WO2014157347A1 - 冷水循環システム - Google Patents

冷水循環システム Download PDF

Info

Publication number
WO2014157347A1
WO2014157347A1 PCT/JP2014/058561 JP2014058561W WO2014157347A1 WO 2014157347 A1 WO2014157347 A1 WO 2014157347A1 JP 2014058561 W JP2014058561 W JP 2014058561W WO 2014157347 A1 WO2014157347 A1 WO 2014157347A1
Authority
WO
WIPO (PCT)
Prior art keywords
margin
cold water
ahu
temperature
air
Prior art date
Application number
PCT/JP2014/058561
Other languages
English (en)
French (fr)
Inventor
達也 中田
正秀 柳
圭輔 関口
存 吉井
Original Assignee
株式会社Nttファシリティーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttファシリティーズ filed Critical 株式会社Nttファシリティーズ
Publication of WO2014157347A1 publication Critical patent/WO2014157347A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units

Definitions

  • the present invention relates to a cold water circulation system that supplies cold water used for air conditioning.
  • a central heat source type air conditioning system using cold water supplied by a cold water circulation system as cold heat is widely used.
  • a primary return header and a primary feed header are connected to a plurality of heat sources that supply cold water, and cold water is sent from the primary return header to the primary feed header via the heat source by a primary pump.
  • a secondary feed header and a secondary return header are connected to a plurality of AHUs (air handling units) that cool the air using cold water.
  • AHUs air handling units
  • a method for controlling the flow rate of cold water circulating in the air conditioning system a method of controlling the flow rate of cold water by controlling the pressure of the cold water discharged from the above-described secondary pump to a predetermined set value is known.
  • the main pipe temperature difference which is the temperature difference between the feed temperature, which is the temperature of the chilled water sent from the secondary feed header, and the return temperature, which is the temperature of the chilled water flowing into the secondary return header, is set to a predetermined value.
  • a method for controlling the flow rate of cold water fed from a secondary pump is also known (see, for example, Patent Documents 1 to 3).
  • Patent Document 3 describes a control for increasing the flow rate of chilled water delivered from a secondary pump based on an alarm output from a specific AHU.
  • This alarm may be an alarm that indicates that the heat load in a particular AHU has increased.
  • a two-way valve that controls the flow rate of cold water flowing into the AHU based on information such as room temperature acquired from the room (in the floor or in the compartment) that is the air conditioning target zone.
  • the valve opening is estimated, and the margin of the two-way valve (for example, the margin until the valve opening of the two-way valve is fully opened) is determined.
  • the margin is larger than a predetermined value
  • control is performed to reduce the flow rate of the cold water supplied to the AHU by reducing the drive frequency of the secondary pump.
  • control is performed to increase the flow rate of the cold water supplied to the AHU by increasing the driving frequency of the secondary pump.
  • a plurality of AHUs are arranged on the same floor or the same section (hereinafter referred to as “the same floor etc.”), and a plurality of margins regarding a plurality of two-way valves corresponding to these AHUs are judged.
  • the average value of the margin obtained from the margins of all AHUs arranged on the same floor or the like is used for the control. Therefore, depending on the control method of the air conditioning control system, there is a problem that appropriate control becomes difficult. For example, there is a possibility that there is a problem in adaptability to control using the room temperature measured by a temperature sensor arranged on the same floor or the like.
  • the AHU for example, AHU having a short distance
  • the AHU having a deep relationship with the above-mentioned part of the ICT devices has a cooling capacity, and the above-described increase in the suction temperature can be dealt with only by increasing the cooling capacity of the AHU. Even so, control is performed to increase the cooling capacity of all AHUs. For this reason, it has been difficult to reduce energy consumption in the air conditioning system.
  • the flow rate of the cold water delivered from the secondary pump is controlled using the average value of the margin, even if there is no margin for AHU that has a deep relationship with some ICT devices as described above, the average margin is obtained. If it is determined that the value has a margin, there is a possibility that control for increasing the flow rate of the cold water supplied to the AHU may not be performed immediately, and a high-temperature failure may occur.
  • one aspect of the present invention be able to provide a cold water circulation system capable of ensuring reliability of temperature adjustment and reducing power consumption.
  • a chilled water circulation system includes a heat source configured to cool chilled water to a predetermined temperature, and each of the heat sources is disposed in a predetermined section, and exchanges heat with the cold water in the predetermined section.
  • a plurality of AHUs air handling units that are air conditioners configured to cool the air, and a configuration in which the cold water having a flow rate according to the operating frequency of the power inverter is sent from the heat source to each of the plurality of AHUs.
  • a plurality of influence coefficients each of which is a contribution ratio for adjusting an air temperature at a desired location in the predetermined section by each of the plurality of AHUs, and a predetermined one of the plurality of AHUs is obtained.
  • At least one AHU having an influence coefficient equal to or greater than the first threshold A margin indicating the surplus capacity for cooling the air in at least one AHU is calculated, a group margin determined from the margin of the at least one AHU belonging to the air conditioning group is calculated, and the group margin is When it is equal to or greater than a predetermined second threshold, the flow rate of the cold water delivered from the pump is reduced by controlling the operating frequency of the power inverter, and the group margin is less than the predetermined second threshold
  • a controller configured to increase the flow rate of the cold water delivered from the pump.
  • the group margin may be a margin average value that is an average of the margins of the at least one AHU belonging to the air conditioning group.
  • an air conditioning group that is a group of at least one AHU having an influence coefficient equal to or greater than a predetermined first threshold value is defined, and the margin of at least one AHU belonging to this air conditioning group is set.
  • the margin average value which is the average value of the margin of at least one AHU belonging to the air conditioning group
  • the margin of all AHUs arranged in a predetermined section Compared with the control based on the average value, the change in the air temperature at the desired location is more easily reflected in the control of the pump.
  • the margin average value tends to be smaller than the average value of all AHU margins, and the flow rate of cold water sent from the pump It becomes easy to perform control to increase. As a result, the cooling capacity of at least one AHU is increased, and an increase in air temperature at a desired location is suppressed.
  • At least one AHU belonging to the air conditioning group When the margin is large, the ratio of the margin of the at least one AHU with respect to the margin average value is larger than the average value of the margins of all the AHUs, and the flow rate of cold water sent from the pump is increased.
  • the timing at which control is performed is delayed. In other words, control for increasing the cooling capacity of the AHU having a large margin is performed, and a margin for controlling the air temperature at a desired location to the set temperature is created.
  • the information indicating the state of the at least one AHU includes the valve opening degree of a two-way valve that controls the flow rate of the cold water flowing into the at least one AHU, and the air exchanged in the at least one AHU. And / or at least one of the air temperature difference between the set temperature of the air blown out of the at least one AHU and the measured temperature, and a combination thereof. .
  • the margin can be obtained with higher accuracy by obtaining the margin using the valve opening of the two-way valve.
  • the fan rotation frequency and the air temperature difference are considered to correlate with the ability to cool the air in the AHU, and the margin is obtained by calculating the margin using the fan rotation frequency and the air temperature difference. It can be determined with higher accuracy.
  • the control unit sets the average margin value for the at least one AHU belonging to the air conditioning group.
  • the flow rate of the cold water sent out from the pump is reduced, and when the average margin value is less than the predetermined second threshold value, the flow rate of the cold water is increased, and the desired location
  • an overall average value that is an average value of the margins of all AHUs arranged in the predetermined section is calculated, and the overall average value is the predetermined first threshold value.
  • the threshold value is 2 or more, control is performed to reduce the flow rate of the cold water delivered from the pump, and to increase the flow rate of the cold water when the overall average value is less than the predetermined second threshold value. It may be configured to.
  • the temperature of the desired location is compared with the first warning threshold value, and the pump is controlled using the margin average value that is the average margin in the air conditioning group, or all the AHUs in the predetermined section are controlled.
  • the pump is controlled using the margin average value that is the average margin in the air conditioning group, or all the AHUs in the predetermined section are controlled.
  • the control using a margin average value that can control the flow rate of the cold water delivered from the pump is performed. Thereby, it becomes easy to suppress the temperature rise of a desired location, and it becomes easy to ensure the reliability of temperature adjustment in a predetermined division.
  • the temperature at the desired location is equal to or lower than the first warning threshold, it is highly possible that the temperature rise at the desired location can be suppressed only by changing the cooling capability of all AHUs. Control using an overall average value that is easy to secure the period. Thereby, the control which increases the flow volume of the cold water sent from the pump with which power consumption tends to become large can be suppressed, and it becomes easy to aim at reduction of power consumption.
  • the first warning threshold value is a threshold value that is lower in temperature than the alarm threshold value.
  • the alarm threshold is a temperature at which the possibility that a cooling target in the chilled water circulation system will malfunction due to a high temperature when the temperature is further increased.
  • the margin is compared with a second warning threshold, and if there is an AHU with the margin below the second warning threshold, a set temperature that is a target temperature of air after cooling in the AHU is set. You may comprise so that control to lower may be performed.
  • the margin may be at least one of 1- (valve opening of the two-way valve), 1- (rotational frequency / maximum frequency of the fan), and set temperature-measured temperature. .
  • the margin can be expressed by a numerical value from 0 to 1 based on either the valve opening degree of the two-way valve or the rotational frequency of the fan. Therefore, it is not necessary to change the control processing after obtaining the margin such as a comparison between the margin and the predetermined threshold according to the type of information indicating the state of the AHU.
  • the predetermined second threshold value of the margin is set. , (Common number of the AHU) / (Common number of the AHU + Preliminary number of the AHU).
  • the regular number is the minimum number of AHUs required to cope with the load in the air conditioning system equipped with the chilled water circulation system
  • the spare number ensures the reliability of the temperature adjustment capability in the air conditioning system. Therefore, it is the number of AHUs provided in reserve.
  • the control unit stores the operation setting applied to the pump when the margin is determined to be less than the predetermined second threshold, and reduces the flow rate of the cold water delivered from the pump after storing the operation setting.
  • the amount of decrease may be configured to be smaller than the amount of decrease in the flow rate of the cold water in the previous control.
  • the desired portion may be an air suction portion in a device that generates heat, which is a cooling target, disposed in the predetermined section.
  • the air conditioning group is appropriately defined by setting a desired portion as a cooling air suction portion of an electronic device that generates heat such as an IT (information technology) device or an ICT (information communication technology) device. be able to.
  • IT information technology
  • ICT information communication technology
  • an air conditioning group that is a group of a plurality of AHUs having an influence coefficient equal to or greater than a predetermined first threshold value is defined, and pump control is performed based on the margin of AHUs belonging to the air conditioning group.
  • SYMBOLS 1 Air conditioning system (cold water circulation system), 10 ... Heat source, 20 ... AHU (Air Handling Unit), 20G ... Air conditioning group, 21 ... Two-way valve, 23 ... Fan, 33 ... Secondary pump (pump), 41 ... Integration Controller (control unit), F ... Floor (predetermined section)
  • An air conditioning system including a cold water circulation system will be described with reference to FIGS.
  • description will be made by applying to an example in which an air conditioning system (cold water circulation system) 1 according to the present invention is used for air conditioning of a data center.
  • a plurality of electronic devices 51 such as servers and computers constituting IT (information technology) devices and ICT (information communication technology) devices are provided in a floor (predetermined section) F and cold aisle C and hot aisle. It is stored in a rack 55 arranged so as to form H (see FIG. 4).
  • the air conditioning system 1 is used to process a large amount of heat generated from these electronic devices 51.
  • the air conditioning system 1 includes a plurality of heat sources 10, a primary feed header 11, a primary return header 12, a plurality of primary pumps 13, a primary chilled water circuit 14, a heat source controller 15, and a plurality of AHU (Air Handling Unit) 20, a plurality of AHU controllers 25, a secondary feed header 31, a secondary return header 32, a chilled water main pipe 35, a plurality of secondary pumps (pumps) 33, and a pump controller 38 And an integrated controller (control unit) 41 are mainly provided.
  • AHU Air Handling Unit
  • the heat source 10 supplies cold water used for cooling indoor air in the AHU 20. More specifically, the AHU 20 absorbs the heat of the room air and cools the cold water whose temperature has been increased, and sends it to the AHU 20 again as cold water having a predetermined temperature.
  • the heat source 10 include a refrigerator such as an air-cooled chiller including a compressor, a condenser, an expansion valve, an evaporator, and a fan unit (not shown).
  • the cold water supplied from the heat source 10 is described as cold water in the sense of water having a lower temperature than indoor air. Therefore, when the temperature of the indoor air is high, water (hot water) having a temperature generally felt as warm may be supplied from the heat source 10. Furthermore, in this embodiment, the description is applied to an example in which water is used as the heat medium supplied from the heat source 10, but a heat medium other than water may be used, and heat that is a medium that carries heat. The type of the medium is not limited.
  • the primary feed header 11 is a header through which cold water sent from the heat source 10 flows and supplies cold water to the secondary feed header 31.
  • the primary return header 12 is a header in which cold water flows from the secondary return header 32 and sends the cold water to the heat source 10.
  • the primary chilled water circuit 14 connects the heat source 10, the primary feed header 11 and the primary return header 12, and forms a flow path through which chilled water circulates.
  • the primary pump 13 is a pump that discharges cold water from the heat source 10 to the primary feed header 11. In the present embodiment, description will be made by applying to an example in which the primary pump 13 is disposed inside the heat source 10, but the primary pump 13 may be disposed independently from the heat source 10, and the arrangement position is not limited.
  • the heat source controller 15 is a microcomputer having a CPU (Central Processing Unit), ROM, RAM, input / output interface, and the like, and controls the heat source 10 and the primary pump 13. It is also controlled by the integrated controller 41.
  • the heat source controller 15 controls, for example, the temperature of the cold water sent out from the heat source 10 and controls the flow rate of the cold water sent out from the primary pump 13.
  • the AHU 20 uses the cold water supplied from the heat source 10 to cool the indoor air on the floor whose temperature is increased by the heat of the server or the like.
