can significantly increase system capacity and coverage.
  • Adaptive large-scale antenna array technology can deeply exploit and utilize spatial radio resources, and theoretically can significantly improve the spectrum efficiency and power efficiency of the system. It is an important technology for constructing high-efficiency green broadband mobile communication systems in the future. However, how to fully exploit its potential gains is still in urgent need of further study.
  • adaptive large-scale antenna array transmission will present some new features, such as: Channels will have significant sparsity in spatial distribution; large array beams can almost completely eliminate the effects of noise, but the same frequency caused by pilot pollution Interference becomes the main factor that restricts system performance; the performance of adaptive large-scale antenna array mainly depends on the statistical characteristics of the channel. The effect of small-scale fading of the channel is significantly reduced.
  • the embodiments of the present invention provide a method and an apparatus for acquiring channel information.
  • An embodiment of the present invention provides a method for acquiring channel information, including:
  • the receiving side acquires an index L of M antennas that transmit reference signals among the N antennas on the transmitting side; and acquires channel information Y between the M antennas and the receiving side receiving antennas;
  • An estimate S' of the channel information S between the transmitting side antenna and the receiving side receiving antenna is determined by using the index L, the unitary matrix W and the channel information Y.
  • the receiving side acquires an index L of M antennas that transmit reference signals among the N antennas on the transmitting side, and includes:
  • an index L of the M antennas that are inherent, or acquiring an index L of the M antennas according to a time and/or a frequency resource location, or acquiring the M by using a first system or control information from a transmitting side.
  • the index L of the antenna is
  • the receiving side directly acquires an index L of the M antennas in the first system or control information, or obtains the M by using an antenna group index in the first system or control information.
  • the index L of the antenna is the index L of the antenna.
  • the step of acquiring the channel information Y between the M antennas and the receiving side receiving antennas comprises:
  • the channel information Y is obtained by combining channel information ⁇ yi , y 2 , . . . , y M ⁇ between each of the antennas and the receiving antenna.
  • the step of acquiring the unitary matrix W of the dimension NxN comprises:
  • the receiving side acquires the preset unitary matrix W, or determines the unitary matrix W by a second system or control information from the transmitting side.
  • the predetermined unitary matrix W is a discrete Fourier transform DFT matrix of dimension NxN, each element of which is:
  • W, C is the normalized constant factor.
  • the second system or control information includes the number of antenna units N v in the vertical direction, the number of antenna units N h in the horizontal direction, the polarization antenna unit indication, and the polarization matrix W pd related information.
  • the step of determining the unitary matrix W by the second system or control information from the transmitting side comprises:
  • the product of N v and N h is equal to N
  • W pc)1 is a scalar 1
  • the step of determining the estimation S′ of the channel information S between the transmitting side antenna and the receiving side receiving antenna by using the index L, the unitary matrix W and the channel information Y includes: receiving side utilization The index L, obtaining a random matrix ⁇ having a dimension of ⁇ ;
  • the vector X is a vector having the smallest norm in the vector set ⁇ ., . , ⁇ , wherein for any vector of the vector set ⁇ ., . , ⁇ Satisfying: the random matrix ⁇ , the ⁇ matrix W or the conjugate transpose of the ⁇ matrix W, the product of the vector ⁇ 4 is equal to the channel information ⁇ , the norm is the absolute value of all elements of the vector Sum.
  • the estimate S' of the channel information S between the one antenna and the receiving antenna is determined by calculating a product of the conjugate matrix W or the conjugate transpose of the unitary matrix W and the vector X.
  • An embodiment of the present invention further provides a channel information acquiring apparatus, including:
  • the information acquisition module is configured to acquire an index L of M antennas that transmit reference signals among the N antennas on the transmitting side, acquire channel information Y between the M antennas and the receiving side receiving antennas, and obtain a unitary matrix W having a dimension of ⁇ ;
  • the channel information estimating module is configured to determine, by using the index L, the unitary matrix W and the channel information Y, an estimate S' of channel information S between the transmitting side antenna and the receiving side receiving antenna.
  • the information acquiring module includes: an antenna index acquiring submodule, a channel information acquiring submodule, and a unitary matrix acquiring submodule,
  • the antenna cable acquisition submodule is configured to acquire an index of the inherent M antennas L, or obtain the index L of the M antennas according to the time and / or frequency resource location, or obtain the index L of the M antennas by the first system or control information from the transmitting side;
  • the channel information acquisition sub-module is configured to acquire a channel signal between each of the M antennas and the receiving antenna according to the received data and the reference data of each antenna reference signal resource position in the M antennas. y 1 y 2 , —, y M ⁇ , and combining channel information ⁇ yi , y 2 , ..., y M ⁇ between each of the M antennas and the receiving antenna to obtain channel information Y;
  • the unitary matrix acquisition sub-module is configured to obtain a preset unitary matrix W, or to determine a unitary matrix W by a second system or control information from the transmitting side.
  • the second system or control information includes: the number of antenna units N v in the vertical direction, the number of antenna units N h in the horizontal direction, the polarization antenna unit indication, and the polarization matrix W pc) 1 related information.
  • the unitary matrix acquisition submodule determines the unitary matrix ⁇ by using a second system or control information from the transmitting side, including:
  • the unitary matrix acquisition submodule calculates a dimension as a ⁇ vertical direction DFT matrix Wv , a polarization matrix Wp .
  • ⁇ Dimension N h xN h W h in the horizontal direction of the DFT matrix Kronecker product, determined ⁇ dimension W is a unitary matrix;
  • the transmitting side antenna is a single-polarized antenna unit
  • the product of N v and N h is equal to N
  • W pc)1 is a scalar 1
  • the unit indicates that the N antennas on the transmitting side are dual-polarized antenna elements, then 2 times the product of N v and N h is equal to N, and W is a polarization matrix with a dimension of 2 ⁇ 2.
  • the channel information estimation module includes: a random matrix acquisition submodule, a vector determination submodule, and an estimation submodule,
  • the random matrix acquisition submodule is configured to obtain a random matrix ⁇ having a dimension of ⁇ by using an index L of the M antennas;
  • the vector determining submodule is configured to determine a vector X by using the random matrix ⁇ , the ⁇ matrix W and the channel information ;
  • the estimation submodule is configured to determine, by using the unitary matrix W and the vector X, Estimation S' of channel information S between the N antennas and the receiving antenna.
  • the vector X is a vector having the smallest norm in the vector set ⁇ V 1 V 2 , ... , V K ⁇ , wherein, for the vector set ⁇ .,., ⁇ Any vector 1b4 is satisfied: the random matrix ⁇ , the ⁇ matrix W or the conjugate transpose of the ⁇ matrix W, the product of the vector ⁇ 4 is equal to the channel information ⁇ , the norm is a vector element The sum of the absolute values.
  • the estimation submodule is configured to determine channel information between the one antenna and the receiving antenna by calculating a product of the unitary matrix W or the conjugate transpose of the unitary matrix W and the vector X. S's estimate S'.
  • the embodiment of the present invention further provides a computer readable storage medium, the storage medium comprising a set of computer executable instructions, the instructions being used to perform the method for capturing channel information according to the embodiment of the present invention.
  • the embodiment of the present invention obtains the estimation S′ of the channel information S between the two antennas and the receiving antenna according to the channel information Y between the M antennas and the receiving antennas of the N antennas, which reduces the use of the large-scale antenna array.
  • the overhead of the reference signal acquired by the channel information further improves the spectral efficiency of the large-scale antenna array transmission.
  • FIG. 1 is a flowchart of a method for acquiring channel information according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a device for acquiring channel information according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a large-scale planar dual-polarized antenna array according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of an antenna group to time and/or frequency resource mapping according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of an 8x8 single-polarized antenna array antenna index provided by an embodiment of the present invention
  • FIG. 9 is a schematic diagram of an index of an 8 ⁇ 8 dual-polarized antenna array antenna provided by an embodiment of the present invention. detailed description
  • FIG. 1 is a flowchart of a method for acquiring channel information according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • Step 101 The receiving side acquires an index L of M antennas that transmit reference signals among the N antennas on the transmitting side. Specifically, the receiving side acquires an index L of the inherent M antennas, that is, the index L does not change with time and/or frequency resource position change; or according to a preset manner, according to time and/or frequency Obtaining an index L of the M antennas, or obtaining an index L of the M antennas by using a first system or control information from a transmitting side, that is, the receiving side directly acquires the first system or the control information. An index L of the M antennas, or an index L of the M antennas, by using an antenna group index in the first system or control information.
  • Step 102 Obtain channel information Y between the M antennas and the receiving side receiving antennas.
  • the receiving side acquires each antenna of the one antenna according to the received data and the reference data of each antenna reference signal resource position (ie, the time of the reference signal and/or the frequency resource position) of each of the antennas.
  • Receiving channel information ⁇ y 1 y 2 , — , y M ⁇ between the antennas, and then channel information between each of the M antennas and the receiving antenna ⁇ yi , y 2 , ⁇ y M ⁇ is combined to obtain channel information ⁇ .
  • the reference data is transmission data of a time and/or a frequency resource position of each of the M antennas known by the receiving side.
  • Step 103 The receiving side acquires a unitary matrix ⁇ having a dimension of ⁇ .
  • the receiving side is The predetermined matrix W is taken, or the matrix W is determined by the second system or control information from the transmitting side.
  • the preset unitary matrix W is a Discrete Fourier Transform (DFT) matrix of dimension ,, each element of which is:
  • W, C is the normalized constant factor.
  • the second system or control information includes a vertical direction antenna unit number N v , a horizontal direction antenna unit number N h , a polarized antenna unit indication, and a polarization matrix W pd related information, and the receiving side passes the calculation dimension as ⁇ ⁇ ⁇ ⁇ ⁇ The vertical direction DFT matrix W v , the polarization matrix W p .
  • the ⁇ matrix W and the channel information Y determining a vector X, the vector X being a vector having the smallest norm in the vector set ⁇ ., ⁇ , wherein, for the vector set ⁇ Any one of ⁇ .,., ⁇ is satisfied: the conjugate transpose of the random matrix ⁇ , the ⁇ matrix W or the ⁇ matrix W, the product of the vector ⁇ 4 is equal to the channel information ⁇ ,
  • the norm is the sum of the absolute values of all the elements of the vector;
  • the estimate S' of the channel information S between the one antenna and the receiving antenna is determined, preferably by calculation
  • the product of the conjugate transpose of the unitary matrix W or the unitary matrix W and the vector X determines an estimate S' of the channel information S between the N antennas and the receiving antenna.
  • the embodiment of the present invention further provides a channel information acquiring apparatus, as shown in FIG. 2, including: an information acquiring module 10 and a channel information estimating module 20, where:
  • the information acquiring module 10 is configured to acquire an index L of M antennas that transmit reference signals among the N antennas on the transmitting side, acquire channel information Y between the M antennas and the receiving side receiving antennas, and obtain a dimension ⁇ Matrix W.
  • the information acquiring module 10 includes an antenna index obtaining sub-module 11 , a channel information obtaining sub-module 12 , and a unitary matrix acquiring sub-module 13 .
  • the antenna index acquisition sub-module 11 is configured to acquire an inherent index L of the M antennas, or acquire an index L of the M antennas according to a time and/or a frequency resource location, or pass the first from the transmitting side.
  • System or control information acquires an index L of the M antennas;
  • the channel information acquisition sub-module 12 is configured to acquire channel information between each antenna and the receiving antenna of the M antennas according to the received data and reference data of each of the M antenna reference signal resource locations. ⁇ yi , y 2 , —, y M ⁇ , and combining channel information ⁇ y 1; y 2 , ⁇ , y M ⁇ between each of the M antennas and the receiving antenna, Obtaining channel information Y;
  • the unitary matrix acquisition sub-module 13 is configured to acquire a predetermined unitary matrix W, or to determine a unitary matrix W by a second system or control information from the transmitting side.
  • the channel information estimation module 20 is configured to determine an estimate S' of the channel information S between the transmitting side antennas and the receiving side receiving antennas by using the index L, the unitary matrix W and the channel information Y.
  • the channel information estimation module 20 includes a random matrix acquisition sub-module 21, a vector determination sub-module 22, and an estimation sub-module 23.
  • the vector determining sub-module 22 is configured to determine a vector x by using the random matrix P, the unitary matrix W and the channel information ,, the vector X being a vector set ⁇ ., ⁇ a vector having the smallest norm, a conjugate transpose of the random matrix ⁇ , the ⁇ matrix W or the ⁇ matrix W, The product of any one of the vectors is equal to the channel information ⁇ ; the estimation sub-module 23 is configured to determine a channel between the one antenna and the receiving antenna by using the unitary matrix W and the vector X The estimate S of the information S.
