WO2014155665A1 - 中空ポペットバルブ - Google Patents

中空ポペットバルブ Download PDF

Info

Publication number
WO2014155665A1
WO2014155665A1 PCT/JP2013/059526 JP2013059526W WO2014155665A1 WO 2014155665 A1 WO2014155665 A1 WO 2014155665A1 JP 2013059526 W JP2013059526 W JP 2013059526W WO 2014155665 A1 WO2014155665 A1 WO 2014155665A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
hollow portion
diameter hollow
coolant
diameter
Prior art date
Application number
PCT/JP2013/059526
Other languages
English (en)
French (fr)
Inventor
大樹 小沼
Original Assignee
日鍛バルブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鍛バルブ株式会社 filed Critical 日鍛バルブ株式会社
Priority to JP2015507868A priority Critical patent/JP6131318B2/ja
Priority to PCT/JP2013/059526 priority patent/WO2014155665A1/ja
Publication of WO2014155665A1 publication Critical patent/WO2014155665A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/22Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/001Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
    • B23P15/002Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings poppet valves

Definitions

  • the present invention relates to a hollow poppet valve in which a coolant is loaded in a hollow portion formed from the umbrella portion to the shaft portion of the poppet valve.
  • a hollow part is formed from the umbrella part of the poppet valve integrally formed on one end side of the shaft part to the shaft part, and has a higher thermal conductivity than the base material of the valve.
  • a hollow poppet valve is described in which a coolant (eg, metallic sodium, melting point about 98 ° C.) is loaded into the hollow portion with an inert gas.
  • the thermal conductivity of the valve (hereinafter referred to as the heat extraction effect of the valve) can be improved. it can.
  • the combustion chamber becomes hot due to the driving of the engine, but if the temperature of the combustion chamber is too high, knocking occurs and a predetermined engine output cannot be obtained, leading to deterioration of fuel consumption (deterioration of engine performance). Therefore, as a method of actively conducting heat generated in the combustion chamber through the valve in order to lower the temperature of the combustion chamber (a method for increasing the heat-sucking effect of the valve), the coolant is hollowed together with the inert gas.
  • Various hollow valves loaded in the box have been proposed.
  • the communication part between the disk-shaped large-diameter hollow part in the umbrella part and the linear small-diameter hollow part in the shaft part is constituted by a smooth curved area (transition area where the inner diameter gradually changes).
  • this communicating part has a smoothly continuous shape, the coolant (liquid) together with the enclosed gas and the large-diameter hollow part during the opening / closing operation of the valve (reciprocating operation in the axial direction of the valve) It is thought that it can move smoothly between the small-diameter hollow portions, and the heat-drawing effect of the valve is improved.
  • the coolant (liquid) moves smoothly between the large-diameter hollow part and the small-diameter hollow part according to the opening / closing operation of the valve.
  • the coolant (liquid) in the hollow portion moves in the axial direction in a state where the upper layer portion, the middle layer portion, and the lower layer portion are maintained in a vertical relationship without being stirred.
  • the linear small-diameter hollow portion in the valve shaft portion is communicated so as to be substantially orthogonal to the ceiling surface of the frustoconical large-diameter hollow portion in the valve umbrella portion, and the large-diameter hollow portion to the small-diameter hollow portion.
  • Patent Document 3 has a structure in which a linear small-diameter hollow portion communicates with a ceiling surface of a large-diameter hollow portion having a truncated cone shape, and a part of the coolant has a communicating portion when the valve is opened and closed. Therefore, the momentum of the tumble flow formed on the coolant in the large-diameter hollow portion is weakened accordingly. For this reason, the coolant is not sufficiently agitated, and the heat drawing effect (thermal conductivity) is not sufficiently exhibited (first problem).
  • Patent Document 3 “By forming the large-diameter hollow portion in the valve umbrella portion into a substantially truncated cone shape, the valve in the large-diameter hollow portion is opened and closed during the opening / closing operation. Assuming the configuration of ⁇ forming a tumble flow in the coolant '', the small-diameter hollow part in the valve shaft part is separated from the large-diameter hollow part by the partition wall, and both the hollow parts are filled with the coolant together with the inert gas.
  • the coolant in both hollow parts moves smoothly in the vertical direction in each hollow part, and in particular, in the large-diameter hollow part, the inertial force acting on the coolant is only for the formation of the tumble flow. Therefore, the tumble flow can be smoothly formed and the first problem described above can be solved, and the partition wall separating the large-diameter hollow portion and the small-diameter hollow portion can be bent or twisted in the valve shaft portion. Low strength against Since supplement, also it can solve the second problem described above, were considered.
  • the present invention has been made on the basis of the above-mentioned knowledge of the inventor with respect to the prior art document, and its purpose is to separate the small-diameter hollow portion in the valve shaft portion from the large-diameter hollow portion having a truncated cone shape in the valve umbrella portion by a partition wall.
  • a hollow portion is formed from the umbrella portion of the poppet valve integrally formed on one end side of the shaft portion to the shaft portion.
  • the hollow poppet valve in which the hollow portion is filled with a coolant together with an inert gas A large-diameter hollow portion having a substantially truncated cone shape having a tapered outer peripheral surface that substantially follows the outer shape of the umbrella portion is provided in the umbrella portion, while a ceiling surface of the large-diameter hollow portion is provided in the shaft portion.
  • a linear small-diameter hollow portion extending to the vicinity of the ceiling surface so as to be substantially perpendicular to the ceiling surface is provided, and the small-diameter hollow portion and the large-diameter hollow portion are separated by a partition wall provided between both hollow portions and separated. Both hollow portions are filled with a coolant together with an inert gas, and a tumble flow is formed around the central axis of the valve in the coolant in the large-diameter hollow portion when the valve is opened and closed. It was configured as follows.
  • a structure formed integrally with the valve umbrella portion As shown in FIG. 5, a structure constituted by a plug inserted into an opening portion of a small-diameter hollow portion into a large-diameter hollow portion is conceivable.
  • the amount of the cooling material loaded in the hollow portion is generally excellent in the heat drawing effect (thermal conductivity), but as the amount increases, the heat drawing effect on the loading amount does not increase, especially in the large-diameter hollow portion, If the amount is too large, it is difficult to form a tumble flow. Therefore, the amount of the coolant to be charged is preferably about 1/2 to 4/5 of the volume of each hollow portion.
  • the small-diameter hollow portion extends linearly, the entire coolant moves smoothly upward.
  • the large-diameter hollow portion is formed in a substantially truncated cone shape having a tapered outer peripheral surface that substantially follows the outer shape of the umbrella portion, as shown in FIG.
  • the inertial force (upward) acting on the coolant is larger than the inertial force acting on the coolant in the peripheral area of the large-diameter hollow portion. For this reason, as shown to Fig.3 (a), the flow F1 which goes to a radial direction outer side along the ceiling surface from the center part of a large diameter hollow part generate
  • a swirling flow (hereinafter referred to as an outer tumble flow) T1 is formed around the central axis of the valve. Is done.
  • the entire coolant that has moved upward when the valve shifts from the open state to the closed state moves smoothly downward.
  • the inertial force (downward) acting on the coolant in the central portion of the large-diameter hollow portion is the inertia acting on the coolant in the peripheral region of the large-diameter hollow portion, as shown in FIG. Greater than power.
  • a swirling flow (hereinafter referred to as an inner tumble flow) T2 is formed around the central axis of the valve in the large-diameter hollow portion coolant. Is done.
  • the tumble flows T1 and T2 shown in FIG. 3 are formed in the coolant in the large-diameter hollow portion of the valve, and the upper and middle layers of the coolant in the entire hollow portion are formed. Since the lower layer is actively stirred, the heat-sucking effect (thermal conductivity) of the valve is remarkably improved.
  • a hollow valve configured to be hollow from the valve shaft portion to the valve umbrella portion is less resistant to bending or twisting of the valve shaft portion than a hollow valve having a solid valve shaft portion.
  • the partition wall provided between the small-diameter hollow portion and the large-diameter hollow portion compensates for a decrease in strength against bending and twisting of the valve shaft portion.
  • the partition wall defining the ceiling surface of the large-diameter hollow portion or the valve umbrella surface forming wall defining the bottom surface of the large-diameter hollow portion is provided with a conical guide protrusion that promotes the formation of the swirling flow.
  • an outer tumble flow T1 indicated by arrows F1 ⁇ F2 ⁇ F3 ⁇ F1 is formed in the coolant in the large-diameter hollow portion.
  • the guide protrusion provided on the valve umbrella guides the coolant flow F1 toward the ceiling surface in the center of the large-diameter hollow portion so as to go radially outward along the ceiling surface, and is provided on the valve umbrella surface forming wall.
  • the protrusion guides the flow F3 directed radially inward along the bottom surface of the large-diameter hollow portion so as to be directed upward from the central portion of the large-diameter hollow portion, thereby contributing to the smooth formation of the outer tumble flow T1.
  • an inner tumble flow T2 indicated by arrows F6 ⁇ F7 ⁇ F8 ⁇ F6 is formed in the coolant in the large-diameter hollow portion.
  • the guide protrusion provided on the wall guides the coolant flow F6 toward the bottom surface in the center of the large-diameter hollow portion so as to go radially outward along the bottom surface, and the guide protrusion provided on the partition wall has a large diameter.
  • the flow F8 directed radially inward along the ceiling surface of the hollow portion S1 is guided downward in the central portion of the large-diameter hollow portion, thereby contributing to the smooth formation of the inner tumble flow T2.
  • the inner diameter of the small-diameter hollow part near the valve shaft end is formed larger than the inner diameter of the small-diameter hollow part near the valve umbrella part,
  • An annular step portion is provided at a predetermined axial position in the small-diameter hollow portion, and the coolant is loaded to a position beyond the step portion.
  • turbulent flow is generated in the vicinity of the stepped portion when the coolant moves in the axial direction in the small-diameter hollow portion along with the opening / closing operation (vertical reciprocating operation) of the valve. Since the coolant is agitated, the heat pulling effect (thermal conductivity) at the valve shaft is further increased.
  • the partition is formed integrally with the valve umbrella.
