WO2014163212A1 - Polarization plate set and liquid crystal display panel integrated with front plate - Google Patents

Polarization plate set and liquid crystal display panel integrated with front plate Download PDF

Info

Publication number
WO2014163212A1
WO2014163212A1 PCT/JP2014/060355 JP2014060355W WO2014163212A1 WO 2014163212 A1 WO2014163212 A1 WO 2014163212A1 JP 2014060355 W JP2014060355 W JP 2014060355W WO 2014163212 A1 WO2014163212 A1 WO 2014163212A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
liquid crystal
crystal cell
plate
film
Prior art date
Application number
PCT/JP2014/060355
Other languages
French (fr)
Japanese (ja)
Inventor
崇仁 河村
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020157030139A priority Critical patent/KR102196372B1/en
Priority to CN201480019260.1A priority patent/CN105122099B/en
Publication of WO2014163212A1 publication Critical patent/WO2014163212A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133331Cover glasses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side

Definitions

  • a set of polarizing plates comprising a rear side polarizing plate and a front side polarizing plate integrated with a front plate, which have different dimensional shrinkage ratios in a high temperature environment, and a front plate integrated liquid crystal display panel in which these are bonded to a liquid crystal cell It is about.
  • Liquid crystal display devices have been used for desktop computers, electronic watches, personal computers, etc., but their demand has increased rapidly in recent years, and recently they are also used for mobile phones and tablet terminals. Its uses are also expanding.
  • a pair of polarizing plates are usually arranged on the front and back of the liquid crystal cell to form a liquid crystal display panel.
  • liquid crystal display panels which are the components, are required to be lighter and thinner. There is a tendency to make the front plate thinner. In addition, in order to improve visibility by eliminating reflection and light scattering at the interface, the front plate tends to be integrated with the liquid crystal display panel with an adhesive or an ultraviolet curable resin.
  • the front plate and the liquid crystal cell are thick, the warpage due to the contraction of the polarizing plate is suppressed even in a high temperature environment.
  • it is used for the thickness of the front plate and the liquid crystal cell as described above. With the tendency to make the glass thinner, there is a problem that the liquid crystal display panel warps due to the contraction of the polarizing plate in a high temperature environment and does not fit in the casing of the final product.
  • the liquid crystal display has been changed by changing the thickness of the polarizing plate disposed on the liquid crystal cell viewing side and the side opposite to the liquid crystal cell viewing side (back side).
  • Techniques for suppressing panel warpage have been developed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-58429
  • the thickness of a polarizing film (polarizer in the present invention) of a polarizing plate disposed on the viewing side of a liquid crystal cell is disposed on the back side of the liquid crystal cell.
  • Patent Document 2 discloses a protection for constituting polarizing plates on the viewing side and the back side of a liquid crystal cell in a liquid crystal display element (a liquid crystal display panel referred to in the present invention) using a plastic substrate liquid crystal cell. It describes a liquid crystal display element in which the amount of warpage of a plastic substrate liquid crystal cell is suppressed by changing the thickness of the film.
  • Patent Document 2 In the method of changing the thickness of the protective film as described above, the liquid crystal cell is warped due to the thermal contraction of the protective film, which may cause a problem that the liquid crystal cell does not fit in the case of the final product.
  • the present invention has been made in order to solve the above-described conventional problems.
  • the main object of the present invention is to provide a set of polarizing plates in which the amount of warpage in a high-temperature environment is suppressed when the liquid crystal display panel is used, and the polarized light.
  • An object is to provide a liquid crystal display panel integrated with a front plate formed by bonding a set of plates to a liquid crystal cell.
  • the present invention is arranged on the viewing side of the liquid crystal cell, and the front plate on the side far from the liquid crystal cell having a Young's modulus of 2 GPa or more is bonded to the front side polarizing plate via an ultraviolet curable resin or an adhesive.
  • a set of a front plate-integrated polarizing plate and a rear side polarizing plate disposed on the back side of the liquid crystal cell, and the front side polarizing plate is not bonded to the front plate and is 100 at 85 ° C.
  • a set of polarizing plates characterized in that the dimensional change rate in the absorption axis direction when heated for a period of time is greater than the dimensional change rate in the absorption axis direction when heated at 85 ° C. for 100 hours. It is.
  • the front side polarizing plate has a dimensional change rate in the absorption axis direction of 1.2% or more when heated at 85 ° C. for 100 hours without being bonded to the front plate, preferably 1
  • the polarizing plate of 0.3% or more is preferable
  • the back side polarizing plate is preferably a polarizing plate having a dimensional change rate in the absorption axis direction of 1.1% or less when heated at 85 ° C. for 100 hours.
  • each of the front-side polarizing plate and the rear-side polarizing plate has a structure in which a transparent protective film is laminated on at least one surface of a polarizer made of a polyvinyl alcohol-based resin film.
  • the polarizing plate may be a set of polarizing plates in which the transparent protective film on the liquid crystal cell side has an in-plane retardation.
  • each of the front side polarizing plate and the rear side polarizing plate has a structure in which a transparent protective film is laminated on both surfaces of a polarizer made of a polyvinyl alcohol-based resin film.
  • the set polarizer may be a set of polarizing plates thicker than the polarizer forming the back side polarizing plate.
  • This back side polarizing plate preferably has another optical film laminated on the side far from the liquid crystal cell.
  • the front side polarizing plate preferably has an absorption axis in the short side direction of the liquid crystal cell, and the back side polarizing plate has an absorption axis in the long side direction of the liquid crystal cell.
  • the present invention also includes any one of the above polarizing plate sets and a liquid crystal cell, and a front plate integrated polarizing plate constituting the polarizing plate set is attached to the viewing side of the liquid crystal cell on the polarizing plate side.
  • a back side polarizing plate constituting a set of polarizing plates is attached to the back side of the liquid crystal cell, and the amount of warpage when heated at 85 ° C. for 240 hours is 0.5 mm or less in absolute value, preferably
  • the front plate integrated liquid crystal display panel is 0.3 mm or less.
  • the curvature in the high temperature environment in the liquid crystal display panel which integrated the front plate can be eliminated, and the front plate integrated liquid crystal display panel which fits in the case of the final product in a high temperature environment is obtained. be able to.
  • FIG. 1 is a schematic cross-sectional view showing an example of a preferred layer configuration in a set of polarizing plates according to the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a preferred layer structure in the front plate integrated liquid crystal display panel according to the present invention.
  • the set of polarizing plates of the present invention includes a front plate integrated polarizing plate 40 and a back side polarizing plate 50.
  • FIG. 1 shows a schematic cross-sectional view of an example of a preferred layer structure in a set of polarizing plates according to the present invention.
  • a front plate integrated polarizing plate 40 constituting the set of polarizing plates of the present invention is disposed on the viewing side of the liquid crystal cell, and the front plate 10 disposed on the side far from the liquid crystal cell has a front surface. It is bonded to the side polarizing plate 30 via an ultraviolet curable resin or an adhesive 20.
  • the front side polarizing plate 30 is obtained by bonding transparent protective films 35a and 35b of the front side polarizing plate to both surfaces of the polarizer 37 of the front side polarizing plate, respectively.
  • the back side polarizing plate 50 is obtained by bonding transparent protective films 55a and 55b of the back side polarizing plate to both surfaces of the polarizer 57 of the back side polarizing plate, respectively.
  • the front plate 10 in the present invention has a Young's modulus of 2 GPa or more because of the role of suppressing or protecting the warpage of the liquid crystal cell.
  • the front plate 10 may be a single layer or a stacked layer as long as the Young's modulus is satisfied. Since it is arranged on the viewing side of the liquid crystal cell as described above, specifically, on the outermost surface in the final product, it is assumed to be used outdoors or semi-outdoors. Therefore, from the viewpoint of durability, it is preferable to be composed of inorganic materials such as glass and tempered glass, organic materials such as polycarbonate resin and acrylic resin.
  • the front plate may be, for example, tempered glass or a film constituting a touch panel as long as the Young's modulus is 2 GPa or more.
  • the touch panel method is not particularly limited, and examples thereof include a capacitance method, a surface acoustic wave method, a resistive film method, an electromagnetic induction method, an optical sensor method, and an infrared method.
  • the front plate 10 may have functions such as antireflection, antifouling, electromagnetic wave shielding, near infrared shielding, color adjustment, and glass scattering prevention.
  • the front plate having such a function may be, for example, a laminate in which at least one film layer having these functions is laminated on at least one surface of the front plate.
  • Such a multi-layer front plate is, for example, a method of directly applying an effective agent for imparting the above functions to a substrate made of an organic material or an inorganic material as described above, or a function having the above functions created separately. You may make and paste the film.
  • the UV curable resin or adhesive 20 that bonds the front plate 10 and the front polarizing plate 30 is preferably a transparent one whose refractive index is close to that of the front plate 10.
  • a general ultraviolet curable liquid such as (meth) acrylic acid ester or epoxy resin
  • an adhesive what used the acrylic polymer, the silicone type polymer, polyester, polyurethane, polyether etc. as a base polymer can be used.
  • an acrylic pressure-sensitive adhesive that has excellent optical transparency and high transparency, such as an acrylic pressure-sensitive adhesive.
  • (meth) acrylic acid ester means that either an acrylic acid ester or a methacrylic acid ester may be used, and “(meth)” when referred to as (meth) acrylate or the like has the same meaning. is there.
  • the front side polarizing plate 30 comprising the polarizer 37 preferably has a dimensional change rate in the stretching direction of the film (hereinafter also referred to as the absorption axis direction) when heated at 85 ° C. for 100 hours. .2% to 3.0%, more preferably 1.3% to 2.0%. If the upper limit of the dimensional change rate of the front side polarizing plate greatly exceeds 3.0%, the polarizing plate may be peeled off from the liquid crystal cell in a high temperature environment due to contraction of the polarizing plate.
  • the back side polarizing plate 50 to which the polarizer 57 is applied preferably has a dimensional change rate in the absorption axis direction of 0.1% to 1.1% when heated at 85 ° C. for 100 hours. It is more preferably 5% or more and 1.1% or less. If the lower limit value of the dimensional change rate of the back-side polarizing plate is lower than 0.1%, the optical characteristics may be hindered, and there may be a problem that the contrast is low during liquid crystal display.
  • the polarizer 37 constituting the front side polarizing plate is a back side polarizing plate 57 constituting the back side polarizing plate 50 disposed on the back side of the liquid crystal cell (hereinafter referred to as polarization).
  • a thicker form is also preferred.
  • the thickness of the polarizer 37 constituting the front side polarizing plate is preferably 20 ⁇ m or more.
  • the thickness of the polarizer 57 of the back side polarizing plate 50 of the liquid crystal cell is preferably 15 ⁇ m or less. Disposing a set of polarizing plates satisfying these conditions on both surfaces of the liquid crystal cell 60 is effective in suppressing the amount of warpage of the liquid crystal display panel (FIG. 2) in which the front plate is integrated.
  • the polarizer used for the front-side and back-side polarizing plates any appropriate one can be used as long as the above-mentioned conditions regarding the dimensional change rate and / or the thickness of the polarizer are satisfied.
  • a polyvinyl alcohol-based resin film having a dichroic dye adsorbed and oriented is used as the polarizer.
  • the polyvinyl alcohol resin constituting the polarizer can be obtained by saponifying a polyvinyl acetate resin.
  • the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • Examples of other monomers copolymerized with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • This polyvinyl alcohol-based resin may be further modified, and for example, polyvinyl formal and polyvinyl acetal modified with aldehydes may be used.
  • the degree of polymerization of the polyvinyl alcohol resin is usually about 1,000 to 10,000, preferably about 1,500 to 5,000.
  • Specific polyvinyl alcohol resins and dichroic dyes include, for example, polyvinyl alcohol resins and dichroic dyes exemplified in JP2012-159778A.
  • a film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizer.
  • the method for forming the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method such as the method described in JP2012-159778A.
  • the film thickness of the raw film made of polyvinyl alcohol resin is not particularly limited, but is, for example, about 1 to 150 ⁇ m. Considering easiness of stretching, the film thickness is preferably 10 ⁇ m or more.
  • the polarizer is, for example, a step of uniaxially stretching the polyvinyl alcohol resin film as described above, a step of dyeing the polyvinyl alcohol resin film with a dichroic dye and adsorbing the dichroic dye,
  • the polyvinyl alcohol resin film on which the dichroic dye is adsorbed is manufactured by a process of treating with a boric acid aqueous solution and a step of washing with water after the treatment with the boric acid aqueous solution and finally drying.
  • Both the front-side polarizing plate 30 and the back-side polarizing plate 50 defined in the present invention have a structure in which a transparent protective film is laminated on at least one surface of the polarizer produced as described above.
  • this transparent protective film what is formed from an appropriate transparent resin can be used.
  • transparent protective films include cellulose films such as triacetyl cellulose and diacetyl cellulose, polyester films such as polyethylene terephthalate, polyethylene isophthalate, and polybutylene terephthalate, polymethyl (meth) acrylate, and polyethyl (meth) acrylate.
  • Acrylic resin film, polycarbonate film, polyethersulfone film, polysulfone film, polyimide film, polyolefin film, polynorbornene film and the like can be used, but are not limited thereto.
  • the transparent protective films 35a and 35b applied to the front side polarizing plate 30 and the transparent protective films 55a and 55b applied to the back side polarizing plate 50 may be the same or independent and different. May be. Moreover, the form without both or one of 35b or 55a which is a transparent protective film close
  • the in-plane retardation of the transparent protective film can be imparted by uniaxial stretching or biaxial stretching.
  • the in-plane retardation value may be appropriately set according to the type of liquid crystal cell to be applied, but is generally preferably 30 nm or more.
  • the upper limit of the in-plane retardation value is not particularly limited, but for example, up to about 300 nm is sufficient.
  • the above transparent protective film may be subjected to easy adhesion treatment such as saponification treatment, corona treatment, primer treatment, anchor coating treatment on the bonding surface prior to bonding to the polarizer.
  • the thickness of the transparent protective film is usually in the range of about 5 to 200 ⁇ m, preferably 10 ⁇ m or more, preferably 80 ⁇ m or less, more preferably 40 ⁇ m or less.
  • a surface treatment layer such as a hard coat layer, an antireflection layer or an antiglare layer may be provided on the surface of the transparent protective film.
  • the hard coat layer is a surface treatment layer formed to prevent scratches on the surface of the polarizing plate. Adhesion and hardness with a transparent protective film mainly from an ultraviolet curable resin such as an acrylic or silicone resin. Is excellently selected and can be formed on the surface of the transparent protective film.
  • the antireflection layer is a surface treatment layer formed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be formed by a known method.
  • the anti-glare layer is a surface treatment layer that is formed in order to prevent the visibility from being generated when external light is reflected on the surface of the polarizing plate, for example, a roughening method such as a sandblasting method or an embossing method,
  • the surface of the transparent protective film is formed to have an uneven structure by a method of mixing transparent fine particles with an ultraviolet curable resin.
  • a polarizing plate is obtained by bonding the transparent protective film to at least one surface of a polarizer.
  • the transparent protective film described above may be bonded to both sides of the polarizer.
  • bonding of a polarizer and a transparent protective film is not specifically limited, It can carry out using the adhesive agent, adhesive, etc. which consist of an epoxy-type polymer.
  • the adhesive layer or the pressure-sensitive adhesive layer is formed as an aqueous solution coating / drying layer or the like, and other additives and catalysts such as acids can be blended as necessary when adjusting the aqueous solution. .
  • the polarizing plate can be used by stacking one or more optical layers exhibiting other optical functions when used.
  • the optical layer is not particularly limited, and examples thereof include a reflective layer, a transflective reflective layer, a retardation plate, and a brightness enhancement film.
  • the retardation plate is a ⁇ plate (1 / 2 ⁇ plate or 1 / 4 ⁇ plate) that can form an elliptically polarized light or a circularly polarized light composite polarizing plate used for an image display device for mobile use, in particular, on the protective film.
  • the composite polarizing plate of the elliptical polarization mode or the circular polarization mode has a function of changing to an elliptical polarization or a circular polarization when the incident polarization direction is a linear polarization, and changing to a linear polarization when the incident polarization direction is an elliptical polarization or a circular polarization. Yes.
  • phase difference plate that can convert elliptically polarized light or circularly polarized light into linearly polarized light and linearly polarized light into elliptically polarized light or circularly polarized light
  • a quarter ⁇ plate is used as a phase difference plate that can convert elliptically polarized light or circularly polarized light into linearly polarized light and linearly polarized light into elliptically polarized light or circularly polarized light.
  • the 1 / 2 ⁇ plate has a function of changing the direction of linearly polarized light.
