WO2019206157A1 - 下行波束训练方法、网络设备和终端设备 - Google Patents

下行波束训练方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2019206157A1
WO2019206157A1 PCT/CN2019/083975 CN2019083975W WO2019206157A1 WO 2019206157 A1 WO2019206157 A1 WO 2019206157A1 CN 2019083975 W CN2019083975 W CN 2019083975W WO 2019206157 A1 WO2019206157 A1 WO 2019206157A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
vector
opt
terminal device
antenna weight
Prior art date
Application number
PCT/CN2019/083975
Other languages
English (en)
French (fr)
Inventor
丁钰
苏厉
王昭诚
庄宏成
徐凯
孙彦良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019206157A1 publication Critical patent/WO2019206157A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • a third aspect provides a terminal device, including: a receiving unit, configured to receive a probe beam from a network device, where the probe beam is modulated by an antenna weight vector, and the antenna weight vector includes a fixed codebook vector and a randomly generated random codebook vector a building unit for constructing an observation matrix of the antenna weight vector received by the receiving unit, and a solving unit for constructing the observation matrix constructed by the unit to reconstruct the sparse vector of the beam search energy space, and solving the beam pair information according to the sparse vector,
  • the beam pair information includes the beam information of the transmitting end
  • the sending unit is configured to send, to the network device, the beam information of the transmitting end that is solved by the solution unit.
  • the embodiment of the present application provides a storage medium, where a computer program is stored thereon, and when the computer program is executed by a processor, the method according to any one of the foregoing aspects is implemented.
  • the embodiment of the present application provides a chip system, including: a processor, configured to support a terminal device to implement the method according to any one of the first aspects.
  • the embodiment of the present application provides a network device, including: a processor and a memory, where the memory is used to store a program, and the processor calls a program stored in the memory to perform the method according to any one of the foregoing second aspects.
  • the embodiment of the present application provides a chip system, including: a processor, configured to support a network device to implement the method according to any one of the foregoing second aspects.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram 1 of a terminal device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram 1 of a network device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a downlink beam training method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of energy distribution of a search space E according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of simulation of a ratio of channel capacity to ideal value under different schemes provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram 3 of a terminal device according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram 2 of a network device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram 4 of a network device according to an embodiment of the present disclosure.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • the embodiment of the present application can be applied to a time division duplexing (TDD) scenario or a frequency division duplexing (FDD) scenario.
  • TDD time division duplexing
  • FDD frequency division duplexing
  • the technical solution provided by the present application can be applied to a 5G NR system.
  • the embodiment of the present application is based on the scenario of the 5G NR network in the wireless communication network, it should be noted that the solution in the embodiment of the present application may also be applied to other wireless communication networks, and the corresponding name may also be used. Replace with the name of the corresponding function in other wireless communication networks.
  • the embodiment of the present application provides a communication system, as shown in FIG. 1, including at least one terminal device 11 and a network device 12.
  • the display screen 140 belongs to a user interface (UI), and the display screen 140 can include a display panel 141 and a touch panel 142.
  • the mobile phone may also include functional modules or devices such as a camera and a Bluetooth module, and details are not described herein.
  • the processor 180 is coupled to the RF circuit 110, the memory 120, the audio circuit 160, the I/O subsystem 170, and the power supply 190, respectively.
  • the I/O subsystem 170 is coupled to other input devices 130, display 140, and sensor 150, respectively.
  • the RF circuit 110 can be used for receiving and transmitting signals during the transmission and reception of information or a call, and in particular, after receiving downlink information from the base station, the RF circuit 110 is sent to the processor 180 for processing.
  • the memory 120 can be used to store software programs as well as modules.
  • the processor 180 executes various functional applications and data processing of the mobile phone by executing software programs and modules stored in the memory 120, for example, performing the methods and functions of the terminal device in the embodiments of the present application.
  • the processor 180 is the control center of the handset 200, which connects various portions of the entire handset using various interfaces and lines, by running or executing software programs and/or modules stored in the memory 120, and recalling data stored in the memory 120, The various functions and processing data of the mobile phone 200 are executed to perform overall monitoring of the mobile phone.
  • a power source 190 (such as a battery) is used to power the various components described above.
  • the power source can be logically coupled to the processor 180 through a power management system to manage functions such as charging, discharging, and power consumption through the power management system.
  • the network device 12 involved in the embodiment of the present application may be a base station, and the general hardware architecture of the base station is described.
  • the base station 12 may include an indoor baseband unit (BBU) 1201 and a remote radio unit (RRU) 1202.
  • the RRU 1202 and the antenna feeder system (ie, antenna) 1203 are connected, and the BBU is connected.
  • the 1201 and RRU 1202 can be used as needed.
  • the antenna 1203 may be an antenna array, including a plurality of sub-antennas, that is, array elements.
  • the base station may convert the signal processing of the antenna domain into a beam domain signal by using a codebook, and control the direction angle of the array elements. In this application, the base station may control a part of the antenna.
  • the network device sends a probe beam.
  • the probe beam is modulated by an antenna weight vector, and the antenna weight vector includes a fixed codebook vector and a random codebook vector.
  • s1 is a fixed codebook vector and r1 is a random codebook vector.
  • the beam domain signal of the network device finally transmitting the probe beam to the air interface is: That is to say, Y is the transmitted signal after beam shaping (antenna modulation).
  • the RF signal modulated by the codebook is a directional beam.
  • the number of codebook vectors is the same as the number of array elements. For example, if there are 4 fixed codebook vectors, 4 array elements are needed to send the fixed codebook vector. If there are 8 random codebook vectors, 8 array elements are needed to send the random code. This vector.
  • the number of fixed codebook vectors should be adjusted according to the specific communication environment. For example, if the number of antennas at the transceiver end is 16, the ratio of the random codebook vector to the number of codebooks in the fixed codebook vector is 1:1, and the first 8 antennas transmit the probe beam directed to the fixed codebook vector in the 90° direction, fixed.
  • the codebook vector is [1,-1,1,-1,1,-1,1,-1], and the last 8 antennas transmit the probe beam of the random codebook vector, and the random codebook vector is generated by the Bernoulli random sequence. .
  • the main lobe direction of the fixed codebook vector selects the center direction of the coverage of the network device (for example, the base station) as much as possible; if it is insufficient to cover the entire coverage of the entire network device, a plurality of fixed codebook vectors having different coverage directions may be designed.
  • the beam training is performed in a time division manner by scanning.
  • the fixed codebook vector may adopt a fixed codebook design method such as discrete Fourier transform (DFT), Floor, Beam, or the like, or other design methods may be used.
  • DFT discrete Fourier transform
  • Floor Floor
  • Beam Beam
  • FIG. 5 shows the probe beams corresponding to the random codebook vectors generated by the three Bernoulli random sequences.
  • the random codebook vector corresponding to (a) in FIG. 5 is [1, 1, 1, 1, -1, 1, -1, 1], and the random codebook vector corresponding to (b) in FIG. 5 is [- 1,1,-1,1,-1,1,-1,-1], the random codebook vector corresponding to (c) in Fig. 5 is [1,-1,1,1,-1,-1, -1,1].
  • the terminal device receives the probe beam from the network device, and constructs the observation matrix ⁇ according to the antenna weight vector.
  • ⁇ tl is the transmission angle of the physical transmission channel
  • ⁇ rl is the angle of arrival of the physical transmission channel
  • M is the number of antennas at the transmitting end
  • N is the number of antennas at the receiving end
  • L is the number of multipath channels
  • ⁇ l is the channel coefficient
  • H is a conjugate transpose symbol
  • g l is a reception orientation vector
  • p l is a transmission orientation vector.
  • the multipath channel response model for the i th received pilot sequence of symbols x i y i can be expressed as:
  • u t, i is the i-th pilot transmission antenna weight vector sequence x i a
  • u r, i is the i-th pilot received antenna weight vector of a pilot sequence x i a
  • M being the number of terminal antenna transmission
  • is a transmission
  • the signal SNR, n i is additive white Gaussian noise. It should be noted that if the terminal device receives the omnidirectional antenna, the power consumption is too large and the effect is poor. Therefore, the receiving antenna of the terminal device also has directivity, and the receiving direction is determined by the receiving antenna weight vector u r, i .
  • the multipath channel response element h i (l) of the lth path of the i-th pilot in the multipath channel response model (ie, the coefficient before x i in equation (4)) can be described as:
  • the SNR of the receiving end of the terminal device can be expressed as formula (6):
  • the goal of beam training is to find the beam pair information (k opt , l opt ) that satisfies the channel SNR with the highest formula (6) from all possible beam pair information, where k opt is the beam search space E (for example, in FIG. 6 In the shown), the optimal receiving end beam number of the terminal device side, l opt is the optimal transmitting end beam number of the network device side in the beam searching space E. which is:
  • the observation matrix can be constructed by the above-mentioned random antenna weight vector, and the exhaustive search problem in the beam search space E is changed into the solution problem of the sparse vector q.
  • the observation matrix ⁇ can be constructed by the formulas (8)-(10).
  • W r is the antenna weight vector of the receiving end beam during actual transmission
  • W t is the antenna weight vector of the transmitting end beam during actual transmission
  • is the transmission signal SNR
  • N is the number of antennas at the receiving end
  • ⁇ l is the channel coefficient of the 1st transmission beam.
  • W r and W t are already stored in network devices and terminal devices before beam training. According to the least squares (LS), you can get:
  • equation (10) A vectorized representation of equation (10) is available:
  • is the constructed observation matrix Its i-th behavior
  • g is the receiving orientation vector
  • p is the transmitting orientation vector.
