WO2014156087A1 - 酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用モジュールの製造方法 - Google Patents

酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用モジュールの製造方法 Download PDF

Info

Publication number
WO2014156087A1
WO2014156087A1 PCT/JP2014/001616 JP2014001616W WO2014156087A1 WO 2014156087 A1 WO2014156087 A1 WO 2014156087A1 JP 2014001616 W JP2014001616 W JP 2014001616W WO 2014156087 A1 WO2014156087 A1 WO 2014156087A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas separation
acidic gas
gas
acidic
separation layer
Prior art date
Application number
PCT/JP2014/001616
Other languages
English (en)
French (fr)
Inventor
澤田 真
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014156087A1 publication Critical patent/WO2014156087A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/101Spiral winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material

Definitions

  • the present invention relates to a complex for acidic gas separation, a module for acidic gas separation, and a method for producing a complex for acidic gas separation.
  • Patent Document 1 describes a flat membrane separation membrane having irregularities on at least one of a source gas side membrane surface and a permeate gas side membrane surface.
  • a flat membrane separation membrane having irregularities on at least one of a source gas side membrane surface and a permeate gas side membrane surface.
  • oxygen in the source gas is dissociated and adsorbed on the source gas side membrane surface and ionized.
  • oxygen is also dissociated and adsorbed on the concavo-convex portion of the film surface, so that the oxygen dissociation rate can be improved.
  • the spiral-type separation membrane module uses a sheet-like separation membrane that is relatively easy to reduce in thickness, so that it is relatively easy to increase the membrane area, has excellent pressure resistance, and is relatively inexpensive. It has the advantage that it can be manufactured.
  • a spiral separation membrane module generally includes a supply-side fluid and a permeation-side fluid which are alternately stacked with a supply-side flow passage material and a permeation-side flow passage material arranged between two folded separation membranes.
  • an adhesive is applied to the periphery (three sides) of the separation membrane to produce a separation membrane unit, and one or a plurality of the units are spirally wound around the central tube.
  • Patent Document 2 describes a technique for reducing pressure loss by improving the planarity of a mesh structure of a channel member.
  • the adhesive is applied to the periphery of the separation membrane as described above, but this adhesive (resin) prevents mixing of the supply side fluid and the permeation side fluid and improves the separation performance. This is extremely important. Particularly, in the case of a separation membrane provided with a porous support, if the sealing at the porous support portion is insufficient, leakage becomes remarkable and the separation performance is greatly reduced. Since this sealing part is hardened by hardening of the resin, when it is wound around the central tube in a spiral shape, the supply side flow path member hits the separation membrane, and it is easy to crack or break. There's a problem. The sealing defect in this portion becomes a leak and causes a significant decrease in separation performance.
  • the pressure loss can be reduced and the separation performance can be improved.
  • the acidic gas separation membrane and the flow path member Separation performance is improved because air gaps are created between them, and the generation of fluid turbulence in the flow path member is suppressed and the effect of suppressing concentration polarization of the unprocessed fluid due to turbulence is reduced. Deteriorate.
  • the separation membrane is provided with irregularities, the pressure loss increases, and there is a problem that leakage is likely to occur due to the occurrence of cracks in the separation membrane at the sealing portion.
  • the present invention has been made in view of the above circumstances, and it is possible to suppress the occurrence of cracks in the separation membrane at the sealing portion, and it is possible to suppress leakage, and for high-separation acid gas separation. It aims at providing the manufacturing method of the composite_body
  • the complex for acidic gas separation of the present invention comprises a porous support, an acidic gas separation layer comprising a hydrophilic compound provided on the porous support and an acidic gas carrier that reacts with an acidic gas in a raw material gas.
  • An acidic gas separation membrane, a permeating gas channel member through which acidic gas that has reacted with the acidic gas carrier and permeated the acidic gas separation layer flows, and a raw material gas provided on the surface of the acidic gas separation layer are supplied.
  • An acid gas having a sealing portion in which a region that is a periphery of the permeating gas channel member and the porous support and needs to be sealed is sealed with a resin.
  • a separation composite wherein the acid gas separation layer has a water absorption of 1% or more and 20% or less, the acid gas separation layer has irregularities on the surface, and the depth of the depressions of the irregularities is 3 ⁇ m or more and 500 ⁇ m.
  • the width of the recess is 5 ⁇ m or more and 1000 m or less, is characterized in that the area ratio of the concave portion is 50% or less than 2%.
  • the acid gas separation module of the present invention comprises a porous support, an acidic gas separation layer containing a hydrophilic compound provided on the porous support and an acidic gas carrier that reacts with the acidic gas in the raw material gas.
  • An acidic gas separation membrane, a permeating gas channel member through which the acidic gas that has reacted with the acidic gas carrier and permeated the acidic gas separation layer flows, and a supply that is supplied with the source gas provided on the surface of the acidic gas separation layer A gas flow path member, and having a sealing portion in which both ends of the porous support and the permeate gas flow path member are sealed with a resin, and the acidic gas separation
  • the acid gas separation module wherein the membrane and the permeate gas flow path member are wound around a permeate gas collecting pipe having a through-hole formed in a tube wall together with the supply gas flow path member,
  • the water absorption rate of the layer is 1 20% or less
  • the acidic gas separation layer has irregularities on the surface, the depth of the con
  • the unevenness is formed by a mesh structure of the supply gas flow path member.
  • the supply gas channel member is made of polyethylene, polystyrene, polyethylene terephthalate, polytetrafluoroethylene (PTFE), polyethersulfone (PES), polyphenylene sulfide (PPS), polysulfone (PSF), polypropylene (PP), polyimide, poly It is preferable to have a network structure formed of yarns including one or more resins selected from ether imide, polyether ether ketone, and polyvinylidene fluoride.
  • the carrier preferably contains an alkali metal compound.
  • the method for producing an acid gas separation module of the present invention comprises providing a porous support by providing an acidic gas separation layer containing an acidic gas carrier that reacts with a hydrophilic compound and an acidic gas in a raw material gas on the porous support.
  • Forming an acidic gas separation membrane comprising a gas separation layer and an acidic gas separation layer, and a permeate gas flow path through which the acidic gas that has reacted with the porous gas support and the acidic gas carrier and permeated the acidic gas separation layer flows A step of forming a sealing portion by impregnating resin at both ends in the width direction and one end in the longitudinal direction of the member; and a member for a supply gas flow path having a network structure on the surface of the acidic gas separation layer.
  • the acidic gas separation composite of the present invention and the acidic gas separation module of the present invention have a water absorption of 1% or more and 20% or less of the acidic gas separation layer.
  • the acidic gas separation layer has irregularities on the surface, the depth of the concave and convex portions is 3 ⁇ m or more and 500 ⁇ m or less, and the width of the concave portion is 5 ⁇ m or more and 1000 ⁇ m or less, Since the area ratio is 2% or more and 50% or less, the pressure loss can be reduced while simultaneously suppressing the concentration polarization and the effective membrane surface property can be improved. It can be set as the module for acidic gas separation.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 3 is a partially notched schematic block diagram which shows one Embodiment of the module for acidic gas separation of this invention.
  • It is a cross-sectional perspective view which shows a part of cylindrical winding body by which the laminated body was wound by the permeation
  • FIG. 7A It is a manufacturing-process figure of the module for acidic gas separation following FIG. 7B.
  • FIG. 1 is a schematic cross-sectional view of a complex for acidic gas separation according to an embodiment of the present invention.
  • the complex for acidic gas separation 1 includes a porous support 2B, a hydrophilic compound provided on the porous support 2B, and an acidic gas carrier that reacts with the acidic gas in the raw material gas.
  • the acidic gas separation membrane 2 comprising the acidic gas separation layer 2A, the permeating gas flow path member 5 through which the acidic gas that has reacted with the acidic gas carrier and permeated the acidic gas separation layer 2A flows.
  • a supply gas flow path member 6 to which the provided source gas is supplied, and is a peripheral area between the permeate gas flow path member 5 and the porous support 2B (a sealing desired region)
  • region) has the sealing part 3 sealed with resin.
  • FIG. 1 shows a mode in which the sealing portion 3 is provided at the opposite end of the permeating gas channel member 5 and the porous support 2B, the sealing portion 3 is the permeating gas channel member 5.
  • the porous support 2 ⁇ / b> B may be provided in a desired sealing region, and the permeated gas flow path member 5 is usually provided with a permeated gas extraction region (not shown), except for this region.
  • the sealing portion 3 is provided, and the porous support 2B only needs to be sealed at a portion corresponding to the sealed portion of the permeating gas channel member.
  • the permeate gas extraction region is provided over the entire area of one side of the permeate gas channel member 5, the remaining three sides serve as the sealing portion 3, and the permeate gas extract region is the permeate gas channel member 5.
  • the permeate gas extract region is the permeate gas channel member 5.
  • the water absorption rate of the acid gas separation layer 2A is 1% or more and 20% or less.
  • the water absorption is calculated by the following calculation formula where A is the mass of a 10 cm square separation layer under a dew point of ⁇ 20 ° C., and B is the mass of a 10 cm square separation membrane at 25 ° C. and a relative humidity of 20%.
  • the acid gas separation layer 2A is soft due to the softness of this portion even when the supply gas flow path member 6 provided on the surface of the acid gas separation layer 2A is pushed in by pressure. It is possible to prevent the gas from leaking and cracking. If the water absorption is less than 1%, cracks are likely to occur due to the bending process during module production. On the other hand, if the water absorption rate is higher than 20%, the supply gas flow path member 6 is likely to be pushed in by pressure at the time of manufacturing the module, and the sealing portion defect is likely to occur.
  • the separation membrane has irregularities, there is a problem that the sealing performance of the sealing portion 3 is lowered and leakage easily occurs, but the water absorption rate of the acid gas separation layer 2A is 1% or more and 20% or less. Thus, even if the separation membrane has irregularities, the sealing portion 3 can perform sufficient sealing.
  • the water absorption rate of the acidic gas separation layer 2A is more preferably 2% or more and 18% or less, and further preferably 3% or more and 15% or less.
  • FIG. 2 is an enlarged plan view of the surface of the acid gas separation layer 2A
  • FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 2A.
  • the surface of the acid gas separation layer 2A is provided with a concave portion 7 and a convex portion 8, and the depth D of the concave portion 7 is 3 ⁇ m or more and 500 ⁇ m or less, and the width W of the concave portion 7 is 5 ⁇ m or more. 1000 ⁇ m or less, and the area ratio of the recesses 7 is 2% or more and 50% or less.
  • the convex portion may be a rectangle, a rounded shape, an ellipse (including a perfect circle), or other shapes. Also good. Also, the convex part may have a shape like a truncated pyramid with a pyramid or pyramid cut by a plane parallel to the bottom surface to remove the apex, or a truncated cone with a cone or cone cut by a plane parallel to the bottom surface to remove the apex. Good.
  • the surface shape is directly shaped in the depth direction, the shape shaped in a widened shape, or the shape shaped in a narrowed shape is used. That is, in the cross-sectional shape of the concave portion of the separation membrane, the width of the concave portion may be gradually narrowed or gradually widened from the supply side surface toward the transmission side surface (surface on the base material side). However, it may be constant. Further, the shape of the wall of the concave portion may be a convex shape toward the facing wall, a concave shape, or a combination of a concave shape and a convex shape.
  • the width W of the concave portion means the width at the center of the height of the upper surface of the convex portion and the bottom of the concave portion
  • the area ratio of the concave portion 7 means the area of the bottom of the concave portion.
  • the depth D of the concave portion 7 and the width W of the concave portion 7 mean an average value obtained by measuring 100 points in a 3 cm square arbitrarily selected from the uneven surface of the acidic gas separation layer 2A.
  • the area ratio of the recessed part 7 means the value which measured and calculated the area which the recessed part in 3 cm square arbitrarily selected from the uneven
  • the effective membrane surface property can be improved while suppressing the concentration polarization, so that the separation performance can be improved.
  • separation performance may decrease because the pressure loss of the membrane increases if the surface of the acidic gas separation layer 2A has irregularities.
  • the increase in pressure loss can be suppressed by using the above range.
  • the separation performance of the separation membrane can be improved.
  • the depth D of the recess 7 is more preferably 5 ⁇ m or more and 450 ⁇ m or less
  • the width W of the recess 8 is more preferably 10 ⁇ m or more and 900 ⁇ m or less
  • the area ratio of the recess 8 is 3% or more and 45% or less. Is more preferable.
  • the unevenness of the acid gas separation layer 2A can be provided by, for example, embossing.
  • the acid gas separation layer 2A has a water absorption rate of 1% or more and 20% or less, the acid gas separation layer 2A is easy to be uneven, and the shape of the unevenness is well maintained, so that the supply gas flow path member 6 has a network structure.
  • FIG. 4 is a partially cutaway schematic configuration diagram showing an embodiment of an acid gas separation module.
  • the acidic gas separation module 10 has a basic structure in which the outermost periphery of the laminate 14 is covered with a coating layer 16 in a state where one or more laminates 14 are wound around the permeate gas collecting pipe 12.
  • the telescope prevention plates 18 are attached to both ends of these units, respectively.
  • the permeated gas collecting pipe 12 is a cylindrical pipe having a plurality of through holes 12A formed in the pipe wall. One end side (one end 10A side) of the permeate gas collecting pipe 12 is closed, and the other end side (the other end 10B side) of the permeate gas collecting pipe 12 is opened and passes through the laminate 14 and gathers from the through hole 12A. A discharge port 26 from which acidic gas 22 such as carbon dioxide gas is discharged is provided.
  • the ratio (opening ratio) of the through-holes 12A to be made the surface area of the permeate gas collecting pipe 12 in the region sealed with the resin described later is preferably 1.5% or more and 80% or less, preferably 3% or more and 75% or less It is more preferable that it is 5% or more and 70% or less. Furthermore, the aperture ratio is preferably 5% or more and 25% or less from a practical viewpoint.
  • the shape of the through hole 12A is not particularly limited, but a circular hole of 0.5 to 20 mm ⁇ is preferably opened. Moreover, it is preferable that the through holes 12 ⁇ / b> A are arranged uniformly with respect to the surface of the permeate gas collecting pipe 12.
  • the covering layer 16 is formed of a blocking material capable of blocking the raw material gas 20 passing through the acid gas separation module 10.
  • This blocking material preferably further has heat and humidity resistance.
  • heat resistance among heat resistance moisture means having heat resistance of 60 degreeC or more.
  • heat resistance of 60 ° C. or higher means that the shape before storage is maintained even after 2 hours of storage at 60 ° C. or higher, and no curling that can be visually confirmed due to heat shrinkage or heat melting does not occur.
  • the moisture resistance refers to a curl that can be visually confirmed by heat shrinkage or heat melting even after being stored for 2 hours at 40 ° C. and 80% RH. Does not occur.
  • the telescope prevention plate 18 has an outer peripheral annular portion 18A, an inner peripheral annular portion 18B, and a radial spoke portion 18C, and each is preferably formed of a heat and moisture resistant material.
  • the telescope prevention plate 18 is made of a metal material (for example, SUS, aluminum, aluminum alloy, tin, tin alloy, etc.), a resin material (for example, polyethylene resin, polypropylene resin, aromatic polyamide resin, nylon 12).
  • Nylon 66 polysulfin resin, polytetrafluoroethylene resin, polycarbonate resin, acrylic / butadiene / styrene resin, acrylic / ethylene / styrene resin, epoxy resin, nitrile resin, polyetheretherketone resin (PEEK), polyacetal resin (POM) , Polyphenylene sulfide (PPS), and the like, and fiber reinforced plastics of these resins (for example, fibers are glass fiber, carbon fiber, stainless steel fiber, aramid fiber, etc.), and long fibers are particularly preferable. , For example long glass fiber reinforced polypropylene, long glass fiber-reinforced polyphenylene sulfide), as well as ceramics (such as zeolite, alumina, etc.) and the like.