  • a description will be given by applying to an example in which a plurality of AHUs 20 are arranged on a floor F of a data center and a plurality of the floors F are provided.
  • Each AHU 20 is provided with a two-way valve 21 that adjusts the flow rate of cold water supplied from a heat source, and an outlet temperature sensor 22 that measures the temperature of air cooled by the AHU 20 and blown to the floor.
  • Examples of the AHU 20 include a coil (not shown) that is a heat exchanger, and a fan 23 that mainly allows indoor air to flow through the coil.
  • the secondary feed header 31 is a header in which cold water flows from the primary feed header 11 and supplies cold water to the AHU 20.
  • a plurality of secondary pumps 33 and return pipes 34 are arranged between the primary feed header 11 and the secondary feed header 31.
  • Each of the secondary pumps 33 is a pump that feeds cold water from the primary feed header 11 to the secondary feed header 31, and is a pump driven by a power inverter controlled by a pump controller 38.
  • the return pipe 34 is a pipe that connects between the primary feed header 11 and the secondary feed header 31 and returns the cold water that is excessively sent to the secondary feed header 31 to the primary feed header 11.
  • the return pipe 34 is provided with an adjustment valve that adjusts the flow rate of the cold water.
  • the secondary return header 32 is a header in which cold water returned from each of the AHUs 20 flows and supplies the primary return header 12 with cold water.
  • the chilled water main pipe 35 connects the secondary feed header 31, each of the AHUs 20, and the secondary return header 32, and forms a flow path through which chilled water flows.
  • a feed temperature sensor 36 for measuring the temperature of the chilled water sent to each of the AHUs 20 is disposed, and in the vicinity of the secondary return header 32, returned from each of the AHUs 20.
  • a return temperature sensor 37 for measuring the temperature of the cold water is arranged.
  • the AHU controller 25 is a microcomputer having a CPU (Central Processing Unit), a ROM, a RAM, an input / output interface and the like, and cools indoor air on the floor of each AHU 20. It controls the cooling capacity and is also controlled by the integrated controller 41.
  • the cooling capacity of each AHU 20 is controlled by adjusting the opening degree of the corresponding two-way valve 21 and the amount of air passed by the corresponding fan 23.
  • the AHU controller 25 determines that the temperature difference between the predetermined set value and the air temperature measured by each of the outlet temperature sensors 22 or the air temperature measured by each of the floor temperature sensors 24 is within a predetermined range. Control is performed as follows. In the present embodiment, one AHU controller 25 is arranged on one floor F, and the AHU controller 25 will be described as applied to an example of controlling all AHUs 20 arranged on the floor F.
  • the pump controller 38 is a microcomputer having a CPU (Central Processing Unit), a ROM, a RAM, an input / output interface and the like, and controls the flow rate of cold water sent from each of the secondary pumps 33. 41 is also controlled. More specifically, the flow rate of cold water delivered from each of the secondary pumps 33 is controlled by controlling the operating frequency of the power inverter.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • input / output interface an input / output interface and the like
  • the flow rate of the chilled water delivered from each of the secondary pumps 33 is determined by the feed temperature which is the temperature of the chilled water sent from the secondary feed header 31 measured by the feed temperature sensor 36 and the second measured by the return temperature sensor 37. Control is performed so that the cold water return temperature difference, which is the temperature difference between the return temperature, which is the temperature of the cold water flowing into the next return header 32, falls within a predetermined range.
  • the integrated controller 41 controls the air conditioning system 1 in an integrated manner, and is a microcomputer having a CPU (Central Processing Unit), ROM, RAM, input / output interface, and the like.
  • the integrated controller 41 receives an air temperature measurement signal measured by a suction portion temperature sensor 53 provided in the vicinity of the cooling air suction portion 52 in the electronic device 51 disposed on the floor F.
  • control signals are output from the integrated controller 41 to the heat source controller 15, the AHU controller 25 and the pump controller 38.
  • the CPU functions as the calculation unit 42 and the ROM or the like functions as the storage unit 43 by the control program stored in the ROM or the like. Control of the air conditioning system 1 by the integrated controller 41, the pump controller 38, the AHU controller 25, and the heat source controller 15 will be described later.
  • control in the air conditioning system 1 having the above configuration will be described.
  • the control content of the air conditioning system 1 which is the characteristic of the air conditioning system 1 of this embodiment is demonstrated, referring FIG. 3 and FIG.
  • the integrated controller 41 When the operation of the air conditioning system 1 is started, as shown in FIG. 3, the integrated controller 41 performs a process for determining whether or not a warning has been issued (S11).
  • the warning is issued when the air temperature measured by the suction portion temperature sensor 53 exceeds the first warning threshold, and is issued by the integrated controller 41.
  • the first warning threshold is a threshold having a temperature lower than an alarm threshold that is an upper limit of the indoor temperature that does not affect the electronic device 51 arranged on the floor F.
  • the influence degree coefficient is a coefficient indicating a contribution rate (degree of influence) for adjusting the air temperature by each AHU 20 arranged on the floor F at a desired location on the floor F.
  • the desired location may be the vicinity of the cooling air suction portion 52 in the electronic device 51, more specifically, the position where the suction portion temperature sensor 53 is disposed.
  • a method of acquiring the influence coefficient a method of actually measuring the influence coefficient described in JP-A-2006-064283, a distance from a desired location to the AHU 20, a layout of the floor F
  • Various methods can be used such as a method of calculating based on an arithmetic expression that takes into consideration the above, and the method is not particularly limited.
  • the integrated controller 41 of the air conditioning system 1 may calculate the influence degree coefficient, or the influence degree coefficient obtained by the air conditioning control system other than the air conditioning system 1 may be obtained via the communication means. Then, the integrated controller 41 may acquire it.
  • the air conditioning group 20G is a group configured of AHUs 20 having an influence coefficient equal to or greater than a predetermined first threshold among the plurality of AHUs 20 arranged on the floor F. In other words, it is a group consisting of a plurality of AHUs 20 having a contribution rate of adjusting the air temperature above a certain level with respect to the desired location.
  • the predetermined first threshold value can be appropriately set according to the layout of the floor F, the type of the electronic device 51 to be cooled, and the like, and does not limit the value itself.
  • the calculation unit 42 performs a calculation process of calculating a margin average value (group margin) that is an average based on the margin of the AHU 20 belonging to the defined air conditioning group 20G (S14).
  • the margin is an index indicating a surplus capacity for cooling the indoor air in the AHU 20, and is obtained using at least one of the following three calculation formulas.
  • valve opening degree of the two-way valve 21 in the equation (1) is such that 0 is fully closed and 1 is fully opened.
  • the maximum frequency in Equation (2) is the maximum rotation frequency of the fan 23.
  • the set temperature in Equation (3) is the target temperature of the indoor temperature of the floor F, the measured temperature is the indoor temperature measured by the floor temperature sensor 24, and the set temperature ⁇ measured temperature represents the air temperature difference on the floor F. Yes.
  • the target temperature of the blown air of the AHU 20 may be set as the blown air set temperature ⁇ the blown air measured temperature.
  • the marginal average value may be obtained as an average of the margins obtained by using any one of formulas (1) to (3) as described above. You may obtain
  • the calculation unit 42 performs a process of determining whether or not the obtained margin average value has a margin (S15). For example, processing for determining whether the margin average value is equal to or greater than the margin threshold (predetermined second threshold) (in other words, there is a margin) or less than the margin threshold (in other words, there is no margin). Execute.
  • the margin threshold when the margin is calculated using the above-described formula (1) or formula (2) is obtained from (AHU20 regular number) / (AHU20 regular number + AHU20 spare number). Examples of possible values can be given. By doing in this way, it becomes easier to ensure the reliability of the temperature adjustment capability of room air.
  • the regular number is the minimum number of AHUs 20 required to cope with the cooling load required for the air conditioning system 1, and the spare number ensures the reliability of the temperature adjustment capability in the air conditioning system 1. Therefore, it is the number of AHUs 20 provided in reserve.
  • the calculating unit 42 further exceeds the margin for each of the AHUs 20 belonging to the air conditioning group 20G (second warning threshold). The process which determines whether it is is performed is performed (S16).
  • the integrated controller 41 When it is determined that the margin exceeds the individual warning threshold (in the case of YES), in other words, when there is an AHU 20 having a margin exceeding the individual warning threshold, the integrated controller 41 performs the following control. That is, the process which gives priority to the control of the cooling capacity is executed on the AHU 20 having a large margin among the AHUs 20 belonging to the air conditioning group 20G (S17). For example, only for the AHU 20 having a large margin, control is performed to lower the set temperature, which is the target temperature of the air blown to the floor F. Thereafter, the integrated controller 41 returns to S11 and repeats the above control.
  • the integrated controller 41 when it is determined in S16 that the margin is equal to or less than the individual warning threshold (in the case of NO), in other words, when there is no AHU 20 having a margin exceeding the individual warning threshold, the integrated controller 41 returns to S11. The above control is repeated.
  • the integrated controller 41 performs a control process for increasing the frequency for driving the secondary pump 33 (S18). If the frequency which drives the secondary pump 33 increases, the flow volume of the cold water sent out from the secondary pump 33 will increase. In other words, the flow rate of cold water sent from the heat source 10 to the AHU 20 increases, and the cooling capacity of the AHU 20 increases.
  • the influence coefficient described above may change due to a change in the installation status, such as when a new electronic device 51 is added to the rack 55 or the arrangement of the electronic device 51 is changed. In this case, the definition of the air conditioning group 20G is performed again.
  • control during normal operation in the air conditioning system 1 of the present embodiment will be described. Specifically, control in the air conditioning system 1 in a state where no warning is issued in the determination of S11 will be described.
  • the integrated controller 41 obtains a margin of all the AHUs 20 arranged on the floor F, and performs a process of calculating a floor average value (overall average value) that is an average of the margins. Thereafter, the calculation unit 42 performs a process of determining whether or not the obtained floor average value has a margin. For example, a process of determining whether the floor average value is greater than or equal to the margin threshold (in other words, there is a margin) or less than the margin threshold (in other words, there is no margin) is executed.
  • the margin threshold in other words, there is a margin
  • the margin threshold in other words, there is no margin
  • the integrated controller 41 performs a process of outputting a control signal for reducing the flow rate of the cold water sent from the secondary pump 33.
  • the integrated controller 41 performs a process of outputting a control signal for increasing the flow rate of the cold water sent from the secondary pump 33.
  • the integrated controller 41 performs control to reduce the flow rate of the cold water sent out from the secondary pump 33. Specifically, the integrated controller 41 outputs a control signal for lowering the operation frequency to the power inverter that drives the secondary pump 33 via the pump controller 38.
  • the air conditioning group 20G that is a group of a plurality of AHUs 20 having an influence coefficient equal to or greater than a predetermined first threshold is defined, and based on the margin of the AHUs 20 belonging to the air conditioning group 20G.
  • the margin average value which is the average value of the margin of the AHU 20 belonging to the air conditioning group 20G
  • the margin of all the AHUs 20 arranged on the floor F Compared with the control based on the average value, the change in the air temperature at the desired location is more easily reflected in the control of the secondary pump 33.
  • the margin average value tends to be smaller than the average value of the margins of all AHUs 20 and is sent from the secondary pump 33. Control to increase the flow rate of cold water is easily performed. As a result, the cooling capacity of the AHU 20 is enhanced and an increase in air temperature at a desired location is suppressed.
  • the margin using at least one of the above formulas (1), (2), and (3) it becomes easier to ensure reliability and the power used to drive the secondary pump 33 is reduced. It becomes easy to let you. That is, the ability to cool the air in the AHU 20 is considered to correlate with the valve opening degree of the corresponding two-way valve 21, and the margin until the valve opening degree is fully open is considered to correlate with the above-described margin. . Therefore, by obtaining the allowance using the valve opening degree of the two-way valve 21, the allowance can be obtained with higher accuracy.
  • the rotational frequency of the fan 23 and the air temperature difference are considered to correlate with the ability of the AHU 20 to cool the air. By obtaining the margin using the rotational frequency of the fan 23 and the air temperature difference, a margin is obtained. The degree can be obtained with higher accuracy.
  • the margin can be expressed by a numerical value from 0 to 1 by obtaining the margin using any one of the above formulas (1), (2), and (3). Therefore, it becomes easy to perform control processing after obtaining a margin such as a comparison between the margin and a predetermined threshold.
  • the temperature of the desired location is compared with the first warning threshold value, and the secondary pump 33 is controlled using a margin average value that is the average of the margins in the air conditioning group 20G, or all the AHUs 20 in the floor F are controlled.
  • a margin average value that is the average of the margins in the air conditioning group 20G, or all the AHUs 20 in the floor F are controlled.
  • the temperature at the desired location is equal to or lower than the first warning threshold, it is highly possible that the temperature rise at the desired location can be suppressed only by changing the cooling capability of the AHU 20, so a period for changing the cooling capability of the AHU 20 is secured. Perform control using easy overall average values. Thereby, the control which increases the flow volume of the cold water sent from the secondary pump 33 in which power consumption tends to become large can be suppressed, and it becomes easy to aim at reduction of power consumption.
  • the air-conditioning group 20G is appropriately defined by setting the desired location as the cooling air suction portion 52 of the electronic device 51 that generates heat, such as an IT (information technology) device or an ICT (information communication technology) device. be able to. That is, by defining the air conditioning group 20G based on the air temperature in the cooling air suction portion 52 that affects the cooling of the electronic device 51, the accuracy of the definition increases and the reliability of temperature adjustment in the floor F by the air conditioning system 1 increases. The degree of power consumption can be more easily secured, and the power consumption in the air conditioning system 1 can be further reduced.
  • the air conditioning system according to the present invention is applied to the example of using the data center.
  • the object to be used is not limited to the data center, and can be applied to other facilities. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 本発明の1つの局面における冷水循環システムは、熱源と、複数のAHUと、ポンプと、制御部とを備える。制御部は、空調群に属する少なくとも1つのAHUの状態を示す情報に基づいて、少なくとも1つのAHUにおける空気を冷却する余剰能力を示す余裕度を算出し、空調群に属する少なくとも1つのAHUの余裕度から判断される群余裕度を算出し、該群余裕度が所定の第2閾値以上である場合には、動力インバータの運転周波数を制御することによりポンプから送り出される冷水の流量を減らし、群余裕度が所定の第2閾値未満である場合には、ポンプから送り出される冷水の流量を増やす。

