WO2014153903A1 - 一种水下浮体及其安装方法 - Google Patents

一种水下浮体及其安装方法 Download PDF

Info

Publication number
WO2014153903A1
WO2014153903A1 PCT/CN2013/079279 CN2013079279W WO2014153903A1 WO 2014153903 A1 WO2014153903 A1 WO 2014153903A1 CN 2013079279 W CN2013079279 W CN 2013079279W WO 2014153903 A1 WO2014153903 A1 WO 2014153903A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating body
sub
pressure
subdivision
water
Prior art date
Application number
PCT/CN2013/079279
Other languages
English (en)
French (fr)
Inventor
严俊
赵耀
王宇
邵华
熊曙
Original Assignee
武汉武船海洋工程船舶设计有限公司
武昌船舶重工有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/771,298 priority Critical patent/US20160068238A1/en
Application filed by 武汉武船海洋工程船舶设计有限公司, 武昌船舶重工有限责任公司 filed Critical 武汉武船海洋工程船舶设计有限公司
Priority to BR112015019309A priority patent/BR112015019309A2/pt
Publication of WO2014153903A1 publication Critical patent/WO2014153903A1/zh
Priority to NO20151387A priority patent/NO20151387A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/34Diving chambers with mechanical link, e.g. cable, to a base
    • B63C11/36Diving chambers with mechanical link, e.g. cable, to a base of closed type
    • B63C11/40Diving chambers with mechanical link, e.g. cable, to a base of closed type adapted to specific work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/22Adjustment of buoyancy by water ballasting; Emptying equipment for ballast tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/36Adaptations of ventilation, e.g. schnorkels, cooling, heating, or air-conditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/448Floating hydrocarbon production vessels, e.g. Floating Production Storage and Offloading vessels [FPSO]

