CN101665143A - 多功能海上基地和压载海水与lng或lpg等质量置换方法 - Google Patents

多功能海上基地和压载海水与lng或lpg等质量置换方法 Download PDF

Info

Publication number
CN101665143A
CN101665143A CN200810196337A CN200810196337A CN101665143A CN 101665143 A CN101665143 A CN 101665143A CN 200810196337 A CN200810196337 A CN 200810196337A CN 200810196337 A CN200810196337 A CN 200810196337A CN 101665143 A CN101665143 A CN 101665143A
Authority
CN
China
Prior art keywords
ballast
base
seawater
lng
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200810196337A
Other languages
English (en)
Inventor
吴植融
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN200810196337A priority Critical patent/CN101665143A/zh
Priority to PCT/CN2009/001008 priority patent/WO2010025625A1/zh
Priority to CN2009801341937A priority patent/CN102143885B/zh
Publication of CN101665143A publication Critical patent/CN101665143A/zh
Priority to US13/041,224 priority patent/US8678711B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0118Offshore
    • F17C2270/0121Platforms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种可实现海上石油天然气的钻井、生产、气体利用和储运功能,满足GTL、LNG、CNG和GTW生产要求的海上多功能基地,包括依靠定位系泊系统系泊在海床上的双潜体浮式海上基地(TWIN SUB OFFSHORE BASE——TSOB),和依靠桩固定在海床上的竹排坐底固定式海上基地(BAMBOO RAFT-GROUNDED BASE——BRGB),它们都采用压载海水和储液等质量流率置换流程和配套的组合罐储存、装卸液体产品。基地的系统和结构简单、抗腐蚀性能好、寿命长,安全环保、投资和操作维护费用低,适用水深范围宽;可用于大型和生产寿命长的、或小型和生产寿命短的油气田,尤其是边际油气田的开发;一个油气田开发结束后,可以迁移至其它油气田重复使用。

Description

多功能海上基地和压载海水与LNG或LPG等质量置换方法
所属技术领域
本发明涉及海洋石油天然气开发所需的、具有多种功能,适用于深水、恶劣海况的永久系泊浮式基地,以及适用于浅水的坐底固定式基地;本发明还涉及海上LNG或LPG储存、运输装置所需的等质量流率置换方法。根据多功能海上基地(MULTI-PURPOSE OFFSHORE BASE-MPOB)的上部设施的不同,基地的功能也随之不同;它的功能可以包括:钻井、干式井口、原油和天然气生产处理、天然气液化(LNG)、天然气合成液烃或甲醇(GTL)、液体产品如原油、液烃或甲醇、LPG、LNG的储存(统称“储液”)和外输,以及公用和生活等综合功能。
背景技术
