WO2014156669A1 - 画像処理装置および画像処理方法 - Google Patents
画像処理装置および画像処理方法 Download PDFInfo
- Publication number
- WO2014156669A1 WO2014156669A1 PCT/JP2014/056618 JP2014056618W WO2014156669A1 WO 2014156669 A1 WO2014156669 A1 WO 2014156669A1 JP 2014056618 W JP2014056618 W JP 2014056618W WO 2014156669 A1 WO2014156669 A1 WO 2014156669A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resolution
- processing
- image
- super
- magnification
- Prior art date
Links
- 238000003672 processing method Methods 0.000 title claims description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 49
- 230000008569 process Effects 0.000 claims abstract description 41
- 238000003384 imaging method Methods 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 16
- 230000004048 modification Effects 0.000 description 27
- 238000012986 modification Methods 0.000 description 27
- 238000010586 diagram Methods 0.000 description 22
- 230000006866 deterioration Effects 0.000 description 7
- 239000003086 colorant Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/387—Composing, repositioning or otherwise geometrically modifying originals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/80—Camera processing pipelines; Components thereof
- H04N23/84—Camera processing pipelines; Components thereof for processing colour signals
- H04N23/843—Demosaicing, e.g. interpolating colour pixel values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/95—Computational photography systems, e.g. light-field imaging systems
- H04N23/951—Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/10—Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
- H04N25/11—Arrangement of colour filter arrays [CFA]; Filter mosaics
- H04N25/13—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
- H04N25/134—Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
- H04N5/265—Mixing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
Definitions
- the present invention relates to an image processing apparatus and an image processing method, and more particularly to an image processing apparatus and an image processing method for performing processing for improving resolution.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2010-278898 combines super-resolution processing at a pre-fixed magnification and resolution conversion processing capable of arbitrarily setting the magnification, A technique is disclosed in which the amount of computation is reduced, the power consumption is reduced, and the resolution is variable.
- the present invention has been made in view of such a problem, and an object thereof is to provide an image processing apparatus and an image processing method capable of speeding up a process for generating a high-resolution image.
- an image processing apparatus has a plurality of color channels and an input image group having a partial area in which the input images are common to each other than the input image.
- An image processing apparatus for creating and outputting a high-resolution image having high frequency information, the first processing means for executing super-resolution processing on the input image, and the resolution of the input image after super-resolution processing A second processing unit for executing the conversion process; and a specifying unit for specifying a combination of the super-resolution processing magnification and the resolution conversion processing magnification for each color channel.
- the specifying unit specifies the combination so that the magnification of the super-resolution processing of at least one color channel is different from the magnification of the super-resolution processing of the other color channels.
- the specifying unit specifies the magnification of the super-resolution processing according to the number of pixels for each color channel used for the super-resolution processing in the input image group, and specifies the super-resolution processing specified for each color channel.
- the resolution conversion processing magnification is specified based on the magnification.
- the specifying unit sets the resolution conversion processing magnification for the first color channel having the highest super-resolution processing magnification to 1, and sets the color channel for each color channel other than the first color channel.
- the magnification of the resolution conversion processing of the color channels other than the first color channel is specified so that the number of pixels after the resolution conversion processing is the same as the number of pixels after the super-resolution processing of the first color channel.
- the input image group has a single color channel for each input image.
- the image processing apparatus further includes selection means for selecting an input image to be used for super-resolution processing among the input images for each color channel of the input image.
- the input image group has a different color channel for each pixel of the input image
- the first processing unit includes pixels corresponding to the color channel to be subjected to super-resolution processing in the input image.
- the input image group is an image group obtained by a lens array including a plurality of lenses having different optical axes.
- the input image group is taken at different timings with different viewpoints by the imaging device.
- an image processing method has a plurality of color channels and a high resolution having higher frequency information than an input image from an input image group having a common partial area for each input image.
- a method for generating an image as an output image the step of specifying a combination of a super-resolution processing magnification and a resolution conversion processing magnification for each color channel, and super-resolution at the specified magnification for the input image
- the above combination is specified so that the super-resolution processing magnification of at least one color channel is different from the super-resolution processing magnification of the other color channels.
- an image processing program obtains frequency information higher than that of an input image from an input image group having a plurality of color channels and a common partial area for each of the input images.
- a program that executes a process for generating a high-resolution image as an output image, for each color channel, specifying a combination of super-resolution processing magnification and resolution conversion processing magnification, and specifying an input image Causing the computer to execute a step of executing the super-resolution processing at the specified magnification and a step of executing the resolution conversion processing at the specified magnification for the input image after the super-resolution processing.
- the above combination is specified so that the super-resolution processing magnification of at least one color channel is different from the super-resolution processing magnification of the other color channels.
- the present invention it is possible to speed up the process of generating a single high-resolution image from a multi-viewpoint input image group or a continuous input image group having a common partial region and having a low resolution.
- FIG. 1 is a block diagram illustrating a basic configuration of an image processing apparatus according to an embodiment. It is a block diagram which shows the structure of the digital camera which actualized the image processing apparatus. It is a block diagram which shows the structure of the personal computer (PC) which actualized the image processing apparatus. It is a figure showing the outline of the structure of a camera. It is a figure which shows the specific example of the optical image input on an image sensor. It is a figure showing the flow of the image processing in the image processing apparatus which performs the conventional super-resolution processing. It is a figure showing the flow of the image processing in the image processing apparatus concerning embodiment. It is a figure showing the flow of the super-resolution process. It is a figure showing the detail of the process in step # 33 of FIG.
- the input image group a plurality of captured images that are simultaneously captured by an array camera having a plurality of lenses with different viewpoints are used as the input image group.
- the input image group is limited to such a captured image. It is not something. In order to obtain one high-resolution image, it can be applied if there is a partial area common to each image. As another example, a plurality of captured images taken with different viewpoints are used. Also good.
- FIG. 1 is a block diagram showing a basic configuration of an image processing apparatus 1 according to the present embodiment.
- the image processing apparatus 1 includes an imaging unit 2, an image processing unit 3, and an image output unit 4.
- the image capturing unit 2 captures an image of a subject to acquire an image (hereinafter also referred to as “input image”), and the image processing unit 3 performs an operation on the acquired input image.
- input image an image
- the image processing unit 3 performs an operation on the acquired input image.
- a high-resolution output image (hereinafter also referred to as “high-resolution image”) having a higher frequency component than the input image is generated.
