WO2014156223A1 - High-frequency circuit device - Google Patents

High-frequency circuit device Download PDF

Info

Publication number
WO2014156223A1
WO2014156223A1 PCT/JP2014/050610 JP2014050610W WO2014156223A1 WO 2014156223 A1 WO2014156223 A1 WO 2014156223A1 JP 2014050610 W JP2014050610 W JP 2014050610W WO 2014156223 A1 WO2014156223 A1 WO 2014156223A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric substrate
waveguide
package
circuit device
frequency circuit
Prior art date
Application number
PCT/JP2014/050610
Other languages
French (fr)
Japanese (ja)
Inventor
山本 陽平
長谷 英一
謙一 加島
亮喜 原本
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2015508109A priority Critical patent/JPWO2014156223A1/en
Publication of WO2014156223A1 publication Critical patent/WO2014156223A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48155Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48157Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/142HF devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15151Shape the die mounting substrate comprising an aperture, e.g. for underfilling, outgassing, window type wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Definitions

  • the present invention relates to a high-frequency circuit device that transmits and receives a high-frequency signal (3 GHz to 300 GHz) used in a microwave band and a millimeter-wave band by using a waveguide, and in particular, in a high-frequency module, a waveguide-microstrip conversion.
  • the present invention relates to a high-frequency circuit device capable of blocking the inside of a package from outside air without affecting the high-frequency characteristics of the package.
  • Patent Document 1 discloses a technique related to a structure that realizes a low loss, a wide band, and a miniaturization of a high-frequency circuit device used for a mobile radio terminal or a video transmission or the like of a quasi-millimeter wave band or higher.
  • the technique disclosed in Patent Document 1 is provided in a metal housing for grounding by providing a transmission line of a semiconductor, a dielectric substrate, a metal electrode, and a metal electrode for grounding that form a high-frequency circuit.
  • the high-frequency signal is extracted from the square hole having the same dimensions as the waveguide to the waveguide.
  • the semiconductor and dielectric substrate in Patent Document 1 can be encapsulated in a ceramic package using a ceramic material as a package base material as a high-frequency module capable of mass production.
  • a ceramic material as a package base material as a high-frequency module capable of mass production.
  • the high-frequency module as shown in FIGS. 5 and 6 is screwed to a metal member for connecting the waveguide. The structure was adopted.
  • FIG. 5 is a perspective view showing an appearance of a conventional high-frequency circuit device
  • FIG. 6 is a cross-sectional view taken along the AA plane shown in FIG.
  • FIG. 5 shows a state in which the package lid 102 which is one of the components of the high-frequency module 100 and the mounting screws are removed so that the internal configuration of the high-frequency module 100 can be understood.
  • reference numeral 100 denotes a high-frequency module having a transmission circuit function and a reception circuit function
  • 201 denotes a chassis which is a metal member for connecting a waveguide.
  • the high-frequency circuit device 50 of this example includes the high-frequency module 100 and the chassis 201.
  • a waveguide (not shown) as an input / output interface with the transmission / reception antenna is attached to and connected to the chassis 201.
  • the high-frequency module 100 has a structure that is fastened to the chassis 201 with screws (not shown) using through holes at four corners provided in the high-frequency module 100.
  • the housing of the high-frequency module 100 includes a package 101 using a ceramic material or the like and a package lid 102.
  • a dielectric substrate 103 on which a microstrip line is formed, a metal back short 104, and a plurality of high frequency monolithic ICs 105 are mounted.
  • the package 101 is sealed by the package lid 102.
  • the package 101 is configured such that the hole positions of the waveguide portion 101a of the package 101 and the waveguide portion 201a of the chassis 201 are aligned, and screw holes (not shown) of the chassis 201 are formed using the through holes provided at the four corners. The screw is fastened.
  • a metal electrode provided on the back surface of the dielectric substrate 103 is attached to the bottom surface inside the package 101 so as to close the upper opening of the waveguide portion 101a of the package 101. It was soldered to ensure airtightness. Further, the high-frequency module 100 needs to thin the dielectric substrate 103 on which the microstrip line is formed to about 0.1 mm in order to ensure high-frequency characteristics.
  • the package 101 is screwed to the chassis 201 and exposed to a wide range of outside air temperatures, the upper portion of the waveguide 101a of the package 101 is different depending on the difference in thermal expansion coefficient between the package 101 and the chassis 201 of different materials. There is a problem that stress load concentrates on the opening, the dielectric substrate 103 on which the microstrip line is formed is damaged, and high frequency characteristics are impaired.
  • the present invention has been made to solve such problems, and stress concentration on the dielectric substrate during a temperature rise caused by a difference in thermal expansion coefficient between the package of the high frequency module and the metal member for connecting the waveguide.
  • An object of the present invention is to provide a high-frequency circuit device that can take out a broadband high-frequency signal into a waveguide with a low loss without impairing hermeticity.
  • a high-frequency circuit device is a high-frequency circuit device including a high-frequency module and a metal member for connecting a waveguide to which the high-frequency module is attached.
  • a first dielectric substrate having a microstrip line formed on the surface, and the inner bottom surface on which the first dielectric substrate is mounted while the first dielectric substrate is mounted on the inner bottom surface by solder bonding
  • a package having a dielectric substrate mounting portion communicating with the first waveguide portion below the first waveguide portion, and soldering the dielectric substrate mounting portion.
  • a second dielectric substrate that is hermetically attached by bonding and a package lid that seals the package, and the metal member for connecting the waveguide includes the first conductor of the package.
  • the second dielectric substrate maintains the hermeticity of the package, and reduces stress concentration on the first dielectric substrate due to thermal expansion of the package when the temperature rises.
  • a high-frequency circuit device is the above-described high-frequency circuit device, wherein the thickness of the second dielectric substrate is the dielectric constant of the second dielectric substrate and the first conductive substrate. It is determined based on the diameter of the wave tube portion and the wavelength of the high frequency signal.
  • a high-frequency circuit device is characterized in that, in the above-described high-frequency circuit device, the second dielectric substrate is a dielectric substrate having a thickness of more than 0.3 mm. To do.
  • the high frequency circuit device is the above high frequency circuit device, wherein the second dielectric substrate is solder-bonded with a gap between the dielectric substrate mounting portion. It is characterized by.
  • the present invention avoiding the occurrence of stress concentration on the dielectric substrate at the time of temperature rise caused by the difference in thermal expansion coefficient between the package of the high frequency module and the metal member for connecting the waveguide, It is possible to provide a high-frequency circuit device capable of taking out a broadband high-frequency signal with a low loss into a waveguide without impairing hermeticity.