Definitions

  • the invention relates to the technical field of ships, in particular to an underwater floating body and a mounting method thereof. Background technique
  • the Floating Production Storage and Discharge Device As a equipment for offshore oil and gas resources development, the Floating Production Storage and Discharge Device (FPSO) is widely used for oil and gas development under various water depth conditions.
  • the working position of the underwater floating body is generally in the deep water, and the outside of the floating body will bear a large water pressure.
  • the structure of the floating body In order for the structure of the floating body not to be damaged by the large water pressure, it is necessary to have a pressure inside the floating body equivalent to the external water pressure.
  • the traditional underwater floating body is designed based on non-pressure-resistant structure.
  • the floating structure is non-pressure-resistant structure and has limited pressure resistance. Therefore, the non-pressure underwater floating body needs to be safely and normally installed without being subjected to large pressure. immerse in work.
  • the traditional underwater floating body usually inflates the inside of the floating body to generate a large pressure inside the floating body to balance the external water pressure of the floating body. That is, when the floating body is in any position underwater, the internal pressure of the floating body is increased by inflation, and the internal pressure of the floating body and the external body are made. The water pressure is equivalent, so that the structure of the floating body is not damaged by the high water pressure.
  • the installation process of the traditional underwater floating body is complicated.
  • the traditional underwater floating body as the water depth changes continuously during the installation process, it is necessary to constantly adjust the internal pressure of the floating body while constantly adjusting the posture of the floating body. That is to say, as the water depth increases, the external water pressure of the floating body is also increasing.
  • the process of inflating the interior of the floating body must be carried out step by step, that is, every time a certain water level is reached, pressure and balance adjustment should be carried out.
  • the working water depth of an underwater floating body is about 300 meters. Performing such an operation every 5 meters (set according to the pressure resistance of the floating body), the entire installation process requires dozens of such pressure adjustments and floating underwater attitude adjustment operations.
  • the traditional underwater floating body installation process is completed under the help of the underwater operating system (ROV) through the control system under water. Therefore, the difficulty of the installation process is more than the invention content.
  • ROV underwater operating system
  • the technical problem to be solved by the present invention is to provide an underwater floating body capable of being installed in one time and capable of saving a large amount of manpower and material resources, and a mounting method thereof.
  • the present invention provides an underwater floating body including a subdivision and a pressure resistant chamber.
  • the left and right sides of the floating body are the subdivisions, and the subdivisions on the left and right sides of the floating body provide the same buoyancy.
  • the front and rear sides of the floating body are the subdivision, the buoyancy provided by the subdivision on the front side of the floating body is greater than the buoyancy provided by the subdivision on the rear side of the floating body, or the substation on the rear side of the floating body
  • the buoyancy provided by the nacelle is greater than the buoyancy provided by the subdivision on the front side of the float.
  • the pressure chamber passes through the subdivision and is fixedly connected to the bulkhead of the subdivision.
  • the floating center of the floating body is on the same vertical line as the center of gravity of the floating body, and the position of the floating body of the floating body is higher than the position of the floating center of gravity.
  • An inflation valve is disposed on the pressure chamber.
  • the subdivision is provided with a venting system and a water passing system.
  • the subdivision on the front side of the floating body provides a buoyancy greater than that provided by the subdivision on the rear side of the floating body, or the subdivision on the rear side of the floating body provides a buoyancy greater than the floating body The buoyancy provided by the subdivision on the front side.
  • the number of the subdivisions on the front side of the floating body is larger than the number of the subdivisions on the rear side of the floating body, or the number of the subdivisions on the rear side of the floating body is larger than the front side of the floating body The number of subdivisions.
  • the pressure chamber is at least one.
  • attitude monitoring system includes an attitude monitoring system and a controller.
  • the attitude monitoring system, the venting system, and the water passing system are respectively coupled to the controller.
  • the attitude monitoring system monitors a position of the floating body, and monitors that the floating body is in an equilibrium state or an inclined state, and when the floating body is in an inclined state, the controller controls the ventilation system to go down to the floating body The subdivision at the inclined end is filled with gas until the floating body is no longer inclined.
  • the attitude monitoring system consists of four position sensors. Four of the locations Sensors are respectively mounted on the four corners of the floating body; four of the position sensors are respectively connected to the controller.
  • the present invention also provides a method of installing an underwater floating body, comprising: inflating the pressure chamber and injecting water into the subdivision, respectively.
  • the underwater float is lowered into the working water. Gas is charged into the subdivision to discharge water in the subdivision, causing the subdivision to generate upward positive buoyancy.
  • inflating the pressure chamber and injecting water into the sub-tank respectively comprises: connecting an air-inflating system to an inflation valve on each of the pressure-resistant chambers, through the surface-inflating system
  • the inside of the pressure chamber is inflated, and when the air pressure in the pressure chamber is consistent with the water pressure in the working water, the inflation valve and the surface aeration system on the pressure chamber are closed.
  • the venting system on each of the subdivisions is opened to maintain the venting system on each of the subdivisions in a normal pressure state.
  • Each of the subdivisions is filled with water through a water passage system.
  • the lowering the underwater floating body to the working waters comprises: lowering the pressure chamber and the subdivision into the water until the pressure chamber and the subdivision are completely submerged by water.
  • the float is pulled down with a traction system.
  • the attitude of the entire floating body is monitored by sensors on the traction system, and the floating body is corrected by the traction system when the floating body is tilted.
  • the traction system stops the pulling action.
  • the filling the gas into the subdivision to discharge a portion of the water in the subdivision, causing the subdivision to generate an upward positive buoyancy comprises: controlling the ventilation system to each by the controller
  • the sub-tanks are filled with gas to discharge a portion of the water in each of the sub-tanks.
  • the venting system on each of said subdivisions is closed after each subdivision has been inflated, providing each of said subdivisions with positive buoyancy upward.
  • the method further includes: after each of the subdivisions is filled with gas, monitoring the position of the floating body by four position sensors distributed at four corners around the floating body, and monitoring the floating body In an equilibrium state or an inclined state, when the floating body is in an inclined state, the controller controls the venting system to fill the sub-chamber of the downwardly inclined end of the floating body with gas until the floating body is not Tilt again.
  • the maximum buoyancy which can be provided by the subdivision provided on the left side of the floating body is equal to the maximum buoyancy which can be provided by the subdivision provided on the right side of the floating body, so that the left and right sides of the floating body can be stabilized.
  • the maximum buoyancy that can be provided by the subdivision provided on the front side of the floating body is different from the maximum buoyancy that can be provided by the subdivision provided on the rear side of the floating body, so that the deep sea pipeline can be carried according to the different gravity of the different sides of the deep sea pipeline.
  • the position of the floating center of the floating body is on the same vertical line as the position of the center of gravity, and the position of the floating center is higher than the position of the center of gravity, which can ensure that the entire floating body maintains a stable state during the working state.
  • the pressure chamber can meet the requirements of withstanding large pressure. After the pressure chamber is filled with gas, the pressure chamber provides upward buoyancy during the process of launching the floating body, thereby overcoming the gravity of the floating body and enabling the floating body to smoothly launch; The combination of the upward buoyancy provided by the pressure chamber and the downward gravity of the floating body is relatively small, and the floating body basically steadily stabilizes, thereby reducing the force applied by the traction system to the floating body and reducing the connection between the subdivision and the traction system. Structural strength requirements. After the subdivision is inflated in the working water, it provides a positive buoyancy upwards, allowing the underwater buoy to work properly.
  • the underwater floating body installation method provided by the invention has simple and controllable attitude adjustment process, and the installation can reach the predetermined water depth at one time, without the need of step by step adjustment, thereby improving the installation efficiency and saving a lot of manpower and material resources.
  • the entire launching process of the floating body there is no inflation and exhaust operation, and the pressure in the pressure-resistant chamber is always in a self-balancing state.
  • the fine adjustment of the attitude of the floating body during the entire launching process is completely carried out by the traction system, and the adjustment is convenient.
  • the operation that takes place during the entire installation is done by the water control system without any underwater operation.
  • the installation of the present invention can be assisted by the underwater operating system (ROV), which greatly reduces the installation cost and makes the installation more controllable.
  • ROV underwater operating system
  • FIG. 1 is a schematic structural view of an underwater floating body according to an embodiment of the present invention.
  • an embodiment of the present invention provides an underwater floating body, which is mainly composed of a subdivision 1, a pressure tank 2, an attitude monitoring system and a control device.
  • the subdivision 1 is made of different specifications of plates. The specifics are as follows: The materials and the plates of the same thickness are taken together, and the different plates are joined together to form a plurality of compartments. Use high strength, corrosion resistant steel. All of the compartments may be in the shape of a rectangular parallelepiped or a cube, as long as the shape conforming to the design concept of the present invention is included in the scope of the present invention.
  • Each compartment is a relatively independent confined space. In the actual manufacturing process, a larger plate is used as the bottom plate of all the compartments.
  • One compartment is called a subdivision 1.
  • all the subdivisions 1 are closely arranged, and the adjacent two subdivisions 1 share one bulkhead, and all the subdivisions 1 are distributed to form a monolithic shape of the overall structure, and all the subdivisions 1 are formed.
  • the overall structure of the "mouth” shape is bilaterally symmetrical, and the symmetrical arrangement of the subdivision 1 is an important means for maintaining the balance of the entire floating body.
  • the front side of the overall structure of the "mouth" shape i.e., the A side in Fig.
  • the maximum buoyancy that can be provided on the front side and the rear side of the floating body can be determined according to the number of subdivisions on the front side and the rear side of the floating body. The more subdivisions of the same size, the greater the number, the greater the maximum buoyancy that can be provided. Big.
  • the left-right symmetrical but asymmetrical structure of the subdivision 1 is designed according to the application of the floating body.
  • the floating body is mainly used to support the submarine oil pipeline.
  • the oil pipeline extends from the sea floor to the sea surface, and the oil pipeline extending from the sea bottom is fixed at the mouth.
  • the overall front end of the glyph shape ie the front end of the float
  • the overall rear end of the "mouth” shape ie the rear end of the float
  • the length of the end of the oil pipe extending from the sea floor is greater than the extension
  • the length to one end of the sea surface, so the weight of the end of the oil pipe extending from the sea floor is greater than the weight extending to the end of the sea surface
  • the overall front end is designed with more subdivision 1 to provide greater buoyancy to carry the heavier end of the delivery pipe.
  • the internal space of the subdivision 1 is not in communication with the internal space of the pressure-resistant compartment 2, that is, the inside of the pressure-resistant compartment 2 and the interior of the subdivision 1 are not capable of circulating gas or liquid (e.g., water).
  • Each subdivision 1 is respectively equipped with a ventilating system and a water passing system, and the venting system is mainly composed of an industrially used inflatable device for inflating and draining the subdivision 1; the water passing system is mainly composed of a water passing pipe, and is used for Filling and draining of subdivision 1.
  • the structure of the pressure-resistant chamber 2 is described below.
