WO2014156232A1 - インバータ駆動電動機 - Google Patents

インバータ駆動電動機 Download PDF

Info

Publication number
WO2014156232A1
WO2014156232A1 PCT/JP2014/050880 JP2014050880W WO2014156232A1 WO 2014156232 A1 WO2014156232 A1 WO 2014156232A1 JP 2014050880 W JP2014050880 W JP 2014050880W WO 2014156232 A1 WO2014156232 A1 WO 2014156232A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
capacitor
terminal
drive motor
electrode
Prior art date
Application number
PCT/JP2014/050880
Other languages
English (en)
French (fr)
Inventor
昭範 神谷
牧 晃司
尾畑 功治
慶一郎 開發
昭裕 関根
高橋 秀一
Original Assignee
株式会社 日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立産機システム filed Critical 株式会社 日立産機システム
Priority to CN201480009603.6A priority Critical patent/CN105075074B/zh
Publication of WO2014156232A1 publication Critical patent/WO2014156232A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/26Devices for sensing voltage, or actuated thereby, e.g. overvoltage protection devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to an inverter drive motor that supports steep inverter surges.
  • the most widely used inverter device is a Si (IGBT) inverter.
  • Si Si
  • the number of inverters using SiC with low loss will be increased in the future.
  • Specific examples of the inverter using SiC include a hybrid SiC (IGBT + SiCdiode) inverter using SiC only for the diode, and a motor drive device using a full SiC (MOS-FET + SiCdiode) inverter using SiC for both the diode and the switching element. is there.
  • Non-Patent Document 1 reports that a high voltage is generated between the windings constituting the stator winding of the electric motor, compared with the conventional commercial frequency power supply driving.
  • FIG. 3 shows the relationship between the voltage rise time tr (ns) and the first coil voltage sharing rate (left vertical axis).
  • the voltage sharing ratio is defined as the following equation (1).
  • [Equation 1] (Voltage sharing ratio) (Instantaneous maximum value of coil voltage Vcmax) ⁇ (Voltage start point vs. ground voltage Vs) ⁇ 100 [%] (1)
  • Vcmax Voltage start point vs. ground voltage Vs
  • Vs Voltage start point vs. ground voltage Vs
  • the voltage sharing rate increases. For example, when the voltage rise time tr is 20 ns, the voltage sharing rate reaches 90%.
  • the first coil on the power supply line side of the motor bears 90% of the ground voltage when the voltage rises.
  • the four series coils are equally shared, but this state is repeated each time the SiC inverter is ignited. Therefore, when an inverter with a steep voltage rise such as a MOS-FET inverter is connected to the electric motor, it is necessary to take measures against repeated overvoltage with respect to the first coil on the power supply line side of the electric motor.
  • FIG. 3 also shows the capacitor temperature with respect to the voltage rise time tr. According to this figure, the longer the voltage rise time tr, the higher the capacitor temperature tends to be. Therefore, heat generation (loss) becomes a problem in an IGBT inverter having a long voltage rise time tr (100 ⁇ s or more), but loss can be suppressed in a SiC inverter having a short voltage rise time tr (100 ⁇ s or less).
  • Patent Document 1 there is also a technique of lowering the maximum voltage due to the filter effect by inserting a parallel plate capacitance or capacitor into the terminal box of the electric motor, as in Patent Document 1.
  • Patent Document 2 There is also a method of inserting a capacitor between the terminal board and the ground as in Patent Document 2.
  • JP 2010-51134 A Japanese Utility Model Publication No. 6-41068
  • Patent Document 1 in order to install a capacitance in a terminal box, a structure in which a terminal plate and a ground plate are parallel plates and a high dielectric material is sandwiched between the terminal plate and the ground plate is adopted.
  • Patent Document 2 when a voltage of 200 V or more is applied, the distance between the positive electrode and the negative electrode of the capacitor is small, and the occurrence of creeping discharge and space discharge has been a problem.
  • an object of the present invention is to provide an inverter-driven motor that can reduce the voltage applied to the first coil on the power supply line side of the motor.
  • the inverter and the motor are connected by the terminal box, and the inverter side cable and the motor side lead wire are provided in the terminal box. And a ground plate provided on the bottom surface of the terminal box, and a capacitor connected in series between the terminal plate and the ground plate.
  • the present invention it is possible to reduce voltage concentration on the first coil on the power supply line with respect to a steep inverter surge voltage without installing the terminal box in a conventional filter-less terminal box and increasing the size of the terminal box.
  • the following effects can be obtained. Even if the distance between the terminal plate and the ground plate is increased, a sufficient capacitance or more can be obtained for the high-frequency cutoff filter, so that heat generation due to eddy current loss in the ground plate can be reduced.
  • the terminal box is filled with an insulating material, the insulation between the terminal plate and the grounding plate is peeled off due to the thermal expansion caused by the heat generation of the terminal plate and the grounding plate and the vibration caused by the driving of the motor, and the creepage failure occurs. Can be prevented, and the insulation at the terminal box can be improved. It is particularly suitable for an electric motor that is driven by an inverter device and in which an excessive surge voltage is applied from the inverter device to the winding.
  • FIG. 1 The figure which shows the planar structure of the terminal box of Example 1.
  • FIG. The figure which shows the ground voltage and coil voltage in case voltage rise time is large.
  • the figure which shows the ground voltage and coil voltage in case voltage rise time is small.
  • the figure which shows the PWM voltage waveform of a general inverter The figure which shows the external appearance of a general electric motor.
  • the figure which shows the example whose stator winding of an electric motor is (DELTA) connection.
  • coil of an electric motor is Y connection.
  • the inverter drive motor system includes a motor 35, a converter circuit 30, an inverter circuit 32, and a cable 9 that connects the motor 35 and the inverter circuit 32, and is a mechanism that generates rotational torque of the motor 35.
  • a converter circuit 30 that converts an AC voltage into a DC voltage, a smoothing capacitor 31 that stabilizes the DC voltage, and a rectangular wave AC voltage that is switched by a switching element 33.
  • the circuit part comprised from the inverter circuit 32 (inverter) converted into (1) is meant.
  • the switching element 33 an FET (Field Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), a MOS-FET (Metal-Oxide-Semiconductor Field-Effect Transistor), or the like is used.
  • the smoothing capacitor 31 is connected between the upper arm and the lower arm of the inverter circuit 32, and the lower arm of the smoothing capacitor 31 is grounded.