  • FIG. 2 is a cross-sectional view taken along the line BB shown in FIG.
  • FIG. 3 is an enlarged view of a structure centered on a dielectric substrate 14 of FIG. 2 and is a diagram expressed as a distributed constant circuit. The characteristic of the thickness of a dielectric substrate with respect to the dielectric constant of a dielectric substrate is represented. It is a perspective view which shows the external appearance of the conventional high frequency circuit device.
  • FIG. 6 is a cross-sectional view taken along the AA plane shown in FIG. 5.
  • FIG. 1 is a perspective view showing an example of the configuration of the high-frequency circuit device according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view taken along the line BB shown in FIG.
  • FIG. 1 shows a state in which the package lid 102 which is one of the components of the high frequency module 10 and the mounting screws are removed so that the internal configuration of the high frequency module 10 can be understood.
  • FIG. 1 and FIG. 2 the same components as those in FIG. 5 and FIG.
  • the high-frequency circuit device 1 is a waveguide-microstrip line converter capable of high-frequency communication, and includes a chassis 201 made of aluminum and a metal constituting the high-frequency module 10 in contact with the upper portion of the chassis 201.
  • a waveguide portion is provided so as to penetrate the chassis 201 and the bottom surface inside the package 11, and in order to maintain the airtightness of the package 11, the waveguide portion 11 a of the package 11 is provided.
  • the dielectric substrate 14 is provided with a thickness that prevents the chassis 201 and the package 11 from being damaged by stress due to the difference in thermal expansion coefficient.
  • reference numeral 10 denotes a high-frequency module having a transmission circuit function and a reception circuit function
  • 201 denotes a chassis which is a metal member for connecting a waveguide. That is, the high-frequency circuit device 1 of this example includes the high-frequency module 10 and the chassis 201.
  • a waveguide (not shown) as an input / output interface with the transmission / reception antenna is attached to and connected to the chassis 201.
  • the high-frequency module 10 has a structure that is fastened to the chassis 201 with screws (not shown) using through holes at four corners provided in the high-frequency module 10.
  • the housing of the high-frequency module 10 includes a package 11 using a ceramic material or the like and a package lid 102 as shown in FIGS.
  • a dielectric substrate 12 having a microstrip line, a metal back short 13 and a plurality of high frequency monolithic ICs 105 are mounted in the package 11 and soldered to the bottom surface inside the package 11.
  • the dielectric substrate 12 is a substrate having a thickness of about 0.1 mm in order to ensure high-frequency characteristics, and a metal electrode provided on the back surface is soldered and fixed to the bottom surface inside the package 11, but in FIGS.
  • the size is such that the upper opening of the waveguide portion 11a of the package 11 is not blocked.
  • the metal back short 13 is disposed so as to cover only the tip portion of the dielectric substrate 12, and is solder-bonded to the inner bottom surface of the package 11 like the dielectric substrate 12.
  • the package 11 also has a waveguide 11a that functions as a waveguide, and a dielectric substrate that houses the dielectric substrate 14 at a position facing the waveguide 201a of the chassis 201 below the waveguide 11a.
  • the bottom surface of the package 11 is secured by bonding a dielectric substrate 14 having a thickness of more than 0.3 mm to the dielectric substrate mounting portion 11b with solder 15. Since the dielectric substrate 14 can be attached not to the inside of the package 11 but to the outside of the package 11, unlike the dielectric substrate 12, the thickness of the substrate can be designed to be greater than 0.1 mm.
  • the thickness of the dielectric substrate 14 is determined based on a calculation formula including three parameters: the dielectric constant of the dielectric substrate 14, the inner diameter of the waveguide portion 11a, and the wavelength of the high-frequency signal. Details thereof will be described later.
  • the dielectric substrate 14 is optimally, for example, a glass (ceramic) mixture of glass and ceramic having a low dielectric constant.
  • the dielectric substrate 14 is optimally, for example, a glass (ceramic) mixture of glass and ceramic having a low dielectric constant.
  • the dielectric substrate 14 by using a high melting point solder 15 for bonding the dielectric substrate 14 to the dielectric substrate mounting portion 11b of the package 11, it is stronger and less likely to be peeled off than ordinary eutectic solder.
  • the dielectric substrate 14 By disposing the dielectric substrate 14 as described above, the dielectric substrate 12 having the microstrip line and the high frequency characteristics of the converter due to the quarter-wave metallic back short 13 are not affected. Become.
  • the package 11 is sealed by the package lid 102, and the inside of the package 11 is shut off from the outside air. Further, the package 11 is configured so that the hole positions of the waveguide portion 11a of the package 11 and the waveguide portion 201a of the chassis 201 are aligned, and screw holes (not shown) of the chassis 201 are formed using through holes provided at the four corners. The screw is fastened.
  • FIG. 3 is an enlarged view of the structure centering on the dielectric substrate 14 of FIG. 2, and is a diagram expressed as a distributed constant circuit.
  • impedance Z b seen the impedance Z L of a dielectric substrate 14 having an impedance of Z a, as follows, given by Equation 1.
  • which is a propagation constant, is given by Equation 2 as follows using an attenuation constant ⁇ and a phase constant ⁇ .
  • Equation 1 is given by Equation 3 below.
  • is a wavelength within the dielectric substrate 14 having a relative dielectric constant ⁇ r .
  • Equation 3 is given by Equation 4 below.
  • Equation 4 From Equation 4, it can be seen that the impedance Z a does not affect Z b when the dielectric substrate 14 has a relative dielectric constant ⁇ r and the thickness of the dielectric substrate 14 is a half wavelength ( ⁇ / 2).
  • is given by Equation 5 as follows using the relative permittivity ⁇ r , the free space wavelength ⁇ 0, and the length a of the long side of the waveguide portion 11a. Substituting the parameters ( ⁇ 0 , a) of Table 1 below into Equation 5, ⁇ is derived using ⁇ r as a variable.
  • FIG. 4 shows a value obtained by dividing ⁇ by 2 (thickness L of the dielectric substrate).
  • FIG. 4 shows the characteristic of the thickness of the dielectric substrate with respect to the relative dielectric constant of the dielectric substrate.
  • Table 2 shows an example of the relative dielectric constant of the material forming the dielectric substrate 14.
  • the thickness L of the dielectric substrate 14 optimized for each frequency is given in the following Table 3.
  • the present invention avoiding the occurrence of stress concentration on the dielectric substrate at the time of temperature rise caused by the difference in thermal expansion coefficient between the package of the high frequency module and the metal member for connecting the waveguide, It is possible to provide a high-frequency circuit device capable of taking out a broadband high-frequency signal with a low loss into a waveguide without impairing hermeticity.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in each embodiment. Furthermore, you may combine suitably the component covering different embodiment.
  • the present invention can be widely applied to a high-frequency circuit device that transmits and receives a high-frequency signal used in a microwave band, a millimeter-wave band, or the like using a waveguide.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Reversible Transmitting Devices (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

