WO2014156988A1 - 複合成形体の製造方法 - Google Patents

複合成形体の製造方法 Download PDF

Info

Publication number
WO2014156988A1
WO2014156988A1 PCT/JP2014/057836 JP2014057836W WO2014156988A1 WO 2014156988 A1 WO2014156988 A1 WO 2014156988A1 JP 2014057836 W JP2014057836 W JP 2014057836W WO 2014156988 A1 WO2014156988 A1 WO 2014156988A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
groove
metal
laser
resin
Prior art date
Application number
PCT/JP2014/057836
Other languages
English (en)
French (fr)
Inventor
池田大次
Original Assignee
ダイセルポリマー株式会社
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセルポリマー株式会社, 株式会社ダイセル filed Critical ダイセルポリマー株式会社
Priority to CN201480018392.2A priority Critical patent/CN105102201B/zh
Priority to KR1020157026791A priority patent/KR20150139511A/ko
Publication of WO2014156988A1 publication Critical patent/WO2014156988A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/15Magnesium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts

Definitions

  • the present invention relates to a method for producing a composite molded body comprising a metal molded body and a resin molded body.
  • Japanese Patent No. 4020957 discloses a metal surface for bonding with a dissimilar material (resin) including a step of laser scanning in one scanning direction and a step of laser scanning in a scanning direction crossing the metal surface. The invention of the laser processing method is described.
  • Japanese Patent Application Laid-Open No. 2010-167475 discloses an invention of a laser processing method in which laser scanning is performed in a superposed manner multiple times in the invention of Japanese Patent No. 4020957.
  • the bonded body of the above may have the highest shearing force and tensile strength in the Z-axis direction different from the X-axis and Y-axis directions.
  • a metal / resin composite having high bonding strength in a specific direction may be required, but Patent No. 4020957 In the invention of Japanese Patent Laid-Open No. 2010-167475, the above-mentioned demand cannot be sufficiently met.
  • the joint surface has a complicated shape or a shape including a narrow portion (for example, a star shape, a triangle, or a dumbbell type)
  • the surface is partially roughened by the laser scanning method in the cross direction. As a result of non-uniformity, it may be considered that sufficient bonding strength cannot be obtained.
  • Japanese Patent Application Laid-Open No. 10-294024 describes a method of manufacturing an electrical / electronic component in which a metal surface is irradiated with a laser beam to form irregularities, and a resin, rubber, or the like is injection-molded on the irregularity formation site.
  • a metal surface is irradiated with a laser beam to form irregularities
  • a resin, rubber, or the like is injection-molded on the irregularity formation site.
  • the surface of a long metal coil is irradiated with a laser to form irregularities.
  • the surface of the long metal coil is roughened in a striped or satin shape.
  • paragraph No. 19 the surface of the long metal coil is roughened in a stripe, dotted, wavy, knurled, or satin. It is described.
  • the purpose of laser irradiation is to form fine irregular irregularities on the metal surface, thereby enhancing the anchor effect.
  • the object to be processed is a long metal coil, it is considered that any irregularities are inevitably formed into fine irregular irregularities. Therefore, the invention of Japanese Patent Laid-Open No. 10-294024 is the same technology as the invention of forming fine irregularities on the surface by laser irradiation in the cross direction as in the inventions of Japanese Patent Nos. 4020957 and 2010-167475. Disclosing the ideal idea.
  • International Publication 2012/090671 is an invention of a method for producing a composite molded body comprising a metal molded body and a resin molded body. It is a laser scanning process to form markings consisting of straight lines and / or curves in one direction or different directions with respect to the joint surface of the metal molded body, and the markings consisting of straight lines and / or curves do not intersect each other. Laser scanning step.
  • FIGS. 6 to 9 show square, circular, elliptical, and triangular marking patterns.
  • An object of the present invention is to provide a method for producing a composite molded body, which can produce a composite molded body with higher bonding strength.
  • the present invention A method for producing a composite molded body in which a metal molded body and a resin molded body are joined, A groove is formed by irradiating a laser beam having a laser spot diameter of 10 to 200 ⁇ m to the joint surface of the metal molded body, thereby forming a circle having a diameter of 20 to 1000 ⁇ m or one region having the same area.
  • a method for manufacturing a body is provided.
  • the bonding strength between the metal molded body and the resin molded body can be increased.
  • FIG. 1 is a cross-sectional view (including a partially enlarged view) in the thickness direction of a composite molded body obtained by the production method of the present invention.
  • FIG. 2 is a cross-sectional view in the diameter direction of a composite molded body according to another embodiment of the present invention, where (a) is a view seen from the side, and (b) is a view seen from the end face.
  • FIG. 3 is an explanatory view of the production method of the present invention, which is a plan view (right side) and a partially enlarged view (left side).
  • FIG. 4 is a diagram showing a formation pattern of a region surrounded by grooves in the manufacturing method of the present invention.
  • FIG. 5 is an explanatory diagram of a manufacturing method in the embodiment.
  • FIG. 6 (a) is an SEM photograph of a plan view of a metal molded body used in the composite molded body of Example 1
  • FIG. 6 (b) is an enlarged view of FIG. 6 (a)
  • FIG. 6 (c). ) Is an SEM photograph of the cross section in the thickness direction of FIG.
  • FIG. 7 is an explanatory diagram of the manufacturing method of Comparative Example 1.
  • FIG. 8 is a diagram for explaining a method of measuring the bonding strength of the composite molded bodies of the example and the comparative example.
  • FIG. 1 is a cross-sectional view (including a partially enlarged view) in the thickness direction of a composite molded body 1 in which a flat metal molded body 10 and a flat resin molded body 20 are joined and integrated between flat surfaces.
  • FIG. 2A is a cross-sectional view in the thickness (diameter) direction of a composite molded body 1 in which a cylindrical (round bar) metal molded body 10 and a cylindrical resin molded body 20 are joined and integrated with curved surfaces.
  • . 1 and 2 can be manufactured through the following first step, second step and third step.
  • the laser spot diameter (d) is in the range of 10 to 200 ⁇ m with respect to the joint surface of the metal molded body 10 before being joined and integrated.
  • a groove 31 is formed by irradiating a laser beam, and a circle having a diameter (D) of 20 to 1000 ⁇ m or one region having the same area is formed. Further, in the first step, the groove 31 is formed so that the start point and the end point of laser irradiation are connected by one scan, and this is repeated a plurality of scans so that the same groove 31 is formed.