  • the supply gas flow path member 30 is sandwiched inside the folded acid gas separation membrane 32, and the acid gas separation film 32 is formed on the permeate gas flow path member 36 on the inner side in the radial direction. It is configured to be sealed through the penetrated sealing portion 34.
  • the number of the laminated body 14 wound around the permeate gas collecting pipe 12 is not particularly limited, and may be single or plural, but by increasing the number (number of laminated layers), the membrane area of the acid gas separation layer 32A can be improved. . Thereby, the quantity which can isolate
  • the number of the laminated bodies 14 is plural, it is preferably 50 or less, more preferably 45 or less, and further preferably 40 or less. When the number is less than or equal to these numbers, it is easy to wind the laminate 14 and the workability is improved.
  • the width of the laminate 14 is not particularly limited, but is preferably 50 mm or more and 10,000 mm or less, more preferably 60 mm or more and 9000 mm or less, and further preferably 70 mm or more and 8000 mm or less. Furthermore, it is preferable that the width
  • FIG. 5 is a cross-sectional perspective view showing a part of a cylindrical wound body in which a laminated body is wound around a permeating gas collecting pipe, and schematically illustrates the entire area in the width direction of the cylindrical wound body by shortening the central portion.
  • the stacked bodies 14 are bonded to each other via a sealing portion 40 that has permeated the acidic gas separation membrane 32, and are stacked around the permeate gas collecting pipe 12.
  • the laminated body 14 is formed by laminating a permeate gas flow path member 36, an acid gas separation membrane 32, a supply gas flow path member 30, and an acid gas separation membrane 32 in order from the permeate gas collecting pipe 12 side. .
  • the source gas 20 including the acid gas 22 is supplied from the end of the supply gas flow path member 30 and is separated through the acid gas separation membrane 32 partitioned by the coating layer 16.
  • 22 is accumulated in the permeate gas collecting pipe 12 through the permeating gas flow path member 36 and the through hole 12A, and is collected from the discharge port 26 connected to the permeated gas collecting pipe 12.
  • the residual gas 24 separated from the acidic gas 22 that has passed through the gap or the like of the supply gas flow path member 30 is supplied to the supply gas flow path on the side where the discharge port 26 is provided in the acidic gas separation module 10. It is discharged from the end portions of the member 30 and the acid gas separation membrane 32.
  • FIG. 6 is a diagram showing a state before the laminated body 14 is wound around the permeate gas collecting pipe 12 in the acidic gas separation module 10, and represents an embodiment of the formation region of the sealing portion 34 and the sealing portion 40.
  • FIG. 6 the sealing portion 40 covers the through-hole 12A with a permeating gas channel member 36, and the acidic gas separation is performed with the laminate 14 wound around the permeating gas collecting pipe 12 in the direction of arrow R in the figure.
  • the membrane 32 and the permeating gas channel member 36 are bonded and sealed.
  • the sealing portion 34 seals the acidic gas separation membrane 32 and the permeated gas flow path member 36 while bonding the laminated body 14 around the permeated gas collecting pipe 12.
  • Both the sealing portion 34 and the sealing portion 40 are circumferential sealing portions 34 ⁇ / b> A that seal both end portions of the acidic gas separation membrane 32 and the permeating gas flow path member 36 along the circumferential direction of the permeating gas collecting pipe 12. , 40A, and the acidic gas separation membrane 32 and the axial direction sealing portions 34B, 40B for sealing the circumferential ends of the permeating gas flow path member 36.
  • the circumferential direction sealing portion 34A and the axial direction sealing portion 34B are connected, and the circumferential end portion between the acidic gas separation membrane 32 and the permeating gas flow path member 36 at the beginning of winding as the whole sealing portion 34 is opened. It has a so-called envelope shape. And between the circumferential direction sealing part 34A and the axial direction sealing part 34B, the flow path P1 through which the acidic gas 22 which permeate
  • the moisture contained in the membrane oozes out to the porous support 32B to enhance the wettability of the porous support 32B or draw the resin with its surface tension, thereby sealing the membrane. Since the resin of the portion 34 and the sealing portion 40 easily penetrates into the hole of the porous support 32B through the permeate gas flow path member 36, the circumferential sealing portions 34A and 40A need not be formed by the potting method. The adhesive force between the sealing portion 34 and the sealing portion 40 is strengthened by a normal coating method, and as a result, gas leakage can be suppressed.
  • the details of the water absorption rate of the acidic gas separation layer and the irregularities on the surface of the acidic gas separation layer in the acidic gas separation module are the same as those of the complex for acidic gas separation described above, and will be omitted.
  • the detail of each structure of the module for acidic gas separation is demonstrated.
  • the detail of each structure of the complex for acidic gas separation is the same as that of the module for acidic gas separation.
  • the material of the porous membrane includes paper, fine paper, coated paper, cast coated paper, synthetic paper, cellulose, polyester, polyolefin, polyamide, polyimide, polysulfone, aramid, polycarbonate and other inorganic materials, metals, glass, ceramics and other inorganic materials. Materials and the like.
  • the resin materials include polyethylene, polystyrene, polyethylene terephthalate, polytetrafluoroethylene (PTFE), polyethersulfone (PES), polyphenylene sulfide (PPS), polysulfone (PSF), polypropylene (PP), polyimide, polyetherimide, poly Preferred examples include ether ether ketone and polyvinylidene fluoride.
  • preferable materials from the viewpoint of heat resistance include inorganic materials such as ceramic, glass, and metal, and organic resin materials having heat resistance of 100 ° C. or higher.
  • High molecular weight polyester, polyolefin, heat resistant polyamide, polyimide Polysulfone, aramid, polycarbonate, metal, glass, ceramics and the like can be suitably used. More specifically, at least one selected from the group consisting of ceramics, polytetrafluoroethylene, polyvinylidene fluoride, polyethersulfone, polyphenylene sulfide, polysulfone, polyimide, polypropylene, polyetherimide, and polyetheretherketone. It is preferable that it is comprised including these materials.
  • a membrane filter membrane made of materials such as polyphenyl sulfide, polysulfone, and cellulose
  • a stretched porous membrane made of materials such as polytetrafluoroethylene, polyvinylidene fluoride, and high molecular weight polyethylene
  • heat-resistant polyimide nanofibers a stretched film of polytetrafluoroethylene is preferable from the viewpoints of heat resistance, porosity, small diffusion inhibition of carbon dioxide, good strength, manufacturability, and the like.
  • porous membranes can be used alone as a porous support, but if the surface has a hydrophobic porous membrane on the surface, that is, the surface in contact with the acid gas separation membrane, it is integrated with the reinforcing support.
  • the composite membrane can also be used suitably.
  • the thickness of the porous support is preferably 30 ⁇ m to 500 ⁇ m, more preferably 50 ⁇ m to 300 ⁇ m, and even more preferably 50 ⁇ m to 200 ⁇ m.
  • the average pore diameter of the pores of the porous support is 0.001 ⁇ m or more and 10 ⁇ m or less from the viewpoint that the resin-coated region sufficiently impregnates the resin and the region through which the gas passes does not hinder the passage of the gas. Is preferable, 0.002 ⁇ m or more and 5 ⁇ m or less is more preferable, and 0.005 ⁇ m or more and 1 ⁇ m or less is particularly preferable.
  • the acidic gas separation layer is an facilitated transport layer containing an acidic gas carrier that reacts with the acidic gas and a hydrophilic compound that supports the acidic gas carrier. Since the acidic gas separation layer having such a structure is generally more heat resistant than the dissolution diffusion membrane, it can selectively permeate the acidic gas even under a temperature condition of, for example, 100 ° C. to 200 ° C. It is like that. In addition, even when the raw material gas contains water vapor, the hydrophilic compound absorbs water vapor and the acidic gas separation layer retains moisture, so that carriers can be more easily transported. Compared with this, the separation efficiency can be increased.
  • the membrane area of the acid gas separation layer is not particularly limited, but is preferably 0.01 m 2 or more and 1000 m 2 or less, more preferably 0.02 m 2 or more and 750 m 2 or less, and further 0.025 m 2 or more and 500 m or less. It is preferably 2 or less. Furthermore, the membrane area, from a practical point of view, is preferably 1 m 2 or more 100 m 2 or less. By setting each lower limit value or more, the acidic gas 22 can be efficiently separated with respect to the membrane area. Moreover, workability becomes easy by being below each upper limit.
  • the length of the acidic gas separation layer (full length before folding in half) is not particularly limited, but is preferably 100 mm or more and 10,000 mm or less, more preferably 150 mm or more and 9000 mm or less, and further preferably 200 mm or more and 8000 mm or less. Furthermore, the length is preferably from 800 mm to 4000 mm from a practical viewpoint.
  • an acidic gas can be efficiently isolate
  • the thickness of the acid gas separation layer is not particularly limited, but is preferably 1 to 200 ⁇ m, and more preferably 2 to 175 ⁇ m. A thickness in such a range is preferable because sufficient gas permeability and separation selectivity can be realized.
  • the water absorption rate of the acidic gas separation layer is 1% or more and 20% or less.
  • the acidic gas separation layer preferably has a crosslinked structure from the viewpoint of heat resistance. From such a viewpoint, for example, a hydrophilic compound having a cross-linked structure containing a hydrolysis-resistant bond selected from the following group (B), which is formed by a single or plural crosslinkable groups selected from the following group (A): It is preferable that it is composed of layers. Particularly from the viewpoint of excellent acid gas separation characteristics and durability, a hydrolysis-resistant bond selected from the following group (B) formed by a single crosslinkable group selected from the following group (A): It is preferable that it is comprised by the hydrophilic compound layer which has a crosslinked structure containing.
  • (A) group —OH, —NH 2 , —Cl, —CN, —COOH, epoxy group
  • hydrophilic compound examples include hydrophilic polymers.
  • the hydrophilic polymer functions as a binder and retains moisture when used as an acidic gas separation layer to exert a function of separating a gas such as carbon dioxide by a carrier.
  • the hydrophilic compound can be dissolved in water to form a coating solution, and the facilitated transport film is preferably highly hydrophilic from the viewpoint of having high hydrophilicity (moisturizing property). It preferably has a hydrophilicity of 0.5 g / g or more.
  • hydrophilicity 1 g / g or more, more preferable to have a hydrophilicity of 5 g / g or more, more preferable to have a hydrophilicity of 10 g / g or more, and further to 20 g. Most preferably, it has a hydrophilicity of at least / g.
  • the weight average molecular weight of the hydrophilic compound is appropriately selected within a range where a stable film can be formed, but is preferably 20,000 to 2 million, more preferably 25,000 to 2 million, and particularly preferably 30,000 to 2 million. preferable. If it is less than the lower limit, the film strength may not be obtained.
  • the hydrophilic compound has —OH as a crosslinkable group, for example, those having a weight average molecular weight of 30,000 or more are preferable.
  • the weight average molecular weight is more preferably 40,000 or more, and more preferably 50,000 or more.
  • the upper limit of the weight average molecular weight is not particularly limited, but is preferably 6 million or less from the viewpoint of production suitability.
  • weight average molecular weight of 10,000 or more are preferable.
  • the weight average molecular weight is more preferably 15,000 or more, and more preferably 20,000 or more.
  • the upper limit of the weight average molecular weight is not particularly limited, but is preferably 1,000,000 or less from the viewpoint of production suitability.
  • the weight average molecular weight of the hydrophilic compound is, for example, a value measured according to JIS K 6726 when PVA is used as the hydrophilic compound.
  • the molecular weight nominally used by a catalog, a specification, etc. is used.
  • crosslinkable group those capable of forming a hydrolysis-resistant crosslinked structure are selected, and a hydroxy group (—OH), an amino group (—NH 2 ), a carboxy group (—COOH), an epoxy group, a chlorine atom ( -Cl), cyano group (-CN) and the like.
  • a hydroxy group an amino group and a hydroxy group are preferable, and a hydroxy group is most preferable from the viewpoint of affinity with a carrier and a carrier carrying effect.
  • Such hydrophilic compounds having a single crosslinkable group are preferably polyallylamine, polyacrylic acid, polyvinyl alcohol, polyvinylpyrrolidone, polyacrylamide, polyethyleneimine, polyvinylamine, polyornithine, polylysine, polyethylene oxide, water-soluble Cellulose cellulose, starch, alginic acid, chitin, polysulfonic acid, polyhydroxymethacrylate, poly N vinylacetamide and the like, and polyvinyl alcohol is most preferable.
  • these copolymers are also mentioned as a hydrophilic compound.
  • Examples of the hydrophilic compound having a plurality of crosslinkable groups include a polyvinyl alcohol-polyacrylate copolymer.
  • Polyvinyl alcohol-polyacrylic acid copolymer is preferable because of its high water absorption ability and high hydrogel strength even at high water absorption.
  • the content of polyacrylate in the polyvinyl alcohol-polyacrylic acid copolymer is, for example, 1 to 95 mol%, preferably 2 to 70 mol%, more preferably 3 to 60 mol%, and particularly preferably 5 to 50 mol. %.
  • the polyacrylic acid may form a salt, and examples of the polyacrylic acid salt include alkali metal salts such as sodium salt and potassium salt, ammonium salt and organic ammonium salt.
  • Polyvinyl alcohol is also available as a commercial product, and examples thereof include PVA117 (manufactured by Kuraray Co., Ltd.), Poval (manufactured by Kuraray), polyvinyl alcohol (manufactured by Aldrich), and J-Poval (manufactured by Nihon Vinegar & Poval). . Although there are various molecular weight grades, it is preferable to select those having a weight average molecular weight of 130,000 to 300,000 as described above.
  • a commercially available polyvinyl alcohol-polyacrylate copolymer (sodium salt) is commercially available, for example, Clastomer AP-20 (trade name, manufactured by Kuraray Co., Ltd.). Two or more hydrophilic compounds may be used as a mixture.
  • the content of the hydrophilic compound is 0.5 to 50% by mass from the viewpoint of forming a film as a binder and allowing the hydrophilic compound layer to sufficiently retain moisture, although it depends on the type. More preferably, it is more preferably 0.75 to 30% by mass, and still more preferably 1 to 15% by mass.
  • cross-linking agent a cross-linking structure formed by selecting one containing a cross-linking agent having two or more functional groups capable of undergoing thermal cross-linking or photo-crosslinking by reacting with the hydrophilic compound having the single or plural cross-linkable groups. Requires a hydrolysis-resistant crosslinked structure selected from the group (B).
  • an epoxy crosslinking agent a polyvalent glycidyl ether, a polyhydric alcohol, a polyvalent isocyanate, a polyvalent aziridine, a haloepoxy compound, a polyvalent aldehyde, a polyvalent amine
  • examples include organometallic crosslinking agents.
  • Preferred are polyhydric aldehydes, organometallic crosslinking agents, and epoxy crosslinking agents, more preferred are organometallic crosslinking agents and epoxy crosslinking agents, and most preferred are glutaraldehyde and formaldehyde having two or more aldehyde groups. It is a polyvalent aldehyde.
  • the epoxy crosslinking agent is a compound having 2 or more epoxy groups, and a compound having 4 or more is also preferable.
  • Epoxy crosslinking agents are also available as commercial products. For example, Kyoeisha Chemical Co., Ltd., Epolite 100MF (trimethylolpropane triglycidyl ether), Nagase ChemteX Corporation EX-411, EX-313, EX-614B, EX -810, EX-811, EX-821, EX-830, Epiol E400 manufactured by NOF Corporation, and the like.
  • an oxetane compound having a cyclic ether is also preferably used as a compound similar to an epoxy crosslinking agent.
  • the oxetane compound is preferably a polyvalent glycidyl ether having two or more functional groups.
  • Examples of commercially available products include EX-411, EX-313, EX-614B, EX-810, EX-811, EX manufactured by Nagase ChemteX Corporation. -821, EX-830 and the like.
  • polyvalent glycidyl ether examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, propylene Examples thereof include glycol glycidyl ether and polypropylene glycol diglycidyl ether.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin, polyglycerin, propylene glycol, diethanolamine, triethanolamine, polyoxypropyl, and oxyethylene oxypropylene block copolymer.
  • examples thereof include coalescence, pentaerythritol, and sobitol.
  • Examples of the polyvalent isocyanate include 2,4-toluylene diisocyanate and hexamethylene diisocyanate.
  • Examples of the polyvalent aziridine include 2,2-bishydroxymethylbutanol-tris [3- (1-acylidinyl) propionate], 1,6-hexamethylenediethyleneurea, diphenylmethane-bis-4,4′- N, N′-diethylene urea and the like can be mentioned.
  • Examples of the haloepoxy compound include epichlorohydrin and ⁇ -methylchlorohydrin.
  • Examples of the polyvalent aldehyde include glutaraldehyde and glyoxal.
  • Examples of the polyvalent amine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and polyethyleneimine.
  • Examples of organometallic crosslinking agents include organic titanium crosslinking agents and organic zirconia crosslinking agents.
  • crosslinking agents for example, when a high molecular weight polyvinyl alcohol having a weight average molecular weight of 130,000 or more is used as the hydrophilic compound, the reactivity with the hydrophilic compound is good and the hydrolysis resistance is also excellent.
  • Epoxy compounds and glutaraldehyde are particularly preferable because a crosslinked structure can be formed.