Provided is a high-frequency circuit device that can prevent the occurrence of stress concentration on a dielectric substrate when the temperature is elevated due to a difference between the coefficient of thermal expansion of the package of a high-frequency module and that of a metal member for waveguide connection, and that can extract a broad band high-frequency signal to the waveguide without impairing hermeticity and with low loss. This high-frequency circuit device (1) has, in a waveguide-microstrip line converter that can perform high-frequency communication, an aluminum chassis (201) and a metal or ceramic package (11) that constitutes a high-frequency module (10) that abuts the upper part of the chassis (201). A waveguide part is provided so as to pass through the chassis (201) and the bottom of the inside of the package (11). In order to maintain the hermeticity of the package (11), a dielectric substrate (14) is disposed so as to block the waveguide part (11a) of the package (11). The dielectric substrate (14) has a thickness such that the strength thereof is sufficient to prevent the dielectric substrate from being damaged by the stress caused by the difference between the coefficient of thermal expansion of the chassis (201) and that of the package (11).

Description

高周波回路装置High frequency circuit equipment
 本発明は、マイクロ波帯およびミリ波帯で用いられる高周波信号(3GHz~300GHz)を、導波管を用いて送受信する高周波回路装置に係り、特に、高周波モジュールにおいて、導波管-マイクロストリップ変換の高周波特性に影響を与えず、パッケージ内部を外気から遮断することが可能な高周波回路装置に関する。 The present invention relates to a high-frequency circuit device that transmits and receives a high-frequency signal (3 GHz to 300 GHz) used in a microwave band and a millimeter-wave band by using a waveguide, and in particular, in a high-frequency module, a waveguide-microstrip conversion. The present invention relates to a high-frequency circuit device capable of blocking the inside of a package from outside air without affecting the high-frequency characteristics of the package.
 マイクロ波帯およびミリ波帯において、低損失な伝送線路である導波管は、送受信アンテナとの間の入出力インターフェースとして広く用いられている。例えば、準ミリ波帯以上の移動無線端末や映像伝送等に用いられる高周波回路装置の低損失化と広帯域化と小型化とを実現する構造に関する技術が、下記の特許文献1に開示されている。
 特許文献1に開示されている技術は、接地用の金属筐体の中に、高周波回路を形成する半導体と誘電体基板と金属電極と接地用金属電極の伝送線路を設け、金属筐体に設けた導波管と同一寸法の角穴から導波管に高周波信号を取り出すものである。
In the microwave band and the millimeter wave band, a waveguide, which is a low-loss transmission line, is widely used as an input / output interface with a transmission / reception antenna. For example, the following Patent Document 1 discloses a technique related to a structure that realizes a low loss, a wide band, and a miniaturization of a high-frequency circuit device used for a mobile radio terminal or a video transmission or the like of a quasi-millimeter wave band or higher. .
The technique disclosed in Patent Document 1 is provided in a metal housing for grounding by providing a transmission line of a semiconductor, a dielectric substrate, a metal electrode, and a metal electrode for grounding that form a high-frequency circuit. The high-frequency signal is extracted from the square hole having the same dimensions as the waveguide to the waveguide.
特開2007-006198号公報JP 2007-006198 A
 上記特許文献1における半導体と誘電体基板等は、大量生産が可能な高周波モジュールとして、セラミック材料をパッケージ母材に使用したセラミックパッケージ等に封入することができる。このようなセラミックパッケージ等で形成した高周波モジュールの入出力インターフェースに導波管を用いる場合、従来、図5及び図6に示すような、高周波モジュールを導波管接続用の金属部材にネジ締結する構造が採用されていた。 The semiconductor and dielectric substrate in Patent Document 1 can be encapsulated in a ceramic package using a ceramic material as a package base material as a high-frequency module capable of mass production. When a waveguide is used for an input / output interface of a high-frequency module formed of such a ceramic package or the like, conventionally, the high-frequency module as shown in FIGS. 5 and 6 is screwed to a metal member for connecting the waveguide. The structure was adopted.
 従来の高周波モジュールを導波管接続用の金属部材にネジ締結した構造を有する高周波回路装置について、図5及び図6を参照して説明する。
 図5は、従来の高周波回路装置の外観を示す斜視図であり、図6は、図5に示すA-A面で切断した場合の断面図である。ただし、図5は、高周波モジュール100の内部構成が分かるように、高周波モジュール100の構成部品の一つであるパッケージ蓋体102、並びに、取付用のネジを外した状態で示している。
 図5及び図6において、100は送信回路機能および受信回路機能を有する高周波モジュールであり、また、201は導波管接続用の金属部材であるシャーシである。つまり、本例の高周波回路装置50は、高周波モジュール100と、シャーシ201とから構成されている。シャーシ201には、例えば、送受信アンテナとの間の入出力インターフェースとしての導波管(図示せず)が取り付けられ接続される。高周波モジュール100は、図5に示すように、高周波モジュール100に設けた四隅の貫通穴を使って、図示しないネジでシャーシ201に締結する構造となっている。
A high-frequency circuit device having a structure in which a conventional high-frequency module is screwed to a metal member for waveguide connection will be described with reference to FIGS.
FIG. 5 is a perspective view showing an appearance of a conventional high-frequency circuit device, and FIG. 6 is a cross-sectional view taken along the AA plane shown in FIG. However, FIG. 5 shows a state in which the package lid 102 which is one of the components of the high-frequency module 100 and the mounting screws are removed so that the internal configuration of the high-frequency module 100 can be understood.
5 and 6, reference numeral 100 denotes a high-frequency module having a transmission circuit function and a reception circuit function, and 201 denotes a chassis which is a metal member for connecting a waveguide. That is, the high-frequency circuit device 50 of this example includes the high-frequency module 100 and the chassis 201. For example, a waveguide (not shown) as an input / output interface with the transmission / reception antenna is attached to and connected to the chassis 201. As shown in FIG. 5, the high-frequency module 100 has a structure that is fastened to the chassis 201 with screws (not shown) using through holes at four corners provided in the high-frequency module 100.
 高周波モジュール100の筐体は、図5及び図6に示すように、セラミック材料等を使用したパッケージ101と、パッケージ蓋体102とから構成されている。パッケージ101内には、マイクロストリップ線路を形成した誘電体基板103、金属製バックショート104、及び複数の高周波モノリシックIC105が実装される。また、パッケージ101内に所定の部品が実装された後、パッケージ101はパッケージ蓋体102によって封止される。更に、このパッケージ101は、パッケージ101の導波管部101aとシャーシ201の導波管部201aの穴位置を合わせるようにして、四隅に設けた貫通穴を使って、シャーシ201の図示しないネジ穴にネジ締結される。
 従来のパッケージ101では、パッケージ101の内部を外気と遮断するため、パッケージ101の導波管部101aの上方開口部を塞ぐように、誘電体基板103の裏面に設けた金属電極をパッケージ101内部底面に半田付けして気密性を確保していた。また、高周波モジュール100は、高周波特性を確保するために、マイクロストリップ線路を形成した誘電体基板103を0.1mm程度まで薄くする必要があった。
 しかし、パッケージ101がシャーシ201にネジ締結された状態で、幅広い外気温に晒された場合、材質の異なるパッケージ101とシャーシ201の熱膨張係数の違いによって、パッケージ101の導波管部101aの上方開口部に応力負荷が集中し、マイクロストリップ線路を形成した誘電体基板103が破損し、高周波特性が損なわれるという問題があった。
As shown in FIGS. 5 and 6, the housing of the high-frequency module 100 includes a package 101 using a ceramic material or the like and a package lid 102. In the package 101, a dielectric substrate 103 on which a microstrip line is formed, a metal back short 104, and a plurality of high frequency monolithic ICs 105 are mounted. Further, after a predetermined part is mounted in the package 101, the package 101 is sealed by the package lid 102. Further, the package 101 is configured such that the hole positions of the waveguide portion 101a of the package 101 and the waveguide portion 201a of the chassis 201 are aligned, and screw holes (not shown) of the chassis 201 are formed using the through holes provided at the four corners. The screw is fastened.