  • the pressure-resistant chamber 2 is an elliptical can-like structure (that is, the middle of the pressure-resistant chamber 2 has a cylindrical shape, and the two ends are respectively in the shape of a hemisphere).
  • the pressure-resistant chamber 2 Made of high-strength pressure-resistant steel.
  • the pressure chamber 2 is provided with an inflation valve, which is an inlet for inflating the pressure chamber.
  • the high pressure inflation device commonly used in the industry is used to inflate the pressure chamber through the inflation valve, and the inflation valve is closed after the inflation is completed, thereby preventing the inside of the inflation valve. The inner body leaked.
  • the underwater floating body provided by the embodiment of the invention has five pressure-resistant compartments 2, the pressure-resistant compartment 2 passes through one or more subdivisions 1, and the pressure-resistant compartment 2 and the sub-tank wall are fixedly connected by means of splicing. Since all of the subdivisions 1 are divided into five rows of integral structures constituting a "mouth" shape, in the embodiment of the present invention, each of the subdivisions 1 has a pressure chamber 2, that is, a distribution of five pressure chambers 2 Consistent with the distribution direction of the five-row subdivision 1, the five pressure tanks 2 distributed are symmetrical, and the symmetrical distribution of the pressure tank is also an important design to balance the entire floating structure.
  • the subdivision 1 is not in communication with the pressure tank 2, and below, a relatively specific set of data is used to describe the structure of the floating body.
  • the total importance of the floating body is about 7 tons, which is required by the floating body.
  • the positive buoyancy is about 3 tons.
  • five pressure tanks 2 are designed, which are respectively designated as 1, 2, 3, 4, 5; the parameter settings of the pressure tank 2 are as shown in Table 1: Quantity length Thickness radius Single mass total Quality pressure tank number
  • the total buoyancy provided by the five pressure tanks 2 is 8.28901 1 ton. Since the weight of the entire floating body is about 7 tons, the total weight of the five pressure-resistant chambers 2 is 2.070516 tons, and the weight of the entire floating body minus the weight of the five pressure-resistant chambers 2 is about 5 tons, then in the design process, The total mass of all structures except the five pressure tanks 2 (such as subdivision 1 and other facilities on the floating body) on the floating body should be controlled to about 5 tons. Since the total mass of the floating body (about 7 tons) is slightly less than the total buoyancy provided by the five pressure tanks 2 (8.289011 tons), the floating body can ensure the smooth flow of the floating body under the traction of the traction system.
  • the center of gravity of the floating body and the center of gravity of the floating body are on the same vertical line, and the floating center of the floating body is slightly higher than the center of gravity of the floating body.
  • the floating center and the floating center of gravity In the process of determining the floating center and the floating center of gravity, first calculate the position of the floating center, and then adjust the structure and size of the other facilities on the subdivision 1 and the floating body according to the position of the floating center to adjust the position of the center of gravity, so that the floating center of gravity and the floating position of the floating body On the same vertical line, and the floating center of the floating body is slightly higher than the center of gravity of the floating body. It should be noted that when calculating the coordinates of the center of gravity, it is necessary to consider the weight of the five pressure tanks 2 and the floating structure (such as the subdivision 1 and other facilities on the floating body, etc.), that is, the floating weight center is 5 pressure chambers 2 and floating.
  • the attitude monitoring system is composed of four position sensors.
  • the four position sensors are respectively distributed on the four corners of the floating body.
  • the controller calculates the attitude angle of the floating body according to the position signals fed back by the four sensors, and judges that the floating body is in equilibrium or some inclination.
  • the state, the attitude monitoring system is connected to the control device, and the control device is connected to the ventilation system of the subdivision 1 and the water supply system.
  • the attitude monitoring system monitors the position of the floating body, and monitors the floating body in an equilibrium state or a tilting state.
  • the controller determines which end of the floating body is tilted downward according to the position information of the floating body acquired by the attitude monitoring system, and The venting system is controlled to fill the subdivision 1 of the downwardly inclined end with gas until the floating body is no longer inclined.
  • the embodiment of the present invention further provides a method for installing the underwater floating body shown in Figures 1-3, including the following steps:
  • Step 10 Inflating the pressure-resistant chamber 2 and injecting water into the sub-tank 1 respectively, specifically: connecting the inflation system of the water surface with the inflation valve on the pressure-resistant chamber 2; opening the inflation valve on the pressure-resistant chamber 2, inflating through the water surface
  • the system inflates the inside of the pressure-resistant chamber 2, and closes the surface inflation system and the inflation valve on the pressure-resistant chamber when the air pressure in each of the pressure-resistant chambers 2 coincides with the water pressure in the working water.
  • Open the venting system on subdivision 1 and keep the venting system at atmospheric pressure. Open the water supply system on subdivision 1 and fill each subdivision 1 with water.
  • Step 20 Lower the underwater floating body into the working water, specifically: Lower the underwater floating body into the water until the pressure-resistant chamber 2 and the sub-tank 1 are completely submerged.
  • the water supply system on all subdivisions 1 is opened so that the water outside the subdivision 1 can communicate with the internal space of the subdivision 1 and the traction system is used to pull the floating body downward.
  • the traction system stops the pulling action.
  • Step 30 Filling the subdivision 1 with gas to discharge part of the water in the subdivision 1 to cause the subdivision 1 to generate an upward positive buoyancy, specifically: determining the total buoyancy required to be provided by the subdivision 1 according to the subdivision 1
  • the total buoyancy required to calculate the total displacement of all subdivisions 1 and the total displacement of all subdivisions 1 is determined based on the total displacement of all subdivisions 1. After the total aeration amount of all subdivisions 1 is determined, the total aeration amount is equally distributed to all subdivisions 1, and the amount of inflation of each subdivision 1 is determined, passing through the water surface.
  • the controller opens the venting system of each subdivision 1 for inflation, and part of the water in each subdivision 1 is discharged, so that the subdivision 1 provides upward buoyancy.
  • the position of the floating body is monitored by the attitude monitoring system, and the floating body is monitored in an equilibrium state or a tilted state.
  • the controller controls the ventilation system to fill the subdivision 1 of the downwardly inclined end of the floating body with gas, until The float is no longer tilted.
  • the venting system of each subdivision 1 is closed, so that each subdivision 1 provides upward positive buoyancy.
  • the surface aeration system includes a gas source and a controller for controlling the inflation of the gas source, which is prior art.
  • the following is a description of the calculation method of the aeration amount of all subdivisions 1 by a relatively specific set of data:
  • the volume of nitrogen gas is 3.0115 m 3
  • the distance between the top of the pressure tank and the top of the floating body is 0.15.
  • the pressure tank is completely immersed in the water, indicating that the above calculation is correct. That is, all subdivisions 1 are filled with about 90 Kg of nitrogen to provide buoyancy of 3 tons of floating body, and then 90 Kg of nitrogen is evenly distributed to all subdivisions 1 to obtain the amount of inflation of each subdivision 1.
  • the unit of the displacement is ton
  • the unit of the displacement is ton
  • the unit of the inflation is cubic meter.
  • the pressure in the pressure-resistant chamber 2 is filled so that the air pressure in the pressure-resistant chamber 2 is equivalent to the water pressure in the working water area, since the pressure-resistant chamber 2 itself has considerable bearing capacity. Pressure capacity, can withstand the internal pressure. As the depth of the floating body increases, the external water pressure increases, and the pressure inside the pressure-resistant chamber 2 is gradually balanced until it reaches the working water area. The boundary water pressure and the pressure in the pressure-resistant chamber 2 are substantially equal, and it can be approximated that the pressure-resistant chamber 2 is substantially unstressed at a predetermined water depth.
  • the pressure inside the subdivision 1 is always the same as the external water pressure, that is, the bulkhead of each subdivision 2 is substantially unpressurized.
  • the floating body can meet the pressure requirements during the whole installation and installation work.
  • the floating body is subjected to buoyancy and gravity. As long as the center of gravity of the floating body and the floating center are on the same vertical line, the posture of the floating body can be ensured.
  • the buoyancy of the floating body during the launching process is only provided by the pressure resistant compartment 2, and the floating position of the entire floating body can be controlled by controlling the size and the installation position of the pressure resistant compartment 2 at the time of design.
  • Step 1 ensure that the center of gravity and the center of buoyancy of the entire floating body system are in the same vertical line when each subdivision 1 is filled with water, and the position of the floating center is higher than the position of the center of gravity, so that the posture of the floating body is always balanced throughout the launching process. .
  • the floating body After the floating body reaches the predetermined water depth, most of the positive buoyancy of the floating body needs to be provided in the internal space of the subdivision 1.
  • By inflating into each subdivision 1 part of the water in the subdivision 1 is discharged, so that the weight of the discharged water is just the positive buoyancy, so that the subdivision 1 can provide the positive buoyancy required for the work.
  • the specific method for controlling the displacement of each subdivision 1 is as follows: Step 1 10.
  • Step 220 After each subdivision 1 is inflated according to its inflation amount, four position sensors monitor the position of the floating body, and the controller calculates the attitude angle of the floating body according to the position signals fed back by the four sensors, and determines that the floating body is in equilibrium.
  • Step 110 can be set in advance before the floating body is launched to ensure the safety of the floating body.
  • the principle of the pneumatic drainage operation of the subdivision 1 is as follows: The air pressure in each subdivision 1 is increased by inflation to make it larger than the external water pressure, and the water in the subdivision 1 is automatically discharged through the water passing system under the pressure difference.
  • the gas space in the subdivision 1 becomes larger, the air pressure decreases, and when the air pressure in the subdivision 1 decreases to less than When the external water pressure, the water will enter the subdivision 1 through the water supply system, reduce the gas space in the subdivision 1 and increase the air pressure.
  • the above process is repeated, and finally a dynamic balance is achieved.
  • the displacement in each subdivision 1 can be converted into the inflation amount.
  • the balance of the floating body posture can be completely controlled by the inflation amount, so that the floating body is stably in the working state.
  • the maximum buoyancy that can be provided by the subdivision set on the left side of the floating body is equal to the maximum buoyancy that can be provided by the subdivision set on the right side of the floating body, so that the left and right sides of the floating body can be stabilized.
  • the maximum buoyancy provided by the subdivision provided on the front side of the floating body is different from the maximum buoyancy provided by the subdivision provided on the rear side of the floating body, so that the deep sea pipeline can be loaded according to the different gravity of the different sides of the deep sea pipeline.
  • the position of the floating center of the floating body is on the same vertical line as the position of the center of gravity, and the position of the floating center is higher than the position of the center of gravity, which can ensure that the entire floating body maintains a stable state during the working state.
  • the pressure-resistant chamber can meet the requirements of a large pressure.
  • the gas-filled pressure-resistant chamber provides upward buoyancy, thereby overcoming the gravity of the floating body and enabling the floating body to smoothly launch. Because the combined force of the upward buoyancy provided by the pressure chamber and the downward gravity of the floating body is small, the floating body basically steadily stabilizes, thereby reducing the force applied by the traction system to the floating body and reducing the connection between the subdivision and the traction system. Structural strength requirements.
  • the pressure-resistant chamber is designed as an elliptical can-like structure with high compression resistance.
  • the installation scheme of the invention only needs to undergo two large posture adjustment operations, and all of them can be guided by precise calculation.
  • the posture adjustment process is simple and controllable, and the installation can reach the predetermined water depth at one time without the need to adjust step by step.
  • the installation efficiency saves a lot of manpower and material resources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Revetment (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