  • the entire coolant in the small-diameter hollow portion moves smoothly in the axial direction during the opening / closing operation (vertical movement operation) of the valve, and the coolant in the large-diameter hollow portion. Since the whole is vigorously stirred by the vigorous tumble flow, the heat pulling effect (thermal conductivity) particularly in the valve umbrella is remarkably improved, and the performance of the engine is improved.
  • the partition that separates the small-diameter hollow portion and the large-diameter hollow portion compensates for the decrease in the bending strength and torsional strength of the valve shaft portion, so that a hollow poppet valve with excellent heat-drawing effect (thermal conductivity) and durability can be obtained. Can be provided.
  • the tumble flow having a momentum in the coolant in the large-diameter hollow portion is smoothly formed during the opening / closing operation (vertical movement operation) of the valve,
  • the coolant in the hollow portion is sufficiently agitated to provide a hollow poppet valve that is more excellent in the heat pulling effect (thermal conductivity).
  • the entire coolant in the small-diameter hollow portion is also actively agitated with the opening / closing operation (vertical operation) of the valve, so that the heat drawing effect (thermal conductivity) An even better hollow poppet valve can be provided.
  • the partition wall separating the large-diameter hollow portion and the small-diameter hollow portion is excellent in durability, and the predetermined heat-drawing effect in the valve is ensured for a long time. Can be stably exhibited over a long period of time.
  • the heat pulling effect of the valve can be further enhanced by configuring the plug material with a material having a higher heat transfer coefficient than that of the valve material.
  • FIG. 1 It is a longitudinal cross-sectional view of the hollow poppet valve which is the 1st Example of this invention. It is a figure which shows the inertial force which acts on the coolant in the hollow part at the time of the same hollow poppet valve reciprocatingly, (a) shows the inertial force which acts on the coolant at the time of valve opening operation
  • FIG. 4 is a diagram showing a manufacturing process of the hollow poppet valve, wherein (a) is a hot forging process for forging a shell which is an intermediate product of the valve, and (b) is a hole drilling for drilling a hole corresponding to a small-diameter hollow part near the umbrella part.
  • (C) is a hole drilling step for drilling a hole corresponding to the small-diameter hollow portion near the shaft end
  • (d) is a coolant loading step for filling the small-diameter hollow portion with a coolant
  • (e) is a shaft
  • (f) a coolant loading process for filling the large-diameter hollow part with a coolant
  • (g) a concave part of the umbrella outer shell (large-diameter hollow part) ) Is a diagram showing a step of joining a cap to the opening-side inner peripheral surface (a large-diameter hollow portion sealing step).
  • FIG. 1 It is a figure which shows the manufacturing process of the hollow poppet valve, (a) is a hot forging process forging a shell which is a valve intermediate product, (b) is a hole drilling process for drilling a hole corresponding to a small-diameter hollow part, (C) is a coolant charging step for filling the small-diameter hollow portion with the coolant, (d) is an axial contact step (small-diameter hollow portion sealing step) for axially contacting the shaft end member, and (e) is a coolant for the large-diameter hollow portion.
  • FIG. F is a figure which shows the process (large diameter hollow part sealing process) which joins a cap to the opening side inner peripheral surface of the recessed part (large diameter hollow part) of an umbrella outer shell.
  • It is a longitudinal cross-sectional view of the hollow poppet valve which is the 3rd Example of this invention. It is a figure which shows the manufacturing process of the same hollow poppet valve, (a) is the hot forging process which forges the shell which is a valve intermediate product, (b) is the recessed part bottom face (ceiling surface of a large diameter hollow part) of an umbrella outer shell.
  • FIG. 1 to 4 show a hollow poppet valve for an internal combustion engine according to a first embodiment of the present invention.
  • reference numeral 10 denotes a heat resistant structure in which a valve umbrella portion 14 is integrally formed on one end side of a valve shaft portion 12 extending straight through an R-shaped fillet portion 13 whose outer diameter gradually increases.
  • a tapered face portion 16 is provided on the outer periphery of the valve umbrella portion 14.
  • the hollow portion in the hollow poppet valve 10 is divided into a large-diameter hollow portion S1 on the valve umbrella portion 14 side by a partition wall 15 provided at a position corresponding to the fillet portion 13 between the valve umbrella portion 14 and the valve shaft portion 12. While being separated into the small-diameter hollow portion S2 on the shaft portion 12 side, the separated hollow portions S1 and S2 are loaded with a coolant 19 together with an inert gas.
  • valve umbrella portion 14 there is provided a truncated cone-shaped large-diameter hollow portion S 1 having a circular ceiling surface 14 b 1 and a tapered outer peripheral surface (inclined surface) 14 b 2 that substantially follows the outer shape of the valve umbrella portion 14.
  • an elongated columnar small-diameter hollow portion S2 extending to the vicinity of the ceiling surface 14b1 is provided in the valve shaft portion 12 so as to be orthogonal to the circular ceiling surface 14b1 of the large-diameter hollow portion S1.
  • a partition wall 15 having a predetermined thickness formed integrally with the valve umbrella 14 is provided between the hollow portion S2 and the large-diameter hollow portion S2.
  • the hollow poppet valve 10 in which the hollow portion S1 in the valve umbrella portion 14 and the hollow portion S2 in the valve shaft portion 12 are separated by a partition wall 15 is constituted by the shaft end member 12b that is in axial contact with the shaft portion 12a.
  • the hollow portions S1 and S2 are loaded with a coolant 19 such as metallic sodium together with an inert gas such as argon gas.
  • a coolant 19 such as metallic sodium
  • an inert gas such as argon gas
  • reference numeral 2 denotes a cylinder head
  • reference numeral 6 denotes an exhaust passage extending from the combustion chamber 4.
  • An annular valve seat 8 provided with 8a is provided.
  • Reference numeral 3 denotes a valve insertion hole provided in the cylinder head 2, and the valve insertion hole 3 includes a cylindrical valve guide 3 a with which the shaft portion 12 of the valve 10 is slidably contacted.
  • Reference numeral 9 is a valve spring that urges the valve 10 in the valve closing direction (upward in FIG. 1)
  • reference numeral 12 c is a cotter groove provided at the end of the valve shaft 12.
  • the shell 11 and the cap 18 that are exposed to the high-temperature gas in the combustion chamber 4 and the exhaust passage 6 are made of heat-resistant steel.
  • the shaft end member 12b that does not require as much heat resistance as 18 is made of a general steel material.
  • the coolant 19 in the large-diameter hollow portion S1 moves in the vertical direction by the acting inertial force.
  • tumble flows T1 and T2 are formed, and the upper layer portion, middle layer portion, and lower layer portion of the coolant 19 are actively stirred.
  • the heat drawing effect (thermal conductivity) of the umbrella portion 14 of the valve 10 is greatly improved.
  • the small-diameter hollow portion S2 includes a small-diameter hollow portion S21 near the valve shaft end portion having a relatively large inner diameter d1 and a small-diameter hollow portion S22 near the valve umbrella portion 14 having a relatively small inner diameter d2 (d2 ⁇ d1).
  • An annular stepped portion 17 is formed between the small-diameter hollow portions S21 and S22, and the coolant 19 is loaded up to a position beyond the stepped portion 17.
  • the large-diameter hollow portion S1 is formed in a substantially truncated cone shape having a tapered outer peripheral surface 14b2 that substantially follows the outer shape of the umbrella portion 14, as shown in FIG.
  • the inertial force (upward) acting on the coolant in the central portion of the hollow portion S1 is larger than the inertial force acting on the coolant in the peripheral region of the large-diameter hollow portion.
  • the flow F1 which goes to a radial direction outer side along the ceiling surface 14b1 generate
  • an outer tumble flow T1 is formed around the central axis L of the valve, as indicated by arrows F1, F2, F3, and F1, in the coolant in the large-diameter hollow portion S1.
  • the inertial force (downward) acting on the coolant 19 in the central part of the large-diameter hollow part S1 is, as shown in FIG. 2B, the coolant 19 in the peripheral area of the large-diameter hollow part S1. Greater than the inertial force acting on For this reason, as shown in FIG.3 (b), the flow F6 which goes to a radial direction outer side along the bottom face from the center part of large diameter hollow part S1 generate
  • an inward tumble flow T2 is formed around the central axis L of the valve 10 in the coolant 19 of the large-diameter hollow portion S1, as indicated by arrows F6 ⁇ F7 ⁇ F8 ⁇ F6.
  • the coolant 19 in the small-diameter hollow portion S2 of the valve 10 is agitated by the turbulent flows F9 and F10 generated when the valve 10 opens and closes, and the coolant 19 in the large-diameter hollow portion S1 of the valve 10 is stirred. Since the upper layer portion, the middle layer portion, and the lower layer portion are actively stirred by the tumble flows T1 and T2 formed when the valve 10 is opened and closed, the heat drawing effect (thermal conductivity) of the valve 10 is remarkably increased. Has been enhanced.
  • the stepped portion 17 in the small-diameter hollow portion S is provided at a position substantially corresponding to the end portion 3 b facing the exhaust passage 6 of the valve guide 3 and has a shaft end portion having a large inner diameter.
  • the stepped portion 17 in the small-diameter hollow portion S has a predetermined position (in the valve shaft portion 12) that does not enter the exhaust passage 6 when the valve 10 is fully opened (lowered) as shown by the phantom line in FIG.
  • a thin-walled small-diameter hollow portion S21 forming wall is provided at a predetermined position that is not easily affected by heat in the exhaust passage 6.
  • Reference numeral 17X in FIG. 1 indicates the position of the stepped portion 17 in a state where the valve 10 is fully opened (lowered).
  • the region near the valve umbrella portion 14 in the valve shaft portion 12 that is always in the exhaust passage 6 and exposed to high heat reduces the fatigue strength. It must be formed to a thickness that can withstand.
  • heat from the combustion chamber 4 and the exhaust passage 6 is transmitted via the coolant 19.
  • the transmitted heat is immediately radiated to the cylinder head 2 through the valve guide 3a, the temperature does not become as high as that near the valve umbrella portion 14.
  • the inner diameter of the small-diameter hollow portion S21 is increased, and first, the surface area of the entire small-diameter hollow portion S2 (contact area with the coolant 19) is increased, so that the valve shaft portion 12 Heat transfer efficiency is increased. Secondly, the total weight of the valve 10 is reduced by increasing the volume of the entire small-diameter hollow portion S2.
  • the valve 10 can be provided at low cost by using an inexpensive material having lower heat resistance than the material of the shell 11.
  • the hollow valve configured to be hollow from the valve shaft portion to the valve umbrella portion has a valve shaft portion as compared with a hollow valve having a solid valve shaft portion.
  • the partition wall 15 that separates the small-diameter hollow portion S2 and the large-diameter hollow portion S1 is formed integrally with the valve umbrella portion 14 to provide a valve shaft. Since the decrease in strength against bending and twisting of the portion 12 is compensated, the durability is increased accordingly.