  • the control unit 34 is for operating the switching element 33, and is a timing for controlling the switching timing of the switching element 33 based on input information from other control devices, the magnetic pole position sensor 36, the current sensor 37, and the like.
  • a control circuit 41 that generates a signal and a gate circuit 42 that generates a drive signal for switching the switching element 33 based on a timing signal output from the control circuit are provided.
  • control circuit 41 calculates the current command value of the electric motor 35 based on the target torque or target speed, and calculates the voltage command value based on the difference between the calculated current command value and the detected current value. Then, a pulsed modulated wave is generated from this voltage command value.
  • a pulse-like modulated wave used in the gate circuit 42 the most common form is a PWM (Pulse Width Modulation) signal.
  • Fig. 5 shows a typical PWM waveform.
  • a modulation wave, a carrier triangular wave, a U-phase voltage, a V-phase voltage, and a UV line voltage are displayed in order from the top.
  • the U-phase and V-phase voltage waveforms are displayed, and the W-phase voltage waveform is omitted.
  • the U-phase modulation wave and the V-phase modulation wave which are voltage commands created by the control circuit 41, are compared with a carrier triangular wave that is a carrier wave.
  • a negative potential ⁇ Vdc / 2 is applied in a period in which the magnitude of the carrier triangular wave is larger than that of the modulated wave that is the voltage command, and in a period in which the magnitude of the carrier triangular wave is smaller than that of the modulated wave that is the voltage command.
  • a positive potential (Vdc / 2) is applied. In this way, a U-phase voltage and a V-phase voltage are generated as pulse waveforms obtained by the switching element.
  • the UV line voltage is obtained from the difference between the U-phase voltage and the V-phase voltage.
  • the UV line voltage is generated according to a period from one rising (falling) time to the other rising (falling) time. In this way, repeated voltage pulses are applied to the motor end.
  • FIG. 5 shows a partially enlarged waveform of the UV line voltage in FIG.
  • the waveform of the rising portion of the line voltage is related to the characteristics shown in FIG.
  • the rising portion of the voltage pulse shows a voltage waveform having a steep voltage gradient (high dV / dt), that is, a short voltage rising time tr due to high-speed switching of the inverter. If dV / dt is large (that is, if the voltage rise time tr is short), the switching loss generated in the inverter is small, the heat generation is small, and the inverter can be downsized.
  • the vertical axis on the right side of FIG. 3 indicates the capacitor temperature, and shows a characteristic that the heat generation amount decreases as dV / dt increases.
  • the IGBT inverter can cover in the region where the voltage rise time tr is 100 ns or more, but it can be realized using the SiC inverter in the region of high speed switching below this, and heat generation can be reduced. That is, when SiC is used for the MOS-FET, the insulation strength is higher than that of conventional Si, the on-resistance can be reduced, and the conduction loss when the switching element is on can be reduced.
  • Fig. 6 shows the external appearance of the electric motor 35.
  • the electric motor 35 is installed on the installation surface by the mounting legs 7.
  • the magnetic part that generates the rotational driving force is insulated and held by the housing 1 and the end bracket 2.
  • a driving force is transmitted from the shaft 4 protruding from the frame to an external load.
  • Cooling fins 8 are formed in the conductor of the electric motor 35 for releasing the heat generated inside.
  • a cable (inverter side cable) 9 for transmitting AC power provided by the inverter is connected to the terminal box 100.
  • FIG. 7 shows a radial cross section of the electric motor 35.
  • the electric motor 35 of the present embodiment includes a stator 5 and a rotor 4 that is disposed on the inner peripheral side of the stator 5 via a gap and is rotatably supported.
  • the stator 5 is fixed to the housing 1, and the shaft on the rotor 4 side is held in the housing 1 of the electric motor 35 via the bearing 3.
  • a cable (inverter side cable) 9 connected to the inverter is taken out from the terminal box 100 as a lead wire 10 on the motor side, and is relayed through the terminal box 100 and connected to the coils 6 of the respective phases of the stator 5. .
  • FIG. 8A shows an example of ⁇ connection
  • FIG. 8B shows an example of Y connection
  • the stator winding may be connected either way.
  • reference numerals 43, 44, and 45 denote phase connection terminals to which the respective phase cables 9 from the terminal box are connected, and the winding coil is provided between the phase connection terminals.
  • each winding coil shown in the figure is described as a three series coil.
  • the first coil 40 of the three series coils is the first coil from the U terminal 43, the V terminal 44, and the W terminal 45.
  • the winding start point 41 is the first turn of the coil
  • the winding end point 42 is the final turn of the coil.
  • the above-described ground voltages Vs and Ve at the winding start point and the winding end point in FIG. 2 are obtained by measuring the ground voltage at the points 41 and 42.
  • Fig. 9 shows a cross-sectional view of the stator in the axial shaft direction.
  • the coil conductor is insulated with an enamel coating.
  • the potential difference between the winding start point 41 and the winding end point 42 is the coil voltage Vc shown in FIG.
  • the winding start point 41 is at the bottom of the slot S, and the winding end point 42 is at the outlet of the slot S, and the distance is long. Since the winding start point 41 and the winding end point 42 have the largest potential difference, the distance in the slot S is generally increased. However, the winding start point 41 and the winding end point 42 may come into contact with each other due to secular change, vibration of the electric motor 35, or the like.
  • the terminal box 100 that is a relay point connecting the inverter of the inverter-driven motor and the motor, the inverter-side cable 9 and the motor-side lead wire 10
  • the terminal plate, the capacitor housed in the terminal box, and the ground plate electrically connected to the terminal box are provided, and the terminal plate, the capacitor, and the ground plate are wired in series.
  • FIG. 1A shows a plan view of the terminal box 100 as viewed from above
  • FIG. 1B shows a cross-sectional view taken along the line AA in FIG.
  • the inverter side cables 9U, 9V, 9W of each phase are connected to the inverter side connection terminal 11 from the left side of the terminal box 100, respectively.
  • Motor side lead wires 10U, 10V, 10W are connected to the motor side connection terminal 12, respectively.
  • Each phase inverter side connection terminal 11 and each phase motor side connection terminal 12 are connected by a terminal plate 101 of each phase.
  • the terminal box 100 is filled with an insulating material 103 to ensure insulation between the phases.
  • FIG. 1 (b) shows an AA cross section by taking the u phase as an example.