一种水下浮体及安装方法,浮体包括分舱(1)及耐压舱(2),浮体前后左右都有分舱(1),左右两侧的分舱(1)提供的浮力相同,前后两侧的分舱(1)提供的浮力不同;耐压舱(2)穿过分舱(1)且与分舱(1)的舱壁固定连接;分舱(1)设有透气及通水系统;耐压舱(2)设有充气阀;浮体的浮心与重心在同一竖直线上,且浮心高于重心。方法包括:分别向耐压舱(2)内充气、向分舱(1)注水;将水下浮体下放到工作区域;向所述分舱(1)内充气以排出所述分舱(1)内的水,使所述分舱(1)产生向上的正浮力。本发明的水下浮体及安装方法,可以使水下浮体一次性到达工作水域,节约了大量的人力、物力。

Description

一种水下浮体及其安装方法
技术领域
本发明涉及船舶技术领域, 特别涉及一种水下浮体及其安装方法。 背景技术
浮式生产储卸装置(FPSO)作为海上油气资源开发的装备, 广泛应用 各种水深条件下的油气开发。而对于深水浮式生产储卸装置(FPSO)而言, 其水下浮体的工作位置一般处于深水处, 浮体外部会承受很大的水压。 要 使浮体结构不会因承受较大的水压而破坏, 就必须让浮体内部存在着和外 部水压相当的压力。 传统的水下浮体是基于非耐压结构设计的, 浮体结构 为非耐压结构, 耐压能力有限, 因此非耐压水下浮体需要在不承受较大压 力的前提下才能安全正常的安装并投入工作。 传统的水下浮体通常向浮体 内部充气使浮体内部产生较大压强以平衡浮体外部水压, 即浮体处于水下 任何位置的时候都通过充气的方式增大浮体内部压强, 使浮体内部压强与 外部水压相当, 以保护浮体的结构不被较高的水压破坏, 基于以上原因, 传统的水下浮体的安装过程较为繁杂。 对于传统的水下浮体而言, 在其安 装过程中, 随着水深的不断变化, 需要不断的调节浮体内部压力, 同时不 断调整浮体的姿态。 也就是说, 随着水深的增加, 浮体所受外部水压也在 不断增大, 为使浮体不用承受过大的压力, 需不断的往浮体内部充气, 增 大浮体内部压力以平衡外部水压。 而由于浮体结构承受压力能力有限, 所 以往浮体内部充气的过程须逐段进行, 即每到一定水位就要进行一次压力 和平衡的调整,例如某水下浮体的工作水深在 300米左右,若按每 5米(根 据浮体耐压能力设置) 进行一次这样的操作来算, 那么整个安装过程就需 要几十次这样的压力调整和浮体水下姿态调整操作。 并且传统的水下浮体 安装过程都是在水下通过控制系统在水下操作系统 (ROV) 的帮助下完成 的, 故其安装过程实现难度较 发明内容
本发明所要解决的技术问题是提供一种能够一次性下水安装、 同时能 够节省大量人力及物力的水下浮体及其安装方法。
为解决上述技术问题, 本发明提供了一种水下浮体, 包括分舱及耐压 舱。 所述浮体左右两侧是所述分舱, 所述浮体左右两侧的所述分舱提供的 浮力相同。 所述浮体前后两侧是所述分舱, 所述浮体前侧的所述分舱提供 的浮力大于所述浮体后侧的所述分舱提供的浮力, 或所述浮体后侧的所述 分舱提供的浮力大于所述浮体前侧的所述分舱提供的浮力。 所述耐压舱穿 过所述分舱且与所述分舱的舱壁固定连接。 所述浮体的浮心与所述浮体的 重心在同一竖直线上, 且所述浮体浮心的位置高于所述浮体重心的位置。 所述耐压舱上设置有充气阀。 所述分舱上设置有透气系统及通水系统。
进一歩地, 所述浮体前侧的所述分舱提供的浮力大于所述浮体后侧的 所述分舱提供的浮力, 或所述浮体后侧的所述分舱提供的浮力大于所述浮 体前侧的所述分舱提供的浮力。
所述浮体前侧的所述分舱的个数大于所述浮体后侧的所述分舱的个 数, 或所述浮体后侧的所述分舱的个数大于所述浮体前侧的所述分舱的个 数。
进一歩地, 所述耐压舱至少为一个。
进一歩地, 还包括姿态监测系统及控制器。 所述姿态监测系统、 透气 系统及所述通水系统分别与所述控制器连接。 所述姿态监测系统对所述浮 体的位置进行监测, 监测所述浮体处于平衡状态或倾斜状态, 当所述浮体 处于倾斜状态时, 所述控制器控制所述透气系统向所述浮体上向下倾斜的 一端的所述分舱内充入气体, 直到所述浮体不再倾斜为止。
进一歩地, 所述姿态监测系统由四个位置传感器组成。 四个所述位置 传感器分别安装在所述浮体四周的四个角上; 四个所述位置传感器分别与 所述控制器连接。
本发明还提供了一种水下浮体的安装方法, 包括: 分别向所述耐压舱 充气及向所述分舱注水。 将所述水下浮体下放到工作水域。 向所述分舱内 充入气体以排出所述分舱内的水, 使所述分舱产生向上的正浮力。
进一歩地, 所述分别向所述耐压舱充气及向所述分舱注水包括: 将水 面的充气系统与每个所述耐压舱上的充气阀连接, 通过所述水面充气系统 给所述耐压舱内部充气, 当所述耐压舱内的气压与工作水域的水压一致时 关闭所述耐压舱上的充气阀及水面充气系统。 将每个所述分舱上的通气系 统打开, 保持每个所述分舱上的通气系统为常压状态。 通过通水系统将每 个所述分舱内注满水。
进一歩地, 所述将水下浮体下放到工作水域包括: 将所述耐压舱及所 述分舱下放到水中, 直到所述耐压舱及所述分舱完全被水浸没。 用牵引系 统将所述浮体向下牵引。 利用牵引系统上的传感器对整个浮体的姿态进行 监控, 当浮体发生倾斜时利用牵引系统将浮体矫正。 当所述水下浮体到达 工作水域后, 牵引系统停止牵引动作。
进一歩地, 所述向所述分舱内充入气体以排出所述分舱内的部分水, 使所述分舱产生向上的正浮力包括: 通过所述控制器控制所述通气系统向 每个所述分舱内充入气体, 使每个所述分舱内的部分水排出。 向每个所述 分舱充气完毕后关闭每个所述分舱上的通气系统, 使每个所述分舱提供向 上的正浮力。
进一歩地, 还包括: 在每个所述分舱充入气体之后, 通过所述浮体四 周的四个角上分布的四个所述位置传感器对所述浮体的位置进行监测, 监 测所述浮体处于平衡状态或倾斜状态, 当所述浮体处于倾斜状态时, 所述 控制器控制所述透气系统向所述浮体上向下倾斜的一端的所述分舱内充入 气体, 直到所述浮体不再倾斜为止。 本发明提供的水下浮体, 浮体左侧设置的分舱所能够提供的最大浮力与 浮体右侧设置的分舱所能提供的最大浮力相等, 因此能够保证浮体的左右侧 趋于平稳状态。 浮体的前侧设置的分舱所能提供的最大浮力与浮体的后侧设 置的分舱所能提供的最大浮力不同, 因此能够根据深海管线不同侧重力的不 同实现对深海管线的搭载。 同时, 浮体浮心的位置与重心的位置在同一竖直 线上, 且浮心的位置高于重心的位置, 能够保证整个浮体在工作状态时保持 平稳状态。
耐压舱可满足承受较大压强的要求, 在耐压舱内充满气体后, 浮体下水 的过程中, 耐压舱提供向上的浮力, 从而克服浮体自身的重力, 使浮体能够 平稳的下水; 由于耐压舱提供的向上的浮力与浮体向下的重力的合力较小, 浮体基本趋于平稳状态, 因此减小了牵引系统对浮体的施力强度, 降低了分 舱上与牵引系统连接处的结构强度要求。 分舱在工作水域充气后, 提供了向 上的正浮力, 使水下浮体正常工作。
本发明提供的水下浮体安装方法, 姿态调整过程简单可控, 安装可一次 性到达预定水深, 无需逐歩调整, 提高了安装效率, 节省了大量的人力和物 力。 浮体整个下水过程中, 没有任何充气排气操作, 耐压舱内的压力一直处 于自平衡状态。 同时, 浮体整个下水过程中姿态的微调完全通过牵引系统进 行, 调节方便。 整个安装过程中出现的操作均是通过水上控制系统来完成的, 没有任何水下操作。 故本发明的安装可免水下操作系统 (ROV) 辅助, 大大 降低了安装成本, 安装可控性更强。 浮体进入工作状态后, 无论是分舱还是 耐压舱都几乎不承受压力, 延长了耐压舱及分舱的使用寿命。 附图说明