  • a shell 11 in which an umbrella outer shell 14a provided with a truncated cone-shaped concave portion 14b and a shaft portion 12a are integrally formed is formed by a hot forging process.
  • a bottom surface 14b1 of the truncated conical recess 14b in the umbrella outer shell 14a is formed by a plane orthogonal to the shaft portion 12a (the central axis L of the shell 11).
  • a hot forging process after forging a spherical part at the end of a heat-resistant steel bar with an extruding forging to manufacture the shell 11 from a heat-resistant steel block or an upsetter by extrusion forging that sequentially replaces the mold, Any of upsetting forging which forges shell 11 (umbrella outer shell 14a) using a metal mold may be used.
  • an R-shaped fillet portion 13 is formed between the umbrella outer shell 14a and the shaft portion 12a of the shell 11, and a tapered face portion is formed on the outer peripheral surface of the umbrella outer shell 14a. 16 is formed.
  • a hole 14e corresponding to the small-diameter hollow portion S22 is drilled from the end side of the shaft portion 12a of the shell 11 (hole drilling step).
  • a partition wall 15 is formed that separates the concave portion 14b of the umbrella outer shell 14a constituting the large-diameter hollow portion S1 and the hole 14e on the shaft portion 12a side constituting the small-diameter hollow portion S22.
  • a hole 14f corresponding to the small-diameter hollow portion S21 is drilled from the end of the shaft portion 12a of the shell 11 (hole drilling step).
  • the shaft portion 12a of the shell 11 is arranged facing upward, and a predetermined amount of coolant (solid) 19 is filled in the holes 14e and 14f corresponding to the small-diameter hollow portion S2. (Coolant charging process).
  • the shaft end member 12b is axially contacted with the shaft portion 12a of the shell 11 in an argon gas atmosphere (small diameter hollow portion sealing step).
  • the umbrella outer shell 14a is arranged facing upward, and a predetermined amount of coolant (solid) 19 is filled in the recess 14b of the umbrella outer shell 14a (coolant charging). Process).
  • a cap 18 is joined (for example, resistance joining) to the opening-side inner peripheral surface 14c of the concave portion 14b of the umbrella outer shell 14a under an argon gas atmosphere.
  • the large-diameter hollow portion S1 is sealed (large-diameter hollow portion sealing step), and the valve 10 is completed by processing to form the cotter groove 12c at the shaft end portion.
  • the cap 18 may be joined by electron beam welding or laser welding instead of resistance joining.
  • the side facing the large-diameter hollow portion S1 of the partition wall 15 is configured as a plane, but in the hollow poppet valve 10A of the second embodiment, the partition wall 15A Conical guide protrusions 20 and 30 that promote the formation of tumble flows T1 and T2 are provided on the side facing the large-diameter hollow portion S1 and the side facing the large-diameter hollow portion S1 of the cap 18.
  • the coolant 19 in the large-diameter hollow portion S1 has an arrow F1 ⁇ F2 ⁇ F3 ⁇ F1.
  • an outer tumble flow T1 is formed, but the guide protrusion 20 provided on the partition wall 15 causes the coolant flow F1 toward the upper ceiling surface 14b1 at the center of the large-diameter hollow portion S1 along the ceiling surface 14b1.
  • the guide protrusion 30 provided on the cap 18 guides the flow F3 directed radially inward along the bottom surface of the large-diameter hollow portion S1 upward in the central portion of the large-diameter hollow portion S1. It guides so that it may go and contributes to the smooth formation of the outer tumble flow T1.
  • the coolant 19 of the large-diameter hollow portion S1 is indicated by arrows F6 ⁇ F7 ⁇ F8 ⁇ F6.
  • the inner tumble flow T2 is formed, but the guide protrusion 30 provided on the cap 18 causes the flow F6 of the coolant 19 going downward in the center of the large-diameter hollow portion S1 to go radially outward along the bottom surface.
  • the guide protrusion 20 provided on the partition wall 15 causes the flow F8 directed radially inward along the ceiling surface 14b1 of the large-diameter hollow portion S1 to flow downward in the central portion of the large-diameter hollow portion S1. It guides and contributes to the smooth formation of the inner tumble flow T2.
  • the coolant flows F1 interfere with each other on the ceiling surface 14b1 of the large-diameter hollow portion S1, or the large-diameter hollow portion.
  • the coolant flows F3 interfere with each other on the bottom surface of S1, and it takes time until the tumble flow is formed, and the momentum of the formed tumble flow T1 may be weakened.
  • the coolant flows F6 interfere with each other on the bottom surface of the large-diameter hollow portion S1, or the coolant on the ceiling surface 14b1 of the large-diameter hollow portion S1.
  • the flows F8 interfere with each other and it takes time until the tumble flow T2 is formed, and the momentum of the tumble flow T2 formed may be weakened.
  • the flow of the coolant 19 does not interfere with each other on the ceiling surface 14b1 or the bottom surface of the large-diameter hollow portion S1 in a desired direction. Since the tumble flows T1 and T2 are formed in such a short time and the momentum of the formed tumble flows T1 and T2 is increased, the upper layer portion and the middle layer portion of the coolant 19 in the large-diameter hollow portion S are thus guided. In addition, the lower layer is more actively stirred, and the heat pulling effect in the valve umbrella 14 is even higher.
  • the small-diameter hollow portion can be obtained by making the inner diameter d1 of the small-diameter hollow portion S21 near the valve shaft end portion larger than the inner diameter d2 of the small-diameter hollow portion S22 near the valve umbrella portion.
  • the annular stepped portion 17 is formed in S2 and the valve 10 is opened and closed, the coolant 19 in the small-diameter hollow portion S2 generates turbulent flow F9.
  • F10 in the hollow poppet valve 10A according to the second embodiment, since the inner diameter of the small-diameter hollow portion S2 ′ is formed to be a constant size in the axial direction, the valve 10A is opened and closed. In operation, the coolant 19 in the small-diameter hollow portion S2 ′ is not stirred as positively as the valve 10 of the first embodiment.
  • the hot forging process of the shell 11A shown in FIG. 7 (a) and the hole drilling process shown in FIG. 7 (b) constitute the manufacturing process of the hollow poppet valve 10 of the first embodiment. Since this is the same as the hot forging step of the shell 11 shown in FIG. 4 and the hole drilling step shown in FIG. However, in the hot forging process of the shell 11A shown in FIG. 7A, the conical guide protrusion 20 is formed on the bottom surface 14b1 of the truncated cone-shaped recess 14b in the umbrella outer shell 14a. This is different from the hot forging step of the shell 11 shown in 4 (a).
  • the coolant (solid) 19 is filled into the hole 14e corresponding to the small-diameter hollow portion S2 ′ by a predetermined amount.
  • a cap 18 provided with a conical guide protrusion 30 on the opening-side inner peripheral surface 14c of the recess 14b of the umbrella outer shell 14a of the shell 11A in an argon gas atmosphere.
  • Are joined for example, resistance joining
  • the large-diameter hollow portion S1 of the valve 10A is sealed (large-diameter hollow portion sealing step)
  • the cotter groove 12c is formed in the shaft end portion, thereby providing the valve 10A. Is completed.
  • FIG. 8 and 9 show a hollow poppet valve according to a third embodiment of the present invention.
  • the shaft end member 12b is integrally joined to the shaft end portion of the shell 11 and 11A, which is a valve intermediate product requiring heat resistance, by axial contact.
  • an umbrella outer shell 14a is integrally formed on a valve shaft portion 12 of a predetermined length, and is a valve intermediate product made of heat resistant steel.
  • a shell 11B is configured.
  • the small-diameter hollow portions S2 and S2 ′ in the valve shaft portion 12 and the large-diameter hollow portion S1 in the valve umbrella portion 14 are formed by the shells 11 and 11A.
  • the small-diameter hollow portions S2 and S2 ′ in the valve shaft portion 12 and the large-diameter in the valve umbrella portion 14 are separated from each other by the partition walls 15 and 15A formed integrally with each other.
  • the hollow portion S1 is separated by an aluminum plug 15B that is fixed in the opening portion of the small-diameter hollow portions S2 and S2 ′ to the large-diameter hollow portion S1 and constitutes a partition wall.
  • a small-diameter hollow portion S2 ′ in the valve shaft portion 12 is opened in the truncated conical recess 14b (bottom surface 14b1) of the umbrella outer shell 14a of the shell 11B, and a plug 15B is press-fitted into the opening. After that, the small-diameter hollow portion S2 ′ in the valve shaft 12 is sealed by brazing.
  • the plug 15B which is a partition wall separating the hollow portions S1, S2 ′, is made of aluminum having a higher thermal conductivity than the heat-resistant steel that is the material of the valve 10B. It is excellent in the heat pulling effect.
  • a shell 11B in which an umbrella outer shell 14a provided with a truncated cone-shaped recess 14b and a valve shaft portion 12 are integrally formed is formed by a hot forging process.
  • the shell 11B is arranged so that the concave portion 14b of the umbrella outer shell 14a faces upward, and a small-diameter hollow is formed from the concave portion 14b side of the umbrella outer shell 14a to the valve shaft portion 12.
  • a circular hole 14e corresponding to the portion S2 ′ is drilled by drilling (hole drilling step). Through the hole drilling step, the concave portion 14b of the umbrella outer shell 14a constituting the large-diameter hollow portion S1 and the circular hole 14e on the valve shaft portion 12 side constituting the small-diameter hollow portion S2 'communicate with each other.
  • coolant (solid) 19 is filled in the circular holes 14e of the recesses 14b of the umbrella outer shell 14a of the shell 11B (coolant charging step).
  • a plug 15B is press-fitted into the opening of the hole 14e in the recess 14b of the umbrella outer shell 14a and fixed by brazing in an argon gas atmosphere.
  • the part S2 ′ is sealed.
  • FIG. 10 shows a hollow poppet valve according to a fourth embodiment of the present invention.
  • the small-diameter hollow portion S2 in the shaft portion 12 of the hollow poppet valve 10C according to the fourth embodiment is similar to the small-diameter hollow portion S2 in the shaft portion 12 of the hollow poppet valve 10 according to the first embodiment described above.
  • An inner diameter d1 of the small-diameter hollow portion S21 near the valve shaft end portion is formed larger than an inner diameter d2 of the small-diameter hollow portion S22 near the valve umbrella portion 14, and an annular step portion 17 in the longitudinal direction of the small-diameter hollow portion S2. Is formed. Therefore, when the valve 10C is opened and closed (when the valve 10C is moved up and down), the coolant 19 in the small-diameter hollow portion S2 is positively stirred by the turbulent flow generated in the vicinity of the stepped portion 17. It has become.
  • the shaft 11a is connected to the shaft portion 12a of the shell 11C, which is a valve intermediate product.
  • the end member 12b is integrated by axial contact.
  • An aluminum plug 15C is press-fitted into the opening of the small-diameter hollow portion S2 in the truncated cone-shaped recess 14b (the circular bottom surface 14b1) of the umbrella outer shell 14a of the shell 11C, and then fixed by brazing. Thus, the small-diameter hollow portion S2 in the valve shaft portion 12 is sealed.
  • a guide projection 20 similar to the guide projection 20 provided on the partition wall 15A of the valve 10A of the second embodiment is provided on the side of the plug 15C facing the large-diameter hollow portion S1, and the valve 10C During the opening / closing operation, tumble flows T1 and T2 are smoothly formed in the coolant 19 in the large-diameter hollow portion S1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Lift Valve (AREA)

