WO2014166158A1 - 一种显示装置及其制造方法 - Google Patents

一种显示装置及其制造方法 Download PDF

Info

Publication number
WO2014166158A1
WO2014166158A1 PCT/CN2013/077320 CN2013077320W WO2014166158A1 WO 2014166158 A1 WO2014166158 A1 WO 2014166158A1 CN 2013077320 W CN2013077320 W CN 2013077320W WO 2014166158 A1 WO2014166158 A1 WO 2014166158A1
Authority
WO
WIPO (PCT)
Prior art keywords
ellipsoid
display device
light source
lower substrate
layer
Prior art date
Application number
PCT/CN2013/077320
Other languages
English (en)
French (fr)
Inventor
梁魁
袁剑峰
林承武
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/348,362 priority Critical patent/US9817252B2/en
Publication of WO2014166158A1 publication Critical patent/WO2014166158A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0063Optical properties, e.g. absorption, reflection or birefringence
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0126Opto-optical modulation, i.e. control of one light beam by another light beam, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/094Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect based on magnetophoretic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/169Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on orientable non-spherical particles having a common optical characteristic, e.g. suspended particles of reflective metal flakes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • G02F1/172Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169 based on a suspension of orientable dipolar particles, e.g. suspended particles displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/01Materials and properties dipole
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display device and a method of fabricating the same. Background technique
  • the electronic paper display device generally includes an upper substrate (a silica gel sheet or a glass substrate) and a lower substrate (a silica gel sheet or a glass substrate), and a liquid crystal layer or a microsphere layer between the upper substrate and the lower substrate; wherein
  • the substrate includes a common electrode
  • the lower substrate includes: a thin film transistor TFT, a pixel electrode, and a reflective layer; and the pixel electrode forms a changing electric field between the upper substrate and the lower substrate according to a signal of the TFT receiving the data line, and the electric field changes
  • the liquid crystal or the microsphere of the liquid crystal layer or the microsphere layer changes, and the display device displays an image.
  • the electronic paper technology in the prior art is mostly based on black and white ink microspheres.
  • the electronic paper display device uses a transparent film similar to ordinary paper, and the number of millions of diameters in the film is about 100 micrometers.
  • the pellets are in the shape of a sphere, with a negatively charged black coating applied to one side of each pellet and a positively charged white coating on the other side. These pellets are sealed in a transparent, lubricated silicone sheet.
  • a circuit similar to a liquid crystal TFT is constructed on the surface of the silicone sheet, and a positive voltage or a negative voltage can be applied at different positions as needed.
  • this electronic paper display device can only display black and white images and cannot display in color.
  • a display device includes: an upper substrate, a lower substrate, and a solvent between the two, further comprising: an ellipsoid between the upper substrate and the lower substrate for forming a photonic crystal and the The ellipsoid has electromagnetic properties.
  • the outer shell of the ellipsoid is provided with an electrolyte layer; or the inner portion of the ellipsoid is provided with a magnetic core;
  • the outer shell of the ellipsoid is provided with an electrolyte layer and the inside of the ellipsoid is provided with a magnetic core.
  • the material of the ellipsoid is an inorganic composite material or an organic composite material;
  • the inorganic composite material comprises silicon dioxide, titanium dioxide or ferric oxide
  • the organic composite material includes polystyrene or polymethyl methacrylate.
  • the outer shell of the ellipsoid is provided with a polymer repair layer.
  • the solvent includes an organic dispersion solvent.
  • the display device according to the embodiment of the invention further includes: a reflective layer on which the light incident surface has been roughened, and the reflective layer is disposed above the lower substrate.
  • the display device further includes: a reinforcing light source, wherein the reinforcing light source is an LED or an OLED.
  • the reinforcing light source is hooked on the frame of the display device
  • the reinforcing light source is disposed on the upper substrate of the display device, and a black frame is disposed inside the display device, and the black frame is located at a corresponding position of the reinforcing light source, and is located at the Reinforcing the light source above;
  • the reinforcing light source is disposed on the frame of the display device, and the reinforcing light source is uniformly disposed on the upper substrate of the display device, and a black border is disposed inside the display device.
  • the black border is at a corresponding position of the reinforcing light source and is located above the reinforcing light source.
  • the embodiment of the invention further provides a method for manufacturing a display device, including:
  • a microsphere emulsion is interposed between the upper substrate and the lower substrate to seal the display device; the microsphere emulsion includes an ellipsoid and a solvent, and the ellipsoid is used to form a photonic crystal and has electromagnetic properties.
  • the method for preparing the ellipsoid includes:
  • the method for preparing the ellipsoid includes:
  • An outer shell material coated with an ellipsoid in a shell of a magnetic substance comprising: silicon dioxide, titanium dioxide, ferric oxide, polystyrene or polymethyl methacrylate forming an ellipsoid with a magnetic core inside .
  • the method for manufacturing the display device according to the embodiment of the present invention after the preparation of the ellipsoid is completed, further comprising: polymer modifying the outer shell of the ellipsoid to form an ellipsoid having a polymer modified layer on the outer shell,
  • the materials used for the polymer modification layer include: decamethyltrimethylammonium bromide, polyglycosylpyrrolidone, and mercaptotrimethylammonium bromide.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the principle of the ellipsoid in the embodiment of the present invention when the applied electric field is enhanced;
  • FIG. 3 is a schematic diagram of the ellipsoid according to the embodiment of the present invention when the applied electric field is weakened;
  • FIG. 4 is a schematic diagram of the embodiment of the present invention. Schematic diagram of the electrolyte of the ellipsoidal shell;
  • FIG. 5 is a schematic diagram of a reinforcing light source of a frame of a display device according to an embodiment of the invention
  • FIG. 6 is a schematic view of a black frame of a display device according to an embodiment of the invention.
  • 101 ellipsoid
  • 102 solvent
  • 103 upper substrate
  • 104 lower substrate
  • 105 reinforcing light source
  • 106 black border
  • 107 display device border
  • a display device includes: an upper substrate 103, a lower substrate 104, and a solvent 102 therebetween.
  • the method includes: an ellipsoid 101 between the upper substrate 103 and the lower substrate 104 for forming a photonic crystal and the ellipsoid 101 has electromagnetic characteristics.
  • the ellipsoid 101 is a micro-ellipsoid of a nanometer or submicron order, and the ellipsoidal axis is in an elliptical cross section.
  • the wavelength of the reflected light of the photonic crystal changes as the applied electric field between the upper substrate 103 and the lower substrate 104 changes or the intensity of the applied magnetic field changes.
  • the solvent 102 functions to lubricate the ellipsoid 101 and protect the photonic crystal.
  • the nano- or sub-micron ellipsoid 101 is a reflective substrate which can be assembled into a photonic crystal structure having a different structure as a function of an applied electric field or an applied magnetic field between the upper substrate 103 and the lower substrate 104.
  • the photonic crystal is a regular optical structure made of a medium of different refractive indices arranged periodically, and the photonic crystal has a photonic band gap capable of blocking photons of a specific frequency.
  • the photonic crystals can have different wavelengths of light reflection, so that when the photonic crystal reflects external light, different colors are displayed.