  • the information acquiring module 10 and the channel information estimating module 20 may be a CPU (Central Processing Unit), a microprocessor (MPU, Micro Processing Unit), and a digital signal processor in the channel information acquiring device. (DSP, Digital Signal Processor) or Field Programmable Gate Array (FPGA).
  • CPU Central Processing Unit
  • MPU Microprocessor
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the antenna array is assumed to be composed of a plurality of antenna elements, and the dimension of the antenna array is N v xN h , that is, its vertical
  • the number of antenna elements in the direction or the number of rows of the antenna elements is N v
  • the number of antenna elements in the horizontal direction or the number of columns of the antenna elements is N h .
  • the antenna unit is divided into a single-polarized antenna unit and a dual-polarized antenna unit; wherein, a single-polarized antenna unit is equivalent to one antenna, and an antenna array composed of single-polarized antenna units is called a single-polarized antenna array;
  • a dual-polarized antenna unit is equivalent to two antennas with different polarization directions, a schematic diagram of a large-scale planar single-polarized antenna array provided by the embodiment, and FIG. 3 shows a single-polarized antenna array of N v xN h -dimensional
  • the product of the number of antenna elements N v in the vertical direction and the number of antenna elements N h in the horizontal direction is equal to the number N of antennas on the transmitting side.
  • FIG. 4 is a schematic diagram of a large-scale planar dual-polarized antenna array according to an embodiment of the present invention, and FIG. 4 shows an N v xN h -dimensional dual-polarized antenna array, In the middle, the number of antenna elements in the vertical direction ⁇ is twice the product of the number of antenna elements N h in the horizontal direction equal to the number N of antennas on the transmitting side.
  • the antenna is composed of at least one antenna element having the same polarization direction, and the antenna can be equivalent to an antenna port in the Long Term Evolution (LTE) standard; wherein the antenna element is the smallest component constituting the antenna.
  • LTE Long Term Evolution
  • the channel information is a numerical representation of a small-scale channel or a fast fading channel between the transmitting antenna and the receiving antenna.
  • the first row of antennas is indexed first, from right to left, in sequence, 1, 2, ..., n; then, the second row of antennas continues to be indexed, from right to left, in turn n + l , n+2,...,2n; and so on, as shown in Figure 6, the first row of the first polarization direction of the antenna is indexed first, from right to left is 1, 2,..., n;
  • the antenna in the second polarization direction of the first row continues to be indexed, from right to left, n+l, n+2, ..., 2n; then, the second row
  • the antenna in one polarization direction continues to be indexed, from right to left, 2n+l, 2n+2,...,3n; then, the second row of the second polarization direction antenna continues to be indexed, from right to left In turn, it is 3n+l
  • the embodiment of the present invention provides a method for acquiring channel information, which includes the following four steps: Step 1: Acquire an index L of M antennas that transmit reference signals among N antennas, where N is the number of antennas on the transmitting side. , and M is less than or equal to N.
  • the receiving side can obtain the fixed index L of the M antennas, wherein the M antennas that transmit the reference signals among the N antennas do not change with time and/or frequency.
  • the index L of the M antennas is related to the time and/or frequency resource location.
  • N antennas can be grouped, each antenna group includes M antennas, and partial overlap of the antennas between the groups is allowed; then, the antenna groups are periodically mapped to corresponding time and/or frequency resources.
  • Figure 7 is a form of the present invention A schematic diagram of antenna group-to-time and/or frequency resource mapping provided by the embodiment, as shown in FIG. 7, a total of 20 antenna groups, and mapped with a duration of every 10 subframes.
  • N is N is an integer multiple of M
  • N antennas are divided into N/M groups, and M antennas are sequentially selected at intervals of N/M to form an antenna group, and N/M antenna groups are cyclically mapped. Go to the appropriate time and / or frequency resources.
  • an index L of the M antennas by receiving information from a transmitting side, where the information from the transmitting side includes, but is not limited to, an index L (ii, i 2 , of each antenna of the M antennas, -, i M ) and the index of the antenna group, which is carried in the system or control information specific to the cell or terminal.
  • Step 2 Obtain channel information Y between the M antennas and the receiving antenna.
  • the receiving side acquires channel information yi between the first antenna and the receiving antenna of the one antenna according to the received data of the first antenna reference signal resource position and the reference data of the antenna;
  • the received data of the second antenna reference signal resource position and the reference data of the antenna of the M antennas acquire channel information y 2 between the second antenna and the receiving antenna of the M antennas, and so on, according to the Acquiring the received data of the Mth antenna reference signal resource position and the reference data of the antenna, acquiring channel information y M between the M antenna and the receiving antenna of the M antennas; finally, acquiring the M antennas and Receiving channel information Y between antennas, wherein the channel information Y is a combination of channel information between each of the M antennas and the receiving antenna, that is,
  • Step 3 Obtain the unitary matrix ⁇ with the dimension ⁇ .
  • the information from the transmitting side is carried in a cell or a terminal-specific system or control information, including but not limited to the number of antenna units N v in the vertical direction, the number of antenna units in the horizontal direction N h , and the polarized antenna unit.
  • the polarization matrix W pd is related to the information.
  • the unitary matrix W of dimension ⁇ is the Kronary product of the vertical DFT matrix W v , the polarization matrix W pd and the horizontal DFT matrix W h .
  • the specific formula is as follows:
  • W v is a vertical direction DFT matrix with dimensions ⁇ ⁇ ⁇ ⁇
  • W h is a horizontal direction DFT matrix with dimensions N h xN h
  • N v and N h are the number of antenna elements in the vertical direction and the horizontal direction, respectively.
  • W pd is a scalar "1"
  • W pd is a polarization matrix with a dimension of 2x2. Note: For a single-polarized antenna element, the product of N v and N h is equal to N; for a dual-polarized antenna element, 2 times the product of N v and N h is equal to N.
  • Step 4 Obtain channel information between the N antennas and the receiving antenna according to the index L of the M antennas, the channel information Y between the M antennas and the receiving antennas, and the ⁇ matrix W with the dimension ⁇ S's estimate S'.
  • 1.1 represents the norm operation of the vector
  • st is the constraint flag
  • H represents the conjugate transpose operation of the matrix
  • min(x) represents the variable value that takes the minimum value of the expression X
  • the transmitting side refers to the network side
  • the receiving side refers to the terminal side.
  • FIG. 8 is a schematic diagram of an antenna index of a 8 ⁇ 8 single-polarized antenna array provided by an embodiment of the present invention, such as As shown in Fig. 8, it is assumed that the number M of antennas transmitting the reference signal is 10 ("64).
  • the terminal side acquires an index L of 10 antennas of the inherent transmit reference signal, or acquires an index L of 10 antennas that transmit the reference signal by a preset manner, or acquires 10 antennas that transmit the reference signal by receiving information from the network side.
  • Index L assuming that the index L of the acquired 10 antennas is as follows:
  • the number of reference signal resource positions of the antenna is equal to the length of the reference data (or random sequence).
  • Different antennas of the 10 antennas use the same or different reference signal resource locations, and for different antennas using the same reference signal resource location, their reference data (or random sequences) are orthogonal or nearly orthogonal to each other, where The reference data is the two ends of the transceiver Knowing data transmitted at a reference signal resource location, the reference signal resource location being a time and/or frequency resource location at which the reference signal is transmitted.
  • the terminal side acquires channel information yi between the first antenna and the receiving antenna of the 10 antennas according to the received data of the first antenna reference signal resource position of the 10 antennas and the reference data of the antenna, specifically, the The channel information 1 between the first antenna and the receiving antenna is an element average of the vector obtained by multiplying the conjugate of the antenna reference data by the received data of the reference signal resource position by the element; similarly, the 10 is obtained in the same manner.
  • channel information Y between the 10 antennas and the receiving antenna is each of the 10 antennas a combination of channel information between the antenna and the receiving antenna, ie
  • represents the transposition operation of the matrix
  • the subscript p and the subscript q are respectively the W matrix index and the column index of the unitary matrix.
  • the terminal side obtains a 64x64 ⁇ matrix W by receiving information from the network side, and the 64x64 ⁇ matrix W is a vertical DFT matrix, a polarization matrix, and a horizontal direction.
  • W W v ® W pol ® W h
  • the terminal side acquires a random matrix P having a dimension of 10x64, wherein the seventh element of the first row of the random matrix P is "1", and the rest is "0"; the second row is 15th.
  • the elements are "1" and the rest are “0”; the 19th element of the 3rd line is “1", and the rest is "0”; the 28th element of the 4th line is “1", and the rest is “0”; In this way, the 55th element of the 10th line is "1", and the rest is "0".
  • the terminal side obtains vector X
  • the vector X is a set of vectors ⁇ Vy, 1 ⁇ 4, ⁇ , V K ⁇ in the smallest norm vector set ⁇ Vy, 1 ⁇ 4, ⁇ , V K ⁇ according to any of the vector a vector Vi satisfies: the random matrix P, the ⁇ matrix W or the conjugate transpose of the ⁇ matrix W and the vector 1 ⁇ 4, the product of the three is equal to the channel information Y between the 10 antennas and the receiving antenna;
  • the norm refers to the sum of the absolute values of all elements of the vector, which is expressed by the following formula:
  • X min
  • 1.1 represents the norm operation of the vector
  • st is the constraint flag
  • H represents the conjugate transpose operation of the matrix
  • min (x) denotes a variable value that takes the smallest value of the expression X.
  • FIG. 8 is a schematic diagram of an antenna index of an 8x8 dual-polarized antenna array provided by an embodiment of the present invention, such as As shown in FIG. 8, it is assumed that the number M of antennas transmitting the reference signal is 20 ("128) It is assumed that one receiving antenna is used on the terminal side.
  • the terminal side acquires an index L of 20 antennas of the inherent transmit reference signal, or acquires an index L of 20 antennas that transmit the reference signal by a preset manner, or acquires 20 antennas that transmit the reference signal by receiving information from the network side.
  • Index L Assume that the index L of the acquired 20 antennas is as follows: It is assumed that the reference data of each of the 20 antennas is a random sequence of the antenna, and the element modulus is "1", the reference signal of the antenna The number of resource locations is equal to the reference data (or random location, and for different antennas using the same reference signal resource location, their reference data (or random sequence) are orthogonal or nearly orthogonal to each other, wherein the reference data is both ends of the transceiver Known data transmitted at a reference signal resource location, the reference signal resource location being a time and/or frequency resource location at which the reference signal is transmitted.
  • channel information yi between the first antenna and the receiving antenna of the 20 antennas according to the received data of the first antenna reference signal resource position and the reference data of the antenna, specifically, the The channel information between the first antenna and the receiving antenna is an element average of the vector obtained by multiplying the conjugate of the antenna reference data and the received data of the reference signal resource position by the element; similarly, the 20 pieces are acquired in the same manner.
  • channel information Y between the 20 antennas and the receiving antenna acquired by the terminal side is the 20 a combination of channel information between each antenna and the receiving antenna in the antenna, ie
  • represents the transposition operation of the matrix
  • the terminal side receives a 128 ⁇ 128 ⁇ matrix W from the network side information acquisition dimension, and the 128 ⁇ 128 ⁇ matrix W is a vertical DFT matrix, a polarization matrix, and a Kron product of a horizontal DFT matrix.
  • the formula is as follows:
  • W W v ® W pol ® W h
  • the terminal side acquires a random matrix ⁇ having a dimension of 20x128, wherein the seventh element of the first row of the random matrix P is "1", and the rest is "0"; The 17th element of the line is “1", and the rest is "0"; the 24th element of the 3rd line is “1", and the rest is "0”; the 32nd element of the 4th line is “1", and the rest is "0””; and so on, the 126th element on line 20 is "1", and the rest is "0".
  • the terminal side acquires a vector X, where the vector X a vector having the smallest norm in ⁇ ⁇ ⁇ , any one of the vector sets ⁇ ., ⁇ , ., ⁇ satisfying: the random matrix P, the ⁇ matrix W or the ⁇ The conjugate transpose of the matrix W and the vector 1 ⁇ 4, the product of the three is equal to the channel information Y between the 20 antennas and the receiving antenna, wherein the norm refers to the sum of the absolute values of all elements of the vector, which is expressed by a formula as follows:
  • X min
  • 1.1 represents the norm operation of the vector
  • st is the constraint flag
  • H represents the conjugate transpose operation of the matrix
  • min(x) represents the variable value that takes the smallest value of the expression X.
  • the embodiment of the present invention further provides a computer readable storage medium, where the storage medium includes a set of computer executable instructions, and the instructions are used to perform the method for capturing channel information according to the embodiment of the present invention.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of a hardware embodiment, a software embodiment, or an embodiment of a combination of software and hardware. Moreover, the invention can be embodied in the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that stored in the computer readable memory
  • the instructions in the reservoir produce an article of manufacture comprising an instruction device that implements the functions specified in one or more blocks of the flow or in a flow or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种信道信息的获取方法及装置,涉及大规模天线阵列传输技术,所述方法包括:接收侧获取发射侧N个天线中发射参考信号的M个天线的索引L;获取所述M个天线与接收侧接收天线间的信道信息Y;获取维度为N×N的酉矩阵W;利用所述索引L、所述酉矩阵W和所述信道信息Y,确定发射侧N个天线与接收侧接收天线间的信道信息S的估计 S'。

