WO2014153904A1 - 一种压力平衡式浮体及其安装方法 - Google Patents

一种压力平衡式浮体及其安装方法 Download PDF

Info

Publication number
WO2014153904A1
WO2014153904A1 PCT/CN2013/079280 CN2013079280W WO2014153904A1 WO 2014153904 A1 WO2014153904 A1 WO 2014153904A1 CN 2013079280 W CN2013079280 W CN 2013079280W WO 2014153904 A1 WO2014153904 A1 WO 2014153904A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating body
water
pressure
air
water tank
Prior art date
Application number
PCT/CN2013/079280
Other languages
English (en)
French (fr)
Inventor
严俊
范为
赵耀
邵华
潘泽华
黄铖
Original Assignee
武汉武船海洋工程船舶设计有限公司
武昌船舶重工有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉武船海洋工程船舶设计有限公司, 武昌船舶重工有限责任公司 filed Critical 武汉武船海洋工程船舶设计有限公司
Priority to US14/771,395 priority Critical patent/US20160096597A1/en
Priority to BR112015019306A priority patent/BR112015019306A2/pt
Publication of WO2014153904A1 publication Critical patent/WO2014153904A1/zh
Priority to NO20151389A priority patent/NO20151389A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth

Definitions

  • the invention relates to the technical field of ships, and in particular to a pressure balanced floating body and a mounting method thereof. Background technique
  • the Floating Production Storage and Discharge Device As a equipment for offshore oil and gas resources development, the Floating Production Storage and Discharge Device (FPSO) is widely used for oil and gas development under various water depth conditions.
  • the working position of the underwater floating body is generally in the deep water, and the outside of the floating body will bear a large water pressure.
  • the structure of the floating body In order for the structure of the floating body not to be damaged by the large water pressure, it is necessary to have a pressure inside the floating body equivalent to the external water pressure.
  • the traditional underwater floating body is designed based on non-pressure-resistant structure.
  • the floating structure is non-pressure-resistant structure and has limited pressure resistance. Therefore, the non-pressure underwater floating body needs to be safely and normally installed without being subjected to large pressure. immerse in work.
  • the traditional underwater floating body usually inflates the inside of the floating body to generate a large pressure inside the floating body to balance the external water pressure of the floating body. That is, when the floating body is in any position underwater, the internal pressure of the floating body is increased by inflation, and the internal pressure of the floating body and the external body are made. The water pressure is equivalent, so that the structure of the floating body is not damaged by the high water pressure.
  • the installation process of the traditional underwater floating body is complicated.
  • the traditional underwater floating body as the water depth changes continuously during the installation process, it is necessary to constantly adjust the internal pressure of the floating body while constantly adjusting the posture of the floating body. That is to say, as the water depth increases, the external water pressure of the floating body is also increasing.
  • the process of inflating the interior of the floating body must be carried out step by step, that is, every time a certain water level is reached, pressure and balance adjustment should be carried out.
  • the working water depth of an underwater floating body is about 300 meters. Performing such an operation every 5 meters (set according to the pressure resistance of the floating body), the entire installation process requires dozens of such pressure adjustments and floating underwater attitude adjustment operations.
  • the technical problem to be solved by the present invention is to provide a pressure balanced floating body capable of being installed in a continuous water supply and ensuring that the bulkhead of the floating body is not damaged, and a mounting method thereof.
  • the present invention provides a pressure balanced floating body, comprising a water tank, a gas tank, an underwater equalizing control system for controlling the internal air pressure of the floating body, a gas tank inflation valve, and a water tank water passing system. And a water tank venting system, wherein the water tank is not in communication with the sub-tank.
  • the floating center of the floating body is on the same vertical line as the center of gravity of the floating body, and the position of the floating body of the floating body is higher than the position of the floating center of gravity.
  • the left and right sides of the floating body are the water tank and the gas tank, and the buoyancy provided by the water tank and the gas tank on the left side of the floating body is equal to the buoyancy provided by the water tank and the gas tank on the right side of the floating body.
  • the front and rear sides of the floating body are the water tank and the gas tank, and the water tank and the gas tank provided on the front side of the floating body provide buoyancy greater than the buoyancy provided by the water tank and the gas tank on the rear side of the floating body, or the floating body
  • the buoyancy provided by the water tank and the gas tank on the side is greater than the buoyancy provided by the water tank and the gas tank on the front side of the floating body.
  • Each of the water tanks is provided with a water tank water supply system and the water tank venting system; each of the air tanks is provided with one of the air tank inflation valves.
  • the underwater equalization control system is coupled to the air tank.
  • the water tank and the gas tank provided on the front side of the floating body provide a buoyancy greater than that provided by the water tank and the gas tank on the rear side of the floating body, or the water tank and the gas tank provided on the rear side of the floating body
  • the buoyancy provided by the water tank and the gas tank having a buoyancy greater than the front side of the floating body includes: the number of the water tank and the gas tank on the front side of the floating body is greater than the number of the water tank and the gas tank on the rear side of the floating body Or the number of the water tanks and air tanks on the rear side of the floating body is greater than the number of the water tanks and air tanks on the front side of the floating body.
  • the number of the underwater equalization control systems is the same as the number of the air intake inflation valves, and one of the air intake inflation valves is connected to one of the underwater equalization control systems.
  • the underwater equalization control system includes: a driving circuit, an inflating device, a solenoid valve that controls opening and closing of the inflating device, a pressure sensor, a water pressure sensor, and data collected according to the air pressure sensor and the water pressure sensor.
  • the inflator device issues a second controller of the inflation control command.
  • the second controller is coupled to the solenoid valve through the drive circuit.
  • the solenoid valve is coupled to the inflation device.
  • the air pressure sensor and the water pressure sensor are respectively connected to the second controller.
  • the inflatable device is coupled to the gas chamber inflation valve.
  • the second controller includes: a data receiving module, configured to receive data collected by the air pressure sensor and the water pressure sensor.
  • the processing module issues a control command to the solenoid valve to control opening and closing of the inflation device according to data collected by the data receiving module.
  • the processing module includes: a determining unit, the determining unit determining, according to the data collected by the data receiving module, whether the pressure in the air chamber is consistent with the water pressure of the outside.
  • Executing unit when the judging unit judges that the pressure in the air chamber is inconsistent with the water pressure of the outside, generates a control instruction that needs to inflate a gas flow to the gas tank, and sends a control command to the driving circuit through the driving circuit
  • the solenoid valve controls the solenoid valve to open; when the determining unit determines that the pressure in the air chamber is consistent with the water pressure of the outside, an instruction to control the closing of the solenoid valve is issued to the solenoid valve through the driving circuit.
  • attitude monitoring system and a controller are also included.
  • the attitude monitoring system, the venting system, and the water passing system are respectively coupled to the controller.
  • the attitude monitoring system monitors a position of the floating body, and monitors that the floating body is in an equilibrium state or an inclined state, and when the floating body is in an inclined state, the controller controls the ventilation system to go down to the floating body
  • the water tank at the inclined end is filled with gas until the floating body is no longer inclined.
  • the attitude monitoring system is composed of four position sensors. Four of the position sensors are respectively mounted on the four corners of the floating body; four of the position sensors are respectively coupled to the controller.
  • the water tank venting system is disposed at a top end of the water tank.
  • the water tank water supply system is disposed at a bottom end of the water tank.
  • the invention also provides a method for installing a pressure balanced floating body, comprising: filling each of the water tanks with water, and starting each of the underwater equalizing control systems to let the floating body be launched until completely Immerse in water.
  • the floating body is pulled downward by an underwater traction system, and the air pressure in each of the air chambers is controlled by the underwater equalization control system to be consistent with the external water pressure.
  • each of the water tanks is inflated to discharge water in the water tank, so that the water tank provides upward positive buoyancy.
  • the floating body is pulled downward, and the underwater pressure equalization control system controls the air pressure in each of the air chambers to be consistent with the water pressure of the outside air, including: passing the air pressure sensor into the air chamber The air pressure is detected, the water pressure of the outside is detected by the water pressure sensor, and the detection results of the air pressure and the water pressure are transmitted to the second controller.
  • the second controller uses the pressure difference between the air pressure and the water pressure as a control input parameter to determine whether the pressure in the air chamber is consistent with the external water pressure. When the two controllers are inconsistent, the second controller generates a control that determines the gas flow rate.
  • each of the water tanks to discharge water in the water tank, so that the water tank provides upward positive buoyancy, including: determining that the water tank needs to be discharged Total water volume.
  • the total aeration of each of the tanks is determined based on the total displacement required to be discharged from the tank, and the total amount of aeration is equally distributed to all tanks to determine the amount of charge for each tank.
  • Each tank is charged with a corresponding amount of gas through a tank venting system.
  • Each of the water tanks is inflated to close the venting system on each of the water tanks so that each of the water tanks provides upward positive buoyancy.
  • the positions of the floating body are monitored by four position sensors distributed on the four corners of the floating body, and the floating body is monitored in an equilibrium state or a tilt state, when the floating body is in an inclined state,