  • different voltages are applied at different positions according to requirements, and the ellipsoid 101 of nanometer or sub-micron level is controlled according to the voltage; the specific principle is as follows:
  • is the wavelength of the reflected light of the photonic crystal
  • is the ellipsoidal refractive index
  • d is the lattice spacing
  • is the ellipsoidal deflection angle
  • the lattice spacing is determined by the axial diameter ratio of the ellipsoid
  • the angle of deflection of the ellipsoid refers to the angle of deflection of the ellipsoidal axis, specifically the angle between the axial direction of the ellipsoid and the angle of incident light.
  • the angle of the ellipsoid in the photonic crystal relative to the incident light is constantly changing, so the wavelength of the reflected light is also different, so that different colors can be presented under different electric or magnetic fields, and then Display a color image.
  • the particle size, the aspect ratio, and the refractive index of the ellipsoid are matched to the requirements of the displayed color image.
  • the ellipsoid has an electromagnetic property, and the ellipsoid is deflected under an applied electric field or an applied magnetic field between the upper substrate and the lower substrate. Under the condition of the applied electric field, according to the above-mentioned Bragg equation, it is assumed that the ellipsoid deflection angle ⁇ varies with the intensity of the applied electric field in the case where the ellipsoidal refractive index n and the lattice spacing d are constant. .
  • Fig. 2 is a schematic view showing the principle of an ellipsoid according to an embodiment of the present invention when an applied electric field is enhanced. As shown in FIG.
  • FIG. 3 is a schematic diagram of the principle of the ellipsoid in the embodiment of the present invention when the applied electric field is weakened. As shown in FIG.
  • the ellipsoid 101 is deflected in the opposite direction, the ellipsoid deflection angle ⁇ is increased, and the wavelength ⁇ of the reflected light of the photonic crystal is increased.
  • the ellipsoid forms a photonic crystal, and the wavelength of the reflected light of the photonic crystal changes according to an applied electric field between the upper substrate and the lower substrate or an intensity of the applied magnetic field, so that the photonic crystal reflects external light to form different colors. .
  • the display device of the present invention has the following advantages:
  • a conventional liquid crystal display device requires a color film to display color, and a color film generates light loss and reduces light transmittance.
  • the display device of the present invention has a light transmittance ratio liquid crystal because it does not require a color film.
  • the display device is high.
  • the color produced by the photonic crystal for light reflection is a structural color, so that the color of the display color is more realistic and the contrast is higher.
  • the display device of the present invention uses light reflection to display an image by means of external light, and does not need to consume its own power for image display, and its power consumption is mainly used to drive the applied electric field change of the array.
  • the outer shell of the ellipsoid is provided with an electrolyte layer; Or, the inside of the ellipsoid is provided with a magnetic core;
  • the outer shell of the ellipsoid is provided with an electrolyte layer and the inside of the ellipsoid is provided with a magnetic core.
  • the outer shell of the ellipsoid is provided with an electrolyte layer, and the electrolyte layer is a positively or negatively charged electrolyte, and the electrolyte is applied as a paint on the surface of the ellipsoid, so that the ellipsoid has electromagnetic characteristics.
  • the ellipsoid is divided into two ends along the axis, and the position of the electrolyte layer includes the following two cases:
  • One end of the ellipsoid is provided with an electrolyte layer, and the electrolyte layer is positively or negatively charged.
  • An electrolyte having a positive or negative charge may be applied to one end of the ellipsoid to form the electrolyte layer; or, both ends of the ellipsoid are provided with an electrolyte layer, and one end of the ellipsoid is provided with a positive
  • the electrolyte layer is electrically charged, and the other end is provided with a negatively charged electrolyte layer.
  • a positively charged electrolyte may be applied to one end of the ellipsoid, and a negatively charged electrolyte may be applied to the other end of the ellipsoid to form the electrolyte layer. If the electrolyte layers with different electrical properties are simultaneously provided at both ends of the ellipsoid, the ellipsoid can be made to have higher sensitivity when deflected.
  • the outer shell of the ellipsoid is provided with an electrolyte layer, so that the ellipsoid has electromagnetic properties, and under the action of an applied electric field or a changing magnetic field, the ellipsoid is deflected in a lubricating solvent to change the structure of the photonic crystal.
  • the wavelength of the reflected light of the photonic crystal is changed, thereby causing the display device of the present invention to display a color image.
  • FIG. 4 is a schematic view of an electrolyte of an ellipsoidal shell according to an embodiment of the present invention.
  • a negatively charged electrolyte layer is disposed at a 101-end of the ellipsoid, and the other end of the ellipsoid is disposed.
  • the inside of the ellipsoid is provided with a magnetic core
  • the ellipsoid is a core-shell ellipsoid
  • a magnetic core is disposed inside the ellipsoid to form an ellipsoid having electromagnetic characteristics.
  • the outer shell material of the ellipsoid comprises: silicon dioxide, titanium dioxide, ferric oxide, polystyrene or polymethyl methacrylate.
  • the shell material is coated on the outer shell of the magnetic substance by the Stober method to form an ellipsoid having a magnetic core inside.
  • the aspect ratio of the ellipsoid can be adjusted by adjusting the coating amount of the outer casing material.
  • the Stober method refers to: synthesizing a monodisperse silica nanoparticle ball by a method of catalyzing an orthosilicate with ammonia water, and the size controllable surface is easy to be functionalized, and is widely used for preparing inorganic nanoparticles, which can also be called Chemical coprecipitation method. If the coating material is organic, the emulsion polymerization is used. Method to prepare the outer casing.
  • the magnetic core is disposed inside the ellipsoid to make the ellipsoid have electromagnetic characteristics.
  • the ellipsoid is deflected in the lubricating solvent to change the structure of the photonic crystal.
  • the wavelength of the reflected light of the photonic crystal is changed, thereby causing the display device according to the embodiment of the present invention to display a color image.
  • the material of the ellipsoid is an inorganic composite material or an organic composite material
  • the inorganic composite material comprises silicon dioxide, titanium dioxide or ferric oxide
  • the organic composite material includes polystyrene or polymethyl methacrylate.
  • the inner magnetic ellipsoid is an inorganic material
  • the outer shell material may be an organic material or an inorganic material.
  • the material of the ellipsoid is silicon dioxide, titanium dioxide, ferric oxide, polystyrene or polymethyl methacrylate.
  • the ellipsoid is formed by using the above substance, and then an electrolyte is applied on the ellipsoid to form an ellipsoid having an electrolyte layer on the outer casing;
  • the material of the ellipsoid is silica, titania, ferric oxide, polystyrene or polymethyl methacrylate.
  • the above material is coated on the magnetic core to form an ellipsoid with a magnetic core inside.
  • the above ellipsoid material does not have electromagnetic properties, but the photonic crystal can be formed.
  • the electrolyte layer may be applied to an ellipsoid made of the above material to form an ellipsoid having electromagnetic properties; or, the material may be wrapped outside the magnetic material to control its size to form an ellipsoid having electromagnetic properties.
  • the ellipsoid having electromagnetic properties may be deflected in a solvent under the action of an electric field or a magnetic field to change the wavelength of the reflected light of the photonic crystal formed by the ellipsoid, thereby causing the display device of the present invention to display Color image.