Abstract

バルブ軸部内の小径中空部とバルブ傘部内の大径中空部を隔壁で分離することで、中空ポペットバルブの熱引き効果を改善する。中空ポペットバルブの傘部(14)内の円錐台形状の大径中空部(S1)と軸部(12)内の小径中空部(S2)を隔壁で分離し、両中空部(S1, S2)に不活性ガス,冷却材(19)をそれぞれ装填する。バルブ(10)の開閉動作の際に中空部(S1)内の冷却材(19)に作用する慣 性力がタンブル流の形成だけに利用されて、勢いのあるタンブル流がスムーズに形成されて、傘部(14)の熱引き効果が上がる。隔壁(15)はバルブ軸部(12)の曲げ・捩じり強度の低下を補う。

Description

中空ポペットバルブ
 ポペットバルブの傘部から軸部にかけて形成された中空部に冷却材が装填された中空ポペットバルブに関する。
 下記特許文献1、2等には、軸部の一端側に傘部を一体的に形成したポペットバルブの傘部から軸部にかけて中空部が形成され、バルブの母材よりも熱伝導率の高い冷却材(例えば、金属ナトリウム、融点約98℃)が不活性ガスとともに中空部に装填された中空ポペットバルブが記載されている。
 バルブの中空部は、傘部内から軸部内に延びており、それだけ多くの量の冷却材を中空部に装填できるので、バルブの熱伝導性(以下、バルブの熱引き効果という)を高めることができる。
 即ち、エンジンの駆動によって燃焼室は高温になるが、燃焼室の温度が高すぎると、ノッキングが発生して所定のエンジン出力が得られず、燃費の悪化(エンジンの性能の低下)につながる。そこで、燃焼室の温度を下げるために、燃焼室で発生する熱をバルブを介して積極的に熱伝導させる方法(バルブの熱引き効果を上げる方法)として、冷却材を不活性ガスとともに中空部に装填した種々の中空バルブが提案されている。
 そして、従来(特許文献1、2)では、傘部内の円盤状大径中空部と軸部内の直線状小径中空部間の連通部が滑らかな曲線領域(内径が徐々に変わる遷移領域)で構成されているが、この連通部が滑らかに連続する形状であることで、バルブの開閉動作(バルブの軸方向への往復動作)の際に冷却材(液体)が封入ガスとともに大径中空部と小径中空部間をスムーズに移動できて、バルブの熱引き効果が上がると考えられている。
 然るに、大径中空部と小径中空部間の連通部が滑らかに連続する形状であるため、バルブの開閉動作に合わせて大径中空部と小径中空部間で冷却材(液体)がスムーズに移動できるが、中空部内の冷却材(液体)は上層部,中層部,下層部が攪拌されることなく互いに上下関係を保持したままの状態で軸方向に移動している。
 このため、熱源に近い側の冷却材下層部における熱が冷却材中層部,上層部に積極的に伝達されず、熱引き効果(熱伝導性)が十分に発揮されない、ということが分かった。
 そこで、特許文献3において、バルブ軸部内の直線状小径中空部をバルブ傘部内の円錐台形状の大径中空部の天井面にほぼ直交するように連通させて、大径中空部から小径中空部への冷却材のスムーズな移動を抑制することで、バルブの開閉動作(バルブの軸方向への往復動作)の際に、大径中空部内の冷却材にバルブの中心軸線周りに縦方向の旋回流(以下、この縦方向の旋回流をタンブル流という)が形成されて、中空部内の冷却材が積極的に攪拌され、バルブの熱引き効果(熱伝導性)が改善される、という発明が出願(提案)された。
WO2010/041337 特開2011-179328 PCT/JP2012/075452(2012年10月2日出願)
 しかし、特許文献3の発明は、円錐台形状の大径中空部の天井面に直線状の小径中空部が連通する構造で、バルブの開閉動作の際に、冷却材の一部が連通部を介して大径中空部と小径中空部間で移動できるため、大径中空部内の冷却材に形成されるタンブル流の勢いがそれだけ弱くなる。このため、冷却材が十分に攪拌されず、熱引き効果(熱伝導性)が十分に発揮されていない(第1の問題点)。
 また、バルブ軸部からバルブ傘部にかけて中空であるため、バルブ軸部が中実体で構成された中空バルブと比べて、バルブ軸部の曲げや捩じりに対する強度が低下し、それだけバルブの耐久性が低下する(第2の問題点)。
 そこで発明者は、特許文献3の発明の最大の特徴、即ち、「バルブ傘部内の大径中空部を略円錐台形状に形成することで、バルブの開閉動作の際に、大径中空部内の冷却材にタンブル流を形成する」という構成を前提として、バルブ軸部内の小径中空部を隔壁によって大径中空部に対し分離するとともに、両中空部に不活性ガスとともに冷却材をそれぞれ装填してやれば、バルブの開閉動作の際に両中空部内の冷却材はそれぞれの中空部内を上下方向にスムーズに移動し、特に、大径中空部では、冷却材に作用する慣性力がタンブル流の形成だけに利用されるので、勢いのあるタンブル流がスムーズに形成されて、前記した第1の問題が解決できるし、大径中空部と小径中空部を分離する隔壁がバルブ軸部の曲げや捩じりに対する強度の低下を補うので、前記した第2の問題も解決できる、と考えた。
 本発明は、先行文献に対する発明者の前記した知見に基づいてなされたもので、その目的は、バルブ軸部内の小径中空部を隔壁によってバルブ傘部内の円錐台形状の大径中空部に対し分離することで、熱引き効果を改善する中空ポペットバルブを提供することにある。
 前記目的を達成するために、本発明(請求項1)に係る中空ポペットバルブにおいては、軸部の一端側に傘部を一体的に形成したポペットバルブの傘部から軸部にかけて中空部が形成され、前記中空部に不活性ガスとともに冷却材が装填された中空ポペットバルブにおいて、
 前記傘部内には、該傘部の外形に略倣うテーパ形状の外周面を備えた略円錐台形状の大径中空部を設け、一方、前記軸部内には、前記大径中空部の天井面に対し略直交するように該天井面の近傍まで延びる直線状の小径中空部を設けて、前記小径中空部と前記大径中空部を、両中空部間に設けた隔壁によって分離するとともに、分離した両中空部には、不活性ガスとともに冷却材をそれぞれ装填して、前記バルブの開閉動作の際に、前記大径中空部内の冷却材にバルブの中心軸線の周りにタンブル流が形成されるように構成した。
 なお、小径中空部と大径中空部間に設ける隔壁としては、第1,第2の実施例に示すように、バルブ傘部に一体的に形成する構造と、第3,第4の実施例に示すように、小径中空部の大径中空部への開口部に挿入したプラグで構成する構造が考えられる。
 また、中空部における冷却材の装填量は、一般には、多いほど熱引き効果(熱伝導性)に優れるが、多くなればなるほど装填量に対する熱引き効果が上がらないし、特に大径中空部内では、多過ぎるとタンブル流が形成されにくくなるので冷却材の装填量は、それぞれの中空部の容積の約1/2から4/5程度が望ましい。
 (作用)バルブが閉弁状態から開弁状態に移行する際(バルブが下降する際)は、図2(a)に示すように、小径中空部および大径中空部内の冷却材(液体)には、それぞれ慣性力が上向きに作用するため、それぞれ上方に移動する。
 詳しくは、小径中空部は直線状に延びているので、冷却材全体がスムーズに上方に移動する。一方、大径中空部は、傘部の外形に略倣うテーパ形状の外周面を備えた略円錐台形状に形成されているので、図2(a)に示すように、大径中空部中央部の冷却材に作用する慣性力(上向き)が大径中空部周辺領域の冷却材に作用する慣性力よりも大きい。このため、図3(a)に示すように、大径中空部の中央部から天井面に沿って半径方向外側に向かう流れF1が発生する。このとき、大径中空部の底面側では、大径中空部中央部の冷却材が上方に移動することで、大径中空部中央部の底面側が負圧になって、半径方向外側から内側に向かう流れF3が発生し、これに伴って、大径中空部のテーパ形状外周面に沿って下方に向かう流れF2が発生する。
 即ち、大径中空部内の冷却材には、矢印F1→F2→F3→F1に示すように、バルブの中心軸線の周りに縦方向外回りの旋回流(以下、外回りのタンブル流という)T1が形成される。
 また、バルブが開弁状態から閉弁状態に移行する際(バルブが上昇する際)は、図2(b)に示すように、小径中空部および大径中空部内の冷却材(液体)には、それぞれ慣性力が下向きに作用するため、それぞれ下方に移動する。
 詳しくは、小径中空部内では、バルブが開弁状態から閉弁状態に移行する際に上方に移動した冷却材全体がスムーズに下方に移動する。一方、大径中空部内では、大径中空部中央部の冷却材に作用する慣性力(下向き)は、図2(b)に示すように、大径中空部周辺領域の冷却材に作用する慣性力よりも大きい。このため、図3(b)に示すように、大径中空部内の冷却材には、大径中空部の中央部から底面に沿って半径方向外方に向かう流れF6が発生する。このとき、大径中空部の天井面側では、大径中空部中央部の冷却材が下方に移動することで、大径中空部中央部の天井面側が負圧になって、半径方向外側から内側に向かう流れF8が発生し、これに伴って、大径中空部のテーパ形状外周面に沿って上方に向かう流れF7が発生する。
 即ち、大径中空部の冷却材には、矢印F6→F7→F8→F6に示すように、バルブの中心軸線の周りに縦方向内回りの旋回流(以下、内回りのタンブル流という)T2が形成される。
 このように、バルブが開閉動作することで、バルブの大径中空部内の冷却材には、図3に示すタンブル流T1,T2が形成されて、中空部内全体の冷却材の上層部、中層部、下層部が積極的に攪拌されるため、バルブの熱引き効果(熱伝導性)が著しく改善される。
 特に、特許文献3では、大径中空部の天井面に小径中空部が連通する構造であるため、バルブの開閉動作の際に、冷却材の一部が連通部を介して大径中空部と小径中空部間で移動し、大径中空部内の冷却材に形成されるタンブル流の勢いがそれだけ弱くなって、大径中空部内の冷却材が十分に攪拌されないおそれがあるのに対し、請求項1では、大径中空部と小径中空部が隔壁で分離されているため、バルブの開閉動作の際に両中空部内の冷却材はそれぞれの中空部内を上下方向にスムーズに移動し、特に、大径中空部では、冷却材に作用する慣性力がタンブル流の形成だけに利用されるので、勢いのあるタンブル流がスムーズに形成されて、冷却材が十分に攪拌され、バルブ傘部における熱引き効果が高くなる。
 また、バルブ軸部からバルブ傘部にかけて中空に構成された中空バルブは、バルブ軸部が中実体で構成された中空バルブと比べて、バルブ軸部の曲げや捩じりに対する強度が低下するが、小径中空部と大径中空部間に設けられた隔壁がバルブ軸部の曲げや捩じりに対する強度の低下を補う。