  • the controller controls the venting system to tilt downwardly toward the floating body
  • the pressure balanced floating body provided by the invention has the maximum buoyancy provided by the water tank and the gas tank provided on the left side of the floating body and the maximum buoyancy provided by the water tank and the gas tank provided on the right side of the floating body, thereby ensuring the left and right side of the floating body In a steady state.
  • the maximum buoyancy provided by the water tank and the gas tank provided on the front side of the floating body is different from the maximum buoyancy provided by the water tank and the gas tank provided on the rear side of the floating body, so that the deep sea pipeline can be realized according to the different gravity of the different sides of the deep sea pipeline. Equipped.
  • the position of the floating center of the floating body is on the same vertical line as the position of the center of gravity, and the position of the floating center is higher than the position of the center of gravity, which can ensure that the entire floating body maintains a stable state during the working state.
  • the underwater pressure equalization control system can inflate the air tank according to the external water pressure, so that the pressure of the air tank is consistent with the external water pressure, ensuring that the floating body is not larger by the outside.
  • the pressure is destroyed, and the underwater pressure equalization control system plays a role in real-time measurement and real-time control.
  • the air chamber provides upward buoyancy, thereby overcoming the gravity of the floating body itself, enabling the floating body to smoothly launch. Since the combined buoyancy provided by the sub-cabin and the downward gravity of the floating body are small, the floating body basically steadily stabilizes, thereby reducing the force applied by the traction system to the floating body and reducing the connection between the outer cabin and the traction system. Structural strength requirements. After the floating body is inflated in the working water, the water tank is filled with gas, and the water tank provides upward positive buoyancy to make the underwater floating body work normally.
  • the underwater floating body installation method provided by the invention has simple and controllable attitude adjustment process, and the installation can reach the predetermined water depth once and without need to be adjusted step by step, thereby improving installation efficiency and saving a lot of manpower and material resources.
  • the fine adjustment of the attitude of the floating body during the entire launching process is completely carried out by the traction system, and the adjustment is convenient.
  • the operations that occur during the entire installation are done through the water control system, without any underwater operation. Therefore, the installation of the present invention can be assisted by the underwater operating system (ROV), which greatly reduces the installation cost and makes the installation more controllable.
  • ROV underwater operating system
  • FIG. 1 is a schematic structural diagram of a floating body according to an embodiment of the present invention.
  • FIG. 2 is a left side view of FIG. 1 according to an embodiment of the present invention.
  • 3 is a schematic diagram of the operation of the underwater equalization control system according to an embodiment of the present invention.
  • FIG. 4 is a system block diagram of the second controller shown in FIG. detailed description
  • the present invention provides a pressure balanced floating body including a floating body, a gas chamber inflation valve, a water tank water system, a water tank venting system, a first controller, an attitude monitoring system, and for control Underwater pressure equalization control system for the internal pressure of the floating body.
  • the floating body is divided into at least one water tank 1 and at least one gas tank 2, and the water tank 1 and the gas tank 2 are only two different classifications of the inner tank of the floating body, and the two tanks can satisfy the sealing performance in materials and connection manners. Firstly, the structure of the water tank 1 and the gas tank 2 is introduced.
  • the water tank 1 and the gas tank 2 are welded by different specifications of the plates, specifically: the materials and the plates of the same thickness are used to weld the different plates together.
  • Multiple compartments are formed, and the plates are made of high-strength, corrosion-resistant steel. All of the compartments may be in the shape of a rectangular parallelepiped or a cube, as long as the shape conforming to the design concept of the present invention is included in the scope of the present invention.
  • Each compartment is a relatively independent confined space. In the actual manufacturing process, a larger plate is used as the bottom plate of all the compartments.
  • the symmetrical design of the cabin is an important means to balance the entire float.
  • the front side, the left side and the right side of the overall structure of the "mouth” shape are respectively distributed with a row of compartments, and the rear side of the overall structure of the "mouth” shape (ie, the B side in FIG. 1) is distributed.
  • the left side, the right side and the front side of the overall structure of the "mouth” shape ie, the A side in Fig.
  • the buoyancy provided by the front side and the rear side of the floating body can be determined according to the number of water tanks and air tanks on the front side and the rear side of the floating body, and the same number of water tanks or air tanks, the more the quantity provided, The greater the buoyancy.
  • the left-right symmetrical but asymmetrical structure of the cabin is designed according to the application of the floating body.
  • the floating body is mainly used to support the submarine oil pipeline.
  • the oil pipeline extends from the sea floor to the sea surface, and the oil pipeline extending from the sea bottom is fixed in the "mouth" shape.
  • the overall rear end of the shape ie the rear end of the floating body
  • the entire front end of the "mouth” shape ie the front end of the floating body
  • the length of the end of the oil pipe extending from the sea floor is greater than the length extending to the sea surface
  • the length of one end, so the weight of the end of the oil pipe extending from the sea floor is greater than the weight extending to the end of the sea surface
  • the overall rear end of the "mouth” shape is required to design more compartments to provide greater buoyancy to carry the oil pipeline The upper end of the weight. All compartments are divided into two types, tank 1 and tank 2, and tank 1 and tank 2 are not connected.
  • the overall structure of the mouth shape has a total of 48 cabins, of which 32 water tanks are 1, 16 gas tanks 2, and 32 water tanks 1 distributed on the overall structure of the "mouth” shape. Symmetrical (ie, symmetrically distributed in the water tank 1 on the center of the overall structure plane of the "mouth”shape); 16 gas chambers distributed on the overall structure of the "mouth” shape are symmetrical (ie distributed in the mouth) "The overall structure of the glyph shape is symmetrical on the center of the gas line 2 on the plane.”
  • the design of the gas tank 2 and the water tank 1 is as follows: Step S1: Determine the total volume V of the gas tank 2 from the total weight G of the floating body (required) When the gas tank 2 is filled with gas, it can provide the buoyancy required by the floating body during the sinking process, so that the buoyancy is substantially equal to the total weight G of the floating body.
  • Step S2 Determine the water tank 1 from the required positive buoyancy F when the floating body is working.
  • the total volume V of the discharged water is calculated, and the total displacement of each tank 1 is calculated, and the total amount of inflation of each tank 1 is calculated according to the total displacement of each tank 1.
  • Step S3 The total amount of inflation of each tank 1 is equally distributed to each In the water tank 1, the amount of inflation of each water tank 1 is obtained.
  • Step S4 During the design of the floating body, the floating center of the floating body and the center of gravity of the floating body should be on the same vertical line, and the floating center of the floating body is slightly higher than the center of gravity of the floating body.
  • the position of the floating center is B , yB , zB )
  • the position of the center of gravity be c , yC , zC )
  • Each gas tank 2 is provided with a gas chamber inflation valve.
  • the number of underwater pressure equalization control systems is the same as the number of gas chamber inflation valves, and one underwater pressure equalization control system is connected to one gas chamber inflation valve.
  • the bottom end of each water tank 1 is provided with a water tank water supply system, and the top of each water tank 1 is provided with a water tank ventilation system.
  • the water tank water supply system is composed of two check valves, which are the outlet valve and the inlet valve respectively.
  • the threshold of the check valve can be selected by itself. When the pressure difference between the inside and outside of the tank exceeds the threshold, the water will be It is discharged through the outlet valve or enters the tank through the inlet valve.
  • the water tank venting system includes air holes and air pipes connected to the air holes.
  • the air pipes are divided into two groups. One group of air pipes is directly connected to the atmosphere.
  • the air pipes of the group cooperate with the water system of the water tank to realize the water flow function of the water tank, and the other group of air pipes and air.
  • the equipment is connected to inflate the water tank.
  • the attitude monitoring system is composed of four position sensors, and the four position sensors are respectively distributed at four corners around the floating body.
  • the controller judges that the floating body is in an equilibrium state or a certain tilt state according to the position signals fed back by the four position sensors, and realizes the floating body.
  • the attitude information is monitored to monitor that the floating body is in equilibrium or tilted.
  • the attitude monitoring system is coupled to the first controller, and the first controller is coupled to the venting system and the water passing system of the water tank 1.
  • the attitude monitoring system monitors the position of the floating body, and monitors the floating body in an equilibrium state or a tilting state.
  • the first controller determines which end of the floating body is tilted downward according to the position information of the floating body acquired by the attitude monitoring system. And controlling the venting system to fill the water tank 1 at the downwardly inclined end with gas until the floating body is no longer inclined.
  • the underwater equalization control system includes: a second controller that issues an inflation control command, a drive circuit, a solenoid valve, an inflation device, a pressure sensor, a water pressure sensor, and an HMI device.
  • the second controller is connected to the solenoid valve through a drive circuit.
  • the solenoid valve is connected to the inflation device.
  • the air pressure sensor and the water pressure sensor are respectively connected to the second controller.
  • the inflatable device is connected to the gas chamber inflation valve.