  • the retardation plate include polymers selected from polycarbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polyolefins such as polypropylene, polyarylate, polyamide, polyolefin, polynorbornene, and the like.
  • stretching is illustrated. Such a stretched film may be processed by an appropriate method such as uniaxial or biaxial.
  • attachment with a heat-shrinkable film may be sufficient.
  • the brightness enhancement film is used for the purpose of improving the brightness in a liquid crystal display device or the like.
  • a plurality of thin film films having different refractive index anisotropies are laminated to produce anisotropy in reflectance.
  • the back-side polarizing plate 50 is preferably used by laminating one or more optical layers exhibiting other optical functions as described above on the side far from the liquid crystal cell.
  • the various optical layers described above are integrated with the polarizing plate using a pressure-sensitive adhesive or an adhesive, but the pressure-sensitive adhesive or the adhesive used for this purpose is not particularly limited and is used by selecting an appropriate one. do it. It is preferable to use a pressure-sensitive adhesive from the viewpoint of easy bonding work and prevention of optical distortion.
  • a pressure-sensitive adhesive there are no particular limitations on the pressure-sensitive adhesive, and for example, an acrylic polymer, silicone polymer, polyester, polyurethane, polyether or the like can be used as the base polymer. Above all, like acrylic pressure-sensitive adhesives, it has excellent optical transparency, retains appropriate wettability and cohesion, has excellent adhesion to substrates, and has heat resistance, etc. It is preferable to select and use one that does not cause peeling problems such as floating and peeling under the environment.
  • the pressure-sensitive adhesive layer may contain fine particles for exhibiting light scattering properties, if necessary, fillers and pigments made of glass fibers, glass beads, resin beads, metal powders and other inorganic powders, etc. Or a coloring agent, an antioxidant, an ultraviolet absorber, or the like may be blended.
  • ultraviolet absorbers include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds.
  • An adhesive layer can be provided on the transparent protective film constituting the polarizing plate or the optical layer provided on the polarizing plate in order to adhere to other members such as a liquid crystal cell.
  • the pressure-sensitive adhesive layer can be formed of an appropriate pressure-sensitive adhesive such as an acrylic type.
  • the pressure-sensitive adhesive layer has excellent heat resistance.
  • the pressure-sensitive adhesive layer may be provided on a necessary surface as necessary.
  • a transparent protective film of a polarizing plate comprising a polarizer and a transparent protective film, one or both surfaces of the transparent protective film as required.
  • An adhesive layer may be provided on the surface.
  • an appropriate material such as acrylic, silicone, polyester, polyurethane, polyether, or rubber can be used.
  • the separator is formed by, for example, a method of providing a release coat with an appropriate release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide on an appropriate thin leaf according to the above-described transparent protective film or the like. be able to.
  • an appropriate release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide
  • the angle formed by the short side of the liquid crystal cell and the absorption axis of the front side polarizing plate 30 is usually within ⁇ 45 degrees, preferably within ⁇ 10 degrees. is there.
  • the angle formed by the long side of the liquid crystal cell and the absorption axis of the back-side polarizing plate is usually within ⁇ 45 degrees, and preferably within ⁇ 10 degrees. More preferably, the front side polarizing plate 30 has an absorption axis substantially parallel to the short side direction of the liquid crystal cell, and the back side polarizing plate has an absorption axis substantially parallel to the long side direction of the liquid crystal cell.
  • the front plate integrated liquid crystal display panel according to the present invention is obtained by bonding the above-described front plate integrated polarizing plate 40 and the back side polarizing plate 50 to a liquid crystal cell, and FIG. 2 shows the front plate integrated type according to the present invention.
  • An example of a preferable layer structure in the liquid crystal display panel is shown in a schematic sectional view.
  • the front plate integrated liquid crystal display panel 80 of the present invention has a front plate integrated polarizing plate 40 constituting the set of polarizing plates of FIG. 50 is bonded to the back side of the liquid crystal cell 60 via an adhesive.
  • the pressure-sensitive adhesive used for bonding the liquid crystal cell 60 and the polarizing plate set is preferably a pressure-sensitive adhesive based on an acrylic resin having excellent transparency, weather resistance, heat resistance, and the like.
  • the front plate-integrated liquid crystal display panel 80 of the present invention has an absolute value of 0.5 mm or less, preferably 0.3 mm or less when heated at 85 ° C. for 240 hours. Therefore, warpage under a high temperature environment is suppressed, and a front plate integrated liquid crystal display panel that fits in the casing of the final product is obtained.
  • Example 1 Preparation of set of polarizing plates
  • the front side polarizing plate (polarizing plate 1) was prepared as follows. First, a polyvinyl alcohol film having a thickness of 60 ⁇ m (average polymerization degree of about 2,400, saponification degree of 99.9 mol% or more) was uniaxially stretched about 5 times by dry stretching, and while maintaining a tension state, After immersing in pure water of 1 ° C. for 1 minute, it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds.
  • carboxyl group-modified polyvinyl alcohol [trade name “KL-318” obtained from Kuraray Co., Ltd.] is dissolved in 100 parts of water on one side of the polarizer, and a water-soluble epoxy resin is dissolved in the aqueous solution.
  • the back side polarizing plate (polarizing plate 2) was produced as follows. First, a 30 ⁇ m-thick polyvinyl alcohol film (average polymerization degree of about 2,400, saponification degree of 99.9 mol% or more) was uniaxially stretched by about 5 times by dry stretching, and while maintaining a tension state, After immersing in pure water of 1 ° C. for 1 minute, it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds.
  • a 5 ⁇ m-thick adhesive material (trade name “# L2” manufactured by Lintec Corporation) is bonded to the TAC surface side, and a 26 ⁇ m-thick brightness enhancement film (trade name “Advanced Polarized Film, Version manufactured by 3M” is attached thereto. 3 ”) was pasted.
  • each of the cut polarizing plates is bonded to a liquid crystal cell on the adhesive side, and an ultraviolet curable optical elastic resin (trade name “Super View Resin” manufactured by Dexerias Co., Ltd.) on the triacetyl cellulose film side of the front polarizing plate.
  • a front plate (trade name “Gorilla” manufactured by Corning) having a Young's modulus of 70 GPa and a thickness of 0.55 mm was laminated thereon. Thereafter, ultraviolet rays were irradiated from the front plate side (“D bulb” manufactured by Fusion UV Systems Co., Ltd., integrated light quantity 1200 mJ / cm 2 ) to produce a front plate integrated liquid crystal cell.
  • the amount of warpage in a high temperature environment was measured by the following method. First, the manufactured front plate integrated liquid crystal display panel was allowed to stand in an environment of 85 ° C. for 240 hours, and then measured with a Nikon two-dimensional measuring instrument “NEXIV VMR-1207” with the front plate facing upward. Placed on the table. Next, focus on the surface of the measurement table, and use that as a reference to focus on the four corners of the front panel integrated liquid crystal display panel, the center of each side, and the center of the front panel integrated liquid crystal display panel surface. After measuring the distance from the focal point, the longest distance in absolute value from the measurement table was taken as the amount of warpage. The measurement results are shown in the “warp amount” column of Table 1.
  • Example 2 Preparation of polarizing plate set A polyvinyl alcohol aqueous solution was applied on a base film and dried to prepare a laminated film that was a raw material for manufacturing a polarizer.
  • an acetoacetyl group-modified polyvinyl alcohol powder having an average degree of polymerization of 1,100 and a saponification degree of 99.5 mol% (trade name “GOHSEIMER Z-200” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) is obtained at 95 ° C. 3% strength aqueous solution was prepared.
  • aqueous solution 5 parts of water-soluble polyamide epoxy resin (trade name “Smile Resin 650” manufactured by Taoka Chemical Industry Co., Ltd., aqueous solution with a solid content concentration of 30%) as a crosslinking agent is used for 6 parts of polyvinyl alcohol solid content.
  • a primer coating solution 5 parts of water-soluble polyamide epoxy resin (trade name “Smile Resin 650” manufactured by Taoka Chemical Industry Co., Ltd., aqueous solution with a solid content concentration of 30%) as a crosslinking agent is used for 6 parts of polyvinyl alcohol solid content.
  • the primer coating liquid was applied to the corona-treated surface with a microgravure coater and dried at 80 ° C. for 10 minutes to obtain a thickness of 0. A 2 ⁇ m primer layer was formed.
  • polyvinyl alcohol powder (trade name “PVA124” obtained from Kuraray Co., Ltd.) having an average polymerization degree of 2,400 and a saponification degree of 98.0 to 99.0 mol% was dissolved in hot water at 95 ° C.
  • An aqueous 8% polyvinyl alcohol solution was prepared.
  • the obtained aqueous solution was coated on the primer layer of the base film using a lip coater at room temperature and dried at 80 ° C. for 20 minutes to obtain a laminated film consisting of the base film / primer layer / polyvinyl alcohol layer.
  • the obtained laminated film was uniaxially stretched at a free end length of 5.8 times at a temperature of 160 ° C.
  • the total thickness of the laminated stretched film thus obtained was 28.5 ⁇ m, and the thickness of the polyvinyl alcohol layer was 5.0 ⁇ m.
  • the obtained laminated stretched film was dyed by being immersed in an aqueous solution of water / iodine / potassium iodide in a weight ratio of 100 / 0.35 / 10 at 26 ° C. for 90 seconds, and then washed with pure water at 10 ° C. Next, this laminated film was immersed in an aqueous solution of water / boric acid / potassium iodide in a weight ratio of 100 / 9.5 / 5 at 76 ° C. for 300 seconds to crosslink polyvinyl alcohol.
  • a polarizing laminated film in which a polarizer composed of a polyvinyl alcohol layer on which iodine was adsorbed and oriented was formed on a polypropylene base film was produced.
  • a polarizing plate comprising a TAC / polyvinyl alcohol polarizer / primer layer was obtained by peeling only the base film.
  • an ultraviolet curable adhesive containing an epoxy compound and a cationic photopolymerization initiator is applied to the primer surface side, and a film that is not stretched with a norbornene resin (trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.) TAC / polyvinyl alcohol polarizer by bonding and irradiating ultraviolet rays from the norbornene resin side (“D bulb” manufactured by Fusion UV Systems, integrated light quantity 1200 mJ / cm 2 ) and curing the adhesive
  • a polarizing plate (3) of / primer layer / norbornene resin was obtained.
  • a 5 ⁇ m-thick adhesive material [trade name “# L2” manufactured by Lintec Co., Ltd.] is bonded to the TAC surface side, and a 26 ⁇ m-thick brightness enhancement film (trade name “Advanced Polarized Film, Version made by 3M” is attached thereto. 3 ”) was pasted.
  • the polarizing plate (3) produced above was cut into a square or rectangular size having a length direction of 30 mm to 50 mm and a width direction of 20 to 50 mm, and the dimensional change rate ( %).
  • a product obtained by removing the adhesive and brightness enhancement film on the TAC surface side of the polarizing plate (2) from the front side polarizing plate is used as the back side polarizing plate on the surface of the polarizing plate (3) on the side of the norbornene resin “ZEONOR”.
  • a front plate integrated liquid crystal cell was prepared in the same manner as in Example 1 except that the agent was applied and bonded to the liquid crystal cell, and the amount of warpage in a high temperature environment was measured. The results are shown in the “warp amount” column of Table 1.
  • Example 3 As the front-side polarizing plate to be bonded to the liquid crystal cell, the one obtained by removing the adhesive on the TAC surface side and the brightness enhancement film of the rear-side polarizing plate (thickness of the polarizer of 11 ⁇ m) used in Example 1 is used. A front panel integrated liquid crystal display panel was prepared in the same manner as in Example 1 except that the amount of warpage in a high temperature environment was measured. The results are shown in the “warp amount” column of Table 1.
  • Example 4 Preparation of polarizing plate set
  • the front-side polarizing plate was prepared as follows. First, a 75 ⁇ m-thick polyvinyl alcohol film (average polymerization degree of about 2,400, saponification degree of 99.9 mol% or more) was uniaxially stretched by about 5 times by dry stretching, and while maintaining a tension state, After immersing in pure water of 1 ° C. for 1 minute, it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds.
  • carboxyl group-modified polyvinyl alcohol [trade name “KL-318” obtained from Kuraray Co., Ltd.] is dissolved in 100 parts of water on one side of the polarizer, and a water-soluble epoxy resin is dissolved in the aqueous solution.
  • the polarizing plate was cut into a square or rectangular size having a length direction of 30 mm to 50 mm and a width direction of 20 to 50 mm, and in the same manner as in Example 1, the dimensional change rate (% )
  • the back side polarizing plate was prepared as follows. First, the polyvinyl alcohol aqueous solution was apply
  • aqueous solution 5 parts of water-soluble polyamide epoxy resin (trade name “Smile Resin 650” manufactured by Taoka Chemical Industry Co., Ltd., aqueous solution with a solid content concentration of 30%) as a crosslinking agent is used for 6 parts of polyvinyl alcohol solid content.
  • a primer coating solution 5 parts of water-soluble polyamide epoxy resin (trade name “Smile Resin 650” manufactured by Taoka Chemical Industry Co., Ltd., aqueous solution with a solid content concentration of 30%) as a crosslinking agent is used for 6 parts of polyvinyl alcohol solid content.
  • the primer coating liquid was applied to the corona-treated surface with a microgravure coater and dried at 80 ° C. for 10 minutes to obtain a thickness of 0. A 2 ⁇ m primer layer was formed.
  • polyvinyl alcohol powder (trade name “PVA124” obtained from Kuraray Co., Ltd.) having an average polymerization degree of 2,400 and a saponification degree of 98.0 to 99.0 mol% was dissolved in hot water at 95 ° C.
  • An aqueous 8% polyvinyl alcohol solution was prepared.
  • the obtained aqueous solution was coated on the primer layer of the base film using a lip coater at room temperature and dried at 80 ° C. for 20 minutes to obtain a laminated film consisting of the base film / primer layer / polyvinyl alcohol layer.
  • the obtained laminated film was uniaxially stretched at a free end length of 5.8 times at a temperature of 160 ° C.
  • the total thickness of the laminated stretched film thus obtained was 28.5 ⁇ m, and the thickness of the polyvinyl alcohol layer was 5.0 ⁇ m.
  • the obtained laminated stretched film was dyed by being immersed in an aqueous solution of water / iodine / potassium iodide in a weight ratio of 100 / 0.35 / 10 at 26 ° C. for 90 seconds, and then washed with pure water at 10 ° C. Next, this laminated film was immersed in an aqueous solution of water / boric acid / potassium iodide in a weight ratio of 100 / 9.5 / 5 at 76 ° C. for 300 seconds to crosslink polyvinyl alcohol.
  • a polarizing laminated film in which a polarizer composed of a polyvinyl alcohol layer on which iodine was adsorbed and oriented was formed on a polypropylene base film was produced.
  • a polarizing plate comprising a TAC / polyvinyl alcohol polarizer / primer layer was obtained by peeling only the base film. Thereafter, a 5 ⁇ m-thick adhesive material (trade name “# L2” manufactured by Lintec Corporation) is pasted on the TAC surface side, and a 26 ⁇ m-thick brightness enhancement film (trade name “Advanced Polarized Film, Version made by 3M” is attached thereto. 3 ”) was pasted. About the polarizing plate created above, the polarizing plate is cut into a square or rectangular size of 30 mm to 50 mm in the long direction and 20 to 50 mm in the width direction, and the dimensional change rate (%) is obtained in the same manner as in Example 1. Asked.
  • Example 1 Thereafter, a 20 ⁇ m-thick adhesive (trade name “P-3132” manufactured by Lintec Corporation) was directly applied to the polarizer surface without the transparent protective layer, and then the liquid crystal integrated with the front plate in the same manner as in Example 1. A display panel was prepared and the amount of warpage in a high temperature environment was measured. The results are shown in the “warp amount” column of Table 1.
  • Example 1 The front plate integrated type is the same as in Example 1 except that the front side polarizing plate (with a polarizer thickness of 23 ⁇ m) used in Example 1 was used as the back side polarizing plate to be bonded to the liquid crystal cell. A liquid crystal display panel was produced and the amount of warpage in a high temperature environment was measured. The results are shown in the “warp amount” column of Table 1.
  • Example 2 As the front-side polarizing plate to be bonded to the liquid crystal cell, a product obtained by removing the adhesive on the TAC surface side and the brightness enhancement film of the rear-side polarizing plate (with a polarizer thickness of 11 ⁇ m) used in Example 1 was used.
  • the front plate is the same as in Example 1 except that the front side polarizing plate (with a polarizer thickness of 23 ⁇ m) used in Example 1 was used as the back side polarizing plate to be bonded to the liquid crystal cell.
  • a body-type liquid crystal display panel was produced and the amount of warpage in a high temperature environment was measured. The results are shown in the “warp amount” column of Table 1.
  • the front plate-integrated liquid crystal display panel has dimensions in the absorption axis direction when the polarizing plate on the front side of the liquid crystal cell is heated at 85 ° C. for 100 hours.
  • the change rate is a combination larger than the dimensional change rate in the absorption axis direction when the back side polarizing plate is heated at 85 ° C. for 100 hours.
  • the dimensional change rate in the absorption axis direction when the polarizing plate on the front side of the liquid crystal cell is heated at 85 ° C. for 100 hours is 1.2% or more.
  • the back side polarizing plate has a combination that satisfies the dimensional change rate in the absorption axis direction of 1.1% or less when heated at 85 ° C. for 100 hours.
  • the polarizer constituting the front side polarizing plate is thicker than the polarizer constituting the back side polarizing plate.
  • the amount of warpage of the liquid crystal display panel integrated with a front plate after standing for 240 hours in a high temperature environment is 0.5 mm or less in absolute value.
  • the curvature in the high temperature environment in the liquid crystal display panel which integrated the front plate can be eliminated, and the front plate integrated liquid crystal display panel which fits in the case of the final product in a high temperature environment is obtained. be able to.
  • Front plate 20: Adhesive or UV curable resin
  • 30 Front side polarizing plate, 35a, 35b: transparent protective film for the front-side polarizing plate
  • 37 Polarizer for front side polarizing plate
  • 40 Front plate integrated polarizing plate
  • 50 Back side polarizing plate
  • 55a, 55b transparent protective film for the back side polarizing plate
  • 57 Polarizer of the back side polarizing plate
  • 60 Liquid crystal cell
  • 80 Front panel integrated liquid crystal display panel.