  • the upper part of the terminal box 100 is connected between the inverter-side connection terminal 11 of each phase and the motor-side connection terminal 12 of each phase by a terminal plate 101 of each phase, and the cables 9 and 10 extend from the terminals 11 and 12. It shows how they are doing.
  • the terminal box 100 is filled with an insulating material 103 to ensure insulation between the phases.
  • FIG. 1B When FIG. 1B is viewed in the height direction, the ground plate 102 electrically connected to the terminal box 100 is disposed at the bottom, and the substrate 105 on which the capacitor 104 is mounted is disposed in the middle. is doing.
  • the terminal board 101 and Support members 106 and 107 made of an insulating material are provided between the ground plates 102 and between the capacitor mounting substrate 105 and the ground plate 102.
  • the capacitor 104 mounted in the intermediate portion is preferably a plurality of capacitors connected in series and parallel as will be described later, but one end thereof is connected to the terminal plate 101 of each phase, and the other end. Is connected to the lower ground plate 102.
  • the terminal plate 101 and the ground plate 102 are fixed by a support member 106 made of an insulating material, and a capacitor 104 is installed on the high thermal conductivity substrate 105 between the terminal plate 101 and the ground plate 102. 104 and the ground plate 102 are wired in series.
  • a thermosetting insulating material 103 such as silicone rubber is poured into the bottom surface of the terminal board 101, and is cured by applying heat in a furnace. According to the present embodiment, a sufficient distance between the terminal plate 101 and the ground plate 102 can be ensured, and the heat generation of the eddy current due to the main current magnetic field can be reduced. Further, since the terminal box 100 is filled with the insulating material 103, creeping discharge due to vibration of the electric motor 35 or peeling of the heat spread does not occur.
  • the positive electrode of the capacitor It is necessary to prevent creeping discharge and space discharge between the negative electrode and the negative electrode.
  • Non-Patent Document 2 discloses the minimum value of the spatial distance and the creepage distance according to the voltage value, and it is necessary to dispose the capacitor so as to satisfy the spatial distance and the creepage distance. Therefore, by increasing the number of capacitors 104 connected in series, the voltage per capacitor 104 can be reduced, so that the spatial distance and creepage distance described in Non-Patent Document 2 can be reduced. Further, by increasing the number of capacitors 104 in parallel, the capacitance can be increased and the capacitance required for the RC filter can be obtained. By connecting the capacitors in series and in parallel in this way, it is possible to obtain the capacitance necessary for the RC filter while maintaining the spatial distance and the creepage distance.
  • FIG. 10 shows an arrangement example of the capacitor 104 in consideration of the above knowledge.
  • the capacitor 104 is connected to the insulating resin box 108 in series and in parallel. Both ends of a plurality of capacitors 104 connected in series are held by leaf springs 105. By holding the leaf spring 105, it is possible to relieve stress associated with warping due to temperature change of the capacitor 104 or vibration of the electric motor.
  • the positive electrode 110 side of the capacitor connected in series and parallel is connected to the terminal plate 101 via the terminal plate side lead wire, and the negative electrode 111 side is connected to the ground plate 102 via the terminal box side lead wire.
  • the insulating resin box 108 is used by being mounted on the substrate 105 in FIG.
  • FIG. 11 shows an AA cross-sectional configuration of the terminal box of the second embodiment. Since the planar configuration is the same as that in FIG. In FIG. 11, a plurality of positive electrode surfaces 110 having the same width as the terminal plate 101 are attached in a direction perpendicular to the direction of the main current I flowing from the inverter cable 9 to the electric motor 35. Similarly, a plurality of negative electrode surfaces 111 having the same width as the ground plate 102 are attached to the ground plate 102 in a direction perpendicular to the direction of the current I flowing from the inverter cable 9 to the motor 35. 110 and the negative electrode surface 111 of the ground plate 102 are alternately stacked, and a high dielectric material is inserted into the gap between the electrodes.
  • the distance between the terminal plate 101 and the ground plate 102 can be sufficiently secured, and the stacking direction of the electrode surfaces 110 and 111 is the main current. Since it is perpendicular to I, heat generation of eddy current due to the main current magnetic field is reduced. Further, since the terminal box 100 is filled with the insulating material, creeping discharge due to vibration of the electric motor 35 or peeling of the heat spread does not occur.
  • FIG. 12 shows an AA cross-sectional configuration of the terminal box of Example 3. Since the planar configuration is the same as that in FIG. 12 employs a structure in which the intermediate electrode 112 is sandwiched between the plus electrode 110 and the minus electrode 111 in FIG. The intermediate electrode 112 is not connected to either the terminal plate 101 or the ground plate 102.
  • FIG. 13 shows an AA cross-sectional configuration of the terminal box of Example 4. Since the planar configuration is the same as that in FIG. In FIG. 13, a film is sandwiched between the plus electrode 110 and the minus electrode 111 and wound. It is a structure in which a film that is a dielectric and a metal foil that is an electrode are wound to draw out the electrode. According to the fourth embodiment, since only the terminal box 100 needs to be replaced, the existing electric motor 35 can be easily countered with a coil voltage rise.
  • FIG. 14 shows an AA cross-sectional configuration of the terminal box of Example 5. Since the planar configuration is the same as that in FIG. FIG. 14 shows an example in which plus electrodes 110 and minus electrodes 111 are alternately stacked between the terminal plate 101 and the ground plate 102 in the height direction.
  • FIG. 15 shows voltage waveforms on the input side and output side when a capacitance is formed between the terminal plate 101 and the ground plate 102 in the terminal box 100 by the method shown in the above embodiment. It can be understood that the input side voltage waveform shows a steep rise, while the output side voltage waveform has a large time change of the rise. In addition, it can be understood that the repeated overvoltage with respect to the first coil on the power supply line side of the electric motor is reduced by this waveform change.
  • the coil voltage of the first coil on the power supply line side of the electric motor 35 is reduced and insulation deterioration between windings is prevented. Can do. For this reason, it is possible to provide the motor 35 or the inverter drive motor system that prevents the deterioration of insulation between the motor windings, which is considered to be caused by a steep inverter surge even when the inverter is driven.