  • the second controller includes a data receiving module and a processing module; and the data receiving module is configured to connect Receiving data collected by the air pressure sensor and the water pressure sensor; the processing module sends a control command for controlling the opening and closing of the airing device to the electromagnetic valve according to the data collected by the data receiving module.
  • the processing module includes a determining unit and an executing unit. The judging unit judges whether the pressure in the air chamber is consistent with the external water pressure according to the data collected by the data receiving module.
  • the execution unit generates a control command for inflating gas flow to the gas capsule when the judgment unit determines that the pressure in the gas chamber is inconsistent with the water pressure of the outside, and sends a control command to the solenoid valve through the drive circuit to control the solenoid valve.
  • the HMI device is an external monitoring and input device, and the HMI device is connected to the second controller.
  • the HMI device integrates a debugging module, a pressure display module, an alarm module and a device monitoring module.
  • the debugging module, pressure display module, alarm module and equipment monitoring module are all software units. They are "project files” edited by the screen dynamic software on the computer, and these "project files” are downloaded to the HMI device. functional module.
  • the debugging module is used for debugging before the floating body is launched, and the debugging module sends an artificially set pressure difference (that is, the difference between the internal pressure of the gas tank and the external water pressure of the gas tank) to the second controller, and the gas is set in this embodiment.
  • the external water pressure of the cabin is greater than the internal air pressure of the air tank X MPa, and the pressure difference (X MPa) value is transmitted to the second controller. If the inflation device is inflated into the air chamber and the pressure sensor is increased by X MPa, the commissioning is explained. Succeeded, the equalization control system is working properly.
  • the pressure display module is used to display the pressure values obtained from the air pressure sensor and the water pressure sensor in real time, which is convenient for the staff to observe and record.
  • the alarm module is used to monitor the working state of the underwater equalization control system.
  • the pressure difference between the air pressure sensor and the water pressure sensor exists, the pressure difference does not disappear within 15 seconds (this time can be artificially set), but instead If it continues to increase, it means that the underwater equalization control system is not working properly.
  • the alarm module issues an alarm to prompt the staff to perform troubleshooting.
  • the equipment monitoring module is used to monitor the working state of the air pressure sensor, the water pressure sensor, the second controller, the driving circuit and the electromagnetic valve. When the monitored device fails, the equipment monitoring module will display the faulty device and pass the alarm. The module issues an alert.
  • the embodiment of the invention further provides a method for installing a pressure balanced floating body, comprising: Step 10: Fill each tank 1 with water and start each underwater pressure equalization control system to allow the floating body to be launched until it is completely submerged.
  • Step 20 Pull the floating body down, and control the air pressure in each gas tank 2 by the underwater pressure equalization control system to be consistent with the external water pressure.
  • the floating body is lowered by the underwater traction device. Traction, the air pressure in the air tank 2 is detected by the air pressure sensor, the water pressure of the outside is detected by the water pressure sensor, and the detection results of the air pressure and the water pressure are transmitted to the second controller.
  • the second controller uses the pressure difference between the air pressure and the water pressure as a control input parameter to determine whether the pressure in the air chamber is consistent with the external water pressure.
  • the second controller When it is inconsistent, the second controller generates a control command that should determine the gas flow rate, and The control command is sent to the drive circuit to be converted into a control signal and then sent to the solenoid valve, the solenoid valve is opened and the inflator device inflates the gas tank 2.
  • the second controller stops transmitting a control command for determining the gas flow rate, the electromagnetic valve is closed, and the inflator stops inflating the gas tank 2.
  • Step 30 After the floating body reaches the working water area, the first controller controls the water tank venting system to inflate each water tank 1 to discharge the water in the water tank 1, so that the water tank 1 provides upward positive buoyancy, specifically: The total amount of water that each tank 1 needs to discharge is determined according to the positive buoyancy requirements that the floating body needs to meet. The total charge of each tank 1 is calculated based on the total displacement of each tank 1 and the total inflation of each tank 1 is calculated, and the total amount of inflation of each tank 1 is equally distributed to each tank 1, and the amount of inflation of each tank 1 is determined. The water tank 1 is filled with a gas corresponding to the inflation amount through the water tank venting system.
  • the position of the floating body is monitored by the attitude monitoring system, and the floating body is monitored in an equilibrium state or a tilt state.
  • the controller controls the water tank 1 to be filled into the water tank 1 at the one side inclined downward on the floating body. Enter the gas until the float is no longer tilted.
  • the unit of total displacement is ton
  • the unit of displacement is ton
  • the unit of inflation is cubic meter.
  • the underwater pressure equalization control system can inflate the gas tank 2 according to the external water pressure, so that the pressure of the gas tank 2 and the external water pressure
  • the size is the same, and all the resultant forces on the outer wall of the gas tank 2 are substantially zero, which ensures that the floating body is not damaged by the external pressure.
  • the air tank 2 provides upward buoyancy to overcome the float
  • the gravity of the body itself enables the floating body to be smoothly launched, and at the same time reduces the force exerted by the traction system on the floating body, and reduces the structural strength requirement of the connection between the outer cabin and the traction system.
  • the water tank 1 After the floating body is inflated in the working water, the water tank 1 is filled with gas, and the water tank 1 provides upward positive buoyancy to make the underwater floating body work normally.
  • the floating center of the floating body is on the same vertical line as the center of gravity of the floating body, and the position of the floating center is higher than the position of the center of gravity. This design principle enables the entire floating body to maintain balance during the launching process.
  • the water in the water tank 1 is inflated, and part of the water in the water tank 1 is discharged, so that the weight of the discharged water is just the positive buoyancy, so that the water tank 1 can provide the positive buoyancy required for the work.
  • Step 110 Determine the total displacement to be discharged according to the positive buoyancy requirement of the floating body.
  • Step 220 Calculate the total aeration amount of each water tank 1 according to the total displacement of each water tank 1 and according to the gas state equation, and equally distribute the total inflation amount of each water tank 1 to each water tank 1, and determine the water tank 1 of each water tank 1 The amount of inflation.
  • Steps 110 and 220 can be set in advance before the floating body is launched to ensure the safety of the floating body.
  • Step 330 Filling each of the water tanks 1 with a gas corresponding to the inflation amount through the water tank venting system.
  • the principle of the pneumatic drainage operation is as follows: The air pressure in each water tank 1 is increased by the air venting system to make it larger than the external water pressure, and the water in the water tank 1 is automatically discharged through the water tank water supply system under the pressure difference. After the partial water is discharged, the gas space in the tank 1 becomes larger, and the air pressure decreases. When the air pressure in the tank 1 decreases to less than the external water pressure, the water enters the tank 1 through the water tank water system, reducing the water. The gas space inside the cabin 1 increases the air pressure.
  • Step 440 After each water tank 1 is inflated, four position sensors monitor the position of the floating body, and the controller calculates the attitude angle of the floating body according to the position signals fed back by the four sensors, and determines that the floating body is in an equilibrium state or a certain tilt state. When the floating body is in the inclined state, the controller determines which end of the floating body is tilted downward according to the position information of the floating body acquired by the attitude monitoring system, and controls the ventilation system to fill the water tank 1 at the downwardly inclined end with gas, until The float is no longer tilted.
  • Embodiments of the present invention have the following beneficial effects: 1.
  • the maximum buoyancy that can be provided by the water tank and the gas tank set on the left side of the floating body is equal to the maximum buoyancy that can be provided by the water tank and the gas tank provided on the right side of the floating body, so that the left and right sides of the floating body can be stabilized.
  • the maximum buoyancy provided by the water tank and the gas tank provided on the front side of the floating body is different from the maximum buoyancy provided by the water tank and the gas tank provided on the rear side of the floating body, so that the deep sea pipeline can be realized according to the different gravity of the different sides of the deep sea pipeline. Equipped.
  • the underwater pressure equalization control system can inflate the air tank according to the external water pressure, so that the pressure of the air tank is consistent with the external water pressure, ensuring that the floating body is not larger by the outside. The pressure is destroyed.
  • the air tank provides upward buoyancy, thereby overcoming the gravity of the floating body itself, enabling the floating body to be launched smoothly. Since the combined buoyancy provided by the sub-cabin and the downward gravity of the floating body are small, the floating body basically steadily stabilizes, thereby reducing the force applied by the traction system to the floating body and reducing the connection between the outer cabin and the traction system. Structural strength requirements.
  • the attitude adjustment process is simple and controllable, and the installation can reach the predetermined water depth at one time, without stepwise adjustment, which improves the installation efficiency and saves a lot of manpower and material resources.
  • the operation that occurs during the entire installation process is done by the water control system, without any underwater operation. Therefore, the installation of the present invention can be assisted by the underwater operating system (ROV), which greatly reduces the installation cost and makes the installation more controllable.
  • ROV underwater operating system