Abstract

A set comprising: a polarization plate (40) integrated with a front plate, the front plate (10) being disposed on the viewing side of a liquid crystal cell, having a Young's modulus of at least 2 Gpa, and being disposed on the side farther from the liquid crystal cell, the polarization plate (40) being bonded to a front polarization plate (30), with an ultraviolet-curable resin or an adhesive (20) interposed therebetween; and a back polarization plate (50) disposed on the back-surface side of the liquid crystal cell, wherein the front polarization plate (30), when the front plate (10) is not bonded, has a greater rate of dimensional change in the absorption axis direction when heated at 85°C for 100 hours than the rate of dimensional change of the back polarization plate (50) in the absorption axis direction when heated at 85°C for 100 hours. This polarization plate set is bonded to the liquid crystal cell to yield a liquid crystal display panel integrated with a front plate.

Description

偏光板のセットおよび前面板一体型液晶表示パネルPolarizer set and front panel integrated liquid crystal display panel
 高温環境下での寸法収縮率が異なる背面側偏光板と前面板が一体化された前面側偏光板とからなる偏光板のセット、およびこれらを液晶セルに貼合した前面板一体型液晶表示パネルに関するものである。 A set of polarizing plates comprising a rear side polarizing plate and a front side polarizing plate integrated with a front plate, which have different dimensional shrinkage ratios in a high temperature environment, and a front plate integrated liquid crystal display panel in which these are bonded to a liquid crystal cell It is about.
 液晶表示装置は、従来から卓上計算機、電子時計、パーソナルコンピューターなどに使用されているが、近年急激にその需要が増加しており、最近では携帯電話やタブレット型端末などにも使用されるなど、その用途も広がっている。これらの液晶表示装置は通常、液晶セルの表裏に一対の偏光板が配置されて液晶表示パネルとなる。 Liquid crystal display devices have been used for desktop computers, electronic watches, personal computers, etc., but their demand has increased rapidly in recent years, and recently they are also used for mobile phones and tablet terminals. Its uses are also expanding. In these liquid crystal display devices, a pair of polarizing plates are usually arranged on the front and back of the liquid crystal cell to form a liquid crystal display panel.
 最近の市場では、画面が大型化した携帯電話やタブレット型端末等のモバイル機器の普及に伴い、その構成部材である液晶表示パネルの軽量化、薄型化が要求されており、液晶セルのガラスや前面板を薄くする傾向がある。また、界面における反射や光の散乱をなくして視認性を向上するために、前面板が粘着剤や紫外線硬化型樹脂で液晶表示パネルと一体化される傾向もある。 In recent markets, with the spread of mobile devices such as mobile phones and tablet terminals with larger screens, liquid crystal display panels, which are the components, are required to be lighter and thinner. There is a tendency to make the front plate thinner. In addition, in order to improve visibility by eliminating reflection and light scattering at the interface, the front plate tends to be integrated with the liquid crystal display panel with an adhesive or an ultraviolet curable resin.
 従来の液晶表示パネルでは、前面板および液晶セルが厚いため、高温環境下でも偏光板の収縮による反りは抑制されていたが、上記のような近年の前面板の厚さや液晶セルに使用されているガラスを薄くする傾向に伴い、高温環境下での偏光板の収縮に起因する液晶表示パネルの反りが発生し、最終製品の筐体に収まらないなどの問題がある。 In the conventional liquid crystal display panel, since the front plate and the liquid crystal cell are thick, the warpage due to the contraction of the polarizing plate is suppressed even in a high temperature environment. However, it is used for the thickness of the front plate and the liquid crystal cell as described above. With the tendency to make the glass thinner, there is a problem that the liquid crystal display panel warps due to the contraction of the polarizing plate in a high temperature environment and does not fit in the casing of the final product.
 このような液晶表示パネルの反りを抑制するために、以前から液晶セルの視認側と液晶セルの視認側とは反対側(背面側)に配置する偏光板の厚さを変更することで液晶表示パネルの反りを抑制する手法が開発されている。例えば、特開2012−58429号公報(特許文献1)では、液晶セルの視認側に配置する偏光板の偏光膜(本発明でいう偏光子)の厚さを、液晶セルの背面側に配置する偏光膜より薄くすることで液晶表示パネルの反りを抑制する方法が記載されている。 In order to suppress such warpage of the liquid crystal display panel, the liquid crystal display has been changed by changing the thickness of the polarizing plate disposed on the liquid crystal cell viewing side and the side opposite to the liquid crystal cell viewing side (back side). Techniques for suppressing panel warpage have been developed. For example, in Japanese Patent Application Laid-Open No. 2012-58429 (Patent Document 1), the thickness of a polarizing film (polarizer in the present invention) of a polarizing plate disposed on the viewing side of a liquid crystal cell is disposed on the back side of the liquid crystal cell. A method for suppressing warpage of a liquid crystal display panel by making it thinner than a polarizing film is described.
 しかし、高温環境下における液晶表示パネルの反りは、上記のとおり偏光子の厚さによる偏光板の収縮に起因するため、特許文献1のように視認側に配置する偏光板の偏光子の厚さを薄くした場合、特に視認性向上のために前面板を粘着剤や紫外線硬化型樹脂などで一体化させた液晶表示パネルの場合には、反りが発生することがあり、反りの抑制は、必ずしも満足のいくものではない。 However, since the warpage of the liquid crystal display panel in a high temperature environment is caused by the contraction of the polarizing plate due to the thickness of the polarizer as described above, the thickness of the polarizer of the polarizing plate arranged on the viewing side as in Patent Document 1 In the case of a liquid crystal display panel in which the front panel is integrated with an adhesive or an ultraviolet curable resin for improving visibility, warping may occur, and warpage is not necessarily suppressed. It is not satisfactory.
 また、特許第4666430号(特許文献2)には、プラスチック基板液晶セルを使用した液晶表示素子(本発明でいう液晶表示パネル)において、液晶セルの視認側および背面側の偏光板を構成する保護膜の厚さを変えることにより、プラスチック基板液晶セルの反り量が抑制された液晶表示素子について記載されている。この方法によると、液晶セルの反りを抑制するという目的は達成されているものの、視認性向上のために偏光板に前面板が一体化された状態で高温環境におかれた場合、特許文献2のように保護膜の厚さを変える方法では、保護膜の熱収縮に起因する液晶セルの反りが発生し、最終製品の筐体に収まらないという問題が生ずる場合がある。 Japanese Patent No. 4666430 (Patent Document 2) discloses a protection for constituting polarizing plates on the viewing side and the back side of a liquid crystal cell in a liquid crystal display element (a liquid crystal display panel referred to in the present invention) using a plastic substrate liquid crystal cell. It describes a liquid crystal display element in which the amount of warpage of a plastic substrate liquid crystal cell is suppressed by changing the thickness of the film. According to this method, although the purpose of suppressing the warpage of the liquid crystal cell has been achieved, in the case where the front plate is integrated with the polarizing plate in order to improve the visibility, it is disclosed in Patent Document 2 In the method of changing the thickness of the protective film as described above, the liquid crystal cell is warped due to the thermal contraction of the protective film, which may cause a problem that the liquid crystal cell does not fit in the case of the final product.
 本発明は、上記従来の課題を解決するためになされたものであり、その主たる目的は、液晶表示パネルとした際に高温環境下での反り量が抑制される偏光板のセット、およびこの偏光板のセットを液晶セルに貼合してなる前面板一体型液晶表示パネルを提供することにある。 The present invention has been made in order to solve the above-described conventional problems. The main object of the present invention is to provide a set of polarizing plates in which the amount of warpage in a high-temperature environment is suppressed when the liquid crystal display panel is used, and the polarized light. An object is to provide a liquid crystal display panel integrated with a front plate formed by bonding a set of plates to a liquid crystal cell.
 すなわち、本発明は、液晶セルの視認側に配置され、ヤング率が2GPa以上で液晶セルから遠い側となる前面板が紫外線硬化型樹脂または粘着剤を介して前面側偏光板に貼合されている前面板一体型偏光板と、液晶セルの背面側に配置される背面側偏光板とのセットであって、この前面側偏光板は、前面板に貼合されない状態で、85℃にて100時間加熱したときの吸収軸方向の寸法変化率が、この背面側偏光板の、85℃にて100時間加熱したときの吸収軸方向の寸法変化率より大きいことを特徴とする、偏光板のセットである。 That is, the present invention is arranged on the viewing side of the liquid crystal cell, and the front plate on the side far from the liquid crystal cell having a Young's modulus of 2 GPa or more is bonded to the front side polarizing plate via an ultraviolet curable resin or an adhesive. A set of a front plate-integrated polarizing plate and a rear side polarizing plate disposed on the back side of the liquid crystal cell, and the front side polarizing plate is not bonded to the front plate and is 100 at 85 ° C. A set of polarizing plates, characterized in that the dimensional change rate in the absorption axis direction when heated for a period of time is greater than the dimensional change rate in the absorption axis direction when heated at 85 ° C. for 100 hours. It is.
 上記偏光板のセットにおいて、前面側偏光板は、前面板に貼合されない状態で、85℃にて100時間加熱したときの吸収軸方向の寸法変化率が1.2%以上、好ましくは、1.3%以上の偏光板が好ましく、上記背面側偏光板は、85℃にて100時間加熱したときの吸収軸方向の寸法変化率が1.1%以下の偏光板が好ましい。 In the set of polarizing plates, the front side polarizing plate has a dimensional change rate in the absorption axis direction of 1.2% or more when heated at 85 ° C. for 100 hours without being bonded to the front plate, preferably 1 The polarizing plate of 0.3% or more is preferable, and the back side polarizing plate is preferably a polarizing plate having a dimensional change rate in the absorption axis direction of 1.1% or less when heated at 85 ° C. for 100 hours.
 上記偏光板のセットにおいて、上記の前面側偏光板および背面側偏光板はともに、ポリビニルアルコール系樹脂フィルムからなる偏光子の少なくとも一方の面に透明保護膜が積層された構造を有し、少なくとも一方の偏光板は、液晶セル側となる透明保護膜が面内位相差を有する偏光板のセットであってもよい。 In the set of polarizing plates, each of the front-side polarizing plate and the rear-side polarizing plate has a structure in which a transparent protective film is laminated on at least one surface of a polarizer made of a polyvinyl alcohol-based resin film. The polarizing plate may be a set of polarizing plates in which the transparent protective film on the liquid crystal cell side has an in-plane retardation.
 上記偏光板のセットにおいて、上記の前面側偏光板および背面側偏光板はともに、ポリビニルアルコール系樹脂フィルムからなる偏光子の両面に透明保護膜が積層された構造を有し、前面側偏光板を構成する偏光子が、背面側偏光板を構成する偏光子よりも厚い偏光板のセットでもよい。 In the set of polarizing plates, each of the front side polarizing plate and the rear side polarizing plate has a structure in which a transparent protective film is laminated on both surfaces of a polarizer made of a polyvinyl alcohol-based resin film. The set polarizer may be a set of polarizing plates thicker than the polarizer forming the back side polarizing plate.
 この背面側偏光板は、液晶セルから遠くなる側に他の光学フィルムが積層されていることが好ましい。 This back side polarizing plate preferably has another optical film laminated on the side far from the liquid crystal cell.
 前面側偏光板は、その吸収軸が液晶セルの短辺方向となり、背面側偏光板は、その吸収軸が液晶セルの長辺方向となっていることが好ましい。 The front side polarizing plate preferably has an absorption axis in the short side direction of the liquid crystal cell, and the back side polarizing plate has an absorption axis in the long side direction of the liquid crystal cell.
 本発明はまた、上記いずれかの偏光板のセットと、液晶セルとを備え、液晶セルの視認側に偏光板のセットを構成する前面板一体型偏光板がその偏光板側で貼着されており、液晶セルの背面側に偏光板のセットを構成する背面側偏光板が貼着されており、85℃にて240時間加熱したときの反り量が、絶対値で0.5mm以下、好ましくは、0.3mm以下である前面板一体型液晶表示パネルである。 The present invention also includes any one of the above polarizing plate sets and a liquid crystal cell, and a front plate integrated polarizing plate constituting the polarizing plate set is attached to the viewing side of the liquid crystal cell on the polarizing plate side. A back side polarizing plate constituting a set of polarizing plates is attached to the back side of the liquid crystal cell, and the amount of warpage when heated at 85 ° C. for 240 hours is 0.5 mm or less in absolute value, preferably The front plate integrated liquid crystal display panel is 0.3 mm or less.
 本発明によれば、前面板を一体化した液晶表示パネルにおける高温環境下での反りを解消することができ、高温環境下での最終製品の筐体に収まる前面板一体型液晶表示パネルを得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the curvature in the high temperature environment in the liquid crystal display panel which integrated the front plate can be eliminated, and the front plate integrated liquid crystal display panel which fits in the case of the final product in a high temperature environment is obtained. be able to.
 図1は、本発明に係る偏光板のセットにおける好ましい層構成の例を示す概略断面図である。
 図2は、本発明に係る前面板一体型液晶表示パネルにおける好ましい層構成の例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a preferred layer configuration in a set of polarizing plates according to the present invention.
FIG. 2 is a schematic cross-sectional view showing an example of a preferred layer structure in the front plate integrated liquid crystal display panel according to the present invention.
 以下、本発明に係る偏光板のセットおよびこれを用いた前面板一体型液晶表示パネルについて適宜、図を用いて説明するが、本発明はこれらの実施形態に限定されるものではない。 Hereinafter, a set of polarizing plates according to the present invention and a front panel integrated liquid crystal display panel using the same will be described with reference to the drawings as appropriate, but the present invention is not limited to these embodiments.
 まず、本発明の偏光板のセットは、前面板一体型偏光板40と背面側偏光板50から構成される。図1は、本発明に係る偏光板のセットにおける好ましい層構成の例の概略断面図を示したものである。図1を参照して、本発明の偏光板のセットを構成する前面板一体型偏光板40は、液晶セルの視認側に配置され、液晶セルから遠い側に配置される前面板10が、前面側偏光板30に紫外線硬化型樹脂または粘着剤20を介して貼り合わされたものである。なお、前面側偏光板30は、前面側偏光板の偏光子37の両面に、前面側偏光板の透明保護膜35a,35bがそれぞれ貼合されたものである。また背面側偏光板50は、背面側偏光板の偏光子57の両面に、背面側偏光板の透明保護膜55a,55bがそれぞれ貼合されたものである。 First, the set of polarizing plates of the present invention includes a front plate integrated polarizing plate 40 and a back side polarizing plate 50. FIG. 1 shows a schematic cross-sectional view of an example of a preferred layer structure in a set of polarizing plates according to the present invention. Referring to FIG. 1, a front plate integrated polarizing plate 40 constituting the set of polarizing plates of the present invention is disposed on the viewing side of the liquid crystal cell, and the front plate 10 disposed on the side far from the liquid crystal cell has a front surface. It is bonded to the side polarizing plate 30 via an ultraviolet curable resin or an adhesive 20. In addition, the front side polarizing plate 30 is obtained by bonding transparent protective films 35a and 35b of the front side polarizing plate to both surfaces of the polarizer 37 of the front side polarizing plate, respectively. Further, the back side polarizing plate 50 is obtained by bonding transparent protective films 55a and 55b of the back side polarizing plate to both surfaces of the polarizer 57 of the back side polarizing plate, respectively.
 本発明における前面板10は、液晶セルの反りの抑制や保護する役割から、そのヤング率が2GPa以上であるものとする。前面板10は、前記のヤング率を満たすのであれば、単層もしくは積層された物であっても良い。上記のとおり液晶セルの視認側、具体的には最終製品において最外面に配置されることから、屋外または半屋外での使用が想定される。したがって、耐久性の観点から、ガラスおよび強化ガラス等の無機材料、ポリカーボネート樹脂、アクリル樹脂等の有機材料などから構成されるのが好適である。上記前面板は、ヤング率が2GPa以上であるものであれば、例えば、タッチパネルを構成している強化ガラスやフィルムであってもよい。タッチパネルの方式については、特に限定はなく、静電容量方式、表面弾性波方式、抵抗膜方式、電磁誘導方式、光センサー方式、赤外線方式などが例示される。前記前面板10は、反射防止、防汚、電磁波遮蔽、近赤外線遮蔽、色調整、あるいはガラス飛散防止などの機能を有していてもよい。かかる機能を有する前面板は、例えば、これらの機能を有する少なくとも一つ以上のフィルム層を、上記前面板の少なくとも一方の面に積層したものでもよい。かかる多層からなる前面板は、例えば、上記のような有機材料もしくは無機材料の基板に上記機能を付与するために有効な剤を直接塗布する方法もしくは別途作成した上記のような機能を有する機能性のフィルムを貼合して作成してもよい。 The front plate 10 in the present invention has a Young's modulus of 2 GPa or more because of the role of suppressing or protecting the warpage of the liquid crystal cell. The front plate 10 may be a single layer or a stacked layer as long as the Young's modulus is satisfied. Since it is arranged on the viewing side of the liquid crystal cell as described above, specifically, on the outermost surface in the final product, it is assumed to be used outdoors or semi-outdoors. Therefore, from the viewpoint of durability, it is preferable to be composed of inorganic materials such as glass and tempered glass, organic materials such as polycarbonate resin and acrylic resin. The front plate may be, for example, tempered glass or a film constituting a touch panel as long as the Young's modulus is 2 GPa or more. The touch panel method is not particularly limited, and examples thereof include a capacitance method, a surface acoustic wave method, a resistive film method, an electromagnetic induction method, an optical sensor method, and an infrared method. The front plate 10 may have functions such as antireflection, antifouling, electromagnetic wave shielding, near infrared shielding, color adjustment, and glass scattering prevention. The front plate having such a function may be, for example, a laminate in which at least one film layer having these functions is laminated on at least one surface of the front plate. Such a multi-layer front plate is, for example, a method of directly applying an effective agent for imparting the above functions to a substrate made of an organic material or an inorganic material as described above, or a function having the above functions created separately. You may make and paste the film.
 前面板10および前面側偏光板30を貼り合わせる紫外線硬化型樹脂または粘着剤20は、その屈折率が前面板10に近い透明なものが好適である。そのような紫外線硬化型樹脂または粘着剤を採用することで、前面板と偏光板との界面における反射や光の散乱を無くし、視認性を向上させることができる。 The UV curable resin or adhesive 20 that bonds the front plate 10 and the front polarizing plate 30 is preferably a transparent one whose refractive index is close to that of the front plate 10. By adopting such an ultraviolet curable resin or pressure-sensitive adhesive, it is possible to eliminate reflection and light scattering at the interface between the front plate and the polarizing plate and improve visibility.
 紫外線硬化性樹脂としては、(メタ)アクリル酸エステルやエポキシ樹脂などの一般的な紫外線硬化性液状物を使用することができる。また、粘着剤としては、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテルなどをベースポリマーとしたものを用いることができる。なかでも、アクリル系粘着剤のように、光学的な透明性に優れ、透明性の高いアクリル系粘着剤を使用することが好ましい。ここで、「(メタ)アクリル酸エステル」とは、アクリル酸エステルおよびメタクリル酸エステルのいずれでもよいことを意味し、その他、(メタ)アクリレートなどというときの「(メタ)」も同様の趣旨である。 As the ultraviolet curable resin, a general ultraviolet curable liquid such as (meth) acrylic acid ester or epoxy resin can be used. Moreover, as an adhesive, what used the acrylic polymer, the silicone type polymer, polyester, polyurethane, polyether etc. as a base polymer can be used. Among them, it is preferable to use an acrylic pressure-sensitive adhesive that has excellent optical transparency and high transparency, such as an acrylic pressure-sensitive adhesive. Here, “(meth) acrylic acid ester” means that either an acrylic acid ester or a methacrylic acid ester may be used, and “(meth)” when referred to as (meth) acrylate or the like has the same meaning. is there.