  • polyallylamine having a weight average molecular weight of 10,000 or more an epoxy compound can be formed because a crosslinked structure having good reactivity with the hydrophilic compound and excellent hydrolysis resistance can be formed.
  • Glutaraldehyde, and organometallic crosslinkers are particularly preferred.
  • an epoxy compound is particularly preferable as the crosslinking agent.
  • the content when the coating composition for forming a hydrophilic compound layer contains a crosslinking agent is preferably 0.001 to 80 parts by mass with respect to 100 parts by mass of the crosslinkable group possessed by the hydrophilic compound, More preferred is 0.01 to 60 parts by mass, and most preferred is 0.1 to 50 parts by mass.
  • the crosslinked structure is a crosslinked structure formed by reacting 0.001 mol to 80 mol of the crosslinking agent with respect to 100 mol of the crosslinkable group possessed by the hydrophilic compound. Is preferred.
  • Acid gas carrier- Acidic gas carriers have affinity with acidic gases (for example, carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SO x ), nitrogen oxides (NO x ), hydrogen halides such as hydrogen chloride), And it is various water-soluble compounds which show basicity,
  • acidic gases for example, carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SO x ), nitrogen oxides (NO x ), hydrogen halides such as hydrogen chloride
  • at least 1 sort (s) selected from the group which consists of an alkali metal compound, a nitrogen containing compound, and a sulfur oxide is mentioned.
  • the carrier refers to a substance that reacts indirectly with the acid gas, or a substance that itself reacts directly with the acid gas. Examples of the former include those that react with other gases contained in the supply gas, exhibit basicity, and react with the basic compound and acid gas.
  • the OH - refers to alkali metal compounds can be incorporated selectively CO 2 in the film by reacting with CO 2 .
  • the latter are, for example, nitrogen-containing compounds and sulfur oxides that are themselves basic.
  • alkali metal compound examples include at least one selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates, and alkali metal hydroxides.
  • an alkali metal compound is used in the meaning containing the salt and its ion other than alkali metal itself.
  • the alkali metal carbonate examples include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate.
  • the alkali metal bicarbonate include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate.
  • alkali metal hydroxide examples include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Among these, an alkali metal carbonate is preferable, and a compound containing potassium, rubidium, and cesium having high solubility in water as an alkali metal element is preferable from the viewpoint of good affinity with an acidic gas.
  • nitrogen-containing compounds include amino acids such as glycine, alanine, serine, proline, histidine, taurine, and diaminopropionic acid, hetero compounds such as pyridine, histidine, piperazine, imidazole, and triazine, monoethanolamine, diethanolamine, and triazine.
  • Alkanolamines such as ethanolamine, monopropanolamine, dipropanolamine, tripropanolamine, cyclic polyetheramines such as cryptand [2.1] and cryptand [2.2], cryptand [2.2.1] Bicyclic polyetheramines such as cryptand [2.2.2], porphyrin, phthalocyanine, ethylenediaminetetraacetic acid and the like can be used.
  • amino acids such as cystine and cysteine, polythiophene, dodecylthiol and the like can be used.
  • the content of the acidic gas carrier in the acidic gas separation layer depends on the ratio to the amount of the hydrophilic compound and the type of the acidic gas carrier, but it functions as an acidic gas carrier and is acidic in the use environment. From the viewpoint of excellent stability as a gas separation layer, it is preferably 0.1% by mass or more and 30% by mass or less, more preferably 0.2% by mass or more and 20% by mass or less, and further preferably 0.8% by mass. It is preferable that they are 3 mass% or more and 15 mass% or less.
  • the acidic gas separation layer may contain other components (additives) other than the hydrophilic compound, the acidic gas carrier, the crosslinking agent, and water as long as they do not adversely affect the separation characteristics as the acidic gas separation membrane.
  • additives other than the hydrophilic compound, the acidic gas carrier, the crosslinking agent, and water as long as they do not adversely affect the separation characteristics as the acidic gas separation membrane.
  • an aqueous solution (coating solution) for forming an acidic gas separation layer containing a hydrophilic compound and an acidic gas carrier is coated on a porous support and dried in the course of drying.
  • Gelling agent that controls the so-called set property
  • viscosity adjusting agent that adjusts the viscosity at the time of application when applying the above coating liquid with a coating device
  • crosslinking for improving the membrane strength of the acidic gas separation layer
  • acid gas absorption accelerators other surfactants
  • catalysts auxiliary solvents
  • membrane strength modifiers and detection agents for facilitating the inspection of the formed acid gas separation layer for defects.
  • the member for the permeate gas channel has a function as a spacer, has a function of flowing the permeated acidic gas inside the member for the permeate gas channel, and has a net shape so as to have a function of permeating the resin. These members are preferable.
  • the material of the permeating gas channel member can be the same as that of the porous support. In addition, when it is assumed that a raw material gas containing water vapor flows at a high temperature, it is preferable that the permeating gas channel member also has heat and humidity resistance.
  • Specific materials used for the permeating gas flow path member are preferably polyesters such as epoxy-impregnated polyester, polyolefins such as polypropylene, and fluorines such as polytetrafluoroethylene.
  • the thickness of the permeating gas channel member is not particularly limited, but is preferably 100 ⁇ m or more and 1000 ⁇ m or less, more preferably 150 ⁇ m or more and 950 ⁇ m or less, and further preferably 200 ⁇ m or more and 900 ⁇ m or less.
  • the permeating gas channel member is a channel for the acidic gas that has permeated through the acidic gas separation layer, it is preferable that the resistance is low. Specifically, the porosity is high, and the deformation is small when pressure is applied. In addition, it is desirable that the pressure loss is small.
  • the porosity is preferably 30% or more and 95% or less, more preferably 35% or more and 92.5% or less, and further preferably 40% or more and 90% or less.
  • the porosity can be measured as follows. First, water is sufficiently infiltrated into the gap portion of the permeating gas channel member by using ultrasonic waves or the like to remove excess moisture on the surface, and then the mass per unit area is measured.
  • the value obtained by subtracting this mass from the dry mass is the volume of water that has entered the gap of the permeating gas flow path member, and can be measured by the density of water to measure the void volume and thus the void ratio. At this time, when water is not sufficiently infiltrated, the measurement can be performed using a solvent having a low surface tension such as an alcohol.
  • the deformation when the pressure is applied can be approximated by the elongation when the tensile test is performed, and the elongation when a load of 10 N / 10 mm width is applied is preferably within 5%, and is within 4%. It is more preferable.
  • the pressure loss can be approximated to the flow loss of the compressed air that flows at a constant flow rate, and the loss within 7.5 L / min when flowing through the 15 cm square permeating gas channel member 36 at room temperature for 15 L / min. It is preferable that the loss is within 7 L / min.
  • the supply gas flow path member is a member to which a source gas containing an acid gas is supplied, has a function as a spacer, and preferably generates a turbulent flow in the source gas, so that a net-like member is preferably used. It is done.
  • the material of the supply gas flow path member can be the same as that of the porous support, and the supply gas flow path member is also resistant to heat and humidity, assuming that a raw material gas containing water vapor flows at a high temperature. It is preferable to have.
  • a network structure formed of yarns containing at least one resin selected from polyester, polypropylene, polyamide, polyphenylene sulfide, polytetrafluoroethylene, polyether ether ketone, and polyvinylidene chloride.
  • the shape of the unit cell of the network structure is selected according to the purpose, for example, from a shape such as a rhombus or a parallelogram, but the flow path of the gas varies depending on the network structure, and the shape of the unit cell of the network structure is
  • the shape is preferably a rhombus because of the shape of the convex and concave portions formed on the surface of the acidic gas separation layer, and the size of the unit cell of the network structure is preferably 1 mm 2 or more and 50 mm 2 or less.
  • the thickness of the supply gas channel member is not particularly limited, but is preferably 100 ⁇ m or more and 1000 ⁇ m or less, more preferably 150 ⁇ m or more and 950 ⁇ m or less, and further preferably 200 ⁇ m or more and 900 ⁇ m or less.
  • the thickness of the supply gas flow passage member is It is preferably 100 ⁇ m or more and 900 ⁇ m or less, more preferably 150 ⁇ m or more and 800 ⁇ m or less, and further preferably 200 ⁇ m or more and 700 ⁇ m or less.
  • FIG. 7A to 7C are manufacturing process diagrams of the acid gas separation module 10.
  • the front end portion of the long permeate gas flow path member 36 is fixed to the permeate gas collecting pipe with a fixing member 50 such as Kapton tape or adhesive. It fixes to 12 tube walls (outer peripheral surface).
  • the tube wall is provided with a slit (not shown) along the axial direction.
  • the distal end portion of the permeate gas flow path member 36 is inserted into the slit, and fixed to the inner peripheral surface of the permeate gas collecting pipe 12 by the fixing member 50. According to this configuration, even when the laminate 14 including the permeate gas flow path member 36 is wound around the permeate gas collecting pipe 12, the inner circumferential surface of the permeate gas collecting pipe 12 can be The permeate gas flow path member 36 does not come out of the slit due to friction with the permeate gas flow path member 36, that is, the permeate gas flow path member 36 is fixed.
  • a long supply gas flow path member 30 is sandwiched between a long acidic gas separation membrane 32 in which the acidic gas separation layer 32A is folded inward.
  • the acidic gas separation membrane 32 may be divided into two parts, but may be shifted and folded.
  • a resin is applied to one end surface in the width direction and one end portion in the longitudinal direction of one of the outer surfaces of the acid gas separation membrane 32 folded in half (the surface of the porous support 32B) ( Apply in an envelope).
  • the sealing part 34 that is, the circumferential sealing part 34A and the axial sealing part 34B are formed.
  • FIG. In order to suppress gas leakage, it is preferable to fill 10% or more, particularly 30% of the holes of the porous support 32B with the sealing portion 34. As a means for filling in this way, for example, JP-A-3-68428 can be used.
  • the sealing part 34 as a whole has a shape in which the circumferential end between the acid gas separation membrane 32 and the permeating gas flow path member 36 at the beginning of the opening is opened, and the circumferential sealing part 34A and the axial sealing part Between 34B, the flow path P1 in which the acidic gas 22 which permeate
  • a resin is applied to both ends in the width direction and one end in the longitudinal direction of the surface of the acidic gas separation membrane 32 attached to the permeating gas channel member 36 (the surface opposite to the attached surface).
  • the sealing part 40 ie, the circumferential direction sealing part 40A and the axial direction sealing part 40B, are formed, and the laminated body 14 is formed.
  • the laminate 14 is wound around the permeate gas collecting pipe 12 in the direction of arrow R in FIG. 6 so as to cover the through hole 12A with the permeate gas flow path member 36.
  • the resin of the sealing portions 34 and 40 in particular, the resin of the sealing portion 40 can easily penetrate into the holes of the porous support 32B, and gas leakage can be further suppressed.
  • the mesh of the mesh structure can be caused to bite into the acidic gas separation membrane 32 by applying tension while applying tension, thereby forming irregularities on the surface of the acidic gas separation membrane 32. it can.
  • the unevenness is formed in this way, the depth of the recess can be adjusted by adjusting the tension.
  • concentration or separation is performed by the separation membrane by applying a pressure difference between the supply side and the permeation side sandwiching the separation membrane while flowing the raw material gas into the pressure vessel.
  • the supply gas flow path member is separated from the surface of the acid gas separation membrane 32, and the uneven flow path between the supply gas flow path member and the membrane surface promotes the generation of turbulent flow, and the concentration polarization of the untreated fluid The suppression effect can be increased.
  • the separation membrane in contact with the portions is easily broken by the mesh of the supply gas flow path member, but in the present invention, the acid gas separation layer has a high water absorption rate and is soft. For this reason, even if the mesh of the member for the supply gas channel contacts the cured resin, the separation membrane is not cracked, and leakage can be suppressed.
  • the cylindrical wound body is obtained through the above steps, the outermost periphery of the obtained cylindrical wound body is covered with a coating layer, and the telescoping prevention plates are attached to both ends, so that the acidic gas shown in FIG. A separation module 10 is obtained.
  • the acid gas separation module of the present invention will be described in more detail with reference to examples.
  • Example 1 The produced acid gas separation membrane was folded in half with the acid gas separation layer inside. Kapton tape was applied to the valley portion folded in half, and the end portion of the supply gas flow path member reinforced the surface shape of the membrane valley portion. Then, a leaf-shaped polypropylene net was sandwiched between the acid gas separation layer folded in half as a supply gas flow path member to produce a leaf.
  • An adhesive (Henkel Japan Co., Ltd .: E120HP) made of an epoxy resin with a high viscosity (approx.
  • Examples 2 to 16 Tension was applied so that the unevenness of the separation membrane surface had the depth, width, and area ratio of the recesses described in Table 1, and Examples 15 and 16 were carried out except that the above separation membranes 2 and 3 were used. In the same manner as Example 1, acid gas separation modules of Examples 2 to 16 were produced.
  • Example 17 and 18, Comparative Examples 1 to 6 The acid gas separation modules of Examples 17 and 18 and Comparative Examples 1 to 6 were produced in the same manner as in Example 1 except that the uneven structure shown in Table 1 was provided on the separation membrane surface by embossing.
  • Comparative Examples 7 and 8 An uneven structure shown in Table 1 was provided on the surface of the separation membrane by embossing, and the acid gas separation modules of Comparative Examples 7 and 8 were produced in the same manner as in Example 1 except that the separation membranes 4 and 5 were used.
  • Table 1 shows the evaluation results together with the film uneven structure and the water absorption rate. Note that “ ⁇ ” in the film performance evaluation indicates that evaluation cannot be performed due to the occurrence of a defect in the module manufacture.
  • the water absorption rate of the acidic gas separation layer is 1% or more and 20% or less
  • the depth of the concave and convex portions on the surface of the acidic gas separation layer is 3 ⁇ m or more and 500 ⁇ m or less
  • the width of the concave portion is 5 ⁇ m or more and 1000 ⁇ m.
  • the area ratio of the recesses is 2% or more and 50% or less
  • module defects were suppressed and the film performance was good. Even if the concavo-convex structure is in a desired range, the module defect becomes significant in Comparative Example 7 in which the water absorption rate of the acidic gas separation layer is less than 1% and in Comparative Example 8 in which the water absorption rate exceeds 20%.
  • Comparative Example 7 it is considered that cracking occurred due to a bending process or the like at the time of module production.
  • Comparative Example 8 it is considered that the water absorption rate was too high, and the supply gas flow path member was easily pushed by pressure, and the acidic gas separation layer was cracked, resulting in a sealing portion defect.
  • the depth of the recess is less than 3 ⁇ m (Comparative Example 1), or the area ratio of the recess is less than 2% (Comparative Example 5).
  • Comparative Example 6 When it exceeds 50% (Comparative Example 6), the module performance can be suppressed, but the separation performance is lowered.
  • Comparative Examples 1 and 5 it is considered that the concentration polarization cannot be suppressed even if there are irregularities, the effective membrane surface property cannot be improved, and the separation performance is deteriorated.
  • Comparative Example 6 since the pressure loss increased, it is considered that the separation performance decreased.
  • the acid gas separation module of the present invention has a water absorption rate of 1% or more and 20% or less in the acid gas separation layer, so that it is possible to suppress sealing defects in the sealed portion.
  • the acid gas separation layer has irregularities on the surface, the depth of the concave and convex portions is 3 ⁇ m or more and 500 ⁇ m or less, the width of the concave portion is 5 ⁇ m or more and 1000 ⁇ m or less, Since the area ratio is not less than 2% and not more than 50%, the pressure loss can be reduced, and at the same time, concentration polarization can be suppressed and the effective membrane surface property can be improved. It can be set as the module for gas separation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】酸性ガス分離用複合体を封止部分の封止欠損を抑制することが可能であって、リークを抑制することができるとともに、分離性能の高いものとする。 【解決手段】多孔質支持体(2B)と多孔質支持体(2B)上に設けられた親水性化合物および酸性ガスと反応する酸性ガスキャリアを含む酸性ガス分離層(2A)とからなる酸性ガス分離膜(2)と、酸性ガスが流れる透過ガス流路用部材(5)と、原料ガスが供給される供給ガス流路用部材(6)とを備え、透過ガス流路用部材(5)と多孔質支持体(2B)との周縁であって封止が必要な領域が樹脂により封止された封止部(3)を有する酸性ガス分離用複合体であって、酸性ガス分離層(2A)の吸水率が1%以上20%以下であり、酸性ガス分離層(2A)表面に凹凸を有し、凹部の深さを3μm以上500μm以下、幅を5μm以上1000μm以下、面積率を2%以上50%以下とする。