  • One region (circular region) 30 having a convex portion 32 is formed inside 31.
  • the diameter D of one region (circular region) 30 formed by the groove 31 and the convex portion 32 is the diameter of the contact circle outside the laser spot.
  • the groove 31 is formed so that the start point and the end point of laser irradiation are connected by one scan. That is, laser irradiation is performed such that laser spots adjacent in the circumferential direction overlap or contact each other.
  • the same groove 31 is scanned a plurality of times as in the first scan.
  • the depth of the groove 31 (that is, the height of the convex portion 32) is adjusted by scanning a plurality of times.
  • One region 30 surrounded by the groove 31 in the first step is not limited to a circle, an ellipse, a triangle, a rectangle, a pentagon or more polygon, and a desired shape as shown in FIGS.
  • the region may be selected from an indefinite shape, and may be a region having a shape other than that.
  • the diameter (D) is set to a circle having a diameter of 20 to 1000 ⁇ m or one region having the same area.
  • the laser spot diameter (d) is 10 to 200 ⁇ m, preferably 10 to 100 ⁇ m, more preferably 10 to 50 ⁇ m.
  • the size of one region is a circle having a diameter (D) of 20 to 1000 ⁇ m or the same area range, preferably a circle having a diameter (D) of 20 to 500 ⁇ m or the same area range, more preferably a diameter.
  • (D) is a circle of 20 to 300 ⁇ m or the same area range.
  • the irradiation distance for one scan is preferably 100 to 100,000 ⁇ m, more preferably 100 to 10,000 ⁇ m, and further preferably 100 to 1000 ⁇ m.
  • the depth of the groove formed by laser beam irradiation for one scan is preferably 5 to 300 ⁇ m, and more preferably 10 to 300 ⁇ m.
  • the depth of the groove after full scanning is preferably 10 to 600 ⁇ m, and more preferably 10 to 300 ⁇ m.
  • the irradiation conditions of the laser beam when forming the region 30 composed of such grooves are as follows.
  • the output is preferably 4 to 4000 W.
  • the wavelength is preferably from 300 to 1200 nm, more preferably from 500 to 1200 nm.
  • the pulse width for one scan (irradiation time of laser light for one scan) is preferably 1 to 10,000 nsec.
  • the frequency is preferably 1 to 100 kHz.
  • the focal position is preferably ⁇ 10 to +10 mm, more preferably ⁇ 6 to +6 mm.
  • the processing speed is preferably 10 to 10,000 mm / sec, more preferably 100 to 10,000 mm / sec, and further preferably 300 to 10,000 mm / sec.
  • the number of scans is preferably 1 to 30 times.
  • ⁇ Second step> In the second step, the first step is repeated to form a plurality of regions 30 (30a to 30g) shown in FIGS. 4A to 4G on the joint surface 12 of the metal molded body 10. 4A to 4E, regions 30 (30a to 30e) are formed on the entire surface of the bonding surface 12. In FIGS. 4F and 4G, regions are formed on a part of the bonding surface 12. 30 (30f, 30g) is formed.
  • a plurality of circular regions 30a having grooves 31a and convex portions 32a are formed at equal intervals.
  • the plurality of circular regions 30a are independent from each other and are not in contact with each other, but the grooves 31a of all or part of the regions 30a may overlap each other.
  • a plurality of elliptical regions 30b having grooves 31b and convex portions 32b are formed at equal intervals.
  • the plurality of oval regions 30b are independent and are not in contact with each other, but the grooves 31b of all or some of the regions 30b may overlap each other.
  • a plurality of triangular regions 30c having grooves 31c and convex portions 32c are formed at equal intervals.
  • the plurality of triangular regions 30c are independent from each other and are not in contact with each other, but the grooves 31c of all or some of the regions 30c may overlap each other.
  • a plurality of rectangular regions 30d having grooves 31d and convex portions 32d are formed at equal intervals.
  • the plurality of quadrangular regions 30d are independent of each other and are not in contact with each other, but the grooves 31d of all or some of the regions 30d may overlap each other.
  • a plurality of circular regions 30e having grooves 31e and convex portions 32e are formed at equal intervals in a different arrangement state from FIG. 4 (a).
  • the plurality of circular regions 30e are independent and are not in contact with each other, but the grooves 31e of all or some of the regions 30e may overlap each other.
  • FIG. 4 (f) unlike FIGS. 4 (a) and 4 (e), a plurality of circular regions 30f having grooves 31f and convex portions 32f are formed on a part of the joint surface 12.
  • FIG. The plurality of circular regions 30f are independent and are not in contact with each other, but the grooves 31f of all or some of the regions 30f may overlap each other.
  • FIG. 4F in the plurality of circular regions 30f, the formation density of the circular region 30f on the side 12a side of the joint surface 12 is high, and the formation density of the circular region 30f on the opposite side 12b side is low. Is formed. In this manner, the circular regions 30f are not evenly arranged on the joint surface 12 and can be formed so as to be unevenly distributed on a part of the surface.
  • the composite molded body 1 shown in FIG. 1 has a plurality of circular regions 30f shown in FIG. 4 (f) formed on the joining surface 12, the circular regions 30f are dense on the side 12a side. Since it is formed, the drag force when the composite molded body 1 is pulled in the direction of the arrow in FIG. 4F is increased, and the bonding strength between the metal molded body 10 and the resin molded body 20 is increased.
  • a plurality of circular regions 30g having grooves 31g and convex portions 32g are formed around the joint surface 12, and a central portion is formed.
  • the circular region 30g is not formed.
  • the plurality of circular regions 30g are independent of each other and are not in contact with each other, but the grooves 31g of all or some of the regions 30g may overlap each other.
  • a plurality of circular regions 30g may be formed only in the central portion of the joint surface 12, and the circular regions 30g may not be formed in the periphery.
  • ⁇ Third step> a portion including the joint surface 12 of the metal molded body 10 in which a plurality of regions 30 are formed is placed in a mold, and insert molding is performed using a resin that becomes the resin molded body 20, A composite molded body 1 is obtained.
  • the composite molded body 1 in a state where the resin enters the groove 31 of the region 30 (the groove 31 and the protrusion 32) is obtained. Since the metal molded body 10 has the region 30 (the groove 31 and the protrusion 32) as described above, the contact area between the metal molded body 10 and the resin molded body 20 is increased, and the resin is contained in the groove 31.
  • the joint strength is enhanced by the anchor effect caused by the penetration. Further, for example, as shown in FIGS. 4A to 4G, the tensile strength and the bending strength in the desired direction are increased by adjusting the arrangement state of the region 30 and adjusting the formation pattern. A composite molded body can be obtained.