- the image output unit 4 outputs this high resolution image to a display device or the like.
- the imaging unit 2 captures an object (subject) and generates an input image. More specifically, the imaging unit 2 includes a camera 22 and an A / D (Analog to Digital) conversion unit 24 connected to the camera 22. The A / D converter 24 outputs an input image indicating the subject imaged by the camera 22.
- a / D Analog to Digital
- the camera 22 is an optical system for imaging a subject, and is an array camera. That is, the camera 22 electrically converts N lenses 22a-1 to 22a-n (which are also referred to as lenses 22a, representatively) arranged in a lattice shape and having different viewpoints, and an optical image formed by the lens 22a. And an image sensor (image sensor) 22b which is a device for converting the signal.
- the A / D converter 24 converts a video signal (analog electrical signal) indicating a subject output from the image sensor 22b into a digital signal and outputs the digital signal.
- the imaging unit 2 may further include a control processing circuit for controlling each part of the camera.
- the image processing unit 3 generates a high-resolution image by performing the image processing method according to the present embodiment on the input image acquired by the imaging unit 2. More specifically, the image processing unit 3 specifies an input image and a specifying unit 32 for specifying a combination of the super-resolution processing magnification and the resolution conversion processing magnification for each color channel, as will be described later.
- the super-resolution processing unit 36 which is a first processing unit for executing the super-resolution processing so as to obtain the specified magnification, and the resolution conversion processing so as to obtain the magnification specified for the input image after the super-resolution processing.
- a resolution conversion unit 38 which is a second processing unit for execution.
- the super-resolution processing unit 36 may further include a selection unit 361 for selecting an input image used for the super-resolution processing among the input images for each color channel of the input image.
- the super-resolution processing unit 36 performs super-resolution processing to be described later on the input image (or the selected input image).
- the super-resolution processing is processing for generating frequency information that exceeds the Nyquist frequency of the input image.
- the resolution conversion unit 38 performs resolution conversion processing on the input image after the super-resolution processing.
- the image output unit 4 outputs the high resolution image generated by the image processing unit 3 to a display device or the like.
- the image processing apparatus 1 shown in FIG. 1 can be configured as a system in which each unit is embodied as an independent apparatus.
- the image processing apparatus 1 may be embodied as a digital camera or a personal computer described below. Many. Therefore, as an implementation example of the image processing apparatus 1 according to the present embodiment, an implementation example with a digital camera and an implementation example with a PC (personal computer) will be described.
- FIG. 2 is a block diagram showing a configuration of a digital camera 100 that embodies the image processing apparatus 1 shown in FIG. 2, components corresponding to the respective blocks constituting the image processing apparatus 1 shown in FIG. 1 are denoted by the same reference numerals as those in FIG. 1.
- a digital camera 100 includes a CPU (Central Processing Unit) 102, a digital processing circuit 104, an image display unit 108, a card interface (I / F) 110, a storage unit 112, and a camera unit. 114.
- CPU Central Processing Unit
- I / F card interface
- the CPU 102 controls the entire digital camera 100 by executing a program stored in advance.
- the digital processing circuit 104 executes various digital processes including image processing according to the present embodiment.
- the digital processing circuit 104 is typically configured by a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an LSI (Large Scale Integration), an FPGA (Field-Programmable Gate Array), or the like.
- the digital processing circuit 104 includes an image processing circuit 106 for realizing the functions provided by the image processing unit 3 shown in FIG.
- the image display unit 108 includes an input image provided by the camera unit 114, an output image generated by the digital processing circuit 104 (image processing circuit 106), various setting information related to the digital camera 100, and a control GUI (Graphical User Interface) screen is displayed.
- GUI Graphic User Interface
- the card I / F 110 is an interface for writing the image data generated by the image processing circuit 106 to the storage unit 112 or reading the image data and the like from the storage unit 112.
- the storage unit 112 is a storage device that stores image data generated by the image processing circuit 106 and various types of information (setting values such as control parameters and operation modes of the digital camera 100).
- the storage unit 112 includes a flash memory, an optical disk, a magnetic disk, and the like, and stores data in a nonvolatile manner.
- the camera unit 114 generates an input image by imaging a subject.
- a digital camera 100 shown in FIG. 2 is obtained by mounting the entire image processing apparatus 1 according to the present embodiment as a single apparatus. That is, the user can visually recognize a high-resolution image on the image display unit 108 by imaging the subject using the digital camera 100.
- FIG. 3 is a block diagram showing a configuration of a PC 200 that embodies the image processing apparatus 1 shown in FIG.
- a PC 200 shown in FIG. 3 is obtained by mounting a part of the image processing apparatus 1 according to the present embodiment as a single apparatus.
- the imaging unit 2 for acquiring an input image is not mounted, and an input image acquired by an arbitrary imaging unit 2 is input from the outside. Even such a configuration can be included in the image processing apparatus 1 according to the embodiment of the present invention.
- components corresponding to blocks constituting the image processing apparatus 1 shown in FIG. 1 are denoted by the same reference numerals as those in FIG.
- the PC 200 includes a PC main body 202, a monitor 206, a mouse 208, a keyboard 210, and an external storage device 212.
- the PC main body 202 is typically a general-purpose computer according to a general-purpose architecture, and includes a CPU, a RAM (Random Access Memory), a ROM (Read Only Memory), and the like as basic components.
- the PC main body 202 can execute an image processing program 204 for realizing the functions provided by the image processing unit 3 shown in FIG.
- Such an image processing program 204 is stored and distributed in a storage medium such as a CD-ROM (Compact Disk-Read Only Memory) or distributed from a server device via a network.
- the image processing program 204 is stored in a storage area such as a hard disk of the PC main body 202.
- Such an image processing program 204 implements processing by calling necessary modules among program modules provided as part of an operating system (OS) executed by the PC main body 202 at a predetermined timing and order. May be configured.
- the image processing program 204 itself does not include a module provided by the OS, and image processing is realized in cooperation with the OS.
- the image processing program 204 may be provided by being incorporated in a part of some program instead of a single program. Even in such a case, the image processing program 204 itself does not include a module that is commonly used in the program, and image processing is realized in cooperation with the program. Even such an image processing program 204 that does not include some modules does not depart from the spirit of the image processing apparatus 1 according to the present embodiment.
- image processing program 204 may be realized by dedicated hardware.
- the monitor 206 displays a GUI screen provided by an operating system (OS), an image generated by the image processing program 204, and the like.