  • u t,i is the ith transmit antenna weight vector
  • b r,i W r (W r W r H ) -1 u r,i
  • b t,i W t (W t W t H ) -1 u t,i
  • E is an exhaustive beam search energy space
  • q is a vector composed of the millimeter wave beam search energy space E and has significant sparsity.
  • Each non-zero element of q represents a set of available beam pairs.
  • q is linear with h, and according to formula (6), the larger SNR is, h is larger, so the value of q represents the beam pair.
  • the SNR channel gain is strong and strong, and the position with the largest value in q corresponds to the optimal beam pair information (k opt , l opt ), and the other non-zero values in q correspond to other available candidate beam pair information (k oth , l oth ).
  • the terminal device performs signal reconstruction on the sparse vector q of the beam search energy space E through the observation matrix, and solves the beam pair information according to the sparse vector q.
  • the terminal device can utilize the sparse reconstruction algorithm such as matching pursuit (MP), orthogonal matching pursuit (OMP), basis tracking (BP), and noise reduction.
  • the basis tracking basic pursuit de-noising, BPD), etc., solves the most sparse solution of q, for example, using the matching pursuit algorithm to solve the optimal beam pair information is as follows:
  • h is a multipath channel response element.
  • ⁇ ⁇ represents the third column of the observation matrix ⁇
  • q ( ⁇ H ⁇ ) -1 ⁇ H h, Indicates the corresponding ⁇ when the calculation result of the following formula is the minimum value
  • the representation represents the corresponding ⁇ when the calculation result of the following formula is the maximum value
  • 2 represents 2-norm
  • represents modulo
  • 2 represents modulo square
  • h is vectorized Multipath channel response element.
  • K r is the number of beams at the receiving end
  • l opt is the optimal beam number of the transmitting end
  • k opt is the beam number of the optimal receiving end.
  • the terminal device After obtaining the optimal beam pair information (k opt , l opt ), the terminal device can accurately estimate the position of the maximum value among the remaining non-zero value components in q according to formulas (13) to (16).
  • the candidate beam pair information (k oth , l oth ) is obtained, where l oth is an alternate transmitter beam sequence number and k oth is an alternate receiver beam sequence number.
  • the terminal device sends the foregoing transmit beam information to the network device.
  • the network device can only care about which transmitting end beam the local end uses to communicate with the terminal device, so the terminal device can only feed back the transmitting end beam information to the network device.
  • the transmit end beam information may include a codebook vector corresponding to the transmit end beam or a transmit end beam serial number.
  • the transmit end beam information may also include link channel amplitude information of the transmit end beam.
  • the transmit end beam information may include the optimal transmit end beam information, so the optimal transmit end beam information may include an optimal transmit end beam corresponding codebook vector or an optimal transmit end beam serial number l opt .
  • the transmit end beam information may further include alternate transmit end beam information, so the alternate transmit end beam information may include a codebook vector corresponding to the alternate transmit end beam or an alternate transmit end beam sequence l oth .
  • the terminal device may further send the receiving end beam information to the network device, where the receiving end beam information may include a codebook vector corresponding to the receiving end beam or a receiving end beam serial number.
  • the receiving end beam information and the transmitting end beam information may be collectively referred to as beam pair information.
  • the receiving end beam information may include the optimal receiving end beam information, so the optimal receiving end beam information may include an optimal receiving end beam corresponding codebook vector or an optimal receiving end beam serial number k opt .
  • the receiving end beam information may further include alternative receiving end beam information, so the alternate receiving end beam information may include a codebook vector corresponding to the alternate receiving end beam or an alternate receiving end beam number l oth .
  • the terminal device can also send the optimal beam pair information to the network device.
  • the optimal beam pair information may include a codebook vector corresponding to the optimal beam pair or a sequence number (k opt , l opt ) of the optimal beam pair.
  • the terminal device may also send the candidate beam pair information to the network device, and the candidate beam pair information may include a codebook vector corresponding to the candidate beam pair or a sequence number (k oth , l oth ) of the candidate beam pair.
  • the terminal device and the network device can switch to the candidate beam pair when the signal is deteriorated due to occlusion or the like during communication through the optimal beam pair.
  • the network device and the terminal device communicate by using a beam pair.
  • the two parties can select the optimal beam pair (k opt , l opt ) as the actual transmission beam pair, or select the candidate beam pair as the actual transmission beam pair.
  • the network device sends a probe beam modulated by an antenna weight vector including a fixed codebook vector and a random codebook vector, and the terminal device according to the antenna weight vector and the multipath channel response model with randomness
  • the observation matrix is constructed, and the sparse reconstruction algorithm in the compressed sensing theory is utilized.
  • the problem that the large number of beam search energy spaces are exhaustive becomes the problem of solving the sparse vector of the energy space, so the beam can be reduced.
  • the cost of training is also through the introduction of the fixed codebook vector, compared with the completely random codebook vector, the transmission gain is improved, the performance of the algorithm in the low SNR environment is improved, and the anti-noise capability is enhanced.
  • the number of antenna elements at the transceiver end is 16 and the number of beams at the transceiver end is 32.
  • the fixed codebook is a DFT codebook
  • each beam pair is used.
  • the receiver SNR condition distribution map is equivalent to the energy distribution map of the search space E in the formula (11). It can be seen that the energy of the search space is concentrated and has a strong sparsity.
  • the goal of beam training is to find the optimal SNR in the channel formed by each beam pair.
  • the optimal beam pair in this scenario is (23, 3).
  • the fixed codebook of the directional transmission at the transceiver end is a DFT codebook with a 90° direction of the main lobe, such as [1, -1, 1, -1, ...], and the random codebook is generated by a Bernoulli random sequence.
  • the multipath channel includes one direct path and four reflected paths.
  • the sparse reconstruction algorithm uses orthogonal matching tracking. The simulation selects the case where the number of fixed codebooks is 1/2 and 1/4 of the total number of antennas.
  • the position of the fixed codebook is selected by the first 1/2 or 1/4 of the antenna, and the channel is noiseless and uses exhaustive search.
  • the communication channel capacity of the optimal beam pair is the theoretical upper limit.
  • the simulation results are shown in Fig. 7. It can be seen that in the case of high SNR, the compression sensing scheme of the present application can basically approach the performance upper limit, and only about 2-3% performance loss.
  • the performance of the solution of the present application is greatly improved under the low transmission signal SNR compared with the completely random compression sensing scheme, and the anti-noise capability of the beam training is enhanced.
  • is the empirical coefficient
  • the simulation result shows that it is generally 2.5-3.
  • the pair of these two are shown in Table 1.
  • the application provides a terminal device for performing the above method.
  • the embodiment of the present application may perform the division of the function module on the terminal device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the present application is schematic, and is only a logical function division, and may be further divided in actual implementation.
  • FIG. 9 is a schematic diagram showing a possible structure of the terminal device involved in the foregoing embodiment.
  • the terminal device 11 includes: a receiving unit 1111, a building unit 1112, and a solution unit. 1113. Transmitting unit 1114.
  • Each of the above units is used to support the terminal device to perform the related method in any of the figures in FIG.
  • the terminal device provided by the present application is used to perform the corresponding method provided above, and therefore, the corresponding features and benefits that can be achieved can be referred to the beneficial effects in the corresponding methods provided above, and no longer here. Narration.
  • the receiving unit 1111 is configured to support the terminal device 11 to perform the process S102 in FIG. 4;
  • the building unit 1112 is configured to support the terminal device 11 to perform the process S102 in FIG. 4;
  • the solving unit 1113 is configured to support the terminal device 11 to execute FIG.
  • the process S103 in the sending unit 1114 is for supporting the terminal device 11 to execute the process S104 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 10 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 11 includes a storage module 1121, a processing module 1122, and a communication module 1123.
  • Each of the above modules is used to support the terminal device to perform the related method in any of the figures in FIG.
  • the terminal device provided by the present application is used to perform the corresponding method provided above, and therefore, the corresponding features and benefits that can be achieved can be referred to the beneficial effects in the corresponding methods provided above, and no longer here. Narration.
  • the processing module 1122 is configured to perform control management on the action of the terminal device 11.
  • the communication module 1123 is for supporting the terminal device 11 to perform the functions of the above-described receiving unit 1111 and transmitting unit 1112.
  • the storage module 1121 is configured to store program codes and data of the terminal device.
  • the processing module 1122 may be a processor or a controller, for example, may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (application-specific Integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1123 can be a transceiver, a transceiver circuit, a Bluetooth, a network interface, or a communication interface.
  • the storage module 1121 can be a memory.
  • the processing module 1122 can be the processor 180 in FIG. 2
  • the communication module 1123 can be the RF circuit 110 in FIG. 2
  • the storage module 1121 can be the memory 120 in FIG.
  • the terminal device involved in the present application may be the terminal device 11 shown in FIG.
  • the terminal device 11 includes one or more processors 1132, an RF circuit 1133, a memory 1131, a bus system 1134, and one or more programs.
  • the RF circuit 1133, the processor 1132, and the memory 1131 are mutually connected by a bus system 1134; the bus system 1134 may be a peripheral component interconnection standard bus or an extended industry standard structure bus or the like.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in the figure, but it does not mean that there is only one bus or one type of bus.
  • the one or more programs are stored in the memory 1131, and the one or more programs include instructions that, when executed by the terminal device, cause the terminal device to perform the related method in any of the figures of FIG.
  • the present application also provides a computer storage medium storing one or more programs, the one or more programs including instructions that, when executed by the terminal device, cause the terminal device to perform the related methods in any of the Figures of FIG.
  • the present application also provides a computer program product comprising instructions which, when run on a terminal device, cause the terminal device to perform the associated method of any of Figures 4 .