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Toys (AREA)
  • Wind Motors (AREA)

Abstract

一种水下压力平衡浮体及安装方法,浮体包括水舱(1)、气舱(2)、气舱充气阀、水下均压控制系统、水舱通水系统及水舱透水系统,浮体内分隔成水舱(1)及气舱(2);每个水舱(1)设有水舱通水系统及水舱透水系统;每个气舱(2)设有气舱充气阀,且气舱充气阀与水下均压控制系统连接;浮体的浮心与重心在同一竖直线上,且浮心高于重心。方法包括:向水舱(1)注水,让浮体主体下水并浸没水中;将浮体本体向下牵引,控制每个气舱(2)内的气压与外界的水压一致;向每个水舱(1)内充气,排出所述水舱(1)内的水,以提供向上的正浮力。本发明的水下浮体及安装方法,可以使水下浮体一次性到达工作水域,节约了大量的人力、物力。

Description

一种压力平衡式浮体及其安装方法
技术领域
本发明涉及船舶技术领域, 特别涉及一种压力平衡式浮体及其安装方 法。 背景技术
浮式生产储卸装置(FPSO)作为海上油气资源开发的装备, 广泛应用 各种水深条件下的油气开发。而对于深水浮式生产储卸装置(FPSO)而言, 其水下浮体的工作位置一般处于深水处, 浮体外部会承受很大的水压。 要 使浮体结构不会因承受较大的水压而破坏, 就必须让浮体内部存在着和外 部水压相当的压力。 传统的水下浮体是基于非耐压结构设计的, 浮体结构 为非耐压结构, 耐压能力有限, 因此非耐压水下浮体需要在不承受较大压 力的前提下才能安全正常的安装并投入工作。 传统的水下浮体通常向浮体 内部充气使浮体内部产生较大压强以平衡浮体外部水压, 即浮体处于水下 任何位置的时候都通过充气的方式增大浮体内部压强, 使浮体内部压强与 外部水压相当, 以保护浮体的结构不被较高的水压破坏, 基于以上原因, 传统的水下浮体的安装过程较为繁杂。 对于传统的水下浮体而言, 在其安 装过程中, 随着水深的不断变化, 需要不断的调节浮体内部压力, 同时不 断调整浮体的姿态。 也就是说, 随着水深的增加, 浮体所受外部水压也在 不断增大, 为使浮体不用承受过大的压力, 需不断的往浮体内部充气, 增 大浮体内部压力以平衡外部水压。 而由于浮体结构承受压力能力有限, 所 以往浮体内部充气的过程须逐段进行, 即每到一定水位就要进行一次压力 和平衡的调整,例如某水下浮体的工作水深在 300米左右,若按每 5米(根 据浮体耐压能力设置) 进行一次这样的操作来算, 那么整个安装过程就需 要几十次这样的压力调整和浮体水下姿态调整操作。 并且传统的水下浮体 安装过程都是在水下通过控制系统在水下操作系统 (ROV) 的帮助下完成 的, 故其安装过程实现难度较大。 现有的压力控制系统无法对压力进行连 续的控制, 无法做到实时测量、 实时控制。 发明内容
本发明所要解决的技术问题是提供一种能够一次性连续下水安装、 保 证浮体舱壁不受损坏的压力平衡式浮体及其安装方法。
为解决上述技术问题, 本发明提供了一种压力平衡式浮体, 包括水舱、 气舱、 用于控制所述浮体内部气压的水下均压控制系统、 气舱充气阀、 水舱 通水系统及水舱透气系统, 其中, 所述水舱与所述分舱不连通。 所述浮体的 浮心与所述浮体的重心在同一竖直线上, 且所述浮体浮心的位置高于所述浮 体重心的位置。 所述浮体的左右两侧是所述水舱和气舱, 所述浮体左侧的所 述水舱和气舱提供的浮力与所述浮体右侧所述水舱和气舱提供的浮力相等。 所述浮体前后侧是所述水舱和气舱, 所述浮体前侧的所述水舱和气舱提供的 浮力大于所述浮体后侧的所述水舱和气舱提供的浮力, 或所述浮体后侧的所 述水舱和气舱提供的浮力大于所述浮体前侧的所述水舱和气舱提供的浮力。 每个所述水舱上均设置有水舱通水系统及所述水舱透气系统; 每个所述气舱 上设置有一个所述气舱充气阀。 所述水下均压控制系统与所述气舱连接。
进一步地,所述浮体前侧的所述水舱和气舱提供的浮力大于所述浮体后侧 的所述水舱和气舱提供的浮力, 或所述浮体后侧的所述水舱和气舱提供的浮 力大于所述浮体前侧的所述水舱和气舱提供的浮力包括: 所述浮体前侧的所 述水舱和气舱的个数大于所述浮体后侧的所述水舱和气舱的个数, 或所述浮 体后侧的所述水舱和气舱的个数大于所述浮体前侧的所述水舱和气舱的个 数。
进一步地, 所述水下均压控制系统的数量与所述气舱充气阀的数量相 同, 且一个所述气舱充气阀与一个所述水下均压控制系统连接。 进一步地, 所述水下均压控制系统包括: 驱动电路、 充气设备、 控制 所述充气设备开闭的电磁阀、 气压传感器、 水压传感器及根据所述气压传 感器、 水压传感器采集的数据向所述充气设备发出充气控制指令的第二控 制器。 所述第二控制器通过所述驱动电路与所述电磁阀连接。 所述电磁阀 与所述充气设备连接。 所述气压传感器及所述水压传感器分别与所述第二 控制器连接。 所述充气设备与所述气舱充气阀连接。
进一步地, 所述第二控制器包括: 数据接收模块, 用于接收所述气压 传感器、 水压传感器采集的数据。 处理模块, 根据所述数据接收模块采集 的数据向所述电磁阀发出控制所述充气设备开闭的控制指令。
进一步地, 所述处理模块包括: 判断单元, 所述判断单元根据所述数 据接收模块采集的数据判断气舱内的压力与外界的水压是否一致。 执行单 元, 当所述判断单元判断所述判断气舱内的压力与外界的水压不一致时, 产生需要向所述气舱充气气体流量的控制指令, 并将控制指令通过所述驱 动电路发送给所述电磁阀, 控制电磁阀开启; 当所述判断单元判断所述判 断气舱内的压力与外界的水压一致时, 通过所述驱动电路向所述电磁阀发 出控制电磁阀关闭的指令。
进一步地, 还包括姿态监测系统及控制器。 所述姿态监测系统、 透气 系统及所述通水系统分别与所述控制器连接。 所述姿态监测系统对所述浮 体的位置进行监测, 监测所述浮体处于平衡状态或倾斜状态, 当所述浮体 处于倾斜状态时, 所述控制器控制所述透气系统向所述浮体上向下倾斜的 一端的所述水舱内充入气体, 直到所述浮体不再倾斜为止。
进一步地, 所述姿态监测系统由四个位置传感器组成。 四个所述位置 传感器分别安装在所述浮体四周的四个角上; 四个所述位置传感器分别与 所述控制器连接。
进一步地, 所述水舱透气系统设置在所述水舱的顶端。 所述水舱通水 系统设置在所述水舱的底端。 本发明还提供了一种压力平衡式浮体的安装方法, 包括: 向各所述水 舱内注满水, 并启动每个所述水下均压控制系统, 让所述浮体主体下水, 直至完全浸没水中。 通过水下牵引系统将所述浮体本体向下牵引, 通过所 述水下均压控制系统控制每个所述气舱内的气压与外界的水压一致。 当所 述浮体本体到达工作水域后, 向每个所述水舱内充气, 排出所述水舱内的 水, 使水舱提供向上的正浮力。
进一步地, 所述将所述浮体本体向下牵引, 通过所述水下均压控制系 统控制每个所述气舱内的气压与外界的水压一致包括: 通过所述气压传感 器对气舱内的气压进行检测,通过所述水压传感器对外界的水压进行检测, 并将气压及水压的检测结果传输到所述第二控制器。 所述第二控制器将气 压及水压的压差作为控制输入参数, 判断气舱内的压力与外界的水压是否 一致, 当不一致时, 所述第二控制器产生应确定气体流量的控制指令, 并 将所述控制指令输送到所述驱动电路放大转化为控制信号后输送到所述电 磁阀, 所述电磁阀开启且所述充气设备对所述气舱进行充气; 当一致时, 所述第二控制器停止发送确定气体流量的控制指令, 所述电磁阀关闭, 所 述充气设备停止对所述气舱充气。
进一步地, 所述当所述浮体本体到达工作水域后, 向每个所述水舱内 充气, 排出所述水舱内的水, 使水舱提供向上的正浮力包括: 确定水舱需 要排出的总水量。 根据水舱需要排出的总排水量确定各所述水舱的总充气 量, 将总充气量平均分配给所有的水舱, 确定每个水舱的充气量。 通过水 舱透气系统分别向各水舱充入对应充气量的气体。 每个所述水舱充气完毕 后关闭每个所述水舱上的透气系统, 使每个所述水舱提供向上的正浮力。