  • the metal of the metal molded body used in the composite molded body of the present invention is not particularly limited, and can be appropriately selected from known metals according to applications. Examples thereof include those selected from iron, various stainless steels, aluminum or alloys thereof, copper or alloys thereof, silver or alloys thereof, zinc, magnesium, lead, tin and alloys containing them.
  • the molding method of the metal molded body used in the composite molded body of the present invention is not particularly limited, and can be produced by applying various known molding methods according to the type of metal, for example, die casting. What was manufactured by the method can be used.
  • the resin of the resin molded body used in the composite molded body of the present invention includes thermoplastic elastomers in addition to thermoplastic resins and thermosetting resins.
  • the thermoplastic resin can be appropriately selected from known thermoplastic resins depending on the application.
  • polyamide-based resins aliphatic polyamides such as PA6 and PA66, aromatic polyamides
  • copolymers containing styrene units such as polystyrene, ABS resin, AS resin, polyethylene, copolymers containing ethylene units, polypropylene, propylene
  • thermosetting resin can be appropriately selected from known thermosetting resins depending on the application.
  • urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, polyurethane, and vinyl urethane can be mentioned.
  • thermoplastic elastomer can be appropriately selected from known thermoplastic elastomers according to the application. Examples thereof include styrene elastomers, vinyl chloride elastomers, olefin elastomers, urethane elastomers, polyester elastomers, nitrile elastomers, and polyamide elastomers.
  • thermoplastic resins, thermosetting resins, and thermoplastic elastomers can be blended with known fibrous fillers.
  • known fibrous fillers include carbon fibers, inorganic fibers, metal fibers, and organic fibers. Carbon fibers are well known, and PAN, pitch, rayon, lignin and the like can be used.
  • inorganic fibers include glass fibers, basalt fibers, silica fibers, silica / alumina fibers, zirconia fibers, boron nitride fibers, and silicon nitride fibers.
  • the metal fiber include fibers made of stainless steel, aluminum, copper and the like.
  • organic fibers examples include polyamide fibers (fully aromatic polyamide fibers, semi-aromatic polyamide fibers in which one of diamine and dicarboxylic acid is an aromatic compound, aliphatic polyamide fibers), polyvinyl alcohol fibers, acrylic fibers, polyolefin fibers, Synthetic fibers such as polyoxymethylene fibers, polytetrafluoroethylene fibers, polyester fibers (including wholly aromatic polyester fibers), polyphenylene sulfide fibers, polyimide fibers, liquid crystal polyester fibers, natural fibers (cellulosic fibers, etc.) and regenerated cellulose ( Rayon) fiber or the like can be used.
  • polyamide fibers fully aromatic polyamide fibers, semi-aromatic polyamide fibers in which one of diamine and dicarboxylic acid is an aromatic compound
  • aliphatic polyamide fibers examples include polyvinyl alcohol fibers, acrylic fibers, polyolefin fibers, Synthetic fibers such as polyoxymethylene fibers, polytetra
  • these fibrous fillers those having a fiber diameter in the range of 3 to 60 ⁇ m can be used, and among these, for example, the width of the marking pattern formed on the joint surface 11 of the metal molded body 10 ( It is preferable to use one having a fiber diameter smaller than the size of the opening of the pore or the width of the groove.
  • the fiber diameter is more desirably 5 to 30 ⁇ m, and further desirably 7 to 20 ⁇ m.
  • a fibrous filler having a fiber diameter smaller than the width of the marking pattern is used, a composite molded body in which a part of the fibrous filler is stuck in the marking pattern of the metal molded body is obtained. This is preferable because the bonding strength between the molded body and the resin molded body is increased.
  • the weight average fiber length contained in the resin molded product is preferably 0.1 to 5.0 mm, more preferably 0.1 to 4.0 mm, still more preferably 0.2 to 3.0 mm, and most preferably 0. It is preferable to use a raw material having a length that can be adjusted to 5 to 2.5 mm.
  • the blending amount of the fibrous filler with respect to 100 parts by mass of the thermoplastic resin, thermosetting resin, and thermoplastic elastomer is preferably 5 to 250 parts by mass. More preferably, it is 25 to 200 parts by mass, and even more preferably 45 to 150 parts by mass.
  • a known laser can be used.
  • YVO4 laser, YAG laser, fiber laser, excimer laser, ultraviolet laser, carbon dioxide gas laser, semiconductor laser, glass laser, ruby laser, He—Ne laser, nitrogen laser, chelate laser, and dye laser can be used.
  • Laser irradiation conditions such as wavelength, beam diameter, pore spacing, frequency, etc., depend on the size, mass, type, and required bonding strength of the metal molded body and resin molded body to be bonded. It can be determined as appropriate.
  • Example 1 The joint surface 12 of the metal molded body (aluminum: A5052) shown in FIG. 5 was irradiated with laser under the conditions shown in Table 1 to form 372 circular regions 30a shown in FIG.
  • the laser oscillator used was a fiber laser (IPG YLP-1-50-30-30RA).
  • FIG. 6A is an SEM photograph (100 times) of a plane of the metal molded body used in Example 1
  • FIG. 6B is an enlarged photograph (200 times) of FIG. ) Is an SEM photograph (100 times) of the cross section in the thickness direction of FIG.
  • insert molding was performed by the following method to obtain a composite molded body of Example 1.
  • Comparative Example 1 The joint surface 12 of the metal molded body (aluminum: A5052) shown in FIG. 5 was irradiated with laser under the conditions shown in Table 1 to form a groove composed of a plurality of bent lines in the state shown in FIG. .
  • the laser oscillator used was a fiber laser (IPG YLP-1-50-30-30RA). After forming the groove
  • Comparative Example 2 The joint surface 12 of the metal molded body (aluminum: A5052) shown in FIG. 5 was irradiated with laser under the conditions shown in Table 1 to form a groove composed of a plurality of bent lines in the state shown in FIG. .
  • the laser oscillator used was a fiber laser (IPG YLP-1-50-30-30RA). After forming the groove
  • Example 1 since the irradiation distance of one scan is shorter than that of Comparative Examples 1 and 2, the diffusion of heat is suppressed, so that the groove depth per scan can be increased. For this reason, when Example 1 is compared with Comparative Example 1, it can be confirmed that Example 1 can shorten the total scan time, and a composite molded body having a higher bonding strength than Comparative Example 1 was obtained. Moreover, when Example 1 and Comparative Example 2 are compared, it can be confirmed that a composite molded body having a bonding strength three times or higher was obtained when the same total scan time was obtained. Therefore, by applying the manufacturing method of the present invention, the efficiency of laser processing (processing amount per hour) can be greatly improved.