  • the embodiment of the present application provides a chip system, where the chip system includes a processor for supporting a terminal device to implement the foregoing method, for example, receiving a probe beam from a network device.
  • the chip system also includes a memory.
  • the memory is used to store necessary program instructions and data of the terminal device.
  • the memory may not be in the chip system.
  • the chip system may include a chip, an integrated circuit, and may also include a chip and other discrete devices, which are not specifically limited in this embodiment of the present application.
  • the terminal device, the computer storage medium, the computer program product, or the chip system provided by the present application are all used to perform the corresponding method provided above. Therefore, the beneficial effects that can be achieved can be referred to the corresponding The beneficial effects in the method are not described here.
  • the application provides a network device for performing the above method.
  • the embodiment of the present application may perform the division of the function module on the network device according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the present application is schematic, and is only a logical function division, and may be further divided in actual implementation.
  • FIG. 12 is a schematic diagram showing a possible structure of the network device involved in the foregoing embodiment.
  • the network device 12 includes: a sending unit 1211 and a receiving unit 1212. Each of the above units is used to support a network device to perform the related method in any of the figures of FIG.
  • the network device provided by the present application is used to perform the corresponding method provided above, and therefore, the corresponding features and benefits that can be achieved can be referred to the beneficial effects in the corresponding methods provided above, and no longer here. Narration.
  • the transmitting unit 1211 is configured to support the network device 12 to perform the processes S101, S105 in FIG. 4; the receiving unit 1212 is configured to support the network device 12 to perform the processes S104, S105 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 13 shows a possible structural diagram of the network device involved in the above embodiment.
  • the network device 12 includes a storage module 1221, a processing module 1222, and a communication module 1223.
  • Each of the above modules is used to support a network device to perform the related method in any of the figures of FIG.
  • the network device provided by the present application is used to perform the corresponding method provided above, and therefore, the corresponding features and benefits that can be achieved can be referred to the beneficial effects in the corresponding methods provided above, and no longer here. Narration.
  • the processing module 1222 is configured to control and manage the actions of the network device 12.
  • the communication module 1223 is configured to support the network device 12 to perform the functions of the above-described transmitting unit 1211 and receiving unit 1212.
  • the storage module 1221 is configured to store program codes and data of the network device.
  • the processing module 1222 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific). Integrated circuit (ASIC), Field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1223 can be a transceiver, a transceiver circuit, a Bluetooth, a network interface, or a communication interface.
  • the storage module 1221 may be a memory.
  • the processing module 1222 may be a processor in the BBU 1201 in FIG. 3
  • the communication module 1223 may be an RF circuit in the RRU 1202 in FIG. 3
  • the storage module 1221 may be a memory in the BBU 1201 in FIG.
  • the network device involved in the present application may be the network device 12 shown in FIG.
  • the network device 12 includes a processor 1231, a memory 1232, a bus system 1233, an RF circuit 1234, an optical fiber 1235, a coaxial cable 1236, an antenna 1237, and one or more programs.
  • the processor 1231 and the memory 1232 of the BBU 1201 are connected to each other through a bus system 1233.
  • the RF circuit 1234 and the BBU 1201 in the RRU 1202 are connected to each other by an optical fiber 1235.
  • the RF circuit 1234 and the antenna 1237 in the RRU 1202 are connected to each other by a coaxial cable 1236.
  • the above bus system may be a peripheral component interconnection standard bus or an extended industry standard structure bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in the figure, but it does not mean that there is only one bus or one type of bus.
  • the one or more programs are stored in a memory, and the one or more programs include instructions that, when executed by the network device, cause the network device to perform the associated method of any of the Figures of FIG.
  • the present application also provides a computer storage medium storing one or more programs, the one or more programs including instructions that, when executed by a network device, cause the network device to perform the related methods in any of the Figures of FIG.
  • the application also provides a computer program product comprising instructions that, when executed on a network device, cause the network device to perform the associated method of any of the Figures of FIG.
  • the embodiment of the present application provides a chip system, where the chip system includes a processor, and is configured to support the network device to implement the foregoing information indication method, for example, sending the first indication information to the terminal device, where the first indication information is the first time resource. Instructions.