进一步地, 充气完毕后, 通过所述浮体四个角上分布的四个所述位置 传感器对所述浮体的位置进行监测, 监测所述浮体处于平衡状态或倾斜状 态, 当浮体处于倾斜状态时, 控制器控制透气系统向浮体上向下倾斜的一 本发明提供的压力平衡式浮体, 浮体左侧设置的水舱和气舱所能够提 供的最大浮力与浮体右侧设置的水舱和气舱所能提供的最大浮力相等, 因 此能够保证浮体的左右侧趋于平稳状态。 浮体的前侧设置的水舱和气舱所 能提供的最大浮力与浮体的后侧设置的水舱和气舱所能提供的最大浮力不 同, 因此能够根据深海管线不同侧重力的不同实现对深海管线的搭载。 同 时, 浮体浮心的位置与重心的位置在同一竖直线上, 且浮心的位置高于重 心的位置, 能够保证整个浮体在工作状态时保持平稳状态。 浮体本体在下 水的过程中, 水下均压控制系统可根据外界水压的大小给气舱内充气, 使 气舱压力的大小与外界水压的大小一致, 保证了浮体本体不被外界较大的 压力所破坏, 水下均压控制系统起到了实时测量、 实时控制的作用。 气舱 提供向上的浮力, 从而克服浮体本体自身的重力, 使浮体本体能够平稳的 下水。 由于分舱提供的向上的浮力与浮体向下的重力的合力较小, 浮体基 本趋于平稳状态, 因此减小了牵引系统对浮体的施力强度, 降低了外舱上 与牵引系统连接处的结构强度要求。 浮体本体在工作水域充气后, 水舱内 充入气体, 水舱提供向上的正浮力, 使水下浮体正常工作。
本发明提供的水下浮体安装方法, 姿态调整过程简单可控, 安装可一 次性到达预定水深, 无需逐步调整, 提高了安装效率, 节省了大量的人力 和物力。 浮体整个下水过程中姿态的微调完全通过牵引系统进行, 调节方 便。 整个安装过程中出现的操作均是通过水上控制系统来完成的, 没有任 何水下操作。 故本发明的安装可免水下操作系统 (ROV) 辅助, 大大降低 了安装成本, 安装可控性更强。 浮体进入工作状态后, 无论是气舱还是水 舱都几乎不承受压力, 延长了气舱及水舱的使用寿命。 附图说明
图 1为本发明实施例提供的浮体本体结构示意图。
图 2为本发明实施例提供的图 1的左视图。 图 3为本发明实施例提供的水下均压控制系统工作原理图 图 4为图 3所示第二控制器的系统框图。 具体实施方式
参见图 1-图 4, 本发明提供了一种压力平衡式浮体, 包括浮体本体、 气舱充气阀、 水舱通水系统、 水舱透气系统、 第一控制器、 姿态监测系统 及用于控制浮体本体内部气压的水下均压控制系统。 浮体本体内分隔成至 少一个水舱 1及至少一个气舱 2, 水舱 1和气舱 2只是浮体内部舱的两种 不同分类, 两种舱在材料和连接方式上满足密封性能好便可。 首先, 对水 舱 1及气舱 2的结构进行介绍, 水舱 1和气舱 2是由不同规格的板材焊接 而成, 具体为: 取用材料和厚度相同的板材, 将不同的板材焊接在一起形 成多个舱室, 板材选用高强度、 耐腐蚀的钢板。 所有的舱室可以为长方体 或正方体形状, 只要符合本发明的设计思想的形状都包含在本发明的保护 范围内。 每个舱室为相对独立的密闭空间, 在实际制造的过程中, 采用一 个面积较大的板材作为所有舱室的底板。 本实施例中, 所有的舱室紧密排 列, 相邻的两舱室共用一个舱壁, 且所有的舱室分布形成一个 "口" 字形 形状的整体结构, 所有的舱室形成的 "口"字形形状的整体结构左右对称, 舱室的对称设计是使整个浮体保持平衡的重要手段。 本实施例中, "口" 字形形状的整体结构的前侧、 左侧及右侧分别分布有一排舱室, "口"字 形形状的整体结构的后侧 (即图 1中的 B侧) 分布一排舱室, "口"字形 形状的整体结构的的左侧、 右侧及前侧 (即图 1中的 A侧) 分别分布有一 排分舱 1, "口" 字形形状的整体前侧 (也就是浮体的前侧) 的水舱 1和 气舱 2所能提供的最大浮力大于 "口" 字形形状的整体后侧 (也就是浮体 的后侧) 的水舱 1和气舱 2所能提供的最大浮力, 或 "口"字形形状的整 体后侧 (也就是浮体的后侧) 的水舱 1和气舱 2所能提供的最大浮力大于 "口 " 字形形状的整体前侧 (也就是浮体的前侧) 的水舱 1和气舱 2所能 提供的最大浮力。 本实施例中, 浮体前侧和后侧所能提供的浮力可根据浮 体前侧和后侧的水舱及气舱的数量进行确定, 规格一样的水舱或气舱, 数 量越多, 提供的浮力越大。 舱室的左右对称但前后不对称的结构是根据浮 体的应用而设计的, 浮体主要用于支撑海底输油管道, 输油管道从海底一 直延伸至海面, 从海底延伸而来的输油管固定在 "口" 字形形状的整体的 后端 (即浮体的后端) , 然后经 "口"字形形状的整体的前端 (即浮体的 前端) 延伸至海面; 由于输油管从海底延伸而来的一端的长度大于延伸至 海面的一端的长度, 因此输油管从海底延伸而来的一端的重量大于延伸至 海面一端的重量; 需要将 "口" 字形形状的整体的后端设计更多的舱室以 提供较大的浮力来承载输油管上重量较大的一端。 所有的舱室分为水舱 1 和气舱 2两类, 且水舱 1和气舱 2是不连通的。 本实施例中, 口" 字形形 状的整体结构一共有 48个舱室, 其中 32个水舱 1, 16个气舱 2, 且分布 在 "口" 字形形状的整体结构上的 32个水舱 1左右对称 (即分布在 "口 " 字形形状的整体结构平面上中心线左右的水舱 1对称) ; 分布在 "口" 字 形形状的整体结构上的 16个气舱 2左右对称(即分布在 "口"字形形状的 整体结构平面上中心线左右的气舱 2对称) 。 气舱 2及水舱 1的设计方案 具体如下: 步骤 S1 : 由浮体的总重量 G确定气舱 2的总容积 V (要求气舱 2充满气体后能够提供浮体在下沉过程中所需的浮力, 使浮力与浮体的总 重量 G的值基本相等) 。 步骤 S2: 由浮体工作时的所需的正浮力 F确定 水舱 1排出水的总体积 V, 并计算各水舱 1的总排水量, 根据各水舱 1的 总排水量计算各水舱 1总充气量。 步骤 S3 : 将各水舱 1的总充气量平均分 配每个水舱 1, 得到每个水舱 1的充气量。步骤 S4: 浮体在设计的过程中, 要使浮体的浮心和浮体的重心在同一竖直线上, 且浮体的浮心略高于浮体 的重心。 设浮心的位置为 B, yB, zB ) , 设重心的位置为 c, yC, zC) , 因 此, 重心和浮心位置关系需满足: xe = xs = 0, ; yG 及 Zs≥ZG≥0。 在确定浮体浮心和浮体重心的过程中, 首先计算浮体的浮心位置, 然后根 据浮心位置调整水舱 1及浮体上的其它设施的结构及尺寸以调整重心位 置, 使浮体重心及浮体浮心位置在同一竖直线上, 且浮体的浮心略高于浮 体的重心。 需要说明的是, 计算重心坐标时, 需同时考虑水舱 1、 气舱 2 及浮体上其他设施的重量, 即浮体重心为水舱 1、 气舱 2和浮体上的其它 设施所构成的整体的重心。 每个气舱 2上均设置有一个气舱充气阀, 水下 均压控制系统的数量与气舱充气阀的数量相同, 一个水下均压控制系统与 一个气舱充气阀连接。 每个水舱 1的底端均设置有水舱通水系统, 每个水 舱 1的顶端设置有水舱透气系统。 水舱通水系统是由两个单向阀构成, 分 别为出水阀和进水阀, 单向阀的阀值可自行选择, 当水舱内、 外的压差超 过该阀值时, 水便通过出水阀排出或经进水阀进入舱内。 水舱透气系统包 括气孔及和气孔连接的气管, 气管分为两组, 一组气管直接与大气相连, 该组气管配合水舱通水系统实现水舱的通水功能, 另一组气管与充气设备 相连, 用于向水舱内充气。 姿态监测系统由四个位置传感器组成, 四个位 置传感器分别分布在浮体四周的四个角上, 控制器根据四个位置传感器反 馈的位置信号判断浮体处于平衡状态或某种倾斜状态, 实现对浮体的姿态 信息进行监测, 监测浮体处于平衡状态或倾斜状态。 姿态监测系统与第一 控制器连接, 第一控制器与水舱 1的透气系统及通水系统连接。 姿态监测 系统对浮体的位置进行监测, 监测浮体处于平衡状态或倾斜状态, 当浮体 处于倾斜状态时, 第一控制器根据姿态监测系统获取的浮体的位置信息判 断浮体的哪一端发生了向下倾斜, 并控制透气系统向向下倾斜的一端的水 舱 1内充入气体, 直到浮体不再倾斜为止。