 本発明において、偏光子37からなる前面側偏光板30は、これを85℃にて100時間加熱したときのフィルムの延伸方向(以下吸収軸方向ともいう)の寸法変化率は、好ましくは、1.2%以上3.0%以下であり、より好ましくは、1.3%以上2.0%以下である。前面側偏光板の寸法変化率の上限は、3.0%を大きく越えると、高温環境下で偏光板の収縮により液晶セルから剥離してしまうおそれがある。 In the present invention, the front side polarizing plate 30 comprising the polarizer 37 preferably has a dimensional change rate in the stretching direction of the film (hereinafter also referred to as the absorption axis direction) when heated at 85 ° C. for 100 hours. .2% to 3.0%, more preferably 1.3% to 2.0%. If the upper limit of the dimensional change rate of the front side polarizing plate greatly exceeds 3.0%, the polarizing plate may be peeled off from the liquid crystal cell in a high temperature environment due to contraction of the polarizing plate.
 偏光子57を適用した背面側偏光板50は、これを85℃にて100時間加熱したときの吸収軸方向の寸法変化率が0.1%以上1.1%以下のものが好ましいく、0.5%以上1.1%以下がより好ましい。背面側偏光板の寸法変化率の下限値は、0.1%より低くなりすぎると、光学特性に支障をきたし、液晶表示時にコントラストが低い問題が発生するおそれがある。 The back side polarizing plate 50 to which the polarizer 57 is applied preferably has a dimensional change rate in the absorption axis direction of 0.1% to 1.1% when heated at 85 ° C. for 100 hours. It is more preferably 5% or more and 1.1% or less. If the lower limit value of the dimensional change rate of the back-side polarizing plate is lower than 0.1%, the optical characteristics may be hindered, and there may be a problem that the contrast is low during liquid crystal display.
 本発明の偏光板セットにおいては、前面側偏光板を構成する偏光子37は、液晶セルの背面側に配置された背面側偏光板50を構成する背面側偏光板の偏光子57(以下、偏光子57ともいう)より厚い形態が、好ましい。前面側偏光板を構成する偏光子37の厚さは、好ましくは、20μm以上である。液晶セルの背面側偏光板50の偏光子57の厚さは、好ましくは、15μm以下である。これらの条件を満たす偏光板のセットを液晶セル60の両面に配置することが、前面板が一体化された液晶表示パネル(図2)の反り量を抑制するのに有効である。 In the polarizing plate set of the present invention, the polarizer 37 constituting the front side polarizing plate is a back side polarizing plate 57 constituting the back side polarizing plate 50 disposed on the back side of the liquid crystal cell (hereinafter referred to as polarization). A thicker form is also preferred. The thickness of the polarizer 37 constituting the front side polarizing plate is preferably 20 μm or more. The thickness of the polarizer 57 of the back side polarizing plate 50 of the liquid crystal cell is preferably 15 μm or less. Disposing a set of polarizing plates satisfying these conditions on both surfaces of the liquid crystal cell 60 is effective in suppressing the amount of warpage of the liquid crystal display panel (FIG. 2) in which the front plate is integrated.
 前面側および背面側の偏光板に用いられる偏光子としては、上記の寸法変化率に関する条件および/または偏光子の厚さを満たす限り、任意の適切なものを用いることができる。偏光子としては、ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向されたものが用いられる。偏光子を構成するポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルおよびこれと共重合可能な他の単量体の共重合体などが例示される。酢酸ビニルに共重合される他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などを挙げることができる。ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度、好ましくは98モル%以上である。このポリビニルアルコール系樹脂はさらに変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールなども使用し得る。またポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度、好ましくは1,500~5,000程度である。具体的なポリビニルアルコール系樹脂や二色性色素としては、例えば、特開2012−159778号に例示されているポリビニルアルコール系樹脂や二色性色素が挙げられる。 As the polarizer used for the front-side and back-side polarizing plates, any appropriate one can be used as long as the above-mentioned conditions regarding the dimensional change rate and / or the thickness of the polarizer are satisfied. As the polarizer, a polyvinyl alcohol-based resin film having a dichroic dye adsorbed and oriented is used. The polyvinyl alcohol resin constituting the polarizer can be obtained by saponifying a polyvinyl acetate resin. Examples of the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Examples of other monomers copolymerized with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group. The saponification degree of the polyvinyl alcohol-based resin is usually about 85 to 100 mol%, preferably 98 mol% or more. This polyvinyl alcohol-based resin may be further modified, and for example, polyvinyl formal and polyvinyl acetal modified with aldehydes may be used. The degree of polymerization of the polyvinyl alcohol resin is usually about 1,000 to 10,000, preferably about 1,500 to 5,000. Specific polyvinyl alcohol resins and dichroic dyes include, for example, polyvinyl alcohol resins and dichroic dyes exemplified in JP2012-159778A.
 かかるポリビニルアルコール系樹脂を製膜したものが、偏光子の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は特に限定されるものでなく、特開2012−159778号に記載の方法など公知の方法で製膜することができる。ポリビニルアルコール系樹脂からなる原反フィルムの膜厚は特に限定されないが、例えば、1~150μm程度である。延伸のしやすさなども考慮すれば、その膜厚は10μm以上であるのが好ましい。 A film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizer. The method for forming the polyvinyl alcohol-based resin is not particularly limited, and the film can be formed by a known method such as the method described in JP2012-159778A. The film thickness of the raw film made of polyvinyl alcohol resin is not particularly limited, but is, for example, about 1 to 150 μm. Considering easiness of stretching, the film thickness is preferably 10 μm or more.
 また、偏光子は、例えば、上記のようなポリビニルアルコール系樹脂フィルムを一軸延伸する工程で延伸し、ポリビニルアルコール系樹脂フィルムを二色性色素で染色してその二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、およびこのホウ酸水溶液による処理後に水洗する工程を経て、最後に乾燥させて製造される。偏光子の製造工程におけるポリビニルアルコール系樹脂フィルムの延伸、染色、ホウ酸処理、水洗工程、乾燥工程は、例えば、特開2012−159778号に記載されている方法に準じて行ってもよい。 In addition, the polarizer is, for example, a step of uniaxially stretching the polyvinyl alcohol resin film as described above, a step of dyeing the polyvinyl alcohol resin film with a dichroic dye and adsorbing the dichroic dye, The polyvinyl alcohol resin film on which the dichroic dye is adsorbed is manufactured by a process of treating with a boric acid aqueous solution and a step of washing with water after the treatment with the boric acid aqueous solution and finally drying. You may perform the extending | stretching of the polyvinyl alcohol-type resin film in the manufacturing process of a polarizer, dyeing | staining, a boric-acid process, a water washing process, and a drying process according to the method described in Unexamined-Japanese-Patent No. 2012-159778, for example.
 本発明で規定する前面側偏光板30および背面側偏光板50はともに、上記のように製造される偏光子の少なくとも一方の面に透明保護膜が積層された構造を有する。この透明保護膜としては、適宜の透明樹脂から形成されているものを用いることができる。具体的には、透明性や均一な光学特性、機械強度、熱安定性などに優れるポリマーからなるものを用いるのが好ましい。このような透明保護膜としては、例えば、トリアセチルセルロースおよびジアセチルセルロース等のセルロース系フィルム、ポリエチレンテレフタレート、ポリエチレンイソフタレートおよびポリブチレンテレフタレート等のポリエステル系フィルム、ポリメチル(メタ)アクリレートおよびポリエチル(メタ)アクリレート等のアクリル樹脂系フィルム、ポリカーボネート系フィルム、ポリエーテルスルホン系フィルム、ポリスルホン系フィルム、ポリイミド系フィルム、ポリオレフィン系フィルム、ポリノルボルネン系フィルムなどを用いることができるが、これらに限定されるものではない。 Both the front-side polarizing plate 30 and the back-side polarizing plate 50 defined in the present invention have a structure in which a transparent protective film is laminated on at least one surface of the polarizer produced as described above. As this transparent protective film, what is formed from an appropriate transparent resin can be used. Specifically, it is preferable to use a polymer made of a polymer excellent in transparency, uniform optical properties, mechanical strength, thermal stability, and the like. Examples of such transparent protective films include cellulose films such as triacetyl cellulose and diacetyl cellulose, polyester films such as polyethylene terephthalate, polyethylene isophthalate, and polybutylene terephthalate, polymethyl (meth) acrylate, and polyethyl (meth) acrylate. Acrylic resin film, polycarbonate film, polyethersulfone film, polysulfone film, polyimide film, polyolefin film, polynorbornene film and the like can be used, but are not limited thereto.
 前面側偏光板30に適用される透明保護膜35a,35bおよび背面側偏光板50に適用される透明保護膜55a,55bは、同じものであってもよいし、それぞれ独立で、異なるものであってもよい。また、液晶セルに近い方の透明保護膜である35bもしくは55aの両者もしくは一方が無い形態でも良い。本発明では、少なくとも一方の偏光板における液晶セル側に設けられる透明保護膜が面内位相差を有することが好ましい。 The transparent protective films 35a and 35b applied to the front side polarizing plate 30 and the transparent protective films 55a and 55b applied to the back side polarizing plate 50 may be the same or independent and different. May be. Moreover, the form without both or one of 35b or 55a which is a transparent protective film close | similar to a liquid crystal cell may be sufficient. In the present invention, it is preferable that the transparent protective film provided on the liquid crystal cell side in at least one polarizing plate has an in-plane retardation.
 透明保護膜の面内位相差は、一軸延伸または二軸延伸によって付与することができる。その面内位相差値は、適用される液晶セルの種類に合わせて適宜設定すればよいが、一般には30nm以上とするのが好ましい。面内位相差値の上限は、特に限定されないが、例えば300nm程度までで十分である。 The in-plane retardation of the transparent protective film can be imparted by uniaxial stretching or biaxial stretching. The in-plane retardation value may be appropriately set according to the type of liquid crystal cell to be applied, but is generally preferably 30 nm or more. The upper limit of the in-plane retardation value is not particularly limited, but for example, up to about 300 nm is sufficient.
 上記の透明保護膜は、偏光子への貼合に先立って、その貼合面に、ケン化処理、コロナ処理、プライマー処理、アンカーコーティング処理などの易接着処理が施されてもよい。透明保護膜の厚さは、通常5~200μm程度の範囲で、好ましくは10μm以上であり、また好ましくは80μm以下、さらに好ましくは40μm以下である。 The above transparent protective film may be subjected to easy adhesion treatment such as saponification treatment, corona treatment, primer treatment, anchor coating treatment on the bonding surface prior to bonding to the polarizer. The thickness of the transparent protective film is usually in the range of about 5 to 200 μm, preferably 10 μm or more, preferably 80 μm or less, more preferably 40 μm or less.
 透明保護膜の表面には、必要に応じてハードコート層、反射防止層または防眩層等の表面処理層を設けてもよい。ハードコート層は、偏光板表面の傷付き防止のために形成される表面処理層であり、主に紫外線硬化型樹脂、例えばアクリル系やシリコーン系などの樹脂から透明保護膜との密着性や硬度に優れるものが適宜に選定され、透明保護膜の表面に形成することができる。 If necessary, a surface treatment layer such as a hard coat layer, an antireflection layer or an antiglare layer may be provided on the surface of the transparent protective film. The hard coat layer is a surface treatment layer formed to prevent scratches on the surface of the polarizing plate. Adhesion and hardness with a transparent protective film mainly from an ultraviolet curable resin such as an acrylic or silicone resin. Is excellently selected and can be formed on the surface of the transparent protective film.
 また、反射防止層は、偏光板の表面において外光の反射防止を目的として形成される表面処理層であり、公知の方法で形成することができる。防眩層は、外光が偏光板の表面に映りこんで発生する視認性の阻害を防止するために形成される表面処理層であり、例えばサンドブラスト方式やエンボス加工方式等による粗面化方式や紫外線硬化型樹脂に透明微粒子を混合する方式などにより透明保護膜の表面が凸凹構成となるように形成されるのが一般的である。 The antireflection layer is a surface treatment layer formed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be formed by a known method. The anti-glare layer is a surface treatment layer that is formed in order to prevent the visibility from being generated when external light is reflected on the surface of the polarizing plate, for example, a roughening method such as a sandblasting method or an embossing method, In general, the surface of the transparent protective film is formed to have an uneven structure by a method of mixing transparent fine particles with an ultraviolet curable resin.
 上記の透明保護膜を、偏光子の少なくとも一方の面に貼合したものが偏光板となる。偏光板としては、上記の透明保護膜を、偏光子の両面に貼合したものであってもよい。偏光子と透明保護膜の貼合は、特に限定されるものではないが、エポキシ系ポリマーからなる接着剤や粘着剤などを用いて行なうことができる。かかる接着剤層または粘着剤層は、水溶液の塗布乾燥層などとして形成されるものであるが、その水溶液の調整に際し、必要に応じて他の添加剤や酸等の触媒も配合することができる。 A polarizing plate is obtained by bonding the transparent protective film to at least one surface of a polarizer. As the polarizing plate, the transparent protective film described above may be bonded to both sides of the polarizer. Although bonding of a polarizer and a transparent protective film is not specifically limited, It can carry out using the adhesive agent, adhesive, etc. which consist of an epoxy-type polymer. The adhesive layer or the pressure-sensitive adhesive layer is formed as an aqueous solution coating / drying layer or the like, and other additives and catalysts such as acids can be blended as necessary when adjusting the aqueous solution. .
 本発明において、偏光板は、その使用に際して他の光学機能を示す光学層を一層または二層以上積層して用いることができる。その光学層については特に限定はなく、例えば、反射層、半透過型反射層、位相差板、輝度向上フィルムなどを挙げることができる。前記した偏光子と透明保護膜からなる偏光板に、さらに位相差板が積層されている楕円偏光板または円偏光板、前記した偏光子と透明保護膜からなる偏光板の片側が視野角補償フィルムとなっている偏光板、あるいは前記した偏光子と透明保護膜からなら偏光板に、さらに輝度向上フィルムが積層されている偏光板とすることもできる。 In the present invention, the polarizing plate can be used by stacking one or more optical layers exhibiting other optical functions when used. The optical layer is not particularly limited, and examples thereof include a reflective layer, a transflective reflective layer, a retardation plate, and a brightness enhancement film. An elliptical polarizing plate or a circular polarizing plate in which a retardation plate is further laminated on a polarizing plate made of the polarizer and the transparent protective film, and a viewing angle compensation film on one side of the polarizing plate made of the polarizer and the transparent protective film. Or a polarizing plate in which a brightness enhancement film is further laminated on the polarizing plate.
 位相差板は、特にモバイル用途の画像表示装置に使用される楕円偏光または円偏光モードの複合偏光板を形成しうるλ板(1/2λ板または1/4λ板)が、前記の保護膜上に積層され有効に用いられる。楕円偏光または円偏光モードの複合偏光板は入射する偏光方向が直線偏光の場合は楕円偏光または円偏光に、入射する偏光方向が楕円偏光または円偏光の場合は直線偏光に変える機能を有している。特に楕円偏光または円偏光を直線偏光に、直線偏光を楕円偏光または円偏光に変えられる位相差板としては1/4λ板と呼ばれるものが使用される。また、1/2λ板は直線偏光の方向を変える機能を有している。 The retardation plate is a λ plate (1 / 2λ plate or 1 / 4λ plate) that can form an elliptically polarized light or a circularly polarized light composite polarizing plate used for an image display device for mobile use, in particular, on the protective film. Are used effectively. The composite polarizing plate of the elliptical polarization mode or the circular polarization mode has a function of changing to an elliptical polarization or a circular polarization when the incident polarization direction is a linear polarization, and changing to a linear polarization when the incident polarization direction is an elliptical polarization or a circular polarization. Yes. In particular, as a phase difference plate that can convert elliptically polarized light or circularly polarized light into linearly polarized light and linearly polarized light into elliptically polarized light or circularly polarized light, what is called a quarter λ plate is used. The 1 / 2λ plate has a function of changing the direction of linearly polarized light.
 位相差板の具体例としては、ポリカーボネート系、ポリビニルアルコール系、ポリスチレン系、ポリメチルメタクリレート系、ポリプロピレンのようなポリオレフィン系、ポリアリレート系、ポリアミド系、ポリオレフィン系、ポリノルボルネン系等から選ばれるポリマーを延伸処理して得られる延伸フィルムが例示される。かかる延伸フィルムは、一軸や二軸等の適宜な方式で処理したものであってよい。また、熱収縮性フィルムとの接着下に収縮力および/または延伸力をかけることでフィルムの厚さ方向の屈折率を制御した複屈折性フィルムでもよい。 Specific examples of the retardation plate include polymers selected from polycarbonate, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polyolefins such as polypropylene, polyarylate, polyamide, polyolefin, polynorbornene, and the like. The stretched film obtained by extending | stretching is illustrated. Such a stretched film may be processed by an appropriate method such as uniaxial or biaxial. Moreover, the birefringent film which controlled the refractive index of the thickness direction of a film by applying shrinkage force and / or extending | stretching force under adhesion | attachment with a heat-shrinkable film may be sufficient.
 輝度向上フィルムは、液晶表示装置等における輝度の向上を目的として用いられ、その例としては、屈折率の異方性が互いに異なる薄膜フィルムを複数枚積層して反射率に異方性が生じるように設計された反射型偏光分離シート、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持した円偏光分離シートなどが挙げられる。 The brightness enhancement film is used for the purpose of improving the brightness in a liquid crystal display device or the like. For example, a plurality of thin film films having different refractive index anisotropies are laminated to produce anisotropy in reflectance. And a reflection-type polarization separation sheet designed in the above, a cholesteric liquid crystal polymer alignment film, and a circular polarization separation sheet in which the alignment liquid crystal layer is supported on a film substrate.
 本発明において、背面側偏光板50は、上記した他の光学機能を示す光学層を液晶セルから遠くなる側に一層または二層以上積層して用いることが好ましい。 In the present invention, the back-side polarizing plate 50 is preferably used by laminating one or more optical layers exhibiting other optical functions as described above on the side far from the liquid crystal cell.
 上記の各種光学層は、粘着剤または接着剤を用いて偏光板と一体化されるが、そのために用いられる粘着剤または接着剤は、特に限定されるものではなく適宜のものを選択して使用すればよい。接着作業の簡便性や光学歪の発生防止などの観点から、粘着剤を使用することが好ましい。粘着剤には特に限定はなく、例えば、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテルなどをベースポリマーとしたものを用いることができる。なかでも、アクリル系粘着剤のように、光学的な透明性に優れ、適度な濡れ性や凝集力を保持し、基材との接着性にも優れ、さらには耐熱性などを有し、高温環境下で浮きや剥がれ等の剥離問題を生じないものを選択して用いることが好ましい。 The various optical layers described above are integrated with the polarizing plate using a pressure-sensitive adhesive or an adhesive, but the pressure-sensitive adhesive or the adhesive used for this purpose is not particularly limited and is used by selecting an appropriate one. do it. It is preferable to use a pressure-sensitive adhesive from the viewpoint of easy bonding work and prevention of optical distortion. There are no particular limitations on the pressure-sensitive adhesive, and for example, an acrylic polymer, silicone polymer, polyester, polyurethane, polyether or the like can be used as the base polymer. Above all, like acrylic pressure-sensitive adhesives, it has excellent optical transparency, retains appropriate wettability and cohesion, has excellent adhesion to substrates, and has heat resistance, etc. It is preferable to select and use one that does not cause peeling problems such as floating and peeling under the environment.