  • the chip system also includes a memory. This memory is used to store the necessary program instructions and data for the network device. Of course, the memory may not be in the chip system.
  • the chip system may include a chip, an integrated circuit, and may also include a chip and other discrete devices, which are not specifically limited in this embodiment of the present application.
  • the network device, the computer storage medium, the computer program product, or the chip system provided by the present application are all used to perform the corresponding methods provided above. Therefore, the beneficial effects that can be achieved can be referred to the corresponding ones provided above. The beneficial effects in the method are not described here.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device that includes one or more servers, data centers, etc. that can be integrated with the media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种下行波束训练方法、网络设备和终端设备,涉及通信领域,用于降低波束训练的开销。一种下行波束训练方法包括:终端设备接收来自网络设备的探测波束,所述探测波束由天线权重向量调制,所述天线权重向量包括固定码本向量和随机生成的随机码本向量;所述终端设备根据所述天线权重向量构建观测矩阵;所述终端设备通过所述观测矩阵对波束搜索能量空间的稀疏向量进行信号重构,并根据所述稀疏向量求解波束对信息,其中,所述波束对信息包括发送端波束信息;所述终端设备向所述网络设备发送所述发送端波束信息。本申请实施例应用于波束训练。

Description

下行波束训练方法、网络设备和终端设备
本申请要求2018年4月25日递交中国专利局、申请号为201810381634.4的中国专利申请的优先权,其全文通过引用包含于本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种下行波束训练方法、网络设备和终端设备。
背景技术
第5代新空口(5th generation new radio,5G NR)技术支持毫米波高频段通信,毫米波通信有着高传输速率、高安全性、易于大规模集成、免授权频谱资源丰富等突出优点。但高频段通信也带来了高路径损耗,为了弥补高频点通信带来的高路径损失,毫米波通信采用天线阵列和波束赋形技术进行定向通信来提高信道增益。由于收发端设备的方位未知,通信前需要通过波束训练来完成定向波束对准。波束训练的目的在于,给定天线权重向量(antenna weight vector,AWV)情况下,从所有波束对中分辨出最优波束对,形成定向通信链路。
5G NR初始接入阶段要对多个用户同时进行波束管理,波束训练开销过大,扫描时间长,初始接入速度慢。现有的波束训练技术中,基于穷举搜索的波束训练用户之间的训练过程相互独立,可以对多用户实施同步训练,但单个用户的训练开销过大;基于分层反馈的搜索,可以降低单个用户的训练开销,但用户之间的训练不独立,在多用户场景下,训练开销会随着用户数目的增长急剧增大。
发明内容
本申请实施例提供一种下行波束训练方法、网络设备和终端设备,用于降低波束训练的开销。
第一方面,提供了一种下行波束训练方法,该方法包括:终端设备接收来自网络设备的探测波束,探测波束由天线权重向量调制,天线权重向量包括固定码本向量和随机生成的随机码本向量;终端设备根据天线权重向量构建观测矩阵;终端设备通过观测矩阵对波束搜索能量空间的稀疏向量进行信号重构,并根据稀疏向量求解波束对信息,其中,波束对信息包括发送端波束信息;终端设备向网络设备发送上述发送端波束信息。本申请实施例提供的下行波束训练方法,网络设备发送由包括固定码本向量和随机码本向量的天线权重向量调制的探测波束,终端设备根据具有随机性的天线权重向量和多径信道响应模型构建观测矩阵,利用了压缩感知理论中的稀疏重构算法,通过观测矩阵,将数量较大的波束搜索能量空间进行穷举的问题变为该能量空间的稀疏向量的求解问题,因此可以降低波束训练的开销。并且通过固定码本向量的引入,与完全随机码本向量相比,提高了传输增益,提高算法在低SNR环境中的性能,增强了抗噪声能力。
在一种可能的实施方式中,观测矩阵为:
Figure PCTCN2019083975-appb-000001
其中,
Figure PCTCN2019083975-appb-000002
b t,i=W t(W tW t H) -1u t,i,vec()表示将矩阵变成向量,W r为实际传输时接收端波束的天线权重向量,W t为实际传输时发送端波束的天线权重向量,
Figure PCTCN2019083975-appb-000003
为第i个接收天线权重向量,u t,i为第i个发射天线权重向量,() H表示共轭转置,() -1表示矩阵逆。该实施方式提供了观测矩阵的一种求解方式。
在一种可能的实施方式中,波束对信息包括最优波束对信息,终端设备通过观测矩阵对波束搜索能量空间的稀疏向量进行信号重构,并根据稀疏向量求解波束对信息,包括:按照下述公式中任一项对观测矩阵θ的稀疏向量q的各分量中最大值所在位置χ做出 精确估计:
Figure PCTCN2019083975-appb-000004
或者,
Figure PCTCN2019083975-appb-000005
或者,
Figure PCTCN2019083975-appb-000006
其中,θ χ表示观测矩阵θ的第χ列,q=(θ Hθ) -1θ Hh,
Figure PCTCN2019083975-appb-000007
表示取使得后面公式的计算结果为最小值时对应的χ,
Figure PCTCN2019083975-appb-000008
表示取使得后面公式的计算结果为最大值时对应的χ,|| || 2表示2-范数,|| ||表示取模,|| || 2表示取模平方,h为向量化后的多径信道响应元素;按照下述公式得到最优波束对信息(k opt,l opt)为:l opt=χ/K r,k opt=χ-K rl opt,其中,K r为接收端波束的数目,l opt为最优发送端波束序号,k opt为最优接收端波束序号。该实施方式提供了最优波束对的一种求解方式。
在一种可能的实施方式中,波束对信息还包括备选波束对信息,该方法还包括:终端设备按照公式依次对q中剩余非零值分量中最大值所在位置χ做出精确估计,得到备选波束对信息(k oth,l oth),其中,l oth为备选发送端波束序号,k oth为备选接收端波束序号。该实施方式提供了备选波束对的一种求解方式。
在一种可能的实施方式中,发送端波束信息包括发送端波束对应的码本向量或者发送端波束序号。该实施方式提供了发送端波束信息的一种可能实现方式。
在一种可能的实施方式中,发送端波束信息包括最优发送端波束信息和备选发送端波束信息。该实施方式提供了发送端波束信息的一种可能实现方式。
在一种可能的实施方式中,波束对信息还包括接收端波束信息,该方法还包括:终端设备向网络设备发送接收端波束信息。该实施方式提供了波束对信息的一种可能实现方式。
第二方面,提供了一种下行波束训练方法,包括:网络设备发送探测波束,探测波束由天线权重向量调制,天线权重向量包括固定码本向量和随机生成的随机码本向量,天线权重向量用于构建观测矩阵,观测矩阵用于对波束搜索能量空间的稀疏向量进行信号重构,稀疏向量用于求解波束对信息,波束对信息包括发送端波束信息;网络设备从终端设备接收发送端波束信息。本申请实施例提供的下行波束训练方法,网络设备发送由包括固定码本向量和随机码本向量的天线权重向量调制的探测波束,终端设备根据具有随机性的天线权重向量和多径信道响应模型构建观测矩阵,利用了压缩感知理论中的稀疏重构算法,通过观测矩阵,将数量较大的波束搜索能量空间进行穷举的问题变为该能量空间的稀疏向量的求解问题,因此可以降低波束训练的开销。并且通过固定码本向量的引入,与完全随机码本向量相比,提高了传输增益,提高算法在低SNR环境中的性能,增强了抗噪声能力。
在一种可能的实施方式中,观测矩阵为:
Figure PCTCN2019083975-appb-000009
其中,b r,i=W r(W rW r H) -1u r,i,b t,i=W t(W tW t H) -1u t,i,vec()表示将矩阵变成向量,W r为实际传输时接收端波束的天线权重向量,W t为实际传输时发送端波束的天线权重向量,
Figure PCTCN2019083975-appb-000010
为第i个接收天线权重向量,u t,i为第i个发射天线权重向量,() H表示共轭转置,() -1表示矩阵逆。该实施方式提供了观测矩阵的一种求解方式。
在一种可能的实施方式中,波束对信息包括最优波束对信息(k opt,l opt):l opt=χ/K r,k opt=χ-K rl opt,其中,K r为接收端波束的数目,l opt为最优发送端波束序号,k opt为最优接收端波束序号,χ为观测矩阵θ的稀疏向量q的各分量中最大值所在位置;χ为按照下述公式中任一项做出精确估计得到:
Figure PCTCN2019083975-appb-000011
或者,
Figure PCTCN2019083975-appb-000012
或者,
Figure PCTCN2019083975-appb-000013
其中,θ χ表示观测矩阵θ的第χ列,q=(θ Hθ) -1θ Hh,
Figure PCTCN2019083975-appb-000014
表示取使得后面公式的计算结果为最小值时对应的χ,
Figure PCTCN2019083975-appb-000015
表示取使得后面公式的计算结果为最大值时对应的χ,|| || 2表示2-范数,|| ||表示取模,|| || 2表示取模平方,h为向量化后的多径信道响应元素。该实施方式提供了最优波束对的一种求解方式。
在一种可能的实施方式中,波束对信息还包括备选波束对信息(k oth,l oth),其中,l oth为备选发送端波束序号,k oth为备选接收端波束序号,备选波束对信息(k oth,l oth)为按照上述公式依次对q中剩余非零值分量中最大值所在位置χ做出精确估计得到。该实施方式提供了备选波束对的一种求解方式。
在一种可能的实施方式中,发送端波束信息包括发送端波束对应的码本向量或者发送端波束序号。该实施方式提供了发送端波束信息的一种可能实现方式。
在一种可能的实施方式中,发送端波束信息包括最优发送端波束信息和备选发送端波束信息。该实施方式提供了发送端波束信息的一种可能实现方式。
在一种可能的实施方式中,波束对信息还包括接收端波束信息,方法还包括:网络设备从终端设备接收上述接收端波束信息。该实施方式提供了波束对信息的一种可能实现方式。
第三方面,提供了一种终端设备,包括:接收单元,用于接收来自网络设备的探测波束,探测波束由天线权重向量调制,天线权重向量包括固定码本向量和随机生成的随机码本向量;构建单元,用于接收单元接收的天线权重向量构建观测矩阵;求解单元,用于构建单元构建的观测矩阵对波束搜索能量空间的稀疏向量进行信号重构,并根据稀疏向量求解波束对信息,其中,波束对信息包括发送端波束信息;发送单元,用于向网络设备发送求解单元求解的发送端波束信息。基于同一发明构思,由于该终端设备解决问题的原理以及有益效果可以参见上述第一方面和第一方面的各种可能实施方式所带来的有益效果,因此该终端设备的实施可以参见上述第一方面和第一方面的各种可能实施方式,重复之处不再赘述。
第四方面,提供了一种网络设备,包括:网络设备发送探测波束,探测波束由天线权重向量调制,天线权重向量包括固定码本向量和随机生成的随机码本向量,天线权重向量用于构建观测矩阵,观测矩阵用于对波束搜索能量空间的稀疏向量进行信号重构,稀疏向量用于求解波束对信息,波束对信息包括发送端波束信息;网络设备从终端设备接收发送端波束信息。基于同一发明构思,由于该网络设备解决问题的原理以及有益效果可以参见上述第二方面和第二方面的各种可能实施方式所带来的有益效果,因此该网络设备的实施可以参见上述第二方面和第二方面的各种可能实施方式,重复之处不再赘述。