  • the outer shell of the ellipsoid is provided with a polymer repair layer.
  • the surface treatment refers to performing polymer modification on the outer shell of the ellipsoid by means of microwave ultrasonic or stirring.
  • the materials used in the modification of the polymer include: decamethyltrimethylammonium bromide, polyglycosylpyrrolidone, decyltrimethyl Ammonium bromide.
  • an ellipsoid with a polymer modified layer is formed.
  • the material of the polymer modification layer comprises: decamethyltrimethylammonium bromide.
  • the solvent includes an organic dispersion solvent.
  • the solvent acts primarily to lubricate and fills the area between the substrate and the drive array, which may help the ellipsoid to rotate under an applied electric field and protect the photonic crystal structure composed of the ellipsoid from damage.
  • the solvent includes an organic dispersion solvent, which is generally an oily polymer organic solvent such as oleic acid, and may be referred to a prior art electronic ink or a dispersion solvent in an electronic paper technique.
  • the display device further includes: a reflective layer on which the light incident surface has been roughened, and the reflective layer is disposed above the lower substrate.
  • the roughening treatment of the reflective layer can enhance the diffuse reflection effect of the light, and the brightness of the displayed image is both hooked to improve the display effect of the display device.
  • the display device further includes: a reinforcing light source, wherein the reinforcing light source is an LED or an OLED.
  • the reinforcing light source has at least two, integrated on the upper glass substrate, using LED or
  • the reinforcing light source is turned on in the absence of external light to increase the brightness, so that the display device can display an image even under dark conditions.
  • the reinforcing light source is hooked on the frame of the display device
  • the reinforcing light source is disposed on the upper substrate of the display device, and a black frame is disposed inside the display device, and the black frame is located at a corresponding position of the reinforcing light source, and is located at the Reinforcing the light source above;
  • the reinforcing light source is disposed on the frame of the display device, and the reinforcing light source is uniformly disposed on the upper substrate of the display device, and a black border is disposed inside the display device.
  • the black border is at a corresponding position of the reinforcing light source and is located above the reinforcing light source.
  • the black frame has the function of a black matrix, and can also be used to block part of the light of the reinforcing light source from directly entering the human eye.
  • FIG. 5 is a schematic diagram of a reinforcing light source of a frame of a display device according to an embodiment of the invention.
  • the reinforcing light source 105 is evenly arranged on the frame 107 of the display device, so that the reinforcing light of the display device 1 can be evenly distributed, and the reinforcing light source is provided with a single tube, which is easy to process. Made.
  • FIG. 6 is a schematic diagram of a black border of a display device according to an embodiment of the invention.
  • a black border 106 is disposed at a corresponding position of the reinforcing light source 105 , and a light blocking the reinforcing light source is directly emitted from the display device to prevent the brightness at the reinforcing light source from being significantly higher than the display device. The brightness of other areas.
  • the embodiment of the present invention further provides a method for manufacturing a display device, which is used to manufacture the display device of the present invention.
  • the method of the embodiment of the present invention includes:
  • Step S1 preparing a transparent conductive film layer disposed on the upper substrate and the lower substrate; Step S2, forming a metal reflective layer on the lower substrate on which the transparent conductive film layer is formed;
  • the method of forming the metal reflective layer may be vapor deposition, sputtering, or the like.
  • Step S3 preparing a driving array on the lower substrate on which the metal reflective layer is formed; the pattern of the driving array is similar to the TFT in the array substrate in the ordinary LCD display panel, and the driving array functions as an electric field or a magnetic field switch.
  • the driving array can be passively driven, as long as it can function as an electric field or a magnetic field switch, which is not limited herein.
  • Step S4 adding a microsphere emulsion between the upper substrate and the lower substrate to seal the display device.
  • the microsphere emulsion comprises an ellipsoid and a solvent for forming a photonic crystal and having electromagnetic properties.
  • the method for preparing the ellipsoid in the step S4 includes:
  • Step S411 preparing the ellipsoid by using silica, titanium dioxide, ferric oxide, polystyrene or polymethyl methacrylate;
  • Step S412 applying a positively or negatively charged electrolyte to one end of the ellipsoid to form an electrolyte layer; or applying a positively charged electrolyte to one end of the ellipsoid, and applying a tape to the other end of the ellipsoid A negatively charged electrolyte forms an ellipsoid with an electrolyte layer on the outer shell.
  • the method for preparing the ellipsoid in the step S4 includes:
  • Step S421 covering the outer shell material of the ellipsoid in the outer shell of the magnetic substance, the outer shell material comprising: silicon dioxide, titanium dioxide, ferric oxide, polystyrene or polymethyl methacrylate, forming a magnetic core inside Ellipsoid.
  • the method further includes: modifying the outer shell of the ellipsoid to form a shell
  • An ellipsoid having a polymer modified layer is provided, and the material used for the polymer modification layer comprises: decamethyltrimethylammonium bromide, polyethylidene pyrrolidone, and mercaptotrimethylammonium bromide.
  • the manufacturing method of the display device by manufacturing an ellipsoid with electromagnetic properties, 4 bar of the ellipsoid is added to a solvent to form the spherical emulsion, and the spherical emulsion is used as a core component to manufacture the Display device. Since the ellipsoid has electromagnetic characteristics, the ellipsoidal photonic crystal can be changed in response to an applied electric field or a magnetic field to change the wavelength of the reflected light, thereby displaying different colors.
  • the display device and the method for fabricating the same according to the present invention the photonic crystal formed by the elliptical nano or sub-micron ellipsoid, changing the wavelength of the reflected light, reflecting the light of different colors, and displaying the color image, solving the prior art,
  • the electronic paper display device based on the spherical microspheres can only display black and white images or display color images with a single color, poor effect, long response time, high price, and light loss caused by the color film of the liquid crystal display device, and has The following technical effects:
  • a conventional liquid crystal display device requires a color film to display color, and a color film generates light loss and reduces light transmittance.
  • the display device of the present invention has a light transmittance ratio liquid crystal because it does not require a color film.
  • the display device is high, and the color produced by the photonic crystal for light reflection is a structural color, so the color of the display color is more realistic and the contrast is higher.
  • the display device of the present invention uses light reflection to display an image by means of external light, and does not need to consume its own power for image display, and its power consumption is mainly used to drive the applied electric field change of the array.
  • the display device of the present invention uses its own reinforcing light source in the case of insufficient external light to increase the brightness, and the application scene of the display device is increased, and can also be used under light dark conditions.
  • the display device of the present invention adds a black border to the reinforcing light source, and the light blocking the reinforcing light source is directly emitted from the display device, preventing the brightness at the reinforcing light source from being significantly higher than other areas of the display device. Brightness, when using a reinforced light source, improves the display image.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