 請求項2においては、請求項1に記載の中空ポペットバルブにおいて、前記大径中空部の天井面を画成する前記隔壁または前記大径中空部の底面を画成するバルブ傘表形成壁の少なくともいずれか一方に、前記旋回流の形成を促進する円錐形状のガイド突起を設けるように構成した。
 (作用)バルブが開弁状態から閉弁状態に移行する際は、大径中空部内の冷却材に、矢印F1→F2→F3→F1に示す、外回りのタンブル流T1が形成されるが、隔壁に設けたガイド突起が、大径中空部の中央部において天井面に向かう冷却材の流れF1を天井面に沿って半径方向外方に向かうように案内し、バルブ傘表形成壁に設けたガイド突起が、大径中空部の底面に沿って半径方向内側に向かう流れF3を大径中空部の中央部から上方に向かうように案内して、外回りのタンブル流T1のスムーズな形成に寄与する。
 バルブが閉弁状態から開弁状態に移行する際は、大径中空部の冷却材に、矢印F6→F7→F8→F6に示す、内回りのタンブル流T2が形成されるが、バルブ傘表形成壁に設けたガイド突起が、大径中空部の中央部において底面に向かう冷却材の流れF6を底面に沿って半径方向外方に向かうように案内し、隔壁に設けたガイド突起が、大径中空部S1の天井面に沿って半径方向内側に向かう流れF8を、大径中空部の中央部において下方に向かうように案内して、内回りのタンブル流T2のスムーズな形成に寄与する。
 請求項3においては、請求項1または2に記載の中空ポペットバルブにおいて、前記バルブ軸端部寄りの小径中空部の内径を、前記バルブ傘部寄り小径中空部の内径よりも大きく形成して、前記小径中空部内の軸方向所定位置に円環状の段差部を設けるとともに、前記段差部を越えた位置まで前記冷却材を装填するように構成した。
 (作用)バルブが閉弁状態から開弁状態に移行する際(バルブが下降する際)は、小径中空部内の冷却材(液体)が、内径の小さいバルブ傘部寄りの小径中空部から内径の大きいバルブ軸端部寄りの小径中空部に移動する際に、図3(a)に示すように、段差部の下流側で乱流F9が形成されて、小径中空部内の冷却材が攪拌される。
 一方、バルブが開弁状態から閉弁状態に移行する際(バルブが上昇する際)は、開弁動作によって小径中空部内を上方にいったん移動した冷却材(液体)が、内径の大きいバルブ軸端部寄りの小径中空部から内径の小さいバルブ傘部寄りの小径中空部に移動する際に、図3(b)に示すように、円環状の段差部の下流側で乱流F10が形成されて、小径中空部内の冷却材が攪拌される。
 このように、バルブの開閉動作(上下方向の往復動作)に伴って、冷却材が小径中空部内を軸方向に移動する際に段差部の近傍に乱流が発生し、これによって小径中空部内の冷却材が攪拌されるので、バルブ軸部における熱引き効果(熱伝導性)がさらに高くなる。
 請求項4においては、請求項1~3のいずれかに記載の中空ポペットバルブにおいて、前記隔壁をバルブ傘部に一体的に形成するように構成した。
 (作用)バルブ傘部に一体的に形成されている隔壁は、バルブ傘部から外れるなどのおそれが一切ないので、大径中空部と小径中空部を分離する隔壁の耐久性に優れる。
 請求項5においては、請求項1~3のいずれかに記載の中空ポペットバルブにおいて、前記隔壁を、前記大径中空部の天井面に連通する前記小径中空部の該大径中空部への開口部に圧入したプラグで構成した。
 (作用)プラグの素材を、バルブの素材よりも熱伝達率の高い素材で構成することで、バルブの熱引き効果がさらに上がる。
 本発明に係る中空ポペットバルブによれば、バルブの開閉動作(上下方向の移動動作)の際に、小径中空部内の冷却材全体が軸方向にスムーズに移動するとともに、大径中空部内の冷却材全体が勢いのあるタンブル流によって積極的に撹拌されるので、特にバルブ傘部における熱引き効果(熱伝導性)が著しく改善されて、エンジンの性能が向上する。
 また、小径中空部と大径中空部を分離する隔壁がバルブ軸部の曲げ強度および捩じり強度の低下を補うので、熱引き効果(熱伝導性)および耐久性に優れた中空ポペットバルブを提供できる。
 請求項2に係る中空ポペットバルブによれば、バルブの開閉動作(上下方向の移動動作)の際に、大径中空部内の冷却材に勢いのあるタンブル流がスムーズに形成されるので、大径中空部内の冷却材が十分に攪拌されて、熱引き効果(熱伝導性)にいっそう優れた中空ポペットバルブを提供できる。
 請求項3に係る中空ポペットバルブによれば、バルブの開閉動作(上下方向の動作)に伴って、小径中空部内の冷却材全体も積極的に撹拌されるので、熱引き効果(熱伝導性)にさらにいっそう優れた中空ポペットバルブを提供できる。
 請求項4に係る中空ポペットバルブによれば、大径中空部と小径中空部を分離する隔壁の耐久性に優れ、バルブにおける所定の熱引き効果が長期にわたり保証されるので、エンジンの所定の性能を長期間にわたり安定して発揮することが可能となる。
 請求項5に係る中空ポペットバルブによれば、プラグの素材をバルブの素材よりも熱伝達率の高い素材で構成することで、バルブの熱引き効果をよりいっそうに高めることができる。
本発明の第1の実施例である中空ポペットバルブの縦断面図である。 同中空ポペットバルブが軸方向に往復動作する際の中空部内の冷却材に作用する慣性力を示す図で、(a)は開弁動作(下降動作)時の冷却材に作用する慣性力を示す断面図、(b)は閉弁動作(上昇動作)時の冷却材に作用する慣性力を示す断面図である。 同中空ポペットバルブが開閉動作(軸方向に往復動作)する際の中空部内の冷却材の動きを拡大して示す図で、(a)は閉弁状態から開弁状態に移行する際の冷却材の動きを示す図で、(b)は開弁状態から閉弁状態に移行する際の冷却材の動きを示す図である。 同中空ポペットバルブの製造工程を示す図で、(a)はバルブ中間品であるシェルを鍛造する熱間鍛造工程、(b)は傘部寄り小径中空部に相当する孔を穿設する孔穿設工程、(c)は軸端部寄り小径中空部に相当する孔を穿設する孔穿設工程、(d)は小径中空部に冷却材を充填する冷却材装填工程、(e)は軸端部材を軸接する軸接工程(小径中空部密閉工程)、(f)は大径中空部に冷却材を充填する冷却材装填工程、(g)は傘部外殻の凹部(大径中空部)の開口側内周面にキャップを接合する工程(大径中空部密閉工程)を示す図である。 本発明の第2の実施例である中空ポペットバルブの縦断面図である。 同中空ポペットバルブが開閉動作(軸方向に往復動作)する際の大径中空部内の冷却材の動きを拡大して示す図で、(a)は閉弁状態から開弁状態に移行する際の大径中空部内の冷却材の動きを示し、(b)は開弁状態から閉弁状態に移行する際の大径中空部内の冷却材の動きを示す図である。 同中空ポペットバルブの製造工程を示す図で、(a)はバルブ中間品であるシェルを鍛造する熱間鍛造工程、(b)は小径中空部に相当する孔を穿設する孔穿設工程、(c)は小径中空部に冷却材を充填する冷却材装填工程、(d)は軸端部材を軸接する軸接工程(小径中空部密閉工程)、(e)は大径中空部に冷却材を充填する冷却材装填工程、(f)は傘部外殻の凹部(大径中空部)の開口側内周面にキャップを接合する工程(大径中空部密閉工程)を示す図である。 本発明の第3の実施例である中空ポペットバルブの縦断面図である。 同中空ポペットバルブの製造工程を示す図で、(a)はバルブ中間品であるシェルを鍛造する熱間鍛造工程、(b)は傘部外殻の凹部底面(大径中空部の天井面)から軸部にかけて小径中空部に相当する孔を穿設する孔穿設工程、(c)は傘部外殻の凹部側から小径中空部に冷却材を充填する冷却材装填工程、(d)は小径中空部の開口部にプラグを圧入してロウ付けする工程(小径中空部密閉工程)、(e)は傘部外殻の凹部(大径中空部)に冷却材を充填する冷却材装填工程、(f)は傘部外殻の凹部(大径中空部)の開口側内周面にキャップを溶接する工程(大径中空部密閉工程)を示す図である。 本発明の第4の実施例である中空ポペットバルブの縦断面図である。
 次に、本発明の実施の形態を実施例に基づいて説明する。
 図1~図4は、本発明の第1の実施例である内燃機関用の中空ポペットバルブを示す。
 これらの図において、符号10は、真っ直ぐに延びるバルブ軸部12の一端側に、外径が徐々に大きくなるR形状のフィレット部13を介して、バルブ傘部14が一体的に形成された耐熱合金製の中空ポペットバルブで、バルブ傘部14の外周には、テーパ形状のフェース部16が設けられている。
 中空ポペットバルブ10内の中空部は、バルブ傘部14とバルブ軸部12間のフィレット部13に対応する位置に設けられた隔壁15によって、バルブ傘部14側の大径中空部S1と、バルブ軸部12側の小径中空部S2とに分離されるとともに、分離された両中空部S1,S2には、不活性ガスとともに冷却材19がそれぞれ装填されている。
 詳しくは、バルブ傘部14内には、円形の天井面14b1およびバルブ傘部14の外形に略倣うテーパ形状の外周面(傾斜面)14b2を備えた円錐台形状の大径中空部S1が設けられ、一方、バルブ軸部12内には、大径中空部S1の円形天井面14b1に対し直交するように該天井面14b1の近傍まで延びる細長い円柱状の小径中空部S2が設けられて、小径中空部S2と大径中空部S2間には、バルブ傘部14に一体的に形成された所定厚さの隔壁15が設けられている。
 さらに詳しくは、軸部12aの一端側に傘部外殻14aが一体的に形成され、軸部12aの他端側に開口する小径中空部S2に相当する孔が形成されたバルブ中間品である軸一体型シェル(以下、単にシェルという)11と、シェル11の傘部外殻14aの円錐台形状の凹部14bにおける開口側内周面14cに接合された円盤形状のキャップ18と、シェル11の軸部12aに軸接された軸端部材12bとによって、バルブ傘部14内の中空部S1とバルブ軸部12内の中空部S2が隔壁15を介して分離された中空ポペットバルブ10が構成され、中空部S1,S2には、金属ナトリウム等の冷却材19がアルゴンガスなどの不活性ガスとともにそれぞれ装填されている。冷却材19の装填量としては、例えば、中空部S1,S2の容積のほぼ1/2~4/5の量がそれぞれ装填されている。
 なお、図1における符号2はシリンダヘッド、符号6は燃焼室4から延びる排気通路で、排気通路6の燃焼室4への開口周縁部には、バルブ10のフェース部16が当接できるテーパ面8aを備えた円環状のバルブシート8が設けられている。符号3はシリンダヘッド2に設けられたバルブ挿通孔で、バルブ挿通孔3は、バルブ10の軸部12が摺接する円筒形状のバルブガイド3aで構成されている。符号9は、バルブ10を閉弁方向(図1の上方向)に付勢するバルブスプリング、符号12cは、バルブ軸部12の端部に設けられたコッタ溝である。