Abstract

 電動機の供電ライン側第1コイルに印加される電圧を低減することができるインバータ駆動電動機を提供する。 インバータとインバータに駆動される電動機からなるインバータ駆動電動機において、インバータと電動機を端子箱で接続するとともに、端子箱内にはインバータ側ケーブルと電動機側口出し線とを連結する端子板と、端子箱の底面に設けられた接地板と、端子板と接地板との中間に直列接続されたコンデンサを含むことを特徴とする。

Description

インバータ駆動電動機
 本発明は、急峻インバータサージに対応したインバータ駆動電動機に関する。
 近年、省エネルギー化の観点からインバータ装置を用いて電動機を可変速運転することが盛んに行われている。現在、最も普及しているインバータ装置は、Si(IGBT)インバータであるが、これに対し今後は、より電圧立ち上がり時間が小さくて、低損失なSiCを用いたインバータが増えると予想される。SiCを用いたインバータの具体的な例としては、ダイオードのみSiCを用いたハイブリッドSiC(IGBT+SiCdiode)インバータ、ダイオードとスイッチング素子の両方にSiCを用いたフルSiC(MOS-FET+SiCdiode)インバータによる電動機駆動装置がある。
 しかしながらその半面、インバータ装置を用いて電動機を駆動した場合に以下の現象が電動機内部の絶縁劣化の原因となることがある。例えば電動機の固定子巻線についてみると、各相巻線は複数の直列コイルで構成されるが、電動機端の電圧立ち上がり時間が小さくなると、電動機の供電ライン側第1コイルに電圧が集中することがある。この点に関し、従来の商用周波電源駆動時に比べて高い電圧が、電動機の固定子巻線を構成する巻線間に発生することが非特許文献1により報告されている。
 この現象を対地電圧とコイル電圧の時間t変化の関係で説明する。図2(a)、図2(b)は、電圧立ち上がり時間が大きい場合と小さい場合の固定子巻線巻始め点と巻終り点の対地電圧V
s、Ve、及びコイル電圧Vcの変化を、横軸を時間軸として示している。この事例では供電ライン側が固定子巻線巻始め点側に接続されており、供電ライン側からの電圧印加により、対地電圧Vsの上昇に遅れて巻終り点の対地電圧Veが立ち上がる。
 これによれば、電圧立ち上がり時間が大きい図2(a)の場合には、巻始め点と巻終り点の対地電圧Vs、Veの立ち上がりは緩やかで、コイル電圧Vcも小さくなる。しかし図2(b)のように、電圧立ち上がり時間が小さい場合は、巻始め点と巻終り点の対地電圧Vs、Veの立ち上がりは急峻になり、コイル電圧Vcが大きくなる。
 図3は、電圧立ち上がり時間tr(ns)と、第1コイル電圧分担率(左側縦軸)の関係を示している。ここで電圧分担率を以下の(1)式のように定義している。
[数1]
(電圧分担率)=(コイル電圧瞬時最大値Vcmax)÷(巻始め点対地電圧Vs)×100[%]   (1)
 図3では、電動機の固定子巻線1相当たり4直列コイルの電動機を用いた事例で示している。そのため、電圧立ち上がり後の定常状態では、4直列コイルの1コイル当たりの電圧分担は、1÷4×100=25%が均等に電圧分担される。図3において、電圧立ち上がり時間trが10000nsと大きな電圧立ち上がり時間では、定常状態と同程度の25%であることが分かる。
 これに対し電圧立ち上がり時間trを短くすると、電圧分担率は大きくなり、例えば電圧立ち上がり時間trが20nsでは、電圧分担率は90%に達している。つまり電動機の固定子巻線1相当たり4直列コイルの電動機では、電圧立ち上がりの過渡時に電動機の供電ライン側第1コイルが対地電圧に対して90%を負担する。電圧立ち上がり後は、4直列コイルが均等分担することになるが、この状態はSiCインバータの点弧の都度繰り返される。よって、MOS-FETインバータのような急峻な電圧立ち上がりのインバータを電動機に接続した場合には、電動機の供電ライン側第1コイルに対する繰り返し過電圧に対する対策が必要である。
 なお図3には電圧立ち上がり時間trに対するコンデンサ温度も併せて表示している。この図によれば、電圧立ち上がり時間trが長いほど、コンデンサ温度が高くなる傾向がある。従って、電圧立ち上がり時間trが長い(100μs以上)IGBTインバータでは発熱(損失)が問題になるが、電圧立ち上がり時間trが短い(100μs以下)SiCインバータでは損失を抑えることができる。
 係る課題に対し、特許文献1のように、電動機の端子箱に平行平板の静電容量やコンデンサを挿入して、フィルタ効果により最大電圧を下げる手法もある。また特許文献2のように、コンデンサを端子板と対地間に挿入する手法もある。
 なお電力機器の製造に当たっては空間距離、沿面距離を確保する必要があり、非特許文献1の規格「制御機器の絶縁距離」を順守する必要がある。
特開2010-51134号公報 実開平6-41068号公報
日本電機工業会規格JEM1103
 特許文献1では、端子箱に静電容量を設置するため、端子板と接地板を平行平板にして、端子板と接地板の間に高誘電材料を挟み込む構造を採用している。この対策の時の平行平板における静電容量Cは、C=εr×ε0×S/d(εr:比誘電率、ε0:真空の誘
電率、S:電極面積、d:電極間の距離)である。
 この結果静電容量を大きくするために距離dを小さくすると、接地板の渦電流損失が大きくなるという問題が生じる。また、電極面が近接するため、沿面放電が発生しやすくなる。対策として沿面を絶縁材料で封止した場合でも、電動機の振動や熱延びにより剥離して、沿面放電が発生し、端子箱で地絡事故が発生することが問題となる。一方、静電容量を大きくするために、電極面積Sを大きくした場合には端子箱が大型化する課題があった。