第五方面,提供了一种通信系统,包括如第三方面所述的终端设备以及如第四方面所述的网络设备。
第六方面,本申请实施例提供一种终端设备,包括:处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行上述第一方面任一项所述的方法。
第七方面,本申请实施例提供一种存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述第一方面任一项所述的方法。
第八方面,本申请实施例提供一种芯片系统,包括:处理器,用于支持终端设备实现上 述第一方面任一项所述的方法。
第九方面,本申请实施例提供一种网络设备,包括:处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行上述第二方面任一项所述的方法。
第十方面,本申请实施例提供一种存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述第二方面任一项所述的方法。
第十一方面,本申请实施例提供一种芯片系统,包括:处理器,用于支持网络设备实现上述第二方面任一项所述的方法。
第五方面至第十一方面的技术效果可以参照第一方面和第二方面所述内容。
附图说明
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种终端设备的结构示意图一;
图3为本申请实施例提供的一种网络设备的结构示意图一;
图4为本申请实施例提供的一种下行波束训练方法的流程示意图;
图5为本申请实施例提供的3种伯努利随机序列生成的随机码本向量对应的探测波束的示意图;
图6为本申请实施例提供的搜索空间E的能量分布示意图;
图7为本申请实施例提供的不同方案下信道容量与理想值的比值的仿真示意图;
图8为本申请实施例提供的小区场景的仿真示意图;
图9为本申请实施例提供的一种终端设备的结构示意图二;
图10为本申请实施例提供的一种终端设备的结构示意图三;
图11为本申请实施例提供的一种终端设备的结构示意图四;
图12为本申请实施例提供的一种网络设备的结构示意图二;
图13为本申请实施例提供的一种网络设备的结构示意图三;
图14为本申请实施例提供的一种网络设备的结构示意图四。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例既可以应用于时分双工(time division duplexing,TDD)的场景,也可以适用于频分双工(frequency division duplexing,FDD)的场景。本申请提供的技术方案可以适用于5G NR系统中。
需要说明的是,本申请实施例虽然依托无线通信网络中5G NR网络的场景进行说明,应当指出的是,本申请实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
本申请实施例提供了一种通信系统,参照图1中所示,包括至少一个终端(terminal)设备11和网络设备12。
可选的,本申请实施例中所涉及到的终端设备11可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线 数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端、用户设备(user equipment,UE),移动台(mobile station,MS),终端设备(terminal device)或者中继用户设备等。其中,中继用户设备例如可以是5G家庭网关(residential gateway,RG)。为方便描述,本申请中,上面提到的设备统称为终端设备。
以终端设备11为手机为例,对手机的通用硬件架构进行说明。如图2所示,手机可以包括:射频(radio frequency,RF)电路110、存储器120、其他输入设备130、显示屏140、传感器150、音频电路160、I/O子系统170、处理器180、以及电源190等部件。本领域技术人员可以理解,图中所示的手机的结构并不构成对手机的限定,可以包括比图示更多或者更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领域技术人员可以理解显示屏140属于用户界面(user interface,UI),显示屏140可以包括显示面板141和触摸面板142。尽管未示出,手机还可以包括摄像头、蓝牙模块等功能模块或器件,在此不再赘述。
进一步地,处理器180分别与RF电路110、存储器120、音频电路160、I/O子系统170、以及电源190连接。I/O子系统170分别与其他输入设备130、显示屏140、传感器150连接。其中,RF电路110可用于在收发信息或通话过程中对信号的接收和发送,特别地,接收来自基站的下行信息后,发送给处理器180处理。存储器120可用于存储软件程序以及模块。处理器180通过运行存储在存储器120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理,例如执行本申请实施例中终端设备的方法和功能。其他输入设备130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键盘信号输入。显示屏140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单,还可以接受用户输入。传感器150可以为光传感器、运动传感器或者其他传感器。音频电路160可提供用户与手机之间的音频接口。I/O子系统170用来控制输入输出的外部设备,外部设备可以包括其他设备输入控制器、传感器控制器、显示控制器。处理器180是手机200的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据,执行手机200的各种功能和处理数据,从而对手机进行整体监控。电源190(比如电池)用于给上述各个部件供电,优选的,电源可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
可选的,本申请实施例中所涉及到的网络设备12可以是基站,对基站的通用硬件架构进行说明。如图3所示,基站12可以包括室内基带处理单元(building baseband unit,BBU)1201和远端射频模块(remote radio unit,RRU)1202,RRU 1202和天馈系统(即天线)1203连接,BBU 1201和RRU 1202可以根据需要拆开使用。天线1203可以为天线阵列,包括多个子天线即阵元,基站可以通过码本将天线域的信号处理转换为波束域信号,并且对这些阵元的方向角进行控制,本申请中基站可以控制一部分阵元采用固定码本调制,另一部分采用随机码本调制。基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。基站可以执行本申请实施例中网络设备的方法和功能。
本申请实施例可以应用于5G NR网络初始快速接入时的波束训练和波束失效后的快速恢复。初始接入时,本申请实施例的快速波束训练实现设备的快速接入;当由于天线位置、角 度的移动、障碍物遮挡等原因引起链路中断波束失效时,也可应用本申请实施例的快速波束训练实现波束的快速恢复。同时,本申请实施例可以同时获得包括最优波束对的多组波束对,可以根据基站策略选择SNR最大的一组作为传输波束对,其他作为备选波束对。
本申请实施例提供了一种波束训练方法,应用于上述系统,参照图4中所示,该方法包括:
S101、网络设备发送探测波束。
探测波束由天线权重向量调制,天线权重向量中包括固定码本向量和随机码本向量。
例如,假设探测波束的一个天线权重向量为
Figure PCTCN2019083975-appb-000016
其中s1为固定码本向量,r1为随机码本向量,若要发送探测波束的天线域信号为X=[x1 x2],则网络设备最终向空口发送探测波束的波束域信号为:
Figure PCTCN2019083975-appb-000017
也就是说Y即为经过波束赋形(天线调制)后的发送信号。
通过码本调制后的射频信号是有方向性的赋型波束。码本向量的数目与阵元数目相同,例如,如果有4个固定码本向量则需要4个阵元发送固定码本向量,如果有8个随机码本向量则需要8个阵元发送随机码本向量。
对于固定码本向量与随机码本向量数目的比例,仿真中发现若固定码本的数目太少,则天线权重向量显现不出方向性;若固定码本的数目太多,则影响了码本的随机性,导致最后的信号重构效果不佳。因此要按具体通信环境调整固定码本向量的数目。例如,如果收发端天线数目均为16,选择随机码本向量与固定码本向量中码本数目的比例为1:1,前8根天线发送指向90°方向的固定码本向量的探测波束,固定码本向量为[1,-1,1,-1,1,-1,1,-1],后8根天线发送随机码本向量的探测波束,随机码本向量由伯努利随机序列生成。
下面对固定码本向量和随机码本向量进行详细描述:
对于固定码本向量:
固定码本向量的主瓣方向尽可能选取网络设备(例如基站)覆盖范围的中心方向;如果不足以覆盖整个网络设备的整个覆盖范围,则可以设计多个具有不同覆盖方向的固定码本向量,采用扫描的方式分时分方向进行波束训练。
可选的,发射固定码本的阵元可以选取连续的N个阵元,其在整个天线中的位置可以是开始或结尾的连续N个阵元,也可以是中间任意位置的连续N个阵元。
固定码本向量可以采用例如离散傅立叶变换(discrete fourier transform,DFT)、Floor、Beam等固定码本设计方法,也可以采用其他的设计方法。以DFT固定码本设计方法为例进行说明:
固定码本
Figure PCTCN2019083975-appb-000018
其中,M为采用固定码本的阵元数目,u m-1为U的第m列的固定码本向量,m=0,1,...,M-1,
Figure PCTCN2019083975-appb-000019
n=0,1,...,M-1。
对于随机码本向量:
天线阵列中除了一部分阵元可以采用固定码本向量外,剩余的阵元可以采用随机码本向量。随机码本向量生成时可以有多种方式,例如伯努利随机码本、[1,-1,0]多值随机码本等。图5中所示为3种伯努利随机序列生成的随机码本向量对应的探测波束。图5中的(a)对应的随机码本向量为[1,1,1,-1,-1,1,-1,1],图5中(b)对应的随机码本向量为[-1,1,-1,1,-1,1,-1,-1], 图5中(c)对应的随机码本向量为[1,-1,1,1,-1,-1,-1,1]。
S102、终端设备接收来自网络设备的探测波束,根据天线权重向量构建观测矩阵θ。
假设φ tl为物理传输信道的发送角,φ rl为物理传输信道的到达角,M为发送端天线数目,N为接收端天线数目,L为多径信道的数目,λ l为信道系数,() H为共轭转置符号,g l为接收方位向量,p l为发送方位向量。则毫米波的多径信道传播模型为:
Figure PCTCN2019083975-appb-000020
其中,
Figure PCTCN2019083975-appb-000021
是对H的简化,g l和p l分别为:
Figure PCTCN2019083975-appb-000022
在训练探测波束过程中,网络设备的发送端发送天线域信号作为训练导频用以辅助训练,训练导频由能量归一化的序列组成x=[x 1,x 2,...,x M] T,M为发送端天线数目。根据多径信道响应模型,第i个导频序列x i的接收符号y i可以表示为:
Figure PCTCN2019083975-appb-000023
其中,u t,i为第i个导频序列x i的发送天线权重向量,u r,i为第i个导频序列x i的接收天线权重向量,M为发送端天线数目,γ为传输信号SNR,n i为加性高斯白噪声。需要说明的是,终端设备如果采用全向天线接收则功率消耗过大并且效果较差,因此终端设备的接收天线也具有方向性,其接收方向是由接收天线权重向量u r,i决定。
多径信道响应模型中第i个导频的第l条路径的多径信道响应元素h i(l)(即公式(4)中x i前的系数)可以描述为:
Figure PCTCN2019083975-appb-000024
若发射第i个导频序列x i时,第k个接收波束的接收天线权重向量为u r,i,第l个发送波束的发送天线权重向量为u t,i,接收端天线数目为N,则终端设备的接收端的SNR可以表示为公式(6):
Figure PCTCN2019083975-appb-000025
波束训练的目标为从所有可能的波束对信息中找出满足公式(6)的信道SNR最高的波束对信息(k opt,l opt),其中,k opt为波束搜索空间E(例如图6中所示)中终端设备侧的最优接收端波束序号,l opt为波束搜索空间E中网络设备侧的最优发送端波束序号。即:
(k opt,l opt)=argmaxSNR(k,l)    (7)
从公式(6)中看出,SNR为h i(l)的平方均值,SNR越大实际即为h越大。
如果对发送端天线数目为M,接收端天线数目为N的波束搜索空间采取穷举方式搜索最优波束对,则其开销为ξ=MN。根据压缩感知理论核心思想,可以通过上述具有随机性的天线权重向量构建观测矩阵,通过该观测矩阵将波束搜索空间E中穷举搜索问题变为稀疏向量q的求解问题。具体的,可以通过公式(8)-(10)来构建观测矩阵θ。
首先,为了方便找到波束搜索空间E,定义向量e r和e t
Figure PCTCN2019083975-appb-000026