 また、燃焼室4や排気通路6の高温ガスにさらされる部位である、シェル11およびキャップ18は、耐熱鋼で構成されているのに対し、機械的強度が要求されるものの、シェル11およびキャップ18ほどの耐熱性が要求されない軸端部材12bは、一般的な鋼材で構成されている。
 このように構成された中空ポペットバルブ10では、後で詳しく説明するが、バルブ10が開閉動作する際に、大径中空部S1内の冷却材19は、作用する慣性力によって上下方向に移動する際に、図3(a),(b)に示すように、タンブル流T1,T2が形成されて、冷却材19の上層部,中層部,下層部が積極的に攪拌されることとなって、バルブ10の傘部14の熱引き効果(熱伝導性)が大幅に改善されている。
 また、小径中空部S2は、内径d1が比較的大きいバルブ軸端部寄りの小径中空部S21と、内径d2が比較的小さい(d2<d1)バルブ傘部14寄りの小径中空部S22で構成されて、小径中空部S21,S22間には、円環状の段差部17が形成されるとともに、段差部17を越えた位置まで冷却材19が装填されている。
 このため、後で詳しく説明するが、小径中空部S2内の冷却材19が、バルブ10が開閉動作する際に作用する慣性力によって上下方向に移動する際に、図3(a),(b)に示すように、段差部17近傍に乱流F9,F10が発生し、冷却材19が攪拌されることとなって、バルブ軸部12における熱引き効果(熱伝導性)が改善されている。
 次に、バルブ10が開閉動作する際の中空部S1,S2内の冷却材19の動きを、図2,3に基づいて詳しく説明する。
 バルブ10が閉弁状態から開弁状態に移行する際(バルブ10が下降する際)は、図2(a)に示すように、小径中空部S2および大径中空部S1内の冷却材(液体)19には、それぞれ慣性力が上向きに作用するため、それぞれ上方に移動する。
 詳しくは、大径中空部S1は、傘部14の外形に略倣うテーパ形状の外周面14b2を備えた略円錐台形状に形成されているので、図2(a)に示すように、大径中空部S1中央部の冷却材に作用する慣性力(上向き)が大径中空部周辺領域の冷却材に作用する慣性力よりも大きい。このため、図3(a)に示すように、大径中空部S1の中央部から天井面14b1に沿って半径方向外側に向かう流れF1が発生する。このとき、大径中空部S1の底面側では、大径中空部S1中央部の冷却材が上方に移動することで、大径中空部S1中央部の底面側が負圧になって、半径方向外側から内側に向かう流れF3が発生し、これに伴って、大径中空部S1のテーパ形状外周面14b2に沿って下方に向かう流れF2が発生する。
 このように、大径中空部S1内の冷却材には、矢印F1→F2→F3→F1に示すように、バルブの中心軸線Lの周りに外回りのタンブル流T1が形成される。
 また、小径中空部S2は直線状に延びているので、冷却材19全体がスムーズに上方に移動し、図3(a)に示すように、冷却材19が上方に移動する際に、段差部17近傍の下流側に乱流F9が発生する。
 一方、バルブ10が開弁状態から閉弁状態に移行する際(バルブ10が上昇する際)は、図2(b)に示すように、小径中空部S2および大径中空部S1内の冷却材(液体)19には、それぞれ慣性力が下向きに作用するため、それぞれ下方に移動する。
 大径中空部S1内では、大径中空部S1中央部の冷却材19に作用する慣性力(下向き)は、図2(b)に示すように、大径中空部S1周辺領域の冷却材19に作用する慣性力よりも大きい。このため、図3(b)に示すように、大径中空部S1内の冷却材19には、大径中空部S1の中央部から底面に沿って半径方向外側に向かう流れF6が発生する。このとき、大径中空部S1の天井面14b1側では、大径中空部S1中央部の冷却材19が下方に移動することで、大径中空部S1中央部の天井面14b1側が負圧になって、半径方向外側から内側に向かう流れF8が発生し、これに伴って、大径中空部S1のテーパ形状外周面14b2に沿って上方に向かう流れF7が発生する。
 即ち、大径中空部S1の冷却材19には、矢印F6→F7→F8→F6に示すように、バルブ10の中心軸線Lの周りに内回りのタンブル流T2が形成される。
 また、小径中空部S2は直線状に延びているので、バルブ10が開弁状態から閉弁状態に移行する際(バルブ10が上昇する際)にいったん上昇した冷却材19全体がスムーズに下方に移動し、図3(b)に示すように、冷却材19が下方に移動する際に、段差部17近傍の下流側に乱流F10が発生する。
 このように、バルブ10の小径中空部S2内の冷却材19は、バルブ10が開閉動作する際に発生する乱流F9,F10によって攪拌され、バルブ10の大径中空部S1内の冷却材19は、バルブ10が開閉動作する際に形成されるタンブル流T1,T2によって、上層部、中層部、下層部が積極的に攪拌されるため、バルブ10の熱引き効果(熱伝導性)が著しく高められている。
 また、小径中空部S内の段差部17は、図1に示すように、バルブガイド3の排気通路6に臨む側の端部3bに略対応する位置に設けられて、内径の大きい軸端部寄り小径中空部S21を軸方向に長く形成することで、バルブ10の耐久性を低下させることなく、バルブ軸部12の冷却材19との接触面積が増えて、バルブ軸部12の熱伝達効率が上がり、小径中空部S21形成壁が薄肉となって、バルブ10も軽量となる。即ち、小径中空部S内の段差部17は、図1の仮想線に示すように、バルブ10が開弁(下降)しきった状態で、排気通路6内とならない所定位置(バルブ軸部12における薄肉の小径中空部S21形成壁が排気通路6内の熱の影響を受け難い所定位置)に設けられている。図1の符号17Xは、バルブ10が開弁(下降)しきった状態での段差部17の位置を示す。
 詳しくは、金属の疲労強度は高温になるほど低下するため、常に排気通路6内にあって高熱にさらされる部位である、バルブ軸部12におけるバルブ傘部14寄りの領域は、疲労強度の低下に耐え得る程度の肉厚に形成する必要がある。一方、熱源から離れ、しかも常にバルブガイド3aに摺接する部位である、バルブ軸部12における軸端部寄りの領域は、冷却材19を介して燃焼室4や排気通路6の熱が伝達されるものの、伝達された熱はバルブガイド3aを介して直ちにシリンダヘッド2に放熱されるため、バルブ傘部14寄りの領域ほどの高温となることがない。
 即ち、バルブ軸部12における軸端部寄り領域は、バルブ傘部14寄りの領域よりも疲労強度が低下しないため、薄肉に形成(小径中空部S21の内径を大きく形成)しても、強度的(疲労により折損する等の耐久性)には問題がない。
 そこで、本実施例では、小径中空部S21の内径を大きく形成して、第1には、小径中空部S2全体の表面積(冷却材19との接触面積)を増やすことで、バルブ軸部12における熱伝達効率が高められている。第2には、小径中空部S2全体の容積を増やすことで、バルブ10の総重量が軽減されている。
 また、バルブの軸端部材12bは、シェル11ほどの耐熱性が要求されないため、シェル11の材料よりも耐熱性の低い廉価材を用いることで、バルブ10を安価に提供できる。
 また、先行特許文献1,2,3のように、バルブ軸部からバルブ傘部にかけて中空に構成された中空バルブは、バルブ軸部が中実体で構成された中空バルブと比べて、バルブ軸部の曲げや捩じりに対する強度が低いが、本実施例のバルブ10では、小径中空部S2と大径中空部S1を分離する隔壁15がバルブ傘部14に一体的に形成されて、バルブ軸部12の曲げや捩じりに対する強度の低下を補うので、それだけ耐久性に優れている。
 次に、中空ポペットバルブ10の製造工程を、図4に基づいて説明する。
 まず、図4(a)に示すように、熱間鍛造工程により、円錐台形状の凹部14bを設けた傘部外殻14aと軸部12aとを一体的に形成したシェル11を成形する。傘部外殻14aにおける円錐台形状の凹部14bの底面14b1は、軸部12a(シェル11の中心軸線L)に対し直交する平面で形成されている。
 熱間鍛造工程としては、金型を順次取り替える押し出し鍛造で、耐熱鋼製ブロックからシェル11を製造する押し出し鍛造、またはアップセッタで耐熱鋼製棒材の端部に球状部を据え込んだ後に、金型を用いてシェル11(の傘部外殻14a)を鍛造する据え込み鍛造のいずれであってもよい。なお、熱間鍛造工程において、シェル11の傘部外殻14aと軸部12aとの間には、R形状フィレット部13が形成され、傘部外殻14aの外周面には、テーパ形状フェース部16が形成される。
 次に、図4(b)に示すように、シェル11の軸部12aの端部側から小径中空部S22に相当する孔14eをドリル加工により穿設する(孔穿設工程)。 この孔穿設工程により、大径中空部S1を構成する傘部外殻14aの凹部14bと、小径中空部S22を構成する軸部12a側の孔14eとを分離する隔壁15が形成される。
 次に、図4(c)に示すように、シェル11の軸部12aの端部側から、小径中空部S21に相当する孔14fをドリル加工により穿設する(孔穿設工程)。
 次に、図4(d)に示すように、シェル11の軸部12aを上に向けて配置し、小径中空部S2に相当する孔14e,14f内に冷却材(固体)19を所定量充填する(冷却材装填工程)。
 次に、図4(e)に示すように、アルゴンガス雰囲気下で、シェル11の軸部12aに軸端部材12bを軸接する(小径中空部密閉工程)。
 次に、図4(f)に示すように、傘部外殻14aを上に向けて配置し、傘部外殻14aの凹部14bに冷却材(固体)19を所定量充填する(冷却材装填工程)。
 最後に、図4(g)に示すように、アルゴンガス雰囲気下で、傘部外殻14aの凹部14bの開口側内周面14cにキャップ18を接合(例えば、抵抗接合)して、バルブ10の大径中空部S1を密閉する(大径中空部密閉工程)し、軸端部にコッタ溝12cを形成する加工を施すことで、バルブ10が完成する。なお、キャップ18の接合は、抵抗接合に代えて、電子ビーム溶接やレーザー溶接等を採用してもよい。
 図5,6,7は、本発明の第2の実施例である中空ポペットバルブを示す。
 前記した第1の実施例の中空ポペットバルブ10では、隔壁15の大径中空部S1に臨む側が平面で構成されているが、この第2の実施例である中空ポペットバルブ10Aでは、隔壁15Aの大径中空部S1に臨む側、およびキャップ18の大径中空部S1に臨む側に、タンブル流T1,T2の形成を促進する円錐形状のガイド突起20,30が設けられている。