 また特許文献2では、200V以上の電圧が加わった場合、コンデンサの正極と負極間の距離が小さく沿面放電と空間放電の発生が課題であった。
 以上のことから本発明においては、電動機の供電ライン側第1コイルに印加される電圧を低減することができるインバータ駆動電動機を提供することを目的とする。
 以上のことから本発明においては、インバータとインバータに駆動される電動機からなるインバータ駆動電動機において、インバータと電動機を端子箱で接続するとともに、該端子箱内にはインバータ側ケーブルと電動機側口出し線とを連結する端子板と、前記端子箱の底面に設けられた接地板と、前記端子板と前記接地板との中間に直列接続されたコンデンサを含むことを特徴とする。
 本発明によれば、従来のフィルタ無しの端子箱に設置して、端子箱を大型化することなく、急峻なインバータサージ電圧に対する供電ライン側第1コイルへの電圧集中を低減できる。
 さらに本発明の実施例によれば以下の効果を得ることができる。端子板と接地板の距離を大きくしても、高周波遮断型フィルタに十分な静電容量以上を得ることができるため接地板での渦電流損失による発熱を低減できる。
 加えて、絶縁材料で端子箱を充填するため、端子板と接地板の発熱による熱延びや電動機の駆動によって生じる振動により、端子板と接地板の間の絶縁が剥離し、沿面破壊が発生することを防止でき、端子箱での絶縁性を向上できる。特にインバータ装置によって駆動され、インバータ装置から巻線に過大なサージ電圧が印加される電動機には好適である。
実施例1の端子箱の平面構成を示す図。 実施例1の端子箱のA-A断面構成を示す図。 電圧立ち上がり時間が大きい場合の対地電圧とコイル電圧を示す図。 電圧立ち上がり時間が小さい場合の対地電圧とコイル電圧を示す図。 電圧立ち上がり時間と、第1コイル電圧分担率の関係を示す図。 本発明が適用される一般的なインバータ駆動の電動機システムを示す図。 一般的なインバータのPWM電圧波形を示す図。 一般的な電動機の外観を示す図。 一般的な電動機の径方向断面を示す図。 電動機の固定子巻線がΔ結線の例を示す図。 電動機の固定子巻線がY結線の例を示す図。 電動機の1スロット分の断面を示す図。 コンデンサの配置例を示す図。 実施例2の端子箱のA-A断面構成を示す図。 実施例3の端子箱のA-A断面構成を示す図。 実施例4の端子箱のA-A断面構成を示す図。 実施例5の端子箱のA-A断面構成を示す図。 端子箱の入力側と出力側の電圧波形を示す図。
 以下、本発明の実施例を図面に基づいて説明する。なお、以下の説明においては最初に一般的なインバータ駆動の電動機システム、一般的なPWMによる制御波形、一般的な電動機筺体構成を説明した後に、本発明における対応策の具体事例を述べることにする。
 最初に、本発明が適用される一般的なインバータ駆動の電動機システムについて、図4を参照して説明する。インバータ駆動電動機システムは、電動機35と、コンバ-タ回路30と、インバータ回路32と、電動機35及びインバータ回路32を接続するケーブル9を備え、電動機35の回転トルクを発生させる機構である。
 なお本発明において単にインバータと称する時には、交流電圧を直流電圧に変換するコンバ-タ回路30と、直流電圧を安定化させる平滑コンデンサ31と、直流電圧をスイッチング素子33でスイッチングして矩形波交流電圧に変換するインバータ回路32(インバータ)から構成される回路部分を意味している。なおスイッチング素子33としては、FET(Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)、MOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor)などが使用されている。また平滑コンデンサ31は、インバータ回路32の上ア-ムと下ア-ムとの間に接続され、平滑コンデンサ31の下ア-ムが接地される。
 制御部34はスイッチング素子33を作動させるためのものであり、他の制御装置や磁極位置センサ36や電流センサ37などからの入力情報に基づいて、スイッチング素子33のスイッチングタイミングを制御するためのタイミング信号を生成する制御回路41と、制御回路から出力されたタイミング信号に基づいて、スイッチング素子33をスイッチング動作させるためのドライブ信号を生成するゲ-ト回路42を備えている。
 このうち制御回路41では、目標トルクまたは目標速度に基づいて電動機35の電流指令値を演算し、この演算された電流指令値と、検出された電流値との差分に基づいて電圧指令値を演算し、この電圧指令値からパルス状の変調波を生成する。ゲ-ト回路42において使用するパルス状の変調波として、もっとも一般的な形態はPWM(Pulse Width Modulation)信号である。
 図5に一般的なPWM波形を示す。ここでは上から順に、変調波とキャリア三角波、U相電圧、V相電圧、UV線間電圧を表示している。但し説明を簡便にするために、U相とV相の電圧波形のみを表示し、W相電圧波形は省略している。
 図5の上段に示すように、制御回路41で作成された電圧指令であるU相変調波とV相変調波は、搬送波であるところのキャリア三角波と比較される。この比較では、例えばキャリア三角波の大きさが電圧指令である変調波よりも大きい期間に負電位(-Vdc/2)を与え、キャリア三角波の大きさが電圧指令である変調波よりも小さい期間に正電位(Vdc/2)を与える。このようにしてスイッチング素子で得られたパルス波形としてU相電圧、V相電圧を生成する。
 またさらにU相電圧とV相電圧の差分から、UV線間電圧を得る。なおUV線間電圧は、一方の立ち上がり(立ち下り)時点から他方の立ち上がり(立ち下り)時点までの期間に応じて生成される。このようにして、繰り返しの電圧パルスが電動機端に印加される。