当前世界上海上石油天然气开发生产设施面临的技术难题概括起来有两个,一是研发适用于深水、水动力特性好、可以钻井和采用干式井口、可以储油和卸油的浮式生产设施,二是离岸很远、深水的天然气田的开发及油田伴生气的利用。
对于第一个难题,人们已取得相当好的成果:TLP、SPAR和SEMI都是水动力性能好、适用于深水、可钻井的浮式平台,TLP和SPAR还可采用干式井口,三者均已被广泛采用。船形FPSO虽然水动力性能比上述三种平台稍差,但完全可以满足海上原油生产处理和储运的要求,并可用于深水和海况恶劣的海域,已成为当今海上石油生产设施的主流型式。可钻井的FPSO,即在FPSO的月池上方安装钻井机等设备,称之为FPDSO,已进行了多年的研发,近十年前SBM公司提出了张力腿甲板(TLD)概念,解决了FPSO垂盪大而难以钻井和安装干式井口的问题。据最新报道,世界上第一个FPDSO目前正处于工程实施阶段,第二个也已进入工程设计阶段。现行的FPDSO采用多点系泊,但由于船形FPSO水动力特性的限制,只能用于海况条件好的海域。申请人已申报的发明专利“带水下储罐的浮式平台”(申请号200810024652.4)则提供了一个可以完全解决第一个难题的方案。
对于第二个难题,迄今尚未取得令人满意的成果。和油田开发相比,气田开发涉及天然气运输和储存,具有特殊的难度。传统的办法是用海底管道将海上生产的天然气直接送至陆上用户作燃料、化工生产原料或在岸上终端液化。上游海上气田和下游陆上用户紧密联系在一起,下游市场和用户往往决定上游气田能否开发和如何开发。如果某一海上气田远离用户而周边又没有可依托的海底管道等基础设施,或者气田产量达不到所需的规模,采用上述传统的办法开发该气田的经济性常常很差;长距离深水海底管道常常因面临技术障碍而十分困难,乃至使得一些油气藏条件很好的气田也成为暂不具有商业开发价值的气田。此外,海上油田的伴生气的利用也面临同样的挑战:回收利用可能既存在技术难题,也存在费用过高、经济性差的问题。过去,人们往往通过火炬将油田伴生气燃烧放空,这一做法既浪费能源,又污染环境,已被许多国家明令禁止;于是人们不得不将其高压回注至地层,因此额外增加了高昂的设施投资和操作费,况且有些油田因地质构造特点而不宜于气体回注。
众所周知,不采用长输管道,海上天然气的储运和利用通常采用四种办法:GTL(GAS TO LIQUD),将天然气合成为液烃或甲醇,通过穿梭运输船外运;LNG,将天然气低温(-162℃)液化、储存,通过LNG运输船外运:CNG(COMPRESSEDNATURAL GAS),将天然气压缩,例如至150bar,用钢制容器储存、通过运输船外运;GTW(GAS TO WIRE),用天然气在海上发电,通过海底电缆向外输电。尽管上述四种办法和相应的海上浮式装置均有很大不同,但研发的内容概括起来无非是两个方面:1)浮式装置的上部设施生产系统,2)浮体形式、结构。为了将上述四种办法用于海上天然气的开发和生产,需要设计全新的海上生产装置,尤其是浮式生产装置,它们应具有如下特点:就生产装置整体而言,重要的是应具有可靠度高、安全性好、健康环保、可重复使用、方便操作维护、费用(造价、操作维护费、搬迁和弃置费)低等特点;就装置的上部设施生产系统而言,重要的是生产流程、系统和设备如何适应海上作业和生存的特点,如何提高生产效率和天然气收率、降低能耗和排放,包括新流程、新设备和新的控制系统的研制,系统和流程的简化、设施小型化和模块化,等等;就装置的浮体形式、结构而言,它既是容纳和支撑上部设施的基础结构,也是常温和低温液体产品的储罐,重要的是应具有单层甲板面积足够大、能够保证和方便液体产品的储存和外卸等特点,其中,浮式装置的水动力特性必须好。
资料表明,多年来尤其是近十年来,人们对于用于海上的GTL和LNG流程、系统和设施开展了大量的研发工作,取得了令人瞩目的成果。