- OS operating system
- the mouse 208 and the keyboard 210 each accept a user operation and output the contents of the accepted user operation to the PC main body 202.
- the external storage device 212 stores an input image acquired by some method, and outputs the input image to the PC main body 202.
- a device that stores data in a nonvolatile manner such as a flash memory, an optical disk, or a magnetic disk is used.
- FIG. 4A is a diagram showing an outline of the configuration of the camera 22.
- FIG. 4B is a diagram illustrating a specific example of an optical image input to the image sensor (image sensor) 22b.
- camera 22 is an array camera, and includes 16 lenses 22a-1 to 22a-16 arranged in a lattice pattern. It is assumed that the distance (base line length) between the lenses 22a-1 to 22a-16 is uniform in both the vertical direction and the horizontal direction.
- the optical image formed by each lens 22a is input onto an image sensor (image sensor) 22b through a single color filter. Therefore, the optical image from one lens 22a is an image of a single color channel. That is, one input image has a single color channel.
- the color filter arranged in the imaging unit 2 is composed of a plurality of colors. Color filters are arranged in the imaging unit 2 in accordance with a Bayer arrangement so that one lens 22a corresponds to one color (any of RGB) and has a different color for each lens 22a. For example, as shown in FIG. 4B, it is assumed that three color filters of R (red), G (green), and B (blue) are arranged in a Bayer array. In FIG. 4B, an image with “R” is an image of a red channel input through the R filter, and an image with “B” is an image of the blue channel input through the B filter. This indicates that the image is an image, and an image with “G” is an image of the green channel input through the G filter.
- the input image group acquired by the imaging unit 2 is an input image group having a common partial area of multiple viewpoints having a plurality of color channels, and has a single color channel for each input image.
- the number of input images for each color channel may not be the same. In the example of FIG. 4B, there are eight green channel input images, whereas there are four red and blue channel input images.
- the color channel is not limited to R, G, and B (red, blue, and green) as described above.
- other colors such as C, M, and Y (cyan, magenta, and yellow) that are input when R, G, and B complementary color filters are used may be used.
- FIG. 5 is a diagram showing the flow of image processing in an image processing apparatus that performs conventional super-resolution processing.
- the conventional image processing apparatus super-resolution processing is performed so that each input image has a fixed number of pixels (9 times in the example of FIG. 5). .
- the total number of pixels for each color channel of the input image group (initial image) is the same.
- the “total number of pixels for each color channel” is (pixels per input image). Number) ⁇ (number of input target color channels).
- the number of pixels of each input image is 0.75M (for example, 1000 ⁇ 750 pixels) and the same number of inputs If so, the number of pixels of the high-resolution output image for each color channel is 6.75 M (eg, 3000 ⁇ 2250 pixels).
- the total number of pixels in the input image is input information for super-resolution processing. Therefore, when each input image is enlarged to the total number of pixels, a high-resolution image is maintained with an appropriate image quality.However, when the number of pixels is increased beyond that, the improvement in image quality can be seen for a decrease in processing speed. I can't. As will be exemplified later, the inventor actually performs super-resolution processing for enlarging the input image up to the number of pixels larger than the total number of pixels of the input image, and the gradation in the input image is lost in the output image. I have discovered that the image quality actually decreases.
- the number of input images may be different for each color channel, that is, the total number of pixels for each color channel may be different.
- the super-resolution processing magnification is fixed based on the total number of pixels of the input image of the green channel having a large total number of pixels (number of inputs)
- the input images of the red and blue channels, which are color channels with a small total number of pixels (number of input images) are too enlarged.
- the super-resolution processing magnification is specified for each color channel. That is, the image processing apparatus 1 performs super-resolution processing at different magnifications depending on the color channel depending on the total number of pixels of the input image for each color channel. Further, the image processing apparatus 1 performs resolution conversion processing with a magnification corresponding to the magnification of the super-resolution processing on the input image after the super-resolution processing, and makes the number of pixels of the output image of each color channel the same. That is, in the image processing apparatus 1 according to the present embodiment, a combination of the super-resolution processing magnification and the resolution conversion processing magnification is specified for each color channel, and each processing is executed at that magnification.
- FIG. 6 is a diagram showing the flow of image processing in the image processing apparatus 1 according to the present embodiment.
- the magnification and resolution conversion processing of super-resolution processing is performed on the input image group according to the number of input images of each color channel (total number of pixels in each color channel). Are combined for each color channel (step # 21).
- super-resolution processing is executed at each magnification for the input image of each color channel (step # 22), and further, resolution conversion processing is executed at each magnification for the input image after super-resolution processing. (Step # 23).
- the input image group shown in FIG. 4B When the input image group shown in FIG. 4B is input, that is, eight low-resolution (for example, 1000 ⁇ 750 pixel) green channel input images and four red and blue channel input images respectively.
- the magnification of the number of pixels for super-resolution processing is 9 times (3 times in length and width), and the magnification of the number of pixels in resolution conversion processing is 1 time (length and width).
- the super-resolution pixel count is 4x (vertically and horizontally 2x)
- the resolution conversion pixel count is 2.25x (1.5 times in length and width).
- the magnification of the super resolution processing of the green channel is set to the square power of an integer closest to 8 times since 8 input images having a pixel number of 0.75M (for example, 1000 ⁇ 750 pixels) are input per image. Therefore, it is calculated as 9 times that is 3 times in length and width, but may be 8 times that is 2 ⁇ 2 times in length and width in order to make the number of pixels of the output image exactly the same as the total number of pixels of the input pixels.
- the resolution conversion magnification is 1, that is, for the green channel for which the super-resolution processing magnification is specified as the maximum magnification. It is specified that no resolution conversion is performed.
- the magnification of the super-resolution processing of the red and blue channels is specified as 4 times, twice the length and width because four pieces are input each.
- the magnification of the resolution conversion process is calculated so that the number of pixels of the output image matches the number of pixels of the green channel where the magnification of the super-resolution process is the maximum magnification. That is, in this example, the number of pixels of 3M that is the number of pixels of the input image after the super-resolution processing of the red and blue channels is changed to the number of pixels of 6.75M that is the number of pixels after the super-resolution processing of the green channel.
- the magnification of the resolution conversion process is calculated so as to enlarge to (for example, 3000 ⁇ 2250 pixels).
- the inventors have determined that the super-resolution processing magnification is within a range where the number of pixels of the output image (high resolution image) is ⁇ 30% from the total number of pixels of the input image. It has been found that it is effective in terms of image quality and processing speed.