Description

冷水循環システム 関連出願の相互参照
 本国際出願は、2013年3月26日に日本国特許庁に出願された日本国特許出願第2013-064151号に基づく優先権を主張するものであり、日本国特許出願第2013-064151号の全内容を本国際出願に援用する。
 本発明は、空調に用いられる冷水を供給する冷水循環システムに関する。
 冷水循環システムによって供給される冷水を冷熱として用いる中央熱源式の空調システムが広く用いられている。
 上述の空調システムでは、冷水を供給する複数の熱源に一次戻りヘッダおよび一次送りヘッダがつながれ、一次ポンプによって冷水が一次戻りヘッダから熱源を介して一次送りヘッダに送られている。また、冷水を用いて空気を冷却する複数のAHU(Air Handling Unit)に二次送りヘッダおよび二次戻りヘッダがつながれている。一次送りヘッダと二次送りヘッダとの間には、冷水を一次送りヘッダから二次送りヘッダに送る二次ポンプが配置されている。この二次ポンプとしてはインバータ制御されるものが知られている。また、冷水は二次戻りヘッダから一次戻りヘッダに流入するように接続されている。
 空調システムを循環する冷水の流量を制御する方法としては、上述の二次ポンプから吐出される冷水の圧力を所定の設定値に制御することにより、冷水の流量を制御する方法が知られている。さらに、二次送りヘッダから送りだされる冷水の温度である送り温度と、二次戻りヘッダに流入する冷水の温度である戻り温度と、の間の温度差である主管温度差を所定値になるように、二次ポンプから送りだされる冷水の流量を制御する方法も知られている(例えば、特許文献1から3参照。)。
 特許文献1および2の技術では、AHUで必要されている冷水流量のみを供給することになるため、冷水を搬送する動力を低減すること、言い換えると二次ポンプの消費電力を低減することができる。また、AHUにおける熱負荷が低下した場合であっても、送り温度と戻り温度との温度差を所定値に保つように冷水流量を制御するため、言い換えると、戻り温度が低下する場合であっても、戻り温度を上昇させる制御を行うため、熱源における運転効率を維持することができる。さらに、上述の制御を行うのに必要なセンサが温度センサのみであり、圧力センサは不要となることから、製造コストの低減を図ることができる。
 特許文献3には、特定のAHUから出力される警報に基づいて、二次ポンプから送り出される冷水流量を増やす制御が記載されている。この警報は、特定のAHUにおける熱負荷が増加したことを知らせる警報を例示することができる。この制御を行うと、AHUにおける能力不足によって室温などの上昇を抑制することができる。
特許第4406778号公報 特許第4333818号公報 特許第4748175号公報
 従来の中央熱源式の空調システムでは、空調対象ゾーンである室内(フロア内、または、区画内)から取得した室温などの情報に基づいて、AHUに流入する冷水の流量を制御する二方弁の弁開度を推定し、当該二方弁の余裕度(例えば二方弁の弁開度を全開にするまでの余裕)を判断している。この余裕度が所定値よりも大きい限り、二次ポンプの駆動周波数を低下させてAHUに供給される冷水の流量を低下させる制御を行っている。あるいは、上述の余裕度が所定値よりも小さい場合には、二次ポンプの駆動周波数を増加させてAHUに供給される冷水の流量を増加させる制御を行っている。
 同一のフロアまたは同一の区画(以下、「同一のフロア等」と表記する。)には複数のAHUが配置されており、これらのAHUに対応する複数の二方弁に関する複数の余裕度が判断されている。上述の制御では、同一のフロア等に配置された全AHUの余裕度から求めた余裕度の平均値が制御に用いられる。そのため、空調制御システムの制御方法によっては、適切な制御が難しくなるという問題があった。例えば、同一のフロア等に配置された温度センサにより測定された室内温度を用いた制御に対する適応性に問題がある可能性があった。
 上述のように余裕度の平均値を用いて二次ポンプから送出される冷水の流量を制御すると、次に説明する消費エネルギの低減を図りにくい(非省エネになりやすい)という問題が発生する可能性があった。具体的には、冷却対象であるフロア等に配置された情報通信技術装置(以下、「ICT装置」と表記する。)の一部における室内空気の吸込み温度が上昇した場合であっても、同一フロア等に配置された全てのAHUに対して冷房能力を増加させる制御、言い換えると、二次ポンプから送出される冷水の流量を増加させる制御が行われる場合がある。すると、上述の一部のICT装置との関係が深いAHU(例えば、距離が近いAHU)に冷房能力の余裕があり、当該AHUの冷房能力を増加させるだけで上述の吸込み温度上昇に対処できる場合であっても、全てのAHUの冷房能力を増加させる制御が行われる。そのため、空調システムにおける消費エネルギの低減を図りにくくなっていた。
 その一方で、次に説明する高温障害が発生する可能性があるという問題もあった。具体的には、一部のICT装置における室内空気の吸込み温度が上昇した場合に、同一フロア等に配置された全てのAHUに対して冷房能力を増加させる制御が遅れ、一部のICT装置の温度が高くなりすぎる(高温障害が発生する)おそれがあった。つまり、一部のICT装置との関係が深いAHU(例えば、距離が近いAHU)に冷房能力の余裕がない場合には、当該AHUの冷房能力を増加させても吸込み温度の上昇を抑制できない可能性が高い。この場合には、全てのAHUに供給される冷水の流量を増やして全AHUにおける冷房能力を増加させ、吸込み温度の上昇を抑制する制御が行われる。
 しかしながら、余裕度の平均値を用いて二次ポンプから送出される冷水の流量を制御すると、上述のように一部のICT装置との関係が深いAHUの余裕がない場合でも、余裕度の平均値に余裕があれると判定されれば、AHUに供給される冷水の流量を増やす制御が即座に行われない可能性があり、高温障害が発生するおそれがあった。
 本発明の1つの局面は、温度調整の信頼性を確保するとともに、消費電力の削減を図ることができる冷水循環システムを提供できることが望ましい。
 本発明の1つの局面における冷水循環システムは、冷水を所定温度に冷却するように構成された熱源と、各々が所定の区画内に配置され、前記冷水と熱交換して前記所定の区画内の空気を冷却するように構成された空調機である複数のAHU(Air Handling Unit)と、動力インバータの運転周波数に応じた流量の前記冷水を前記熱源から前記複数のAHUの各々に送るように構成されたポンプと、各々が前記複数のAHUの各々による前記所定の区画内の所望箇所の空気温度を調整する寄与率である複数の影響度係数を取得し、前記複数のAHUのうちの所定の第1閾値以上の影響度係数を有する少なくとも1つのAHUを空調群とし、前記空調群に属する前記少なくとも1つのAHUの状態を示す情報に基づいて、前記少なくとも1つのAHUにおける前記空気を冷却する余剰能力を示す余裕度を算出し、前記空調群に属する前記少なくとも1つのAHUの前記余裕度から判断される群余裕度を算出し、該群余裕度が所定の第2閾値以上である場合には、前記動力インバータの運転周波数を制御することにより前記ポンプから送り出される前記冷水の流量を減らし、前記群余裕度が前記所定の第2閾値未満である場合には前記ポンプから送り出される前記冷水の流量を増やすように構成された制御部と、を備えている。
 前記群余裕度は、前記空調群に属する前記少なくとも1つのAHUの前記余裕度の平均である余裕度平均値であってもよい。
 上述のような冷水循環システムによれば、所定の第1閾値以上の影響度係数を有する少なくとも1つのAHUのグループである空調群を定義し、この空調群に属する少なくとも1つのAHUの余裕度に基づいてポンプの制御を行うことにより、冷水循環システムによる所定の区画内の温度調整の信頼度を確保しやすくなるとともに、冷水循環システムにおける消費電力の削減を図りやすくなる。つまり、空調群に属する少なくとも1つのAHUの余裕度の平均値である余裕度平均値に基づいてポンプから送出される冷水の流量を制御するため、所定の区画に配置された全AHUの余裕度の平均値に基づく制御と比較して、所望箇所の空気温度の変化がポンプの制御に反映されやすくなる。
 具体的には、所望箇所の空気温度が制御目標である設定温度よりも上昇した場合、余裕度平均値は全AHUの余裕度の平均値よりも小さくなりやすく、ポンプから送出される冷水の流量を増やす制御が行われやすくなる。その結果、少なくとも1つのAHUの冷房能力が高められ所望箇所の空気温度上昇が抑えられる。
 例えば、所定の区画内に配置された全てのAHUの余裕度の平均値を用いてポンプから送出される冷水の流量を増やす制御を行う場合と比較して、空調群に属する少なくとも1つのAHUの余裕度が大きい場合には、余裕度平均値に対して当該少なくとも1つのAHUの余裕度が占める割合は全AHUの余裕度の平均値よりも大きくなり、ポンプから送出される冷水の流量を増やす制御が行われるタイミングが遅くなる。言い換えると、余裕度が大きなAHUの冷房能力を増やす制御を行い、所望箇所の空気温度を設定温度に制御する余裕が生まれる。このようにポンプから送出される冷水の流量を増やすことなく、所望箇所の空気温度の上昇に対処することができるため、冷水循環システムにおける消費エネルギの低減を図りやすくなる。
 前記少なくとも1つのAHUの状態を示す前記情報は、前記少なくとも1つのAHUに流入する前記冷水の流量を制御する二方弁の弁開度、前記少なくとも1つのAHUにおいて熱交換される前記空気を送風するファンの回転周波数、および、前記少なくとも1つのAHUから吹出される前記空気の設定温度と計測された計測温度との空気温度差の少なくとも一つ以上、及び、その組み合わせの一方であってもよい。