 また、粘着剤層には、必要に応じて光散乱性を示すための微粒子を含有させてもよく、ガラス繊維やガラスビーズ、樹脂ビーズ、金属粉やその他の無機粉末等からなる充填剤、顔料や着色剤、酸化防止剤、紫外線吸収剤などが配合されていてもよい。紫外線吸収剤には、サリチル酸エステル系化合物やベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物などがある。 Further, the pressure-sensitive adhesive layer may contain fine particles for exhibiting light scattering properties, if necessary, fillers and pigments made of glass fibers, glass beads, resin beads, metal powders and other inorganic powders, etc. Or a coloring agent, an antioxidant, an ultraviolet absorber, or the like may be blended. Examples of ultraviolet absorbers include salicylic acid ester compounds, benzophenone compounds, benzotriazole compounds, cyanoacrylate compounds, and nickel complex compounds.
 前記した偏光板を構成する透明保護膜または偏光板上に設けられた光学層には、液晶セル等の他部材と接着するために粘着剤層を設けることができる。その粘着剤層は、アクリル系等の従来に準じた適宜の粘着剤にて形成することができる。特に、高温環境下での剥がれ現象の防止、熱膨張差等による光学特性の低下や前面板一体型液晶表示パネルの反り防止、ひいては高品質で耐久性に優れる液晶画像装置の形成などの観点より、耐熱性に優れる粘着剤層であることが好ましい。粘着剤層は必要に応じて必要な面に設ければよく、例えば、偏光子と透明保護膜からなる偏光板の透明保護膜について言及するならば、必要に応じて透明保護膜の片面または両面に粘着剤層を設ければよい。なお、粘着剤層には、例えば、アクリル系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系、ゴム系等の適宜なものを用いることができる。 An adhesive layer can be provided on the transparent protective film constituting the polarizing plate or the optical layer provided on the polarizing plate in order to adhere to other members such as a liquid crystal cell. The pressure-sensitive adhesive layer can be formed of an appropriate pressure-sensitive adhesive such as an acrylic type. In particular, from the viewpoint of prevention of peeling phenomenon under high temperature environment, deterioration of optical characteristics due to thermal expansion difference, warpage of liquid crystal display panel with integrated front plate, and formation of high quality and durable liquid crystal image device. It is preferable that the pressure-sensitive adhesive layer has excellent heat resistance. The pressure-sensitive adhesive layer may be provided on a necessary surface as necessary. For example, if mention is made of a transparent protective film of a polarizing plate comprising a polarizer and a transparent protective film, one or both surfaces of the transparent protective film as required. An adhesive layer may be provided on the surface. For the pressure-sensitive adhesive layer, for example, an appropriate material such as acrylic, silicone, polyester, polyurethane, polyether, or rubber can be used.
 偏光板や光学部材に設けた粘着剤層が表面に露出する場合には、その粘着剤層を実用に供するまでの間、汚染防止等を目的にセパレータにて仮着カバーすることが好ましい。セパレータは、上記の透明保護膜等に準じた適宜な薄葉体に、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブテン等の適宜な剥離剤による剥離コートを設ける方式などにより形成することができる。 When the pressure-sensitive adhesive layer provided on the polarizing plate or the optical member is exposed on the surface, it is preferable to temporarily cover with a separator for the purpose of preventing contamination until the pressure-sensitive adhesive layer is put to practical use. The separator is formed by, for example, a method of providing a release coat with an appropriate release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide on an appropriate thin leaf according to the above-described transparent protective film or the like. be able to.
 以上に説明した本発明の偏光板のセットは、液晶セルの短辺と前記前面側偏光板30の吸収軸とが成す角度は、通常、±45度以内であり、好ましくは±10度以内である。液晶セルの長辺と前記背面側偏光板の吸収軸とが成す角度は、通常、±45度以内であり、好ましくは±10度以内である。前面側偏光板30は、その吸収軸が液晶セルの短辺方向と略平行であり、背面側偏光板は、その吸収軸が液晶セルの長辺方向と略平行であることがより好ましい。 In the set of polarizing plates of the present invention described above, the angle formed by the short side of the liquid crystal cell and the absorption axis of the front side polarizing plate 30 is usually within ± 45 degrees, preferably within ± 10 degrees. is there. The angle formed by the long side of the liquid crystal cell and the absorption axis of the back-side polarizing plate is usually within ± 45 degrees, and preferably within ± 10 degrees. More preferably, the front side polarizing plate 30 has an absorption axis substantially parallel to the short side direction of the liquid crystal cell, and the back side polarizing plate has an absorption axis substantially parallel to the long side direction of the liquid crystal cell.
 次に、本発明に係る前面板一体型液晶表示パネルについて説明する。本発明に係る前面板一体型液晶表示パネルは、前記した前面板一体型偏光板40および背面側偏光板50を液晶セルに貼合したものであり、図2に本発明に係る前面板一体型液晶表示パネルにおける好ましい層構成の例を概略断面図で示した。図2を参照して、本発明の前面板一体型液晶表示パネル80は、図1の偏光板のセットを構成する前面板一体型偏光板40を液晶セル60の視認側に、背面側偏光板50を液晶セル60の背面側にそれぞれ粘着剤を介して貼合した構成である。 Next, the front plate integrated liquid crystal display panel according to the present invention will be described. The front plate integrated liquid crystal display panel according to the present invention is obtained by bonding the above-described front plate integrated polarizing plate 40 and the back side polarizing plate 50 to a liquid crystal cell, and FIG. 2 shows the front plate integrated type according to the present invention. An example of a preferable layer structure in the liquid crystal display panel is shown in a schematic sectional view. Referring to FIG. 2, the front plate integrated liquid crystal display panel 80 of the present invention has a front plate integrated polarizing plate 40 constituting the set of polarizing plates of FIG. 50 is bonded to the back side of the liquid crystal cell 60 via an adhesive.
 液晶セル60と偏光板のセットの貼合に用いる粘着剤としては、透明性、耐候性、耐熱性などに優れるアクリル系樹脂をベースポリマーとした粘着剤が好ましい。 The pressure-sensitive adhesive used for bonding the liquid crystal cell 60 and the polarizing plate set is preferably a pressure-sensitive adhesive based on an acrylic resin having excellent transparency, weather resistance, heat resistance, and the like.
 本発明の前面板一体型液晶表示パネル80は、85℃にて240時間加熱したときの反り量が、絶対値で0.5mm以下、好ましくは0.3mm以下のものとなる。したがって、高温環境下での反りが抑制され、最終製品の筐体に収まる前面板一体型液晶表示パネルとなる。 The front plate-integrated liquid crystal display panel 80 of the present invention has an absolute value of 0.5 mm or less, preferably 0.3 mm or less when heated at 85 ° C. for 240 hours. Therefore, warpage under a high temperature environment is suppressed, and a front plate integrated liquid crystal display panel that fits in the casing of the final product is obtained.
 以下に、実施例および比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す%および部は、特記ない限り重量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In the examples, “%” and “part” representing the content or amount used are based on weight unless otherwise specified.
 〔実施例1〕
 (1)偏光板のセットの作製
 前面側偏光板(偏光板1)は、次のように作製した。まず、厚さ60μmのポリビニルアルコールフィルム(平均重合度約2,400、ケン化度99.9モル%以上)を、乾式延伸により約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥し、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚さ23μmの偏光子を得た。次に、この偏光子の片側に、水100部に対し、カルボキシル基変性ポリビニルアルコール〔(株)クラレから入手した商品名“KL−318”〕を3部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業(株)から入手した商品名“スミレーズレジン 650(30)”、固形分濃度30%の水溶液〕を1.5部添加したエポキシ系接着剤を塗布し、透明保護膜として厚さ40μmのトリアセチルセルロースフィルム〔コニカミノルタオプト(株)社製の商品名“KC4UY”〕を貼り合せ、その反対側には前記の接着剤を用いて、ノルボルネン系樹脂で延伸されていないフィルム〔日本ゼオン(株)製の商品名“ZEONOR”〕を貼合した。
[Example 1]
(1) Preparation of set of polarizing plates The front side polarizing plate (polarizing plate 1) was prepared as follows. First, a polyvinyl alcohol film having a thickness of 60 μm (average polymerization degree of about 2,400, saponification degree of 99.9 mol% or more) was uniaxially stretched about 5 times by dry stretching, and while maintaining a tension state, After immersing in pure water of 1 ° C. for 1 minute, it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds. Then, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, the film was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a polarizer having a thickness of 23 μm in which iodine was adsorbed and oriented on the polyvinyl alcohol film. Next, 3 parts of carboxyl group-modified polyvinyl alcohol [trade name “KL-318” obtained from Kuraray Co., Ltd.] is dissolved in 100 parts of water on one side of the polarizer, and a water-soluble epoxy resin is dissolved in the aqueous solution. Applying an epoxy adhesive with 1.5 parts of a polyamide epoxy additive [trade name “Smileise Resin 650 (30)” obtained from Taoka Chemical Co., Ltd., aqueous solution with a solid content concentration of 30%] Then, a 40 μm-thick triacetyl cellulose film [trade name “KC4UY” manufactured by Konica Minolta Opto Co., Ltd.] is bonded as a transparent protective film, and the above adhesive is used on the opposite side to form a norbornene resin. A film [trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.] that was not stretched was bonded.
 背面側偏光板(偏光板2)は、次のように作製した。まず、厚さ30μmのポリビニルアルコールフィルム(平均重合度約2,400、ケン化度99.9モル%以上)を、乾式延伸により約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥し、ポリビニルアルコールフィルムにヨウ素が吸着配向された厚さ11μmの偏光子を得た。この偏光子に対し、前面側偏光板と同様の方法で透明保護膜を貼合した。その後、TAC面側に5μm厚の粘着材〔リンテック(株)製の商品名“#L2”〕を貼合し、そこに26μm厚の輝度向上フィルム(3M製の商品名“Advanced Polarized Film,Version 3”)を貼合した。 The back side polarizing plate (polarizing plate 2) was produced as follows. First, a 30 μm-thick polyvinyl alcohol film (average polymerization degree of about 2,400, saponification degree of 99.9 mol% or more) was uniaxially stretched by about 5 times by dry stretching, and while maintaining a tension state, After immersing in pure water of 1 ° C. for 1 minute, it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds. Then, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, the film was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a 11 μm-thick polarizer in which iodine was adsorbed and oriented on a polyvinyl alcohol film. A transparent protective film was bonded to this polarizer in the same manner as the front side polarizing plate. Thereafter, a 5 μm-thick adhesive material (trade name “# L2” manufactured by Lintec Corporation) is bonded to the TAC surface side, and a 26 μm-thick brightness enhancement film (trade name “Advanced Polarized Film, Version manufactured by 3M” is attached thereto. 3 ") was pasted.
 上記(1)で作製した前面側偏光板および背面側偏光板について、高温環境下における偏光板の寸法変化率は、次の方法で測定した。まず、作製したそれぞれの偏光板を、長尺方向30mm~50mm、幅方向20~50mmの正方形もしくは長方形に裁断し、85℃の環境下に100時間静置した。次に、裁断時の長尺方向(吸収軸方向)の寸法(L)および高温環境下に静置した後の長尺方向の寸法(L)を(株)ニコン製の二次元測定器“NEXIV VMR−12072”を用いて測定し、以下の式から寸法変化率(%)を求めた。結果を表1の「偏光板の寸法変化率」の欄に示した。
 寸法変化率=[(L−L)/L]×100
About the front side polarizing plate and back side polarizing plate produced by said (1), the dimensional change rate of the polarizing plate in a high temperature environment was measured with the following method. First, each of the produced polarizing plates was cut into a square or a rectangle having a length direction of 30 mm to 50 mm and a width direction of 20 to 50 mm, and left standing at 85 ° C. for 100 hours. Next, the dimension (L 0 ) in the longitudinal direction (absorption axis direction) at the time of cutting and the dimension (L 1 ) in the longitudinal direction after standing in a high temperature environment are two-dimensional measuring instruments manufactured by Nikon Corporation. Measurement was performed using “NEXIV VMR-12072”, and the dimensional change rate (%) was determined from the following equation. The results are shown in the column of “Dimensional change rate of polarizing plate” in Table 1.
Dimensional change rate = [(L 0 −L 1 ) / L 0 ] × 100
 (2)前面板一体型液晶表示パネルの作製
 (1)で作製した偏光板のセットを液晶セルに貼合し、前面板一体型液晶表示パネルを作製した。(1)で作製した偏光板のノルボルネン系樹脂“ZEONOR”側の表面に、厚さ20μmの粘着剤〔リンテック(株)製の商品名“P−3132”〕を塗布した後、前面側偏光板を液晶セルの短辺に対して偏光子の吸収軸が平行になるように5インチサイズに裁断し、背面側偏光板を液晶セルの長辺に対して偏光子の吸収軸が平行になるように5インチサイズに裁断した。次いで、裁断した偏光板をそれぞれ粘着剤側で液晶セルに貼り合せ、前面側偏光板のトリアセチルセルロースフィルム側に紫外線硬化型光学弾性樹脂〔デクセリアス(株)製の商品名“Super View Resin”〕を塗布し、その上にヤング率が70GPaで、厚さが0.55mmの前面板〔コーニング社製の商品名“Gorilla”〕を積層した。その後、前面板側から紫外線を照射〔フュージョンUVシステムズ社製の“Dバルブ”、積算光量1200mJ/cm〕を実施し、前面板一体型液晶セルを作製した。
(2) Production of front plate integrated liquid crystal display panel The set of polarizing plates produced in (1) was bonded to a liquid crystal cell to produce a front plate integrated liquid crystal display panel. After applying a 20 μm thick adhesive (trade name “P-3132” manufactured by Lintec Corporation) to the surface of the polarizing plate produced in (1) on the side of the norbornene resin “ZEONOR”, the front side polarizing plate Is cut to a size of 5 inches so that the absorption axis of the polarizer is parallel to the short side of the liquid crystal cell, and the back side polarizing plate is so that the absorption axis of the polarizer is parallel to the long side of the liquid crystal cell. It was cut into 5 inch size. Next, each of the cut polarizing plates is bonded to a liquid crystal cell on the adhesive side, and an ultraviolet curable optical elastic resin (trade name “Super View Resin” manufactured by Dexerias Co., Ltd.) on the triacetyl cellulose film side of the front polarizing plate. A front plate (trade name “Gorilla” manufactured by Corning) having a Young's modulus of 70 GPa and a thickness of 0.55 mm was laminated thereon. Thereafter, ultraviolet rays were irradiated from the front plate side (“D bulb” manufactured by Fusion UV Systems Co., Ltd., integrated light quantity 1200 mJ / cm 2 ) to produce a front plate integrated liquid crystal cell.
 上記(2)で作製した前面板一体型液晶表示パネルについて、高温環境下における反り量を次の方法で測定した。まず、作製した前面板一体型液晶表示パネルを、85℃の環境下に240時間静置した後、前面板を上側にして(株)ニコン製の二次元測定器“NEXIV VMR−12072”の測定台上に置いた。次いで、測定台の表面に焦点を合わせ、そこを基準とし、前面板一体型液晶表示パネルの4角部、4辺の各中央および前面板一体型液晶表示パネル表面の中央に焦点を合わせ、基準とした焦点からの距離を測定した後、測定台からの距離が絶対値で最も長い距離を反り量とした。測定結果を表1の「反り量」の欄に示した。 For the liquid crystal display panel integrated with the front plate produced in (2) above, the amount of warpage in a high temperature environment was measured by the following method. First, the manufactured front plate integrated liquid crystal display panel was allowed to stand in an environment of 85 ° C. for 240 hours, and then measured with a Nikon two-dimensional measuring instrument “NEXIV VMR-1207” with the front plate facing upward. Placed on the table. Next, focus on the surface of the measurement table, and use that as a reference to focus on the four corners of the front panel integrated liquid crystal display panel, the center of each side, and the center of the front panel integrated liquid crystal display panel surface. After measuring the distance from the focal point, the longest distance in absolute value from the measurement table was taken as the amount of warpage. The measurement results are shown in the “warp amount” column of Table 1.
 〔実施例2〕
 (1)偏光板のセットの作製
 基材フィルム上にポリビニルアルコール水溶液を塗布し、乾燥して、偏光子製造用の原反となる積層フィルムを作製した。ここでは、厚さ110μmで融点163℃のポリプロピレンフィルムを基材フィルムとした。
 次に平均重合度1,100でケン化度99.5モル%のアセトアセチル基変性ポリビニルアルコール粉末(日本合成化学工業(株)製の商品名“ゴーセファイマー Z−200”)を、95℃の熱水に溶解し、3%濃度の水溶液を調製した。この水溶液に架橋剤として、水溶性ポリアミドエポキシ樹脂(田岡化学工業(株)製の商品名“スミレーズレジン 650”、固形分濃度30%の水溶液)を、ポリビニルアルコールの固形分6部あたり5部の割合で混合し、プライマー用塗工液とした。
 そして、先のポリプロピレンからなる基材フィルムにコロナ処理を施した後、そのコロナ処理面に、プライマー用塗工液をマイクログラビアコーターで塗工し、80℃で10分間乾燥して、厚さ0.2μmのプライマー層を形成した。
 次に平均重合度2,400でケン化度98.0~99.0モル%のポリビニルアルコール粉末((株)クラレから入手した商品名“PVA124”)を、95℃の熱水に溶解し、8%濃度のポリビニルアルコール水溶液を調製した。得られた水溶液を、前記基材フィルムのプライマー層上にリップコーターを用いて室温で塗工し、80℃で20分間乾燥して、基材フィルム/プライマー層/ポリビニルアルコール層からなる積層フィルムを作製した。
 得られた積層フィルムを、温度160℃で5.8倍に自由端縦一軸延伸した。こうして得られた積層延伸フィルムの全体厚さは28.5μmであり、ポリビニルアルコール層の厚さは5.0μmであった。
 得られた積層延伸フィルムを、水/ヨウ素/ヨウ化カリウムの重量比100/0.35/10の水溶液に26℃で90秒間浸漬して染色した後、10℃の純水で洗浄した。次にこの積層フィルムを、水/ホウ酸/ヨウ化カリウムの重量比100/9.5/5の水溶液に76℃で300秒間浸漬して、ポリビニルアルコールを架橋させた。引き続き、10℃の純水で10秒間洗浄し、最後に80℃で200秒間の乾燥処理を行った。以上の操作により、ポリプロピレン基材フィルム上に、ヨウ素が吸着配向しているポリビニルアルコール層からなる偏光子が形成されている偏光性積層フィルムを作製した。
 上記で作製した偏光性積層フィルムの基材フィルムとは反対面(偏光子面)に、水100部に対し、カルボキシル基変性ポリビニルアルコール〔(株)クラレから入手した商品名“KL−318”〕を3部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業(株)から入手した商品名“スミレーズレジン 650(30)”、固形分濃度30%の水溶液〕を1.5部添加したエポキシ系接着剤を塗布し、透明保護膜として厚さ25μmのトリアセチルセルロースフィルム(TAC)〔コニカミノルタオプト(株)社製の商品名“KC2UA”〕を貼り合せ、基材フィルムのみを剥離することによって、TAC/ポリビニルアルコール系偏光子/プライマー層からなる偏光板を得た。
 次にプライマー面側にエポキシ化合物と光カチオン重合開始剤を含む紫外線硬化型接着剤を塗工し、ノルボルネン系樹脂で延伸されていないフィルム〔日本ゼオン(株)製の商品名“ZEONOR”〕を貼合し、ノルボルネン系樹脂側から紫外線を照射〔フュージョンUVシステムズ社製の“Dバルブ”、積算光量1200mJ/cm〕を実施し、接着剤を硬化させることにより、TAC/ポリビニルアルコール系偏光子/プライマー層/ノルボルネン系樹脂の偏光板(3)を得た。
 その後、TAC面側に5μm厚の粘着材〔リンテック(株)製の商品名“#L2”]を貼合し、そこに26μm厚の輝度向上フィルム(3M製の商品名“Advanced Polarized Film,Version 3”)を貼合した。
[Example 2]
(1) Preparation of polarizing plate set A polyvinyl alcohol aqueous solution was applied on a base film and dried to prepare a laminated film that was a raw material for manufacturing a polarizer. Here, a polypropylene film having a thickness of 110 μm and a melting point of 163 ° C. was used as the base film.
Next, an acetoacetyl group-modified polyvinyl alcohol powder having an average degree of polymerization of 1,100 and a saponification degree of 99.5 mol% (trade name “GOHSEIMER Z-200” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) is obtained at 95 ° C. 3% strength aqueous solution was prepared. To this aqueous solution, 5 parts of water-soluble polyamide epoxy resin (trade name “Smile Resin 650” manufactured by Taoka Chemical Industry Co., Ltd., aqueous solution with a solid content concentration of 30%) as a crosslinking agent is used for 6 parts of polyvinyl alcohol solid content. Were mixed at a ratio of 1 to 5 to obtain a primer coating solution.
Then, after the corona treatment was applied to the base film made of polypropylene, the primer coating liquid was applied to the corona-treated surface with a microgravure coater and dried at 80 ° C. for 10 minutes to obtain a thickness of 0. A 2 μm primer layer was formed.
Next, polyvinyl alcohol powder (trade name “PVA124” obtained from Kuraray Co., Ltd.) having an average polymerization degree of 2,400 and a saponification degree of 98.0 to 99.0 mol% was dissolved in hot water at 95 ° C., An aqueous 8% polyvinyl alcohol solution was prepared. The obtained aqueous solution was coated on the primer layer of the base film using a lip coater at room temperature and dried at 80 ° C. for 20 minutes to obtain a laminated film consisting of the base film / primer layer / polyvinyl alcohol layer. Produced.