In the conventional package 101, in order to block the inside of the package 101 from the outside air, a metal electrode provided on the back surface of the dielectric substrate 103 is attached to the bottom surface inside the package 101 so as to close the upper opening of the waveguide portion 101a of the package 101. It was soldered to ensure airtightness. Further, the high-frequency module 100 needs to thin the dielectric substrate 103 on which the microstrip line is formed to about 0.1 mm in order to ensure high-frequency characteristics.
However, when the package 101 is screwed to the chassis 201 and exposed to a wide range of outside air temperatures, the upper portion of the waveguide 101a of the package 101 is different depending on the difference in thermal expansion coefficient between the package 101 and the chassis 201 of different materials. There is a problem that stress load concentrates on the opening, the dielectric substrate 103 on which the microstrip line is formed is damaged, and high frequency characteristics are impaired.
 本発明は、この様な問題を解決するためになされたもので、高周波モジュールのパッケージと導波管接続用の金属部材の熱膨張係数の違いによって起こる温度上昇時の誘電体基板への応力集中の発生を回避し、気密性を損なうことなく低損失で広帯域の高周波信号を導波管に取り出すことが可能な高周波回路装置を提供することを目的とする。 The present invention has been made to solve such problems, and stress concentration on the dielectric substrate during a temperature rise caused by a difference in thermal expansion coefficient between the package of the high frequency module and the metal member for connecting the waveguide. An object of the present invention is to provide a high-frequency circuit device that can take out a broadband high-frequency signal into a waveguide with a low loss without impairing hermeticity.
 上記目的を達成するための本発明に係る高周波回路装置は、高周波モジュールと、当該高周波モジュールを取り付ける導波管接続用の金属部材とで構成される高周波回路装置であって、前記高周波モジュールは、表面にマイクロストリップ線路が形成された第1の誘電体基板と、前記第1の誘電体基板を内部底面に半田接合にて実装する共に、前記第1の誘電体基板が実装された前記内部底面に第1の導波管部を設け、前記第1の導波管部下方に前記第1の導波管部と連通する誘電体基板取付部を有するパッケージと、前記誘電体基板取付部に半田接合にて気密に取り付ける第2の誘電体基板と、前記パッケージを封止するパッケージ蓋体と、を含んで構成され、前記導波管接続用の金属部材は、前記パッケージの前記第1の導波管部と接続するために、前記パッケージの前記第1の導波管部と同じ形状及び大きさで形成された第2の導波管部を有し、前記第1の導波管部の位置が前記第2の導波管部の位置と一致するようにして、前記高周波モジュールを前記金属部材に取り付けることにより、前記第1の導波管部と前記第2の導波管部が導波管として機能する一方、前記第2の誘電体基板によって、前記パッケージの気密性が保たれると共に、温度上昇時の前記パッケージの熱膨張による前記第1の誘電体基板への応力集中が軽減されることを特徴とする。 In order to achieve the above object, a high-frequency circuit device according to the present invention is a high-frequency circuit device including a high-frequency module and a metal member for connecting a waveguide to which the high-frequency module is attached. A first dielectric substrate having a microstrip line formed on the surface, and the inner bottom surface on which the first dielectric substrate is mounted while the first dielectric substrate is mounted on the inner bottom surface by solder bonding A package having a dielectric substrate mounting portion communicating with the first waveguide portion below the first waveguide portion, and soldering the dielectric substrate mounting portion. A second dielectric substrate that is hermetically attached by bonding and a package lid that seals the package, and the metal member for connecting the waveguide includes the first conductor of the package. Contact with wave tube In order to do so, it has a second waveguide part formed in the same shape and size as the first waveguide part of the package, and the position of the first waveguide part is the second By attaching the high-frequency module to the metal member so as to coincide with the position of the waveguide portion, the first waveguide portion and the second waveguide portion function as a waveguide. On the other hand, the second dielectric substrate maintains the hermeticity of the package, and reduces stress concentration on the first dielectric substrate due to thermal expansion of the package when the temperature rises. And
 上記目的を達成するための本発明に係る高周波回路装置は、上記の高周波回路装置において、前記第2の誘電体基板の厚みは、前記第2の誘電体基板の誘電率、前記第1の導波管部の径、及び高周波信号の波長に基づいて決定されることを特徴とする。 In order to achieve the above object, a high-frequency circuit device according to the present invention is the above-described high-frequency circuit device, wherein the thickness of the second dielectric substrate is the dielectric constant of the second dielectric substrate and the first conductive substrate. It is determined based on the diameter of the wave tube portion and the wavelength of the high frequency signal.
 上記目的を達成するための本発明に係る高周波回路装置は、上記の高周波回路装置において、前記第2の誘電体基板は、0.3mm超の厚さを有する誘電体基板であることを特徴とする。 In order to achieve the above object, a high-frequency circuit device according to the present invention is characterized in that, in the above-described high-frequency circuit device, the second dielectric substrate is a dielectric substrate having a thickness of more than 0.3 mm. To do.
 上記目的を達成するための本発明に係る高周波回路装置は、上記の高周波回路装置において、前記第2の誘電体基板は、前記誘電体基板取付部との間に間隙を設けて半田接合することを特徴とする。 In order to achieve the above object, the high frequency circuit device according to the present invention is the above high frequency circuit device, wherein the second dielectric substrate is solder-bonded with a gap between the dielectric substrate mounting portion. It is characterized by.
 以上説明したように、本発明によれば、高周波モジュールのパッケージと導波管接続用の金属部材の熱膨張係数の違いによって起こる温度上昇時の誘電体基板への応力集中の発生を回避し、気密性を損なうことなく低損失で広帯域の高周波信号を導波管に取り出すことが可能な高周波回路装置を提供することができる。 As described above, according to the present invention, avoiding the occurrence of stress concentration on the dielectric substrate at the time of temperature rise caused by the difference in thermal expansion coefficient between the package of the high frequency module and the metal member for connecting the waveguide, It is possible to provide a high-frequency circuit device capable of taking out a broadband high-frequency signal with a low loss into a waveguide without impairing hermeticity.
本発明の実施形態1に係る高周波回路装置の構成の一例を示す斜視図である。It is a perspective view which shows an example of a structure of the high frequency circuit apparatus which concerns on Embodiment 1 of this invention. 図1に示すB-B面で切断した場合の断面図である。FIG. 2 is a cross-sectional view taken along the line BB shown in FIG. 図2の誘電体基板14を中心とした構造の拡大図であり、分布定数回路として表現した図である。FIG. 3 is an enlarged view of a structure centered on a dielectric substrate 14 of FIG. 2 and is a diagram expressed as a distributed constant circuit. 誘電体基板の比誘電率に対する誘電体基板の厚さの特性を表す。The characteristic of the thickness of a dielectric substrate with respect to the dielectric constant of a dielectric substrate is represented. 従来の高周波回路装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the conventional high frequency circuit device. 図5に示すA-A面で切断した場合の断面図である。FIG. 6 is a cross-sectional view taken along the AA plane shown in FIG. 5.