 このように二方弁の弁開度、ファンの回転周波数、および、空気温度差の少なくとも一つを用いて余裕度を求めることにより、信頼性をさらに確保しやすくなり、ポンプの駆動に用いる動力を低減させやすくなる。つまり、AHUにおける空気を冷却する能力は二方弁の弁開度と相関していると考えられ、弁開度における全開までの余裕は上述の余裕度と相関していると考えられる。そのため、二方弁の弁開度を用いて余裕度を求めることにより、余裕度をより高い精度で求めることができる。ファンの回転周波数や空気温度差についても同様に、AHUにおける空気を冷却する能力と相関していると考えられ、ファンの回転周波数や空気温度差を用いて余裕度を求めることにより、余裕度をより高い精度で求めることができる。
 前記制御部は、前記所定の区画内の前記所望箇所の温度が第1ワーニング閾値を超えた場合には、前記空調群に属する前記少なくとも1つのAHUに対して、前記余裕度平均値が前記所定の第2閾値以上であるときには、前記ポンプから送り出される前記冷水の流量を減らし、前記余裕度平均値が前記所定の第2閾値未満であるときには前記冷水の流量を増やす制御を行い、前記所望箇所の温度が前記第1ワーニング閾値以下の場合には、前記所定の区画に配置された全てのAHUの前記余裕度の平均値である全体平均値を算出し、前記全体平均値が前記所定の第2閾値以上であるときには、前記ポンプから送り出される前記冷水の流量を減らし、前記全体平均値が前記所定の第2閾値未満であるときには前記冷水の流量を増やす制御を行うように構成されてもよい。
 このように、所望箇所の温度と第1ワーニング閾値とを比較して、空調群内の余裕度の平均である余裕度平均値を用いてポンプの制御を行うか、所定の区画内の全AHUの余裕度の平均である全体平均値を用いてポンプの制御を行うかの選択を行うことにより、冷水循環システムによる所定の区画内の温度調整の信頼度をさらに確保しやすくなるとともに、冷水循環システムにおける消費電力の削減をさらに図りやすくなる。
 具体的には、所望箇所の温度が第1ワーニング閾値を超えた場合には、空調群に属する少なくとも1つのAHUの冷房能力変更のみで所望箇所の温度上昇を抑えることが難しいため、より早いタイミングでポンプから送出される冷水の流量を制御できる余裕度平均値を用いた制御を行う。これにより、所望箇所の温度上昇が抑えられやすくなり、所定の区画内の温度調整の信頼度を確保しやすくなる。
 その一方で、所望箇所の温度が第1ワーニング閾値以下の場合には、全てのAHUの冷房能力変更のみで所望箇所の温度上昇を抑えられる可能性が高いため、全てのAHUの冷房能力変更の期間を確保しやすい全体平均値を用いた制御を行う。これにより、消費電力が大きくなりやすいポンプから送出される冷水の流量を増やす制御を抑制することができ、消費電力の削減を図りやすくなる。
 なお、第1ワーニング閾値は警報閾値と比較して温度が低い閾値である。警報閾値は、それ以上温度が高くなると、冷水循環システムの冷却対象物が高温により不具合を発生する可能性が高くなる温度である。
 前記制御部は、前記所望箇所の温度が前記第1ワーニング閾値を超え、かつ、前記余裕度平均値が前記所定の第2閾値以上の場合に、前記空調群に属する前記少なくとも1つのAHUのそれぞれの前記余裕度と、第2ワーニング閾値との比較を行い、前記余裕度が前記第2ワーニング閾値を下回るAHUが存在する場合には、当該AHUにおける冷却後の空気の目標温度である設定温度を下げる制御を行うように構成されてもよい。
 このように空調群に属する少なくとも1つのAHUの中から冷房能力に余裕のあるAHUについて設定温度を下げる制御を行うことで、ポンプから送出される冷水の流量の過度な変更を抑制でき、冷水循環システムにおける消費電力の削減をさらに図りやすくなる。つまり、空調群に属する少なくとも1つのAHUの余裕度と第2ワーニング閾値とを比較して、余裕度が第2ワーニング値を下回るAHUは冷房能力に余裕があるAHUとみなすことができる。このAHUの設定温度を下げて冷房能力を高めることにより、ポンプから送出される冷水の流量を増やすことなく、所望箇所の温度上昇を抑制することができる。
 前記余裕度は、1-(前記二方弁の弁開度)、1-(前記ファンの回転周波数/最大周波数)、および、前記設定温度-前記計測温度、の少なくとも一つであってもよい。
 このように余裕度を求めることにより、二方弁の弁開度、ファンの回転周波数のいずれに基づいても余裕度を0から1までの数値で表すことができる。そのため、余裕度と所定閾値との比較などの余裕度を求めた後の制御処理を、AHUの状態を示す情報の種類に応じて変える必要がなくなる。
 前記余裕度が、1-(前記二方弁の弁開度)、及び、1-(前記ファンの回転周波数/最大周波数)の一方である場合に、前記余裕度の前記所定の第2閾値を、(前記AHUの常用台数)/(前記AHUの常用台数+前記AHUの予備台数)としてもよい。
 このようにAHUの常用台数および予備台数に基づく所定の第2閾値を規定することにより、室内空気の温度調整能力の信頼性を更に確保しやすくなる。ここで常用台数は、冷水循環システムを備えた空調システムにおける負荷に対応するために必要とされる最低限のAHUの台数であり、予備台数は、空調システムにおける温度調整能力の信頼性を確保するために予備で設けられるAHUの台数である。
 前記制御部は、前記余裕度が前記所定の第2閾値未満と判定された場合に、前記ポンプに適用された運転設定を記憶し、記憶した後に、前記ポンプから送り出される前記冷水の流量を減らす際に、記憶された前記運転設定の近傍では、前回の制御における前記冷水の流量の減少量よりも、減少させる量を減らすように構成されてもよい。
 このように記憶された運転設定の近傍においては、1回あたりの冷水の減少量を小さくすることにより、記憶された運転設定の近傍において細やかな制御が行われ、制御の安定性を確保しやすくなる。
 前記所望箇所は、前記所定の区画内に配置された冷却対象である熱を発生する機器における空気の吸込み部であってもよい。
 このように所望箇所を、IT(情報技術)装置やICT(情報通信技術)装置等のように熱を発生する電子機器の冷却用空気の吸込み部とすることにより、空調群を適切に定義することができる。つまり、電子機器の冷却に影響を与える冷却用空気の吸込み部における空気温度に基づいて空調群を定義することで、定義の精度が高まり冷水循環システムによる所定の区画内の温度調整の信頼度をさらに確保しやすくなるとともに、冷水循環システムにおける消費電力の削減をさらに図りやすくなる。
 本発明の1つの局面によれば、所定の第1閾値以上の影響度係数を有する複数のAHUのグループである空調群を定義し、この空調群に属するAHUの余裕度に基づいてポンプの制御を行うことにより、温度調整の信頼性を確保するとともに、消費電力の削減を図ることができるという効果を奏する。
本発明の例示的な実施形態に係る空調システムの構成を説明する模式図である。 図1の統合コントローラ等を説明するブロック図である。 図1の空調システムにおける制御を説明するフローチャートである。 空調群の定義の一例を説明する模式図である。
 1…空調システム(冷水循環システム)、10…熱源、20…AHU(Air Handling Unit)、20G…空調群、21…二方弁、23…ファン、33…二次ポンプ(ポンプ)、41…統合コントローラ(制御部)、F…フロア(所定の区画)
 この発明の例示的な実施形態に係る冷水循環システムを備えた空調システムについて、図1から図4を参照しながら説明する。
 本実施形態では、データセンタの空調に本発明に係る空調システム(冷水循環システム)1を用いた例に適用して説明する。なお、データセンタにはIT(情報技術)装置やICT(情報通信技術)装置を構成する複数のサーバやコンピュータなどの電子機器51が、フロア(所定の区画)F内にコールドアイルCおよびホットアイルHを形成するように配置されたラック55に収納されている(図4参照。)。空調システム1は、これらの電子機器51から発生する大量の熱を処理するために用いられる。
 空調システム1には、図1に示すように、複数の熱源10と、一次送りヘッダ11と、一次戻りヘッダ12と、複数の一次ポンプ13と、一次冷水回路14と、熱源コントローラ15と、複数のAHU(Air Handling Unit)20と、複数のAHUコントローラ25と、二次送りヘッダ31と、二次戻りヘッダ32と、冷水主管35と、複数の二次ポンプ(ポンプ)33と、ポンプコントローラ38と、統合コントローラ(制御部)41と、が主に設けられている。
 熱源10は、AHU20において室内空気の冷却に用いられる冷水を供給するものである。より具体的には、AHU20において室内空気の熱を吸収して温度が高くなった冷水を冷却し、所定温度の冷水として再びAHU20に送り出すものである。熱源10としては、圧縮機、凝縮器、膨張弁、蒸発器、およびファン部(図示せず)などを備えた空冷チラーなどの冷凍機を例示することができる。
 なお、熱源10から供給される冷水は、室内空気と比較して温度の低い水との意味で冷水と表記しているものである。そのため室内空気の温度が高い場合には、一般的に温かいと感じられる温度の水(温水)が熱源10から供給されてもよい。さらに、本実施形態では、熱源10から供給される熱媒として水を用いた例に適用して説明しているが、水以外の熱媒を用いてもよく、熱を運搬する媒体である熱媒の種類を限定するものではない。
 一次送りヘッダ11は、熱源10から送り出された冷水が流入し、二次送りヘッダ31へ冷水を供給するヘッダである。一次戻りヘッダ12は、二次戻りヘッダ32から冷水が流入し、熱源10へ冷水を送り出すヘッダである。
 一次冷水回路14は、熱源10、一次送りヘッダ11および一次戻りヘッダ12を接続し、冷水が循環する流路を形成するものである。一次ポンプ13は、熱源10から一次送りヘッダ11へ冷水を吐出するポンプである。本実施形態では、一次ポンプ13が熱源10の内部に配置されている例に適用して説明するが、熱源10から独立して配置されていてもよく配置位置を限定するものではない。