图 1为本发明实施例提供的水下浮体结构示意图。 具体实施方式 参见图 1,本发明实施例提供了一种水下浮体,水下浮体主要由分舱 1、 耐压舱 2、 姿态监测系统及控制设备构成。 首先, 对分舱 1的结构进行介 绍, 分舱 1由不同规格的板材悍接而成, 具体为: 取用材料和厚度相同的 板材, 将不同的板材悍接在一起形成多个舱室, 板材选用高强度、 耐腐蚀 的钢板。 所有的舱室可以是长方体或正方体形状, 只要符合本发明的设计 思想的形状都包含在本发明的保护范围内。 每个舱室为相对独立的密闭空 间,在实际制造的过程中,采用一个面积较大的板材作为所有舱室的底板。 一个舱室称为一个分舱 1。 本实施例中, 所有的分舱 1紧密排列, 相邻的 两个分舱 1共用一个舱壁, 且所有的分舱 1分布形成一个 "口 " 字形形状 的整体结构, 所有的分舱 1形成的 "口" 字形形状的整体结构左右对称, 分舱 1的对称设置是使整个浮体保持平衡的重要手段。本实施例中, "口" 字形形状的整体结构的前侧 (即图 1中的 A侧)分布有两排分舱 1, "口" 字形形状的整体结构的左侧、 右侧及后侧 (即图 1中的 B侧) 分别分布有 一排分舱 1, "口" 字形形状的整体前侧 (也就是浮体的前侧) 的分舱 1 所能提供的最大浮力大于 "口 "字形形状的整体后侧(也就是浮体的后侧) 的分舱 1所能提供的最大浮力, 或 "口" 字形形状的整体后侧 (也就是浮 体的后侧) 的分舱 1所能提供的最大浮力大于 "口" 字形形状的整体前侧 (也就是浮体的前侧) 的分舱 1所能提供的最大浮力。 本实施例中, 浮体 前侧和后侧所能提供的最大浮力可根据浮体前侧和后侧的分舱的数量进行 确定, 规格一样的分舱, 数量越多, 所能提供的最大浮力越大。 分舱 1的 左右对称但前后不对称的结构是根据浮体的应用而设计的, 浮体主要用于 支撑海底输油管道, 输油管道从海底一直延伸至海面, 从海底延伸而来的 输油管固定在 "口"字形形状的整体的前端(即浮体的前端),然后经 "口" 字形形状的整体的后端 (即浮体的后端) 延伸至海面; 由于输油管从海底 延伸而来的一端的长度大于延伸至海面的一端的长度, 因此输油管从海底 延伸而来的一端的重量大于延伸至海面一端的重量; 需要将 "口" 字形形 状的整体的前端设计更多的分舱 1以提供较大的浮力来承载输油管上重量 较大的一端。 分舱 1的内部空间与耐压舱 2的内部空间是不连通的, 即耐 压舱 2的内部与分舱 1的内部不能进行气体或液体 (如水) 的流通。 每个 分舱 1上分别安装有透气系统及通水系统, 透气系统主要由工业上使用的 充气设备组成,用于向分舱 1内充气排水; 通水系统主要由通水管道组成, 用于分舱 1的充水及排水。 下面对耐压舱 2的结构进行介绍, 耐压舱 2为 椭圆罐状结构 (即耐压舱 2的中间为圆柱形状, 两端分别为半球形状) , 本发明实施例中, 耐压舱 2采用高强度耐压钢材制成。 耐压舱 2上设置有 充气阀, 充气阀是给耐压舱充气的入口, 利用工业上常用的高压充气设备 通过充气阀给耐压舱充气, 充气完毕后关闭充气阀, 可防止充气阀内部的 内体泄露。本发明实施例提供的水下浮体上安装有 5个耐压舱 2, 耐压舱 2 穿过一个或多个分舱 1, 且耐压舱 2与分舱壁通过悍接的方式固定连接。 由于所有的分舱 1分成五排构成 "口" 字形形状的整体结构, 在本发明实 施例中, 每一排分舱 1中贯穿有一个耐压舱 2, 即 5个耐压舱 2的分布与 五排分舱 1的分布方向一致, 那么分布的 5个耐压舱 2左右对称, 耐压舱 的对称分布同样是使整个浮体结构保持平衡的重要设计。 本实施例中, 分 舱 1与耐压舱 2不是连通的, 下面, 以一组较为具体的数据对浮体结构进 行说明, 例如, 根据工程要求, 浮体总重要大约为 7吨, 浮体所要求提供 的正浮力约为 3吨。 参见图 1, 在本实例中设计有 5个耐压舱 2, 分别标号 为 1, 2, 3, 4, 5; 耐压舱 2的参数设置如表 1所示: 数量 长度 厚度 半径 单个质量 总质量 耐压舱编号
(个) ( m) ( m) ( m) ( t) ( t)
1-2 2 9.5 0.004 0.25 0.49298 0.98596
3-4 2 7.5 0.004 0.25 0.394384 0.788768
5 1 5.5 0.004 0.25 0.295788 0.295788 合计 2.070516 表 1
由表 1所示的耐压舱参数计算可知, 5个耐压舱总质量为 2.070516吨, 下面对 5个耐压舱 2分别提供的浮力及 5个耐压舱 2提供的总浮体进行计 算, 如表 2所示:
Figure imgf000009_0001
表 2
由表 2提供的计算结果可知, 5个耐压舱 2所能提供的总浮力为 8.28901 1吨。 由于整个浮体的重量大约为 7吨, 5个耐压舱 2的总重量为 2.070516吨, 整个浮体的重量减去 5个耐压舱 2的重量后约为 5吨, 那么 在设计的过程中, 浮体上除去 5个耐压舱 2以外的所有结构 (如分舱 1及 浮体上的其它设施等)的总质量需控制在 5吨左右。由于浮体的总质量(约 为 7吨) 略小于 5个耐压舱 2提供的总浮力 (为 8.289011吨) , 因此, 浮 体在牵引系统的牵引作用下, 能保证浮体下水过程平稳。 浮体在设计的过 程中, 要使浮体的浮心和浮体的重心在同一竖直线上, 且浮体的浮心略高 于浮体的重心。设浮心的位置为(xB, yB, zB), 设重心的位置为(xe, yG, zG ), 因此,重心和浮心位置关系需满足: Λ:σ = χ = 0, _yG = ^及 z ≥zG≥0。 在确定浮体浮心和浮体重心的过程中, 首先计算浮心位置, 然后根据浮心 位置调整分舱 1及浮体上的其它设施的结构及尺寸以调整重心位置, 使浮 体重心及浮体浮心位置在同一竖直线上,且浮体的浮心略高于浮体的重心。 需要说明的是,计算重心坐标时,需同时考虑 5个耐压舱 2和浮体结构(如 分舱 1及浮体上的其它设施等) 的重量, 即浮体重心为 5个耐压舱 2和浮 体结构 (如分舱 l及浮体上的其它设施等) 所构成的整体的重心。 姿态监 测系统由四个位置传感器组成, 四个位置传感器分别分布在浮体的四个角 上, 控制器根据四个传感器反馈的位置信号计算得到浮体的姿态角度, 判 断浮体处于平衡状态或某种倾斜状态, 姿态监测系统与控制设备连接, 控 制设备与分舱 1的透气系统及通水系统连接。 姿态监测系统对浮体的位置 进行监测, 监测浮体处于平衡状态或倾斜状态, 当浮体处于倾斜状态时, 控制器根据姿态监测系统获取的浮体的位置信息判断浮体的哪一端发生了 向下倾斜, 并控制透气系统向向下倾斜的一端的分舱 1内充入气体, 直到 浮体不再倾斜为止。
本发明实施例还提供了一种图 1-3所示水下浮体的安装方法, 包括以 下歩骤:
歩骤 10: 分别向耐压舱 2充气及向分舱 1注水, 具体为: 将水面的充 气系统与耐压舱 2上的充气阀连接; 打开耐压舱 2上的充气阀, 通过水面 充气系统给耐压舱 2内部充气, 当每个耐压舱 2内的气压与工作水域的水 压一致时关闭水面充气系统及耐压舱上的充气阀。 打开分舱 1上的透气系 统, 保持透气系统为常压状态。 打开分舱 1上的通水系统, 将每个分舱 1 内注满水。
歩骤 20: 将水下浮体下放到工作水域, 具体为: 将水下浮体下放到水 中, 直到耐压舱 2及分舱 1完全被水浸没。打开所有分舱 1上的通水系统, 使分舱 1外部的水能与分舱 1的内部空间连通, 用牵引系统将浮体向下牵 引。 当水下浮体到达工作水域后, 牵引系统停止牵引动作。