Abstract

 接合強度を高めることができる複合成形体の製造方法の提供。金属成形体と樹脂成形体が接合された複合成形体の製造方法であって、前記金属成形体の接合面に対して、レーザースポット径10~200μmの範囲のレーザー光を照射して溝を形成し、直径が20~1000μmの円形またはそれと同面積範囲の一つの領域を形成する工程であり、1スキャンによりレーザー照射の開始点と終点が繋がるようにして溝を形成し、これを複数スキャン繰り返して溝で囲まれた一つの領域を形成する第1工程、 前記第1工程を繰り返して、溝で囲まれた複数の領域を形成する第2工程、 前記溝で囲まれた領域が形成された金属成形体の接合面を含む部分を金型内に配置して、前記樹脂成形体となる樹脂インサート成形する第3工程を有している、複合成形体の製造方法。

Description

複合成形体の製造方法
 本発明は、金属成形体と樹脂成形体からなる複合成形体の製造方法に関する。
 各種部品の軽量化の観点から、金属代替品として樹脂成形体が使用されているが、全ての金属部品を樹脂で代替することは難しい場合も多い。そのような場合には、金属成形体と樹脂成形体を接合一体化することで新たな複合部品を製造することが考えられる。
 しかしながら、金属成形体と樹脂成形体を工業的に有利な方法で、かつ高い接合強度で接合一体化できる技術は実用化されていない。
 特許第4020957号公報には、金属表面に対して、一つの走査方向にレーザースキャニングする工程と、それにクロスする走査方向にレーザースキャニングする工程を含む、異種材料(樹脂)と接合するための金属表面のレーザー加工方法の発明が記載されている。
 特開2010-167475号公報には、特許第4020957号公報の発明において、さらに複数回重畳的にレーザースキャニングするレーザー加工方法の発明が開示されている。
 しかしながら、特許第4020957号公報、特開2010-167475号公報の発明は、必ずクロスする2つの方向に対してレーザースキャンする必要があるため、加工時間が長く掛かりすぎるという点で改善の余地がある。
 さらにクロス方向へのレーザースキャンにより十分な表面粗し処理ができることから、接合強度は高くできることが考えられるが、表面粗さ状態が均一にならず、金属と樹脂との接合部分の強度の方向性が安定しないおそれがあるという問題がある。
 例えば、1つの接合体はX軸方向への剪断力や引張強度が最も高いが、他の接合体は、X軸方向とは異なるY軸方向への剪断力や引張強度が最も高く、さらに別の接合体は、X軸およびY軸方向とは異なるZ軸方向への剪断力や引張強度が最も高くなるという問題が発生するおそれがある。
 製品によっては(例えば、一方向への回転体部品や一方向への往復運動部品)、特定方向への高い接合強度を有する金属と樹脂の複合体が求められる場合があるが、特許第4020957号公報、特開2010-167475号公報の発明では前記の要望には十分に応えることができない。
 また接合面が複雑な形状や幅の細い部分を含む形状のものである場合(例えば星形、三角形、ダンベル型)には、クロス方向にレーザースキャンする方法では、部分的に表面粗し処理が不均一になる結果、充分な接合強度が得られないことも考えられる。
 特開平10-294024号公報には、金属表面にレーザー光を照射して凹凸を形成し、凹凸形成部位に樹脂、ゴム等を射出成形する電気電子部品の製造方法が記載されている。
 実施形態1~3では、金属長尺コイル表面にレーザー照射して凹凸を形成することが記載されている。そして、段落番号10では、金属長尺コイル表面をストライプ状や梨地状に荒らすこと、段落番号19では、金属長尺コイル表面をストライプ状、点線状、波線状、ローレット状、梨地状に荒らすることが記載されている。
 しかし、段落番号21、22の発明の効果に記載されているとおり、レーザー照射をする目的は、金属表面に微細で不規則な凹凸を形成し、それによりアンカー効果を高めるためである。特に処理対象が金属長尺コイルであることから、どのような凹凸を形成した場合でも、必然的に微細で不規則な凹凸になるものと考えられる。
 よって、特開平10-294024号公報の発明は、特許第4020957号公報、特開2010-167475号公報の発明のようにクロス方向にレーザー照射して表面に微細な凹凸を形成する発明と同じ技術的思想を開示しているものである。
 国際公開2012/090671は、金属成形体と樹脂成形体からなる複合成形体の製造方法の発明である。金属成形体の接合面に対して、一方向又は異なる方向に直線及び/又は曲線からなるマーキングを形成するようにレーザースキャンする工程であり、各直線及び/又は各曲線からなるマーキングが互いに交差しないようにレーザースキャンする工程を有している。図6から図9には、四角形、円形、楕円形、三角形のマーキングパターンが示されている。
 本発明は、接合強度がより高められている複合成形体を製造できる、複合成形体の製造方法を提供することを課題とする。
 本発明は、課題の解決手段として、
 金属成形体と樹脂成形体が接合された複合成形体の製造方法であって、
 前記金属成形体の接合面に対して、レーザースポット径10~200μmの範囲のレーザー光を照射して溝を形成し、直径が20~1000μmの円形またはそれと同面積範囲の一つの領域を形成する工程であり、1スキャンによりレーザー照射の開始点と終点が繋がるようにして溝を形成し、これを複数スキャン繰り返して溝で囲まれた一つの領域を形成する第1工程、
 前記第1工程を繰り返して、溝で囲まれた複数の領域を形成する第2工程、
 前記溝で囲まれた領域が形成された金属成形体の接合面を含む部分を金型内に配置して、前記樹脂成形体となる樹脂インサート成形する第3工程を有している、複合成形体の製造方法を提供する。
 本発明の複合成形体の製造方法によれば、金属成形体と樹脂成形体の接合強度を高めることができる。
図1は、本発明の製造方法で得られた複合成形体の厚さ方向の断面図(部分拡大図を含む)である。 図2は、本発明の他実施形態である複合成形体の直径方向の断面図であり、(a)は側面から見た図、(b)は端面から見た図である。 図3は、本発明の製造方法の説明図であり、平面図(右側)とその部分拡大図(左側)である。 図4は、本発明の製造方法における溝で囲まれた領域の形成パターンを示す図である。 図5は、実施例における製造方法の説明図である。 図6の(a)は、実施例1の複合成形体で使用する金属成形体の平面図のSEM写真、図6の(b)は、図6(a)の拡大図、図6の(c)は、図6(a)の厚さ方向断面のSEM写真である。 図7は、比較例1の製造方法の説明図である。 図8は、実施例と比較例の複合成形体の接合強度の測定方法を説明するための図である。
 図1は、平板の金属成形体10と平板の樹脂成形体20が、平面同士で接合一体化された複合成形体1の厚さ方向の断面図(部分拡大図を含む)である。
 図2(a)は、円柱(丸棒)の金属成形体10と円柱の樹脂成形体20が、曲面同士で接合一体化された複合成形体1の厚さ(直径)方向の断面図である。
 図1および図2の複合成形体1は、以下の第1工程、第2工程および第3工程を経て製造することができる。
 <第1工程>
 第1工程では、図3の平面図と部分拡大図に示すように、接合一体化される前の金属成形体10の接合面に対して、レーザースポット径(d)が10~200μmの範囲のレーザー光を照射して溝31を形成し、直径(D)が20~1000μmの円形またはそれと同面積範囲の一つの領域を形成する。
 さらに第1工程では、1スキャンによりレーザー照射の開始点と終点が繋がるようにして溝31を形成し、これを同じ溝31が形成されるように複数スキャン繰り返して、溝31で囲まれ、溝31の内側に凸部32を有する一つの領域(円形領域)30を形成する。