Description

一种信道信息的获取方法及装置 技术领域
本发明涉及大规模(Massive ) 天线阵列传输技术, 特别涉及在使用大 规模天线阵列的无线通信系统中的接收侧的信道信息的获取方法及装置。 背景技术
随着智能终端和移动社交网络的兴起, 移动通信业务流量需求将爆炸 式增长。 未来 B4G ( Beyond Fourth Generation ) /5G ( Fifth Generation )移 动通信系统将面对海量信息的传输需求和泛在覆盖要求。 4G ( Fourth Generation )移动通信标准中先进多天线技术以及信道自适应技术等的釆用 已经使系统的频谱效率逼近了信道容量, 要实现上述目标需要变革传统网 络构架并寻找新的无线资源增长点。 小区小型化和异构化是未来无线网络 的发展趋势, 通过缩短终端与接入点间的距离, 可显著降低信号的路径损 耗, 从而提高系统的频谱效率和功率效率, 也有利于增强网络覆盖, 但需 解决复杂的干扰问题。 另一方面, 配置更大规模的天线阵列被认为是另一 种可显著提升系统容量和覆盖的低成本实现方式。
基于大维度天线排列的大规模天线阵列技术是近两年兴起的热门研究 方向之一。 最新的研究已经表明: 自适应大规模天线阵列技术能够深度挖 掘和利用空间无线资源, 理论上可显著提高系统的频谱效率和功率效率, 是构建未来高效能绿色宽带移动通信系统的重要技术。 但如何充分挖掘其 潜在增益还亟待深入研究。 而且, 自适应大规模天线阵列传输将呈现一些 新的特性, 比如: 信道在空间分布上将具有明显的稀疏性; 大阵列波束可 几乎完全消除噪声的影响, 但导频污染等引起的同频干扰成为制约系统性 能的主要因素; 自适应大规模天线阵列的性能主要依赖于信道的统计特性, 信道小尺度衰落的影响明显降低。
为适应上述特征设计高效可靠的新型大规模天线阵列传输技术, 首先 需要解决接收侧信道信息的获取问题。 基于现有的信道信息的获取方法, 发射侧天线数量的大幅增加必然会导致用于信道信息获取的参考信号的开 销的急剧增加, 换句话说, 现有的信道信息的获取方法抑制了大规模天线 阵列传输频谱效率的进一步的提升。 上述用于信道信息获取的参考信号的 开销问题是大规模天线阵列系统必须解决的瓶颈问题。 因此, 探寻适用于 大规模天线阵列无线通信系统的新的信道信息获取方法, 对构建实用的大 规模天线阵列传输系统具有重要的理论价值和实际意义。 发明内容
为解决现有存在的技术问题, 本发明实施例提供一种信道信息的获取 方法及装置。
本发明实施例提供了一种信道信息的获取方法, 包括:
接收侧获取发射侧 N个天线中发射参考信号的 M个天线的索引 L; 获取所述 M个天线与接收侧接收天线间的信道信息 Y;
获取维度为 ΝχΝ的酉矩阵 W;
利用所述索引 L、 所述酉矩阵 W和所述信道信息 Y, 确定发射侧 Ν个 天线与接收侧接收天线间的信道信息 S的估计 S'。
优选地,所述接收侧获取发射侧 N个天线中发射参考信号的 M个天线 的索引 L的步骤包括:
接收侧获取固有的所述 M个天线的索引 L, 或按照时间和 /或频率资源 位置获取所述 M个天线的索引 L, 或通过来自发射侧的第一系统或控制信 息获取所述 M个天线的索引 L。
优选地,接收侧直接获取所述第一系统或控制信息中的所述 M个天线 的索引 L, 或通过所述第一系统或控制信息中的天线组索引, 获取所述 M 个天线的索引 L。
优选地,所述获取所述 M个天线与接收侧接收天线间的信道信息 Y的 步骤包括:
接收侧根据所述 M个天线中每个天线参考信号资源位置的接收数据和 参考数据, 分别获取所述 M个天线中每个天线与接收天线间的信道信息
Figure imgf000005_0001
将所述 Μ个天线中每个天线与接收天线间的信道信息 {yi,y2,…… ,yM}进 行组合, 得到所述信道信息 Y。
优选地, 所述获取维度为 NxN的酉矩阵 W的步骤包括:
接收侧获取预设的所述酉矩阵 W, 或通过来自发射侧的第二系统或控 制信息确定所述酉矩阵 W。
优选地, 预设的所述酉矩阵 W是维度为 NxN的离散傅里叶变换 DFT 矩阵, 其每个元素为:
Wpq = C · exp〔j2:t (p - 1 q - 1)〕; p = l,2,...,N; q = l,2,...,N 其中, p和 q分别是酉矩阵 W的行索引与列索引, C是归一化常数因 子。
优选地, 所述第二系统或控制信息包括垂直方向的天线单元数 Nv, 水 平方向的天线单元数 Nh, 极化天线单元指示, 极化矩阵 Wpd相关信息。
优选地, 所述通过来自发射侧的第二系统或控制信息确定所述酉矩阵 W的步骤包括:
通过计算维度为 ΝνχΝν的垂直方向的 DFT矩阵 Wv、 极化矩阵 Wp。^ 维度为 NhxNh水平方向的 DFT矩阵 Wh的克罗内克乘积, 确定维度为 ΝχΝ 的酉矩阵 W;
其中, 若根据所述极化天线单元指示确定发射侧 N个天线是单极化天 线单元, 则 Nv与Nh的乘积等于 N, Wpc)1是标量 1, 若根据所述极化天线单 元指示确定发射侧 N个天线是双极化天线单元, 则 Nv与 Nh乘积的 2倍等 于 N, W 是维度为 2x2的极化矩阵。
优选地, 所述利用所述索引 L、 所述酉矩阵 W和所述信道信息 Y, 确 定发射侧 Ν个天线与接收侧接收天线间的信道信息 S的估计 S'的步骤包括: 接收侧利用所述索引 L, 获取维度为 ΜχΝ的随机矩阵 Ρ;
利用所述随机矩阵 Ρ、所述酉矩阵 W和所述信道信息 Υ,确定矢量 X 利用所述酉矩阵 W与所述矢量 X,确定所述 Ν个天线与接收天线间的 信道信息 S的估计 S'。
优选地,所述随机矩阵 P的第 m行的第 im个元素为 1,其它元素为 0, 其中所述 im为所述 M个天线中第 m个天线的天线索引, m=l ,2, ... ,M。
优选地, 所述矢量 X是矢量集合 {ν^ν^ .,. ,νκ}中范数最小的矢量, 其 中,对于所述矢量集合 {ν^ν^ .,. ,νκ}中任一矢量 ¼满足:所述随机矩阵 Ρ、 所述酉矩阵 W或所述酉矩阵 W的共轭转置、 所述矢量 ¼的乘积等于所述 信道信息 Υ, 所述范数是矢量所有元素的绝对值之和。
优选地,通过计算所述酉矩阵 W或所述酉矩阵 W的共轭转置与所述矢 量 X的乘积, 确定所述 Ν个天线与接收天线间的信道信息 S的估计 S'。
本发明实施例还提供了一种信道信息的获取装置, 包括:
信息获取模块,配置为获取发射侧 N个天线中发射参考信号的 M个天 线的索引 L, 获取所述 M个天线与接收侧接收天线间的信道信息 Y, 获取 维度为 ΝχΝ的酉矩阵 W;
信道信息估计模块, 配置为利用所述索引 L、 所述酉矩阵 W和所述信 道信息 Y, 确定发射侧 Ν个天线与接收侧接收天线间的信道信息 S的估计 S'。
优选地, 所述信息获取模块包括: 天线索引获取子模块、 信道信息 获取子模块和酉矩阵获取子模块,
所述天线索 ]获取子模块配置为, 获取固有的所述 M个天线的索引 L, 或按照时间和 /或频率资源位置获取所述 M个天线的索引 L, 或通过 来自发射侧的第一系统或控制信息获取所述 M个天线的索引 L;
所述信道信息获取子模块配置为, 根据所述 M个天线中每个天线参 考信号资源位置的接收数据和参考数据, 分别获取所述 M个天线中每个 天线与接收天线间的信道信 {y1 y2,—, yM}, 并将所述 M个天线中每个天 线与接收天线间的信道信息 {yi,y2, … , yM}进行组合, 得到信道信息 Y;
所述酉矩阵获取子模块配置为, 获取预设的酉矩阵 W, 或通过来自发 射侧的第二系统或控制信息确定酉矩阵 W。
优选地, 所述第二系统或控制信息包括: 垂直方向的天线单元数 Nv、 水平方向的天线单元数 Nh、 极化天线单元指示和极化矩阵 Wpc)1相关信息。
优选地, 所述酉矩阵获取子模块通过来自发射侧的第二系统或控制 信息确定酉矩阵 ^, 包括:
所述酉矩阵获取子模块通过计算维度为 ^ ^垂直方向 DFT 矩阵 Wv、极化矩阵 Wp。^维度为 NhxNh水平方向 DFT矩阵 Wh的克罗内克乘 积, 确定维度为 ΝχΝ的酉矩阵 W;
其中, 若根据所述极化天线单元指示确定发射侧 Ν个天线是单极化天 线单元, 则 Nv与Nh的乘积等于 N, Wpc)1是标量 1 ; 若根据所述极化天线单 元指示确定发射侧 N个天线是双极化天线单元, 则 Nv与 Nh乘积的 2倍等 于 N, W 是维度为 2x2的极化矩阵。
优选地, 所述信道信息估计模块包括: 随机矩阵获取子模块、 矢量 确定子模块和估计子模块,
所述随机矩阵获取子模块配置为, 利用所述 M个天线的索引 L, 获 取维度为 ΜχΝ的随机矩阵 Ρ;
所述矢量确定子模块配置为, 利用所述随机矩阵 Ρ、 所述酉矩阵 W 和所述信道信息丫, 确定矢量 X;
所述估计子模块配置为, 利用所述酉矩阵 W与所述矢量 X, 确定所述 N个天线与接收天线间的信道信息 S的估计 S'。