歩骤 30: 向分舱 1内充入气体以排出分舱 1内的部分水, 使分舱 1产 生向上的正浮力, 具体为: 确定分舱 1需要提供的总浮力大小, 根据分舱 1需要提供的总浮力计算出所有分舱 1的总排水量, 并根据所有分舱 1的 总排水量确定所有分舱 1的总充气量。 所有分舱 1的总充气量确定后, 将 总充气量平均分配个所有的分舱 1, 并确定各分舱 1的充气量, 通过水面 控制器将各分舱 1的透气系统打开进行充气, 各分舱 1内的部分水排出, 使分舱 1提供向上的浮力。 通过姿态监测系统对浮体的位置进行监测, 监 测浮体处于平衡状态或倾斜状态, 当浮体处于倾斜状态时, 控制器控制透 气系统向浮体上向下倾斜的一端的分舱 1内充入气体, 直到浮体不再倾斜 为止。 向每个分舱 1充气完毕后关闭各分舱 1的透气系统, 使每个分舱 1 提供向上的正浮力。 水面充气系统包括气源及控制气源充气的控制器, 为 现有技术。 下面以一组较为具体的数据对所有分舱 1的充气量的计算方法 进行说明: 以分舱 1需要通过充氮气提供 3t的浮力为例进行计算说明。 假 设氮气摩尔数为 n时满足要求, 已知 N2的摩尔质量 M=28g/mol; 气体状态 方程 PV=nRT; 其中, P为压强, 计算得到压强
P=250* 1026.05*9.8=2.5138MPao V为对应氮气的体积; R=8.314; T=283.15
(;华氏温度, 取水下温度为 10° :); 排开水的体积为: V=nRT/P; 排开水的 质量为: ml=rho* nRT/P(rho为水的密度);冲入氮气的质量为: m2=0.028n; 增加的浮力为: ml-m2=3000Kg; 计算得到 n=32158, 氮气质量 90.0424Kg, 氮气体积 3.0115m3。 验证冲入氮气排水后, 耐压舱是否完全浸没在水中。 氮气体积为 3.0115 m3, 浮体内部水面下降高度为: 3.0115/90=0.0335m。 根据耐压舱的位置计算可知, 耐压舱顶部距离浮体舱顶的距离为 0.15, 显 然排开对应体积的水后, 耐压舱任然完全浸没与水中, 说明上面的计算正 确。 即所有的分舱 1充入约 90Kg的氮气即可提供浮体 3吨的浮力, 再将 90Kg的氮气平均分配给所有的分舱 1, 得到每个分舱 1的充气量。 本发明 实施例中, 排水量的单位是吨, 排水量的单位是吨, 充气量的单位是立方 米。
下面对浮体的工作原理进行分析说明: 浮体下水之前, 往耐压舱 2内 充入气体使得耐压舱 2内的气压和工作水域的水压相当, 由于耐压舱 2本 身具有相当的承压能力, 可承受内部的气压。 随着浮体下水深度的增加, 外界水压增大, 逐渐平衡了耐压舱 2内部的气压, 直到到达工作水域, 外 界水压和耐压舱 2内的气压基本相当, 可近似认为耐压舱 2在预定水深处 基本不受压。 对于各分舱 1内部空间而言, 由于通水系统的存在, 分舱 1 内部的压力始终和外界水压相同, 即各分舱 2的舱壁基本上不受压。 浮体 在整个安装和安装后的工作过程中, 浮体各结构都能满足压力要求。 浮体 在下水的过程中, 浮体受到浮力和重力的作用, 只要保证浮体的重心和浮 心在同一竖直线上即可保证浮体姿态平衡。本发明实施例提供的水下浮体, 浮体在下水过程中的浮力仅有耐压舱 2提供, 在设计时可通过控制耐压舱 2的大小和安装位置来控制整个浮体的浮心位置。在设计时,保证各分舱 1 内充满水时整个浮体系统的重心和浮心在同一竖直线上, 且浮心的位置高 于重心的位置, 使浮体在整个下水过程中姿态始终保持平衡。 浮体到达预 定水深后, 浮体的正浮力大部分需要分舱 1内部空间提供。 通过往各分舱 1内充气, 排出分舱 1内的部分水, 使得排出水的重量恰为正浮力大小, 这样分舱 1便可提供工作要求的正浮力。 控制每个分舱 1排水量的具体方 法如下: 歩骤 1 10、 按照浮体需满足的正浮力要求计算需要排出的总水量, 然后根据总的排水量计算出所有分舱 1总的充气量, 再将总的充气量平均 分配给所有的分舱 1, 确定每个分舱 1的排水量。 按照浮体姿态平衡的要 求, 使各分舱排水量之和略小于需要排出的总水量。歩骤 220、 每个分舱 1 按照其充气量充气完成后, 四个位置传感器对浮体的位置进行监测, 控制 器根据四个传感器反馈的位置信号计算得到浮体的姿态角度, 判断浮体处 于平衡状态或某种倾斜状态, 当浮体处于倾斜状态时, 控制器根据姿态监 测系统获取的浮体的位置信息判断浮体的哪一端发生了向下倾斜, 并控制 透气系统向向下倾斜的一端的分舱 1内充入气体,直到浮体不再倾斜为止。 歩骤 110可在浮体下水前提前设置好, 以保证浮体下水的安全性。 分舱 1 的充气排水操作的原理如下: 通过充气增大各分舱 1内的气压, 使其大于 外界水压, 在压力差的作用下分舱 1内的水通过通水系统自动排出。 排出 部分水后分舱 1内气体空间变大, 气压减小, 当分舱 1内气压减小到小于 外界水压时, 水又会通过通水系统进入分舱 1内,减小分舱 1内气体空间, 增大气压。 如上过程反复进行, 最后达到一种动态平衡。 各分舱 1内排水 量可换算成充气量, 算出每个分舱 1的充气量后, 便可完全通过充气量控 制浮体姿态的平衡, 使浮体稳定的处于工作状态。
本发明实施例具有以下有益效果:
1、 浮体左侧设置的分舱所能够提供的最大浮力与浮体右侧设置的分舱所 能提供的最大浮力相等, 因此能够保证浮体的左右侧趋于平稳状态。 浮体的 前侧设置的分舱所能提供的最大浮力与浮体的后侧设置的分舱所能提供的最 大浮力不同, 因此能够根据深海管线不同侧重力的不同实现对深海管线的搭 载。 同时, 浮体浮心的位置与重心的位置在同一竖直线上, 且浮心的位置高 于重心的位置, 能够保证整个浮体在工作状态时保持平稳状态。 耐压舱可满 足承受较大压强的要求, 浮体下水的过程中, 充满气体的耐压舱提供向上的 浮力, 从而克服浮体自身的重力, 使浮体能够平稳的下水。 由于耐压舱提供 的向上的浮力与浮体向下的重力的合力较小, 浮体基本趋于平稳状态, 因此 减小了牵引系统对浮体的施力强度, 降低了分舱上与牵引系统连接处对结构 强度要求。
2、 耐压舱设计成椭圆罐状结构, 具有较高的抗压特性。
3、 本发明的安装方案只需要经过两次较大的姿态调整操作, 且都可通过 精确的计算作指导, 姿态调整过程简单可控, 安装可一次性到达预定水深, 无需逐歩调整, 提高了安装效率, 大量节省了人力和物力。
4、 浮体整个下水过程中, 没有任何充气排气操作, 浮体内压力一直处于 自平衡状态。 同时, 浮体整个下水过程中姿态的微调完全通过牵引系统进行, 调节方便。
5、 整个安装过程中出现的操作均是通过水上控制系统来完成的, 没有任 何水下操作。 故本发明的安装可免水下操作系统 (ROV) 辅助, 大大降低了 安装成本, 安装可控性更强。 6、 浮体进入工作状态后, 无论是分舱还是耐压舱都几乎不承受压力, 延 长了耐压舱及分舱的使用寿命。
最后所应说明的是, 以上具体实施方式仅用以说明本发明的技术方案 而非限制, 尽管参照实例对本发明进行了详细说明, 本领域的普通技术人 员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而不脱离 本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims

权 利 要 求 书
1、 一种水下浮体, 其特征在于, 包括分舱 (1) 及耐压舱 (2) ; 所述浮体左右两侧是所述分舱(1) , 所述浮体左右两侧的所述分舱提 供的浮力相同; 所述浮体前后两侧是所述分舱, 所述浮体前侧的所述分舱 (1) 提供的浮力大于所述浮体后侧的所述分舱 (1) 提供的浮力, 或所述 浮体后侧的所述分舱 (1) 提供的浮力大于所述浮体前侧的所述分舱 (1) 提供的浮力;
所述耐压舱(2) 穿过所述分舱(1) 且与所述分舱(1) 的舱壁固定连 接;
所述浮体的浮心与所述浮体的重心在同一竖直线上, 且所述浮体浮心 的位置高于所述浮体重心的位置;
所述耐压舱 (2) 上设置有充气阀;
所述分舱 (1) 上设置有透气系统及通水系统。
2、 根据权利要求 1所述的水下浮体, 其特征在于, 所述浮体前侧的所 述分舱 (1) 提供的浮力大于所述浮体后侧的所述分舱 (1) 提供的浮力, 或所述浮体后侧的所述分舱(1)提供的浮力大于所述浮体前侧的所述分舱 (1) 提供的浮力包括:
所述浮体前侧的所述分舱( 1 )的个数大于所述浮体后侧的所述分舱( 1 ) 的个数, 或所述浮体后侧的所述分舱(1)的个数大于所述浮体前侧的所述 分舱 (1) 的个数。
3、 根据权利要求 1所述的水下浮体, 其特征在于, 所述耐压舱 (2) 至少为一个。
4、 根据权利要求 1所述的水下浮体, 其特征在于, 还包括姿态监测系 统及控制器;
所述姿态监测系统、透气系统及所述通水系统分别与所述控制器连接; 所述姿态监测系统对所述浮体的位置进行监测, 监测所述浮体处于平 衡状态或倾斜状态, 当所述浮体处于倾斜状态时, 所述控制器控制所述透 气系统向所述浮体上向下倾斜的一端的所述分舱(1) 内充入气体, 直到所 述浮体不再倾斜为止。
5、 根据权利要求 4所述的水下浮体, 其特征在于, 所述姿态监测系统 由四个位置传感器组成;
四个所述位置传感器分别安装在所述浮体四周的四个角上; 四个所述 位置传感器分别与所述控制器连接。
6、 一种权利要求 5所述的水下浮体的安装方法, 其特征在于, 包括: 分别向所述耐压舱 (2) 充气及向所述分舱 (1) 注水;
将所述水下浮体下放到工作水域;
向所述分舱 (1) 内充入气体以排出所述分舱 (1) 内的水, 使所述分 舱 (1) 产生向上的正浮力。
7、 根据权利要求 6所述的安装方法, 其特征在于, 所述分别向所述耐 压舱 (2) 充气及向所述分舱 (1) 注水包括:
将水面的充气系统与每个所述耐压舱(2)上的充气阀连接, 通过所述 水面充气系统给所述耐压舱 (2) 内部充气, 当所述耐压舱 (2) 内的气压 与工作水域的水压一致时关闭所述耐压舱 (2)上的充气阀及水面充气系统; 将每个所述分舱 (1) 上的通气系统打开, 保持每个所述分舱 (1) 上 的通气系统为常压状态;
通过通水系统将每个所述分舱 (1) 内注满水。
8、 根据权利要求 7所述的安装方法, 其特征在于, 所述将所述水下浮 体下放到工作水域包括:
将所述耐压舱(2)及所述分舱(1)下放到水中, 直到所述耐压舱(2) 及所述分舱 (1) 完全被水浸没;
用牵引系统将所述浮体向下牵引; 当所述水下浮体到达工作水域后, 牵引系统停止牵引动作。
9、根据权利要求 8所述的安装方法,其特征在于,所述向所述分舱(1) 内充入气体以排出所述分舱 (1) 内的部分水, 使所述分舱 (1) 产生向上 的正浮力包括:
通过所述控制器控制所述通气系统向每个所述分舱 (1) 内充入气体, 使每个所述分舱 (1) 内的部分水排出;
向每个所述分舱 (1) 充气完毕后关闭每个所述分舱 (1) 上的通气系 统, 使每个所述分舱 (1) 提供向上的正浮力。
10、 根据权利要求 9所述的安装方法, 其特征在于, 还包括: 在每个所述分舱(1) 充入气体之后, 通过所述浮体四周的四个角上分 布的四个所述位置传感器对所述浮体的位置进行监测, 监测所述浮体处于 平衡状态或倾斜状态, 当所述浮体处于倾斜状态时, 所述控制器控制所述 透气系统向所述浮体上向下倾斜的一端的所述分舱(1) 内充入气体, 直到 所述浮体不再倾斜为止。
PCT/CN2013/079279 2013-03-28 2013-07-12 一种水下浮体及其安装方法 WO2014153903A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/771,298 US20160068238A1 (en) 2013-03-28 2013-03-28 Underwater floating body and installation method thereof
BR112015019309A BR112015019309A2 (pt) 2013-03-28 2013-07-12 corpo flutuante subaquático e método de instalação do mesmo
NO20151387A NO20151387A1 (en) 2013-03-28 2015-10-13 Underwater Floating Body and Installation Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013073359 2013-03-28
CNPCT/CN2013/073359 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014153903A1 true WO2014153903A1 (zh) 2014-10-02