 熱源コントローラ15は、図1および図2に示すように、CPU(中央演算処理ユニット)、ROM、RAM、入出力インタフェース等を有するマイクロコンピュータであり、熱源10および一次ポンプ13を制御するものであり、統合コントローラ41により制御されるものでもある。熱源コントローラ15は、例えば、熱源10から送り出される冷水の温度を制御するものであり、一次ポンプ13から送り出される冷水の流量を制御するものである。
 AHU20は、図1に示すように、熱源10から供給される冷水を用いて、サーバ等の熱によって温度が高くなったフロアの室内空気を冷却するものである。本実施形態では、データセンタのフロアFに複数のAHU20が配置され、当該フロアFが複数設けられている例に適用して説明する。
 AHU20の各々には、熱源から供給される冷水の流量を調節する二方弁21と、当該AHU20により冷却されてフロアへ吹出される空気の温度を測定する吹出口温度センサ22と、が設けられている。AHU20としては、熱交換器であるコイル(図示せず)、当該コイルに室内空気を通風させるファン23などが主に設けられたものを例示することができる。
 二次送りヘッダ31は、一次送りヘッダ11から冷水が流入し、AHU20に向けて冷水を供給するヘッダである。一次送りヘッダ11と二次送りヘッダ31との間に複数の二次ポンプ33と、戻り配管34とが配置されている。
 二次ポンプ33の各々は冷水を一次送りヘッダ11から二次送りヘッダ31に送り出すポンプであり、ポンプコントローラ38によって制御される動力インバータにより駆動されるポンプである。戻り配管34は、一次送りヘッダ11と二次送りヘッダ31との間をつなぎ、過剰に二次送りヘッダ31に送られた冷水を一次送りヘッダ11に戻す配管である。戻り配管34には、冷水の流量を調節する調節弁が設けられている。
 二次戻りヘッダ32は、AHU20の各々から戻ってきた冷水が流入し、一次戻りヘッダ12へ冷水を供給するヘッダである。冷水主管35は、二次送りヘッダ31と、AHU20の各々と、二次戻りヘッダ32とを接続し、冷水が流れる流路を形成するものである。冷水主管35における二次送りヘッダ31の近傍には、AHU20の各々に送り出す冷水の温度を測定する送り温度センサ36が配置され、二次戻りヘッダ32の近傍には、AHU20の各々から戻ってきた冷水の温度を測定する戻り温度センサ37が配置されている。
 AHUコントローラ25は、図1および図2に示すように、CPU(中央演算処理ユニット)、ROM、RAM、入出力インタフェース等を有するマイクロコンピュータであって、AHU20の各々におけるフロアの室内空気を冷却する冷房能力を制御するものであり、統合コントローラ41により制御されるものでもある。AHU20の各々の冷房能力は、対応する二方弁21の開度や、対応するファン23によって通風される風量を調節することにより制御される。
 AHUコントローラ25は、予め定められた設定値と、吹出口温度センサ22の各々により測定された空気温度、または、フロア温度センサ24の各々により測定された空気温度との温度差が所定範囲内になるように制御を行う。本実施形態では一つのフロアFに一つのAHUコントローラ25が配置され、当該AHUコントローラ25は、フロアFに配置された全てのAHU20を制御する例に適用して説明する。
 ポンプコントローラ38は、CPU(中央演算処理ユニット)、ROM、RAM、入出力インタフェース等を有するマイクロコンピュータであって、二次ポンプ33の各々から送り出される冷水の流量を制御するものであり、統合コントローラ41により制御されるものでもある。より具体的には、動力インバータの運転周波数を制御することにより二次ポンプ33の各々から送り出される冷水の流量を制御するものである。
 二次ポンプ33の各々から送り出される冷水の流量は、送り温度センサ36によって測定される二次送りヘッダ31から送りだされる冷水の温度である送り温度と、戻り温度センサ37によって測定される二次戻りヘッダ32に流入する冷水の温度である戻り温度と、の間の温度差である冷水往還温度差が所定範囲に収まるように制御されている。
 統合コントローラ41は、空調システム1を統合的に制御するものであり、CPU(中央演算処理ユニット)、ROM、RAM、入出力インタフェース等を有するマイクロコンピュータである。統合コントローラ41には、フロアFに配置された電子機器51における冷却用空気の吸込み部52の近傍に設けられた吸込み部温度センサ53により測定された空気の温度の測定信号が入力されている。その一方で、統合コントローラ41から熱源コントローラ15、AHUコントローラ25およびポンプコントローラ38に制御信号が出力されている。
 ROM等に記憶されている制御プログラムによって、CPUは演算部42として機能し、ROM等は記憶部43として機能する。なお、統合コントローラ41、ポンプコントローラ38、AHUコントローラ25および熱源コントローラ15による空調システム1の制御については後述する。
 次に、上記の構成からなる空調システム1における制御について説明する。まず、本実施形態の空調システム1の特徴である空調システム1の制御内容について、図3および図4を参照しながら説明する。
 空調システム1の運転が開始されると、図3に示すように、統合コントローラ41はワーニングが発報されているか否かの判定処理を実行する(S11)。ワーニングは、吸込み部温度センサ53に測定された空気温度が第1ワーニング閾値を超えた場合に発報されるものであり、統合コントローラ41により発報される。
 なお、上述のワーニングは統合コントローラ41により発報されてもよいし、AHUコントローラ25から発報されてもよい。第1ワーニング閾値は、フロアFに配置された電子機器51に影響を与えない室内温度の上限である警報閾値よりも温度が低い閾値である。
 S11の判定処理においてワーニングが発報されていないと判定された場合(NOの場合)には、再びS11に戻り、ワーニング発報の有無を判定する処理を実行する。
 ワーニングが発報されていると判定された場合(YESの場合)、統合コントローラ41の演算部42は影響度係数を計算する処理を実行する(S12)。影響度係数は、フロアFの所望箇所における、当該フロアFに配置された各AHU20による空気温度を調整する寄与率(影響を与える程度)を示す係数である。所望箇所は、電子機器51における冷却用空気の吸込み部52の近傍、より具体的には、吸込み部温度センサ53が配置された位置を挙げることができる。
 なお、影響度係数を取得する方法としては、特開2006-064283号公報に記載されている実際に影響度係数を測定して求める方法や、所望箇所からAHU20までの距離や、フロアFのレイアウトなどを考慮した演算式に基づいて算出する方法など、種々の方法を用いることができ特にその方法を限定するものではない。
 また、本実施形態のように空調システム1の統合コントローラ41が影響度係数を計算して求めてもよいし、空調システム1以外の空調制御システムにより求められた影響度係数を、通信手段を介して統合コントローラ41が取得してもよい。
 それぞれのAHU20に対して影響度係数の計算が行われると、演算部42は、次に空調群20Gの定義を行う演算処理を行う(S13)。空調群20Gは、フロアFに配置された複数のAHU20のうち、所定の第1閾値以上の影響度係数を有するAHU20から構成されるグループである。言い換えると、所望箇所に対して、ある程度以上の空気温度を調整する寄与率を有する複数のAHU20からなるグループである。所定の第1閾値は、フロアFのレイアウトや、冷却対象である電子機器51の種類などに応じて適宜その値を設定できるものであり、値自体を限定するものではない。
 例えば、図4の模式図に示すように一つのコールドアイルCを挟んで対向配置された一対のラック55に配置された4つの電子機器51において、発熱量が増加する発熱異常が発生した場合、当該4つの電子機器51に距離的に近い位置に配置された2台のAHU20(図4において破線で囲まれた2台のAHU20)が空調群20Gとして定義される。
 次いで演算部42は、定義された空調群20Gに属するAHU20の余裕度に基づき、その平均である余裕度平均値(群余裕度)を計算する演算処理を行う(S14)。余裕度は、AHU20における室内空気を冷却する余剰能力を示す指標であり、次に記載する3つの計算式の少なくとも1つを用いて求められる。
 1-(二方弁21の弁開度) ・・・(1)
 1-(ファン23の回転周波数/最大周波数) ・・・(2)
 設定温度-計測温度 ・・・(3)
 ここで式(1)における二方弁21の弁開度は全閉を0とし全開を1とするものである。
 式(2)における最大周波数は、ファン23の最大回転周波数のことである。式(3)における設定温度はフロアFの室内温度の目標温度であり、計測温度はフロア温度センサ24によって測定された室内温度であり、設定温度-計測温度はフロアFにおける空気温度差を表している。AHU20の吹出空気の目標温度とし吹出空気設定温度-吹出空気計測温度としてもよい。
 なお、余裕度平均値(群余裕度)は、上述のように式(1)から式(3)のいずれかを用いて求めた余裕度の平均として求めてもよいし、二方弁21の弁開度の平均値として求めてもよいし、弁開度が100%である二方弁21の台数、または、台数の割合として求めてもよく、特に求め方を限定するものではない。
 その後、演算部42は、求められた余裕度平均値に余裕があるか否かを判定する処理を行う(S15)。例えば、余裕度平均値が余裕度閾値(所定の第2閾値)以上(言い換えると、余裕がある)であるか、余裕度閾値未満である(言い換えると、余裕がない)か、を判定する処理を実行する。
 ここで余裕度が上述の式(1)または式(2)を用いて算出されている場合の余裕度閾値としては、(AHU20の常用台数)/(AHU20の常用台数+AHU20の予備台数)から求められる値を例示することができる。このようにすることで、室内空気の温度調整能力の信頼性を更に確保しやすくなる。