显示装置及其制造方法。显示装置包括上基板(103)、下基板(104)、溶剂(102)以及椭球(101)。溶剂(102)和椭球(101)位于上基板(103)和下基板(104)之间。椭球(101)用于形成光子晶体,且具有电磁特性。显示装置通过椭圆形纳米或者亚微米级椭球形成的光子晶体,改变反射光波长,反射出不同颜色的光线,显示彩色图像。

Description

一种显示装置及其制造方法 技术领域
本发明涉及显示技术领域, 尤其涉及一种显示装置及其制造方法。 背景技术
随着电子纸显示技术的发展, 基于电子纸技术的显示装置朝着色彩鲜明 化、 超薄化、 节能化发展。
电子纸类显示装置一般包括:上基板 (硅胶片或玻璃基板 )和下基板 (硅 胶片或玻璃基板), 以及在上基板和下基板之间的液晶层或者微球层; 其中, 所述上基板包括公共电极, 所述下基板包括: 薄膜晶体管 TFT、 像素电极和 反射层; 像素电极根据 TFT接收数据线的信号, 在所述上基板和下基板间形 成变化的电场, 通过电场的变化使液晶层或者微球层的液晶或者微球发生变 化, 进而使显示装置显示图像。
现有技术中的电子纸技术大多采用黑白油墨微球为基础 , 这种电子纸显 示装置采用与普通纸张类似的透明胶片, 在胶片里面分布了数量高达百万计 的直径在 100微米左右大小的带电小球。 所述小球为圓球形状, 在每个小球 的一面涂上了带负电黑色涂料, 另一面涂上带正电的白色涂料。 这些小球被 密封在透明的充满润滑油的硅胶片中。 在硅胶片的表面构造了类似液晶 TFT 一样的电路, 能够按照需要在不同的位置施加正电压或者负电压。 这样泡在 润滑油中的带电小球就会在电场的作用下发生旋转, 选择性的将黑色或者白 色部分翻转出来, 在宏观上形成需要显示的文字或者图案。 但是这种电子纸 显示装置仅仅能显示黑白图像, 无法做到彩色显示。
现有技术中也具有彩色的电子纸显示装置, 但是这一类显示装置是以正 负电性的圓球形彩色油墨微球为基础, 需要在彩色油墨微球涂抹不同颜色的 涂料。 由于仅仅通过彩色油墨微球自身具有的色彩显示图像, 这一类显示装 置存在显示颜色单一、 效果较差、 响应时间长、 价格昂贵等问题。 而基于液 晶的彩色显示装置需要采用彩膜, 会产生光损耗, 降低透光率, 因此需要额 外的光源提供亮度, 这就会消耗额外的电量。 此外, 基于彩膜的图像色彩并 不是单纯反射产生的结构光, 具有色彩效果较差、 对比度较低的问题。 发明内容
本发明实施例提供的一种显示装置, 包括: 上基板、 下基板及两者之间 的溶剂, 还包括: 位于所述上基板和下基板之间用于形成光子晶体的橢球且 所述橢球具有电磁特性。
进一步,本发明实施例所述的显示装置,所述橢球的外壳设有电解质层; 或者, 所述橢球的内部设有磁性内核;
或者, 所述橢球的外壳设有电解质层且所述橢球的内部设有磁性内核。 进一步, 本发明实施例所述的显示装置, 所述橢球的材料是无机复合材 料或者有机复合材料;
所述无机复合材料包括二氧化硅、 二氧化钛或者三氧化二铁;
所述有机复合材料包括聚苯乙烯或者聚甲基丙烯酸甲酯。
进一步, 本发明实施例所述的显示装置, 所述橢球的外壳设有高分子修 饰层。
进一步, 本发明实施例所述的显示装置, 所述溶剂包括有机分散溶剂。 进一步, 本发明实施例所述的显示装置, 还包括: 光入射面经过了粗糙 化处理的反射层, 所述反射层设于所述下基板的上方。
进一步, 本发明实施例所述的显示装置, 其中, 还包括: 补强光源, 所 述补强光源是 LED或者 OLED。
进一步, 本发明实施例所述的显示装置, 所述补强光源均勾设于所述显 示装置的边框上;
或者, 所述补强光源均勾设于所述显示装置的上基板上, 而且在所述显 示装置内部设有黑边框, 所述黑边框在所述补强光源的对应位置, 且位于所 述补强光源的上方;
或者, 所述补强光源均勾设于所述显示装置的边框上, 且所述补强光源 均匀设于所述显示装置的上基板上, 而且在所述显示装置内部设有黑边框, 所述黑边框在所述补强光源的对应位置, 且位于所述补强光源的上方。
本发明实施例还提供一种显示装置的制造方法, 包括:
在所述上基板和下基板上制备相对设置的透明导电膜层; 在形成有透明导电膜层的下基板上形成金属反射层;
在形成有金属反射层的下基板上制备驱动阵列;
在上基板和下基板之间加入微球乳液, 密封所述显示装置; 所述微球乳 液包括橢球和溶剂, 所述橢球用于形成光子晶体且具有电磁特性。
进一步, 本发明实施例所述的显示装置的制造方法, 所述橢球的制备方 法包括:
采用二氧化硅、 二氧化钛、 三氧化二铁、 聚苯乙烯或者聚甲基丙烯酸甲 酯制备所述橢球;
在所述橢球的一端涂抹带有正电或者负电的电解质, 形成电解质层; 或 者在所述橢球的一端涂抹带有正电的电解质, 在所述橢球的另一端涂抹带有 负电的电解质, 形成外壳设有电解质层的橢球。
进一步, 本发明实施例所述的显示装置的制造方法, 所述橢球的制备方 法包括:
在磁性物质的外壳包覆橢球的外壳材料,所述外壳材料包括:二氧化硅、 二氧化钛、 三氧化二铁、 聚苯乙烯或者聚甲基丙烯酸甲酯, 形成内部设有磁 性内核的橢球。
本发明实施例所述的显示装置的制造方法, 在所述橢球的制备完成后, 还包括:对橢球的外壳进行高分子修饰,形成外壳设有高分子修饰层的橢球, 所述高分子修饰层采用的材料包括: 十烷基三甲基溴化铵、 聚乙婦基吡咯烷 酮、 壬基三甲基溴化铵。 附图说明
图 1是本发明实施例所述的显示装置的结构示意图;
图 2是本发明实施例所述的橢球在外加电场增强时的原理示意图; 图 3是本发明实施例所述的橢球在外加电场减弱时的原理示意图; 图 4是本发明实施例所述的橢球外壳的电解质的示意图;
图 5是本发明实施例所述的显示装置的边框的补强光源示意图; 图 6是本发明实施例所述的显示装置的黑边框示意图。
附图标号说明:
101 : 橢球, 102: 溶剂, 103: 上基板, 104: 下基板, 105: 补强光源, 106: 黑边框, 107: 显示装置的边框( 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 以下实施例仅用于说明本 发明, 而非用来限制本发明的范围。
图 1是本发明实施例所述的显示装置的结构示意图, 如图 1 , 本发明实 施例提供的一种显示装置, 包括: 上基板 103、 下基板 104及两者之间的溶 剂 102, 还包括: 位于所述上基板 103和下基板 104之间用于形成光子晶体 的橢球 101且所述橢球 101具有电磁特性。
所述橢球 101是纳米级或者亚微米级的微橢球, 且所述橢球轴线的所在 的横截面是橢圓形。所述光子晶体的反射光波长随着上基板 103和下基板 104 间外加电场或者外加磁场的强度变化而变化。 所述溶剂 102起润滑所述橢球 101和保护所述光子晶体的作用。