 即ち、バルブ10Aが閉弁状態から開弁状態に移行する際は、図6(a)に示すように、大径中空部S1内の冷却材19には、矢印F1→F2→F3→F1に示す、外回りのタンブル流T1が形成されるが、隔壁15に設けたガイド突起20は、大径中空部S1の中央部において上方の天井面14b1に向かう冷却材の流れF1を天井面14b1に沿って半径方向外側に向かうように案内し、キャップ18に設けたガイド突起30は、大径中空部S1の底面に沿って半径方向内側に向かう流れF3を大径中空部S1の中央部において上方に向かうように案内して、外回りのタンブル流T1のスムーズな形成に寄与する。
 一方、バルブ10Aが閉弁状態から開弁状態に移行する際は、図6(b)に示すように、大径中空部S1の冷却材19には、矢印F6→F7→F8→F6に示す、内回りのタンブル流T2が形成されるが、キャップ18に設けたガイド突起30は、大径中空部S1の中央部において下方に向かう冷却材19の流れF6を底面に沿って半径方向外側に向かうように案内し、隔壁15に設けたガイド突起20は、大径中空部S1の天井面14b1に沿って半径方向内側に向かう流れF8を、大径中空部S1の中央部において下方に向かうように案内して、内回りのタンブル流T2のスムーズな形成に寄与する。
 即ち、第1の実施例では、バルブ10が閉弁状態から開弁状態に移行する際に、大径中空部S1の天井面14b1において冷却材の流れF1同士が干渉したり、大径中空部S1の底面において冷却材の流れF3同士が干渉して、それだけタンブル流が形成されるまでに時間がかかり、形成されるタンブル流T1の勢いも弱くなるおそれがある。また、バルブ10が開弁状態から閉弁状態に移行する際には、大径中空部S1の底面において冷却材の流れF6同士が干渉したり、大径中空部S1の天井面14b1において冷却材の流れF8同士が干渉して、それだけタンブル流T2が形成されるまでに時間がかかり、形成されるタンブル流T2の勢いも弱くなるおそれがある。
 然るに、本実施例では、バルブ10Aの開閉動作(上下方向の移動動作)の際に、大径中空部S1の天井面14b1や底面において、冷却材19の流れ同士が干渉ずることなく望ましい方向に導かれるので、それだけタンブル流T1,T2が短時間で形成されるとともに、形成されるタンブル流T1,T2の勢いも強くなるため、大径中空部S内の冷却材19の上層部、中層部、下層部がより積極的に攪拌されて、バルブ傘部14における熱引き効果がいっそう高い。
 また、前記した第1の実施例の中空ポペットバルブ10では、バルブ軸端部寄り小径中空部S21の内径d1をバルブ傘部寄り小径中空部S22の内径d2よりも大きくすることで、小径中空部S2内に円環状の段差部17が形成されて、バルブ10が開閉動作する際に、小径中空部S2内の冷却材19が、段差部17近傍に発生する乱流F9.F10によって積極的に攪拌されるが、この第2の実施例である中空ポペットバルブ10Aでは、小径中空部S2’の内径が軸方向に一定の大きさに形成されているため、バルブ10Aが開閉動作する際に、小径中空部S2’内の冷却材19が第1の実施例のバルブ10ほど積極的に攪拌されることはない。
 その他は、前記した第1の実施例の中空ポペットバルブ10と同一であり、同一の符号を付すことで、重複した説明は省略する。
 次に、中空ポペットバルブ10Aの製造工程を、図7に基づいて説明する。
図7(a)に示すシェル11Aの熱間鍛造工程および図7(b)に示す孔穿設工程は、第1の実施例の中空ポペットバルブ10の製造工程を構成する、図4(a)に示すシェル11の熱間鍛造工程および図4(b)に示す孔穿設工程と同一であるので、その重複した説明は省略する。ただし、図7(a)に示すシェル11Aの熱間鍛造工程において、傘部外殻14aにおける円錐台形状の凹部14bの底面14b1には、円錐形状のガイド突起20が成形される点が、図4(a)に示すシェル11の熱間鍛造工程と相違する。
 図7(b)に示す孔穿設工程により、小径中空部S2’を大径中空部S1に対し分離する隔壁15Aを形成した後、図7(c)に示すように、冷却材(固体)19を小径中空部S2’に相当する孔14eに所定量充填する。
 次に、図7(d)に示すように、アルゴンガス雰囲気下で、シェル11Aの軸部12aに軸端部材12bを軸接した後、図7(e)に示すように、傘部外殻14aの凹部14bに冷却材(固体)19を所定量充填する。
 最後に、図7(f)に示すように、アルゴンガス雰囲気下で、シェル11Aの傘部外殻14aの凹部14bの開口側内周面14cに、円錐形状のガイド突起30を設けたキャップ18を接合(例えば、抵抗接合)して、バルブ10Aの大径中空部S1を密閉(大径中空部密閉工程)した後、軸端部にコッタ溝12cを形成する加工を施すことで、バルブ10Aが完成する。
 図8,9は、本発明の第3の実施例である中空ポペットバルブを示す。
 前記した第1,第2の実施例の中空ポペットバルブ10,10Aでは、耐熱性が要求されるバルブ中間品であるシェル11,11Aの軸端部に軸端部材12bが軸接により接合一体化されているのに対し、この第3の実施例の中空ポペットバルブ10Bでは、所定長さのバルブ軸部12に傘部外殻14aが一体的に形成されて、耐熱鋼製のバルブ中間品であるシェル11Bが構成されている。
 また、第1,第2の実施例の中空ポペットバルブ10,10Aでは、バルブ軸部12内の小径中空部S2,S2’とバルブ傘部14内の大径中空部S1は、シェル11,11Aに一体的に形成された隔壁15,15Aによって分離されているのに対し、この第3の実施例では、バルブ軸部12内の小径中空部S2,S2’とバルブ傘部14内の大径中空部S1は、小径中空部S2,S2’の大径中空部S1への開口部内に固定されて隔壁を構成するアルミニウム製のプラグ15Bによって分離されている。
 詳しくは、シェル11Bの傘部外殻14aの円錐台形状の凹部14b(底面14b1)には、バルブ軸部12内の小径中空部S2’が開口し、該開口部には、プラグ15Bが圧入された後、ロウ付けにより固定されて、バルブ軸部12内の小径中空部S2’が密閉されている。
 その他の構成は、隔壁を構成するプラグ15Bの大径中空部S1に臨む側、およびキャップ18の大径中空部S1に臨む側がそれぞれ平坦面で構成されている点を除き、前記した第2の実施例に係る中空ポペットバルブ10Aと同一であり、同一の符号を付すことで、その重複した説明は省略する。
 この第3の実施例のバルブ10Bでは、中空部S1,S2’を分離する隔壁であるプラグ15Bが、バルブ10Bの素材である耐熱鋼よりも熱伝導率の高いアルミニウムで構成されているので、それだけ熱引き効果に優れている。
 次に、中空ポペットバルブ10Bの製造工程を、図9に基づいて説明する。
 まず、図9(a)に示すように、熱間鍛造工程により、円錐台形状の凹部14bを設けた傘部外殻14aとバルブ軸部12とを一体的に形成したシェル11Bを成形する。
 次に、図9(b)に示すように、傘部外殻14aの凹部14bが上向きとなるようにシェル11Bを配置し、傘部外殻14aの凹部14b側からバルブ軸部12にかけて小径中空部S2’に相当する円孔14eをドリル加工により穿設する(孔穿設工程)。孔穿設工程により、大径中空部S1を構成する傘部外殻14aの凹部14bと、小径中空部S2’を構成するバルブ軸部12側の円孔14eが連通する。
 次に、図9(c)に示すように、シェル11Bの傘部外殻14aの凹部14bの円孔14eに冷却材(固体)19を所定量充填する(冷却材装填工程)。
 次に、図9(d)に示すように、アルゴンガス雰囲気下で、傘部外殻14aの凹部14b内の孔14eの開口部に、プラグ15Bを圧入しロウ付けにより固定して、小径中空部S2’を密閉する。
 次に、図9(e)に示すように、傘部外殻14aの凹部14bに冷却材(固体)19を所定量充填する(冷却材装填工程)。
 最後に、図9(f)に示すように、アルゴンガス雰囲気下で、傘部外殻14aの凹部14bにキャップ18を接合した後、軸端部にコッタ溝12cを形成する加工を施すことで、バルブ10Bが完成する。
 図10は、本発明の第4の実施例である中空ポペットバルブを示す。
この第4の実施例である中空ポペットバルブ10Cの軸部12内の小径中空部S 2は、前記した第1の実施例の中空ポペットバルブ10の軸部12内の小径中空部S2と同様、バルブ軸端部寄りの小径中空部S21の内径d1がバルブ傘部14寄りの小径中空部S22の内径d2よりも大きく形成されて、小径中空部S2の長手方向の途中に円環状の段差部17が形成されている。このため、バルブ10Cが開閉動作する際(バルブ10Cが上下動作する際)に、小径中空部S2内の冷却材19が、段差部17近傍に発生する乱流によって積極的に攪拌されるようになっている。
 また、バルブ軸端部寄りの小径中空部S21の内径d1をバルブ傘部14寄りの小径中空部S22の内径d2よりも大きく形成する関係上、バルブ中間品であるシェル11Cの軸部12aに軸端部材12bが軸接により一体化されている。
 また、シェル11Cの傘部外殻14aの円錐台形状の凹部14b(の円形の底面14b1)における小径中空部S2の開口部には、アルミニウム製のプラグ15Cが圧入された後、ロウ付けにより固定されて、バルブ軸部12内の小径中空部S2が密閉されている。
 また、プラグ15Cの大径中空部S1に臨む側には、前記した第2の実施例のバルブ10Aの隔壁15Aに設けられているガイド突起20と同様のガイド突起20が設けられて、バルブ10Cの開閉動作の際に、大径中空部S1内の冷却材19に、タンブル流T1,T2がスムーズに形成されるようになっている。
 その他は、前記した第1~第3の実施例に係るバルブ10,10A,10Bと同一であるので、同一の符号を付すことで、重複した説明は省略する。
10,10A,10B,10C 中空ポペットバルブ
11,11A,11B,11C 傘部外殻と軸部を一体的に形成したバルブ中間品であるシェル
12 バルブ軸部
12a シェルの軸部
14 バルブ傘部
14a 傘部外殻
14b 傘部外殻の凹部
14b1 大径中空部の円形の天井面(凹部の円形底面)
14b2 大径中空部のテーパ形状外周面(円錐台形状の凹部内周面)
15,15A 隔壁
15B,15C 隔壁を構成するプラグ
18 キャップ
19 冷却材
20,30 円錐形状のガイド突起
L バルブの中心軸線
S1 円錐台形状の大径中空部
S2,S2’ 直線状の小径中空部
S21 軸端部寄り小径中空部
S22 傘部寄り小径中空部
T1,T2 タンブル流