 ここで常用台数は、空調システム1に要求される冷房負荷に対応するために必要とされる最低限のAHU20の台数であり、予備台数は、空調システム1における温度調整能力の信頼性を確保するために予備で設けられるAHU20の台数である。
 S15において余裕度平均値に余裕があると判定された場合(YESの場合)、演算部42は更に、空調群20Gに属するAHU20の個々について余裕度が個別ワーニング閾値(第2ワーニング閾値)を超えているか否かを判定する処理を行う(S16)。
 余裕度が個別ワーニング閾値を超えていると判定された場合(YESの場合)、言い換えると個別ワーニング閾値を超える余裕度を有するAHU20が存在する場合、統合コントローラ41は次の制御を行う。つまり、空調群20Gに属するAHU20のうち、余裕度が大きなAHU20に対して冷房能力の制御を優先して行う処理を実行する(S17)。例えば、余裕度が大きなAHU20に対してのみ、フロアFに吹出す空気の温度の目標温度である設定温度を下げる制御が行われる。その後、統合コントローラ41はS11に戻り上述の制御を繰り返し行う。
 その一方で、S16において余裕度が個別ワーニング閾値以下であると判定された場合(NOの場合)、言い換えると個別ワーニング閾値を超える余裕度を有するAHU20が存在しない場合、統合コントローラ41はS11に戻り上述の制御を繰り返し行う。
 また、S15において余裕度平均値に余裕がないと判定された場合(NOの場合)、統合コントローラ41は、二次ポンプ33を駆動する周波数を上げる制御処理を行う(S18)。二次ポンプ33を駆動する周波数が増加すると、二次ポンプ33から送出される冷水の流量が増加する。言い換えると熱源10からAHU20に送りこまれる冷水の流量が増加し、AHU20における冷房能力が増加する。
 なお、ラック55に新たな電子機器51が追加されたり、電子機器51の配置が変更されたりするなど、設置状況が変更されることにより上述の影響係数が変化する場合がある。この場合には、空調群20Gの定義が再度行われる。
 次に、本実施形態の空調システム1における通常運転時の制御について説明する。具体的には、S11の判定においてワーニングが発報されていない状態における空調システム1における制御について説明する。
 この場合、統合コントローラ41は、フロアFに配置された全てのAHU20の余裕度を求め、この余裕度の平均であるフロア平均値(全体平均値)を算出する処理を行う。その後、演算部42は、求められたフロア平均値に余裕があるか否かを判定する処理を行う。例えば、フロア平均値が余裕度閾値以上(言い換えると、余裕がある)であるか、余裕度閾値未満である(言い換えると、余裕がない)か、を判定する処理を実行する。
 その結果、フロア平均値が余裕度閾値以上であるとき、統合コントローラ41は、二次ポンプ33から送り出される冷水の流量を減らす制御信号を出力する処理を行う。その一方で、フロア平均値が余裕度閾値未満であるとき、統合コントローラ41は、二次ポンプ33から送り出される冷水の流量を増やす制御信号を出力する処理を行う。
 また、送り温度センサ36により測定された冷水の温度と、戻り温度センサ37によって測定された冷水の温度との間の温度差である冷水往還温度差が、所定の温度差よりも小さい場合には、統合コントローラ41は、二次ポンプ33から送り出される冷水の流量を減少させる制御を行う。具体的には、統合コントローラ41は、ポンプコントローラ38を介して二次ポンプ33を駆動する動力インバータに運転周波数を低下させる制御信号を出力する。
 この場合、二次ポンプ33に適用された運転設定を記憶部43に記憶する処理を行い、二次ポンプ33から送り出される冷水の流量を減らす処理を行う際に、記憶された運転設定の近傍では、冷水の流量の減少量を前回の制御時よりも小さくする制御を行ってもよい。さらに記憶された運転設定の近傍では、冷水の流量を減らす制御を行う間隔を、他の場合よりも長くする制御を行ってもよい。
 このように記憶された運転設定の近傍においては、1回あたりの冷水の減少量を小さくすることにより、記憶された運転設定の近傍において細やかな制御が行われ、制御の安定性を確保しやすくなる。
 上記の構成の空調システム1によれば、所定の第1閾値以上の影響度係数を有する複数のAHU20のグループである空調群20Gを定義し、この空調群20Gに属するAHU20の余裕度に基づいて二次ポンプ33の制御を行うことにより、空調システム1によるフロアF内の温度調整の信頼度を確保しやすくなるとともに、空調システム1における消費電力の削減を図りやすくなる。つまり、空調群20Gに属するAHU20の余裕度の平均値である余裕度平均値に基づいて二次ポンプ33から送出される冷水の流量を制御するため、フロアFに配置された全AHU20の余裕度の平均値に基づく制御と比較して、所望箇所の空気温度の変化が二次ポンプ33の制御に反映されやすくなる。
 具体的には、所望箇所の空気温度が制御目標である設定温度よりも上昇した場合、余裕度平均値は全AHU20の余裕度の平均値よりも小さくなりやすく、二次ポンプ33から送出される冷水の流量を増やす制御が行われやすくなる。その結果、AHU20の冷房能力が高められ所望箇所の空気温度上昇が抑えられる。
 例えば、フロアF内に配置された全てのAHU20の余裕度の平均値を用いて二次ポンプ33から送出される冷水の流量を増やす制御を行う場合と比較して、空調群20Gに属する一つのAHU20の余裕度が大きい場合には、余裕度平均値に対して当該AHU20の余裕度が占める割合は全AHU20の余裕度の平均値よりも大きくなり、二次ポンプ33から送出される冷水の流量を増やす制御が行われるタイミングが遅くなる。言い換えると、余裕度が大きなAHU20の冷房能力を増やす制御を行い、所望箇所の空気温度を設定温度に制御する余裕が生まれる。このように二次ポンプ33から送出される冷水の流量を増やすことなく、所望箇所の空気温度の上昇に対処することができるため、空調システム1における消費エネルギの低減を図りやすくなる。
 上述の式(1)、式(2)、式(3)の少なくとも一つを用いて余裕度を求めることにより、信頼性をさらに確保しやすくなり、二次ポンプ33の駆動に用いる動力を低減させやすくなる。つまり、AHU20における空気を冷却する能力は対応する二方弁21の弁開度と相関していると考えられ、弁開度における全開までの余裕は上述の余裕度と相関していると考えられる。そのため、二方弁21の弁開度を用いて余裕度を求めることにより、余裕度をより高い精度で求めることができる。ファン23の回転周波数や空気温度差についても同様に、AHU20における空気を冷却する能力と相関していると考えられ、ファン23の回転周波数や空気温度差を用いて余裕度を求めることにより、余裕度をより高い精度で求めることができる。
 さらに上述の式(1)、式(2)、式(3)のいずれかを用いて余裕度を求めることにより、余裕度を0から1までの数値で表すことができる。そのため、余裕度と所定閾値との比較などの余裕度を求めた後の制御処理が行いやすくなる。
 所望箇所の温度と第1ワーニング閾値とを比較して、空調群20G内の余裕度の平均である余裕度平均値を用いて二次ポンプ33の制御を行うか、フロアF内の全AHU20の余裕度の平均である全体平均値を用いて二次ポンプ33の制御を行うかの選択を行うことにより、空調システム1によるフロアF内の温度調整の信頼度をさらに確保しやすくなるとともに、空調システム1における消費電力の削減をさらに図りやすくなる。
 具体的には、所望箇所の温度が第1ワーニング閾値を超えた場合には、AHU20の冷房能力変更のみで所望箇所の温度上昇を抑えることが難しいため、より早いタイミングで二次ポンプ33から送出される冷水の流量を制御できる余裕度平均値を用いた制御を行う。これにより、所望箇所の温度上昇が抑えられやすくなり、フロアF内の温度調整の信頼度を確保しやすくなる。
 その一方で、所望箇所の温度が第1ワーニング閾値以下の場合には、AHU20の冷房能力変更のみで所望箇所の温度上昇を抑えられる可能性が高いため、AHU20の冷房能力変更の期間を確保しやすい全体平均値を用いた制御を行う。これにより、消費電力が大きくなりやすい二次ポンプ33から送出される冷水の流量を増やす制御を抑制することができ、消費電力の削減を図りやすくなる。
 空調群20Gに属するAHU20の中から冷房能力に余裕のあるAHU20について設定温度を下げる制御を行うことで、二次ポンプ33から送出される冷水の流量の過度な変更を抑制でき、空調システム1における消費電力の削減をさらに図りやすくなる。つまり、空調群20Gに属するAHU20の余裕度と個別ワーニング閾値とを比較して、余裕度が個別ワーニング閾値を下回るAHU20は冷房能力に余裕があるAHU20とみなすことができる。このAHU20の設定温度を下げて冷房能力を高めることにより、二次ポンプ33から送出される冷水の流量を増やすことなく、所望箇所の温度上昇を抑制することができる。
 所望箇所を、IT(情報技術)装置やICT(情報通信技術)装置等のように熱を発生する電子機器51の冷却用空気の吸込み部52とすることにより、空調群20Gを適切に定義することができる。つまり、電子機器51の冷却に影響を与える冷却用空気の吸込み部52における空気温度に基づいて空調群20Gを定義することで、定義の精度が高まり空調システム1によるフロアF内の温度調整の信頼度をさらに確保しやすくなるとともに、空調システム1における消費電力の削減をさらに図りやすくなる。
 なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上記の実施の形態においては、本発明に係る空調システムをデータセンタに用いる例に適用して説明したが、用いる対象はデータセンタに限られるものではなく、他の設備に適用できるものである。