The obtained laminated film was uniaxially stretched at a free end length of 5.8 times at a temperature of 160 ° C. The total thickness of the laminated stretched film thus obtained was 28.5 μm, and the thickness of the polyvinyl alcohol layer was 5.0 μm.
The obtained laminated stretched film was dyed by being immersed in an aqueous solution of water / iodine / potassium iodide in a weight ratio of 100 / 0.35 / 10 at 26 ° C. for 90 seconds, and then washed with pure water at 10 ° C. Next, this laminated film was immersed in an aqueous solution of water / boric acid / potassium iodide in a weight ratio of 100 / 9.5 / 5 at 76 ° C. for 300 seconds to crosslink polyvinyl alcohol. Subsequently, the substrate was washed with pure water at 10 ° C. for 10 seconds, and finally dried at 80 ° C. for 200 seconds. By the above operation, a polarizing laminated film in which a polarizer composed of a polyvinyl alcohol layer on which iodine was adsorbed and oriented was formed on a polypropylene base film was produced.
On the surface (polarizer surface) opposite to the base film of the polarizing laminate film prepared above, 100 parts of water, carboxyl group-modified polyvinyl alcohol [trade name “KL-318” obtained from Kuraray Co., Ltd.] 3 parts of the product is dissolved in a polyamide epoxy-based additive that is a water-soluble epoxy resin (trade name “Smileze Resin 650 (30)” obtained from Taoka Chemical Industry Co., Ltd., aqueous solution with a solid content of 30%). An epoxy adhesive with 1.5 parts added was applied, and a 25 μm thick triacetylcellulose film (TAC) [trade name “KC2UA” manufactured by Konica Minolta Opto, Inc.] was bonded as a transparent protective film. A polarizing plate comprising a TAC / polyvinyl alcohol polarizer / primer layer was obtained by peeling only the base film.
Next, an ultraviolet curable adhesive containing an epoxy compound and a cationic photopolymerization initiator is applied to the primer surface side, and a film that is not stretched with a norbornene resin (trade name “ZEONOR” manufactured by Nippon Zeon Co., Ltd.) TAC / polyvinyl alcohol polarizer by bonding and irradiating ultraviolet rays from the norbornene resin side (“D bulb” manufactured by Fusion UV Systems, integrated light quantity 1200 mJ / cm 2 ) and curing the adhesive A polarizing plate (3) of / primer layer / norbornene resin was obtained.
Thereafter, a 5 μm-thick adhesive material [trade name “# L2” manufactured by Lintec Co., Ltd.] is bonded to the TAC surface side, and a 26 μm-thick brightness enhancement film (trade name “Advanced Polarized Film, Version made by 3M” is attached thereto. 3 ") was pasted.
 上記で作製した偏光板(3)について、偏光板を長尺方向30mm~50mm、幅方向20~50mmの正方形もしくは長方形の大きさに裁断し、実施例1と同様のやり方で、寸法変化率(%)を求めた。
 前面側偏光板に偏光板(2)のTAC面側の粘着剤および輝度向上フィルムを取り除いた物を、背面側偏光板として偏光板(3)のノルボルネン系樹脂“ZEONOR”側の表面に前記粘着剤を塗布し、液晶セルに貼合した以外は実施例1と同様にして前面板一体型液晶セルを作製し、高温環境下における反り量を測定した。結果を表1の「反り量」の欄に示した。
About the polarizing plate (3) produced above, the polarizing plate was cut into a square or rectangular size having a length direction of 30 mm to 50 mm and a width direction of 20 to 50 mm, and the dimensional change rate ( %).
A product obtained by removing the adhesive and brightness enhancement film on the TAC surface side of the polarizing plate (2) from the front side polarizing plate is used as the back side polarizing plate on the surface of the polarizing plate (3) on the side of the norbornene resin “ZEONOR”. A front plate integrated liquid crystal cell was prepared in the same manner as in Example 1 except that the agent was applied and bonded to the liquid crystal cell, and the amount of warpage in a high temperature environment was measured. The results are shown in the “warp amount” column of Table 1.
 〔実施例3]
 液晶セルに貼合する前面側偏光板として、実施例1で用いた背面側偏光板(偏光子の厚さが11μmのもの)のTAC面側の粘着剤および輝度向上フィルムを取り除いた物を用いた以外は、実施例1と同様にして前面板一体型液晶表示パネルを作製し、高温環境下における反り量を測定した。結果を表1の「反り量」の欄に示した。
[Example 3]
As the front-side polarizing plate to be bonded to the liquid crystal cell, the one obtained by removing the adhesive on the TAC surface side and the brightness enhancement film of the rear-side polarizing plate (thickness of the polarizer of 11 μm) used in Example 1 is used. A front panel integrated liquid crystal display panel was prepared in the same manner as in Example 1 except that the amount of warpage in a high temperature environment was measured. The results are shown in the “warp amount” column of Table 1.
 〔実施例4〕
(1)偏光板のセットの作製
 前面側偏光板は、次のように作製した。まず、厚さ75μmのポリビニルアルコールフィルム(平均重合度約2,400、ケン化度99.9モル%以上)を、乾式延伸により約5倍に一軸延伸し、さらに緊張状態を保ったまま、60℃の純水に1分間浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.05/5/100の水溶液に28℃で60秒間浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が8.5/8.5/100の水溶液に72℃で300秒間浸漬した。引き続き26℃の純水で20秒間洗浄した後、65℃で乾燥し、ポリビニルアルコールフィルムにヨウ素が吸着配向している厚さ28μmの偏光子を得た。次に、この偏光子の片側に、水100部に対し、カルボキシル基変性ポリビニルアルコール〔(株)クラレから入手した商品名“KL−318”〕を3部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業(株)から入手した商品名“スミレーズレジン 650(30)”、固形分濃度30%の水溶液〕を1.5部添加したエポキシ系接着剤を塗布し、透明保護膜として厚さ40μmのトリアセチルセルロースフィルム〔コニカミノルタオプト(株)社製の商品名“KC4UY”〕を貼り合せ、TAC/PVA層からなる偏光板を得た。
 その後、上記で作成した偏光板について、偏光板を長尺方向30mm~50mm、幅方向20~50mmの正方形もしくは長方形の大きさに裁断し、実施例1と同様のやり方で、寸法変化率(%)を求めた。
Example 4
(1) Preparation of polarizing plate set The front-side polarizing plate was prepared as follows. First, a 75 μm-thick polyvinyl alcohol film (average polymerization degree of about 2,400, saponification degree of 99.9 mol% or more) was uniaxially stretched by about 5 times by dry stretching, and while maintaining a tension state, After immersing in pure water of 1 ° C. for 1 minute, it was immersed in an aqueous solution having a weight ratio of iodine / potassium iodide / water of 0.05 / 5/100 at 28 ° C. for 60 seconds. Then, it was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 8.5 / 8.5 / 100 at 72 ° C. for 300 seconds. Subsequently, the film was washed with pure water at 26 ° C. for 20 seconds and then dried at 65 ° C. to obtain a 28 μm thick polarizer in which iodine was adsorbed and oriented on the polyvinyl alcohol film. Next, 3 parts of carboxyl group-modified polyvinyl alcohol [trade name “KL-318” obtained from Kuraray Co., Ltd.] is dissolved in 100 parts of water on one side of the polarizer, and a water-soluble epoxy resin is dissolved in the aqueous solution. Applying an epoxy adhesive with 1.5 parts of a polyamide epoxy additive [trade name “Smileise Resin 650 (30)” obtained from Taoka Chemical Co., Ltd., aqueous solution with a solid content concentration of 30%] Then, a 40 μm thick triacetyl cellulose film [trade name “KC4UY” manufactured by Konica Minolta Opto Co., Ltd.] was bonded as a transparent protective film to obtain a polarizing plate comprising a TAC / PVA layer.
Thereafter, with respect to the polarizing plate prepared above, the polarizing plate was cut into a square or rectangular size having a length direction of 30 mm to 50 mm and a width direction of 20 to 50 mm, and in the same manner as in Example 1, the dimensional change rate (% )
 背面側偏光板は次のように作成した。まず、基材フィルム上にポリビニルアルコール水溶液を塗布し、乾燥して、偏光子製造用の原反となる積層フィルムを作製した。ここでは、厚さ110μmで融点163℃のポリプロピレンフィルムを基材フィルムとした。
 次に平均重合度1,100でケン化度99.5モル%のアセトアセチル基変性ポリビニルアルコール粉末(日本合成化学工業(株)製の商品名“ゴーセファイマー Z−200”)を、95℃の熱水に溶解し、3%濃度の水溶液を調製した。この水溶液に架橋剤として、水溶性ポリアミドエポキシ樹脂(田岡化学工業(株)製の商品名“スミレーズレジン 650”、固形分濃度30%の水溶液)を、ポリビニルアルコールの固形分6部あたり5部の割合で混合し、プライマー用塗工液とした。
 そして、先のポリプロピレンからなる基材フィルムにコロナ処理を施した後、そのコロナ処理面に、プライマー用塗工液をマイクログラビアコーターで塗工し、80℃で10分間乾燥して、厚さ0.2μmのプライマー層を形成した。
 次に平均重合度2,400でケン化度98.0~99.0モル%のポリビニルアルコール粉末((株)クラレから入手した商品名“PVA124”)を、95℃の熱水に溶解し、8%濃度のポリビニルアルコール水溶液を調製した。得られた水溶液を、前記基材フィルムのプライマー層上にリップコーターを用いて室温で塗工し、80℃で20分間乾燥して、基材フィルム/プライマー層/ポリビニルアルコール層からなる積層フィルムを作製した。
 得られた積層フィルムを、温度160℃で5.8倍に自由端縦一軸延伸した。こうして得られた積層延伸フィルムの全体厚さは28.5μmであり、ポリビニルアルコール層の厚さは5.0μmであった。
 得られた積層延伸フィルムを、水/ヨウ素/ヨウ化カリウムの重量比100/0.35/10の水溶液に26℃で90秒間浸漬して染色した後、10℃の純水で洗浄した。次にこの積層フィルムを、水/ホウ酸/ヨウ化カリウムの重量比100/9.5/5の水溶液に76℃で300秒間浸漬して、ポリビニルアルコールを架橋させた。引き続き、10℃の純水で10秒間洗浄し、最後に80℃で200秒間の乾燥処理を行った。以上の操作により、ポリプロピレン基材フィルム上に、ヨウ素が吸着配向しているポリビニルアルコール層からなる偏光子が形成されている偏光性積層フィルムを作製した。
 上記で作製した偏光性積層フィルムの基材フィルムとは反対面(偏光子面)に、水100部に対し、カルボキシル基変性ポリビニルアルコール〔(株)クラレから入手した商品名“KL−318”〕を3部溶解し、その水溶液に水溶性エポキシ樹脂であるポリアミドエポキシ系添加剤〔田岡化学工業(株)から入手した商品名“スミレーズレジン 650(30)”、固形分濃度30%の水溶液〕を1.5部添加したエポキシ系接着剤を塗布し、透明保護膜として厚さ25μmのトリアセチルセルロースフィルム(TAC)〔コニカミノルタオプト(株)社製の商品名“KC2UA”〕を貼り合せ、基材フィルムのみを剥離することによって、TAC/ポリビニルアルコール系偏光子/プライマー層からなる偏光板を得た。その後、TAC面側に5μm厚の粘着材〔リンテック(株)製の商品名“#L2”〕を貼合し、そこに26μm厚の輝度向上フィルム(3M製の商品名“Advanced Polarized Film,Version 3”)を貼合した。
 上記で作成した偏光板について、偏光板を長尺方向30mm~50mm、幅方向20~50mmの正方形もしくは長方形の大きさに裁断し、実施例1と同様のやり方で、寸法変化率(%)を求めた。
 その後、透明保護層が無い偏光子面に直接厚さ20μmの粘着剤〔リンテック(株)製の商品名“P−3132”〕を塗布した後、実施例1と同様にして前面板一体型液晶表示パネルを作製し、高温環境下における反り量を測定した。結果を表1の「反り量」の欄に示した。
The back side polarizing plate was prepared as follows. First, the polyvinyl alcohol aqueous solution was apply | coated on the base film, and it dried and produced the laminated | multilayer film used as the raw material for polarizer manufacture. Here, a polypropylene film having a thickness of 110 μm and a melting point of 163 ° C. was used as the base film.
Next, an acetoacetyl group-modified polyvinyl alcohol powder having an average degree of polymerization of 1,100 and a saponification degree of 99.5 mol% (trade name “GOHSEIMER Z-200” manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) is obtained at 95 ° C. 3% strength aqueous solution was prepared. To this aqueous solution, 5 parts of water-soluble polyamide epoxy resin (trade name “Smile Resin 650” manufactured by Taoka Chemical Industry Co., Ltd., aqueous solution with a solid content concentration of 30%) as a crosslinking agent is used for 6 parts of polyvinyl alcohol solid content. Were mixed at a ratio of 1 to 5 to obtain a primer coating solution.
Then, after the corona treatment was applied to the base film made of polypropylene, the primer coating liquid was applied to the corona-treated surface with a microgravure coater and dried at 80 ° C. for 10 minutes to obtain a thickness of 0. A 2 μm primer layer was formed.
Next, polyvinyl alcohol powder (trade name “PVA124” obtained from Kuraray Co., Ltd.) having an average polymerization degree of 2,400 and a saponification degree of 98.0 to 99.0 mol% was dissolved in hot water at 95 ° C., An aqueous 8% polyvinyl alcohol solution was prepared. The obtained aqueous solution was coated on the primer layer of the base film using a lip coater at room temperature and dried at 80 ° C. for 20 minutes to obtain a laminated film consisting of the base film / primer layer / polyvinyl alcohol layer. Produced.
The obtained laminated film was uniaxially stretched at a free end length of 5.8 times at a temperature of 160 ° C. The total thickness of the laminated stretched film thus obtained was 28.5 μm, and the thickness of the polyvinyl alcohol layer was 5.0 μm.
The obtained laminated stretched film was dyed by being immersed in an aqueous solution of water / iodine / potassium iodide in a weight ratio of 100 / 0.35 / 10 at 26 ° C. for 90 seconds, and then washed with pure water at 10 ° C. Next, this laminated film was immersed in an aqueous solution of water / boric acid / potassium iodide in a weight ratio of 100 / 9.5 / 5 at 76 ° C. for 300 seconds to crosslink polyvinyl alcohol. Subsequently, the substrate was washed with pure water at 10 ° C. for 10 seconds, and finally dried at 80 ° C. for 200 seconds. By the above operation, a polarizing laminated film in which a polarizer composed of a polyvinyl alcohol layer on which iodine was adsorbed and oriented was formed on a polypropylene base film was produced.
On the surface (polarizer surface) opposite to the base film of the polarizing laminate film prepared above, 100 parts of water, carboxyl group-modified polyvinyl alcohol [trade name “KL-318” obtained from Kuraray Co., Ltd.] 3 parts of the product is dissolved in a polyamide epoxy-based additive that is a water-soluble epoxy resin (trade name “Smileze Resin 650 (30)” obtained from Taoka Chemical Industry Co., Ltd., aqueous solution with a solid content of 30%). An epoxy adhesive with 1.5 parts added was applied, and a 25 μm thick triacetylcellulose film (TAC) [trade name “KC2UA” manufactured by Konica Minolta Opto, Inc.] was bonded as a transparent protective film. A polarizing plate comprising a TAC / polyvinyl alcohol polarizer / primer layer was obtained by peeling only the base film. Thereafter, a 5 μm-thick adhesive material (trade name “# L2” manufactured by Lintec Corporation) is pasted on the TAC surface side, and a 26 μm-thick brightness enhancement film (trade name “Advanced Polarized Film, Version made by 3M” is attached thereto. 3 ") was pasted.
About the polarizing plate created above, the polarizing plate is cut into a square or rectangular size of 30 mm to 50 mm in the long direction and 20 to 50 mm in the width direction, and the dimensional change rate (%) is obtained in the same manner as in Example 1. Asked.
Thereafter, a 20 μm-thick adhesive (trade name “P-3132” manufactured by Lintec Corporation) was directly applied to the polarizer surface without the transparent protective layer, and then the liquid crystal integrated with the front plate in the same manner as in Example 1. A display panel was prepared and the amount of warpage in a high temperature environment was measured. The results are shown in the “warp amount” column of Table 1.
 〔比較例1〕
 液晶セルに貼合する背面側偏光板として、実施例1で用いた前面側偏光板(偏光子の厚さが23μmのもの)を用いた以外は、実施例1と同様にして前面板一体型液晶表示パネルを作製し、高温環境下における反り量を測定した。結果を表1の「反り量」の欄に示した。
[Comparative Example 1]
The front plate integrated type is the same as in Example 1 except that the front side polarizing plate (with a polarizer thickness of 23 μm) used in Example 1 was used as the back side polarizing plate to be bonded to the liquid crystal cell. A liquid crystal display panel was produced and the amount of warpage in a high temperature environment was measured. The results are shown in the “warp amount” column of Table 1.
 〔比較例2〕
 液晶セルに貼合する前面側偏光板として、実施例1で用いた背面側偏光板(偏光子の厚さが11μmのもの)のTAC面側の粘着剤および輝度向上フィルムを取り除いた物を用い、液晶セルに貼合する背面側偏光板として、実施例1で用いた前面側偏光板(偏光子の厚さが23μmのもの)を用いた以外は、実施例1と同様にして前面板一体型液晶表示パネルを作製し、高温環境下における反り量を測定した。結果を表1の「反り量」の欄に示した。
[Comparative Example 2]
As the front-side polarizing plate to be bonded to the liquid crystal cell, a product obtained by removing the adhesive on the TAC surface side and the brightness enhancement film of the rear-side polarizing plate (with a polarizer thickness of 11 μm) used in Example 1 was used. The front plate is the same as in Example 1 except that the front side polarizing plate (with a polarizer thickness of 23 μm) used in Example 1 was used as the back side polarizing plate to be bonded to the liquid crystal cell. A body-type liquid crystal display panel was produced and the amount of warpage in a high temperature environment was measured. The results are shown in the “warp amount” column of Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、実施例1から4では、前面板一体型液晶表示パネルは、液晶セルの前面側の偏光板の85℃にて100時間加熱したときの吸収軸方向の寸法変化率が、背面側偏光板の85℃にて100時間加熱したときの吸収軸方向の寸法変化率より大きい組み合わせになっている。 As is clear from the results in Table 1, in Examples 1 to 4, the front plate-integrated liquid crystal display panel has dimensions in the absorption axis direction when the polarizing plate on the front side of the liquid crystal cell is heated at 85 ° C. for 100 hours. The change rate is a combination larger than the dimensional change rate in the absorption axis direction when the back side polarizing plate is heated at 85 ° C. for 100 hours.
 実施例1から4では、前面板一体型液晶表示パネルは、液晶セルの前面側の偏光板の85℃にて100時間加熱したときの吸収軸方向の寸法変化率が1.2%以上であり、背面側偏光板は、85℃にて100時間加熱したときの吸収軸方向の寸法変化率が1.1%以下であることを満足する組み合わせになっている。また、実施例1、2および4では、前面側偏光板を構成する偏光子が、背面側偏光板を構成する偏光子よりも厚くなっている。
 実施例1から4においては、高温環境下で240時間静置した後の前面板一体型液晶表示パネルの反り量は、絶対値で0.5mm以下であることがわかる。
In Examples 1 to 4, in the liquid crystal display panel integrated with a front plate, the dimensional change rate in the absorption axis direction when the polarizing plate on the front side of the liquid crystal cell is heated at 85 ° C. for 100 hours is 1.2% or more. The back side polarizing plate has a combination that satisfies the dimensional change rate in the absorption axis direction of 1.1% or less when heated at 85 ° C. for 100 hours. In Examples 1, 2, and 4, the polarizer constituting the front side polarizing plate is thicker than the polarizer constituting the back side polarizing plate.
In Examples 1 to 4, it can be seen that the amount of warpage of the liquid crystal display panel integrated with a front plate after standing for 240 hours in a high temperature environment is 0.5 mm or less in absolute value.
 本発明によれば、前面板を一体化した液晶表示パネルにおける高温環境下での反りを解消することができ、高温環境下での最終製品の筐体に収まる前面板一体型液晶表示パネルを得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the curvature in the high temperature environment in the liquid crystal display panel which integrated the front plate can be eliminated, and the front plate integrated liquid crystal display panel which fits in the case of the final product in a high temperature environment is obtained. be able to.
 10:前面板、
 20:粘着剤または紫外線硬化型樹脂、
 30:前面側偏光板、
 35a,35b:前面側偏光板の透明保護膜、
 37:前面側偏光板の偏光子、
 40:前面板一体型偏光板、
 50:背面側偏光板、
 55a,55b:背面側偏光板の透明保護膜、
 57:背面側偏光板の偏光子、
 60:液晶セル、
 80:前面板一体型液晶表示パネル。
10: Front plate,
20: Adhesive or UV curable resin,
30: Front side polarizing plate,
35a, 35b: transparent protective film for the front-side polarizing plate,
37: Polarizer for front side polarizing plate,
40: Front plate integrated polarizing plate,
50: Back side polarizing plate,
55a, 55b: transparent protective film for the back side polarizing plate,
57: Polarizer of the back side polarizing plate,
60: Liquid crystal cell,
80: Front panel integrated liquid crystal display panel.