世界上几乎所有的著名的大型石油公司都对GTL的FISCHER-TROPSCH流程开展了长时间的研发工作,形成了一系列的专有技术和专利。例如壳牌(SHELL)的中度精馏合成专有技术(SHELL MIDDLE DISTILLATESYNTHESIS-SMDS),可以高效地和高收率地将天然气合成转化为无硫、无芳香烃的高级汽油,以及重要的化工原料石脑油和石蜡。SHELL采用该技术于1993年在马来西亚建成投产了日产14700桶燃油的GTL工厂;另一个建于卡塔尔日产140000桶燃油的GTL工厂也正在计划之中。一些油公司还和工程公司、研究机构合作,试图将GTL技术用于海上船形浮式装置;但由于船形浮体运动性能难以满足GTL的工艺生产要求等原因,迄今尚未取得突破。
据报道,2007年LNG约占全球天然气消耗量的7%,LNG的需求以每年8~10%的速度增长,预计至2030年全球LNG的需求量为5亿吨。巨大的市场需求和海上天然气开发所面临的挑战均促使石油公司、工程公司投入非常大的资源,研发浮式天然气液化装置(FLOATING LIQUIDIZED NATURAL GAS-FLNG)。前不久SHELL宣布将向日本、韩国的船厂和国际工程公司招标建造世界上第一条海上钢制船形FLNG。据悉,该FLNG450米长,75米宽,采用永久系泊的单点装置,可抵御飓风。FLNG通过专门的外输装置连接旁靠(适用于海况条件好的海域)或串靠(适用于海况恶劣的海域)的LNG运输船,实现LNG的外卸。一些石油公司和工程公司对于FLNG的LNG外输装置、制冷循环和制冷剂、相应的设备和生产控制系统均做了大量卓有成效的研发工作。SHELL的上述FLNG采用了许多专有技术,如双重混合制冷工艺(DUAL MIX REFRIGERANT-DMR),可自行产生制冷剂,不再需要丙烷制冷循环,使得设备的数量比传统流程减少了约30%,大大提高了系统的安全性和可靠性,降低了二氧化碳的排放。在控制方面,采用了自动控制冷却技术(SHELL AUTOMATED COOL-DOWN),可减少管壳式和列管式制冷换热器的泄漏和系统因此停车的问题,实现装置的快速启动并减少火炬放空;它像自动导航系统一样自动控制制冷过程,进一步提高了系统的安全性、可靠性,方便了生产操作。另据报道,和调峰装置类似,采用以氢气为制冷剂的小型LNG装置,已进入技术设计阶段;该装置专门用于FPSO上处理油田伴生气,使得该FPSO变成FONG(FLOATING OIL NATURAL GAS),其产品不仅仅包括原油,还包括凝析油、LPG和LNG。
在上述新的海上钻井、石油天然气生产装置的研发过程中,浮体结构始终没有重大突破。TLP、SPAR和SEMI的单层甲板面积均十分有限,并且通常都不具有储运功能;申请人发明的“带水下储罐的浮式平台”虽然水动力特性好,具有储液功能,但是上部设施甲板亦为多层模块形式,面积同样偏小。为了获得大甲板面积和具有储运功能,目前研发的FPDSO和FLNG的浮体均无一例外地采用船形钢制FPSO。船形FPSO水线面面积很大,吃水不深(通常数米至20米左右),水下浮体的立面尺度很大。众所周知,波浪的作用力按指数规律随水深增加而迅速衰减。以南中国海为例,3/4的波浪载荷都作用于30~40米水深的范围内,以水面的波浪载荷最大。海上浮式结构的水线面面积大,则它由波浪引起的垂荡、纵摇和横摇的运动就大。在水下受波浪影响的深度范围之内,海上结构的垂直剖面面积大、外形尺度大,则波浪引起的纵荡和横荡的水平运动就相对较大。此外,FPSO还存在系统接口多、设施相对复杂、建造周期偏长、钢船体易于腐蚀和疲劳、造价和操作维修费偏高等缺点。受水动力特性的制约,FPSO虽然能满足深水和海况恶劣海域原油生产的要求,但却难以满足钻井或天然气生产和利用的要求。如前所述,在浮体上安装钻井设备和采用干式井口的一个前提条件是,浮体的垂盪运动必须小。SBM的张力腿甲板(TLD)仅仅改善了井口部位的垂盪,整个船体的垂盪问题依然存在,并且系统和设施因增加TLD而进一步复杂化。如果能够从根本上改善浮体自身的水动力特性,即使采用多点系泊,垂盪也可以控制在容许的范围内。浮体的横摇、纵摇和垂盪运动过大,其速度、加速度将使浮体上的设备、内件、仪表等产生额外的惯性力和振动,可能造成疲劳损坏、影响系统的可靠性、造成停产;浮体运动过大,将对GTL的某些工艺过程造成较大的影响。例如,在GTL的合成气转化为重石蜡的过程中,采用的流化法或稀浆悬浮液法催化工艺,均对浮体的运动比较敏感。天然气合成液烃或甲醇在海上浮体应用的研发至今没有重大进展,一个重要的原因是浮体的运动问题没有解决。上述SHELL的FLNG的实质是在LNG运输船上增加天然气处理、液化装置,并在船艏安装单点系泊装置,除了存在船形FPSO的固有缺点外,还必然存在系统和设施很复杂、造价很高等缺点。