Claims (5)

  1.  軸部の一端側に傘部を一体的に形成したポペットバルブの傘部から軸部にかけて中空部が形成され、前記中空部に不活性ガスとともに冷却材が装填された中空ポペットバルブにおいて、
     前記バルブ傘部内には、該傘部の外形に略倣うテーパ形状の外周面を備えた略円錐台形状の大径中空部が設けられ、一方、前記バルブ軸部内には、前記大径中空部の天井面に対し略直交するように該天井面の近傍まで延びる直線状の小径中空部が設けられて、前記小径中空部と前記大径中空部が隔壁によって分離されるとともに、
     前記小径中空部および大径中空部には、不活性ガスとともに冷却材がそれぞれ装填されて、前記バルブの開閉動作の際に、前記大径中空部内の冷却材にバルブの中心軸線の周りに縦方向の旋回流が形成されることを特徴とする中空ポペットバルブ。
  2.  前記大径中空部の天井面を画成する前記隔壁または前記大径中空部の底面を画成するバルブ傘表形成壁の少なくともいずれか一方には、前記旋回流の形成を促進する略円錐形状のガイド突起が設けられたことを特徴とする請求項1に記載の中空ポペットバルブ。
  3.  前記バルブ軸端部寄りの小径中空部の内径が前記バルブ傘部寄り小径中空部の内径よりも大きく形成されて、前記小径中空部内の軸方向所定位置に円環状の段差部が設けられるとともに、前記段差部を越えた位置まで前記冷却材が装填されたことを特徴とする請求項1または2に記載の中空ポペットバルブ。
  4.  前記隔壁は、バルブ傘部に一体的に形成されたことを特徴とする請求項1~3のいずれかに記載の中空ポペットバルブ。
  5.  前記隔壁は、前記大径中空部の天井面に連通する前記小径中空部の該大径中空部への開口部に圧入したプラグで構成されたことを特徴とする請求項1~3のいずれかに記載の中空ポペットバルブ。
PCT/JP2013/059526 2013-03-29 2013-03-29 中空ポペットバルブ WO2014155665A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015507868A JP6131318B2 (ja) 2013-03-29 2013-03-29 中空ポペットバルブ
PCT/JP2013/059526 WO2014155665A1 (ja) 2013-03-29 2013-03-29 中空ポペットバルブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/059526 WO2014155665A1 (ja) 2013-03-29 2013-03-29 中空ポペットバルブ

Publications (1)

Publication Number Publication Date
WO2014155665A1 true WO2014155665A1 (ja) 2014-10-02

Family

ID=51622729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059526 WO2014155665A1 (ja) 2013-03-29 2013-03-29 中空ポペットバルブ

Country Status (2)

Country Link
JP (1) JP6131318B2 (ja)
WO (1) WO2014155665A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100185A1 (ja) * 2018-11-12 2020-05-22 日鍛バルブ株式会社 エンジンのポペットバルブの製造方法
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262071A (ja) * 1985-09-06 1987-03-18 Ishikawajima Harima Heavy Ind Co Ltd ポペツト形弁の温度制御装置
JP2004301124A (ja) * 2003-03-28 2004-10-28 Eaton Corp エンジン用の軽量複合ポペット弁
JP2006097499A (ja) * 2004-09-28 2006-04-13 Toyota Motor Corp 内燃機関用中空弁
DE102009005014A1 (de) * 2009-01-17 2010-07-22 Daimler Ag Ventil
WO2012026011A1 (ja) * 2010-08-25 2012-03-01 日鍛バルブ株式会社 中空ポペットバルブおよびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323607U (ja) * 1989-07-17 1991-03-12
JP5404472B2 (ja) * 2010-02-26 2014-01-29 三菱重工業株式会社 中空エンジンバルブの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262071A (ja) * 1985-09-06 1987-03-18 Ishikawajima Harima Heavy Ind Co Ltd ポペツト形弁の温度制御装置
JP2004301124A (ja) * 2003-03-28 2004-10-28 Eaton Corp エンジン用の軽量複合ポペット弁
JP2006097499A (ja) * 2004-09-28 2006-04-13 Toyota Motor Corp 内燃機関用中空弁
DE102009005014A1 (de) * 2009-01-17 2010-07-22 Daimler Ag Ventil
WO2012026011A1 (ja) * 2010-08-25 2012-03-01 日鍛バルブ株式会社 中空ポペットバルブおよびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300018B2 (en) 2018-03-20 2022-04-12 Nittan Valve Co., Ltd. Hollow exhaust poppet valve
WO2020100185A1 (ja) * 2018-11-12 2020-05-22 日鍛バルブ株式会社 エンジンのポペットバルブの製造方法
JPWO2020100185A1 (ja) * 2018-11-12 2021-12-02 日鍛バルブ株式会社 エンジンのポペットバルブの製造方法
JP7190506B2 (ja) 2018-11-12 2022-12-15 株式会社Nittan エンジンのポペットバルブの製造方法
US11536167B2 (en) 2018-11-12 2022-12-27 Nittan Valve Co., Ltd. Method for manufacturing engine poppet valve
US11850690B2 (en) 2020-03-30 2023-12-26 Nittan Corporation Method for manufacturing engine poppet valve

Also Published As

Publication number Publication date
JPWO2014155665A1 (ja) 2017-02-16
JP6131318B2 (ja) 2017-05-17

Similar Documents

Publication Publication Date Title
JP6072053B2 (ja) 中空ポペットバルブ
JP6205437B2 (ja) 中空ポペットバルブ
WO2014167694A1 (ja) 中空ポペットバルブ
JP6033402B2 (ja) 中空ポペットバルブ
JP6063558B2 (ja) 中空ポペットバルブ
JP6029742B2 (ja) 中空ポペットバルブ
JP6131318B2 (ja) 中空ポペットバルブ
JP6251177B2 (ja) 中空ポペットバルブ
WO2015170384A1 (ja) 中空ポペットバルブ
JP2008138649A (ja) 中空バルブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015507868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880636

Country of ref document: EP

Kind code of ref document: A1