Claims (7)

  1.  液晶セルの視認側に配置され、ヤング率が2Gpa以上で液晶セルから遠い側となる、前面板が紫外線硬化型樹脂または粘着剤を介して前面側偏光板に貼合されている前面板一体型偏光板と、前記液晶セルの背面側に配置される背面側偏光板とのセットであって、
     前記前面側偏光板は、前記前面板に貼合されない状態で、85℃にて100時間加熱したときの吸収軸方向の寸法変化率が、
     前記背面側偏光板の、85℃にて100時間加熱したときの吸収軸方向の寸法変化率より大きいことを特徴とする、偏光板のセット。
    A front plate integrated type that is disposed on the viewing side of the liquid crystal cell and has a Young's modulus of 2 Gpa or more and that is far from the liquid crystal cell, and the front plate is bonded to the front side polarizing plate via an ultraviolet curable resin or adhesive. A set of a polarizing plate and a back side polarizing plate disposed on the back side of the liquid crystal cell,
    The front side polarizing plate has a dimensional change rate in the absorption axis direction when heated at 85 ° C. for 100 hours without being bonded to the front plate.
    A set of polarizing plates, wherein the back side polarizing plate has a larger dimensional change rate in the absorption axis direction when heated at 85 ° C. for 100 hours.
  2.  前記前面側偏光板は、前記前面板に貼合されない状態で、85℃にて100時間加熱したときの吸収軸方向の寸法変化率が1.2%以上であり、
     前記背面側偏光板は、85℃にて100時間加熱したときの吸収軸方向の寸法変化率が1.1%以下である請求項1に記載の偏光板のセット。
    The front side polarizing plate has a dimensional change rate of 1.2% or more in the absorption axis direction when heated at 85 ° C. for 100 hours without being bonded to the front plate,
    The set of polarizing plates according to claim 1, wherein the back side polarizing plate has a dimensional change rate in the absorption axis direction of 1.1% or less when heated at 85 ° C for 100 hours.
  3.  前記前面側偏光板および前記背面側偏光板はともに、ポリビニルアルコール系樹脂フィルムからなる偏光子の少なくとも一方の面に透明保護膜が積層された構造を有し、前記前面側偏光板を構成する偏光子が、前記背面側偏光板を構成する偏光子よりも厚い、請求項1または2に記載の偏光板のセット。 Both the front side polarizing plate and the back side polarizing plate have a structure in which a transparent protective film is laminated on at least one surface of a polarizer made of a polyvinyl alcohol-based resin film, and constitute the front side polarizing plate. The set of polarizing plates according to claim 1 or 2, wherein a polarizer is thicker than a polarizer constituting the back side polarizing plate.
  4.  前記前面側偏光板および前記背面側偏光板はともに、ポリビニルアルコール系樹脂フィルムからなる偏光子の両面に透明保護膜が積層された構造を有し、少なくとも一方の偏光板は、液晶セル側に設けられる透明保護膜が面内位相差を有する、請求項1~3のいずれかにに記載の偏光板のセット。 Both the front-side polarizing plate and the rear-side polarizing plate have a structure in which a transparent protective film is laminated on both sides of a polarizer made of a polyvinyl alcohol-based resin film, and at least one polarizing plate is provided on the liquid crystal cell side. The set of polarizing plates according to any one of claims 1 to 3, wherein the transparent protective film has an in-plane retardation.
  5.  前記背面側偏光板は、液晶セルから遠くなる側に他の光学フィルムが積層されている、請求項1~4のいずれかに記載の偏光板のセット。 The set of polarizing plates according to any one of claims 1 to 4, wherein the back side polarizing plate has another optical film laminated on the side farther from the liquid crystal cell.
  6.  前記前面側偏光板は、その吸収軸が液晶セルの短辺方向と略平行であり、前記背面側偏光板は、その吸収軸が液晶セルの長辺方向と略平行である、請求項1~5のいずれかに記載の偏光板のセット。 2. The front side polarizing plate has an absorption axis substantially parallel to the short side direction of the liquid crystal cell, and the back side polarizing plate has an absorption axis substantially parallel to the long side direction of the liquid crystal cell. A set of polarizing plates according to claim 5.
  7.  請求項1~6のいずれかに記載の偏光板のセットと、液晶セルとを備え、
     前記液晶セルの視認側に前記偏光板のセットを構成する前面板一体型偏光板がその偏光板側で貼着されており、前記液晶セルの背面側に前記偏光板のセットを構成する背面側偏光板が貼着されており、
     85℃にて240時間加熱したときの反り量が、絶対値で0.5mm以下であることを特徴とする、前面板一体型液晶表示パネル。
    A set of polarizing plates according to any one of claims 1 to 6, and a liquid crystal cell,
    A front plate-integrated polarizing plate constituting the set of polarizing plates is attached to the viewing side of the liquid crystal cell on the polarizing plate side, and the back side constituting the set of polarizing plates on the back side of the liquid crystal cell A polarizing plate is attached,
    A front plate-integrated liquid crystal display panel characterized in that the amount of warping when heated at 85 ° C. for 240 hours is 0.5 mm or less in absolute value.
PCT/JP2014/060355 2013-04-05 2014-04-03 Polarization plate set and liquid crystal display panel integrated with front plate WO2014163212A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157030139A KR102196372B1 (en) 2013-04-05 2014-04-03 Polarization plate set and liquid crystal display panel integrated with front plate
CN201480019260.1A CN105122099B (en) 2013-04-05 2014-04-03 The one-piece type liquid crystal display panel of group and foreboard of polarizer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013079235 2013-04-05
JP2013-079235 2013-04-05
JP2013156429A JP6664866B2 (en) 2013-04-05 2013-07-29 Set of polarizing plate and front panel integrated liquid crystal display panel
JP2013-156429 2013-07-29