申请人已申请的中国发明专利“压载海水和储液置换方法、组合罐和液体水下储运装置”(申请号200810024564.3),仅可用于普通常温液体产品在海上的储运作业,作业过程中操作重量和重心的平面位置均不变,但不能用于非普通的、非常温液体,如LNG和LPG的储运。
发明内容
本发明多功能海上基地包括浮式和坐底固定式两种基地,均采用了申请人已申请的中国发明专利“压载海水和储液置换方法、组合罐和液体水下储运装置”的核心技术——“密闭气压连通式压载海水和储液等质量流率自动置换流程系统”和“组合式储液罐”,用于常温常压液态产品如原油、液烃和甲醇的储运;同时,本发明借鉴了上述两项核心技术,研发成功满足常温LPG和超低温LNG的储运要求的压载海水与LNG或LPG等质量置换方法及流程:海水压载舱和储液舱顶部惰性气不连通的“气压式压载海水和LNG(LPG)等质量流率自动置换流程系统”,以及适用于LPG和LNG储存的组合式储液罐。上述两种流程统称“压载海水和储液等质量流率置换流程”,它们和两种组合罐均可以保证储运作业过程中,基地的操作重量不仅不变,重心只能沿浮心所在的垂直线上下变动(重心在平面上的投影位置不变)。两种基地均具有很大的单层甲板面积,可实现海上石油天然气的钻井、生产、气体利用和储运功能,完全满足GTL、LNG、CNG和GTW的生产要求。
附图说明
下面结合附图对本发明作进一步的描述。
图1是常温液态产品如原油、液烃和甲醇的储运流程图。
图2是图1的A-A和B-B、图3的B-B局部剖面放大图。
图3是是常温LPG和超低温LNG的储运流程图。
图4是图3的C-C局部剖面放大图(用于LPG储罐)。
图5是图3的C-C局部剖面放大图(用于LNG储罐)。
图6是双潜体浮式海上基地外置底部固定压载舱图。
图7是双潜体浮式海上基地主结构正视图。
图8是图7的B-B剖视图。
图9是图7的C--C剖视图。
图10是图7的A向视图。
图11是图9的E--E剖面放大图。
图12是图8的D-D局部剖面放大图。
图13是竹排坐底固定式海上基地主结构正视图。
图14是图13的A向视图。
图15是海上浮式结构(浮体)和悬挂式固定压载舱连接示意图
图16是图15的A-A剖视图。
图中:
1.海水压载泵;2.海水卸载泵;3.自动开关连通阀;4.储液装载泵;5.储液卸载(外输泵);6.组合式储液罐;7.海水压载舱;8.储液舱;9.固定压载物;10.LNG(LPG)海水压载舱天然气排出阀;11.LNG(LPG)海水压载舱天然气注入阀;12.LNG(LPG)储罐天然气排出阀;13.LNG(LPG)储罐天然气注入阀;14.LNG(LPG)装载泵;15.LNG(LPG)卸载(外输泵);16.LNG储罐;17.LPG储罐;18.混凝土或玻璃钢舱(罐)壁;19.LPG储罐钢罐壁;20.LNG储罐外钢筒壁;21.LNG储罐隔热围护层;22.LNG储罐内钢筒壁;23.外置固定压载舱底板;24.外置固定压载舱立壁板;25.外置固定压载舱径向连接板;26.长圆筒结构单元;27.水平连接杆;28.艏艉水平阻尼板;29.工艺舱;30.立柱;30-1.主立柱;30-2.竖井立柱;30-3.支撑立柱;31.基地上部结构;32.坐底固定基地底部结构横向框架;33.桩、水下桩或吸力锚;34.外置固定压载舱;35.悬挂式固定压载舱;36.悬挂式固定压载舱舱体容器;37.悬索;38.浮式结构(浮体)的主结构;39.固定压载舱舱内垂直分隔;40-1.双潜体浮式基地悬挂式固定压载舱横向连接板;40-2.双潜体浮式基地悬挂式固定压载舱横向连杆;41.悬挂式固定压载舱舱体容器压载物灌入口或海水、空气排出口。
本发明多功能基地共包括三大部分:
第一部分,两种压载海水和储液等质量流率置换流程系统,分别适用于常温常压液体和LNG(LPG)(简称“储液”)储运作业。它们均包括:一组或多组卧式圆筒形罐中罐式组合式储液罐(以下简称组合罐);泵、管路、阀门和控制系统;辅助支持系统,和基地的其它公用设施形成一体。储运系统和组合罐保证了在储液装载和卸载作业的过程中,基地的操作重量不变、重心在基地平面投影位置也不变。
第二部分,基地的下部结构及定位或固定系统。下部结构由主体为长圆筒结构单元26等部件构成的底部结构和立柱30,以及需要时配置的固定压载舱34或35和压载物9共同组成。其中,浮式基地为双潜体底部结构,坐底固定式基地为竹排式底部结构。长圆筒结构单元26由一组或多组组合罐6首尾串接构成。定位系统用于浮式基地,包括多点或单点系泊及辅助的动力定位系统。固定系统用于坐底固定式基地,包括桩、水下桩或吸力锚33(统称“桩”)。
第三部分,上部设施和结构31,其中浮式基地的上部结构可以是全水密舱壁结构,也可以是部分水密舱壁结构。固定基地的上部结构为钢架结构。钻井、石油天然气生产处理、LPG、LNG、GTL、CNG、GTW的生产装置、设备和外输装置均安装在上部结构上。
液体储运流程系统和压载海水与LNG或LPG等质量置换方法(参见图1和图3)
本发明常温液体产品,如原油、凝析油、GTL燃油、甲醇等的储运流程采用“密闭气压连通式压载海水和储液等质量流率自动置换流程系统”和“卧式圆筒形单组储液单元组合罐6”(参见图1)。有关该系统的原理、设备和控制等,可参见发明专利“压载海水和储液置换方法、组合罐和液体水下储运装置”,不再赘述。
为了实现压载海水与LNG或LPG等质量置换,本发明的置换方法不同于“密闭气压连通式压载海水和储液等质量流率自动置换流程系统”,而是采用“气压式压载海水和LNG(LPG)等质量流率自动置换流程系统”,和LNG、LPG专用的组合式储液罐6,在水下储存LNG或LPG(参见图3)。LNG(LPG)组合罐6的海水压载舱7和储液舱(LNG储罐16或LPG储罐17)顶部惰性气为压缩天然气,互不连通,天然气分别来自上部设施31的LNG或LPG生产流程的不同部位。LNG(LPG)装载或卸载时,压载海水以等质量流率同步卸载或压载,压载舱7和储液舱(16或17)内部上方天然气的补给和排出为两个相关和联动、但又互相独立的系统。LNG(LPG)组合式储液罐6的组成形式和“卧式圆筒形单组储液单元组合罐6”相似,但LPG和LNG储罐(17和16)的罐壁结构(分别参见图4和图5)不仅与普通储液舱舱壁结构不同,二者之间也不同(参见图2、4和5);并且,LNG和LPG流程中储罐(17和16)内上部天然气的压力同样也不同。
压载海水和LNG等质量置换的储运流程
众所周知,LNG的输送方式有两种:压力输送和泵输送。本流程采用两种方式的结合的方法将储罐内LNG向外输出:将基地上部天然气处理和液化冷却生产流程中的压缩天然气(净化低温干气),经阀门13引入LNG储罐16的顶部,依靠储罐16内部的气体压力能,克服LNG流经管道的流阻和高程差,将LNG从储罐16底部压至基地上部模块的LNG外输泵15的进口,最终由外输泵15外输(卸载)。外输的过程中,储罐16内LNG温度-162℃,压力为数个个大气压(具体值由输送工艺计算确定,应大于克服管道摩阻与储罐16底部至泵15入口的高程差所需的压力之和),处于过冷状态。引入的天然气的温度和压力均高于储罐16内LNG的温度和压力,气体入罐后温度自动冷却降至-162℃(所需冷量由罐内少量LNG气化获得)、流入气体的容积相应缩小、压力则降至与储罐内部压力相等;稳定而连续的压缩天然气由阀门13进入,保证了LNG外输所需的压力能。由于储罐16内部存在数个大气压的压力,基地上部生产的LNG必须通过装载泵14灌入储罐16储存(装载)。储罐16内天然气气体在LNG入罐储存的同时相应地由阀门12排出,返回到基地上部天然气处理和液化的生产流程。在LNG装载或卸载的过程中,压载海水通过海水卸载泵2和压载泵1相应地以等质量流率自动同步卸载或压载。