优选地,所述随机矩阵 P的第 m行的第 im个元素为 1,其它元素为 0, 其中, 所述 im为所述 M个天线中第 m个天线的天线索引, m=l,2, ... ,M。
优选地, 所述矢量 X是矢量集合 {V1 V2, ... ,VK}中范数最小的矢量, 其 中, 对于所述矢量集合 {ν^ν^.,.,νκ}中的任一矢量 ¼满足: 所述随机矩阵 Ρ、 所述酉矩阵 W或所述酉矩阵 W的共轭转置、 所述矢量¼的乘积等于所 述信道信息 Υ, 所述范数是矢量所有元素的绝对值之和。
优选地, 所述估计子模块配置为, 通过计算所述酉矩阵 W或所述酉矩 阵 W的共轭转置与所述矢量 X的乘积,确定所述 Ν个天线与接收天线间的 信道信息 S的估计 S'。
本发明实施例还提供了一种计算机可读存储介质, 所述存储介质包括 一组计算机可执行指令, 所述指令用于执行本发明实施例所述的信道信息 的菝取方法。
与现有技术相比较, 本发明实施例的有益效果在于:
本发明实施例根据 N个天线中发射参考信号的 M个天线与接收天线间 的信道信息 Y, 获取 Ν个天线与接收天线间的信道信息 S的估计 S', 减少 了大规模天线阵列用于信道信息获取的参考信号的开销, 从而进一步的提 升了大规模天线阵列传输的频谱效率。 附图说明
图 1是本发明实施例提供的一种信道信息的获取方法流程图; 图 2是本发明实施例提供的一种信道信息的获取装置的结构示意图; 图 3是本发明实施例提供的大规模平面单极化天线阵列示意图; 图 4是本发明实施例提供的大规模平面双极化天线阵列示意图; 图 7是本发明实施例提供的天线组到时间和 /或频率资源映射示意图; 图 8是本发明实施例提供的维度为 8x8单极化天线阵列天线索引示意 图;
图 9是本发明实施例提供的维度为 8x8双极化天线阵列天线索引示意 图。 具体实施方式
以下结合附图对本发明的优选实施例进行详细说明, 应当理解, 以下 所说明的优选实施例仅用于说明和解释本发明, 并不用于限定本发明。
图 1 是本发明实施例提供的一种信道信息的获取方法流程图, 如图 1 所示, 包括:
步骤 101、 接收侧获取发射侧的 N个天线中发射参考信号的 M个天线 的索引 L。 具体地说, 接收侧获取固有的 M个天线的索引 L, 即随着时间 和 /或频率资源位置的改变, 所述索引 L不变; 或者按照预先设定的方式, 按照时间和 /或频率资源位置, 获取所述 M个天线的索引 L; 或通过来自发 射侧的第一系统或控制信息获取所述 M个天线的索引 L, 即接收侧直接获 取所述第一系统或控制信息中的所述 M个天线的索引 L, 或通过所述第一 系统或控制信息中的天线组索引, 获取所述 M个天线的索引 L。
步骤 102、 获取所述 M个天线与接收侧接收天线间的信道信息 Y。 具 体地说, 接收侧根据 Μ个天线中每个天线参考信号资源位置(即参考信号 的时间和 /或频率资源位置 )的接收数据和参考数据, 分别获取所述 Μ个天 线中每个天线与接收天线间的信道信息 {y1 y2,— ,yM}, 然后,将所述 M个天 线中每个天线与接收天线间的信道信息 {yi,y2, ······ , yM}进行组合,得到信道信 息丫。 其中, 所述参考数据是接收侧已知的 M个天线中每个天线参考信号 的时间和 /或频率资源位置的发送数据。
步骤 103、 接收侧获取维度为 ΝχΝ的酉矩阵 ^。 具体地说, 接收侧获 取预设的所述酉矩阵 w, 或通过来自发射侧的第二系统或控制信息确定酉 矩阵 W。 预设的所述酉矩阵 W是维度为 ΝχΝ的离散傅里叶变换(DFT, Discrete Fourier Transform )矩阵, 其每个元素为:
Wpq = C · exp〔j2:t (p - 1 q - 1)〕; p = l,2,...,N; q = l,2,...,N 其中, p和 q分别是酉矩阵 W的行索引与列索引, C是归一化常数因 子。
所述第二系统或控制信息包括垂直方向天线单元数 Nv、 水平方向天线 单元数 Nh、 极化天线单元指示、 极化矩阵 Wpd相关信息, 接收侧通过计算 维度为 Ννχ Νν的垂直方向 DFT矩阵 Wv、 极化矩阵 Wp。^维度为 NhxNh的 水平方向 DFT矩阵 Wh的克罗内克乘积,确定维度为 ΝχΝ的酉矩阵 ^, 其 中,若根据所述极化天线单元指示确定发射侧 Ν个天线是单极化天线单元, 则 ^与 Nh的乘积等于 N, Wpd是标量 1, 若根据所述极化天线单元指示确 定发射侧 N个天线是双极化天线单元,则 ^与 Nh乘积的 2倍等于 N, Wpoi 是维度为 2x2的极化矩阵。
步骤 104、接收侧利用所述索引 L、所述酉矩阵 W和所述信道信息 Y, 确定发射侧 Ν个天线与接收侧接收天线间的信道信息 S的估计 S'。 具体地 说, 首先, 接收侧利用所述 M个天线的索引 L, 获取维度为 ΜχΝ的随机 矩阵 Ρ,所述随机矩阵 Ρ的第 m行的第 im个元素为 1,其它元素为 0,其中, 所述 im为所述 M个天线中第 m个天线的天线索引, m=l,2, ... ,M; 然后, 利 用所述随机矩阵?、 所述酉矩阵 W和所述信道信息 Y, 确定矢量 X, 所述 矢量 X是矢量集合 {ν^ν^.,νκ}中范数最小的矢量, 其中, 对于所述矢量 集合 {ν^ν^.,.,νκ}中任一矢量 ¼满足: 所述随机矩阵 Ρ、 所述酉矩阵 W或 酉矩阵 W的共轭转置、 所述矢量¼的乘积等于所述信道信息 Υ, 所述范数 是矢量所有元素的绝对值之和; 最后, 利用所述酉矩阵 W与所述矢量 X, 确定所述 Ν个天线与接收天线间的信道信息 S的估计 S', 优选地通过计算 所述酉矩阵 W或所述酉矩阵 W的共轭转置与所述矢量 X的乘积确定所述 N个天线与接收天线间的信道信息 S的估计 S'。
本发明实施例还提供了一种信道信息的获取装置,如图 2所示, 包括: 信息获取模块 10和信道信息估计模块 20, 其中:
所述信息获取模块 10配置为,获取发射侧 N个天线中发射参考信号的 M个天线的索引 L,获取所述 M个天线与接收侧接收天线间的信道信息 Y, 获取维度为 ΝχΝ的酉矩阵 W。
其中, 所述信息获取模块 10包括天线索引获取子模块 11、信道信息获 取子模块 12、 酉矩阵获取子模块 13。
所述天线索引获取子模块 11配置为,获取固有的所述 M个天线的索引 L, 或按照时间和 /或频率资源位置获取所述 M个天线的索引 L, 或通过来 自发射侧的第一系统或控制信息获取所述 M个天线的索引 L;
所述信道信息获取子模块 12配置为,根据所述 M个天线中每个天线参 考信号资源位置的接收数据和参考数据, 分别获取所述 M个天线中每个天 线与接收天线间的信道信 {yi,y2,—, yM}, 并将所述 M个天线中每个天线与 接收天线间的信道信息 {y1;y2, ······ , yM}进行组合, 得到信道信息 Y;
所述酉矩阵获取子模块 13配置为, 获取预设的酉矩阵 W, 或通过来自 发射侧的第二系统或控制信息确定酉矩阵 W。
所述信道信息估计模块 20配置为, 利用所述索引 L、所述酉矩阵 W和 所述信道信息 Y, 确定发射侧 Ν个天线与接收侧接收天线间的信道信息 S 的估计 S'。
所述信道信息估计模块 20包括随机矩阵获取子模块 21、矢量确定子模 块 22、 估计子模块 23。
所述随机矩阵获取子模块 21配置为, 利用所述 M个天线的索引 L, 获 取维度为 ΜχΝ的随机矩阵 Ρ,所述随机矩阵 Ρ的第 m行的第 im个元素为 1, 其它元素为 0, 其中, 所述 im为所述 M个天线中第 m个天线的天线索引, m=l,2, ... ,M;
所述矢量确定子模块 22配置为, 利用所述随机矩阵 P、 所述酉矩阵 W 和所述信道信息丫, 确定矢量 x, 所述矢量 X是矢量集合 {ν^ν^.,νκ}中 范数最小的矢量,所述随机矩阵 Ρ、所述酉矩阵 W或酉矩阵 W的共轭转置、
Figure imgf000012_0001
}中任一矢量 ¼三者的乘积等于所述信道信息 Υ; 所述估计子模块 23配置为, 利用所述酉矩阵 W与所述矢量 X, 确定 所述 Ν个天线与接收天线间的信道信息 S的估计 S'。
需要说明的是, 上述信息获取模块 10和信道信息估计模块 20可由信 道信息的获取装置中的中央处理器(CPU, Central Processing Unit ), 微处 理器(MPU, Micro Processing Unit )、数字信号处理器(DSP, Digital Signal Processor )或现场可编程门阵列 ( FPGA, Field Programmable Gate Array ) 来实现。 以下结合图 3至图 9及具体实施例进一步阐述本发明,需要说明的是, 假设天线阵列是由若干天线单元(Element )构成, 并且所述天线阵列 的维度是 NvxNh, 即其垂直方向的天线单元数或天线单元的行数为 Nv, 其 水平方向的天线单元数或天线单元的列数为 Nh