Publications (1)

Publication Number Publication Date
WO2014163212A1 true WO2014163212A1 (en) 2014-10-09

Family

ID=51658496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060355 WO2014163212A1 (en) 2013-04-05 2014-04-03 Polarization plate set and liquid crystal display panel integrated with front plate

Country Status (5)

Country Link
JP (1) JP6664866B2 (en)
KR (1) KR102196372B1 (en)
CN (1) CN105122099B (en)
TW (1) TWI622815B (en)
WO (1) WO2014163212A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050074A1 (en) * 2013-10-03 2015-04-09 住友化学株式会社 Set of polarizing plates and front plate-integrated liquid crystal display panel
WO2015050075A1 (en) * 2013-10-03 2015-04-09 住友化学株式会社 Set of polarizing plates and front plate-integrated liquid crystal display panel
CN105717571A (en) * 2014-12-22 2016-06-29 住友化学株式会社 Polarizing film, manufacturing method thereof, polarizing film set, liquid crystal display panel and liquid crystal display device

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI686629B (en) * 2014-09-30 2020-03-01 日商住友化學股份有限公司 Polarizing plate and method for producing the same
JP2016118761A (en) * 2014-12-22 2016-06-30 住友化学株式会社 Polarizing plate and manufacturing method of the same, and set of polarizing plates, liquid crystal panel, and liquid crystal display device
KR20160121431A (en) 2015-04-10 2016-10-19 닛토덴코 가부시키가이샤 Pressure-sensitive adhesive layer attached polarizing film set, liquid crystal panel, and liquid crystal display device
JP6112249B2 (en) * 2015-09-30 2017-04-12 住友化学株式会社 Polarizing plate set and liquid crystal panel
JP2017102426A (en) * 2015-11-20 2017-06-08 住友化学株式会社 Polarizing plate and liquid crystal panel
JP6112250B1 (en) * 2015-12-04 2017-04-12 住友化学株式会社 Polarizing plate set and liquid crystal panel
CN112433287B (en) * 2015-12-25 2023-05-26 日东电工株式会社 Polarizing film with adhesive layer and image display device
JP2017156399A (en) * 2016-02-29 2017-09-07 住友化学株式会社 Set of polarizing plates and liquid crystal panel
JP6323477B2 (en) * 2016-02-29 2018-05-16 住友化学株式会社 Polarizing plate set and LCD panel
JP2017181597A (en) * 2016-03-28 2017-10-05 住友化学株式会社 Optical film and polarizing plate
JP6205089B1 (en) * 2016-03-31 2017-09-27 東洋紡株式会社 Liquid crystal display
US11022734B2 (en) 2016-05-26 2021-06-01 3M Innovative Properties Company Polarizer stack
JP2017227893A (en) * 2016-06-21 2017-12-28 住友化学株式会社 Polarizing Plate Set
JP2018013691A (en) * 2016-07-22 2018-01-25 住友化学株式会社 Polarizing plate set, liquid crystal display panel, and liquid crystal display
JP2018025764A (en) * 2016-07-29 2018-02-15 住友化学株式会社 Optical laminate
JP6455545B2 (en) * 2016-08-17 2019-01-23 住友化学株式会社 Set of polarizing plates
WO2018034081A1 (en) * 2016-08-17 2018-02-22 住友化学株式会社 Polarizing plate set
JP2018072533A (en) * 2016-10-28 2018-05-10 住友化学株式会社 Polarizing plate set and liquid crystal panel
JP2018200413A (en) * 2017-05-29 2018-12-20 住友化学株式会社 Set of polarizing plates and liquid crystal panel
JP2018151648A (en) * 2018-04-26 2018-09-27 住友化学株式会社 Optical film and polarizing plate
JP7412973B2 (en) * 2019-11-19 2024-01-15 日東電工株式会社 Polarizing plate and polarizing plate roll
JP7412972B2 (en) * 2019-11-19 2024-01-15 日東電工株式会社 Polarizing plate and polarizing plate roll

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109342A (en) * 2002-09-17 2004-04-08 Ricoh Co Ltd Polarized light splitting element and its manufacturing method
JP2006251294A (en) * 2005-03-10 2006-09-21 Konica Minolta Opto Inc Liquid crystal display device
JP2007292966A (en) * 2006-04-25 2007-11-08 Nitto Denko Corp Liquid crystal panel and display
JP2012058429A (en) * 2010-09-08 2012-03-22 Nitto Denko Corp Liquid crystal panel and liquid crystal display device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033775A (en) * 1999-07-19 2001-02-09 Matsushita Electric Ind Co Ltd Liquid crystal display panel
JP4666430B2 (en) * 2001-01-25 2011-04-06 日東電工株式会社 Liquid crystal display element and liquid crystal display device using the same
JP2004109324A (en) * 2002-09-17 2004-04-08 Fuji Xerox Co Ltd Optical module
JP4213616B2 (en) * 2004-03-31 2009-01-21 大日本印刷株式会社 Base film for liquid crystal panel, functional film for liquid crystal panel, method for producing functional film, and apparatus for producing functional film
JP5301080B2 (en) * 2005-12-26 2013-09-25 株式会社ジャパンディスプレイ Liquid crystal display
JP2009157347A (en) * 2007-12-03 2009-07-16 Sumitomo Chemical Co Ltd Set of polarizing plate, and liquid crystal panel and liquid crystal display device using the same
TWI453123B (en) * 2007-12-03 2014-09-21 Sumitomo Chemical Co A set of polarizer, and a liquid crystal panel and an apparatus of liquid crystal display used thereof
KR20090061586A (en) * 2007-12-11 2009-06-16 스미또모 가가꾸 가부시끼가이샤 A set of polarizer, and a liquid crystal panel and a liquid display apparatus using the set of polarizer
JP5195070B2 (en) * 2008-06-25 2013-05-08 住友化学株式会社 Method for manufacturing polarizer chip
JP2011170234A (en) * 2010-02-22 2011-09-01 Sumitomo Chemical Co Ltd Liquid crystal display device
JP2011203319A (en) * 2010-03-24 2011-10-13 Sumitomo Chemical Co Ltd Polarizing plate set, and liquid crystal panel and liquid crystal display device using the same
KR20110130573A (en) * 2010-05-28 2011-12-06 동우 화인켐 주식회사 Liquid crystal display device
JP5756635B2 (en) * 2010-11-23 2015-07-29 シチズンファインデバイス株式会社 Liquid crystal element
JP6083924B2 (en) * 2011-08-05 2017-02-22 日東電工株式会社 Optical laminate, optical laminate set and liquid crystal panel using them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004109342A (en) * 2002-09-17 2004-04-08 Ricoh Co Ltd Polarized light splitting element and its manufacturing method
JP2006251294A (en) * 2005-03-10 2006-09-21 Konica Minolta Opto Inc Liquid crystal display device
JP2007292966A (en) * 2006-04-25 2007-11-08 Nitto Denko Corp Liquid crystal panel and display
JP2012058429A (en) * 2010-09-08 2012-03-22 Nitto Denko Corp Liquid crystal panel and liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015050074A1 (en) * 2013-10-03 2015-04-09 住友化学株式会社 Set of polarizing plates and front plate-integrated liquid crystal display panel
WO2015050075A1 (en) * 2013-10-03 2015-04-09 住友化学株式会社 Set of polarizing plates and front plate-integrated liquid crystal display panel
US9606394B2 (en) 2013-10-03 2017-03-28 Sumitomo Chemical Company, Limited Set of polarizing plates and front-plate-integrated liquid crystal display panel
US9606395B2 (en) 2013-10-03 2017-03-28 Sumitomo Chemical Company, Limited Set of polarizing plates and front-plate-integrated liquid crystal display panel
CN105717571A (en) * 2014-12-22 2016-06-29 住友化学株式会社 Polarizing film, manufacturing method thereof, polarizing film set, liquid crystal display panel and liquid crystal display device

Also Published As

Publication number Publication date
CN105122099B (en) 2017-12-19
TW201447401A (en) 2014-12-16
KR102196372B1 (en) 2020-12-29
KR20150139542A (en) 2015-12-11
CN105122099A (en) 2015-12-02
TWI622815B (en) 2018-05-01
JP6664866B2 (en) 2020-03-13
JP2014211609A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
WO2014163212A1 (en) Polarization plate set and liquid crystal display panel integrated with front plate
JP6294043B2 (en) Set of polarizing plates
JP5932750B2 (en) Polarizer set and front panel integrated liquid crystal display panel
JP5932749B2 (en) Polarizer set and front panel integrated liquid crystal display panel
TWI509297B (en) Thin type polarizer and a display used thereof
JP2008197310A (en) Thin polarizing plate, composite polarizing plate, image display device, and method for manufacturing composite polarizing plate
JP2017083857A (en) Front plate integrated liquid crystal display panel
JP5878746B2 (en) Composite polarizing plate set, liquid crystal panel and liquid crystal display device
JP2014130357A (en) Laminated optical film, liquid crystal panel, and liquid crystal display device
TWI708966B (en) Polarizing plate set and ips mode liquid crystal display device using the same
TWI720253B (en) Polarizing plate set and ips mode liquid crystal display device using the same
JP6819156B2 (en) Liquid crystal display device
JP2012159624A (en) Composite polarizing plate set, liquid crystal panel and liquid crystal display device
JP2011227418A (en) Polarizing plate, method for manufacturing the same, and ips mode liquid crystal display device using the same
JP2018054884A (en) Polarizing plate set and IPS mode liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157030139

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14779009

Country of ref document: EP

Kind code of ref document: A1