Description

酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用モジュールの製造方法
 本発明は、酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用複合体の製造方法に関するものである。
 従来より、液体や気体などの原流体を濃縮したり原流体から特定成分を分離したりするために、スパイラル型、平膜型、中空糸型など各種形式の膜モジュールが用いられている。例えば、特許文献1には、原料ガス側膜表面および透過ガス側膜表面のうち少なくとも一方の表面に凹凸を有する平膜の分離膜が記載されている。この特許文献1に記載されている平膜分離膜は、膜表面に凹凸を形成することによって膜の表面積が増加するため、原料ガス中の酸素が原料ガス側膜表面において解離吸着し、イオン化する際、膜表面の凹凸部にも酸素が解離吸着するため、酸素解離速度を向上させることができるというものである。
 しかし、特許文献1の分離膜は平膜形状であるため膜表面に凹凸を設けたとしてもモジュール全体としての膜面積を向上させることは困難である。それゆえ、モジュール一本あたりの分離効率が低く、分離効率をあげるためにはモジュールの本数を増やすしかないため低コスト化が図れないという問題がある。
 一方、スパイラル型分離膜モジュールは、薄膜化が比較的容易なシート状分離膜を用いているために膜面積を向上させることが比較的容易であるとともに、耐圧性に優れ、しかも比較的安価に製造できるという利点を有する。このようなスパイラル型分離膜モジュールは、一般的に分離膜を二つ折りにした間に供給側流路材を配置したものと透過側流路材とを交互に積み重ね、供給側流体と透過側流体の混合を防ぐために接着剤を分離膜周辺部(3辺)に塗布して分離膜ユニットを作製し、このユニットの単数または複数を中心管の周囲にスパイラル状に巻き付けてなるものである。
 スパイラル型分離膜モジュールは、供給側流体が一端面より供給され、供給側流路用部材に沿って流動しながら分離膜で濾過され、他端面より分離流体が取り出される。このため、分離操作のエネルギー効率を高める上で、供給側流路用部材に沿って原流体が流動する際の圧力損失が小さいほど好ましい。例えば、特許文献2には流路用部材の網目構造の平面性を向上させることにより圧力損失を低減させる技術が記載されている。
特開2002-326021号公報 特開2007-117949号公報
 スパイラル型分離膜モジュールにおいては、上記のとおり接着剤を分離膜周辺部に塗布してあるが、この接着剤(樹脂)は供給側流体と透過側流体の混合を防ぎ、分離性能を上げる観点から極めて重要であり、特に、多孔質支持体を備えた分離膜の場合、多孔質支持体部分における封止が不十分であるとリークが顕著となり分離性能が大きく低下する。この封止部分は樹脂の硬化によって硬くなっているため、中心管の周囲にスパイラル状に巻き付けられる際に、分離膜に供給側流路用部材が当たって亀裂が生じたり、割れたりしやすいという問題がある。この部分の封止欠損はリークとなり分離性能が大きく低下する原因となる。
 上記特許文献2のように流路用部材を平面化すると、圧力損失を小さくして分離性能を上げることができるが、流路用部材を平面化すると酸性ガス分離膜と流路用部材との間に空隙が生じ、それが流体のパスとなって流路用部材中での流体の乱流の発生が抑制され、乱流による未処理流体の濃度分極の抑制効果が低下するため分離性能が悪くなる。そうといって、分離膜に凹凸を設けると圧力損失が大きくなる上、封止部分での分離膜の亀裂発生によりリークが生じやすいという問題がある。
 本発明は上記事情に鑑みなされたものであり、封止部分での分離膜の亀裂発生を抑制することが可能であって、リークを抑制することができるとともに、分離性能の高い酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用モジュールの製造方法を提供することを目的とするものである。
 本発明の酸性ガス分離用複合体は、多孔質支持体と該多孔質支持体上に設けられた親水性化合物および原料ガス中の酸性ガスと反応する酸性ガスキャリアを含む酸性ガス分離層とからなる酸性ガス分離膜と、前記酸性ガスキャリアと反応して前記酸性ガス分離層を透過した酸性ガスが流れる透過ガス流路用部材と、前記酸性ガス分離層表面に設けられた原料ガスが供給される供給ガス流路用部材とを備え、前記透過ガス流路用部材と前記多孔質支持体との周縁であって封止が必要な領域が樹脂により封止された封止部を有する酸性ガス分離用複合体であって、前記酸性ガス分離層の吸水率が1%以上20%以下であり、該酸性ガス分離層が表面に凹凸を有し、該凹凸の凹部の深さが3μm以上500μm以下、凹部の幅が5μm以上1000μm以下、凹部の面積率が2%以上50%以下であることを特徴とするものである。
 本発明の酸性ガス分離用モジュールは、多孔質支持体と該多孔質支持体上に設けられた親水性化合物および原料ガス中の酸性ガスと反応する酸性ガスキャリアを含む酸性ガス分離層とからなる酸性ガス分離膜と、前記酸性ガスキャリアと反応して酸性ガス分離層を透過した酸性ガスが流れる透過ガス流路用部材と、前記酸性ガス分離層表面に設けられた原料ガスが供給される供給ガス流路用部材とを備え、前記多孔質支持体と前記透過ガス流路用部材の幅方向両端部と長手方向一端部が樹脂により封止された封止部を有し、前記酸性ガス分離膜および前記透過ガス流路用部材が、前記供給ガス流路用部材とともに管壁に貫通孔が形成された透過ガス集合管に巻回させた酸性ガス分離用モジュールであって、前記酸性ガス分離層の吸水率が1%以上20%以下であり、該酸性ガス分離層が表面に凹凸を有し、該凹凸の凹部の深さが3μm以上500μm以下、凹部の幅が5μm以上1000μm以下、凹部の面積率が2%以上50%以下であることを特徴とするものである。
 前記凹凸は前記供給ガス流路用部材の網目構造により形成されたものであることが好ましい。
 前記供給ガス流路用部材は、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン(PTFE)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルホン(PSF)、ポリプロピレン(PP)、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン及びポリフッ化ビニリデンから選ばれる1種以上の樹脂を含んでなる糸で形成された網目構造を有することが好ましい。
 前記キャリアは、アルカリ金属化合物を含むことが好ましい。
 本発明の酸性ガス分離用モジュールの製造方法は、多孔質支持体上に、親水性化合物および原料ガス中の酸性ガスと反応する酸性ガスキャリアを含む酸性ガス分離層を設けて、多孔質支持体と酸性ガス分離層とからなる酸性ガス分離膜を形成する工程と、前記多孔質支持体と、前記酸性ガスキャリアと反応して前記酸性ガス分離層を透過した酸性ガスが流れる透過ガス流路用部材の幅方向両端部と長手方向一端部に樹脂を滲みこませて封止部を形成する工程と、前記酸性ガス分離層表面に網目構造を有する供給ガス流路用部材を配置し、前記酸性ガス分離膜とともに管壁に貫通孔が形成された透過ガス集合管に巻回させて前記酸性ガス分離層表面に前記網目構造の網目を食い込ませて該酸性ガス分離層表面に凹凸を形成する工程とを含むことを特徴とするものである。
 本発明の酸性ガス分離用複合体および本発明の酸性ガス分離用モジュールは酸性ガス分離層の吸水率が1%以上20%以下であるので、封止部の封止欠損を抑制することが可能であって、リークを抑制することができ、また酸性ガス分離層が表面に凹凸を有し、凹凸の凹部の深さが3μm以上500μm以下、凹部の幅が5μm以上1000μm以下であって、凹部の面積率が2%以上50%以下であるので、圧力損失を低減しながら、同時に濃度分極を抑制し、有効膜面性を上げることができるので、分離性能の高い酸性ガス分離用複合体、酸性ガス分離用モジュールとすることができる。
本発明の酸性ガス分離用複合体の一実施の形態を示す概略断面図である。 酸性ガス分離層表面の拡大平面図である。 図2のIII-III線断面図である。 本発明の酸性ガス分離用モジュールの一実施の形態を示す一部切り欠き概略構成図である。 透過ガス集合管に積層体が巻回された円筒状巻回体の一部を示す断面斜視図である。 酸性ガス分離用モジュールの透過ガス集合管に積層体を巻き付ける前の状態を示す概略模式図である。 酸性ガス分離用モジュールの製造工程図である。 図7Aに続く酸性ガス分離用モジュールの製造工程図である。 図7Bに続く酸性ガス分離用モジュールの製造工程図である。
 以下、本発明の酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用モジュールの製造方法を図面を用いて詳細に説明する。
<酸性ガス分離用複合体>
 図1は、本発明の一実施の形態に係る酸性ガス分離用複合体の概略断面図である。図1に示すように、酸性ガス分離用複合体1は、多孔質支持体2Bと多孔質支持体2B上に設けられた親水性化合物および原料ガス中の酸性ガスと反応する酸性ガスキャリアを含む酸性ガス分離層2Aとからなる酸性ガス分離膜2と、酸性ガスキャリアと反応して酸性ガス分離層2Aを透過した酸性ガスが流れる透過ガス流路用部材5と、酸性ガス分離層2A表面に設けられた原料ガスが供給される供給ガス流路用部材6を備えてなり、透過ガス流路用部材5と多孔質支持体2Bとの周縁であって封止が必要な領域(封止所望領域)が樹脂により封止された封止部3を有するものである。
 図1では封止部3が、透過ガス流路用部材5と多孔質支持体2Bの向かい合う端部に設けられている態様を示しているが、封止部3は透過ガス流路用部材5と多孔質支持体2Bとの周縁であって封止所望領域に設けられればよく、透過ガス流路用部材5には通常透過ガス取出し領域(図示せず)が設けられるがこの領域を除いて封止部3を設け、多孔質支持体2Bは透過ガス流路用部材の封止された部分に対応する部分が封止されていればよい。例えば、透過ガス取出し領域が透過ガス流路用部材5の1辺の全域に設けられている場合には残りの3辺が封止部3となり、透過ガス取出し領域が透過ガス流路用部材5の周縁ではなく図1の透過ガス流路用部材5の下側に設けられるような場合には透過ガス流路用部材5の周縁端部全てが封止部3となる。
 酸性ガス分離層2Aの吸水率は1%以上20%以下である。ここで吸水率は露点-20℃環境下での10cm角の分離層の質量をA、25℃、相対湿度20%環境における10cm角の分離膜の質量をBとしたときに、以下の計算式により算出した値である。
 (B-A)÷B×100
 酸性ガス分離層2Aが上記吸水率の範囲であると、酸性ガス分離層2A表面に設けられた供給ガス流路用部材6が圧力によって押し込まれてもこの部分の柔らかさによって酸性ガス分離層2Aに亀裂が入ったり、割れたりするといったことが抑制され、ガスリークを防止することができる。吸水率が1%未満ではモジュール作製時の折り曲げ工程等によりワレが発生しやすくなる。一方、吸水率が20%より高くなると、モジュール作製時に供給ガス流路用部材6が圧力によって押し込まれやすく封止部欠損が生じやすくなる。また、分離膜が凹凸を有していると封止部3の封止性が落ちリークが生じやすいという問題があるが、酸性ガス分離層2Aの吸水率が1%以上20%以下であることで分離膜に凹凸があっても封止部3によって十分な封止を行うことができる。酸性ガス分離層2Aの吸水率はより好ましくは2%以上18%以下であることが好ましく、さらには3%以上15%以下であることが好ましい。
 図2は酸性ガス分離層2A表面の拡大平面図、図3は図2AのIII-III線断面図である。図2および図3に示すように酸性ガス分離層2Aの表面には凹部7および凸部8が設けられており、凹部7の深さDが3μm以上500μm以下、凹部7の幅Wが5μm以上1000μm以下、凹部7の面積率は2%以上50%以下である。図2および図3に示す凸部8は略正方形であるが、凸部は矩形であっても、角の丸い形状であっても、楕円(真円を含む)、あるいは他の形状であってもよい。また、凸部は角錐や角錐を底面に平行な平面で切断し頂点を除いた角錐台、円錐や円錐を底面に平行な平面で切断し頂点を除いた円錐台のような形状であってもよい。
 凹部の形状は表面の形をそのまま深さ方向に賦形したもの、広がる形で賦形したもの、狭める形で賦形したものが用いられる。つまり、分離膜の凹部の断面形状において、凹部の幅は、供給側表面から透過側表面(基材側の表面)に向かって、徐々に狭くなってもよいし、徐々に広くなってもよいし、一定であってもよい。また、凹部の壁の形状は、向かい合う壁に向かって凸形状であってもよいし、凹形状であってもよいし、凹形状と凸形状との組み合わせであってもよい。
 凹部の幅Wは、凸部の上面と凹部の底の高さの中央での幅を意味し、凹部7の面積率は凹部の底の面積を意味する。ここで、凹部7の深さD、凹部7の幅Wは、酸性ガス分離層2Aの凹凸表面から任意に選択した3cm角における100箇所を測定した平均値を意味する。また、凹部7の面積率は酸性ガス分離層2Aの凹凸表面から任意に選択した3cm角における凹部が占める面積を計測して計算した値を意味する。
 酸性ガス分離層2Aの表面に上記の所定の凹凸を有することにより、濃度分極を抑制しながら、有効膜面性を上げることができるので分離性能を上げることができる。また、通常は酸性ガス分離層2Aの表面に凹凸を有すると膜の圧力損失が上がるために分離性能が低下する懸念があるが、上記の範囲とすることによって圧力損失が上がることも抑制することができ、分離膜の分離性能向上を図ることができる。
 凹部7の深さDは5μm以上450μm以下であることがより好ましく、凹部8の幅Wは10μm以上900μm以下であることがより好ましく、凹部8の面積率は3%以上45%以下であることがより好ましい。
 酸性ガス分離層2Aの上記凹凸は例えばエンボス加工等により設けることができる。また、酸性ガス分離層2Aは吸水率が1%以上20%以下であるため凹凸がつけやすく、かつ凹凸の形状保持が良好であるため、供給ガス流路用部材6が網目構造からなる場合には、供給ガス流路用部材6を酸性ガス分離層2Aに強く押し付けることによっても形成することができる。
 続いて、酸性ガス分離用モジュールの構成について説明する。
<酸性ガス分離用モジュール>
 図4は酸性ガス分離用モジュールの一実施の形態を示す一部切欠き概略構成図である。図4に示すように酸性ガス分離用モジュール10はその基本構造として、透過ガス集合管12の周りに、積層体14を単数あるいは複数が巻き付けられた状態で積層体14の最外周が被覆層16で覆われ、これらユニットの両端にそれぞれテレスコープ防止板18が取り付けられて構成される。このような構成の酸性ガス分離用モジュール10は、その一端部10A側から積層体14に酸性ガスを含む原料ガス20が供給されると、後述する積層体14の構成により、原料ガス20を酸性ガス22と残余のガス24に分離して他端部10B側に別々に排出するものである。