殳设天线单元分为单极化天线单元和双极化天线单元; 其中, 一个单 极化天线单元等价于一个天线, 由单极化天线单元构成的天线阵列称为单 极化天线阵列; 一个双极化天线单元等价于两个具有不同极化方向的天线, 施例提供的大规模平面单极化天线阵列的示意图, 图 3示出了 NvxNh维的 单极化天线阵列, 其中, 垂直方向的天线单元数 Nv与水平方向的天线单元 数 Nh的乘积等于发射侧的天线数 N。 图 4是本发明实施例提供的大规模平 面双极化天线阵列的示意图, 图 4示出了 NvxNh维的双极化天线阵列, 其 中, 垂直方向的天线单元数^与水平方向的天线单元数 Nh的乘积的 2倍 等于发射侧的天线数 N。
假设天线是由至少一个具有相同极化方向的天线阵子构成, 并且, 所 述天线可以等价于长期演进(LTE)标准中的天线端口; 其中, 所述天线阵 子是组成天线的最小组件。
假设信道信息是发射天线与接收天线间的小尺度信道或快衰落信道的 数值表示。 如图 5所示, 第一行天线最先被索引, 由右至左依次是 1,2,..., n; 然后, 第 二行天线继续被索引, 由右至左依次是 n+l,n+2,...,2n; 以此类推, 釆用逐 的示意图, 如图 6所示, 第一行第一极化方向的天线最先被索引, 由右至 左依次是 1,2,..., n; 接着, 第一行第二极化方向的天线继续被索引, 由右至 左依次是 n+l,n+2,...,2n; 然后, 第二行第一极化方向的天线继续被索引, 由右至左依次是 2n+l,2n+2,...,3n; 接着, 第二行第二极化方向的天线继续 被索引, 由右至左依次是 3n+l, 3n+2,...,4n; 以此类推, 釆用逐行逐极化的 索引方式。
本发明实施例提供了一种信道信息的获取方法, 包括以下四个步骤: 步骤一、 获取 N个天线中发射参考信号的 M个天线的索引 L, 其中, 所述 N是发射侧的天线数, 且 M小于等于N。
1、 接收侧可以获取固定的所述 M个天线的索引 L, 其中, N个天线中 发射参考信号的 M个天线不会随时间和 /或频率发生改变。
M个天线的索引 L与时间和 /或频率资源位置有关。 例如, 可将 N个天线进 行分组, 每个天线组包括 M个天线, 且允许组间天线的部分重叠; 然后, 周期性地将上述天线组映射到相应的时间和 /或频率资源。 图 7是本发明实 施例提供的天线组到时间和 /或频率资源映射的示意图, 如图 7所示, 共 20 个天线组, 且以每 10个子帧的持续时间为周期进行映射。 优选地, 4艮设 N 是 M的整数倍, 将 N个天线分为 N/M个组, 具体以 N/M为间隔依次选择 M个天线构成天线组,将 N/M个天线组循环映射到相应的时间和 /或频率资 源。
3、 通过接收来自发射侧的信息获取所述 M个天线的索引 L, 其中, 所 述来自发射侧的信息包括但不限于所述 M 个天线中每个天线的索引 L ( ii,i2,-,iM )与天线组的索引, 其承载于小区或终端专有的系统或控制信息 中。
步骤二、 获取所述 M个天线与接收天线间的信道信息 Y。
具体地说,接收侧根据所述 Μ个天线中第 1天线参考信号资源位置的 接收数据与该天线的参考数据,获取所述 Μ个天线中第 1天线与接收天线 间的信道信息 yi;根据所述 M个天线中第 2天线参考信号资源位置的接收 数据与该天线的参考数据,获取所述 M个天线中第 2天线与接收天线间的 信道信息 y2, 以此类推, 根据所述 M个天线中第 M天线参考信号资源位 置的接收数据与该天线的参考数据,获取所述 M个天线中第 M天线与接收 天线间的信道信息 yM; 最后, 获取所述 M个天线与接收天线间的信道信息 Y, 所述信道信息 Y是所述 M个天线中每个天线与接收天线间的信道信息 的组合, 即
Y = [ y2' · · · ' yM ]T
步骤三、 获取维度为 ΝχΝ的酉矩阵 ^。
1、 获取预设的维度为 ΝχΝ的酉矩阵 ^。
维度为 ΝχΝ的酉矩阵 W是 DFT矩阵,即酉矩阵 W元素满足以下公式: Wpq = C · exp〔j2:t (p - 1 q - 1)〕; p = l,2,...,N; q = l,2,...,N 其中, 该公式中下标 p与下标 q分别为酉矩阵 W行索引与列索引, C 为归一化的常数因子。
2、 通过接收来自发射侧的信息获取维度为 ΝχΝ的酉矩阵 W。
具体地说, 所述来自发射侧的信息承载于小区或终端专有系统或控制 信息中, 包括但不限于垂直方向的天线单元数 Nv, 水平方向的天线单元数 Nh, 极化天线单元指示, 极化矩阵 Wpd有关信息。
维度为 ΝχΝ的酉矩阵 W是垂直方向的 DFT矩阵 Wv、 极化矩阵 Wpd 以及水平方向的 DFT矩阵 Wh的克罗内克( kron )乘积, 具体公式如下:
W = Wv ® Wpol ®Wh
其中, Wv是维度为 ΝνχΝν的垂直方向 DFT矩阵, Wh是维度为 NhxNh 的水平方向 DFT矩阵, Nv与 Nh分别是垂直方向与水平方向的天线单元数。 对于单极化天线单元, Wpd是标量 "1 " ; 对于双极化天线单元, Wpd是维度 为 2x2的极化矩阵。注:对于单极化天线单元,满足 Nv与 Nh的乘积等于 N; 对于双极化天线单元, 满足 Nv与 Nh的乘积的 2倍等于 N。
步骤四、 根据所述 M个天线的索引 L, 所述 M个天线与接收天线间的 信道信息 Y以及所述维度为 ΝχΝ的酉矩阵 W, 获取所述 N个天线与接收 天线间的信道信息 S的估计 S'。
具体地说, 首先, 根据所述 M个天线的索引 L获取随机矩阵 P, 所述 随机矩阵 P满足以下特征:维度为 ΜχΝ,矩阵 Ρ第 m行第 im( 111=1,2,3 .., M ) 个元素为 "1 ", 其余元素为 "0", 其中, 所述 im为所述 M个天线中第 m天 线的天线索引; 接着, 根据所述随机矩阵 P、 所述酉矩阵 W以及所述 M个 天线与接收天线间的信道信息 Y 获取矢量 X , 所述矢量 X是矢量集合 { Vy, VK}中范数最小的矢量,所述范数是指取矢量所有元素绝对值之 和, 其中, 所述矢量集合 {Vy, VK}中的任一矢量 ¼满足: 所述随机 矩阵 P、所述酉矩阵 W或所述酉矩阵 W的共轭转置以及矢量 ¼,三者的乘 积等于所述 M个天线与接收天线间的信道信息 Y, 可以用公式表示为: X = s.t Y = PWV, or 7 = PWHVl
Figure imgf000016_0001
其中, 1.1表示取矢量的范数操作, s.t为约束条件标记, H表示取矩阵 的共轭转置操作, min(x)表示取使表达式 X值最小的变量值; 然后, 根据所 述矢量 X与所述酉矩阵 W获取所述 N个天线与接收天线间的信道信息 S 的估计 S', 其中, 所述 N个天线与接收天线间的信道信息 S的估计 S'等于 所述酉矩阵 W或酉矩阵 W的共轭转置与所述矢量 X的乘积, 可以用公式 表示为:
S ' = WX or S' = WHX
上述发射侧指网络侧, 上述接收侧指终端侧。 实施例一
假设网络侧使用维度为 8x8的单极化天线阵列, 则网络侧的天线数 N 为 8x8=64个,图 8是本发明实施例提供的维度为 8x8单极化天线阵列天线 索引的示意图, 如图 8所示, 假设发射参考信号的天线数 M为 10 (《64 ) 个。
假设终端侧使用一个接收天线。
终端侧获取固有的发射参考信号的 10个天线的索引 L, 或通过预设方 式获取发射参考信号的 10个天线的索引 L, 或通过接收来自网络侧的信息 获取发射参考信号的 10个天线的索引 L, 假设获取的 10个天线的索引 L 如下:
L = {7,15,19,28,34,38,42,47,50,55}
假设所述 10个天线中每个天线的参考数据是该天线专有的, 且元素模 值为 "1" 的随机序列, 天线的参考信号资源位置数等于参考数据(或随机 序列)长度, 所述 10个天线中的不同天线使用相同或不同的参考信号资源 位置, 并且对于使用相同参考信号资源位置的不同天线, 它们的参考数据 (或随机序列)相互正交或近似正交, 其中, 所述参考数据是收发两端已 知的在参考信号资源位置发射的数据, 所述参考信号资源位置是发射参考 信号的时间和 /或频率资源位置。
终端侧根据所述 10个天线中第 1天线参考信号资源位置的接收数据与 该天线的参考数据获取所述 10个天线中第 1天线与接收天线间的信道信息 yi, 具体地说, 所述第 1天线与接收天线间的信道信息 1是该天线参考数 据的共轭与其参考信号资源位置的接收数据按元素相乘后所获得矢量的元 素平均值; 类似地, 以同样方式获取所述 10个天线中其它 9个天线与接收 天线间的信道信息(y2,y3,—,y1() ); 所述 10个天线与接收天线间的信道信息 Y为所述 10个天线中每个天线与接收天线间的信道信息的组合, 即