参见图 3, 水下均压控制系统包括: 发出充气控制指令的第二控制器、 驱动电路、 电磁阀、 充气设备、 气压传感器、 水压传感器及 HMI设备。 第 二控制器通过驱动电路与电磁阀连接。 电磁阀与充气设备连接。 气压传感 器及水压传感器分别与第二控制器连接。 充气设备与气舱充气阀连接。 参 见图 4, 第二控制器包括数据接收模块及处理模块; 数据接收模块用于接 收气压传感器、 水压传感器采集的数据; 处理模块根据数据接收模块采集 的数据向电磁阀发出控制充气设备开闭的控制指令。 处理模块包括判断单 元及执行单元。 判断单元根据数据接收模块采集的数据判断气舱内的压力 与外界的水压是否一致。 执行单元在当判断单元判断判断气舱内的压力与 外界的水压不一致时, 产生需要向气舱充气气体流量的控制指令, 并将控 制指令通过驱动电路发送给所述电磁阀, 控制电磁阀开启; 当判断单元判 断判断气舱内的压力与外界的水压一致时, 通过驱动电路向电磁阀发出控 制电磁阀关闭的指令。 HMI设备为外界监控及输入设备, HMI设备与第二 控制器连接。 HMI设备中集成有调试模块、 压力显示模块、 报警模块及设 备监测模块。 调试模块、 压力显示模块、 报警模块及设备监测模块均为软 件单元, 是在计算机上用画面动态软件编辑的"工程文件", 并把这些"工 程文件"下载到 HMI设备中所形成的不同的功能模块。调试模块供浮体前 下水前调试使用, 利用调试模块向第二控制器发送一个人为设定的压力差 值 (即气舱内部压力与气舱外部水压之差) , 本实施例中设定气舱外部水 压大于气舱内部气压 X MPa,将压力差值 (X MPa) 值输送至第二控制器, 若充气设备向气舱内充气, 并且压力传感器的示数增加 X MPa, 则说明调 试成功, 说下均压控制系统能够正常工作。 压力显示模块用于实时显示从 气压传感器及水压传感器获取的压力数值,便于工作人员进行观察和记录。 报警模块用于对水下均压控制系统的工作状态进行监控, 当气压传感器与 水压传感器之间的压力差存在后, 在 15秒内 (这个时间可人为设定)压力 差没有消失, 反而继续增大, 则说明水下均压控制系统不能正常工作, 此 时报警模块发出警报, 提示工作人员进行故障排除。 设备监测模块用于对 气压传感器、 水压传感器、 第二控制器、 驱动电路及电磁阀的工作状态进 行监测, 当所监测的设备出现故障后, 设备监测模块将显示出现故障的设 备, 并通过报警模块发出警报。
本发明实施例还提供了一种压力平衡式浮体的安装方法, 包括: 步骤 10: 向各水舱 l内注满水, 并启动每个水下均压控制系统, 让浮 体主体下水, 直至完全浸没水中。
步骤 20: 将浮体本体向下牵引, 通过水下均压控制系统控制每个气舱 2内的气压与外界的水压一致, 具体为: 参见图 3, 通过水下牵引设备将浮 体本体向下牵引, 通过气压传感器对气舱 2内的气压进行检测, 通过水压 传感器对外界的水压进行检测, 并将气压及水压的检测结果传输到第二控 制器。 第二控制器将气压及水压的压差作为控制输入参数, 判断气舱内的 压力与外界的水压是否一致, 当不一致时, 第二控制器产生应确定气体流 量的控制指令, 并将控制指令输送到驱动电路放大转化为控制信号后输送 到电磁阀, 电磁阀开启且充气设备对气舱 2进行充气。 当气舱 2内的压力 与外界的水压一致时, 第二控制器停止发送确定气体流量的控制指令, 电 磁阀关闭, 充气设备停止对气舱 2充气。
步骤 30: 当浮体本体到达工作水域后, 第一控制器控制水舱透气系统 向每个水舱 1内充气, 排出水舱 1内的水, 使水舱 1提供向上的正浮力, 具体为: 根据浮体本体需满足的正浮力要求确定各水舱 1需要排出的总水 量。 根据各水舱 1的总排水量及根据气体状态方程计算各水舱 1的总充气 量, 并将各水舱 1总的充气量平均分配给各水舱 1, 确定各水舱 1的充气 量。通过水舱透气系统分别向水舱 1充入对应充气量的气体。充气完毕后, 通过姿态监测系统对浮体的位置进行监测, 监测浮体处于平衡状态或倾斜 状态, 当浮体处于倾斜状态时, 控制器控制透气系统向浮体上向下倾斜的 一端的水舱 1内充入气体, 直到浮体不再倾斜为止。 本实施例中, 总排水 量的单位为吨, 排水量的单位为吨, 充气量的单位为立方米。
下面对浮体的工作原理进行分析说明: 浮体本体在下水的过程中, 水下 均压控制系统可根据外界水压的大小给气舱 2内充气, 使气舱 2压力的大小 与外界水压的大小一致, 此时气舱 2 的外壁上所有的合力基本为零, 保证了 浮体本体不被外界较大的压力所破坏。 气舱 2提供向上的浮力, 从而克服浮 体本体自身的重力, 使浮体本体能够平稳的下水, 同时还减小了牵引系统对 浮体的施力强度, 降低了外舱上与牵引系统连接处的结构强度要求。 浮体本 体在工作水域充气后, 水舱 1 内充入气体, 水舱 1提供向上的正浮力, 使水 下浮体正常工作。 浮体本体的浮心与浮体本体的重心在同一竖直线上, 浮心 的位置高于所述重心的位置, 这种设计原则能够使整个浮体在下水的过程中 保持平衡。 浮体主体到达工作水域后, 通过往各水舱 1 内充气, 排出水舱 1 内的部分水, 使得排出水的重量恰为正浮力大小, 这样水舱 1 便可提供工作 要求的正浮力。 浮体本体各水舱 1 进行充气排水操作时, 会改变整个浮体本 体的重心和浮心位置, 影响浮体本体的姿态, 可通过控制每个水舱 1 的排水 量以此来控制排水后的浮体本体的重心和浮心位置, 保证浮体本体的姿态平 衡, 具体包括: 步骤 110、 按照浮体本体需满足的正浮力要求确定需要排出的 总排水量。步骤 220、根据各水舱 1的总排水量及根据气体状态方程计算各水 舱 1的总充气量, 并将各水舱 1总的充气量平均分配给各水舱 1, 确定各水舱 1的充气量。步骤 110和步骤 220可在浮体下水前提前设置好, 以保证浮体下 水的安全性。步骤 330、通过水舱透气系统分别向各水舱 1充入对应充气量的 气体。 充气排水操作的原理如下: 通过水舱透气系统充气增大各水舱 1 内的 气压, 使其大于外界水压, 在压力差的作用下水舱 1 内的水通过水舱通水系 统自动排出。 排出部分水后水舱 1 内气体空间变大, 气压减小, 当水舱 1 内 气压减小到小于外界水压时, 水又会通过水舱通水系统进入水舱 1 内, 减小 水舱 1内气体空间, 增大气压。 如上过程反复进行, 最后达到一种动态平衡。 步骤 440:各水舱 1充气完毕后, 四个位置传感器对浮体的位置进行监测, 控 制器根据四个传感器反馈的位置信号计算得到浮体的姿态角度, 判断浮体处 于平衡状态或某种倾斜状态, 当浮体处于倾斜状态时, 控制器根据姿态监测 系统获取的浮体的位置信息判断浮体的哪一端发生了向下倾斜, 并控制透气 系统向向下倾斜的一端的水舱 1内充入气体, 直到浮体不再倾斜为止。
本发明实施例具有以下有益效果: 1、浮体左侧设置的水舱和气舱所能够提供的最大最大浮力与浮体右侧 设置的水舱和气舱所能提供的最大浮力相等, 因此能够保证浮体的左右侧 趋于平稳状态。 浮体的前侧设置的水舱和气舱所能提供的最大浮力与浮体 的后侧设置的水舱和气舱所能提供的最大浮力不同, 因此能够根据深海管 线不同侧重力的不同实现对深海管线的搭载。 同时, 浮体浮心的位置与重 心的位置在同一竖直线上, 且浮心的位置高于重心的位置, 能够保证整个 浮体在工作状态时保持平稳状态。 浮体本体在下水的过程中, 水下均压控 制系统可根据外界水压的大小给气舱内充气, 使气舱压力的大小与外界水 压的大小一致, 保证了浮体本体不被外界较大的压力所破坏。
2、气舱提供向上的浮力, 从而克服浮体本体自身的重力, 使浮体本体 能够平稳的下水。 由于分舱提供的向上的浮力与浮体向下的重力的合力较 小, 浮体基本趋于平稳状态, 因此减小了牵引系统对浮体的施力强度, 降 低了外舱上与牵引系统连接处的结构强度要求。
3、 本发明的安装方案中, 姿态调整过程简单可控, 安装可一次性到达预 定水深, 无需逐步调整, 提高了安装效率, 大量节省了人力和物力。
4、 浮体整个下水过程中, 没有任何充气排气操作, 浮体内压力一直处于 自平衡状态。 同时, 浮体整个下水过程中姿态的微调完全通过牵引系统进行, 调节方便。
5、 整个安装过程中出现的操作均是通过水上控制系统来完成的, 没有任 何水下操作。 故本发明的安装可免水下操作系统 (ROV) 辅助, 大大降低了 安装成本, 安装可控性更强。