其中,W r为实际传输时接收端波束的天线权重向量,W t为实际传输时发送端波束的天线权重向量,
Figure PCTCN2019083975-appb-000027
为信道增益系数,γ为传输信号SNR,N为接收端天线数目,λ l为第l个发送波束的信道系数。W r和W t在进行波束训练前已储存在网络设备和终端设备。则根据最小二乘估计(least square,LS),可得:
Figure PCTCN2019083975-appb-000028
() -1表示矩阵逆。然后把公式(9)带入公式(5),可得多径信道响应模型中第i个导频的所有路径(与l无关)的多径信道响应元素为:
Figure PCTCN2019083975-appb-000029
对公式(10)用向量化表示可得:
Figure PCTCN2019083975-appb-000030
则θ为构造的观测矩阵
Figure PCTCN2019083975-appb-000031
其第i行为
Figure PCTCN2019083975-appb-000032
其中,g为接收方位向量,p为发送方位向量,
Figure PCTCN2019083975-appb-000033
为第i个接收天线权重向量,u t,i为第i个发射天线权重向量,b r,i=W r(W rW r H) -1u r,i,b t,i=W t(W tW t H) -1u t,i,E为穷举的波束搜索能量空间,vec()表示将矩阵变成向量,q=vec(E)。
表达式中,q为毫米波波束搜索能量空间E构成的向量并具有显著的稀疏性。q的每个非零元素代表一组可用的波束对,根据公式(11)q与h是线性关系,并且根据公式(6)SNR越大h越大,所以q取值大小代表该波束对下的SNR信道增益强弱,q中取值最大的位置即对应最优波束对信息(k opt,l opt),q中其他非零值的位置对应其他可用的备选波束对信息(k oth,l oth)。
S103、终端设备通过观测矩阵对波束搜索能量空间E的稀疏向量q进行信号重构,并根据稀疏向量q求解波束对信息。
终端设备获得观测矩阵后,可以利用压缩感知原理的稀疏重构算法如匹配追踪(matching pursuit,MP)、正交匹配追踪(orthogonal matching pursuit,OMP)、基追踪(basis pursuit,BP)、降噪基追踪(basis pursuit de-noising,BPD)等,求解出q的最稀疏解,例如使用匹配追踪算法求解最优波束对信息方法如下:
对公式(11)根据最小二乘估计估计,可得观测矩阵θ的稀疏向量q:
q=(θ Hθ) -1θ Hh  (12)
其中,h为多径信道响应元素。
由于向量q是一个稀疏向量,矩阵θ又具有显著随机性,根据压缩感知理论,我们可以按照下述公式中任一项用最小平方误差对稀疏向量q的各分量中最大值所在位置χ做出精确估计:
Figure PCTCN2019083975-appb-000034
或者,
Figure PCTCN2019083975-appb-000035
或者,
Figure PCTCN2019083975-appb-000036
其中,θ χ表示观测矩阵θ的第χ列,q=(θ Hθ) -1θ Hh,
Figure PCTCN2019083975-appb-000037
表示取使得后面公式的计算结果为最小值时对应的χ,
Figure PCTCN2019083975-appb-000038
表示取使得后面公式的计算结果为最大值时对应的χ,|| || 2表示2-范数,|| ||表示取模,|| || 2表示取模平方,h为向量化后的多径信道响应元素。
因此得到最优波束对信息(k opt,l opt):
Figure PCTCN2019083975-appb-000039
其中,K r为接收端波束的数目,l opt为最优发送端波束序号,k opt为最优接收端波束序号。
在得到最优波束对信息(k opt,l opt)后,终端设备可以按照公式(13)至公式(16),依次对q中剩余非零值分量中最大值所在位置χ做出精确估计,得到备选波束对信息(k oth,l oth),其中,l oth为备选发送端波束序号,k oth为备选接收端波束序号。
S104、终端设备向网络设备发送上述发送端波束信息。
网络设备作为发送端,可以只关心本端通过哪个发送端波束来与终端设备通信,所以终端设备可以只向网络设备反馈发送端波束信息。可选的,发送端波束信息可以包括发送端波束对应的码本向量或者发送端波束序号。发送端波束信息还可以包括发送端波束的链路信道幅度信息。
可选的,发送端波束信息可以包括最优发送端波束信息,因此最优发送端波束信息可以包括最优发送端波束对应的码本向量或者最优发送端波束序号l opt。发送端波束信息还可以包括备选发送端波束信息,因此备选发送端波束信息可以包括备选发送端波束对应的码本向量或者备选发送端波束序号l oth
可选的,终端设备还可以向网络设备发送接收端波束信息,接收端波束信息可以包括接收端波束对应的码本向量或者接收端波束序号。接收端波束信息和发送端波束信息可以合称为波束对信息。
可选的,接收端波束信息可以包括最优接收端波束信息,因此最优接收端波束信息可以包括最优接收端波束对应的码本向量或者最优接收端波束序号k opt。接收端波束信息还可以包括备选接收端波束信息,因此备选接收端波束信息可以包括备选接收端波束对应的码本向量或者备选接收端波束序号l oth
也就是说,终端设备也可以向网络设备发送最优波束对信息。最优波束对信息可以包括最优波束对对应的码本向量或者最优波束对的序号(k opt,l opt)。终端设备也可以向网络设备发送备选波束对信息,备选波束对信息可以包括备选波束对对应的码本向量或者备选波束对的序号(k oth,l oth)。使得终端设备与网络设备通过最优波束对通信过程中由于遮挡等因素导致信号变差时,可以切换至备选波束对。
S105、网络设备与终端设备使用波束对进行通信。
双方根据策略,可以选择最优波束对(k opt,l opt)作为实际的传输波束对,也可以选择备选 波束对作为实际的传输波束对。
本申请实施例提供的下行波束训练方法,网络设备发送由包括固定码本向量和随机码本向量的天线权重向量调制的探测波束,终端设备根据具有随机性的天线权重向量和多径信道响应模型构建观测矩阵,利用了压缩感知理论中的稀疏重构算法,通过观测矩阵,将数量较大的波束搜索能量空间进行穷举的问题变为该能量空间的稀疏向量的求解问题,因此可以降低波束训练的开销。并且通过固定码本向量的引入,与完全随机码本向量相比,提高了传输增益,提高算法在低SNR环境中的性能,增强了抗噪声能力。
仿真结果
图6中所示,如果使用规则线形阵列(uniform linear array,ULA)天线,收发端天线阵元数目均为16,收发端波束数目均为32,固定码本为DFT码本时,各波束对接收端SNR情况分布图,等价为公式(11)中的搜索空间E的能量分布图。可以看出搜索空间的能量较为集中,具有很强的稀疏性。波束训练的目标即为找出各波束对形成的信道中SNR最优的情况,此图场景下的最优波束对为(23,3)。
如果使用ULA天线阵,阵元间距λ/2,射频载波28GHz,接收端天线N=8,发送端天线M=64。收发端的定向传输的固定码本为主瓣方向90°的DFT码本,例如[1,-1,1,-1,…],随机码本由伯努利随机序列生成。多径信道包括1条直射径和4条反射径。稀疏重构算法采用正交匹配追踪。仿真选取了固定码本数目为总天线数目1/2和1/4的情况进行仿真,固定码本的位置均选择前1/2或1/4的天线,以信道无噪声、使用穷举搜索时最优波束对的通信信道容量为理论上限。仿真结果如图7所示:从中可以看出在高SNR情况下本申请的压缩感知方案可以基本逼近性能上限,只有约2-3%性能损失。本申请的方案的性能在低传输信号SNR下与采用完全随机的压缩感知方案相比有极大的提升,增强了波束训练的抗噪声能力。
小区场景的仿真如图8所示,设距离基站100m处的传输SNR=10dB,横坐标为小区用户距离基站的最远距离。从中可以看出覆盖范围在800m左右时,压缩感知训练方案的性能达到穷举搜索的90%。
穷举搜索的训练开销为:ξ=MN,本申请方案的开销为:ξ=α(log 2(MN)),α为经验系数,仿真结果显示一般可取2.5-3。这二者开销的对比如表1所示,此表中经验系数α=3,从中看出,本申请方案可以大大减小波束训练的开销,且随着收发端天线数目的增加,开销优势就越明显。
表1
MN 64*8 128*8 128*16 128*32 256*32
本方案 27 30 33 36 39
穷举搜索 512 1024 2048 4096 8192
比值 5.2% 2.9% 1.6% 0.88% 0.11%
本申请提供一种终端设备,用于执行上述方法。本申请实施例可以根据上述方法示例对终端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图9示出了上述实施例中所涉及的终端设备的一种可能的结构示意图,终端设备11包括:接收单元1111、构建单元1112、求解单元1113、发送单元1114。上述各单元用于支持终端设备执行图4中任一附图中的相关方法。本申请提供的终端设备用于执行上文所提供的对应的方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
示例性的,接收单元1111用于支持终端设备11执行图4中的过程S102;构建单元1112用于支持终端设备11执行图4中的过程S102;求解单元1113用于支持终端设备11执行图4中的过程S103;发送单元1114用于支持终端设备11执行图4中的过程S104。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图10示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备11包括:存储模块1121、处理模块1122、通信模块1123。上述各模块用于支持终端设备执行图4中任一附图中的相关方法。本申请提供的终端设备用于执行上文所提供的对应的方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
具体的,处理模块1122用于对终端设备11的动作进行控制管理。通信模块1123用于支持终端设备11执行上述接收单元1111、发送单元1112的功能。存储模块1121用于存储终端设备的程序代码和数据。
其中,处理模块1122可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1123可以是收发器、收发电路、蓝牙、网络接口或通信接口等。存储模块1121可以是存储器。
具体的,处理模块1122可以为图2中的处理器180,通信模块1123可以为图2中的RF电路110,存储模块1121可以为图2中的存储器120。
当处理模块1122为处理器,通信模块1123为RF电路,存储模块1121为存储器时,本申请所涉及的终端设备可以为图11所示的终端设备11。
参阅图11所示,该终端设备11包括:一个或多个处理器1132、RF电路1133、存储器1131、总线系统1134,以及一个或多个程序。其中,RF电路1133、处理器1132、存储器1131通过总线系统1134相互连接;总线系统1134可以是外设部件互连标准总线或扩展工业标准结构总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中所述一个或多个程序被存储在存储器1131中,一个或多个程序包括指令,指令当被终端设备执行时使终端设备执行图4中任一附图中的相关方法。
本申请还提供一种存储一个或多个程序的计算机存储介质,一个或多个程序包括指令,该指令当被终端设备执行时,使终端设备执行图4中任一附图中的相关方法。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在终端设备上运 行时,使得终端设备执行图4中任一附图中的相关方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备实现上述方法,例如接收来自网络设备的探测波束。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存终端设备必要的程序指令和数据。当然,存储器也可以不在芯片系统中。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的终端设备、计算机存储介质、计算机程序产品或者芯片系统均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
本申请提供一种网络设备,用于执行上述方法。本申请实施例可以根据上述方法示例对网络设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图12示出了上述实施例中所涉及的网络设备的一种可能的结构示意图,网络设备12包括:发送单元1211、接收单元1212。上述各单元用于支持网络设备执行图4中任一附图中的相关方法。本申请提供的网络设备用于执行上文所提供的对应的方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