- the image processing apparatus 1 When the image processing apparatus 1 is mounted on the digital camera 100 as shown in FIG. 2, the number of each channel (total number of pixels) of the input image group is fixed according to the characteristics of the camera unit 114. Therefore, a combination of the super-resolution processing magnification and the resolution conversion processing magnification for each color channel may be defined in advance. Alternatively, when the camera unit 114 can be replaced or the arrangement of the color filters can be changed, and the changeable identification is grasped in advance, the image processing apparatus 1 previously stores each color channel. Several combinations of the super-resolution processing magnification and the resolution conversion processing magnification may be registered and selected according to the characteristics of the camera unit 114. Alternatively, when the image processing apparatus 1 is embodied by the PC 200 as shown in FIG.
- a conversion formula for calculating a combination of the magnification of the super-resolution processing and the magnification of the resolution conversion processing is stored in advance and specified by calculating using the conversion formula. May be.
- step # 21 When the combination of the super resolution processing magnification and the resolution conversion processing magnification of the green channel, the red and blue channels and the resolution conversion processing magnification are specified in step # 21 as described above, the input image of the green channel is vertically and horizontally 3. Super-resolution processing is performed to enlarge the image to 9 times (step # 22-1). In addition, super-resolution processing for enlarging the input image of each of the red and blue channels to four times the vertical and horizontal times is performed (step # 22-1).
- a resolution conversion process is performed on the input image of the green channel after the super-resolution process so that the number of pixels is 1 ⁇ in the vertical and horizontal directions (step # 23-1).
- execution of the resolution conversion processing of 1 ⁇ is synonymous with not changing the resolution, and includes that the resolution processing is not performed.
- the red and blue channel input images after the super-resolution processing are subjected to resolution conversion processing for increasing the number of pixels to 2.25 times 1.5 times in length and width (step # 23-2).
- FIG. 7 is a diagram showing the flow of the super-resolution processing, and particularly shows a specific example of the super-resolution image for the input image of the green channel in step # 22-1. 7, as a specific example, a case where the paper “Fast and Robust Multiframe Super Resolution” (IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004 page. 1327-1344) is described. The flow of resolution processing is shown.
- step # 31 one of the eight green channel input images is subjected to interpolation processing such as a bilinear method, and the resolution of the input image is the resolution after super-resolution processing.
- interpolation processing such as a bilinear method
- the resolution of the input image is the resolution after super-resolution processing.
- step # 32 a BTV (Bilateral Total Variation) amount that is a constraint term for robustly converging on noise is calculated.
- step # 33 the generated output candidate image is compared with the input images for eight green channel images, and a residual is calculated.
- FIG. 8 is a diagram showing details of the process in step # 33. That is, referring to FIG. 8, in step # 33, the generated output candidate image includes each input image and its degradation information (information indicating the relationship between the super-resolution image and the input image). Is converted into an input image size (reduced resolution) based on the above (# 41), and the difference from the eight input images is calculated and recorded (# 42). Then, the difference is returned to the size after the super-resolution processing (# 43) to be a residual.
- step # 34 the residual and the BTV amount calculated from the output candidate image generated in step # 31 are reduced, and the next output candidate image is generated.
- Steps # 31 to # 34 are repeated until the output candidate image converges, and the converged output candidate image is output as an output image after the super-resolution processing of the green channel.
- the number of iterations may be a predetermined number of times such as the number of times of convergence (for example, 200 times), or a convergence determination may be made for each series of processing, and may be repeated according to the result. .
- the super-resolution processing in FIG. 7 is performed for each color channel.
- the red and blue channels it is performed for each of the four channels.
- output candidate images having 3M pixels for example, 2000 ⁇ 1500 pixels
- 3M pixels are generated in the convergence calculation in steps # 31 to # 34. A number of images will be handled.
- FIG. 9 is a diagram for explaining the deterioration information used in step # 41.
- Deterioration information refers to information representing the relationship of each input image with respect to a high-resolution image after super-resolution processing, and is represented, for example, in a matrix format.
- the deterioration information includes a shift amount (for the remaining small number of translated pixels) at each sub-pixel level of each input image, a down-sampling amount, a blur amount, and the like.
- the deterioration information is defined by a matrix indicating the conversion when each of the input image and the high-resolution image after the super-resolution processing is expressed as a one-dimensional vector.
- FIG. 10 is a diagram showing a specific example of the deterioration information.
- the pixel shift amount is 1/3 pixel and the down-sampling amount is 1/3 in the vertical direction and the horizontal direction as deterioration information.
- the degradation information includes 1 in nine locations.
- a coefficient of / 9 is listed. Therefore, when the pixel shift amount is 1/3 pixel, each 9 pixels of the high resolution image contributes by 1/9 of the shift amount.
- the blur amount is set to 0 for the sake of simplicity of explanation, but when the blur amount is not 0, a PSF (Point Spread Function) may be used as a parameter representing the blur amount.
- PSF Point Spread Function
- ⁇ Effect of Embodiment> 11 to 14 show an output image obtained as a result of actually performing the above image processing on the input image group shown in FIG. 4B using the image processing apparatus 1 according to the present embodiment, It is a figure showing the comparison with the output image of the result of actually performing image processing.
- blur recovery is also performed using PSF as a parameter representing the blur amount due to lens characteristics. The same applies to the following examples.
- FIG. 11 shows the result of green channel image processing.
- the input image of the green channel has the highest total number of pixels, so the super-resolution processing magnification is the highest magnification.
- one of the green channel input images is subjected to the super-resolution processing of 9 times that is 3 times in length and width, and the same. An output image is obtained.
- FIGS. 12 to 14 respectively show the output when super-resolution processing is performed on one of the input images of the red channel and the blue channel, which is 9 times the conventional image processing, which is three times the vertical and horizontal directions.
- the result (A) and the image processing according to the present embodiment, which is a super-resolution process that is four times the horizontal and vertical times, is subjected to resolution conversion and 9 times that is three times the vertical and horizontal directions with respect to the original input image.
- the comparison with the output result (B) at the time of performing the process to double is represented.
- FIG. 12B shows that the output image (FIGS. 12A and 14A) obtained as a result of performing the conventional image processing is sharper.
- FIGS. 13A and 13B are enlarged views of part of the output images of FIGS. 12A and 12B, respectively.