6、 浮体进入工作状态后, 无论是水舱还是气舱都几乎不承受压力, 延长 了水舱及气舱的使用寿命。
最后所应说明的是, 以上具体实施方式仅用以说明本发明的技术方案 而非限制, 尽管参照实例对本发明进行了详细说明, 本领域的普通技术人 员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离 本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求 书
1、 一种压力平衡式浮体, 其特征在于, 包括水舱、 气舱、 用于控制所述 浮体本体内部气压的水下均压控制系统、 气舱充气阀、 水舱通水系统及水舱 透气系统, 其中, 所述水舱与所述气舱不连通;
所述浮体的浮心与所述浮体的重心在同一竖直线上,且所述浮体浮心的位 置高于所述浮体重心的位置;
所述浮体的左右两侧是所述水舱和气舱, 所述浮体左侧的所述水舱和气 舱提供的浮力与所述浮体右侧所述水舱和气舱提供的浮力相等; 所述浮体前 后侧是所述水舱和气舱, 所述浮体前侧的所述水舱和气舱提供的浮力大于所 述浮体后侧的所述水舱和气舱提供的浮力, 或所述浮体后侧的所述水舱和气 舱提供的浮力大于所述浮体前侧的所述水舱和气舱提供的浮力;
每个所述水舱上均设置有水舱通水系统及所述水舱透气系统;
每个所述气舱上设置有一个所述气舱充气阀;
所述水下均压控制系统与所述气舱连接。
2、 根据权利要求 1所述的压力平衡式浮体, 其特征在于, 所述浮体前侧 的所述水舱和气舱提供的浮力大于所述浮体后侧的所述水舱和气舱提供的浮 力, 或所述浮体后侧的所述水舱和气舱提供的浮力大于所述浮体前侧的所述 水舱和气舱提供的浮力包括:
所述浮体前侧的所述水舱和气舱的个数大于所述浮体后侧的所述水舱和 气舱的个数, 或所述浮体后侧的所述水舱和气舱的个数大于所述浮体前侧的 所述水舱和气舱的个数。
3、 根据权利要求 2所述的压力平衡式浮体, 其特征在于, 所述水下均 压控制系统的数量与所述气舱充气阀的数量相同, 且一个所述气舱充气阀 与一个所述水下均压控制系统连接。
4、 根据权利要求 3所述的压力平衡式浮体, 其特征在于, 所述水下均 压控制系统包括: 驱动电路、 充气设备、控制所述充气设备开闭的电磁阀、 气压传感器、 水压传感器及根据所述气压传感器、 水压传感器采集的数据 向所述充气设备发出充气控制指令的第二控制器;
所述第二控制器通过所述驱动电路与所述电磁阀连接;
所述电磁阀与所述充气设备连接;
所述气压传感器及所述水压传感器分别与所述第二控制器连接; 所述充气设备与所述气舱充气阀连接。
5、 根据权利要求 4所述的压力平衡式浮体, 其特征在于, 所述第二控 制器包括:
数据接收模块, 用于接收所述气压传感器、 水压传感器采集的数据; 处理模块, 根据所述数据接收模块采集的数据向所述电磁阀发出控制 所述充气设备开闭的控制指令。
6、 根据权利要求 5所述的压力平衡式浮体, 其特征在于, 所述处理模 块包括:
判断单元, 所述判断单元根据所述数据接收模块采集的数据判断气舱 内的压力与外界的水压是否一致;
执行单元, 当所述判断单元判断所述判断气舱内的压力与外界的水压 不一致时, 产生需要向所述气舱充气气体流量的控制指令, 并将控制指令 通过所述驱动电路发送给所述电磁阀, 控制电磁阀开启; 当所述判断单元 判断所述判断气舱内的压力与外界的水压一致时, 通过所述驱动电路向所 述电磁阀发出控制电磁阀关闭的指令。
7、 根据权利要求 6所述的压力平衡式浮体, 其特征在于, 还包括姿态 监测系统及控制器; 所述姿态监测系统、 透气系统及所述通水系统分别与 所述控制器连接;
所述姿态监测系统对所述浮体的位置进行监测, 监测所述浮体处于平 衡状态或倾斜状态, 当所述浮体处于倾斜状态时, 所述控制器控制所述透 气系统向所述浮体上向下倾斜的一端的所述水舱内充入气体, 直到所述浮 体不再倾斜为止。
8、 根据权利要求 7所述的压力平衡式浮体, 其特征在于, 所述姿态监 测系统由四个位置传感器组成;
四个所述位置传感器分别安装在所述浮体四周的四个角上; 四个所述 位置传感器分别与所述控制器连接。
9、 根据权利要求 8所述的压力平衡式浮体, 其特征在于, 所述水舱透 气系统设置在所述水舱的顶端;
所述水舱通水系统设置在所述水舱的底端。
10、一种权利要求 9所述的压力平衡式浮体的安装方法,其特征在于, 包括:
向各所述水舱内注满水, 并启动每个所述水下均压控制系统, 让所述 浮体主体下水, 直至完全浸没水中;
通过水下牵引系统将所述浮体本体向下牵引, 通过所述水下均压控制 系统控制每个所述气舱内的气压与外界的水压一致;
当所述浮体本体到达工作水域后, 向每个所述水舱内充气, 排出所述 水舱内的水, 使水舱提供向上的正浮力。
11、 根据权利要求 10所述的压力平衡式浮体的安装方法, 其特征在 于, 所述将所述浮体本体向下牵引, 通过所述水下均压控制系统控制每个 所述气舱内的气压与外界的水压一致包括:
通过所述气压传感器对气舱内的气压进行检测, 通过所述水压传感器 对外界的水压进行检测, 并将气压及水压的检测结果传输到所述第二控制 器;
所述第二控制器将气压及水压的压差作为控制输入参数, 判断气舱内 的压力与外界的水压是否一致, 当不一致时, 所述第二控制器产生应确定 气体流量的控制指令, 并将所述控制指令输送到所述驱动电路放大转化为 控制信号后输送到所述电磁阀, 所述电磁阀开启且所述充气设备对所述气 舱进行充气; 当一致时, 所述第二控制器停止发送确定气体流量的控制指 令, 所述电磁阀关闭, 所述充气设备停止对所述气舱充气。
12、 根据权利要求 11所述的压力平衡式浮体的安装方法, 其特征在 于, 所述当所述浮体本体到达工作水域后, 向每个所述水舱内充气, 排出 所述水舱内的水, 使水舱提供向上的正浮力包括:
确定水舱需要排出的总水量;
根据水舱需要排出的总排水量确定各所述水舱的总充气量, 将总充气 量平均分配给所有的水舱, 确定每个水舱的充气量;
通过水舱透气系统分别向各水舱充入对应充气量的气体;
每个所述水舱充气完毕后关闭每个所述水舱上的透气系统, 使每个所 述水舱提供向上的正浮力。
13、根据权利要求 12所述的压力平衡式浮体的安装方法,其特征在于, 还包括:
充气完毕后, 通过所述浮体四个角上分布的四个所述位置传感器对所 述浮体的位置进行监测, 监测所述浮体处于平衡状态或倾斜状态, 当浮体 处于倾斜状态时, 控制器控制透气系统向浮体上向下倾斜的一端的水舱内 充入气体, 直到浮体不再倾斜为止。
PCT/CN2013/079280 2013-03-28 2013-07-12 一种压力平衡式浮体及其安装方法 WO2014153904A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/771,395 US20160096597A1 (en) 2013-03-28 2013-07-12 Pressure balance type floating body and installation method thereof
BR112015019306A BR112015019306A2 (pt) 2013-03-28 2013-07-12 corpo flutuante do tipo para equilíbrio de pressão e método de instalação do mesmo
NO20151389A NO20151389A1 (en) 2013-03-28 2015-10-14 Pressure balance type floating body and installation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013073378 2013-03-28
CNPCT/CN2013/073378 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014153904A1 true WO2014153904A1 (zh) 2014-10-02