Claims (9)

  1.  冷水を所定温度に冷却するように構成された熱源と、
     各々が所定の区画内に配置され、前記冷水と熱交換して前記所定の区画内の空気を冷却するように構成された空調機である複数のAHU(Air Handling Unit)と、
     動力インバータの運転周波数に応じた流量の前記冷水を前記熱源から前記複数のAHUの各々に送るように構成されたポンプと、
     各々が前記複数のAHUの各々による前記所定の区画内の所望箇所の空気温度を調整する寄与率である複数の影響度係数を取得し、
    前記複数のAHUのうちの所定の第1閾値以上の影響度係数を有する少なくとも1つのAHUを空調群とし、
    前記空調群に属する前記少なくとも1つのAHUの状態を示す情報に基づいて、前記少なくとも1つのAHUにおける前記空気を冷却する余剰能力を示す余裕度を算出し、前記空調群に属する前記少なくとも1つのAHUの前記余裕度から判断される群余裕度を算出し、該群余裕度が所定の第2閾値以上である場合には、前記動力インバータの運転周波数を制御することにより前記ポンプから送り出される前記冷水の流量を減らし、
    前記群余裕度が前記所定の第2閾値未満である場合には前記ポンプから送り出される前記冷水の流量を増やすように構成された制御部と、
    を備える、冷水循環システム。
  2.  前記群余裕度は、前記空調群に属する前記少なくとも1つのAHUの前記余裕度の平均である余裕度平均値である、請求項1記載の冷水循環システム。
  3.  前記少なくとも1つのAHUの状態を示す前記情報は、前記少なくとも1つのAHUに流入する前記冷水の流量を制御する二方弁の弁開度、前記少なくとも1つのAHUにおいて熱交換される前記空気を送風するファンの回転周波数、および、前記少なくとも1つのAHUから吹出される前記空気の設定温度と計測された計測温度との空気温度差の少なくとも一つ以上、及び、その組み合わせの一方である、請求項2記載の冷水循環システム。
  4.  前記制御部は、
     前記所定の区画内の前記所望箇所の温度が第1ワーニング閾値を超えた場合には、前記空調群に属する前記少なくとも1つのAHUに対して、前記余裕度平均値が前記所定の第2閾値以上であるときには、前記ポンプから送り出される前記冷水の流量を減らし、前記余裕度平均値が前記所定の第2閾値未満であるときには前記冷水の流量を増やす制御を行い、
     前記所望箇所の温度が前記第1ワーニング閾値以下の場合には、前記所定の区画に配置された全てのAHUの前記余裕度の平均値である全体平均値を算出し、
    前記全体平均値が前記所定の第2閾値以上であるときには、前記ポンプから送り出される前記冷水の流量を減らし、前記全体平均値が前記所定の第2閾値未満であるときには前記冷水の流量を増やす制御を行うように構成されている、請求項2または3に記載の冷水循環システム。
  5.  前記制御部は、
     前記所望箇所の温度が前記第1ワーニング閾値を超え、かつ、前記余裕度平均値が前記所定の第2閾値以上の場合に、前記空調群に属する前記少なくとも1つのAHUのそれぞれの前記余裕度と、第2ワーニング閾値との比較を行い、
     前記余裕度が前記第2ワーニング閾値を下回るAHUが存在する場合には、当該AHUにおける冷却後の空気の目標温度である設定温度を下げる制御を行うように構成されている、請求項2から4のいずれか1項に記載の冷水循環システム。
  6.  前記余裕度は、1-(前記二方弁の弁開度)、1-(前記ファンの回転周波数/最大周波数)、および、前記設定温度-前記計測温度、の少なくとも一つである、請求項3から5のいずれか1項に記載の冷水循環システム。
  7.  前記余裕度が、1-(前記二方弁の弁開度)、及び、1-(前記ファンの回転周波数/最大周波数)の一方である場合に、
     前記余裕度の前記所定の第2閾値を、(前記AHUの常用台数)/(前記AHUの常用台数+前記AHUの予備台数)とする、請求項6記載の冷水循環システム。
  8.  前記制御部は、
     前記余裕度が前記所定の第2閾値未満と判定された場合に、前記ポンプに適用された運転設定を記憶し、
     記憶した後に、前記ポンプから送り出される前記冷水の流量を減らす際に、記憶された前記運転設定の近傍では、前回の制御における前記冷水の流量の減少量よりも、減少させる量を減らすように構成されている、請求項1から6のいずれか1項に記載の冷水循環システム。
  9.  前記所望箇所は、前記所定の区画内に配置された冷却対象である熱を発生する機器における空気の吸込み部である、請求項1から7のいずれか1項に記載の冷水循環システム。
PCT/JP2014/058561 2013-03-26 2014-03-26 冷水循環システム WO2014157347A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013064151A JP6052883B2 (ja) 2013-03-26 2013-03-26 冷水循環システム
JP2013-064151 2013-03-26