- the total number of pixels of the input image is three times as long as the total number of pixels of the input image is four times the number of pixels of one input image.
- the super-resolution processing is performed 9 times as much as that in FIG. 13A (FIG. 13A), it is understood that supersaturation, which is a side effect of the bilateral filter, progresses, and the gradation change is lost as in a coloring book.
- the input image group has a plurality of color channels, each input image has a common partial area, and the total number of pixels between the color channels. It is found that the image processing according to the present embodiment can significantly improve the image quality of the output image for the color channel with a smaller total number of pixels than the conventional image processing when the two are not the same.
- the number of pixels after the super-resolution processing can be reduced by reducing the magnification in the super-resolution processing (the number of pixels after the super-resolution processing is halved by setting the number to 2 times instead of 3).
- the processing time required for the super-resolution processing can be shortened in proportion to the number of pixels after the super-resolution processing. Therefore, when the input image group has a plurality of color channels and each of the input images has a common partial area, and the total number of pixels between the color channels is not the same, a high-resolution image is obtained.
- the image processing according to the present embodiment as the processing for this, it is possible to remarkably speed up the conventional image processing.
- the super-resolution processing in step # 22 is not limited to the processing shown in FIG. 7, but is a reconfigurable super-resolution processing that generates one image from a plurality of input images. If so, other processing may be employed.
- FIG. 15 is a diagram illustrating another example of super-resolution processing. That is, referring to FIG. 15, the constraint term calculated in step # 32 may be replaced with the BTV amount, for example, other 4 neighbor Laplacian may be used (step # 32 ').
- FIG. 7 is a diagram showing a comparison with an output image obtained as a result of actually performing the image processing of FIG. 6, and shows a comparison for a green channel, a red channel, and a blue channel, respectively.
- the same output image can be obtained for the green channel by the image processing according to the first modification and the conventional image processing.
- the image processing according to the first modification using a constraint term other than the BTV amount such as 4-neighbor Laplacian
- the image processing using the BTV amount improves the image quality significantly from the conventional image processing. I can't get.
- the processing time required for the super-resolution processing is reduced because the number of pixels after the super-resolution processing is small as described above for the color channel with the smaller total number of pixels. can do.
- the use of the image processing according to the first modification can significantly increase the speed as compared with the conventional image processing.
- FIG. 19A is a diagram illustrating a specific example of an optical image input on the image sensor (image sensor) 22b in the second modification. That is, with reference to FIG. 19A, as another example, an optical image from one lens 22a may be input to an image sensor (image sensor) 22b through different color filters in units of one pixel. In this case, one input image has a different color channel for each pixel. As an example, as shown in FIG.
- the “total number of pixels for each color channel” is obtained by (number of pixels of the target color channel per input image) ⁇ (number of inputs). It is done.
- the selection unit 361 of the super-resolution processing unit 36 illustrated in FIG. 1 selects a pixel for each color channel used for the super-resolution processing from each input image.
- FIG. 20A and 20B are diagrams showing an outline of the super-resolution processing of the green channel in the second modification.
- FIG. 21 is a diagram showing the flow of super-resolution processing in the second modification, and particularly shows a specific example of the super-resolution image for the input image of the green channel. Although generally the same as the flow of the super-resolution processing of FIG. 7, it is partially different because the form of the input image is different. Therefore, different points will be described.
- a demosaic process is performed on the input image to select a pixel to be used for the super-resolution process, and then the initial image is generated by bilinear or the like.
- An image is created (step # 31 ').
- the demosaic processing for example, when the super-resolution processing of the green channel is performed, the pixel of the green channel in the input image is left as it is, and the pixel value of the pixel position of the red channel and the blue channel is set as a neighboring pixel.
- a process of replacing the pixel values of the red channel and the blue channel with average values of four pixels (upper and lower left and right pixels) around the pixel is performed.
- FIGS. 20A and 20B In the second modification, only the pixels corresponding to the color channels of each input image are used for residual calculation as shown in FIGS. 20A and 20B. That is, referring to FIG. 20A and FIG. 20B, in the case of green channel super-resolution processing, only the green channel pixels of each input image are used, and the red channel and blue channel pixels are not used for calculation.
- the pixel of the green channel indicated by hatching in FIG. 20A and in the two input images, an area corresponding to the hatching area in FIG. 20A (eg, left and right of a thick frame) in FIG. Only the pixels of the green channel corresponding to are used. The same applies to the super-resolution processing of other color channels.
- the super-resolution processing is a reconfigurable super-resolution processing that generates one image from a plurality of input images.
- Other processing may be employed. That is, as described in the first modification, the constraint term may be other than the BTV amount, such as a 4-neighbor Laplacian, for example.
- the information amount that is the total number of pixels (number of input images, number of pixels) for each color channel in the input image is different.
- the information amount used for the super-resolution processing is different even when the information amount of all the color channels is the same.
- super-resolution processing is performed so that the green channel has a higher magnification than the red and blue channels.
- red (R), blue (B), and green (G) contribute to the luminance component at a ratio of approximately 0.3R + 0.6G + 0.1B (3: 6: 1). .
- the green channel is more important in terms of image quality than the red and blue channels. Therefore, even if the total number of pixels of each color channel of the input image is the same ratio, even if the number of pixels of the red and blue channels is about half of the number of pixels of the green channel, The image quality will not be greatly impaired.
- yellow (Y) which is the opposite color of blue, is used for luminance. Since it does not contribute as much as other colors, about half of the total number of pixels of other colors (C, M, K) can be used for super-resolution processing.
- FIG. 22 is a diagram illustrating a specific example of an optical image input on the image sensor (image sensor) 22b according to the third modification.
- the same number of images are input to each color channel in an array camera having 12 lenses 22a.
- the “total number of pixels for each color channel” is obtained by (number of pixels of the target color channel per input image) ⁇ (number of input images).
- FIG. 23 is a diagram showing the flow of image processing in the image processing apparatus 1 according to the third modification.
- the same number (4) of each color channel is input as shown in FIG. 22, but the red and blue channels are included in the input image.
- Processing for selecting an input image to be used for super-resolution processing is performed (step # 20).
- a combination of the super-resolution processing magnification and the resolution conversion processing magnification is specified for each color channel of the input image to be processed (step # 21), and each processing is performed (steps # 22 and # 23). .
- step # 20 an input image with preferably good image quality is determined, and an input image to be used is selected according to the determination result.