所述纳米或者亚微米级橢球 101是反射基体, 随着上基板 103和下基板 104 间的外加电场或者外加磁场的变化, 能够组装成具有不同结构的光子晶 体结构。 所述光子晶体是由周期性排列的不同折射率的介质制造的规则光学 结构, 光子晶体具有光子带隙, 能够阻断特定频率的光子。 通过使所述光子 晶体结构变化, 可以使所述光子晶体拥有不同的光线反射波长, 因此当所述 光子晶体反射外界光线时, 会显示不同的颜色。 根据驱动阵列的控制, 按照 需求在不同位置施加不同的电压, 根据电压控制纳米或者亚微米级的所述橢 球 101 ; 其具体原理如下:
才艮据布拉格方程: λ = 2nd sin θ
其中, λ为所述光子晶体的反射光波长, η为橢球折射率, d为晶格间距, Θ为橢球偏转角度; 所述晶格间距由所述橢球的轴径比决定; 所述橢球偏转 角度是指橢球轴向的偏转角度,具体是指橢球的轴向和入射光的夹角的角度。 当所述橢球折射率一定时, 光子晶体的反射光波长及晶格间距与橢球偏转角 度有关。 当施加不同电场时, 光子晶体中橢球的轴向相对于入射光的角度是 不断变化的, 故反射光的波长也是不同的, 因此能在不同的电场或者磁场作 用下呈现不同的色彩, 进而显示彩色图像。 所述橢球的粒径、 轴径比、 折射 率要与显示的彩色图像的需求相匹配。
所述橢球因为具有电磁特性, 在上基板和下基板间具有外加电场或者外 加磁场的条件下, 橢球会发生偏转。 在所述外加电场的条件下, 根据上述布 拉格方程, 假设在所述橢球折射率 n和晶格间距 d不变的情况下, 橢球偏转 角度 Θ随着所述外加电场的强度变化而变化。 图 2是本发明实施例所述的橢 球在外加电场增强时的原理示意图。 如图 2所示, H殳入射光垂直于所述上 基板 103所在平面, 在所述外加电场的电压增大的情况下, 所述橢球 101向 入射光线方向偏转, 所述橢球偏转角度 Θ减小, 所述光子晶体的反射光波长 λ 减小。 图 3是本发明实施例所述的橢球在外加电场减弱时的原理示意图。 如 图 3所示, 在所述外加电场的电压减小的情况下, 所述橢球 101向相反方向 偏转, 所述橢球偏转角度 Θ增大, 所述光子晶体的反射光波长 λ增大。
同理, 也可以得出, 在所述外加磁场的条件下, 在外加磁场强度增大的 情况下, 所述橢球向入射光方向偏转, 所述橢球偏转角度 Θ减小, 所述光子 晶体的反射光波长 λ减小; 在所述外加磁场强度减小的情况下, 所述橢球向 反方向偏转, 所述橢球偏转角度 Θ增大, 所述光子晶体的反射光波长 λ增大。
所述橢球形成光子晶体, 可见所述光子晶体的反射光波长随着上基板和 下基板间外加电场或者外加磁场的强度变化而变化, 从而使所述光子晶体反 射外界光, 形成不同的色彩。
而且本发明所述的显示装置还具有如下的优点:
一、 传统的液晶显示装置需要使用彩膜才能显示色彩, 而彩膜会产生光 损耗, 降低透光率, 而本发明所述的显示装置, 由于不需要彩膜, 因此其透 光率比液晶显示装置高。而且,所述光子晶体对光反射产生的色彩是结构色, 所以其显示色彩的颜色更真实、 对比度更高。
二、 本发明所述的显示装置利用光反射, 借助外界光来显示图像, 不需 要消耗自身的电量进行图像显示, 其电量消耗主要用于驱动阵列的外加电场 变化。 只有在外界光线不足的情况下才使用自身的补强光源, 以提高亮度。
进一步,本发明实施例所述的显示装置,所述橢球的外壳设有电解质层; 或者, 所述橢球的内部设有磁性内核;
或者, 所述橢球的外壳设有电解质层且所述橢球的内部设有磁性内核。 其中, 所述橢球的外壳设有电解质层, 所述电解质层是带有正电或者负 电的电解质, 将所述电解质作为涂料涂抹于所述橢球的表面, 使所述橢球具 有电磁特性。 所述橢球沿轴线分为两端, 所述电解质层的位置包括以下二种 情况:
所述橢球的一端设有电解质层, 所述电解质层带有正电或者负电。 可以 将带有正电或者负电的电解质涂于所述橢球的一端, 形成所述电解质层; 或者, 所述橢球的两端都设有电解质层, 所述橢球的一端设有带正电的 电解质层, 另一端设有带负电的电解质层。 可以将带有正电的电解质涂于所 述橢球的一端, 将带有负电的电解质涂于所述橢球的另一端, 形成所述电解 质层。 如果在所述橢球的两端同时设有带不同电性的电解质层, 可以使所述 橢球在偏转时具有更高的灵敏度。
所述橢球的外壳设有电解质层可以使所述橢球具有电磁特性, 在外加电 场或者变化磁场的作用下, 所述橢球在润滑溶剂中发生偏转, 使所述光子晶 体的结构变化, 改变所述光子晶体的反射光波长, 由此使本发明所述的显示 装置显示彩色图像。
图 4是本发明实施例所述的橢球外壳的电解质的示意图, 如图 4所示, 在所述橢球的 101—端设有带负电的电解质层, 在所述橢球的另一端设有带 正电的电解质层。 由于正负电解质分别分布在两端, 在不同强度电场的或者 变化磁场作用下, 橢球可以随着电场或者磁场的变化进行偏转, 从而影响光 子晶体的反射光波长。
其中, 所述橢球的内部设有磁性内核, 所述橢球是核壳橢球, 在橢球的 内部设有磁性内核, 形成具有电磁特性的橢球。 所述橢球的外壳材料包括: 二氧化硅、 二氧化钛、 三氧化二铁、 聚苯乙烯或者聚甲基丙烯酸甲酯。 采用 Stober方法在磁性物质的外壳包覆外壳材料, 形成所述内部设有磁性内核的 橢球。 所述橢球的轴径比可以通过调整所述外壳材料的包覆量进行调整。 所 述 Stober方法是指: 利用氨水催化正硅酸乙酯的方法合成单分散良好的二氧 化硅纳米粒子球, 尺寸可控表面易功能化, 广泛应用于制备无机纳米粒子, 也可称之为化学共沉淀法。 如果包覆外壳材料是有机物则采用乳液聚合的方 法制备外壳。
所述橢球的内部设有磁性内核可以使所述橢球具有电磁特性, 在外加磁 场或者变化电场的作用下, 所述橢球在润滑溶剂中发生偏转, 使所述光子晶 体的结构变化, 改变所述光子晶体的反射光波长, 由此使本发明实施例所述 的显示装置显示彩色图像。
进一步, 本发明实施例所述的显示装置, 所述橢球的材料是无机复合材 料或者有机复合材料;
所述无机复合材料包括二氧化硅、 二氧化钛或者三氧化二铁;
所述有机复合材料包括聚苯乙烯或者聚甲基丙烯酸甲酯。
其中, 内部磁性橢球是无机材料, 外壳材料可以是有机材料也可以是无 机材料。
在所述橢球的外壳设有电解质层的情况下, 所述橢球的材料采用二氧化 硅、 二氧化钛、 三氧化二铁、 聚苯乙烯或者聚甲基丙烯酸甲酯。 现采用上述 物质形成所述橢球, 然后在所述橢球上涂抹电解质, 形成外壳设有电解质层 的橢球;
所述橢球的内部设有磁性内核的情况下,所述橢球的材料采用二氧化硅、 二氧化钛、 三氧化二铁、 聚苯乙烯或者聚甲基丙烯酸甲酯。 在磁性内核上包 覆上述材料, 形成内部设有磁性内核的橢球。
上述橢球材料不具有电磁特性, 但是可以形成所述光子晶体。 可以采用 在上述材料制成的橢球上涂抹电解质层, 形成具有电磁特性的橢球; 或者, 在磁性物质外部包裹上述材料, 控制其尺寸, 形成具有电磁特性的橢球。