<実施形態1>
[高周波回路装置1の構成]
 以下、本発明の実施形態1に係る高周波回路装置について、図1及び図2を参照して詳細に説明する。
 図1は、本発明の実施形態1に係る高周波回路装置の構成の一例を示す斜視図であり、また、図2は、図1に示すB-B面で切断した場合の断面図である。ただし、図1は、高周波モジュール10の内部構成が分かるように、高周波モジュール10の構成部品の一つであるパッケージ蓋体102、並びに、取付用のネジを外した状態で示している。なお、図1及び図2中、図5及び図6と同一構成部分には同一符号を付している。
 本発明の実施形態1に係る高周波回路装置1は、高周波通信可能な導波管-マイクロストリップ線路変換器において、アルミ製のシャーシ201とシャーシ201上部に当接された高周波モジュール10を構成するメタル又はセラミック製のパッケージ11とを有し、シャーシ201及びパッケージ11内部底面を貫通するように導波管部が設けられ、パッケージ11の気密性を保持するために、パッケージ11の導波管部11aを遮断するように設けた誘電体基板14を有し、誘電体基板14は、シャーシ201とパッケージ11の熱膨張率の違いによる応力で破損しない強度を有する厚さとする。また、パッケージ11に取り付けた誘電基板14とは別に、パッケージ11内部でマイクロストリップ線路を形成する別の誘電体基板12を有し、別の誘電体基板12は主に高周波特性に特化し、誘電体基板14は気密性に特化している。
 図1及び図2において、10は送信回路機能および受信回路機能を有する高周波モジュールであり、また、201は導波管接続用の金属部材であるシャーシである。つまり、本例の高周波回路装置1は、高周波モジュール10と、シャーシ201とから構成されている。シャーシ201には、例えば、送受信アンテナとの間の入出力インターフェースとしての導波管(図示せず)が取り付けられ接続される。高周波モジュール10は、図1に示すように、高周波モジュール10に設けた四隅の貫通穴を使って、図示しないネジでシャーシ201に締結する構造となっている。
<Embodiment 1>
[Configuration of High Frequency Circuit Device 1]
Hereinafter, the high-frequency circuit device according to Embodiment 1 of the present invention will be described in detail with reference to FIGS. 1 and 2.
FIG. 1 is a perspective view showing an example of the configuration of the high-frequency circuit device according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view taken along the line BB shown in FIG. However, FIG. 1 shows a state in which the package lid 102 which is one of the components of the high frequency module 10 and the mounting screws are removed so that the internal configuration of the high frequency module 10 can be understood. In FIG. 1 and FIG. 2, the same components as those in FIG. 5 and FIG.
The high-frequency circuit device 1 according to Embodiment 1 of the present invention is a waveguide-microstrip line converter capable of high-frequency communication, and includes a chassis 201 made of aluminum and a metal constituting the high-frequency module 10 in contact with the upper portion of the chassis 201. Alternatively, a waveguide portion is provided so as to penetrate the chassis 201 and the bottom surface inside the package 11, and in order to maintain the airtightness of the package 11, the waveguide portion 11 a of the package 11 is provided. The dielectric substrate 14 is provided with a thickness that prevents the chassis 201 and the package 11 from being damaged by stress due to the difference in thermal expansion coefficient. In addition to the dielectric substrate 14 attached to the package 11, it has another dielectric substrate 12 that forms a microstrip line inside the package 11, and the other dielectric substrate 12 mainly specializes in high frequency characteristics, The body substrate 14 is specialized in airtightness.
1 and 2, reference numeral 10 denotes a high-frequency module having a transmission circuit function and a reception circuit function, and 201 denotes a chassis which is a metal member for connecting a waveguide. That is, the high-frequency circuit device 1 of this example includes the high-frequency module 10 and the chassis 201. For example, a waveguide (not shown) as an input / output interface with the transmission / reception antenna is attached to and connected to the chassis 201. As shown in FIG. 1, the high-frequency module 10 has a structure that is fastened to the chassis 201 with screws (not shown) using through holes at four corners provided in the high-frequency module 10.
 高周波モジュール10の筐体は、図1及び図2に示すように、セラミック材料等を使用したパッケージ11と、パッケージ蓋体102とから構成されている。パッケージ11内には、マイクロストリップ線路を形成した誘電体基板12、金属製バックショート13、及び複数の高周波モノリシックIC105が実装され、パッケージ11内部の底面に半田接合される。なお、誘電体基板12は、高周波特性を確保するために厚さ0.1mm程度の基板であり、裏面に設けた金属電極をパッケージ11内部底面に半田付け固定するが、図5及び図6で示した従来の誘電体基板103とは異なり、パッケージ11の導波管部11aの上方開口部を塞がない大きさである。また、金属製バックショート13は、誘電体基板12の先端部のみを覆うように配置され、誘電体基板12と同様、パッケージ11内部底面に半田接合される。 The housing of the high-frequency module 10 includes a package 11 using a ceramic material or the like and a package lid 102 as shown in FIGS. A dielectric substrate 12 having a microstrip line, a metal back short 13 and a plurality of high frequency monolithic ICs 105 are mounted in the package 11 and soldered to the bottom surface inside the package 11. The dielectric substrate 12 is a substrate having a thickness of about 0.1 mm in order to ensure high-frequency characteristics, and a metal electrode provided on the back surface is soldered and fixed to the bottom surface inside the package 11, but in FIGS. Unlike the conventional dielectric substrate 103 shown, the size is such that the upper opening of the waveguide portion 11a of the package 11 is not blocked. Further, the metal back short 13 is disposed so as to cover only the tip portion of the dielectric substrate 12, and is solder-bonded to the inner bottom surface of the package 11 like the dielectric substrate 12.
 また、パッケージ11は、導波管として機能する導波管部11aと、導波管部11a下部のシャーシ201の導波管部201aに対向する位置に誘電体基板14を収容する誘電体基板取付部11bとを有し、誘電体基板取付部11bに0.3mm超の厚さを有する誘電体基板14を半田15で接合することによって、パッケージ11底面の気密性が確保される。
 なお、誘電体基板14は、パッケージ11内部ではなく、パッケージ11の外部に取り付けることができるため、誘電体基板12とは異なり、基板の厚みを0.1mmより厚く設計することが可能である。誘電体基板14の厚みは、具体的には、誘電体基板14の誘電率、導波管部11aの内径、及び高周波信号の波長、の3つのパラメータを含む計算式に基づいて決定されるが、その詳細は後述する。
 また、誘電体基板14は、熱膨張係数を考慮すると、例えば、誘電率の低いガラスとセラミックの混合物(ガラセラ)が最適である。
 また、誘電体基板14の熱膨張による破損を考慮し、図2に示すように、誘電体基板取付部11bと誘電体基板14との間、並びに、シャーシ201と誘電体基板14との間に隙間を設けるようにする。
 また、誘電体基板14をパッケージ11の誘電体基板取付部11bに接合する際に使用する半田15を高融点半田にすることにより、通常の共晶半田に比べ強固で剥がれ難くなる。
 なお、誘電体基板14を上述したように配置することにより、マイクロストリップ線路を形成した誘電体基板12と1/4波長の金属性バックショート13による変換器の高周波特性に影響を与えないこととなる。
The package 11 also has a waveguide 11a that functions as a waveguide, and a dielectric substrate that houses the dielectric substrate 14 at a position facing the waveguide 201a of the chassis 201 below the waveguide 11a. The bottom surface of the package 11 is secured by bonding a dielectric substrate 14 having a thickness of more than 0.3 mm to the dielectric substrate mounting portion 11b with solder 15.
Since the dielectric substrate 14 can be attached not to the inside of the package 11 but to the outside of the package 11, unlike the dielectric substrate 12, the thickness of the substrate can be designed to be greater than 0.1 mm. Specifically, the thickness of the dielectric substrate 14 is determined based on a calculation formula including three parameters: the dielectric constant of the dielectric substrate 14, the inner diameter of the waveguide portion 11a, and the wavelength of the high-frequency signal. Details thereof will be described later.