- some images may show ring-shaped or ball-shaped blurs called flares or ghosts, so the image quality after super-resolution processing is improved by removing such defective images. Can be made.
- FIGS. 24 and 25 are diagrams showing an example of the flow of the selection process in step # 20. That is, with reference to FIG. 24, when flare or ghost occurs, the high frequency component decreases due to blurring. For example, smoothing processing is performed using an averaging filter as shown in FIG. 25 for each input image. (Step # 51), the difference between the images before and after the process is calculated (step # 52), the high frequency component is extracted, and the input image having a high numerical value may be used for the super-resolution processing. Thereby, an image in which no flare or ghost is generated can be used for the super-resolution processing. For this image quality determination, another method such as converting an image into a frequency may be used.
- the image processing apparatus 1 even if the total pixels of each color channel are different, it is possible to perform image processing by specifying a combination of magnifications corresponding to each processing, and therefore the total number of pixels of each color channel. By selecting an image to be used for the super-resolution processing when the two are the same, the processing speed can be improved without degrading the image quality after the super-resolution processing.
- DESCRIPTION OF SYMBOLS 1 Image processing apparatus 2 Imaging part, 3 Image processing part, 4 Image output part, 22 Camera, 22a lens, 22b Image sensor, 24 Conversion part, 32 Identification part, 36 Super-resolution processing part, 38 Resolution conversion part, 100 Digital camera, 102 CPU, 104 digital processing circuit, 106 image processing circuit, 108 image display unit, 110 card I / F, 112 storage unit, 114 camera unit, 200 PC, 202 PC body, 204 image processing program, 206 monitor, 208 mouse, 210 keyboard, 212 external storage device, 361 selection unit.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computing Systems (AREA)
- Image Processing (AREA)
Abstract
Description
より好ましくは、画像処理装置は、入力画像の色チャンネルごとに、入力画像のうちの超解像処理に用いる入力画像を選択するための選択手段をさらに備える。
図1は、本実施の形態にかかる画像処理装置1の構成の基本的構成を示すブロック図である。
図2に示すデジタルカメラ100は、本実施の形態に従う画像処理装置1の全体を単体の装置として実装したものである。すなわち、ユーザーは、デジタルカメラ100を用いて被写体を撮像することで、画像表示部108において高解像度の画像を視認することができる。
(課題の説明)
図5は、従来の超解像処理を行なう画像処理装置での、画像処理の流れを表わした図である。図5に表わされたように、従来の画像処理装置では、入力画像それぞれを予め固定された倍率(図5の例では9倍)の画素数となるよう超解像処理が行なわれている。従来の超解像処理では、入力画像群(初期画像)の色チャンネルごとの総画素数が同じ画素数であることが前提とされている。図4Aおよび図4Bに表わされたような、レンズ22aごとに異なる色となるよう色フィルターが配列されている場合、「色チャンネルごとの総画素数」は、(入力画像1枚あたりの画素数)×(対象色チャンネルの入力枚数)で得られる。図5の例の場合、超解像処理によって各色チャンネルの入力画像ともに9倍の画素数に拡大されるため、入力画像それぞれの画素数が0.75M(たとえば1000×750画素)で同じ枚数入力されたとすると、色チャンネルごとの高解像度の出力画像の画素数は6.75M(たとえば3000×2250画素)になる。
そこで、本実施の形態にかかる画像処理装置1では、色チャンネルごとに超解像処理の倍率を特定するものとする。すなわち、画像処理装置1では、色チャンネルごとの入力画像の総画素数によっては、色チャンネルに応じて異なる倍率で超解像処理を行なうものとする。さらに、画像処理装置1は、超解像処理後の入力画像について超解像処理の倍率に応じた倍率の解像度変換処理を行なって、各色チャンネルの出力画像の画素数を同じとする。すなわち、本実施の形態にかかる画像処理装置1では、超解像処理の倍率と解像度変換処理の倍率との組み合わせを色チャンネルごとに特定し、その倍率でそれぞれの処理が実行される。
(全体動作)
図6は、本実施の形態にかかる画像処理装置1での画像処理の流れを表わした図である。図6を参照して、画像処理装置1では、入力画像群に対して、各色チャンネルの入力画像の数(各色チャンネルでの総画素数)に応じて、超解像処理の倍率と解像度変換処理の倍率との組み合わせを色チャンネルごとに特定される(ステップ#21)。そして、各色チャンネルの入力画像に対してそれぞれの倍率で超解像処理が実行され(ステップ#22)、さらに、超解像処理後の入力画像に対してそれぞれの倍率で解像度変換処理が実行される(ステップ#23)。
図7は、超解像処理の流れを表わした図であり、特に、ステップ#22-1の緑色チャンネルの入力画像に対する超解像画像の具体例を表わしている。図7では、具体例として、論文「Fast and Robust Multiframe Super Resolution」(IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 10, OCTOBER 2004 page.1327-1344)に記載された処理を行なう場合の超解像処理の流れが示されている。
劣化情報とは、超解像処理後の高解像度画像に対する入力画像それぞれの関係を表わす情報を指し、たとえば行列形式で表わされる。劣化情報には、入力画像それぞれのサブピクセルレベルでのずれ量(平行移動した残りの少数画素分)、ダウンサンプリング量、およびぼけ量などが含まれる。