Y = [yi,y2". yio]T
其中, τ表示取矩阵的转置操作。
终端侧获取预设的维度为 64x64的酉矩阵 W为 DFT矩阵, 其元素满 足: = l,2,...,64;q = l,2,...,64
Figure imgf000017_0001
其中, 下标 p与下标 q分别为酉矩阵 W行索引与列索引。
或者,终端侧通过接收来自网络侧的信息获取维度为 64x64酉矩阵 W, 所述 64x64酉矩阵 W为垂直方向的 DFT矩阵、 极化矩阵以及水平方向的
DFT矩阵的克罗内克(kron)乘积, 公式如下:
W = Wv®Wpol®Wh 其中, ^是维度为 8x8的垂直方向 DFT矩阵, 其元素满足: Wv,pq = .eXp〔j2:r(p-1) 8 (q-1)〕;p = l,2,...,8;q = 1,2,...,8 其中, Wh是维度为 8x8的水平方向 DFT矩阵, 其元素满足: Wh,pq = .eXp〔j2:r(P-1) 8 (q-1)〕;p = l,2 ..,8;q = 1,2,一,8 其中, Wpd是标量 "1"。 根据已知的 10个天线的索引 L, 终端侧获取维度为 10x64的随机矩阵 P, 其中, 随机矩阵 P第 1行第 7个元素为 "1", 其余为 "0" ; 第 2行第 15 个元素为 "1" , 其余为 "0" ; 第 3行第 19个元素为 "1" , 其余为 "0" ; 第 4行第 28个元素为 "1", 其余为 "0" ; 以此类推, 第 10行第 55个元素为 "1" , 其余为 "0" 接着, 根据所述随机矩阵 P、 所述酉矩阵 W 以及所述 10个天线与接收天线间的信道信息 Y, 终端侧获取矢量 X, 所述矢量 X是 矢量集合 {Vy, ¼,···, VK}中范数最小的矢量, 所述矢量集合 {Vy, ¼,···, VK} 中的任一矢量 Vi满足: 所述随机矩阵 P、 所述酉矩阵 W或所述酉矩阵 W 的共轭转置以及矢量 ¼,三者的乘积等于所述 10个天线与接收天线间的信 道信息 Y; 其中, 所述范数是指取矢量所有元素绝对值之和, 用公式表示 如下:
X = min ||^|| , s.t Y = PWVt or 7 = PWHVl 其中, 1.1表示取矢量的范数操作, s.t为约束条件标记, H表示取矩阵 的共轭转置操作, min(x)表示取使表达式 X值最小的变量值。
根据所述矢量 X与所述酉矩阵 W, 终端侧获取所述 64个天线与接收 天线间的信道信息 S的估计 S', 其中, 所述 64个天线与接收天线间的信道 信息 S的估计 S'等于所述酉矩阵 W或酉矩阵 W的共轭转置与所述矢量 X 的乘积, 可以用公式表示如下:
S ' = WX or S' = WHX 实施例二
假设网络侧使用维度为 8x8的双极化天线阵列, 则网络侧的天线数 N 为 2x8x8=128个, 图 8是本发明实施例提供的维度为 8x8双极化天线阵列 天线索引的示意图,如图 8所示,假设发射参考信号的天线数 M为 20(《128 ) 假设终端侧使用一个接收天线。
终端侧获取固有的发射参考信号的 20个天线的索引 L, 或通过预设方 式获取发射参考信号的 20个天线的索引 L, 或通过接收来自网络侧的信息 获取发射参考信号的 20个天线的索引 L; 假设获取的 20个天线的索引 L 如下: 假设所述 20个天线中每个天线的参考数据是该天线专有的, 且元素模 值为 "1" 的随机序列, 天线的参考信号资源位置数等于参考数据(或随机 位置, 并且对于使用相同参考信号资源位置的不同天线, 它们的参考数据 (或随机序列)相互正交或近似正交, 其中, 所述参考数据 是收发两端已 知的在参考信号资源位置发射的数据, 所述参考信号资源位置是发射参考 信号的时间和 /或频率资源位置。
根据所述 20个天线中第 1天线参考信号资源位置的接收数据与该天线 的参考数据, 终端侧获取所述 20个天线中第 1天线与接收天线间的信道信 息 yi, 具体地, 所述第 1天线与接收天线间的信道信息 是该天线参考数 据的共轭与其参考信号资源位置的接收数据按元素相乘后所获得矢量的元 素平均值; 类似地, 以同样方式获取所述 20个天线中其它 19个天线与接 收天线间的信道信息( y2, y3,...,y2Q ); 终端侧获取的所述 20个天线与接收天 线间的信道信息 Y是所述 20个天线中每个天线与接收天线间的信道信息的 组合, 即
Figure imgf000019_0001
其中, τ表示取矩阵的转置操作。
获取预设的维度为 128x 128的酉矩阵 W为 DFT矩阵, 其元素满足: Wpq = Τ^ εχρ〔』"^1^)Ρ = H"128 = ,…,128 其中, 下标 p与下标 q分别为酉矩阵 W行索引与列索引。
或者,终端侧通过接收来自网络侧信息获取维度为 128x128酉矩阵 W, 所述 128x128酉矩阵 W为垂直方向的 DFT矩阵、 极化矩阵以及水平方向 的 DFT矩阵的克罗内克(kron)乘积, 公式如下:
W = Wv®Wpol®Wh 其中, ^是维度为 8x8的垂直方向 DFT矩阵, 其元素满足: Wv,pq = .eXp〔j2:r(p-1) 8 (q-1)〕;p = l,2,...,8;q = 1,2,...,8 其中, Wh是维度为 8x8的水平方向 DFT矩阵, 其元素满足: Wh,pq = .eXp〔j2:r(P-1) 8 (q-1)〕;p = l,2 ..,8;q = 1,2,一,8 其中, ^^。是维度为 2x2的极化矩阵, 并假设
1 1
j -j 根据已知的 20个天线的索引 L, 终端侧获取维度为 20x128的随机矩 阵卩, 其中, 随机矩阵 P第 1行第 7个元素为 "1", 其余为 "0"; 第 2行第 17个元素为 "1", 其余为 "0"; 第 3行第 24个元素为 "1", 其余为 "0"; 第 4行第 32个元素为 "1", 其余为 "0"; 以此类推, 第 20行第 126个元 素为 "1", 其余为 "0"。 接着, 根据所述随机矩阵 P、 所述酉矩阵 W以及 所述 20个天线与接收天线间的信道信息 Y, 终端侧获取矢量 X, 其中, 所 述矢量 X
Figure imgf000020_0001
·,νκ}中范数最小的矢量, 所述矢量集合 {ν^.,νί, .,νκ}中的任一矢量 ¼满足: 所述随机矩阵 P、 所述酉矩阵 W或 所述酉矩阵 W的共轭转置以及矢量 ¼, 三者的乘积等于所述 20个天线与 接收天线间的信道信息 Y, 其中, 所述范数是指取矢量所有元素绝对值之 和, 用公式表示如下:
X = min ||^||, s.t Y = PWVt or 7 = PWHVl 其中, 1.1表示取矢量的范数操作, s.t为约束条件标记, H表示取矩阵 的共轭转置操作, min(x)表示取使表达式 X值最小的变量值。
根据所述矢量 X与所述酉矩阵 W, 终端侧获取所述 128个天线与接收 天线间的信道信息 S的估计 S', 其中, 所述 128个天线与接收天线间的信 道信息 S的估计 S'等于所述酉矩阵 W或酉矩阵 W的共轭转置与所述矢量 X的乘积, 可以用公式表示如下:
S ' = WJ or S ' = WHJ 。 本发明实施例还提供了一种计算机可读存储介质, 所述存储介质包括 一组计算机可执行指令, 所述指令用于执行本发明实施例所述的信道信息 的菝取方法。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产品。 因此, 本发明可釆用硬件实施例、 软件实施例、 或结 合软件和硬件方面的实施例的形式。 而且, 本发明可釆用在一个或多个其 中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器和光学存储器等 )上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程 图和 /或方框图中的每一流程和 /或方框、以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功 能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存 储器中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现 的处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 步骤。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。
尽管上文对本发明进行了详细说明, 但是本发明不限于此, 本技术领 域技术人员可以根据本发明的原理进行各种修改。 因此, 凡按照本发明原 理所作的修改, 都应当理解为落入本发明的保护范围。