 溝31と凸部32で形成される一つの領域(円形領域)30の直径Dは、レーザースポットの外側の接触円の直径とする。
 溝31は、図3の部分拡大図に示すように、1スキャンによりレーザー照射の開始点と終点が繋がるようにして形成する。即ち、周方向に隣接するレーザースポット同士が互いに重複するか、または接触するようにしてレーザー照射する。
 続いて2回目のスキャンにおいても、1回目のスキャンと同様にして同じ溝31上を複数回スキャンする。複数回スキャンすることで溝31の深さ(即ち、凸部32の高さ)を調整する。
 第1工程において溝31で囲まれた一つの領域30は、図4(a)~(g)に示されるような、円形、楕円形、三角形、四角形のほか、五角形以上の多角形および所望の不定形から選ばれる領域にすることができ、それ以外の形状からなる領域であってもよい。
 円形以外の領域にした場合には、直径(D)が20~1000μmの円形またはそれと同面積範囲の一つの領域になるようにする。
 レーザースポット径(d)は10~200μmであり、好ましくは10~100μm、より好ましくは10~50μmである。
 1つの領域の大きさは、直径(D)が20~1000μmの円形またはそれと同面積範囲であり、好ましくは直径(D)が20~500μmの円形またはそれと同面積範囲であり、より好ましくは直径(D)が20~300μmの円形またはそれと同面積範囲である。
 1スキャンの照射距離は100~100,000μmが好ましく、100~10,000μmがより好ましく、100~1000μmがさらに好ましい。このように1スキャンの照射距離を短くすることで、スキャン間の熱の拡散と金属温度の低下を抑えることができるため、レーザー加工の効率(時間当たりの加工量)が良くなる。
 1スキャンのレーザー光照射で形成される溝の深さは5~300μmが好ましく、10~300μmがより好ましい。
 全スキャン後の溝の深さは10~600μmが好ましく、10~300μmがより好ましい。
 このような溝からなる領域30を形成するときのレーザー光の照射条件は、次のとおりである。
 出力は4~4000Wが好ましい。
 波長は300~1200nmが好ましく、500~1200nmがより好ましい。
 1スキャンのパルス幅(1スキャンのレーザー光の照射時間)は1~10,000nsecが好ましい。
 周波数は1~100kHzが好ましい。
 焦点位置は-10~+10mmが好ましく、-6~+6mmがより好ましい。
 加工速度は10~10,000mm/secが好ましく、100~10,000mm/secがより好ましく、300~10,000mm/secがさらに好ましい。
 スキャン回数は1~30回が好ましい。
 <第2工程>
 第2工程では、第1工程を繰り返して、金属成形体10の接合面12に対して、図4(a)~(g)で示される複数の領域30(30a~30g)を形成する。
 図4(a)~(e)では、接合面12の全面に領域30(30a~30e)が形成されており、図4(f)、(g)では、接合面12の一部面に領域30(30f、30g)が形成されている。
 図4(a)では、溝31aと凸部32aを有する円形領域30aの複数が均等間隔で形成されている。複数の円形領域30aはそれぞれが独立しており接触していないが、全部または一部の領域30aの溝31a同士が重複していてもよい。
 図4(b)では、溝31bと凸部32bを有する楕円形領域30bの複数が均等間隔で形成されている。複数の楕円形領域30bはそれぞれが独立しており接触していないが、全部または一部の領域30bの溝31b同士が重複していてもよい。
 図4(c)では、溝31cと凸部32cを有する三角形領域30cの複数が均等間隔で形成されている。複数の三角形領域30cはそれぞれが独立しており接触していないが、全部または一部の領域30cの溝31c同士が重複していてもよい。
 図4(d)では、溝31dと凸部32dを有する四角形領域30dの複数が均等間隔で形成されている。複数の四角形領域30dはそれぞれが独立しており接触していないが、全部または一部の領域30dの溝31d同士が重複していてもよい。
 図4(e)では、図4(a)とは異なる配置状態にて、溝31eと凸部32eを有する円形領域30eの複数が均等間隔で形成されている。複数の円形領域30eはそれぞれが独立しており接触していないが、全部または一部の領域30eの溝31e同士が重複していてもよい。
 図4(f)では、図4(a)、(e)とは異なり、接合面12の一部面において、溝31fと凸部32fを有する円形領域30fの複数が形成されている。複数の円形領域30fはそれぞれが独立しており接触していないが、全部または一部の領域30fの溝31f同士が重複していてもよい。
 図4(f)では、複数の円形領域30fは、接合面12の辺12a側の円形領域30fの形成密度が高くなり、反対側の辺12b側の円形領域30fの形成密度が低くなるように形成されている。このようにして接合面12において円形領域30fを均等配置せず、一部面に偏在させるように成形することができる。
 図1で示す複合成形体1が、接合面12に図4(f)に示された複数の円形領域30fが形成されたものであるとき、円形領域30fが辺12a側に密になるように形成されているため、複合成形体1が図4(f)の矢印方向に引っ張られるときの抗力が大きくなり、金属成形体10と樹脂成形体20との接合強度が高められる。
 図4(g)では、図4(a)、(e)とは異なり、接合面12の周囲において、溝31gと凸部32gを有する円形領域30gの複数が形成されており、中央部には円形領域30gは形成されていない。複数の円形領域30gはそれぞれが独立しており接触していないが、全部または一部の領域30gの溝31g同士が重複していてもよい。
 なお、図4(g)とは逆に、接合面12の中央部にのみ複数の円形領域30gが形成され、周囲には円形領域30gが形成されないようにしてもよい。
 <第3工程>
 第3工程にて、複数の領域30が形成された金属成形体10の接合面12を含む部分を金型内に配置して、樹脂成形体20となる樹脂を使用してインサート成形して、複合成形体1を得る。
 このインサート成形工程によって、図1に示すように、領域30(溝31と突起32)の溝31内に樹脂が入り込んだ状態の複合成形体1が得られる。
 このように金属成形体10が領域30(溝31と突起32)を有していることから、金属成形体10と樹脂成形体20との接触面積が増大されると共に、溝31内に樹脂が入り込むことによるアンカー効果によって、接合強度が高められる。
 さらに、例えば図4(a)~(g)に示すように、領域30の配置状態を調整したり、形成パターンを調整したりすることで、所望方向への引張強度や曲げ強度が高められた複合成形体を得ることができるようなる。
 本発明の複合成形体で使用する金属成形体の金属は特に制限されるものではなく、用途に応じて公知の金属から適宜選択することができる。例えば、鉄、各種ステンレス、アルミニウムまたはその合金、銅またはその合金、銀またはその合金、亜鉛、マグネシウム、鉛、錫およびそれらを含む合金から選ばれるものを挙げることができる。
 本発明の複合成形体で使用する金属成形体の成形方法は特に制限されるものではなく、金属の種類に応じて公知の各種成形法を適用して製造することができものであり、例えばダイカスト法で製造したものを使用することができる。
 本発明の複合成形体で使用する樹脂成形体の樹脂は、熱可塑性樹脂、熱硬化性樹脂のほか、熱可塑性エラストマーも含まれる。
 熱可塑性樹脂は、用途に応じて公知の熱可塑性樹脂から適宜選択することができる。例えば、ポリアミド系樹脂(PA6、PA66等の脂肪族ポリアミド、芳香族ポリアミド)、ポリスチレン、ABS樹脂、AS樹脂等のスチレン単位を含む共重合体、ポリエチレン、エチレン単位を含む共重合体、ポリプロピレン、プロピレン単位を含む共重合体、その他のポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリカーボネート系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリエステル系樹脂、ポリアセタール系樹脂、ポリフェニレンスルフィド系樹脂を挙げることができる。