図10を参照して、劣化情報として、画素のずれ量が1/3画素、およびダウンサンプリング量が縦方向および横方向それぞれに1/3が規定されているものとする。入力画像の内の1画素に対応した1か所と、超解像処理後の高解像度画像の9か所の9画素とが対応しているときに、劣化情報には、9か所に1/9の係数が記載されている。そのため、画素のずれ量が1/3画素である場合、高解像度画像の9画素それぞれに対してはそのずれ量の1/9分、寄与することになる。
図11~図14は、本実施の形態にかかる画像処理装置1を用いて図4(B)に示された入力画像群について上記の画像処理を実際に行なった結果の出力画像と、従来の画像処理を実際に行なった結果の出力画像との比較を表わした図である。なお、これら図で表わされた画像処理では、レンズ特性によるぼけ量を表わすパラメーターとしてのPSFを用いてぼけ回復も行なわれている。以降の例でも同様である。
なお、上記ステップ#22での超解像処理は、図7に表わされた処理に限定されるものではなく、複数枚の入力画像から1枚の画像を生成する再構成型超解像処理であれば他の処理が採用されてもよい。図15は、超解像処理の他の例を表わした図である。すなわち、図15を参照して、上記ステップ#32で算出される拘束項はBTV量に替えて、たとえば、4近傍ラプラシアンなどの他のものが用いられてもよい(ステップ#32’)。
複数の色チャンネルを有する入力画像群を取得するための構成は、図4Bに表わされたように、1つのレンズ22aからの光学像が単色の色フィルターを通過する例に限定されない。図19Aは、第2の変形例での、撮像素子(イメージセンサー)22b上に入力される光学像の具体例を示す図である。すなわち、図19Aを参照して、他の例として、1つのレンズ22aからの光学像が1画素単位で異なる色フィルターを通って撮像素子(イメージセンサー)22b上に入力されてもよい。この場合、1つの入力画像は画素ごとに異なる色チャンネルを有することになる。一例として、図19Bに表わされたように、R(赤)、G(緑)、およびB(青)の3色の色フィルターが画素ごとにベイヤー配列で配される例が挙げられる。図19Bに表わされたように色フィルターが配列されている場合、「色チャンネルごとの総画素数」は、(入力画像1枚あたりの対象色チャンネルの画素数)×(入力枚数)で得られる。この場合、図1に表わされた超解像処理部36の選択部361は、各入力画像から、超解像処理に用いる色チャンネルごとの画素を選択する。
以上の例では、入力画像において色チャンネルごとの総画素数(入力枚数、画素数)である情報量が異なるものとしている。他の例として、すべての色チャンネルの情報量が同じ場合であっても、超解像処理に用いる情報量が異なる場合が挙げられる。その結果、各色チャンネルの総画素数が同じ場合であっても、たとえば、緑色チャンネルを、赤および青色チャンネルよりも高倍率となるよう超解像処理を行なうことが挙げられる。この例は、赤(R)、青(B)、および緑(G)は輝度成分におおよそ0.3R+0.6G+0.1B(3:6:1)の比率で寄与することに因るものである。すなわち、ヒトの眼は輝度成分の方が色度成分よりも敏感であるため、赤および青色チャンネルよりも緑色チャンネルが画質上は重要な情報となる。そのため、入力画像の各色チャンネルの総画素数が同じ比率であったとしても、赤および青色チャンネルの画素数を緑色チャンネルの画素数の半分程度、超解像処理に用いても、超解像処理後の画質を大きく損なうことがない。
Claims (10)
- 複数の色チャンネルを有し、かつ、入力画像それぞれが共通する部分領域を有する入力画像群から、前記入力画像よりも高い周波数情報を持つ高解像度画像を作成して出力する画像処理装置であって、
前記入力画像について超解像処理を実行するための第1の処理手段と、
前記超解像処理後の前記入力画像について解像度変換処理を実行するための第2の処理手段と、
前記色チャンネルごとに、前記超解像処理の倍率と前記解像度変換処理の倍率との組み合わせを特定するための特定手段とを備え、
前記特定手段は、少なくとも1つの前記色チャンネルの前記超解像処理の倍率が他の前記色チャンネルの前記超解像処理の倍率とは異なるものとなるように前記組み合わせを特定する、画像処理装置。 - 前記特定手段は、前記入力画像群のうちの前記超解像処理に用いる、前記色チャンネルごとの画素数に応じて前記超解像処理の倍率を特定し、前記色チャンネルごとに特定された前記超解像処理の倍率に基づいて前記解像度変換処理の倍率を特定する、請求項1に記載の画像処理装置。
- 前記特定手段は、前記超解像処理の倍率の最も高い第1の色チャンネルについての前記解像度変換処理の倍率を1とし、前記第1の色チャンネル以外の色チャンネルのそれぞれについて、当該色チャンネルの前記解像度変換処理後の画素数が、前記第1の色チャンネルの前記超解像処理後の画素数と同じになるように、前記第1の色チャンネル以外の色チャンネルの前記解像度変換処理の倍率を特定する、請求項2に記載の画像処理装置。
- 前記入力画像群は、前記入力画像ごとに単色の色チャンネルを有する、請求項1~3のいずれかに記載の画像処理装置。
- 前記入力画像の色チャンネルごとに、前記入力画像のうちの前記超解像処理に用いる入力画像を選択するための選択手段をさらに備える、請求項4に記載の画像処理装置。
- 前記入力画像群は、前記入力画像それぞれが、画素ごとに異なる色チャンネル有し、
前記第1の処理手段は、前記入力画像のうちの、前記超解像処理の対象とする色チャンネルに対応した画素を用いる、請求項1~3のいずれかに記載の画像処理装置。 - 前記入力画像群は、互いに光軸が異なる複数レンズを含んだレンズアレイで得られる画像群である、請求項1~6のいずれかに記載の画像処理装置。
- 前記入力画像群は、撮像装置によって、それぞれ視点を異ならせて異なるタイミングに撮影されたものである、請求項1~6のいずれかに記載の画像処理装置。
- 複数の色チャンネルを有し、かつ、入力画像それぞれが共通する部分領域を有する入力画像群から、前記入力画像よりも高い周波数情報を持つ高解像度画像を出力画像として生成する方法であって、
前記色チャンネルごとに、超解像処理の倍率と解像度変換処理の倍率との組み合わせを特定するステップと、
前記入力画像について、特定された前記倍率で前記超解像処理を実行するステップと、
前記超解像処理後の前記入力画像について、特定された前記倍率で前記解像度変換処理を実行するステップとを備え、
前記組み合わせを特定するステップでは、少なくとも1つの前記色チャンネルの前記超解像処理の倍率が他の前記色チャンネルの前記超解像処理の倍率とは異なるものとなるように前記組み合わせを特定する、画像処理方法。 - コンピューターに、複数の色チャンネルを有し、かつ、入力画像それぞれが共通する部分領域を有する入力画像群から前記入力画像よりも高い周波数情報を持つ高解像度画像を出力画像として生成する処理を実行させるプログラムであって、
前記色チャンネルごとに、超解像処理の倍率と解像度変換処理の倍率との組み合わせを特定するステップと、
前記入力画像について、特定された前記倍率で前記超解像処理を実行するステップと、
前記超解像処理後の前記入力画像について、特定された前記倍率で前記解像度変換処理を実行するステップとを前記コンピューターに実行させ、
前記組み合わせを特定するステップでは、少なくとも1つの前記色チャンネルの前記超解像処理の倍率が他の前記色チャンネルの前記超解像処理の倍率とは異なるものとなるように前記組み合わせを特定する、画像処理プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/780,798 US9626740B2 (en) | 2013-03-29 | 2014-03-13 | Image processing apparatus and image processing method |
JP2015508277A JPWO2014156669A1 (ja) | 2013-03-29 | 2014-03-13 | 画像処理装置および画像処理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-072932 | 2013-03-29 | ||
JP2013072932 | 2013-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014156669A1 true WO2014156669A1 (ja) | 2014-10-02 |
Family
ID=51623652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/056618 WO2014156669A1 (ja) | 2013-03-29 | 2014-03-13 | 画像処理装置および画像処理方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9626740B2 (ja) |