In consideration of the thermal expansion coefficient, the dielectric substrate 14 is optimally, for example, a glass (ceramic) mixture of glass and ceramic having a low dielectric constant.
In consideration of damage due to thermal expansion of the dielectric substrate 14, as shown in FIG. 2, between the dielectric substrate mounting portion 11b and the dielectric substrate 14, and between the chassis 201 and the dielectric substrate 14. Make a gap.
Further, by using a high melting point solder 15 for bonding the dielectric substrate 14 to the dielectric substrate mounting portion 11b of the package 11, it is stronger and less likely to be peeled off than ordinary eutectic solder.
By disposing the dielectric substrate 14 as described above, the dielectric substrate 12 having the microstrip line and the high frequency characteristics of the converter due to the quarter-wave metallic back short 13 are not affected. Become.
 また、パッケージ11に所定の部品が実装された後、パッケージ11はパッケージ蓋体102によって封止され、パッケージ11内部が外気と遮断される。更に、このパッケージ11は、パッケージ11の導波管部11aとシャーシ201の導波管部201aの穴位置を合わせるようにして、四隅に設けた貫通穴を使って、シャーシ201の図示しないネジ穴にネジ締結される。 Further, after predetermined parts are mounted on the package 11, the package 11 is sealed by the package lid 102, and the inside of the package 11 is shut off from the outside air. Further, the package 11 is configured so that the hole positions of the waveguide portion 11a of the package 11 and the waveguide portion 201a of the chassis 201 are aligned, and screw holes (not shown) of the chassis 201 are formed using through holes provided at the four corners. The screw is fastened.
 ここで、誘電体基板14の最適な厚さLの求め方について、図3を参照して説明する。
 図3は、図2の誘電体基板14を中心とした構造の拡大図であり、分布定数回路として表現した図である。
 比誘電率を有し、Zのインピーダンスを有する誘電体基板14側からインピーダンスZをみたインピーダンスZは、次のように、数式1で与えられる。
Figure JPOXMLDOC01-appb-M000001
 伝搬定数であるγは、減衰定数αと位相定数βにより、次のように数式2で与えられる。
Figure JPOXMLDOC01-appb-M000002
Here, how to obtain the optimum thickness L of the dielectric substrate 14 will be described with reference to FIG.
FIG. 3 is an enlarged view of the structure centering on the dielectric substrate 14 of FIG. 2, and is a diagram expressed as a distributed constant circuit.
Has a specific dielectric constant, impedance Z b seen the impedance Z L of a dielectric substrate 14 having an impedance of Z a, as follows, given by Equation 1.
Figure JPOXMLDOC01-appb-M000001
Γ, which is a propagation constant, is given by Equation 2 as follows using an attenuation constant α and a phase constant β.
Figure JPOXMLDOC01-appb-M000002
 無損失回路を考えた場合のそれぞれの定数は、α=0、β=2π/λとなり、これを数式1及び数式2へ代入すると、数式1は次の数式3で与えられる。
 ここで、λは比誘電率εrを有する誘電体基板14内の波長である。
Figure JPOXMLDOC01-appb-M000003
 L=λ/2を数式3へ代入すると、数式3は次の数式4で与えられる。
Figure JPOXMLDOC01-appb-M000004
When the lossless circuit is considered, the constants are α = 0 and β = 2π / λ, and when these are substituted into Equation 1 and Equation 2, Equation 1 is given by Equation 3 below.
Here, λ is a wavelength within the dielectric substrate 14 having a relative dielectric constant ε r .
Figure JPOXMLDOC01-appb-M000003
Substituting L = λ / 2 into Equation 3, Equation 3 is given by Equation 4 below.
Figure JPOXMLDOC01-appb-M000004
 数式4から、比誘電率εrを有し誘電体基板14の厚さを半波長(λ/2)とすることで、インピーダンスZはZに影響を与えないことが分かる。
 λは、比誘電率εrと自由空間波長λと導波管部11aの長辺の長さaを用いると、次のように数式5で与えられる。
Figure JPOXMLDOC01-appb-M000005
 数式5に下記の表1のパラメータ(λ、a)を代入し、εrを変数としてλを導出する。このλを2で除算した値(誘電体基板の厚さL)を図4に示す。図4は、誘電体基板の比誘電率に対する誘電体基板の厚さの特性を表す。
Figure JPOXMLDOC01-appb-T000006
From Equation 4, it can be seen that the impedance Z a does not affect Z b when the dielectric substrate 14 has a relative dielectric constant ε r and the thickness of the dielectric substrate 14 is a half wavelength (λ / 2).
λ is given by Equation 5 as follows using the relative permittivity ε r , the free space wavelength λ 0, and the length a of the long side of the waveguide portion 11a.
Figure JPOXMLDOC01-appb-M000005
Substituting the parameters (λ 0 , a) of Table 1 below into Equation 5, λ is derived using ε r as a variable. FIG. 4 shows a value obtained by dividing λ by 2 (thickness L of the dielectric substrate). FIG. 4 shows the characteristic of the thickness of the dielectric substrate with respect to the relative dielectric constant of the dielectric substrate.
Figure JPOXMLDOC01-appb-T000006
 誘電体基板14を形成する材料の比誘電率の一例を表2に示す。
Figure JPOXMLDOC01-appb-T000007
Table 2 shows an example of the relative dielectric constant of the material forming the dielectric substrate 14.
Figure JPOXMLDOC01-appb-T000007
 誘電体基板14をアルミナ(比誘電率10.5)で実現した場合における、各周波数で最適にする誘電体基板14の厚さLは次の表3で与えられる。
Figure JPOXMLDOC01-appb-T000008
When the dielectric substrate 14 is realized by alumina (relative permittivity 10.5), the thickness L of the dielectric substrate 14 optimized for each frequency is given in the following Table 3.
Figure JPOXMLDOC01-appb-T000008
 以上説明したように、本発明によれば、高周波モジュールのパッケージと導波管接続用の金属部材の熱膨張係数の違いによって起こる温度上昇時の誘電体基板への応力集中の発生を回避し、気密性を損なうことなく低損失で広帯域の高周波信号を導波管に取り出すことが可能な高周波回路装置を提供することができる。 As described above, according to the present invention, avoiding the occurrence of stress concentration on the dielectric substrate at the time of temperature rise caused by the difference in thermal expansion coefficient between the package of the high frequency module and the metal member for connecting the waveguide, It is possible to provide a high-frequency circuit device capable of taking out a broadband high-frequency signal with a low loss into a waveguide without impairing hermeticity.
 なお、本発明は、上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、各実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。 Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in each embodiment. Furthermore, you may combine suitably the component covering different embodiment.
 本発明は、マイクロ波帯やミリ波帯などで用いられる高周波信号を、導波管を用いて送受信する高周波回路装置に広く適用することができる。 The present invention can be widely applied to a high-frequency circuit device that transmits and receives a high-frequency signal used in a microwave band, a millimeter-wave band, or the like using a waveguide.
1:高周波回路装置、10:高周波モジュール、11:パッケージ、11a:導波管部、11b:誘電体基板取付部、12:誘電体基板、13:金属製バックショート、14:誘電体基板、15:半田、50:高周波回路装置、100:高周波モジュール、101:パッケージ、101a:導波管部、102:パッケージ蓋体、103:誘電体基板、104:金属製バックショート、105:高周波モノリシックIC、201:シャーシ、201a:導波管部。  1: High frequency circuit device, 10: High frequency module, 11: Package, 11a: Waveguide section, 11b: Dielectric substrate mounting portion, 12: Dielectric substrate, 13: Metal back short, 14: Dielectric substrate, 15 : Solder, 50: High-frequency circuit device, 100: High-frequency module, 101: Package, 101a: Waveguide section, 102: Package lid, 103: Dielectric substrate, 104: Metal back-short, 105: High-frequency monolithic IC, 201: Chassis, 201a: Waveguide section.