 熱硬化性樹脂は、用途に応じて公知の熱硬化性樹脂から適宜選択することができる。例えば、尿素樹脂、メラミン樹脂、フェノール樹脂、レソルシノール樹脂、エポキシ樹脂、ポリウレタン、ビニルウレタンを挙げることができる。
 熱可塑性エラストマーは、用途に応じて公知の熱可塑性エラストマーから適宜選択することができる。例えば、スチレン系エラストマー、塩化ビニル系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ニトリル系エラストマー、ポリアミド系エラストマーを挙げることができる。
 これらの熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマーには、公知の繊維状充填材を配合することができる。
 公知の繊維状充填材としては、炭素繊維、無機繊維、金属繊維、有機繊維等を挙げることができる。
 炭素繊維は周知のものであり、PAN系、ピッチ系、レーヨン系、リグニン系等のものを用いることができる。
 無機繊維としては、ガラス繊維、玄武岩繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化ホウ素繊維、窒化ケイ素繊維等を挙げることができる。
 金属繊維としては、ステンレス、アルミニウム、銅等からなる繊維を挙げることができる。
 有機繊維としては、ポリアミド繊維(全芳香族ポリアミド繊維、ジアミンとジカルボン酸のいずれか一方が芳香族化合物である半芳香族ポリアミド繊維、脂肪族ポリアミド繊維)、ポリビニルアルコール繊維、アクリル繊維、ポリオレフィン繊維、ポリオキシメチレン繊維、ポリテトラフルオロエチレン繊維、ポリエステル繊維(全芳香族ポリエステル繊維を含む)、ポリフェニレンスルフィド繊維、ポリイミド繊維、液晶ポリエステル繊維などの合成繊維や天然繊維(セルロース系繊維など)や再生セルロース(レーヨン)繊維などを用いることができる。
 これらの繊維状充填材は、繊維径が3~60μmの範囲のものを使用することができるが、これらの中でも、例えば金属成形体10の接合面11に対して形成されるマーキングパターンの幅(細孔の開口部の大きさ、または溝の幅)より小さな繊維径のものを使用することが好ましい。繊維径は、より望ましくは5~30μm、さらに望ましくは7~20μmである。
 このようなマーキングパターンの幅より小さな繊維径の繊維状充填材を使用したときには、金属成形体のマーキングパターン内に繊維状充填材の一部が張り込んだ状態の複合成形体が得られ、金属成形体と樹脂成形体の接合強度が高められるので好ましい。
 さらにこれらの繊維状充填材は、樹脂成形体の機械的強度を高め、金属成形体との機械的強度差を小さくすることで金属成形体と樹脂成形体との接合強度を高めるため、成形後の樹脂成形体中に含まれる重量平均繊維長が、好ましくは0.1~5.0mm、より好ましくは0.1~4.0mm、さらに好ましくは0.2~3.0mm、もっとも好ましくは0.5~2.5mmにできるような長さのものを製造原料として使用することが好ましい。
 熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマー100質量部に対する繊維状充填材の配合量は5~250質量部が好ましい。より望ましくは、25~200質量部、さらに望ましくは45~150質量部である。
 本発明の複合成形体の製造方法では公知のレーザーを使用することができ、例えば、YVO4レーザー、YAGレーザー、ファイバーレーザー、エキシマレーザー、紫外線レーザー、炭酸ガスレーザー、半導体レーザー、ガラスレーザー、ルビーレーザー、He-Neレーザー、窒素レーザー、キレートレーザー、色素レーザーを使用することができる。
 レーザーの照射条件、例えば、波長、ビーム径、細孔の間隔、周波数などは、接合対象となる金属成形体と樹脂成形体の大きさ、質量、種類、さらには求められる接合強度等に応じて適宜決定することができる。
 実施例1
 図5に示す金属成形体(アルミニウム:A5052)の接合面12に対して、表1に示す条件でレーザー照射して、図4(a)に示す372個の円形領域30aを形成した。なお、レーザー発振器はファイバーレーザー(IPG製 YLP-1-50-30-30RA)を使用した。
 図6(a)は実施例1で使用した金属成形体の平面のSEM写真(100倍)であり、図6(b)は(a)の拡大写真(200倍)であり、図6(c)は図6(a)の厚さ方向断面のSEM写真(100倍)である。
 上記のようにして金属成形体に円形領域を形成した後、下記の方法でインサート成形して、実施例1の複合成形体を得た。
 比較例1
 図5に示す金属成形体(アルミニウム:A5052)の接合面12に対して、表1に示す条件でレーザー照射して、図7に示すような状態の複数回折れ曲がった直線からなる溝を形成した。なお、レーザー発振器はファイバーレーザー(IPG製 YLP-1-50-30-30RA)を使用した。
 上記のようにして金属成形体に直線からなる溝を形成した後、下記の方法でインサート成形して、比較例1の複合成形体を得た。
 比較例2
 図5に示す金属成形体(アルミニウム:A5052)の接合面12に対して、表1に示す条件でレーザー照射して、図7に示すような状態の複数回折れ曲がった直線からなる溝を形成した。なお、レーザー発振器はファイバーレーザー(IPG製 YLP-1-50-30-30RA)を使用した。
 上記のようにして金属成形体に直線からなる溝を形成した後、下記の方法でインサート成形して、比較例2の複合成形体を得た。
 <インサート成形(射出成形)>
 樹脂:GF60%強化PA66樹脂(プラストロンPA66-GF60-01(L7):ダイセルポリマー(株)製),ガラス繊維の繊維長:11mm
 樹脂温度:320℃
 金型温度:100℃
 射出成形機:ファナック社製FANUC ROBOSHOT S2000i-100B
 〔引張試験〕
 実施例1、比較例1、2の複合成形体を用い、引張試験を行って接合強度を評価した。結果を表1に示す。
 なお、複合成形体の樹脂成形体中のガラス繊維の繊維長(重量平均繊維長)は0.85mmであった。平均繊維長は、成形品から約3gの試料を切出し、650℃で加熱・灰化させてガラス繊維を取り出した。取り出した繊維の一部(500本)から重量平均繊維長を求めた。計算式は、特開2006-274061号公報の〔0044〕、〔0045〕を使用した。
 引張試験は、金属成形体側を固定した状態で、金属成形体と樹脂成形体が破断するまで図8に示すX1方向に引っ張った場合の最大荷重を測定した。
 <引張試験条件>
 試験機:オリエンテック社製テンシロン(UCT-1T)
 引張速度:5mm/min
 チャック間距離:50mm
Figure JPOXMLDOC01-appb-T000001
 実施例1は、比較例1、2と比べると1スキャンの照射距離が短いため、熱の拡散が抑制されることから、1スキャン当たりの溝深さを大きくすることができた。
 このため、実施例1と比較例1を比べると、実施例1は合計スキャン時間を短くでき、比較例1よりも高い接合強度の複合成形体が得られたことが確認できる。
 また実施例1と比較例2を比べると、同じ合計スキャン時間であるときには、3倍以上高い接合強度の複合成形体が得られたことが確認できる。
 よって、本発明の製造方法を適用することで、レーザー加工の効率(時間当たりの加工量)を大きく向上させることができるようになる。
 1 複合成形体
 10 金属成形体
 12 接合面
 20 樹脂成形体