Claims

权利要求书
1、 一种信道信息的获取方法, 包括:
接收侧获取发射侧 N个天线中发射参考信号的 M个天线的索引 L; 获取所述 M个天线与接收侧接收天线间的信道信息 Y;
获取维度为 ΝχΝ的酉矩阵 W;
利用所述索引 L、 所述酉矩阵 W和所述信道信息 Y, 确定发射侧 Ν 个天线与接收侧接收天线间的信道信息 S的估计 S'。
2、 根据权利要求 1所述的方法, 其中, 所述接收侧获取发射侧 N个 天线中发射参考信号的 M个天线的索引 L的步骤包括:
接收侧获取固有的所述 M个天线的索引 L, 或按照时间和 /或频率资 源位置获取所述 M个天线的索引 L, 或通过来自发射侧的第一系统或控 制信息获取所述 M个天线的索引 L。
3、 根据权利要求 2所述的方法, 其中, 接收侧直接获取所述第一系 统或控制信息中的所述 M个天线的索引 L, 或通过所述第一系统或控制 信息中的天线组索引, 获取所述 M个天线的索引 L。
4、根据权利要求 1所述的方法, 其中, 所述获取所述 M个天线与接 收侧接收天线间的信道信息 Y的步骤包括:
接收侧根据所述 M个天线中每个天线参考信号资源位置的接收数据 和参考数据, 分别获取所述 M个天线中每个天线与接收天线间的信道信 息 {yi,y2,……, ΥΜ} ;
将所述 Μ个天线中每个天线与接收天线间的信道信息 {y1 y2,— ,yM} 进行组合, 得到所述信道信息 Y。
5、 根据权利要求 1所述的方法, 其中, 所述获取维度为 ΝχΝ的酉 矩阵 W的步骤包括:
接收侧获取预设的所述酉矩阵 W, 或通过来自发射侧的第二系统或 控制信息确定所述酉矩阵 W。
6、根据权利要求 5所述的方法, 其中, 预设的所述酉矩阵 W是维度 为 ΝχΝ的离散傅里叶变换 DFT矩阵, 其每个元素为:
Wpq = C · exp〔j2:t (p - 1 q - 1)〕; p = l,2,...,N; q = l,2,...,N 其中, p和 q分别是酉矩阵 W的行索引与列索引, C是归一化常数 因子。
7、 根据权利要求 5所述的方法, 其中, 所述第二系统或控制信息包 括: 垂直方向的天线单元数 Nv、 水平方向的天线单元数 Nh、 极化天线单 元指示和极化矩阵 Wpd相关信息。
8、 根据权利要求 7所述的方法, 其中, 所述通过来自发射侧的第二 系统或控制信息确定酉矩阵 W的步骤包括:
通过计算维度为 NvχNv垂直方向 DFT矩阵 Wv、 极化矩阵 Wpd和维 度为 NhxNh水平方向 DFT矩阵 Wh的克罗内克乘积,确定维度为 ΝχΝ的 酉矩阵 W;
其中, 若根据所述极化天线单元指示确定发射侧 Ν个天线是单极化 天线单元, 则 Νν与 Nh的乘积等于 N, Wpd是标量 1 ; 若根据所述极化天 线单元指示确定发射侧 N个天线是双极化天线单元,则 Nv与 Nh乘积的 2 倍等于 N, ^。1是维度为 2 x2的极化矩阵。
9、 根据权利要求 1所述的方法, 其中, 所述利用所述索引 L、 所述 酉矩阵 W和所述信道信息 Y,确定发射侧 Ν个天线与接收侧接收天线间 的信道信息 S的估计 S'的步骤包括:
接收侧利用所述索引 L, 获取维度为 ΜχΝ的随机矩阵 Ρ;
利用所述随机矩阵 Ρ、 所述酉矩阵 W和所述信道信息 Υ, 确定矢量
X;
利用所述酉矩阵 W与所述矢量 X, 确定所述 Ν个天线与接收天线间 的信道信息 S的估计 s'。
10、 根据权利要求 9所述的方法, 其中, 所述随机矩阵 P的第 m行 的第 ^个元素为 1, 其它元素为 0, 其中, 所述 im为所述 M个天线中第 m个天线的天线索引, m=l,2, ... ,M。
11、根据权利要求 10所述的方法,其中,所述矢量 X是矢量集合 {V1 ν2,...,νκ}中范数最小的矢量, 其中, 对于所述矢量集合 {ν^ν^.,νκ}中 的任一矢量 Vi满足: 所述随机矩阵 P、 所述酉矩阵 W或所述酉矩阵 W 的共轭转置、 所述矢量 Vi的乘积等于所述信道信息 Y, 所述范数是矢量 所有元素的绝对值之和。
12、 根据权利要求 9-11任意一项所述的方法, 其中, 所述利用酉矩 阵 W与矢量 X, 确定 Ν个天线与接收天线间的信道信息 S的估计 S', 包 括:
通过计算所述酉矩阵 W或所述酉矩阵 W的共轭转置与所述矢量 X 的乘积, 确定所述 N个天线与接收天线间的信道信息 S的估计 S'。
13、 一种信道信息的获取装置, 包括:
信息获取模块, 配置为获取发射侧 N个天线中发射参考信号的 M个 天线的索引 L, 获取所述 M个天线与接收侧接收天线间的信道信息 Y, 获取维度为 ΝχΝ的酉矩阵 W;
信道信息估计模块, 配置为利用所述索引 L、 所述酉矩阵 W和所述 信道信息 Y, 确定发射侧 Ν个天线与接收侧接收天线间的信道信息 S的 估计 S'。
14、 根据权利要求 13 所述的装置, 其中, 所述信息获取模块包括: 天线索引获取子模块、 信道信息获取子模块和酉矩阵获取子模块,
所述天线索 ]获取子模块配置为, 获取固有的所述 M个天线的索引 L, 或按照时间和 /或频率资源位置获取所述 M个天线的索引 L, 或通过 来自发射侧的第一系统或控制信息获取所述 M个天线的索引 L; 所述信道信息获取子模块配置为, 根据所述 M个天线中每个天线参 考信号资源位置的接收数据和参考数据, 分别获取所述 M个天线中每个 天线与接收天线间的信道信 {y1 y2,—, yM}, 并将所述 M个天线中每个天 线与接收天线间的信道信息 {yi,y2, … , yM}进行组合, 得到信道信息 Y; 所述酉矩阵获取子模块配置为, 获取预设的酉矩阵 W, 或通过来自 发射侧的第二系统或控制信息确定酉矩阵 W。
15、 根据权利要求 14所述的装置, 其中, 所述第二系统或控制信息 包括: 垂直方向的天线单元数 Nv、 水平方向的天线单元数 Nh、 极化天线 单元指示和极化矩阵 Wpd相关信息。
16、 根据权利要求 15所述的装置, 其中, 所述酉矩阵获取子模块通 过来自发射侧的第二系统或控制信息确定酉矩阵 W, 包括:
所述酉矩阵获取子模块通过计算维度为 ^ ^垂直方向 DFT 矩阵 Wv、极化矩阵 Wp。^维度为 NhxNh水平方向 DFT矩阵 Wh的克罗内克乘 积, 确定维度为 ΝχΝ的酉矩阵 W;
其中, 若根据所述极化天线单元指示确定发射侧 Ν个天线是单极化 天线单元, 则 Νν与 Nh的乘积等于 N, Wpd是标量 1 ; 若根据所述极化天 线单元指示确定发射侧 N个天线是双极化天线单元,则 Nv与 Nh乘积的 2 倍等于 N, ^。1是维度为 2x2的极化矩阵。
17、 根据权利要求 13所述的装置, 其中, 所述信道信息估计模块包 括: 随机矩阵获取子模块、 矢量确定子模块和估计子模块,
所述随机矩阵获取子模块配置为, 利用所述 M个天线的索引 L, 获 取维度为 ΜχΝ的随机矩阵 Ρ;
所述矢量确定子模块配置为, 利用所述随机矩阵 Ρ、 所述酉矩阵 W 和所述信道信息丫, 确定矢量 X;
所述估计子模块配置为, 利用所述酉矩阵 W与所述矢量 X, 确定所 述 Ν个天线与接收天线间的信道信息 S的估计 S'。
18、根据权利要求 17所述的装置, 其中, 所述随机矩阵 P的第 m行 的第 ^个元素为 1, 其它元素为 0, 其中, 所述 im为所述 M个天线中第 m个天线的天线索引, m=l,2, ... ,M。
19、根据权利要求 18所述的装置,其中,所述矢量 X是矢量集合 {V1 v2,...,vK}中范数最小的矢量, 其中, 对于所述矢量集合 {ν^ν^.,νκ}中 的任一矢量 ¼满足: 所述随机矩阵 P、 所述酉矩阵 W或所述酉矩阵 W 的共轭转置、 所述矢量 ¼的乘积等于所述信道信息 Y, 所述范数是矢量 所有元素的绝对值之和。
20、根据权利要求 17-19任一项所述的装置, 其中, 所述估计子模块 配置为,通过计算所述酉矩阵 W或所述酉矩阵 W的共轭转置与所述矢量 X的乘积, 确定所述 Ν个天线与接收天线间的信道信息 S的估计 S'。
21、 一种计算机可读存储介质, 所述存储介质包括一组计算机可执 行指令, 所述指令用于执行权利要求 1-12任一项所述的信道信息的获取 方法。
PCT/CN2014/077937 2013-07-22 2014-05-20 一种信道信息的获取方法及装置 WO2014166454A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/906,010 US9647739B2 (en) 2013-07-22 2014-05-20 Method and device for acquiring channel information
EP14783089.7A EP3026823B1 (en) 2013-07-22 2014-05-20 Method and device for acquiring channel information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310309285.2A CN104333407B (zh) 2013-07-22 2013-07-22 一种信道信息的获取方法及装置
CN201310309285.2 2013-07-22