 図5のUV線間電圧について、その立ち上がり時点の波形を一部拡大して示している。この線間電圧の立ち上がり部分の波形が、図3の特性に関与する。この電圧パルスの立ち上がり部分では、インバータの高速スイッチングにより急峻な電圧の傾き(高dV/dt)、つまり電圧立ち上がり時間trが短い電圧波形を示す。dV/dtが大きければ(すなわち電圧立ち上がり時間trが短ければ)、インバータで発生するスイッチング損失が小さくなり、かつ発熱も小さくインバータの小型化が可能である。図3の右側の縦軸にはコンデンサ温度を示しているが、dV/dtが大きいほど発熱量が少なくなる特性が示されている。
 図3によれば、電圧立ち上がり時間trが100ns以上の領域ではIGBTインバータでカバ-できるが、これ以下の高速スイッチングの領域ではSiCインバータを用いた実現が可能であり、発熱を少なくできることが分かる。つまり、MOS-FETにSiCを用いると、従来のSiに比べて絶縁強度が高く、オン抵抗を低減して、スイッチング素子のオン時の導通損失を低減することができる。
 図6に電動機35の外観を示す。電動機35は、取り付け脚7により、設置面に設置されている。回転駆動力を発生する磁気部分は、ハウジング1とエンドブラケット2によって絶縁され、保持されている。フレ-ムから突出しているシャフト4から、外部の負荷に駆動力を伝達する。電動機35の導体には内部に発生した熱を放出するための冷却フィン8が形成されている。なお、インバータが与える交流電力を伝達するためのケーブル(インバータ側ケーブル)9は、端子箱100に接続されている。
 図7に電動機35の径方向断面を示す。本実施例の電動機35は、固定子5と、固定子5の内周側に空隙を介して配置されかつ回転可能に支持されている回転子4から構成されている。固定子5はハウジング1に固定され、回転子4側のシャフトはベアリング3を介して電動機35のハウジング1内に保持されている。なお、インバータに接続されたケーブル(インバータ側ケーブル)9は、端子箱100からモータ側の口出し線10として取り出され、端子箱100を中継して固定子5の各相のコイル6に接続される。
 次に、図8を用いて本実施例の固定子巻線の構成について説明する。図8(a)にはΔ結線、図8(b)にはY結線の例を示しているが、固定子巻線の結線はどちらでもよい。これ等の図で、43、44、45は、端子箱からの各相のケーブル9が接続される各相接続端子であり、巻線コイルは、この相接続端子間に設けられている。
 但し、図示の各巻線コイルは3直列コイルで記載している。またここで、3直列コイルのうちの第1コイル40は、U端子43、V端子44、W端子45から1番目のコイルである。さらに巻始め点41はコイルの最初のタ-ンで、巻終り点42はコイルの最終タ-ンである。先に述べた図2の固定子巻線巻始め点と巻終り点の対地電圧Vs、Veは、この点41、42における対地電圧を測定したものである。
 図9に固定子の軸シャフト方向の断面図を示す。コイル導線はエナメル被膜で絶縁されている。巻始め点41と巻終り点42間の電位差が先に述べた図2のコイル電圧Vcである。図9では、巻始め点41はスロットSの底部にあり、巻終り点42はスロットSの出口部にあり距離が離れている。巻始め点41と巻終り点42が最も電位差が大きいために、スロットS内では距離を大きくすることが一般的である。しかし、経年変化や、電動機35の振動などによって巻始め点41と巻終り点42が接触する可能性がある。
 以上説明したインバータ駆動電動機における前提構成における課題解決のために本発明においては、インバータ駆動電動機のインバータと電動機を接続する中継点である端子箱100において、インバータ側ケーブル9と電動機側口出し線10とを連結する端子板と、端子箱に収納したコンデンサと、端子箱に電気的に接続された接地板を備え、端子板とコンデンサと接地板を直列に配線することにした。以下、これを実現するための幾つかの本発明の実施例の形態を、図を用いて説明する。
 まず図1に示す実施例1について説明する。図1(a)は端子箱100を上から見たときの平面図を示しており、図1(b)は、図1(a)のA-A断面図を示している。
 最初に図1(a)の平面図によれば、端子箱100の左側から各相のインバータ側ケーブル9U、9V、9Wがインバータ側接続端子11にそれぞれ接続され、端子箱100の右側は各相のモータ側口出し線10U、10V、10Wがモータ側接続端子12にそれぞれ接続されている。各相のインバータ側接続端子11と各相のモータ側接続端子12の間は、各相の端子板101により接続されている。なお、端子箱100内には絶縁材料103が充填されており、各相間の絶縁が確保されている。
 図1(b)は、u相を例としてA-A断面を示している。端子箱100の上部は、各相のインバータ側接続端子11と各相のモータ側接続端子12の間が、各相の端子板101により接続され、各端子11、12からケーブル9、10が延伸している様子を示している。また端子箱100内には絶縁材料103が充填されており、各相間の絶縁が確保されている。
 また図1(b)を高さ方向に見てみると、最下部に端子箱100と電気的に接続された接地板102を配置しており、中間部にコンデンサ104を搭載する基板105を配置している。なお、上段に端子板101、中段にコンデンサ搭載基板105、下段に接地板102を配置し、かつこれらの間を絶縁材料103で充填するための位置関係を確保するために、適宜端子板101と接地板102の間、およびコンデンサ搭載基板105と接地板102の間に絶縁材料で構成された支持部材106、107が備えられている。
 なお中間部に搭載されるコンデンサ104は、後述するように複数のコンデンサが直並列接続されたものとされるのが望ましいが、その一端は各相の端子板101に接続されており、その他端は下段の接地板102に接続されている。