Claims (7)

  1.  金属成形体と樹脂成形体が接合された複合成形体の製造方法であって、
     前記金属成形体の接合面に対して、レーザースポット径10~200μmの範囲のレーザー光を照射して溝を形成し、直径が20~1000μmの円形またはそれと同面積範囲の一つの領域を形成する工程であり、1スキャンによりレーザー照射の開始点と終点が繋がるようにして溝を形成し、これを複数スキャン繰り返して溝で囲まれた一つの領域を形成する第1工程、
     前記第1工程を繰り返して、溝で囲まれた複数の領域を形成する第2工程、
     前記溝で囲まれた領域が形成された金属成形体の接合面を含む部分を金型内に配置して、前記樹脂成形体となる樹脂インサート成形する第3工程を有している、複合成形体の製造方法。
  2.  前記第1工程において溝で囲まれた一つの領域が、溝で形成された円形、楕円形、三角形、四角形、五角形以上の多角形および不定形から選ばれる領域である、請求項1記載の複合成形体の製造方法。
  3.  前記第2工程が、それぞれが独立した複数の領域を形成する工程である、請求項1または2記載の複合成形体の製造方法。
  4.  前記第2工程が、複数の領域の隣接する領域同士の全部または一部が重複して形成する工程である、請求項1または2記載の複合成形体の製造方法。
  5.  前記第2工程が、前記金属成形体の接合面の全体に複数の領域を形成する工程である、請求項1または2記載の複合成形体の製造方法。
  6.  前記第2工程が、前記金属成形体の接合面の一部に複数の領域を形成する工程である、請求項1または2記載の複合成形体の製造方法。
  7.  前記金属成形体の接合面が平面または曲面である、請求項1~6のいずれか1項記載の複後成形体の製造方法。
PCT/JP2014/057836 2013-03-29 2014-03-20 複合成形体の製造方法 WO2014156988A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480018392.2A CN105102201B (zh) 2013-03-29 2014-03-20 复合成型体的制造方法
KR1020157026791A KR20150139511A (ko) 2013-03-29 2014-03-20 복합 성형체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-070994 2013-03-29
JP2013070994A JP5932700B2 (ja) 2013-03-29 2013-03-29 複合成形体の製造方法

Publications (1)

Publication Number Publication Date
WO2014156988A1 true WO2014156988A1 (ja) 2014-10-02