Family

ID=51622420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079280 WO2014153904A1 (zh) 2013-03-28 2013-07-12 一种压力平衡式浮体及其安装方法

Country Status (4)

Country Link
US (1) US20160096597A1 (zh)
BR (1) BR112015019306A2 (zh)
NO (1) NO20151389A1 (zh)
WO (1) WO2014153904A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115695276A (zh) * 2023-01-05 2023-02-03 湖南国科海防信息技术有限公司 一种海洋环境感知系统的状态测试诊断方法及其系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107444567B (zh) * 2017-07-28 2019-04-23 广船国际有限公司 一种超大型油轮的强度试验方法
LU101274B1 (de) * 2019-06-17 2020-12-18 Phoenix Contact Gmbh & Co Automatische Überwachung von Prozesssteuerungen
CN110865120A (zh) * 2019-11-28 2020-03-06 浙江农林大学 城市河道生态智能监测母站
CN111464115A (zh) * 2020-04-13 2020-07-28 界首市谷峰光伏科技有限公司 一种水上漂浮式太阳能电板组件及其使用方法
CN114940250A (zh) * 2022-05-17 2022-08-26 浙江杰记科技有限公司 一种深海自动压力平衡控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2733240A1 (de) * 1977-07-22 1979-02-01 Linde Ag Schwimmende speicheranlage fuer fluessigkeiten
JP2000025690A (ja) * 1998-07-14 2000-01-25 Mitsubishi Heavy Ind Ltd 浮体式生産・貯蔵・積み出し設備
WO2007119051A1 (en) * 2006-04-17 2007-10-25 Petroleo Brasileiro Sa-Petrobras Mono-column fpso
CN101544270A (zh) * 2008-03-26 2009-09-30 吴植融 带水下储罐的浮式平台
KR20100133700A (ko) * 2009-06-12 2010-12-22 대우조선해양 주식회사 개선된 상부갑판 구조를 갖는 선박형 부유식 해상 구조물
CN103359263A (zh) * 2013-03-28 2013-10-23 武汉武船海洋工程船舶设计有限公司 一种压力平衡式浮体及其安装方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496730A (en) * 1968-02-12 1970-02-24 Us Navy Natural shape inflatable undersea structure
US6321676B1 (en) * 1999-01-07 2001-11-27 Seamagine Hydrospace Corporation Underwater craft having sealed and inflatable buoyancy chambers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2733240A1 (de) * 1977-07-22 1979-02-01 Linde Ag Schwimmende speicheranlage fuer fluessigkeiten
JP2000025690A (ja) * 1998-07-14 2000-01-25 Mitsubishi Heavy Ind Ltd 浮体式生産・貯蔵・積み出し設備
WO2007119051A1 (en) * 2006-04-17 2007-10-25 Petroleo Brasileiro Sa-Petrobras Mono-column fpso
CN101544270A (zh) * 2008-03-26 2009-09-30 吴植融 带水下储罐的浮式平台
KR20100133700A (ko) * 2009-06-12 2010-12-22 대우조선해양 주식회사 개선된 상부갑판 구조를 갖는 선박형 부유식 해상 구조물
CN103359263A (zh) * 2013-03-28 2013-10-23 武汉武船海洋工程船舶设计有限公司 一种压力平衡式浮体及其安装方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115695276A (zh) * 2023-01-05 2023-02-03 湖南国科海防信息技术有限公司 一种海洋环境感知系统的状态测试诊断方法及其系统

Also Published As

Publication number Publication date
NO20151389A1 (en) 2015-10-14
BR112015019306A2 (pt) 2017-07-18
US20160096597A1 (en) 2016-04-07

Similar Documents

Publication Publication Date Title
WO2014153904A1 (zh) 一种压力平衡式浮体及其安装方法
WO2014153903A1 (zh) 一种水下浮体及其安装方法
CN103359263B (zh) 一种压力平衡式浮体及其安装方法
US10370073B2 (en) Boat lift
KR101840649B1 (ko) 해상 발전플랫폼의 부유시스템
US9132897B2 (en) Boat lift
US9604709B2 (en) Boat lift
CN103410133B (zh) 利用气囊对深水导管架进行海上安装的方法
KR101490537B1 (ko) 선박의 안티 힐링 제어장치
RU2010122729A (ru) Система и способ активной и пассивной стабилизации судна
CN113636026B (zh) 一种半潜式起重拆解平台快速压载系统及其操作方法
TW201114650A (en) Ballast-free ship
CN203372369U (zh) 一种压力平衡式浮体
KR20160053667A (ko) 선박 자세 제어 시스템
CN117048788A (zh) 一种气垫船的自动压载平衡系统
CN113508771B (zh) 深远海养殖网箱压载调倾系统
JPH1024894A (ja) 船舶の喫水を変化させる方法
CN107539439A (zh) 防止船坞中半船起浮的方法
CN102963495A (zh) 卧倒式坞门漂浮方法
CN112081561A (zh) 一种用于新型水下悬浮管汇的浮筒装置机构及其使用方法
CN109322340B (zh) 一种桥架空气调节装置以及控制方法
CN110466717B (zh) 多充气泵协同充气救援打捞方法
CN114016488B (zh) 一种海上升压站导管架施工工艺
US20230312069A1 (en) Method and apparatus for a buoyancy vessel for deep-sea mining
CN216443759U (zh) 海上风力发电平台的动态压载调节装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880171

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015019306

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14771395

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880171

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015019306

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150812