Publications (1)

Publication Number Publication Date
WO2014157347A1 true WO2014157347A1 (ja) 2014-10-02

Family

ID=51624311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058561 WO2014157347A1 (ja) 2013-03-26 2014-03-26 冷水循環システム

Country Status (2)

Country Link
JP (1) JP6052883B2 (ja)
WO (1) WO2014157347A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059152A (zh) * 2018-08-01 2018-12-21 浙江陆特能源科技股份有限公司 基于数据中心的水环热泵空调系统运行系统及方法
CN109556240A (zh) * 2018-12-13 2019-04-02 珠海格力电器股份有限公司 空调系统的控制方法、装置、机房空调系统和计算机设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6400978B2 (ja) * 2014-08-20 2018-10-03 株式会社Nttファシリティーズ 熱媒体循環システム
JP6849419B2 (ja) * 2016-12-08 2021-03-24 株式会社Nttファシリティーズ 冷水循環システム
CN107143979B (zh) * 2017-05-22 2019-11-05 青岛海尔空调器有限总公司 一拖多空调器的控制方法、控制装置和空调器
CN110160126B (zh) * 2019-04-18 2021-02-09 广东智科电子股份有限公司 变频采暖多联机控制方法、装置、设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875224A (ja) * 1994-09-09 1996-03-19 Shinryo Corp 送水圧力制御装置
JP2006064283A (ja) * 2004-08-26 2006-03-09 Ntt Power & Building Facilities Inc 空調機監視システム、および空調機監視方法
JP2007205605A (ja) * 2006-01-31 2007-08-16 Tokyo Electric Power Co Inc:The 空調システム
JP2011179755A (ja) * 2010-03-01 2011-09-15 Hitachi Cable Ltd 冷水循環システム
JP2011247560A (ja) * 2010-05-31 2011-12-08 Ntt Facilities Inc 空調制御システムの運転制御方法
JP2012193877A (ja) * 2011-03-15 2012-10-11 Ntt Facilities Inc 空調機とデータ処理負荷分配の連係制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875224A (ja) * 1994-09-09 1996-03-19 Shinryo Corp 送水圧力制御装置
JP2006064283A (ja) * 2004-08-26 2006-03-09 Ntt Power & Building Facilities Inc 空調機監視システム、および空調機監視方法
JP2007205605A (ja) * 2006-01-31 2007-08-16 Tokyo Electric Power Co Inc:The 空調システム
JP2011179755A (ja) * 2010-03-01 2011-09-15 Hitachi Cable Ltd 冷水循環システム
JP2011247560A (ja) * 2010-05-31 2011-12-08 Ntt Facilities Inc 空調制御システムの運転制御方法
JP2012193877A (ja) * 2011-03-15 2012-10-11 Ntt Facilities Inc 空調機とデータ処理負荷分配の連係制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059152A (zh) * 2018-08-01 2018-12-21 浙江陆特能源科技股份有限公司 基于数据中心的水环热泵空调系统运行系统及方法
CN109059152B (zh) * 2018-08-01 2024-03-05 浙江陆特能源科技股份有限公司 基于数据中心的水环热泵空调系统运行系统及方法
CN109556240A (zh) * 2018-12-13 2019-04-02 珠海格力电器股份有限公司 空调系统的控制方法、装置、机房空调系统和计算机设备
CN109556240B (zh) * 2018-12-13 2020-11-20 珠海格力电器股份有限公司 空调系统的控制方法、装置、机房空调系统和计算机设备

Also Published As

Publication number Publication date
JP6052883B2 (ja) 2016-12-27
JP2014190564A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
US10203128B2 (en) Cold water circulation system with control of supply of cold water based on degree of air handler surplus
WO2014157347A1 (ja) 冷水循環システム
JP5907247B2 (ja) 一体型空調システム、その制御装置
US10098264B2 (en) Air-conditioning apparatus
EP2981767B1 (en) Air conditioning system and method for controlling an air conditioning system
US11686517B2 (en) On board chiller capacity calculation
WO2012102155A1 (ja) 空調制御システム及び空調制御方法
US10247458B2 (en) Chilled water system efficiency improvement
JP6681896B2 (ja) 冷凍システム
JP2017129340A (ja) 熱源制御システム、制御方法および制御装置
JP7490831B2 (ja) 空調システムの制御装置、制御方法、制御プログラムおよび空調システム
JP4693645B2 (ja) 空調システム
CN111102691B (zh) 模块组合空调系统
JP6125836B2 (ja) 冷水循環システム
JP6174386B2 (ja) 空調システムの無除湿制御方法
JP2006250445A (ja) 2ポンプ方式熱源設備における運転制御方法
JP2011226680A (ja) 冷却水製造設備
JP5526716B2 (ja) 空調システム
JP2016095101A (ja) 外調機の制御方法
JP2020180782A (ja) 空調システムの制御装置、制御方法、制御プログラムおよび空調システム
JP5940608B2 (ja) 熱媒体循環システム
JP7015105B2 (ja) 空調システムの制御装置、制御方法、制御プログラム及び空調システム
JP2013061096A (ja) 局所空調システム、その制御装置、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14774865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14774865

Country of ref document: EP

Kind code of ref document: A1