 透過ガス集合管12は、その管壁に複数の貫通孔12Aが形成された円筒状の管である。透過ガス集合管12の管一端部側(一端部10A側)は閉じられており、管他端部側(他端部10B側)は開口し積層体14を透過して貫通孔12Aから集合した炭酸ガス等の酸性ガス22が排出される排出口26となっている。
 後述する樹脂で封止される領域における、透過ガス集合管12の表面積にしめる貫通孔12Aの割合(開口率)は、1.5%以上80%以下であることが好ましく、3%以上75%以下であることがより好ましく、さらには5%以上70%以下であることが好ましい。さらに、上記開口率は、実用的な観点から、5%以上25%以下であることが好ましい。各下限値以上とすることで、効率的に酸性ガス22を収集することができる。また、各上限値以下とすることで、筒の強度を高め、加工適性を十分に確保することができる。
 貫通孔12Aの形状は特に限定されないが、0.5~20mmφの円形の穴が開いていることが好ましい。また、貫通孔12Aは、透過ガス集合管12表面に対して均一に配置されることが好ましい。
 被覆層16は、酸性ガス分離用モジュール10内を通過する原料ガス20を遮断しうる遮断材料で形成されている。この遮断材料はさらに耐熱湿性を有していることが好ましい。なお、耐熱湿性のうち耐熱性とは、60℃以上の耐熱性を有していることを意味する。具体的に、60℃以上の耐熱性とは、60℃以上の温度条件下に2時間保存した後も保存前の形態が維持され、熱収縮あるいは熱溶融による目視で確認しうるカールが生じないことを意味する。また、本実施形態において耐熱湿性のうち耐湿性とは、40℃80%RHの条件下に2時間保存した後も保存前の形態が維持され、熱収縮あるいは熱溶融による目視で確認しうるカールが生じないことを意味する。
 テレスコープ防止板18は、外周環状部18Aと内周環状部18Bと放射状スポーク部18Cとを有しており、それぞれ耐熱湿性の材料で形成されていることが好ましい。
 具体的には、テレスコープ防止板18の材質は、金属材料(例えば、SUS、アルミニウム、アルミニウム合金、錫、錫合金等)、樹脂材料(例えばポリエチレン樹脂、ポリプロピレン樹脂、芳香族ポリアミド樹脂、ナイロン12、ナイロン66、ポリサルフィン樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、アクリル・ブタジエン・スチレン樹脂、アクリル・エチレン・スチレン樹脂、エポキシ樹脂、ニトリル樹脂、ポリエーテルエーテルケトン樹脂(PEEK)、ポリアセタール樹脂(POM)、ポリフェニレンサルファイド(PPS)等)、およびこれら樹脂の繊維強化プラスチック(例えば繊維としては、ガラス繊維、カーボン繊維、ステンレス繊維、アラミド繊維などで、特に長繊維が好ましい。具体例としては、例えばガラス長繊維強化ポリプロピレン、ガラス長繊維強化ポリフェニレンサルファイドなど)、並びに、セラミックス(例えばゼオライト、アルミナなど)等が挙げられる。
 積層体14は、二つ折りした酸性ガス分離膜32の内側に供給ガス流路用部材30が挟み込まれ、これらの径方向内側で酸性ガス分離膜32が透過ガス流路用部材36に、これらに浸透した封止部34を介して封止されて構成される。
 積層体14を透過ガス集合管12に巻き付ける枚数は、特に限定されず、単数でも複数でもよいが、枚数(積層数)を増やすことで、酸性ガス分離層32Aの膜面積を向上させることができる。これにより、1本のモジュールで酸性ガス22を分離できる量を向上させることができる。また、膜面積を向上させるには、積層体14の長さをより長くしてもよい。
 また、積層体14の枚数が複数の場合、50枚以下が好ましく、45枚以下がより好ましく、さらには40枚以下が好ましい。これらの枚数以下であると、積層体14を巻き付けることが容易となり、加工適性が向上する。
 積層体14の幅は、特に限定されないが、50mm以上10000mm以下であることが好ましく、60mm以上9000mm以下であることがより好ましく、さらには70mm以上8000mm以下であることが好ましい。さらに、積層体14の幅は、実用的な観点から、200mm以上2000mm以下であることが好ましい。各下限値以上とすることで、樹脂の塗布(封止)があっても、有効な酸性ガス分離層32Aの膜面積を確保することができる。また、各上限値以下とすることで、巻き芯の水平性を保ち、巻きずれの発生を抑制することができる。
 図5は透過ガス集合管に積層体が巻回された円筒状巻回体の一部を示す断面斜視図であり、円筒状巻回体の幅方向全域を中央部を短縮して模式的に示した図である。図5に示すように、積層体14同士は、酸性ガス分離膜32に浸透した封止部40を介して接着され、透過ガス集合管12の周りに積み重なっている。積層体14は、具体的に、透過ガス集合管12側から順に、透過ガス流路用部材36、酸性ガス分離膜32、供給ガス流路用部材30、酸性ガス分離膜32を積層している。これらの積層により、酸性ガス22を含む原料ガス20は、供給ガス流路用部材30の端部から供給され、被覆層16により区画された酸性ガス分離膜32を透過して分離された酸性ガス22が透過ガス流路用部材36および貫通孔12Aを介して透過ガス集合管12に集積され、この透過ガス集合管12に接続された排出口26より回収される。また、供給ガス流路用部材30の空隙等を通過した、酸性ガス22が分離された残余ガス24は、酸性ガス分離用モジュール10において、排出口26が設けられた側の供給ガス流路用部材30や酸性ガス分離膜32の端部より排出される。
 図6は、酸性ガス分離用モジュール10において透過ガス集合管12に積層体14を巻き付ける前の状態を示す図であり、封止部34と封止部40の形成領域の一実施形態を表した図である。図6に示すように、封止部40は透過ガス流路用部材36で貫通孔12Aを覆い、透過ガス集合管12に積層体14を図中矢印R方向に巻き付けた状態で、酸性ガス分離膜32と透過ガス流路用部材36を接着するとともに封止している。一方で、封止部34は、透過ガス集合管12に積層体14を巻き付ける前から酸性ガス分離膜32と透過ガス流路用部材36を接着するとともに封止している。
 封止部34と封止部40は共に、酸性ガス分離膜32と透過ガス流路用部材36の両側端部を透過ガス集合管12の周方向に沿って封止する周方向封止部34A,40Aと、酸性ガス分離膜32と透過ガス流路用部材36の上記周方向の端部を封止する軸方向封止部34B,40Bとを有している。
 周方向封止部34Aと軸方向封止部34Bは繋がっており、封止部34全体として巻き始めの酸性ガス分離膜32と透過ガス流路用部材36の間の周方向端部が開口したいわゆるエンベロープ状となっている。そして、周方向封止部34Aと軸方向封止部34Bとの間には、酸性ガス分離膜32を透過した酸性ガス22が貫通孔12Aまで流れる流路P1が形成される。同様に、周方向封止部40Aと軸方向封止部40Bは繋がっており、封止部40全体として巻き始めの酸性ガス分離膜32と透過ガス流路用部材36の間の周方向端部が開口したエンベロープ状となっている。そして、周方向封止部40Aと軸方向封止部40Bとの間には、酸性ガス分離膜32を透過した酸性ガス22が貫通孔12Aまで流れる流路P2が形成される。
 酸性ガス分離膜32においては、膜中に含まれた水分が多孔質支持体32Bに滲み出て多孔質支持体32Bの濡れ性を高めたりその表面張力で樹脂を引き込んだりすることによって、封止部34と封止部40の樹脂が透過ガス流路用部材36を介して多孔質支持体32Bの孔に滲み込み易いため、周方向封止部34A,40Aを注封法で形成しなくとも、通常の塗布法で、封止部34と封止部40の接着力が強固となり、結果としてガス漏れを抑制できる。
 酸性ガス分離用モジュールにおける、酸性ガス分離層の吸水率、酸性ガス分離層表面の凹凸の詳細は上記で説明した酸性ガス分離用複合体と同様であるため省略する。
 以下、酸性ガス分離用モジュールの各構成の詳細について説明する。なお、酸性ガス分離用複合体の各構成の詳細は酸性ガス分離用モジュールと同様である。
(多孔質支持体)
 多孔膜の材質としては、紙、上質紙、コート紙、キャストコート紙、合成紙、セルロース、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリスルホン、アラミド、ポリカーボネートなどの樹脂材料、金属、ガラス、セラミックスなどの無機材料等が挙げられる。樹脂材料としては、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン(PTFE)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルホン(PSF)、ポリプロピレン(PP)、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトンおよびポリフッ化ビニリデン等が好適なものとして挙げられる。
 また、耐熱性の観点から好ましい材質としては、セラミック、ガラス、金属などの無機材料、100℃以上の耐熱性を有した有機樹脂材料などが挙げられ、高分子量ポリエステル、ポリオレフィン、耐熱性ポリアミド、ポリイミド、ポリスルホン、アラミド、ポリカーボネート、金属、ガラス、セラミックスなどが好適に使用できる。より具体的には、セラミックス、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリスルホン、ポリイミド、ポリプロピレン、ポリエーテルイミド、および、ポリエーテルエーテルケトンからなる群より選ばれた少なくとも1種の材料を含んで構成されることが好ましい。
 より具体的には、ポリフェニルサルファイド、ポリスルホン、およびセルロース等の材料からなるメンブレンフィルター膜、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、および高分子量ポリエチレン等の材料からなる延伸多孔膜、耐熱性ポリイミドナノファイバーの集積体からなる多孔膜などが挙げられ、耐熱性、空隙率、および二酸化炭素の拡散阻害が小さく、強度、製造適性などが良好であるという観点から、特にポリテトラフルオロエチレンの延伸膜が好ましい。
 これらの多孔膜は多孔質支持体として単独に用いることもできるが、表面、即ち、酸性ガス分離膜と接触する面に疎水性多孔膜を有するものであれば、補強用の支持体と一体化した複合膜も好適に使用できる。
 多孔質支持体は厚すぎるとガス透過性が低下し、薄すぎると強度に難がある。そこで多孔質支持体の厚さは30μm~500μmが好ましく、さらには50μm~300μmがより好ましく、さらには50μm~200μmが特に好ましい。
 また、多孔質支持体の孔の平均孔径は、樹脂塗布領域は樹脂を十分に滲み込ませ、ガスを通過させる領域はガスの通過の妨げとならないようにする観点から、0.001μm以上10μm以下が好ましく、0.002μm以上5μm以下がより好ましく、さらには0.005μm以上1μm以下が特に好ましい。
(酸性ガス分離層)
 酸性ガス分離層は、酸性ガスと反応する酸性ガスキャリアおよび酸性ガスキャリアを担持する親水性化合物を含有する促進輸送層である。このような構成の酸性ガス分離層は一般的に溶解拡散膜よりも耐熱性を有していることから、例えば100℃~200℃の温度条件下でも酸性ガスを選択的に透過させることができるようになっている。また、原料ガスに水蒸気が含まれていても、水蒸気を親水性化合物が吸湿して酸性ガス分離層が水分を保持することで、さらにキャリアが輸送し易くなるので、溶解拡散膜を用いる場合に比べて分離効率を高くすることができる。
 酸性ガス分離層の膜面積は特に限定されないが、0.01m2以上1000m2以下であることが好ましく、0.02m2以上750m2以下であることがより好ましく、さらには0.025m2以上500m2以下であることが好ましい。さらに、上記膜面積は、実用的な観点から、1m2以上100m2以下であることが好ましい。各下限値以上とすることで、膜面積に対して効率よく酸性ガス22を分離することができる。また、各上限値以下とすることで、加工性が容易となる。
 酸性ガス分離層の長さ(二つ折りする前の全長)は特に限定されないが、100mm以上10000mm以下が好ましく、150mm以上9000mm以下がより好ましく、さらには200mm以上8000mm以下がより好ましい。さらに、長さは、実用的な観点から、800mm以上4000mm以下であることが好ましい。各下限値以上とすることで、膜面積に対して効率よく酸性ガスを分離することができる。また、各上限値以下とすることで、巻きずれの発生が抑制され加工性が容易となる。
 酸性ガス分離層の厚さは特に限定されないが、1~200μmであることが好ましく、2~175μmであることがより好ましい。このような範囲の厚さにすることにより、十分なガス透過性と分離選択性とを実現することができ好ましい。
 酸性ガス分離層の吸水率は1%以上20%以下である。また、酸性ガス分離層は耐熱性の観点から架橋構造を有することが好ましい。そのような観点から、例えば下記(A)群より選ばれる単一又は複数の架橋可能基により形成された、下記(B)群より選ばれる耐加水分解性結合を含む架橋構造を有する親水性化合物層で構成されていることが好ましい。特に酸性ガス分離特性や耐久性に優れるという観点からすれば、下記(A)群より選ばれた単一の架橋可能基により形成された、下記(B)群より選ばれた耐加水分解性結合を含む架橋構造を有する親水性化合物層で構成されていることが好ましい。
(A)群:-OH、-NH2、-Cl、-CN、―COOH、エポキシ基
(B)群:エーテル結合、アセタール結合、-NH-CH2-C(OH)-、-O-MO-(Mは、Ti又はZrを表す)、-NH-M-O-(Mは、Ti又はZrを表す)、ウレタン結合、-CH2-CH(OH)-、アミド結合
-親水性化合物-
 親水性化合物は、親水性ポリマーが挙げられる。親水性ポリマーはバインダーとして機能するものであり、酸性ガス分離層として使用するときに水分を保持してキャリアによる二酸化炭素等のガスの分離機能を発揮させる。親水性化合物は、水に溶けて塗布液を形成することができるとともに、促進輸送膜が高い親水性(保湿性)を有する観点から、親水性が高いものが好ましく、生理食塩液の吸水量が0.5g/g以上の親水性を有することが好ましい。さらには1g/g以上の親水性を有することがより好ましく、さらには5g/g以上の親水性を有することが好ましく、さらには10g/g以上の親水性を有することが特に好ましく、さらには20g/g以上の親水性を有することが最も好ましい。