所述具有电磁特性的橢球可以在电场或者磁场的作用下, 在溶剂中发生 偏转, 从而改变有所述橢球形成的光子晶体的反射光波长, 由此使本发明所 述的显示装置显示彩色图像。
进一步, 本发明实施例所述的显示装置, 所述橢球的外壳设有高分子修 饰层。
为了保持所述橢球的分散性和位置区域固定,需要对橢球进行表面处理, 减少橢球之间的作用力, 以免橢球无序堆积在一起。 所述表面处理是指利用 微波超声或者搅拌的方法在所述橢球的外壳进行高分子修饰。 所述高分子修 饰时采用的材料包括: 十烷基三甲基溴化铵、 聚乙婦基吡咯烷酮、 壬基三甲 基溴化铵。 最后形成了设有高分子修饰层的橢球。 所述高分子修饰层的材料 包括: 十烷基三甲基溴化铵。
进一步, 本发明实施例所述的显示装置, 所述溶剂包括有机分散溶剂。 所述溶剂主要是起润滑作用,并且填充满上基板和驱动阵列之间的区域, 可以有助于所述橢球在外加电场作用下旋转, 并且保护所述橢球组成的光子 晶体结构不受破坏。 所述溶剂包括有机分散溶剂, 所述有机分散溶剂一般是 油性高分子有机溶剂, 例如油酸类物质, 可以参考现有技术的电子墨水或者 电子纸技术中的分散溶剂。
进一步, 本发明实施例所述的显示装置, 还包括: 光入射面经过了粗糙 化处理的反射层, 所述反射层设于所述下基板的上方。
对所述反射层进行粗糙化处理, 可以增强光的漫反射效果, 使显示的图 像亮度均勾, 提高所述显示装置的显示效果。
进一步, 本发明实施例所述的显示装置, 还包括: 补强光源, 所述补强 光源是 LED或者 OLED。
所述补强光源至少有二个, 集成于上层玻璃基板上, 采用 LED 或者
OLED。 在外界光线不足的情况下开启所述补强光源, 以提高亮度, 使所述 显示装置在黑暗条件下也能显示图像。
进一步, 本发明实施例所述的显示装置, 所述补强光源均勾设于所述显 示装置的边框上;
或者, 所述补强光源均勾设于所述显示装置的上基板上, 而且在所述显 示装置内部设有黑边框, 所述黑边框在所述补强光源的对应位置, 且位于所 述补强光源的上方;
或者, 所述补强光源均勾设于所述显示装置的边框上, 且所述补强光源 均匀设于所述显示装置的上基板上, 而且在所述显示装置内部设有黑边框, 所述黑边框在所述补强光源的对应位置, 且位于所述补强光源的上方。
所述黑边框具有黑矩阵的作用, 还可以用来遮挡补强光源的部分光线直 接射入人眼。
图 5是本发明实施例所述的显示装置的边框的补强光源示意图。 如图 5 所示, 把所述补强光源 105均匀布置于所述显示装置的边框 107上, 可以使 所述显示装置 1的补强光线均匀分布, 而且补强光源设置筒单, 易于加工制 造。
图 6是本发明实施例所述的显示装置的黑边框示意图。 如图 6所示, 在 所述补强光源 105的对应位置设置黑边框 106, 遮挡补强光源的光线直线射 出所述显示装置, 防止所述补强光源处的亮度明显高于所述显示装置其他区 域的亮度。
本发明实施例还提供一种显示装置的制造方法, 用于制造本发明所述的 显示装置, 本发明实施例方法包括:
步骤 S1 , 在所述上基板和下基板上制备相对设置的透明导电膜层; 步骤 S2, 在形成有透明导电膜层的下基板上形成金属反射层;
其中, 所述形成金属反射层的方式可以为蒸镀、 溅射等。
步骤 S3, 在形成有金属反射层的下基板上制备驱动阵列; 所述驱动阵列 的图形类似于普通 LCD显示面板中的阵列基板中的 TFT, 所述驱动阵列起 到电场或磁场开关的作用。 当然, 所述驱动阵列可以为无源驱动, 只要可以 起到电场或磁场开关的作用即可, 在此不作限制。
步骤 S4, 在上基板和下基板之间加入微球乳液, 密封所述显示装置。 所 述微球乳液包括橢球和溶剂, 所述橢球用于形成光子晶体且具有电磁特性。
进一步, 本发明实施例所述的显示装置的制造方法, 所述步骤 S4 中橢 球的制备方法包括:
步骤 S411 , 采用二氧化硅、 二氧化钛、 三氧化二铁、 聚苯乙烯或者聚甲 基丙烯酸甲酯制备所述橢球;
步骤 S412, 在所述橢球的一端涂抹带有正电或者负电的电解质, 形成电 解质层; 或者在所述橢球的一端涂抹带有正电的电解质, 在所述橢球的另一 端涂抹带有负电的电解质, 形成外壳设有电解质层的橢球。
进一步, 本发明实施例所述的显示装置的制造方法, 所述步骤 S4 中橢 球的制备方法包括:
步骤 S421 ,在磁性物质的外壳包覆橢球的外壳材料,所述外壳材料包括: 二氧化硅、 二氧化钛、 三氧化二铁、 聚苯乙烯或者聚甲基丙烯酸甲酯, 形成 内部设有磁性内核的橢球。
进一步, 本发明实施例所述的显示装置的制造方法, 在所述步骤 S4 中 橢球的制备方法完成后, 还包括: 对橢球的外壳进行高分子修饰, 形成外壳 设有高分子修饰层的橢球, 所述高分子修饰层采用的材料包括: 十烷基三甲 基溴化铵、 聚乙婦基吡咯烷酮、 壬基三甲基溴化铵。
本发明实施例所述的显示装置的制造方法, 通过制造带有电磁特性的橢 球, 4巴所述橢球加入至溶剂形成所述 球乳液, 采用所述 球乳液作为核心 部件制造成所述显示装置。 由于所述橢球具有电磁特性, 可以使所述橢球形 成的光子晶体随外加电场或者磁场变化而改变反射光波长, 从而显示不同色 彩。
本发明所述的显示装置及其制造方法, 通过橢圓形纳米或者亚微米级橢 球形成的光子晶体, 改变反射光波长, 反射出不同颜色的光线, 显示彩色图 像, 解决了现有技术中, 基于圓球形微球的电子纸显示装置只能显示黑白图 像或者显示的彩色图像色彩单一、 效果较差、 响应时间长、 价格昂贵, 以及 液晶显示装置的彩膜造成的光损耗的问题, 而且具有如下技术效果:
一、 传统的液晶显示装置需要使用彩膜才能显示色彩, 而彩膜会产生光 损耗, 降低透光率, 而本发明所述的显示装置, 由于不需要彩膜, 因此其透 光率比液晶显示装置高, 而且,所述光子晶体对光反射产生的色彩是结构色, 所以其显示色彩的颜色更真实、 对比度更高。
二、 本发明所述的显示装置利用光反射, 借助外界光来显示图像, 不需 要消耗自身的电量进行图像显示, 其电量消耗主要用于驱动阵列的外加电场 变化。
三、 本发明所述的显示装置在外界光线不足的情况下使用自身的补强光 源, 以提高亮度, 增加了所述显示装置的应用场景, 在光线黑暗条件下也可 以使用。
四、 本发明所述的显示装置针对补强光源增加了黑边框, 遮挡补强光源 的光线直线射出所述显示装置, 防止所述补强光源处的亮度明显高于所述显 示装置其他区域的亮度, 在使用补强光源的情况下, 提升了显示图像效果。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领 域的普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各 种变化和变型, 因此所有等同的技术方案也属于本发明的保护范畴, 本发明 的保护范围应由权利要求限定。