 図1の配電箱100は、以下のような手順で製造される。まず、端子板101と接地板102を絶縁材料の支持部材106で固定し、端子板101と接地板102の中間に高熱伝導の基板105の上にコンデンサ104を設置して、端子板101とコンデンサ104と接地板102を直列に配線する。その次に、シリコ-ンゴムなどの熱硬化型の絶縁材料103を端子板101の底面まで流し込み、炉で熱を加えて硬化させる。本実施例によれば、端子板101と接地板102の距離を十分に確保することができ、主電流磁界による渦電流の発熱を小さくできる。また、絶縁材103で端子箱100を充填するために電動機35の振動や熱延びの剥離による沿面放電が発生しない。
 なお配電箱100内において、端子板101と接地板102の間にコンデンサ104を設置することについて、積層セラミックコンデンサに代表される安価で小型化されたコンデンサ104を用いた場合は、コンデンサのプラス電極とマイナス電極間で沿面放電や空間放電が発生しないようにする必要がある。
 この点について、非特許文献2には電圧値による空間距離と沿面距離の最小値が開示されており、この空間距離と沿面距離を満足するようにコンデンサを配置する必要がある。そのため、コンデンサ104の直列数を増やすことにより、コンデンサ104の1個あたりの電圧を減らすことができるため、非特許文献2に記載の空間距離と沿面距離を減らすことができる。また、コンデンサ104の並列数を増やすことにより、静電容量を増加し、RCフィルタに必要な静電容量を得ることができる。このようにコンデンサを直列、並列に接続することにより、空間距離と沿面距離を保ちつつ、RCフィルタに必要な静電容量を得ることができる。
 図10に、上記知見を加味したコンデンサ104の配置例を示す。絶縁樹脂箱108に、コンデンサ104を直列と並列に接続する。直列接続した複数のコンデンサ104の両端を板ばね105で保持する。板ばね105で保持することにより、コンデンサ104の温度変化や電動機の振動による反りに伴う応力の緩和をすることができる。なお、直並列接続されたコンデンサのプラス電極110側は端子板側リ-ド線を介して端子板101に接続され、マイナス電極111側は端子箱側リ-ド線を介して接地板102に接続される。絶縁樹脂箱108は、例えば図(b)の基板105に搭載されて使用される。
 図11に実施例2の端子箱のA-A断面構成を示す。なお、平面構成は図1(a)と同じなので図示、説明を省略する。図11では、インバータケーブル9から電動機35に流れる主電流Iの方向に対して垂直方向に、端子板101と同じ幅のプラス電極面110を複数取り付ける。また、同様に接地板102にもインバータケーブル9から電動機35に流れる電流Iの方向に対して垂直方向に、接地板102と同じ幅のマイナス電極面111を複数取り付け、端子板101のプラス電極面110と接地板102のマイナス電極面111を互い違いに積層し、電極間の空隙に高誘電材料を挿入する。
 図11の実施例2によれば、図1の実施例1と同様に、端子板101と接地板102の距離を十分に確保することができ、また電極面110、111の積層方向が主電流Iに対して垂直であるため、主電流磁界による渦電流の発熱が小さくなる。また、絶縁材で端子箱100を充填するために電動機35の振動や熱延びの剥離による沿面放電が発生しない。
 図12に実施例3の端子箱のA-A断面構成を示す。なお、平面構成は図1(a)と同じなので図示、説明を省略する。図12では、図11のプラス電極110とマイナス電極111の中間に中間電極112を挟み込んだ構造を採用している。中間電極112は、端子板101と接地板102のいずれにも接続されない。
 図13に実施例4の端子箱のA-A断面構成を示す。なお、平面構成は図1(a)と同じなので図示、説明を省略する。図13では、プラス電極110とマイナス電極111の間にフィルムを挟み込んで巻いた構造である。誘電体であるフィルムと電極である金属箔を巻き取って電極を引出した構造である。実施例4によれば、端子箱100だけを交換すれば良いため既設の電動機35にも容易にコイル電圧上昇の対策が可能である。
 図14に実施例5の端子箱のA-A断面構成を示す。なお、平面構成は図1(a)と同じなので図示、説明を省略する。図14では、プラス電極110とマイナス電極111を交互に端子板101と接地板102の間に高さ方向に積層配置した例を示している。
 図15は、上記実施例に示した手法で、端子箱100内の端子板101と接地板102の間に静電容量を形成したときの入力側と出力側の電圧波形を示している。入力側電圧波形は、急峻な立ち上がりを示しているのに対し、出力側電圧波形は立ち上がりの時間変化分が大きいことが理解できる。またこの波形変化により電動機の供電ライン側第1コイルに対する繰り返し過電圧が軽減されることが理解できる。
 以上説明したように、本実施形態によれば、電動機35あるいはインバータ駆動電動機システムを使用した場合、電動機35の供電ライン側第1コイルのコイル電圧を低減し、巻線間絶縁劣化を防止することができる。このため、インバータ駆動時にも急峻なインバータサージが加わることが原因と考えられる電動機巻線間絶縁劣化を防止した電動機35あるいはインバータ駆動電動機システムを提供することができる。
1:ハウジング
2:エンドブラケット
3:ベアリング
4:回転子
5:固定子
6:コイル
7:取り付け脚
8:冷却フィン
9:インバータ側ケーブル
10:モータ側の口出し線
23:シャフト
30:コンバ-タ回路
31:平滑コンデンサ
32:インバータ回路
33:スイッチング素子
35:電動機
40:第1コイル
41:巻始め
42:巻終り
43:U端子
44:V端子
45:W端子
100:端子箱
101:端子板
102:接地板