示例性的,发送单元1211用于支持网络设备12执行图4中的过程S101、S105;接收单元1212用于支持网络设备12执行图4中的过程S104、S105。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图13示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。网络设备12包括:存储模块1221、处理模块1222、通信模块1223。上述各模块用于支持网络设备执行图4中任一附图中的相关方法。本申请提供的网络设备用于执行上文所提供的对应的方法,因此,其相应的特征和所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
具体的,处理模块1222用于对网络设备12的动作进行控制管理。通信模块1223用于支持网络设备12执行上述发送单元1211、接收单元1212的功能。存储模块1221用于存储网络设备的程序代码和数据。
其中,处理模块1222可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(Field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1223可以是收发器、收发电路、蓝牙、网络接口或通信接口等。存储模块1221可以是存储器。
具体的,处理模块1222可以为图3中的BBU 1201中的处理器,通信模块1223可以为图3中的RRU 1202中的RF电路,存储模块1221可以为图3中的BBU 1201中的存储器。
当处理模块1222为处理器,通信模块1123为RF电路,存储模块1221为存储器时,本申请所涉及的网络设备可以为图14所示的网络设备12。
参阅图14所示,该网络设备12包括:处理器1231、存储器1232、总线系统1233、RF电路1234、光纤1235、同轴电缆1236、天线1237,以及一个或多个程序。其中,BBU 1201的处理器1231、存储器1232通过总线系统1233相互连接。RRU 1202中的RF电路1234与BBU 1201之间通过光纤1235相互连接。RRU 1202中的RF电路1234与天线1237之间通过同轴电缆1236相互连接。上述总线系统可以是外设部件互连标准总线或扩展工业标准结构总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。其中所述一个或多个程序被存储在存储器中,一个或多个程序包括指令,指令当被网络设备执行时使网络设备执行图4中任一附图中的相关方法。
本申请还提供一种存储一个或多个程序的计算机存储介质,一个或多个程序包括指令,该指令当被网络设备执行时,使网络设备执行图4中任一附图中的相关方法。
本申请还提供了一种包含指令的计算机程序产品,当该计算机程序产品在网络设备上运行时,使得网络设备执行图4中任一附图中的相关方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述信息指示方法,例如向终端设备发送第一指示信息,该第一指示信息为指示第一时间资源的指示信息。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存网络设备必要的程序指令和数据。当然,存储器也可以不在芯片系统中。该芯片系统,可以包括芯片,集成电路,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
其中,本申请提供的网络设备、计算机存储介质、计算机程序产品或者芯片系统均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部 件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种下行波束训练方法,其特征在于,包括:
    终端设备接收来自网络设备的探测波束,所述探测波束由天线权重向量调制,所述天线权重向量包括固定码本向量和随机生成的随机码本向量;
    所述终端设备根据所述天线权重向量构建观测矩阵;
    所述终端设备通过所述观测矩阵对波束搜索能量空间的稀疏向量进行信号重构,并根据所述稀疏向量求解波束对信息,其中,所述波束对信息包括发送端波束信息;
    所述终端设备向所述网络设备发送所述发送端波束信息。
  2. 根据权利要求1所述的方法,其特征在于,所述观测矩阵为:
    Figure PCTCN2019083975-appb-100001
    其中,b r,i=W r(W rW r H) -1u r,i,b t,i=W t(W tW t H) -1u t,i,vec( )表示将矩阵变成向量,W r为实际传输时接收端波束的天线权重向量,W t为实际传输时发送端波束的天线权重向量,
    Figure PCTCN2019083975-appb-100002
    为第i个接收天线权重向量,u t,i为第i个发射天线权重向量,( ) H表示共轭转置,( ) -1表示矩阵逆。
  3. 根据权利要求2所述的方法,其特征在于,所述波束对信息包括最优波束对信息,所述终端设备通过所述观测矩阵对波束搜索能量空间的稀疏向量进行信号重构,并根据所述稀疏向量求解波束对信息,包括:
    按照下述公式中任一项对所述观测矩阵θ的稀疏向量q的各分量中最大值所在位置χ做出精确估计:
    Figure PCTCN2019083975-appb-100003
    或者
    Figure PCTCN2019083975-appb-100004
    或者
    Figure PCTCN2019083975-appb-100005
    其中,θ χ表示观测矩阵θ的第χ列,q=(θ Hθ) -1θ Hh,
    Figure PCTCN2019083975-appb-100006
    表示取使得后面公式的计算结果为最小值时对应的χ,
    Figure PCTCN2019083975-appb-100007
    表示取使得后面公式的计算结果为最大值时对应的χ,|| || 2表示2-范数,|| ||表示取模,|| || 2表示取模平方,h为向量化后的多径信道响应元素;
    按照下述公式得到最优波束对信息(k opt,l opt)为:
    l opt=χ/K r,k opt=χ-K rl opt
    其中,K r为接收端波束的数目,l opt为最优发送端波束序号,k opt为最优接收端波束序号。
  4. 根据权利要求3所述的方法,其特征在于,所述波束对信息还包括备选波束对信息,所述方法还包括:
    所述终端设备按照所述公式依次对q中剩余非零值分量中最大值所在位置χ做出精确估计,得到所述备选波束对信息(k oth,l oth),其中,l oth为备选发送端波束序号,k oth为备选接收端波束序号。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述发送端波束信息包括 发送端波束对应的码本向量或者发送端波束序号。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述发送端波束信息包括最优发送端波束信息和备选发送端波束信息。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述波束对信息还包括接收端波束信息,所述方法还包括:
    所述终端设备向所述网络设备发送所述接收端波束信息。
  8. 一种下行波束训练方法,其特征在于,包括:
    网络设备发送探测波束,所述探测波束由天线权重向量调制,所述天线权重向量包括固定码本向量和随机生成的随机码本向量,所述天线权重向量用于构建观测矩阵,所述观测矩阵用于对波束搜索能量空间的稀疏向量进行信号重构,所述稀疏向量用于求解波束对信息,所述波束对信息包括发送端波束信息;
    所述网络设备从终端设备接收所述发送端波束信息。
  9. 根据权利要求8所述的方法,其特征在于,所述观测矩阵为:
    Figure PCTCN2019083975-appb-100008
    其中,b r,i=W r(W rW r H) -1u r,i,b t,i=W t(W tW t H) -1u t,i,vec( )表示将矩阵变成向量,W r为实际传输时接收端波束的天线权重向量,W t为实际传输时发送端波束的天线权重向量,
    Figure PCTCN2019083975-appb-100009
    为第i个接收天线权重向量,u t,i为第i个发射天线权重向量,( ) H表示共轭转置,( ) -1表示矩阵逆。
  10. 根据权利要求9所述的方法,其特征在于,所述波束对信息包括最优波束对信息信息(k opt,l opt):
    l opt=χ/K r,k opt=χ-K rl opt
    其中,K r为接收端波束的数目,l opt为最优发送端波束序号,k opt为最优接收端波束序号,χ为所述观测矩阵θ的稀疏向量q的各分量中最大值所在位置;
    χ为按照下述公式中任一项做出精确估计得到:
    Figure PCTCN2019083975-appb-100010
    或者
    Figure PCTCN2019083975-appb-100011
    或者
    Figure PCTCN2019083975-appb-100012
    Figure PCTCN2019083975-appb-100013
    径信道响应元素。
  11. 根据权利要求10所述的方法,其特征在于,所述波束对信息还包括备选波束对信息(k oth,l oth),其中,l oth为备选发送端波束序号,k oth为备选接收端波束序号,所述备选波束对信息(k oth,l oth)为按照所述公式依次对q中剩余非零值分量中最大值所在位置χ做出精确估计得到。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述发送端波束信息包括发送端波束对应的码本向量或者发送端波束序号。
  13. 根据权利要求8-11任一项所述的方法,其特征在于,所述发送端波束信息包括最优发送端波束信息和备选发送端波束信息。
  14. 根据权利要求8-11任一项所述的方法,其特征在于,所述波束对信息还包括接收端波束信息,所述方法还包括:
    所述网络设备从所述终端设备接收所述接收端波束信息。
  15. 一种终端设备,其特征在于,包括:
    接收单元,用于接收来自网络设备的探测波束,所述探测波束由天线权重向量调制,所述天线权重向量包括固定码本向量和随机生成的随机码本向量;
    构建单元,用于所述接收单元接收的天线权重向量构建观测矩阵;
    求解单元,用于所述构建单元构建的观测矩阵对波束搜索能量空间的稀疏向量进行信号重构,并根据所述稀疏向量求解波束对信息,其中,所述波束对信息包括发送端波束信息;
    发送单元,用于向所述网络设备发送所述求解单元求解的发送端波束信息。
  16. 根据权利要求15所述的终端设备,其特征在于,所述观测矩阵为:
    Figure PCTCN2019083975-appb-100014
    其中,b r,i=W r(W rW r H) -1u r,i,b t,i=W t(W tW t H) -1u t,i,vec( )表示将矩阵变成向量,W r为实际传输时接收端波束的天线权重向量,W t为实际传输时发送端波束的天线权重向量,
    Figure PCTCN2019083975-appb-100015
    为第i个接收天线权重向量,u t,i为第i个发射天线权重向量,( ) H表示共轭转置,( ) -1表示矩阵逆。
  17. 根据权利要求16所述的终端设备,其特征在于,所述求解单元具体用于:
    按照下述公式中任一项对所述观测矩阵θ的稀疏向量q的各分量中最大值所在位置χ做出精确估计:
    Figure PCTCN2019083975-appb-100016
    或者,
    Figure PCTCN2019083975-appb-100017
    或者,
    Figure PCTCN2019083975-appb-100018
    其中,θ χ表示观测矩阵θ的第χ列,q=(θ Hθ) -1θ Hh,
    Figure PCTCN2019083975-appb-100019
    表示取使得后面公式的计算结果为最小值时对应的χ,
    Figure PCTCN2019083975-appb-100020
    表示取使得后面公式的计算结果为最大值时对应的χ,|| || 2表示2-范数,|| ||表示取模,|| || 2表示取模平方,h为向量化后的多径信道响应元素;
    按照下述公式得到最优波束对信息(k opt,l opt)为:
    l opt=χ/K r,k opt=χ-K rl opt
    其中,K r为接收端波束的数目,l opt为最优发送端波束序号,k opt为最优接收端波束序号。
  18. 根据权利要求17所述的终端设备,其特征在于,所述波束对信息还包括备选波束对信息,所述求解单元还用于:
    按照所述公式依次对q中剩余非零值分量中最大值所在位置χ做出精确估计,得到所述备选波束对信息(k oth,l oth),其中,l oth为备选发送端波束序号,k oth为备选接收端 波束序号。
  19. 根据权利要求15-18任一项所述的终端设备,其特征在于,所述发送端波束信息包括发送端波束对应的码本向量或者发送端波束序号。