Claims

权利要求书
1、 一种显示装置, 包括: 上基板、 下基板及两者之间的溶剂, 还包括: 位于所述上基板和下基板之间用于形成光子晶体的橢球且所述橢球具有电磁 特性。
2、根据权利要求 1所述的显示装置, 其中, 所述橢球的外壳设有电解质 层;
或者, 所述橢球的内部设有磁性内核;
或者, 所述橢球的外壳设有电解质层且所述橢球的内部设有磁性内核。
3、根据权利要求 1或 2所述的显示装置, 其中, 所述橢球的材料是无机 复合材料或者有机复合材料;
所述无机复合材料包括二氧化硅、 二氧化钛或者三氧化二铁;
所述有机复合材料包括聚苯乙烯或者聚甲基丙烯酸甲酯。
4、根据权利要求 1所述的显示装置, 其中, 所述橢球的外壳设有高分子 修饰层。
5、根据权利要求 1至 4的任一项所述的显示装置, 其中, 所述溶剂包括 有机分散溶剂。
6、根据权利要求 1至 5的任一项所述的显示装置,还包括: 光入射面经 过了粗糙化处理的反射层, 所述反射层设于所述下基板的上方。
7、 根据权利要求 1至 6的任一项所述的显示装置, 其中, 还包括: 补强 光源, 所述补强光源是 LED或者 OLED。
8、根据权利要求 7所述的显示装置, 其中, 所述补强光源均匀设于所述 显示装置的边框上;
或者, 所述补强光源均勾设于所述显示装置的上基板上, 而且在所述显 示装置内部设有黑边框, 所述黑边框在所述补强光源的对应位置, 且位于所 述补强光源的上方;
或者, 所述补强光源均勾设于所述显示装置的边框上, 且所述补强光源 均匀设于所述显示装置的上基板上, 而且在所述显示装置内部设有黑边框, 所述黑边框在所述补强光源的对应位置, 且位于所述补强光源的上方。
9、 一种显示装置的制造方法, 包括: 在所述上基板和下基板上制备相对设置的透明导电膜层; 在形成有透明导电膜层的下基板上形成金属反射层;
在形成有金属反射层的下基板上制备驱动阵列;
在上基板和下基板之间加入微球乳液, 密封所述显示装置; 所述微球乳 液包括橢球和溶剂, 所述橢球用于形成光子晶体且具有电磁特性。
10、 根据权利要求 9所述的显示装置的制造方法, 所述橢球的制备方法 包括:
采用二氧化硅、 二氧化钛、 三氧化二铁、 聚苯乙烯或者聚甲基丙烯酸甲 酯制备所述橢球;
在所述橢球的一端涂抹带有正电或者负电的电解质, 形成电解质层; 或 者在所述橢球的一端涂抹带有正电的电解质, 在所述橢球的另一端涂抹带有 负电的电解质, 形成外壳设有电解质层的橢球。
11、 根据权利要求 9所述的显示装置的制造方法, 所述橢球的制备方法 包括:
在磁性物质的外壳包覆橢球的外壳材料,所述外壳材料包括:二氧化硅、 二氧化钛、 三氧化二铁、 聚苯乙烯或者聚甲基丙烯酸甲酯, 形成内部设有磁 性内核的橢球。
12、 根据权利要求 10或 11所述的显示装置的制造方法, 在所述橢球的 制备完成后, 还包括: 对橢球的外壳进行高分子修饰, 形成外壳设有高分子 修饰层的橢球, 所述高分子修饰层采用的材料包括: 十烷基三甲基溴化铵、 聚乙婦基吡咯烷酮、 壬基三甲基溴化铵。
PCT/CN2013/077320 2013-04-08 2013-06-17 一种显示装置及其制造方法 WO2014166158A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/348,362 US9817252B2 (en) 2013-04-08 2013-06-17 Display device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310119495.5A CN103235460B (zh) 2013-04-08 2013-04-08 一种显示装置及其制造方法
CN201310119495.5 2013-04-08