 親水性化合物の重量平均分子量は、安定な膜を形成しうる範囲で適宜選択されるが、2万~200万が好ましく、2.5万~200万がより好ましく、3万~200万が特に好ましい。下限値未満であると膜強度が得られないことがある。
 特に、親水性化合物が架橋可能基として-OHを有する場合には、例えば、重量平均分子量が3万以上であるものが好ましい。重量平均分子量は更に好ましくは分子量4万以上であり、より好ましくは、5万以上である。親水性化合物が架橋可能基として-OHを有する場合には、重量平均分子量の上限値には特に制限はないが、製造適性の観点からは、600万以下であることが好ましい。
 また、架橋可能基として-NH2を有する場合には、重量平均分子量が1万以上であるものが好ましい。重量平均分子量は更に好ましくは1.5万以上であり、より好ましくは、重量平均分子量2万以上である。重量平均分子量の上限値には特に制限はないが、製造適性の観点からは、100万以下であることが好ましい。
 なお、親水性化合物の重量平均分子量は、例えば、親水性化合物としてPVAを用いる場合には、JIS K 6726に準じて測定した値を用いている。また、市販品を用いる場合には、カタログ、仕様書などで公称される分子量を用いている。
 架橋可能基としては、耐加水分解性の架橋構造を形成しうるものが選択され、ヒドロキシ基(-OH)、アミノ基(-NH2)、カルボキシ基(-COOH)、エポキシ基、塩素原子(-Cl)、シアノ基(-CN)等が挙げられる。これらの中でも、アミノ基、およびヒドロキシ基が好ましく、最も好ましくはキャリアとの親和性およびキャリア担持効果の観点からヒドロキシ基である。
 このような単一の架橋可能基を有する親水性化合物としては、好ましくはポリアリルアミン、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリエチレンイミン、ポリビニルアミン、ポリオルニチン、ポリリジン、ポリエチレンオキサイド、水溶性セルロース、デンプン、アルギン酸、キチン、ポリスルホン酸、ポリヒドロキシメタクリレート、ポリNビニルアセトアミドなどが挙げられ、最も好ましくはポリビニルアルコールである。また、親水性化合物としては、これらの共重合体も挙げられる。
 複数の架橋可能基を有する親水性化合物としては、ポリビニルアルコール-ポリアクリル酸塩共重合体が挙げられる。ポリビニルアルコール-ポリアクリル酸共重合体は、吸水能が高い上に、高吸水時においてもハイドロゲルの強度が大きいため好ましい。ポリビニルアルコール-ポリアクリル酸共重合体におけるポリアクリル酸塩の含有率は、例えば1~95モル%、好ましくは2~70モル%、より好ましくは3~60モル%、特に好ましくは5~50モル%である。なお、ポリアクリル酸は、塩を形成していてもよく、ポリアクリル酸塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩の他、アンモニウム塩や有機アンモニウム塩等が挙げられる。
 ポリビニルアルコールは市販品としても入手可能であり、例えば、PVA117(クラレ社製)、ポバール(クラレ製)、ポリビニルアルコール(アルドリッチ社製)、J-ポバール(日本酢ビ・ポバール社製)が挙げられる。分子量のグレードは種々存在するが、既述のように重量平均分子量が13万から30万のものを選択することが好ましい。
 市販されているポリビニルアルコール-ポリアクリル酸塩共重合体(ナトリウム塩)の市販品とても入手可能であり、例えば、クラストマーAP-20(商品名、クラレ社製)が挙げられる。
 なお、親水性化合物は2種以上を混合して使用してもかまわない。
 親水性化合物の含有量としては、その種類にもよるが、バインダーとして膜を形成し、親水性化合物層が水分を十分保持できるようにする観点から、0.5~50質量%であることが好ましく、さらには0.75~30質量%であることがより好ましく、さらには1~15質量%であることが特に好ましい。
-架橋剤-
 架橋剤としては、上記単一又は複数の架橋可能基を有する親水性化合物と反応し、熱架橋又は光架橋し得る官能基を2以上有する架橋剤を含むものが選択され、形成された架橋構造は、前記(B)群より選択される耐加水分解性の架橋構造となることを要する。このような観点から、本実施形態に使用しうる架橋剤としては、エポキシ架橋剤、多価グリシジルエーテル、多価アルコール、多価イソシアネート、多価アジリジン、ハロエポキシ化合物、多価アルデヒド、多価アミン、有機金属系架橋剤などが挙げられる。好ましくは多価アルデヒド、有機金属系架橋剤、およびエポキシ架橋剤であり、有機金属系架橋剤、およびエポキシ架橋剤がより好ましく、最も好ましいのは、アルデヒド基を2以上有するグルタルアルデヒドやホルムアルデヒドなどの多価アルデヒドである。
 エポキシ架橋剤としては、エポキシ基を2以上有する化合物であり、4以上有する化合物も好ましい。エポキシ架橋剤は市販品としても入手可能であり、例えば、共栄社化学株式会社製、エポライト100MF(トリメチロールプロパントリグリシジルエーテル)、ナガセケムテックス社製EX-411、EX-313、EX-614B、EX-810、EX-811、EX-821、EX-830、日油株式会社製エピオールE400などが挙げられる。また、エポキシ架橋剤に類似する化合物として、環状エーテルを有するオキセタン化合物もまた好ましく使用される。オキセタン化合物としては、官能基を2以上有する多価グリシジルエーテルが好ましく、市販品としては、例えばナガセケムテックス社製EX-411、EX-313、EX-614B、EX-810、EX-811、EX-821、EX-830等が挙げられる。
 多価グリシジルエーテルとしては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、プロピレングリコールグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が挙げられる。
 多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、プロピレングリコール、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピル、オキシエチエンオキシプロピレンブロック共重合体、ペンタエリスリトール、ソビトール等が挙げられる。
 多価イソシアネートとしては、例えば、2,4-トルイレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。また、上記多価アジリジンとしては、例えば、2,2-ビスヒドロキシメチルブタノール-トリス〔3-(1-アシリジニル)プロピオネート〕、1,6-ヘキサメチレンジエチレンウレア、ジフェニルメタン-ビス-4,4’-N,N’-ジエチレンウレア等が挙げられる。
 ハロエポキシ化合物としては、例えば、エピクロルヒドリン、α-メチルクロルヒドリン等が挙げられる。
 多価アルデヒドとしては、例えば、グルタルアルデヒド、グリオキサール等が挙げられる。
 多価アミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等が挙げられる。
 有機金属系架橋剤とは有機チタン架橋剤、有機ジルコニア架橋剤等が挙げられる。
 上記架橋剤のうち、親水性化合物として、例えば、重量平均分子量が13万以上の高分子量体ポリビニルアルコールを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点からエポキシ化合物やグルタルアルデヒドが特に好ましい。また、例えば、重量平均分子量が1万以上のポリアリルアミンを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から、エポキシ化合物、グルタルアルデヒド、及び有機金属架橋剤が特に好ましい。親水性化合物として、ポリエチレンイミン又はポリアリルアミンを用いる場合、架橋剤としてはエポキシ化合物が特に好ましい。
 親水性化合物層形成用塗布液組成物が架橋剤を含有する場合の含有量は、上記親水性化合物が有する架橋可能基量100質量部に対して0.001質量部から80質量部が好ましく、さらに好ましくは0.01質量部から60質量部が好ましく、もっとも好ましくは0.1質量部~50質量部である。含有量が上記範囲であることで、架橋構造の形成性が良好であり、かつ、形成されたゲル膜の形状維持性に優れる。また、親水性化合物の有する架橋可能基に着目すれば、架橋構造は、親水性化合物が有する架橋可能基100molに対し、架橋剤0.001mol~80molを反応させて形成された架橋構造であることが好ましい。
-酸性ガスキャリア-
 酸性ガスキャリアは、酸性ガス(例えば二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、および窒素酸化物(NOx)、塩化水素等のハロゲン化水素)と親和性を有し、かつ、塩基性を示す各種の水溶性の化合物であり、本実施形態においては、アルカリ金属化合物、窒素含有化合物、硫黄酸化物からなる群から選択される少なくとも1種が挙げられる。
 なお、キャリアとは、間接的に酸性ガスと反応するもの、また、そのもの自体が直接酸性ガスと反応するものを言う。
 前者は例えば、供給ガス中に含まれる他のガスと反応し、塩基性を示し、その塩基性化合物と酸性ガスが反応するものなどが挙げられる。より具体的には、スチームと反応してOH-を放出し、そのOH-がCO2と反応することで膜中に選択的にCO2を取り込むことができるようなアルカリ金属化合物のことをいう。
 後者はそのもの自体が塩基性であるような、例えば、窒素含有化合物や硫黄酸化物である。
 アルカリ金属化合物としては、例えば、アルカリ金属炭酸塩、アルカリ金属重炭酸塩及びアルカリ金属水酸化物からなる群から選択される少なくとも1種を含むことが挙げられる。なお、本明細書において、アルカリ金属化合物とは、アルカリ金属そのもののほか、その塩およびそのイオンを含む意味で用いる。
 アルカリ金属炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、及び炭酸セシウムなどが挙げられる。
 アルカリ金属重炭酸塩としては、例えば、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、及び炭酸水素セシウムなどが挙げられる。
 アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、及び水酸化セシウムなどが挙げられる。
 これらの中でも、アルカリ金属炭酸塩が好ましく、また、酸性ガスとの親和性がよいという観点から、水に対する溶解度の高いカリウム、ルビジウム、及びセシウムをアルカリ金属元素として含む化合物が好ましい。
 窒素含有化合物としては、例えば、グリシン、アラニン、セリン、プロリン、ヒスチジン、タウリン、ジアミノプロピオン酸などのアミノ酸類、ピリジン、ヒスチジン、ピペラジン、イミダゾール、トリアジンなどのヘテロ化合物類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミンなどのアルカノールアミン類や、クリプタンド〔2.1〕、クリプタンド〔2.2〕などの環状ポリエーテルアミン類、クリプタンド〔2.2.1〕、クリプタンド〔2.2.2〕などの双環式ポリエーテルアミン類やポルフィリン、フタロシアニン、エチレンジアミン四酢酸などを用いることができる。
 硫黄化合物としては、例えば、シスチン、システインなどのアミノ酸類、ポリチオフェン、ドデシルチオールなどを用いることができる。
 酸性ガス分離層中の酸性ガスキャリアの含有量としては、親水性化合物の量との比率、酸性ガスキャリアの種類にもよるが、酸性ガスキャリアとしての機能が発揮され、かつ使用環境下における酸性ガス分離層としての安定性に優れるという点から0.1質量%以上30質量%以下であることが好ましく、さらに0.2質量%以上20質量%以下であることがより好ましく、さらには0.3質量%以上15質量%以下であることが好ましい。
 酸性ガス分離層は、酸性ガス分離膜としての分離特性に悪影響を及ぼさない範囲で、親水性化合物、酸性ガスキャリア、架橋剤および水以外の、他の成分(添加剤)を含んでいてもよい。任意に用いうる成分としては、例えば、親水性化合物および酸性ガスキャリアを含む酸性ガス分離層形成用水溶液(塗布液)を多孔質支持体上に塗布し、乾燥する過程において、塗布液膜を冷却してゲル化させる、いわゆるセット性を制御するゲル化剤、上記塗布液を塗布装置で塗布する際の塗布時の粘度を調製する粘度調整剤、酸性ガス分離層の膜強度向上のための架橋剤、酸性ガス吸収促進剤、その他、界面活性剤、触媒、補助溶剤、膜強度調整剤、さらには、形成された酸性ガス分離層の欠陥の有無の検査を容易とするための検出剤などが挙げられる。
(透過ガス流路用部材)
 透過ガス流路用部材はスペーサーとしての機能を有し、また透過した酸性ガスを透過ガス流路用部材よりも内側に流す機能を有し、また、樹脂を浸透させる機能を有するようにネット状の部材が好ましい。透過ガス流路用部材の材質は、多孔質支持体と同様のものを用いることができる。また、高温で水蒸気を含有する原料ガスを流すことを想定すると、透過ガス流路用部材も耐熱湿性を有することが好ましい。
 透過ガス流路用部材の使用する具体的素材としては、エポキシ含浸ポリエステルなどポリエステル系、ポリプロピレンなどポリオレフィン系、ポリテトラフルオロエチレンなどフッ素系が好ましい。
 透過ガス流路用部材の厚みは特に限定されないが、100μm以上1000μm以下が好ましく、より好ましくは150μm以上950μm以下、さらに好ましくは200μm以上900μm以下である。
 透過ガス流路用部材は、酸性ガス分離層を透過した酸性ガスの流路となるため、抵抗が少ないことが好ましく、具体的には、空隙率が高く、圧をかけたときの変形が少なく、かつ、圧損が少ないことが望ましい。空隙率に関しては、30%以上95%以下が好ましく、35%以上92.5%以下がより好ましく、さらには40%以上90%以下が好ましい。なお、空隙率の測定は次のように行うことができる。まず、透過ガス流路用部材の空隙部に超音波を利用するなどして十分に水を滲み込ませ、表面の余分な水分を取った後、単位面積あたりの質量を測定する。この質量を乾燥質量から差し引いた値が、透過ガス流路用部材の空隙に入った水の容積であり、水の密度で換算し、空隙量、ひいては空隙率を測定することができる。このとき、十分に水が滲み込んでいない場合は、アルコール系などの表面張力の低い溶剤を用いても測定が可能である。