JP (1) | JPWO2014156669A1 (ja) |
WO (1) | WO2014156669A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10326908B2 (en) * | 2015-03-16 | 2019-06-18 | Mitsubishi Electric Corporation | Image reading apparatus and image reading method |
KR102580519B1 (ko) * | 2016-09-07 | 2023-09-21 | 삼성전자주식회사 | 영상처리장치 및 기록매체 |
CN112419148B (zh) * | 2020-11-03 | 2024-06-21 | 广东外语外贸大学 | 颜色通道三次传播的图像超分辨方法、系统及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002112007A (ja) * | 2000-09-29 | 2002-04-12 | Minolta Co Ltd | 画像処理システム、撮像装置、画像処理方法及びその方法の処理プログラムが記録された記録媒体 |
JP2010278898A (ja) * | 2009-05-29 | 2010-12-09 | Renesas Electronics Corp | 超解像画像処理装置、超解像画像処理方法及びipモジュールデータ |
JP2011165045A (ja) * | 2010-02-12 | 2011-08-25 | Tokyo Institute Of Technology | 画像処理装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7809155B2 (en) * | 2004-06-30 | 2010-10-05 | Intel Corporation | Computing a higher resolution image from multiple lower resolution images using model-base, robust Bayesian estimation |
JP4772889B2 (ja) * | 2009-04-03 | 2011-09-14 | シャープ株式会社 | 携帯端末装置、撮像画像処理システム、プログラムおよび記録媒体 |
JP4758493B2 (ja) * | 2009-04-03 | 2011-08-31 | シャープ株式会社 | 携帯端末装置、撮像画像処理システム、携帯端末装置の制御方法、プログラムおよび記録媒体 |
JP4772894B2 (ja) * | 2009-08-03 | 2011-09-14 | シャープ株式会社 | 画像出力装置、携帯端末装置、撮像画像処理システム、画像出力方法、プログラムおよび記録媒体 |
JP4856263B2 (ja) * | 2009-08-07 | 2012-01-18 | シャープ株式会社 | 撮像画像処理システム、画像出力方法、プログラムおよび記録媒体 |
JP5026484B2 (ja) * | 2009-09-17 | 2012-09-12 | シャープ株式会社 | 携帯端末装置、画像出力装置、撮像画像処理システム、携帯端末装置の制御方法、画像出力方法、プログラム、および記録媒体 |
JP4991887B2 (ja) * | 2010-01-13 | 2012-08-01 | シャープ株式会社 | 撮像画像処理システム、撮像画像処理システムの制御方法、プログラムおよび記録媒体 |
-
2014
- 2014-03-13 WO PCT/JP2014/056618 patent/WO2014156669A1/ja active Application Filing
- 2014-03-13 JP JP2015508277A patent/JPWO2014156669A1/ja not_active Withdrawn
- 2014-03-13 US US14/780,798 patent/US9626740B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002112007A (ja) * | 2000-09-29 | 2002-04-12 | Minolta Co Ltd | 画像処理システム、撮像装置、画像処理方法及びその方法の処理プログラムが記録された記録媒体 |
JP2010278898A (ja) * | 2009-05-29 | 2010-12-09 | Renesas Electronics Corp | 超解像画像処理装置、超解像画像処理方法及びipモジュールデータ |
JP2011165045A (ja) * | 2010-02-12 | 2011-08-25 | Tokyo Institute Of Technology | 画像処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014156669A1 (ja) | 2017-02-16 |
US20160048946A1 (en) | 2016-02-18 |
US9626740B2 (en) | 2017-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5451782B2 (ja) | 画像処理装置および画像処理方法 | |
JP5006814B2 (ja) | 撮像装置 | |
JP4991907B2 (ja) | 画像処理装置、および、画像処理装置の制御方法 | |
JP6087612B2 (ja) | 画像処理装置および画像処理方法 | |
JP2014086956A (ja) | 画像処理装置及び画像処理方法 | |
JP5479187B2 (ja) | 画像処理装置及びそれを用いた撮像装置 | |
WO2014156669A1 (ja) | 画像処理装置および画像処理方法 | |
JP5455728B2 (ja) | 撮像装置、画像処理装置、及び画像処理方法 | |
JP5730036B2 (ja) | 画像処理装置、撮像装置、画像処理方法およびプログラム。 | |
JP2015115733A (ja) | 画像処理方法、画像処理装置、撮像装置および画像処理プログラム | |
US20110170776A1 (en) | Image distortion correcting method and image processing apparatus | |
JP2012156715A (ja) | 画像処理装置、撮像装置、画像処理方法およびプログラム。 | |
JP2020091910A (ja) | 画像処理装置、画像処理方法及びプログラム | |
WO2014077024A1 (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
JP5484015B2 (ja) | 撮像装置、撮像方法、及びプログラム | |
JP2018067868A (ja) | 撮像装置 | |
KR102470242B1 (ko) | 영상 처리 장치, 영상 처리 방법, 및 프로그램 | |
JP7558890B2 (ja) | 画像処理方法、画像処理装置、プログラム、訓練済み機械学習モデルの製造方法、処理装置、画像処理システム | |
JP5278421B2 (ja) | 撮像装置 | |
JP2011151597A (ja) | 画像処理装置および画像処理プログラム並びに電子カメラ | |
JP6521763B2 (ja) | 画像処理装置、撮像装置、画像処理方法、プログラム、及び記録媒体 | |
JP2012156714A (ja) | プログラム、画像処理装置、画像処理方法および撮像装置。 | |
JP2014110507A (ja) | 画像処理装置および画像処理方法 | |
JP2023116364A (ja) | 画像処理方法、画像処理装置、画像処理システム、およびプログラム | |
CN118338139A (zh) | 用于校正图像中包括的伪影的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14773094 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015508277 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14780798 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14773094 Country of ref document: EP Kind code of ref document: A1 |