Claims (11)

  1.  インバータとインバータに駆動される電動機からなるインバータ駆動電動機において、 インバータと電動機を端子箱で接続するとともに、該端子箱内にはインバータ側ケーブルと電動機側口出し線とを連結する端子板と、前記端子箱の底面に設けられた接地板と、前記端子板と前記接地板との中間に直列接続されたコンデンサを含むことを特徴とするインバータ駆動電動機。
  2.  請求項1に記載のインバータ駆動電動機において、
     前記コンデンサは、直列接続されたコンデンサが複数、並列接続または直列接続されていることを特徴
    とするインバータ駆動電動機。
  3.  請求項1または請求項2に記載のインバータ駆動電動機において、
     前記インバータ側ケーブルと前記電動機側口出し線とを連結する前記端子板は前記端子箱内上部に配置され、前記接地板は前記端子箱底面に設けられ、前記コンデンサは前記端子板と前記接地板の間の空間に配置されるとともに、前記端子箱内には絶縁材料が充填されていることを特徴とするインバータ駆動電動機。
  4.  請求項3に記載のインバータ駆動電動機において、
     前記コンデンサは基板上に搭載されて形成され、かつ前記基板を前記端子板と前記接地板の間の空間に配置するために、端子板と接地板の間、およびコンデンサ搭載基板と接地板の間を絶縁材料で構成された支持部材により保持することを特徴とするインバータ駆動電動機。
  5.  請求項3に記載のインバータ駆動電動機において、
     前記インバータケーブルから前記電動機に流れる電流に対して垂直方向に、複数の電極面を前記端子板に取り付け、前記インバータケーブルから前記電動機に流れる電流に対して垂直方向に、複数の電極面を前記接地板に取り付け、前記端子板側電極面と前記接地板側電極面を互い違いに積層させることにより前記コンデンサを形成し、空隙に絶縁材料を挿入することを特徴とするインバータ駆動電動機。
  6.  請求項5に記載のインバータ駆動電動機において、
     互い違いに積層された前記端子板側電極面と前記接地板側電極面の間に中間電極を配置することを特徴とするインバータ駆動電動機。
  7.  請求項3に記載のインバータ駆動電動機において、
     前記コンデンサは、プラス電極とマイナス電極の間にフィルムを挟み込んで巻いた構造であり、誘電体であるフィルムと電極である金属箔を巻き取って電極を引出したことを特徴とするインバータ駆動電動機。
  8.  請求項3に記載のインバータ駆動電動機において、
     前記コンデンサは、プラス電極とマイナス電極を交互に積層し、端子板と接地板の間に配置したことを特徴とするインバータ駆動電動機。
  9.  請求項4に記載のインバータ駆動電動機において、
     前記コンデンサを保持する前記基盤は、絶縁材料の筐体の両端に板ばねを装着し、直列接続、または並列接続した前記コンデンサを板ばねで挟み込み、板ばねの正極側を前記端子板に接続し、負極側を前記端子箱底面に配線することを特徴とするインバータ駆動電動機。
  10.  請求項3から請求項9のいずれか1項に記載のインバータ駆動電動機において、
     前記絶縁材料はシリコーンゲル、またはシリコームゴムであることを特徴とするインバータ駆動電動機。
  11.  請求項1から請求項10のいずれか1項に記載のインバータ駆動電動機において、
     前記コンデンサは積層セラミックコンデンサであることを特徴とするインバータ駆動電動機。
PCT/JP2014/050880 2013-03-26 2014-01-20 インバータ駆動電動機 WO2014156232A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480009603.6A CN105075074B (zh) 2013-03-26 2014-01-20 逆变器驱动电动机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-063277 2013-03-26
JP2013063277A JP6002612B2 (ja) 2013-03-26 2013-03-26 インバータ駆動電動機

Publications (1)

Publication Number Publication Date
WO2014156232A1 true WO2014156232A1 (ja) 2014-10-02

Family

ID=51623237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050880 WO2014156232A1 (ja) 2013-03-26 2014-01-20 インバータ駆動電動機

Country Status (3)

Country Link
JP (1) JP6002612B2 (ja)
CN (1) CN105075074B (ja)
WO (1) WO2014156232A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109500B2 (ja) * 2020-05-20 2022-07-29 三菱電機株式会社 回転機駆動制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641068U (ja) * 1992-03-10 1994-05-31 不二電機工業株式会社 サージ吸収端子台
JP2010051134A (ja) * 2008-08-23 2010-03-04 Tokyo Metropolitan Univ モータ端子装置
JP2010063241A (ja) * 2008-09-02 2010-03-18 Toyota Motor Corp 電動機駆動システムおよびそれを備えた車両

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453734B2 (ja) * 2008-05-13 2014-03-26 富士電機株式会社 交流電動機駆動回路及び電気車駆動回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641068U (ja) * 1992-03-10 1994-05-31 不二電機工業株式会社 サージ吸収端子台
JP2010051134A (ja) * 2008-08-23 2010-03-04 Tokyo Metropolitan Univ モータ端子装置
JP2010063241A (ja) * 2008-09-02 2010-03-18 Toyota Motor Corp 電動機駆動システムおよびそれを備えた車両

Also Published As

Publication number Publication date
JP6002612B2 (ja) 2016-10-05
CN105075074A (zh) 2015-11-18
CN105075074B (zh) 2017-07-11
JP2014192912A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
US9985490B2 (en) Electric motor or generator
EP2169818B1 (en) Power electronic module with an improved choke and methods of making same
JP6389877B2 (ja) 電気モータまたは発電機用インバータ
WO2014034331A1 (ja) 電力変換装置
US11146199B2 (en) Multi-phase motor system and control method
JP4045923B2 (ja) 電動機
WO2019171856A1 (ja) 電力変換装置
JP6002612B2 (ja) インバータ駆動電動機
WO2016047174A1 (ja) 電力変換装置
US10554123B2 (en) Power converter with a parallel flat plate conductor electrically connected with a capacitor and a power module
JP5203737B2 (ja) 車両駆動装置
JP5372544B2 (ja) 電源トランス、及びそれを用いた電力変換装置
JP2016092924A (ja) 電力変換装置
JP5997558B2 (ja) 回転電機
JP2022535342A (ja) ブラシレスモータ及び電気機器
JP2011091250A (ja) コンデンサ及び電力変換装置
US11711041B2 (en) Motor drive system comprising power network between inverter and motor
JP2018026508A (ja) 電子回路装置およびそれを含んだ回転電機
JP2010063241A (ja) 電動機駆動システムおよびそれを備えた車両
CN108880046A (zh) 曳引机以及装配有该种曳引机的电梯
JPH1141978A (ja) 電動機を駆動する半導体電力変換器の零相電流の抑制方法
JP2010148171A (ja) バスバー及びモータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009603.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773730

Country of ref document: EP

Kind code of ref document: A1