 圧をかけたときの変形は、引張試験を行ったときの伸度により近似でき、10N/10mm幅の荷重をかけたときの伸度が5%以内であることが好ましく、4%以内であることがより好ましい。
 また、圧損に関しては、一定の流量で流した圧縮空気の流量損失に近似でき、15cm角の透過ガス流路用部材36に室温で15L/min流した際に、7.5L/min以内の損失であることが好ましく、7L/min以内の損失であることがより好ましい。
(供給ガス流路用部材)
 供給ガス流路用部材は酸性ガスを含む原料ガスが供給される部材であり、スペーサーとしての機能を有し、かつ原料ガスに乱流を生じさせることが好ましいことからネット状の部材が好ましく用いられる。供給ガス流路用部材の材質は多孔質支持体と同様のものを用いることができ、また、高温で水蒸気を含有する原料ガスを流すことを想定すると、供給ガス流路用部材もまた耐熱湿性を有することが好ましい。とりわけ、ポリエステル、ポリプロピレン、ポリアミド、ポリフェニレンサルファイド、ポリテトロフルオロエチレン、ポリエーテルエーテルケトンおよびポリ塩化ビニリデンから選ばれる1種以上の樹脂を含んでなる糸で形成された網目構造を有することが好ましい。このような供給ガス流路用部材を用いることにより、後述するように、酸性ガス分離膜とともに透過ガス集合管に巻回させる際に、酸性ガス分離層表面に網目構造の網目を食い込ませて酸性ガス分離層表面に凹凸を形成することができる。
 網目構造の単位格子の形状は目的に応じて、例えば、菱形、平行四辺形などの形状から選択して用いられるが、網目構造によりガスの流路が変わること、網目構造の単位格子の形状は酸性ガス分離層表面に形成される凹凸の凸部の形状となるため、形状は菱形であることが好ましく、網目構造の単位格子のサイズは好ましくは1mm2以上50mm2以下であることが好ましい。
 供給ガス流路用部材の厚みは特に限定されないが、100μm以上1000μm以下が好ましく、より好ましくは150μm以上950μm以下、さらには200μm以上900μm以下であることが好ましい。酸性ガス分離層表面に供給ガス流路用部材の網目構造の網目を食い込ませて酸性ガス分離層表面に凹凸を形成する場合には、供給ガス流路用部材の厚み(糸の太さ)は100μm以上900μm以下が好ましく、より好ましくは150μm以上800μm以下、さらには200μm以上700μm以下であることが好ましい。
<酸性ガス分離用モジュールの製造方法>
 次に、上述した構成の酸性ガス分離用モジュール10の製造方法を説明する。図7A~図7Cは酸性ガス分離用モジュール10の製造工程図である。酸性ガス分離用モジュール10の製造方法では、まず図7Aに示すように、カプトンテープまたは接着剤等の固定部材50で、長尺状の透過ガス流路用部材36の先端部を透過ガス集合管12の管壁(外周面)に固定する。ここで、管壁には、軸方向に沿ってスリット(不図示)が設けられていることが好ましい。この場合、スリットに、透過ガス流路用部材36の先端部を入れ込み、透過ガス集合管12の内周面に固定部材50で固定するようにする。この構成によれば、透過ガス流路用部材36を含んだ積層体14を透過ガス集合管12に巻き付けるときに、テンションをかけながら巻き付けるようにしても、透過ガス集合管12の内周面と透過ガス流路用部材36との摩擦で、透過ガス流路用部材36がスリットから抜けない、すなわち、透過ガス流路用部材36の固定が維持される。
 次に、図7Bに示すように、酸性ガス分離層32Aを内側に二つ折りした長尺状の酸性ガス分離膜32に長尺状の供給ガス流路用部材30を挟み込む。なお、酸性ガス分離膜32を二つ折りする際は、酸性ガス分離膜32を二分割してもよいが、ずらして折ってもよい。
 次に、二つ折りした酸性ガス分離膜32の外表面のうち一方の外表面(多孔質支持体32Bの表面)に対して、膜の幅方向両端部と長手方向一端部に樹脂を塗布する(エンベロープ状に塗布する)。これにより、封止部34、つまり周方向封止部34Aと軸方向封止部34Bが形成される。また、封止部34を形成するための樹脂中には、塗布性を向上させるため、各種溶剤や界面活性剤を含ませてもよい。ガス漏れを抑制するため、この多孔質支持体32Bの孔のうち、10%以上、特に30%の孔を封止部34で埋めることが好ましい。このように埋める手段としては、例えば、特開平3-68428などを利用することができる。
 次に、図7Cに示すように、透過ガス集合管12に固定した透過ガス流路用部材36の表面に、封止部34を介して、供給ガス流路用部材30を挟んだ酸性ガス分離膜32を貼り付ける。なお、酸性ガス分離膜32を貼り付ける際、軸方向封止部34Bが透過ガス集合管12から離れるように貼り付ける。これにより、封止部34全体として巻き始めの酸性ガス分離膜32と透過ガス流路用部材36の間の周方向端部が開口した形となり、周方向封止部34Aと軸方向封止部34Bとの間には、酸性ガス分離膜32を透過した酸性ガス22が貫通孔12Aまで流れる流路P1が形成される。
 続いて、透過ガス流路用部材36に貼り付けた酸性ガス分離膜32の表面(貼り付け面とは逆の面)に対して、膜の幅方向両端部と長手方向一端部に樹脂を塗布する。これにより、封止部40、つまり周方向封止部40Aと軸方向封止部40Bが形成され、かつ、積層体14が形成される。
 次いで、透過ガス流路用部材36で貫通孔12Aを覆うように、透過ガス集合管12に積層体14を図6中矢印R方向に多重に巻き付ける。この際、積層体14に張力をかけながら巻き付けることが好ましい。張力をかけながら巻き付けることにより、封止部34、40の樹脂、特に封止部40の樹脂が多孔質支持体32Bの孔に滲み込み易くなり、ガス漏れをより抑制することができる。なお、張力をかけるためには、上述したように、透過ガス流路用部材36の固定が外れないように、スリットに透過ガス流路用部材36の先端部を入れ込んで固定した方が好ましい。
 供給ガス流路用部材が網目構造の場合には、張力をかけながら巻き付けることにより、網目構造の網目を酸性ガス分離膜32に食い込ませて酸性ガス分離膜32の表面に凹凸を形成することができる。このようにして凹凸を形成する場合には、張力を加減することにより凹部の深さを調整することができる。なお、スパイラル型膜モジュールを使用する際には、圧力容器内に原料ガスを流入させながら分離膜を挟んだ供給側と透過側とに圧力差を与えて分離膜による濃縮または分離が行われるため、供給ガス流路用部材は酸性ガス分離膜32の表面から離れ、供給ガス流路用部材と膜面の間の凹凸状の流路により乱流の発生が促進され、未処理流体の濃度分極の抑制効果を増加させることができる。
 また、封止部34、40の樹脂が硬化すると、この部分に当接する分離膜が、供給ガス流路用部材の網目によって割れやすいが、本発明においては酸性ガス分離層の吸水率が高く柔らかいために硬化樹脂に供給ガス流路用部材の網目が当接しても分離膜に割れが生じることがなく、リークを抑制することができる。
 以上の工程を経ることにより円筒状巻回体が得られ、得られた円筒状巻回体の最外周を被覆層で覆って、両端にテレスコープ防止板を取り付けることで図4に示す酸性ガス分離用モジュール10が得られる。
 以下、本発明の酸性ガス分離用モジュールを実施例によりさらに詳細に説明する。
(分離膜1の作製)
 クラストマーAP-20(クラレ社製):2.4質量%、25%グルタルアルデヒド水溶液(Wako社製):0.01質量%を含む水溶液に、1M塩酸をpH1.5になるまで添加し、架橋後、キャリアとしての40%炭酸セシウム(稀産金属社製)水溶液を炭酸セシウム濃度が5.0質量%になるように添加して塗布組成物とした。この塗布組成物を、PTFE/PP不織布(GE社製)を多孔質支持体として、PTFE側に塗布・乾燥させることで、酸性ガス分離層と多孔質支持体からなる酸性ガス分離膜を作製した。
(分離膜2の作製)
 分離膜1の作製において、グルタルアルデヒド水溶液の添加量を0.02質量%、炭酸セシウムの添加量を3.0質量%にそれぞれ変更した以外は分離膜1の作製と同様にして分離膜2を作製した。
(分離膜3の作製)
 分離膜1の作製において、40質量%炭酸カリウム水溶液を、炭酸カリウム濃度が1.6質量%になるように添加し、炭酸セシウムの添加量を6.0質量%にそれぞれ変更した以外は分離膜1の作製と同様にして分離膜3を作製した。
(分離膜4の作製)
 分離膜1の作製において、40質量%炭酸カリウム水溶液を、炭酸カリウム濃度が0.61質量%になるように添加し、グルタルアルデヒド水溶液の添加量を0.025質量%、炭酸セシウムの添加量を1.0質量%にそれぞれ変更した以外は分離膜1の作製と同様にして分離膜4を作製した。
(分離膜5の作製)
 分離膜1の作製において、40質量%炭酸カリウム水溶液を、炭酸カリウム濃度が2.8質量%になるように添加し、グルタルアルデヒド水溶液の添加量を0.01質量%、炭酸セシウムの添加量を10.0質量%にそれぞれ変更した以外は分離膜1の作製と同様にして分離膜5を作製した。
(実施例1)
 作製した酸性ガス分離膜を、酸性ガス分離層を内側にして二つ折りした。二つ折りした谷部にカプトンテープをはり、供給ガス流路用部材の端部が膜谷部の面状を補強した。そして、二つ折りした酸性ガス分離層に、供給ガス流路用部材として網状形態のポリプロピレンネットを挟み込んでリーフを作製した。作製したリーフの多孔質支持体側にエンベロープ状になるように高粘度(約40Pa・s)のエポキシ樹脂からなる接着剤(ヘンケルジャパン社製:E120HP)を塗り、トリコット編みのエポキシ含浸ポリエステル製透過ガス流路用部材を重ね、透過ガス集合管の周りに多重に巻き付け、テンションをかけることで、供給ガス流路用部材を分離膜面に押し込み、膜面に凹凸を形成させて酸性ガス分離用モジュールを作製した。
(実施例2~16)
 分離膜面の凹凸が、表1に記載したような凹部の深さ、幅、面積率となるようにテンションをかけ、実施例15および16については上記分離膜2および3を用いた以外は実施例1と同様にして、実施例2~16の酸性ガス分離用モジュールを作製した。
(実施例17、18、比較例1~6)
 分離膜表面にエンボス加工により表1に示す凹凸構造を設けた以外は実施例1と同様にして実施例17、18、比較例1~6の酸性ガス分離用モジュールを作製した。
(比較例7、8)
 分離膜表面にエンボス加工により表1に示す凹凸構造を設け、上記分離膜4および5を用いた以外は実施例1と同様にして比較例7および8の酸性ガス分離用モジュールを作製した。
<分離膜の凹部の深さ、幅、面積率の測定>
 キーエンス社製レーザーマイクロスコープVK-X200を用いて、分離膜の供給流路側表面3cm角における100箇所の凹部の深さ、幅を測定し平均値を求め、これを凹部の深さ、幅とした。また、3cm角における凹部が占める面積を計測して面積率を求めた。
<吸水率の測定>
 露点-20℃環境下での10cm角の分離膜の質量をA、25℃相対湿度20%環境における10cm角の分離膜の質量をBとして、以下計算式により算出した値を吸水率とした。
 (B-A)÷B×100
(評価)
<欠陥評価によるモジュール製造得率の算出>
 作製したモジュールの供給側にHeガスを充填した後、密閉し、0.34MPaから0.3MPaに圧力が減少する時間で評価した。10000秒以上かかったものを欠陥なしとし、モジュールの作製および欠陥評価を5回実施し以下の基準により評価した。
A:モジュール5本中欠陥なしが4本以上
B:モジュール5本中欠陥なしが3本~1本
C:モジュール5本中欠陥なしが0本
<膜性能評価>
 作製した各実施例及び比較例の酸性ガス分離用モジュールを用い、ガス分離性能について以下のような条件で評価した。
 テストガスとしてH2:CO2:H2O=45:5:50の原料ガス(流量2.2L/min)を温度130℃、全圧301.3kPaで、各二酸化炭素分離用モジュールに供給し、透過側にArガス(流量0.6L/min)をフローさせた。透過してきたガスをガスクロマトグラフで分析し、CO2透過速度(P(CO2))を算出した。モジュールの作製および性能評価を5回実施し、以下の基準で評価した。なお、透過速度の単位GPUは(1GPU=1×10-6cm3(STP)/(s・cm2・cmHg)である。
 A:平均値が30GPU以上
 B:平均値が20以上30GPU未満
 C:平均値が20GPU未満
 評価結果を膜凹凸構造、吸水率とともに表1に示す。なお、膜性能評価における「-」はモジュール製造において欠陥発生のため評価不可であることを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、酸性ガス分離層の吸水率が1%以上20%以下であって、酸性ガス分離層表面の凹凸の凹部の深さが3μm以上500μm以下、凹部の幅が5μm以上1000μm以下であって、凹部の面積率が2%以上50%以下の実施例においては、モジュールの欠陥が抑制されており、膜性能も良好であった。凹凸構造が所望範囲であっても酸性ガス分離層の吸水率が1%未満の比較例7や、吸水率が20%を超える比較例8ではモジュールの欠陥が顕著となった。比較例7の場合にはモジュール作製時の折り曲げ工程等によりワレが発生したためと考えられる。比較例8の場合には吸水率が高すぎて、供給ガス流路用部材が圧力によって押し込まれやすく酸性ガス分離層に亀裂が入り、封止部欠損が生じたためと考えられる。
 一方、酸性ガス分離層の吸水率が所望の範囲であっても、凹部の深さが3μm未満であったり(比較例1)、凹部の面積率が2%未満であったり(比較例5)、50%を超える場合(比較例6)には、モジュールの欠陥は抑制できるものの、分離性能は低下した。比較例1や5の場合には、凹凸があっても濃度分極を抑制することができず、有効膜面性も上げることができず分離性能が低下したものと考えられる。一方、比較例6の場合には圧力損失が上がったために、分離性能が低下したものと考えられる。また、酸性ガス分離層の吸水率が所望の範囲であっても、凹部の深さが500μmを超えたり(比較例2)、凹部の幅が所望の範囲でない場合(比較例3および4)では、モジュールの欠陥が抑制できなかった。これは、酸性ガス分離層が表面に設けられた供給ガス流路用部材の圧力によって押し込まれた際に、分離膜の柔らかさによって、亀裂が入ることを抑制できる許容範囲を逸脱したためと考えられる。
 以上の結果から明らかなように、本発明の酸性ガス分離用モジュールは酸性ガス分離層の吸水率が1%以上20%以下であるので、封止部分の封止欠損を抑制することが可能であって、リークを抑制することができ、また酸性ガス分離層が表面に凹凸を有し、凹凸の凹部の深さが3μm以上500μm以下、凹部の幅が5μm以上1000μm以下であって、凹部の面積率が2%以上50%以下であるので、圧力損失を低減しながら、同時に濃度分極を抑制し、有効膜面性を上げることができるので、分離性能の高い酸性ガス分離用複合体、酸性ガス分離用モジュールとすることができる。