Publications (1)

Publication Number Publication Date
WO2014166158A1 true WO2014166158A1 (zh) 2014-10-16

Family

ID=48883507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077320 WO2014166158A1 (zh) 2013-04-08 2013-06-17 一种显示装置及其制造方法

Country Status (3)

Country Link
US (1) US9817252B2 (zh)
CN (1) CN103235460B (zh)
WO (1) WO2014166158A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105445968B (zh) * 2014-09-25 2020-06-16 中兴通讯股份有限公司 具有镜子功能的显示屏、控制方法、装置和终端
CN105425428A (zh) 2016-01-04 2016-03-23 京东方科技集团股份有限公司 阵列基板及磁光开关显示器
CN106646682B (zh) * 2017-01-03 2019-10-15 京东方科技集团股份有限公司 光子晶体结构和显示装置
CN107523139B (zh) * 2017-10-23 2021-03-26 苏州大学 一种光子晶体彩色墨水及应用
CN107945684B (zh) * 2017-12-25 2022-04-01 湖南飞优特电子科技有限公司 电子纸显示屏
CN110289371B (zh) * 2019-06-28 2021-10-22 京东方科技集团股份有限公司 一种发光结构、显示面板及显示装置
CN113359360A (zh) * 2020-03-04 2021-09-07 江苏集萃智能液晶科技有限公司 复合粒子及包含复合粒子的调光器件
CN111722419B (zh) * 2020-07-07 2021-11-02 Tcl华星光电技术有限公司 纳米复合颗粒及磁控显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490657A (zh) * 2003-09-12 2004-04-21 清华大学 基于光子晶体概念的彩色电泳显示器显示方法及显示器
KR20070010636A (ko) * 2005-07-19 2007-01-24 엘지전자 주식회사 광 결정을 이용한 반사형 디스플레이 장치
KR100922892B1 (ko) * 2008-05-06 2009-10-22 한국과학기술원 전기영동을 이용한 액상 콜로이드 광결정의 반사색조절방법
CN102124405A (zh) * 2008-05-30 2011-07-13 欧帕鲁克斯有限公司 可调布拉格堆叠
CN102422213A (zh) * 2009-07-22 2012-04-18 纳诺布雷克株式会社 利用光子晶体特性的显示方法及 装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721083B2 (en) * 1996-07-19 2004-04-13 E Ink Corporation Electrophoretic displays using nanoparticles
JP4588491B2 (ja) * 2005-03-01 2010-12-01 シャープ株式会社 画像表示装置
JP5201655B2 (ja) * 2006-10-05 2013-06-05 独立行政法人産業技術総合研究所 コアシェル型金属酸化物微粒子分散液の製造方法及びその分散液
KR101766878B1 (ko) 2011-02-28 2017-08-10 삼성디스플레이 주식회사 전기 영동 표시 장치 및 그 제조 방법
CN102528027B (zh) * 2012-02-24 2013-06-26 哈尔滨工业大学 一种金壳磁性椭球的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490657A (zh) * 2003-09-12 2004-04-21 清华大学 基于光子晶体概念的彩色电泳显示器显示方法及显示器
KR20070010636A (ko) * 2005-07-19 2007-01-24 엘지전자 주식회사 광 결정을 이용한 반사형 디스플레이 장치
KR100922892B1 (ko) * 2008-05-06 2009-10-22 한국과학기술원 전기영동을 이용한 액상 콜로이드 광결정의 반사색조절방법
CN102124405A (zh) * 2008-05-30 2011-07-13 欧帕鲁克斯有限公司 可调布拉格堆叠
CN102422213A (zh) * 2009-07-22 2012-04-18 纳诺布雷克株式会社 利用光子晶体特性的显示方法及 装置

Also Published As

Publication number Publication date
CN103235460A (zh) 2013-08-07
US20150146279A1 (en) 2015-05-28
CN103235460B (zh) 2015-12-02
US9817252B2 (en) 2017-11-14

Similar Documents

Publication Publication Date Title
WO2014166158A1 (zh) 一种显示装置及其制造方法
Kim et al. Stretchable and reflective displays: materials, technologies and strategies
US8692969B2 (en) Color filter and display device employing the same
WO2018076703A1 (zh) 反射式显示器及其制备方法
US9063353B2 (en) Air stable, color tunable plasmonic structures for ultraviolet (UV) and visible wavelength applications
CN109799642B (zh) 显示基板及其制备方法、显示面板
JP5026538B2 (ja) 表示装置
US20080198440A1 (en) Active reflective polarizer and magnetic display panel comprising the same
JP2013045074A (ja) 電気泳動素子およびその製造方法、表示装置、表示基板ならびに電子機器
WO2018076669A1 (zh) 显示面板及其驱动和制作方法以及显示装置
TWI384309B (zh) 顯示裝置
WO2017121137A1 (zh) 可书写液晶显示装置及其制作方法、驱动方法
CN107004741A (zh) 包含凸的色转换元件的装置
US8270066B2 (en) Optical spectrum splitting for black color display
JP5862164B2 (ja) 電気泳動表示装置及び電気泳動表示装置の製造方法
CN113156732A (zh) 反射式显示面板及其制备方法、及显示装置
WO2017159075A1 (ja) 反射型表示装置および電子機器
US10852592B2 (en) Liquid crystal display device including liquid crystal capsule and method of fabricating the same
JP2007310092A (ja) 作動型反射/吸収板、及びこれを用いた表示素子
KR102154708B1 (ko) 표시 장치
CN215494468U (zh) 反射式显示面板及显示装置
JP2008008951A (ja) フォトニック結晶を利用した表示装置
JP2006209018A (ja) 表示素子
KR20070010636A (ko) 광 결정을 이용한 반사형 디스플레이 장치
Yang et al. The design considerations for full-color e-paper

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14348362

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.02.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13881858

Country of ref document: EP

Kind code of ref document: A1