Family

ID=51623965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057836 WO2014156988A1 (ja) 2013-03-29 2014-03-20 複合成形体の製造方法

Country Status (5)

Country Link
JP (1) JP5932700B2 (ja)
KR (1) KR20150139511A (ja)
CN (2) CN105102201B (ja)
TW (2) TWI616303B (ja)
WO (1) WO2014156988A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001253A1 (de) * 2019-07-02 2021-01-07 Kolektor Group D.O.O. Elektrische oder elektronische baugruppe sowie verfahren zur herstellung eines elektrischen oder elektronischen bauteils

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6103010B2 (ja) * 2015-09-15 2017-03-29 日立化成株式会社 金属材料の粗面化方法
JP6831183B2 (ja) * 2016-06-21 2021-02-17 ダイセルミライズ株式会社 炭素繊維強化成形品
JP6477673B2 (ja) * 2016-12-07 2019-03-06 日立化成株式会社 インサート金属部材、金属樹脂複合成形体及び金属樹脂複合成形体の製造方法
JP7035455B2 (ja) * 2017-10-31 2022-03-15 株式会社豊田自動織機 車載電気機器用のカバー及びその製造方法
WO2020067248A1 (ja) * 2018-09-27 2020-04-02 ダイセルポリマー株式会社 表面に粗面化構造を有する炭化物系の非磁性セラミックス成形体とその製造方法
WO2020067249A1 (ja) * 2018-09-27 2020-04-02 ダイセルポリマー株式会社 表面に粗面化構造を有する非磁性セラミックス成形体とその製造方法
CN113228207B (zh) 2018-12-25 2023-08-01 大赛璐美华株式会社 表面具有粗面化结构的稀土磁体前体或稀土磁体成型体、以及它们的制造方法
DE102021104719A1 (de) 2021-02-26 2022-09-01 Fkt Gmbh Verfahren zur Herstellung eines Verbundbauteils sowie Verbundbauteil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174280A (ja) * 1985-01-29 1986-08-05 Inoue Japax Res Inc 部材の接着方法
WO2012090671A1 (ja) * 2010-12-28 2012-07-05 株式会社ダイセル 複合成形体の製造方法
JP2013173170A (ja) * 2012-02-27 2013-09-05 Aisin Seiki Co Ltd 接合面の加工方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294024A (ja) * 1997-04-18 1998-11-04 Enomoto:Kk 電気電子部品及びその製造方法
JP4987248B2 (ja) * 2005-05-18 2012-07-25 Ntn株式会社 軸受装置、および該軸受装置を有するモータ
JP4020957B2 (ja) * 2005-12-19 2007-12-12 ヤマセ電気株式会社 異種材料との接合部を有する金属材料及びレーザーを用いてのその加工方法
JP2010167475A (ja) * 2009-01-26 2010-08-05 Yamase Denki Kk 異種材料と金属材料との界面が気密性を有する異種材料接合金属材料及びその製造方法
JP5652027B2 (ja) * 2010-07-15 2015-01-14 株式会社リコー プラスチック成形品、プラスチック成形品の成形方法、および該プラスチック成形品を有する光走査装置
JP5633461B2 (ja) * 2011-04-04 2014-12-03 新日鐵住金株式会社 樹脂被覆金属体の製造方法
TW201313455A (zh) * 2011-09-28 2013-04-01 Ichia Tech Inc 將塑膠機構固著於金屬殼體之方法
JP2013071312A (ja) * 2011-09-28 2013-04-22 Hitachi Automotive Systems Ltd 金属部材と成形樹脂部材との複合成形体および金属部材の表面加工方法
JP2014004801A (ja) * 2012-06-27 2014-01-16 Shin Kobe Electric Mach Co Ltd 金属部材を一体化した樹脂成形品とその製造法
JP2014004800A (ja) * 2012-06-27 2014-01-16 Shin Kobe Electric Mach Co Ltd 金属部材を一体化した樹脂成形品とその製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174280A (ja) * 1985-01-29 1986-08-05 Inoue Japax Res Inc 部材の接着方法
WO2012090671A1 (ja) * 2010-12-28 2012-07-05 株式会社ダイセル 複合成形体の製造方法
JP2013173170A (ja) * 2012-02-27 2013-09-05 Aisin Seiki Co Ltd 接合面の加工方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021001253A1 (de) * 2019-07-02 2021-01-07 Kolektor Group D.O.O. Elektrische oder elektronische baugruppe sowie verfahren zur herstellung eines elektrischen oder elektronischen bauteils
CN114269540A (zh) * 2019-07-02 2022-04-01 科莱克特集团公司 电气或电子构件以及制造电气或电子构件的方法
US20220118662A1 (en) * 2019-07-02 2022-04-21 Kolektor Group D.O.O. Electrical or electronic assembly and method for producing an electrical or electronic component
US11752674B2 (en) 2019-07-02 2023-09-12 Kolektor Mobility d.o.o. Electrical or electronic assembly and method for producing an electrical or electronic component

Also Published As

Publication number Publication date
TW201446463A (zh) 2014-12-16
CN110116275A (zh) 2019-08-13
KR20150139511A (ko) 2015-12-11
CN110116275B (zh) 2021-05-25
CN105102201B (zh) 2019-01-08
TW201825220A (zh) 2018-07-16
JP5932700B2 (ja) 2016-06-08
JP2014193569A (ja) 2014-10-09
TWI676518B (zh) 2019-11-11
CN105102201A (zh) 2015-11-25
TWI616303B (zh) 2018-03-01

Similar Documents

Publication Publication Date Title
WO2014156988A1 (ja) 複合成形体の製造方法
JP5889775B2 (ja) 複合成形体とその製造方法
WO2014038563A1 (ja) 複合成形体の製造方法
JP6317064B2 (ja) 複合成形体とその製造方法
JP5788836B2 (ja) 複合成形体とその製造方法
JP5848104B2 (ja) 複合成形体の製造方法
JP5701414B1 (ja) 複合成形体の製造方法
JP5774246B2 (ja) 金属成形体の粗面化方法
WO2012090671A1 (ja) 複合成形体の製造方法
JP5890054B2 (ja) 複合成形体の製造方法
JP6329598B2 (ja) 複合成形体の製造方法
JP6055529B2 (ja) 複合成形体の製造方法
JP2014051040A (ja) 複合成形体の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480018392.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157026791

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773691

Country of ref document: EP

Kind code of ref document: A1