Claims (6)

  1.  多孔質支持体と該多孔質支持体上に設けられた親水性化合物および原料ガス中の酸性ガスと反応する酸性ガスキャリアを含む酸性ガス分離層とからなる酸性ガス分離膜と、前記酸性ガスキャリアと反応して前記酸性ガス分離層を透過した酸性ガスが流れる透過ガス流路用部材と、前記酸性ガス分離層表面に設けられた原料ガスが供給される供給ガス流路用部材とを備え、前記透過ガス流路用部材と前記多孔質支持体との周縁であって封止が必要な領域が樹脂により封止された封止部を有する酸性ガス分離用複合体であって、
     前記酸性ガス分離層の吸水率が1%以上20%以下であり、該酸性ガス分離層が表面に凹凸を有し、該凹凸の凹部の深さが3μm以上500μm以下、凹部の幅が5μm以上1000μm以下、凹部の面積率が2%以上50%以下であることを特徴とする酸性ガス分離用複合体。
  2.  多孔質支持体と該多孔質支持体上に設けられた親水性化合物および原料ガス中の酸性ガスと反応する酸性ガスキャリアを含む酸性ガス分離層とからなる酸性ガス分離膜と、前記酸性ガスキャリアと反応して酸性ガス分離層を透過した酸性ガスが流れる透過ガス流路用部材と、前記酸性ガス分離層表面に設けられた原料ガスが供給される供給ガス流路用部材とを備え、前記多孔質支持体と前記透過ガス流路用部材の幅方向両端部と長手方向一端部が樹脂により封止された封止部を有し、前記酸性ガス分離膜および前記透過ガス流路用部材が、前記供給ガス流路用部材とともに管壁に貫通孔が形成された透過ガス集合管に巻回させた酸性ガス分離用モジュールであって、
     前記酸性ガス分離層の吸水率が1%以上20%以下であり、該酸性ガス分離層が表面に凹凸を有し、該凹凸の凹部の深さが3μm以上500μm以下、凹部の幅が5μm以上1000μm以下、凹部の面積率が2%以上50%以下であることを特徴とする酸性ガス分離用モジュール。
  3.  前記凹凸が前記供給ガス流路用部材の網目構造により形成されたものであることを特徴とする請求項2記載の酸性ガス分離用モジュール。
  4.  前記供給ガス流路用部材が、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリテトラフルオロエチレン(PTFE)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルホン(PSF)、ポリプロピレン(PP)、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトン及びポリフッ化ビニリデンから選ばれる1種以上の樹脂を含んでなる糸で形成された網目構造を有することを特徴とする請求項3記載の酸性ガス分離用モジュール。
  5.  前記キャリアが、アルカリ金属化合物を含むことを特徴とする請求項2、3または4記載の酸性ガス分離用モジュール。
  6.  多孔質支持体上に、親水性化合物および原料ガス中の酸性ガスと反応する酸性ガスキャリアを含む酸性ガス分離層を設けて、多孔質支持体と酸性ガス分離層とからなる酸性ガス分離膜を形成する工程と、
     前記多孔質支持体と、前記酸性ガスキャリアと反応して前記酸性ガス分離層を透過した酸性ガスが流れる透過ガス流路用部材の幅方向両端部と長手方向一端部に樹脂を滲みこませて封止部を形成する工程と、
     前記酸性ガス分離層表面に網目構造を有する供給ガス流路用部材を配置し、前記酸性ガス分離膜とともに管壁に貫通孔が形成された透過ガス集合管に巻回させて前記酸性ガス分離層表面に前記網目構造の網目を食い込ませて該酸性ガス分離層表面に凹凸を形成する工程とを含むことを特徴とする酸性ガス分離用モジュールの製造方法。
PCT/JP2014/001616 2013-03-26 2014-03-20 酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用モジュールの製造方法 WO2014156087A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013063743A JP5946220B2 (ja) 2013-03-26 2013-03-26 酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用モジュールの製造方法
JP2013-063743 2013-03-26

Publications (1)

Publication Number Publication Date
WO2014156087A1 true WO2014156087A1 (ja) 2014-10-02

Family

ID=51623101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001616 WO2014156087A1 (ja) 2013-03-26 2014-03-20 酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用モジュールの製造方法

Country Status (2)

Country Link
JP (1) JP5946220B2 (ja)
WO (1) WO2014156087A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105771656A (zh) * 2016-04-29 2016-07-20 艾欧史密斯(中国)热水器有限公司 反渗透膜组件及其制备方法
CN113260443A (zh) * 2018-12-28 2021-08-13 日东电工株式会社 过滤器褶裥组件和空气过滤器单元

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020108881A (ja) * 2018-12-28 2020-07-16 日東電工株式会社 フィルタ濾材、フィルタプリーツパック、フィルタユニット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369503A (ja) * 1986-08-29 1988-03-29 アドバンスド・ポリマ−・テクノロジ−・インコ−ポレ−テド 高流束密度、低汚れ傾向の透過性膜
WO2012033086A1 (ja) * 2010-09-07 2012-03-15 東レ株式会社 分離膜、分離膜エレメントおよび分離膜の製造方法
JP2012066239A (ja) * 2010-08-24 2012-04-05 Toray Ind Inc 分離膜および分離膜エレメント
JP2013027841A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369503A (ja) * 1986-08-29 1988-03-29 アドバンスド・ポリマ−・テクノロジ−・インコ−ポレ−テド 高流束密度、低汚れ傾向の透過性膜
JP2012066239A (ja) * 2010-08-24 2012-04-05 Toray Ind Inc 分離膜および分離膜エレメント
WO2012033086A1 (ja) * 2010-09-07 2012-03-15 東レ株式会社 分離膜、分離膜エレメントおよび分離膜の製造方法
JP2013027841A (ja) * 2011-07-29 2013-02-07 Fujifilm Corp 二酸化炭素分離部材、その製造方法及び二酸化炭素分離モジュール

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105771656A (zh) * 2016-04-29 2016-07-20 艾欧史密斯(中国)热水器有限公司 反渗透膜组件及其制备方法
CN113260443A (zh) * 2018-12-28 2021-08-13 日东电工株式会社 过滤器褶裥组件和空气过滤器单元
CN113260443B (zh) * 2018-12-28 2023-06-13 日东电工株式会社 过滤器褶裥组件和空气过滤器单元

Also Published As

Publication number Publication date
JP2014188393A (ja) 2014-10-06
JP5946220B2 (ja) 2016-07-05

Similar Documents

Publication Publication Date Title
JP6071004B2 (ja) 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
JP6161124B2 (ja) 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
US9700833B2 (en) Complex for acid gas separation, module for acid gas separation, and method for manufacturing module for acid gas separation
JP6001013B2 (ja) 酸性ガス分離用スパイラル型モジュール
JP5990556B2 (ja) 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
US20150165384A1 (en) Composite for carbon dioxide separation, module for carbon dioxide separation and method for producing composite for carbon dioxide separation
TW201517976A (zh) 酸性氣體分離模組
JP5990225B2 (ja) 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
TW201511824A (zh) 酸性氣體分離用螺旋型模組
JP6276598B2 (ja) 酸性ガス分離用モジュール
JP5946220B2 (ja) 酸性ガス分離用複合体、酸性ガス分離用モジュールおよび酸性ガス分離用モジュールの製造方法
JP6145349B2 (ja) 酸性ガス分離モジュール
JP5999844B2 (ja) 酸性ガス分離用モジュール
JP6037965B2 (ja) 酸性ガス分離モジュール
WO2015107820A1 (ja) 酸性ガス分離用スパイラル型モジュールおよび製造方法
JP5972232B2 (ja) 酸性ガス分離モジュール
JP2015061721A (ja) 酸性ガス分離層、酸性ガス分離層の製造方法、および、酸性ガス分離モジュール
JPWO2016117349A1 (ja) 酸性ガス分離モジュール
JP2014065034A (ja) 酸性ガス分離層、その製造方法及びその促進輸送膜、並びに、酸性ガス分離モジュール及び酸性ガス分離システム
JP2015020147A (ja) 酸性ガス分離用スパイラル型モジュール
JP6005003B2 (ja) 酸性ガス分離用スパイラル型モジュール
JP6392412B2 (ja) 酸性ガス分離複合膜の製造方法及び酸性ガス分離用モジュール
JP2015029959A (ja) 酸性ガス分離モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14776352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14776352

Country of ref document: EP

Kind code of ref document: A1