Family

ID=51622419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/079279 WO2014153903A1 (zh) 2013-03-28 2013-07-12 一种水下浮体及其安装方法

Country Status (5)

Country Link
US (1) US20160068238A1 (zh)
CN (2) CN103434616B (zh)
BR (1) BR112015019309A2 (zh)
NO (1) NO20151387A1 (zh)
WO (1) WO2014153903A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160068238A1 (en) * 2013-03-28 2016-03-10 Jun Yan Underwater floating body and installation method thereof
CN105309344B (zh) * 2014-07-30 2018-12-14 浙江大学宁波理工学院 一种船式可自平衡潜浮网箱
CN104699132B (zh) * 2015-01-26 2017-02-22 华中科技大学 一种水下浮体的安装方法
MY197056A (en) * 2016-06-30 2023-05-23 Kyoraku Co Ltd Float, float assembly, and method for installing float assembly
CN107724396B (zh) * 2017-10-18 2020-05-22 中国建筑工程(香港)有限公司 具有浮力调节结构的自动摊铺机系统及其工作方法
CN108108569B (zh) * 2018-01-04 2020-06-09 北京航空航天大学 一种基于浮力面元的船体快速建模方法
CN108045529A (zh) * 2018-01-22 2018-05-18 裴睿涛 一种新型救生气垫
CN110816791A (zh) * 2018-08-09 2020-02-21 中国船舶重工集团公司第七六○研究所 一种细长型水下浮箱的注排水控制方法
CN111852738A (zh) * 2020-06-22 2020-10-30 中国海洋大学 悬浮自动对向轮辋式潮流能发电装置及其控制方法
CN115912241B (zh) * 2022-12-16 2023-06-20 浙江大学 一种海洋悬浮式氢电联送系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025690A (ja) * 1998-07-14 2000-01-25 Mitsubishi Heavy Ind Ltd 浮体式生産・貯蔵・積み出し設備
WO2007119051A1 (en) * 2006-04-17 2007-10-25 Petroleo Brasileiro Sa-Petrobras Mono-column fpso
WO2009088489A1 (en) * 2008-01-02 2009-07-16 Nagan Srinivasan Offshore floating production, storage, and off-loading vessel for use in ice-covered and clear water applications
CN101544270A (zh) * 2008-03-26 2009-09-30 吴植融 带水下储罐的浮式平台
CN103434616A (zh) * 2013-03-28 2013-12-11 武汉武船海洋工程船舶设计有限公司 一种水下浮体及其安装方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496730A (en) * 1968-02-12 1970-02-24 Us Navy Natural shape inflatable undersea structure
US4285615A (en) * 1978-12-13 1981-08-25 Conoco, Inc. Corrosion resistant tension leg cables
JP3464399B2 (ja) * 1998-12-02 2003-11-10 住友重機械工業株式会社 セミサブ型浮体構造物
US6321676B1 (en) * 1999-01-07 2001-11-27 Seamagine Hydrospace Corporation Underwater craft having sealed and inflatable buoyancy chambers
AU2005213410B2 (en) * 2004-02-06 2010-05-20 E-Z Dock, Inc. Floating drive-on watercraft dock
CN101665143A (zh) * 2008-09-05 2010-03-10 吴植融 多功能海上基地和压载海水与lng或lpg等质量置换方法
CN102556294A (zh) * 2012-03-26 2012-07-11 甘忠祥 一种浮岛式飞机场

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000025690A (ja) * 1998-07-14 2000-01-25 Mitsubishi Heavy Ind Ltd 浮体式生産・貯蔵・積み出し設備
WO2007119051A1 (en) * 2006-04-17 2007-10-25 Petroleo Brasileiro Sa-Petrobras Mono-column fpso
WO2009088489A1 (en) * 2008-01-02 2009-07-16 Nagan Srinivasan Offshore floating production, storage, and off-loading vessel for use in ice-covered and clear water applications
CN101544270A (zh) * 2008-03-26 2009-09-30 吴植融 带水下储罐的浮式平台
CN103434616A (zh) * 2013-03-28 2013-12-11 武汉武船海洋工程船舶设计有限公司 一种水下浮体及其安装方法

Also Published As

Publication number Publication date
BR112015019309A2 (pt) 2017-07-18
NO20151387A1 (en) 2015-10-13
CN103434616A (zh) 2013-12-11
CN203372365U (zh) 2014-01-01
CN103434616B (zh) 2016-05-25
US20160068238A1 (en) 2016-03-10

Similar Documents

Publication Publication Date Title
WO2014153903A1 (zh) 一种水下浮体及其安装方法
EP3511238B1 (en) Floating system of marine power generation platform
JP6604706B2 (ja) 汎用海上プラットフォーム、その浮力調整方法及び安定発電方法
US10086919B2 (en) Boat lift
JP2018531172A6 (ja) 汎用海上プラットフォーム、その浮力調整方法及び安定発電方法
JP2010234980A (ja) 固定用着底部材、緊張係留浮体システム及びその設置方法
KR20110043411A (ko) 논-밸러스트선
JP2015510086A (ja) 沖合の風力タービン
CN103359263A (zh) 一种压力平衡式浮体及其安装方法
US11299242B2 (en) U-tank active roll dampening system for and method for active roll dampening of a vessel
WO2014153904A1 (zh) 一种压力平衡式浮体及其安装方法
CN105460183A (zh) 水下自浮式隔水舱及其使用方法
KR20130003809A (ko) 선박용 밸러스트 탱크의 자유표면 조절장치
US8220406B2 (en) Off-shore structure, a buoyancy structure, and method for installation of an off-shore structure
KR101698863B1 (ko) 선박의 밸러스트 시스템
US6058869A (en) Floating pontoon structure with adjustable draft
CN105756031B (zh) 一种抗倾覆水力升船机输水系统用稳压减振箱
KR20160017555A (ko) 수상 태양광 발전장치의 반 잠수식 부유 구조체
CN115042930B (zh) 一种压载水舱及浮船坞
CN113508771B (zh) 深远海养殖网箱压载调倾系统
CN115583318A (zh) 一种阻尼池式海上漂浮式光伏平台
WO2023040062A1 (zh) 一种带有气囊的框架式浮岛、半潜船及半潜船控制方法
WO2011074926A4 (ko) 쌍동선형 엘엔지 플로터
CN114016488B (zh) 一种海上升压站导管架施工工艺
CN107531316A (zh) 漂浮单元和稳定该漂浮单元的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880283

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015019309

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 14771298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13880283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015019309

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150812