Claims (4)

  1.  高周波モジュールと、当該高周波モジュールを取り付ける導波管接続用の金属部材とで構成される高周波回路装置であって、
     前記高周波モジュールは、
     表面にマイクロストリップ線路が形成された第1の誘電体基板と、
     前記第1の誘電体基板を内部底面に半田接合にて実装する共に、前記第1の誘電体基板が実装された前記内部底面に第1の導波管部を設け、前記第1の導波管部下方に前記第1の導波管部と連通する誘電体基板取付部を有するパッケージと、
     前記誘電体基板取付部に半田接合にて気密に取り付ける第2の誘電体基板と、
     前記パッケージを封止するパッケージ蓋体と、
     を含んで構成され、
     前記導波管接続用の金属部材は、
     前記パッケージの前記第1の導波管部と接続するために、前記パッケージの前記第1の導波管部と同じ形状及び大きさで形成された第2の導波管部を有し、
     前記第1の導波管部の位置が前記第2の導波管部の位置と一致するようにして、前記高周波モジュールを前記金属部材に取り付けることにより、前記第1の導波管部と前記第2の導波管部が導波管として機能する一方、前記第2の誘電体基板によって、前記パッケージの気密性が保たれると共に、温度上昇時の前記パッケージの熱膨張による前記第1の誘電体基板への応力集中が軽減されることを特徴とする高周波回路装置。
    A high-frequency circuit device including a high-frequency module and a metal member for connecting a waveguide to which the high-frequency module is attached,
    The high-frequency module is
    A first dielectric substrate having a microstrip line formed on the surface;
    The first dielectric substrate is mounted on the inner bottom surface by solder bonding, and a first waveguide portion is provided on the inner bottom surface on which the first dielectric substrate is mounted, and the first waveguide is provided. A package having a dielectric substrate mounting portion communicating with the first waveguide portion below the tube portion;
    A second dielectric substrate that is airtightly attached to the dielectric substrate attachment portion by solder bonding;
    A package lid for sealing the package;
    Comprising
    The metal member for connecting the waveguide is:
    A second waveguide portion formed in the same shape and size as the first waveguide portion of the package for connecting to the first waveguide portion of the package;
    By attaching the high-frequency module to the metal member such that the position of the first waveguide section coincides with the position of the second waveguide section, the first waveguide section and the While the second waveguide portion functions as a waveguide, the second dielectric substrate maintains the hermeticity of the package, and the first waveguide due to thermal expansion of the package when the temperature rises. A high-frequency circuit device characterized in that stress concentration on a dielectric substrate is reduced.
  2.  請求項1記載の高周波回路装置において、前記第2の誘電体基板の厚みは、前記第2の誘電体基板の誘電率、前記第1の導波管部の径、及び高周波信号の波長に基づいて決定されることを特徴とする高周波回路装置。 2. The high frequency circuit device according to claim 1, wherein the thickness of the second dielectric substrate is based on a dielectric constant of the second dielectric substrate, a diameter of the first waveguide portion, and a wavelength of the high frequency signal. A high frequency circuit device characterized by being determined.
  3.  請求項2記載の高周波回路装置において、前記第2の誘電体基板は、0.3mm超の厚さを有する誘電体基板であることを特徴とする高周波回路装置。 3. The high frequency circuit device according to claim 2, wherein the second dielectric substrate is a dielectric substrate having a thickness of more than 0.3 mm.
  4.  請求項3記載の高周波回路装置において、前記第2の誘電体基板は、前記誘電体基板取付部との間に間隙を設けて半田接合することを特徴とする高周波回路装置。  4. The high frequency circuit device according to claim 3, wherein the second dielectric substrate is solder-bonded with a gap between the second dielectric substrate and the dielectric substrate mounting portion.
PCT/JP2014/050610 2013-03-28 2014-01-16 High-frequency circuit device WO2014156223A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508109A JPWO2014156223A1 (en) 2013-03-28 2014-01-16 High frequency circuit equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-069111 2013-03-28
JP2013069111 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014156223A1 true WO2014156223A1 (en) 2014-10-02