Publications (1)

Publication Number Publication Date
WO2014166454A1 true WO2014166454A1 (zh) 2014-10-16

Family

ID=51688966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077937 WO2014166454A1 (zh) 2013-07-22 2014-05-20 一种信道信息的获取方法及装置

Country Status (4)

Country Link
US (1) US9647739B2 (zh)
EP (1) EP3026823B1 (zh)
CN (1) CN104333407B (zh)
WO (1) WO2014166454A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306881A4 (en) * 2015-06-07 2019-02-13 LG Electronics Inc. CHANNEL MEASUREMENT METHOD IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREOF

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102175707B1 (ko) * 2014-01-20 2020-11-06 한국전자통신연구원 3차원 안테나 어레이 장치 및 빔포밍 방법
US10135508B2 (en) * 2014-10-13 2018-11-20 Electronics And Telecommunications Research Institute Method and apparatus for generating common signal in multiple input multiple output system
CN106549883A (zh) * 2015-09-17 2017-03-29 清华大学 适于大规模多天线系统的下行训练方法及系统
CN107294880B (zh) * 2016-03-31 2020-07-31 上海诺基亚贝尔股份有限公司 用于确定信道信息的方法和设备
CN109802801B (zh) 2017-11-17 2021-12-14 华为技术有限公司 发送和接收信号的方法、装置和系统
CN109842580B (zh) * 2017-11-28 2021-02-12 华为技术有限公司 一种信道估计方法以及相关设备
CN109412665B (zh) * 2018-07-09 2022-03-22 展讯通信(上海)有限公司 信道状态的指示及获取方法、发送设备、接收设备、介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101272170A (zh) * 2007-03-21 2008-09-24 美国博通公司 一种处理通信信号的方法和系统
CN101808064A (zh) * 2009-02-13 2010-08-18 华为技术有限公司 一种无线接收系统以及信道估计处理方法、装置
CN102334300A (zh) * 2009-01-30 2012-01-25 Lg电子株式会社 在无线电通信系统中发射参考信号的装置和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1917397B (zh) * 2006-09-19 2012-09-05 北京邮电大学 一种mimo-ofdm系统信道估计的方法
CN101577968B (zh) * 2008-05-05 2011-08-03 华为技术有限公司 一种获取下行信道信息的方法、系统和装置
CN102412881B (zh) * 2010-09-26 2015-06-17 日电(中国)有限公司 无线通信系统和用于无线通信系统的波束形成训练方法
US8837621B2 (en) 2011-05-09 2014-09-16 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation for a very large-scale multiple-input multiple output (MIMO) system
US9178590B2 (en) * 2011-12-27 2015-11-03 Industrial Technology Research Institute Channel information feedback method and wireless communication device using the same
CN104412520B (zh) * 2012-06-24 2017-11-21 Lg电子株式会社 在无线通信系统中报告信道状态信息的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101272170A (zh) * 2007-03-21 2008-09-24 美国博通公司 一种处理通信信号的方法和系统
CN102334300A (zh) * 2009-01-30 2012-01-25 Lg电子株式会社 在无线电通信系统中发射参考信号的装置和方法
CN101808064A (zh) * 2009-02-13 2010-08-18 华为技术有限公司 一种无线接收系统以及信道估计处理方法、装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306881A4 (en) * 2015-06-07 2019-02-13 LG Electronics Inc. CHANNEL MEASUREMENT METHOD IN WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREOF
US10574486B2 (en) 2015-06-07 2020-02-25 Lg Electronics Inc. Channel measurement method in wireless communication system and apparatus therefor

Also Published As

Publication number Publication date
EP3026823A4 (en) 2016-06-08
CN104333407A (zh) 2015-02-04
EP3026823A1 (en) 2016-06-01
US20160156399A1 (en) 2016-06-02
EP3026823B1 (en) 2019-10-09
CN104333407B (zh) 2019-02-01
US9647739B2 (en) 2017-05-09

Similar Documents

Publication Publication Date Title
WO2014166454A1 (zh) 一种信道信息的获取方法及装置
CN107102291A (zh) 基于虚拟阵列内插的无网格化互质阵列波达方向估计方法
CN107329108A (zh) 基于内插虚拟阵列协方差矩阵Toeplitz化重建的互质阵列波达方向估计方法
CN108872929A (zh) 基于内插虚拟阵列协方差矩阵子空间旋转不变性的互质阵列波达方向估计方法
WO2014183707A1 (zh) 波束赋形方法、确定索引集合的方法、装置和存储介质
JP5391335B2 (ja) 多入力多出力ビーム形成のデータ送信方法及び装置
CN107852387B (zh) 降低大规模多输入多输出系统中预编码矩阵计算和用户设备分组复杂度的方法
WO2015169365A1 (en) Beam forming using a two-dimensional antenna arrangement
CN103780332A (zh) 传输编码指示信息和确定预编码矩阵的方法、系统及设备
JP6351129B2 (ja) チャネル情報を取得するための方法、基地局及び端末
WO2013000260A1 (zh) 信道信息反馈方法及装置
CN103780331A (zh) 传输编码指示信息和确定预编码矩阵的方法、系统及设备
WO2019206157A1 (zh) 下行波束训练方法、网络设备和终端设备
CN104113396A (zh) 大规模天线系统中的信道检测方法和装置
TW201817181A (zh) 在多輸入多輸出系統中預編碼選擇的裝置以及方法、製造預編碼選擇的裝置的方法以及構造具有預編碼選擇的裝置的積體電路的方法
JP6419943B2 (ja) 非対称なチャネル次元を有するネットワークにおける干渉アライメント
WO2016000096A1 (zh) 天线端口映射方法及装置
CN108462519A (zh) 一种信道状态信息反馈方法、ue及接入网实体
WO2014067461A1 (zh) 传输预编码指示信息和确定预编码矩阵的方法、系统及设备
WO2017185935A1 (zh) 消息发送、接收方法及装置、基站
WO2012152020A1 (zh) 一种信道均衡方法、基站和系统
WO2015067031A1 (zh) 一种信道信息获取的方法、装置
CN105337692B (zh) 下行信道预编码方法与装置
CN110958701B (zh) 信道状态信息的反馈方法、预编码矩阵的确定方法及装置
WO2017036355A1 (zh) 一种用于多天线的信号发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14783089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14906010

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014783089

Country of ref document: EP