  20. 根据权利要求15-18任一项所述的终端设备,其特征在于,所述发送端波束信息包括最优发送端波束信息和备选发送端波束信息。
  21. 根据权利要求15-18任一项所述的终端设备,其特征在于,所述波束对信息还包括接收端波束信息,所述发送单元还用于:
    向所述网络设备发送所述接收端波束信息。
  22. 一种网络设备,其特征在于,包括:
    网络设备发送探测波束,所述探测波束由天线权重向量调制,所述天线权重向量包括固定码本向量和随机生成的随机码本向量,所述天线权重向量用于构建观测矩阵,所述观测矩阵用于对波束搜索能量空间的稀疏向量进行信号重构,所述稀疏向量用于求解波束对信息,所述波束对信息包括发送端波束信息;
    所述网络设备从终端设备接收所述发送端波束信息。
  23. 根据权利要求22所述的网络设备,其特征在于,所述观测矩阵为:
    Figure PCTCN2019083975-appb-100021
    其中,b r,i=W r(W rW r H) -1u r,i,b t,i=W t(W tW t H) -1u t,i,vec( )表示将矩阵变成向量,W r为实际传输时接收端波束的天线权重向量,W t为实际传输时发送端波束的天线权重向量,
    Figure PCTCN2019083975-appb-100022
    为第i个接收天线权重向量,u t,i为第i个发射天线权重向量,( ) H表示共轭转置,( ) -1表示矩阵逆。
  24. 根据权利要求23所述的网络设备,其特征在于,所述波束对信息包括最优波束对信息信息(k opt,l opt):
    l opt=χ/K r,k opt=χ-K rl opt
    其中,K r为接收端波束的数目,l opt为最优发送端波束序号,k opt为最优接收端波束序号,χ为所述观测矩阵θ的稀疏向量q的各分量中最大值所在位置;
    χ为按照下述公式中任一项做出精确估计得到:
    Figure PCTCN2019083975-appb-100023
    或者,
    Figure PCTCN2019083975-appb-100024
    或者,
    Figure PCTCN2019083975-appb-100025
    Figure PCTCN2019083975-appb-100026
    径信道响应元素。
  25. 根据权利要求24所述的网络设备,其特征在于,所述波束对信息还包括备选波束对信息(k oth,l oth),其中,l oth为备选发送端波束序号,k oth为备选接收端波束序号,所述备选波束对信息(k oth,l oth)为按照所述公式依次对q中剩余非零值分量中最大值所在位置χ做出精确估计得到。
  26. 根据权利要求16-25任一项所述的网络设备,其特征在于,所述发送端波束信息包括发送端波束对应的码本向量或者发送端波束序号。
  27. 根据权利要求16-25任一项所述的网络设备,其特征在于,所述发送端波束信息包括最优发送端波束信息和备选发送端波束信息。
  28. 根据权利要求16-25任一项所述的网络设备,其特征在于,所述波束对信息还包括接收端波束信息,所述接收单元还用于:
    从所述终端设备接收所述接收端波束信息。
  29. 一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-7任一项所述的方法,或者,实现权利要求8-14任一项所述的方法。
PCT/CN2019/083975 2018-04-25 2019-04-24 下行波束训练方法、网络设备和终端设备 WO2019206157A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810381634.4A CN110401475B (zh) 2018-04-25 2018-04-25 下行波束训练方法、网络设备和终端设备
CN201810381634.4 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019206157A1 true WO2019206157A1 (zh) 2019-10-31

Family

ID=68294800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083975 WO2019206157A1 (zh) 2018-04-25 2019-04-24 下行波束训练方法、网络设备和终端设备

Country Status (2)

Country Link
CN (1) CN110401475B (zh)
WO (1) WO2019206157A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565062A (zh) * 2020-04-15 2020-08-21 中国联合网络通信集团有限公司 一种波束切换方法和装置
CN112994766A (zh) * 2019-12-16 2021-06-18 华为技术有限公司 一种波束传输方法及相关设备
CN113852403A (zh) * 2020-06-28 2021-12-28 华为技术有限公司 一种波束选择方法、终端设备及计算机可读存储介质
CN114070370A (zh) * 2020-08-03 2022-02-18 维沃移动通信有限公司 波束训练方法、装置、终端设备及网络设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114257280B (zh) * 2021-11-22 2024-05-03 杭州电子科技大学 一种基于空间扫描的自适应毫米波波束搜索方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140119301A1 (en) * 2012-10-30 2014-05-01 Sogang University Research Foundation Signal transmission and reception method using random beamforming in wireless communication system and apparatus therefor
CN107707493A (zh) * 2016-08-04 2018-02-16 北京信威通信技术股份有限公司 一种基于压缩感知的信道估计方法
CN107820272A (zh) * 2016-09-10 2018-03-20 北京信威通信技术股份有限公司 一种自适应波束跟踪的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710308B (zh) * 2012-05-16 2014-12-03 上海大学 预编码mimo系统中降低反馈信息开销的码本设计方法
CN104168046B (zh) * 2014-08-13 2017-06-23 电子科技大学 利用压缩感知的单端频域波束搜索方法
CN104168047B (zh) * 2014-08-13 2017-04-12 电子科技大学 利用压缩感知的单端时域波束搜索方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140119301A1 (en) * 2012-10-30 2014-05-01 Sogang University Research Foundation Signal transmission and reception method using random beamforming in wireless communication system and apparatus therefor
CN107707493A (zh) * 2016-08-04 2018-02-16 北京信威通信技术股份有限公司 一种基于压缩感知的信道估计方法
CN107820272A (zh) * 2016-09-10 2018-03-20 北京信威通信技术股份有限公司 一种自适应波束跟踪的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "PMI feedback for unicast PDCCH transmission", 3GPP TSG RAN WG1 MEETING #90 R1-1713845, 20 August 2017 (2017-08-20), XP051316639 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994766A (zh) * 2019-12-16 2021-06-18 华为技术有限公司 一种波束传输方法及相关设备
CN112994766B (zh) * 2019-12-16 2022-12-27 华为技术有限公司 一种波束传输方法及相关设备
CN111565062A (zh) * 2020-04-15 2020-08-21 中国联合网络通信集团有限公司 一种波束切换方法和装置
CN111565062B (zh) * 2020-04-15 2023-03-17 中国联合网络通信集团有限公司 一种波束切换方法和装置
CN113852403A (zh) * 2020-06-28 2021-12-28 华为技术有限公司 一种波束选择方法、终端设备及计算机可读存储介质
CN113852403B (zh) * 2020-06-28 2023-10-20 华为技术有限公司 一种波束选择方法、终端设备及计算机可读存储介质
CN114070370A (zh) * 2020-08-03 2022-02-18 维沃移动通信有限公司 波束训练方法、装置、终端设备及网络设备

Also Published As

Publication number Publication date
CN110401475A (zh) 2019-11-01
CN110401475B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
WO2019206157A1 (zh) 下行波束训练方法、网络设备和终端设备
KR102178037B1 (ko) 무선 네트워크에서 피드백을 위한 기저 함수의 변환 기법
WO2021008477A1 (zh) 预编码处理方法和装置
TWI692264B (zh) 波束管理方法、網路設備和終端
CN101442355A (zh) 具有快速自适应波束形成的无线个域网通信系统、装置和方法
US20210344407A1 (en) Method and device for training downlink beams
WO2022152235A1 (zh) 波束测量上报方法、装置、终端及网络侧设备
WO2018166401A1 (zh) 一种确定设备波束互易性的方法、装置和电子设备
CN108075811A (zh) 用于混合预编码的方法以及通信设备
CN104333407A (zh) 一种信道信息的获取方法及装置
US10218083B2 (en) Method, apparatus and system
JP2010166316A (ja) Mimo通信システム
WO2018171786A1 (zh) 信息的传输方法和设备
WO2016044997A1 (zh) 一种波束跟踪方法、装置及系统
Al Ayidh et al. Low-complexity rf chains activation based on hungarian algorithm for uplink cell-free millimetre-wave massive mimo systems
WO2024027394A1 (zh) 一种通信方法及装置
KR20210119824A (ko) 통신 시스템에서의 가시선 신호 검증 방법 및 장치
US11271615B2 (en) Communications method and apparatus
Chen et al. Performance evaluation of BER for an Massive-MIMO with M-ary PSK scheme over Three-Dimension correlated channel
Xia et al. Model based beamspace channel estimation for millimeter wave massive MIMO system
WO2021244376A1 (zh) 通信方法及装置
WO2023125424A1 (zh) 解码方法、设备及可读存储介质
WO2024059969A1 (zh) 一种信道估计方法、装置及系统
Tu et al. RIS-assisted Spatially Correlated Cell-Free Massive MIMO System
WO2024027387A1 (zh) 一种信息传输的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791608

Country of ref document: EP

Kind code of ref document: A1