Family

ID=51623229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050610 WO2014156223A1 (en) 2013-03-28 2014-01-16 High-frequency circuit device

Country Status (2)

Country Link
JP (1) JPWO2014156223A1 (en)
WO (1) WO2014156223A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6005228B1 (en) * 2015-08-27 2016-10-12 株式会社フジクラ converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140815A (en) * 1992-10-01 1994-05-20 Fujitsu Ltd Waveguide/trip line converter
JPH06268402A (en) * 1993-03-11 1994-09-22 Mitsubishi Electric Corp High frequency package
JP2006507740A (en) * 2002-11-22 2006-03-02 ユナイテッド モノリシック セミコンダクターズ エスアーエス Package electronic components for applications at millimeter frequencies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06140815A (en) * 1992-10-01 1994-05-20 Fujitsu Ltd Waveguide/trip line converter
JPH06268402A (en) * 1993-03-11 1994-09-22 Mitsubishi Electric Corp High frequency package
JP2006507740A (en) * 2002-11-22 2006-03-02 ユナイテッド モノリシック セミコンダクターズ エスアーエス Package electronic components for applications at millimeter frequencies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6005228B1 (en) * 2015-08-27 2016-10-12 株式会社フジクラ converter

Also Published As

Publication number Publication date
JPWO2014156223A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5765174B2 (en) Electronic equipment
US20160343628A1 (en) Element-accommodating package and mounting structure
WO2014156223A1 (en) High-frequency circuit device
JP2000059140A (en) High-frequency transmitting and receiving device
JP2009010149A (en) Connection terminal, package and electronic device using the same
JP4883010B2 (en) Electronic component package
JP2000244211A (en) Waveguide connection package
CN113871368A (en) Millimeter wave surface-mounted airtight packaging structure and packaging method
JP7298265B2 (en) integrated circuit package
JP2006279199A (en) High-frequency line/waveguide converter
JP3628238B2 (en) Wiring board and its connection structure with waveguide
JP5844005B2 (en) High frequency circuit equipment
JP4206185B2 (en) High frequency semiconductor device
JP4105998B2 (en) High frequency circuit package lid, manufacturing method thereof, and high frequency circuit package using the same
EP0887877A2 (en) Surface mounting type isolator and surface mounting type circulator
CN110945644B (en) Wiring substrate, package for electronic device, and electronic device
JP2000164755A (en) High-frequency circuit package
JP4247999B2 (en) High frequency line-waveguide converter
JP2000183230A (en) Mounting structure for high-frequency circuit package
JP2006262138A (en) High-frequency line/waveguide converter
JPH11163185A (en) High-frequency semiconductor device package
JP2001211031A (en) Board for high frequency oscillator and high frequency oscillator using it
JP2002198712A (en) Waveguide conversion board and high frequency module
JP2003273605A (en) Waveguide type filter
JP5950088B2 (en) Trap circuit and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776493

Country of ref document: EP

Kind code of ref document: A1