在海水卸载泵2卸载的过程中,将基地上部经初步处理的进料压缩天然气经阀门11引入海水压载舱7的顶部,保持混凝土海水压载舱7的压力高于大气压而低于舱外海水的静水压(适用于混凝土海水压载舱7)。对于钢制海水压载舱7,则内部天然气的压力应高于舱外海水的静压力。海水压载泵1在压载的过程中,海水压载舱7上部的天然气从顶部经阀门10排出,含有微量水的天然气气体返回到基地上部天然气处理的原料气流程。为了确保LNG和压载海水实现等质量流率置换,确保储罐16内和海水压载舱7内天然气相应自动注入-排出或排出-注入,LNG装载泵14-海水卸载泵2,LNG卸载泵15-海水压载泵1,以及储罐16和海水压载舱7的顶部进排气自动控制阀门10、11、12和13,均实施联动和比例调节;泵均采用按比例的自动体积流率控制系统,如无级调速系统或回流控制系统,按照LNG和压载海水的体积流率与二者的重度成反比实现质量流率相等。除上述LNG储运主流程外,还有一些辅助流程和系统,如吹扫置换系统、紧急关断和气控系统、仪控系统、安全系统、抽真空系统和取样系统,等等,它们都是常规流程和系统,不再赘述。
本发明采用上述流程不仅保证了LNG装载和卸载的过程中,基地的操作重量不变这一基本要求,它的另一个最大的优点是,LNG储罐16内部没有泵,不需要类似LNG运输船常用的可伸缩型潜液电泵,流程依靠压力能将LNG从水下储罐16压送至储罐上方的甲板,再经甲板上的LNG电泵15外输,LNG在水面以下的储运系统主要是管路,电泵15一类的设备安装在水面以上的甲板上,或基地主立柱30-1或竖井立柱30-2内部距水面不远的甲板上,使得流程系统和设备安全可靠、方便操作和维修。海水压载泵1和海水卸载泵2安装在基地的立柱内,同样方便操作和维修。此外,本流程进排气系统取自生产流程再返回生产流程,闭式循环、零排放、安全环保。
压载海水和LPG等质量置换的储运流程(参见图3)
液化石油气(LPG)常温下的饱和压力为16~20bar,本发明采用带压常温储存LPG。本发明亦采用压力输送和泵输送相结合的方式,从储罐17向外输送LPG。LPG储运流程与LNG流程大同小异,大同之处不再赘述;不同之处在于:LNG流程的设备和系统必须适应-162℃的低温,如必须采用低温LNG泵,输液控制采用气动系统而非液动控制系统;LPG储罐17内的最低压力为常温下的饱和压力加克服管道摩阻与高程差所需的压力之和,通常不小于20bar,显然大于LNG储罐16内的压力;此外,LNG低温隔热维护所需的支持系统,如抽真空系统,不再需要。流程中储存LNG储液舱(储罐)的舱体采用了可储存低温液体的围护系统和结构,LPG储罐则为内压大于等于20bar的压力容器。
组合式储液罐(参见图1和图3)
如前所述,本发明储存常温和低温液体的组合罐6均为卧式“罐中罐”型,它的储液舱(8或罐16或17)和海水压载舱7均为卧式圆筒形容器,储液舱(罐)位于海水压载舱内部的下方(参见图1和图3),二者中心轴线水平平行,两舱之间可根据需要设置径向支撑结构(图中没有示明)。储存常温常压液体(如原油)的组合罐,它的海水压载舱和储液舱顶部密闭惰性气体可通过自动开关阀相连通。储存LPG和LNG的组合罐的海水压载舱和储液舱(储罐)顶部不连通,液体上方压缩天然气来自上部设施流程中不同的部位。本发明组合罐6推荐采用混凝土建造(参见图2、图4、5);也可采用钢材建造,但需要加设更多的固定压载,要注意水下防海水腐蚀,并尽量使海水压载舱内部的压力略大于舱外海水静压力;储存常温常压液体(如原油)组合罐的内罐(储液舱)还可以采用玻璃钢建造。本发明基地的组合罐6在多数情况下需要设置固定压载9,固定压载物9可以置于海水压载舱7的内底部。需要注意的是,必须保证压载海水在海水压载舱7的底部是连通的。为此,每隔适当间距须在固定压载9上或海水压载舱7底部内壁预留连通槽(图1和图3没有示明)。浮式基地的组合罐也可以采用外置底部固定压载舱34,或采用浮式基地统一设置的悬挂式固定压载舱35。坐底固定式基地由于采用竹排式底部结构,固定压载物9也可以直接加在底部结构长圆筒结构单元(组合罐)的顶部。本发明两种基地的固定压载(舱)属于基地的下部结构的一个组成部分,应作为基地总体设计的一个重要的方面统一考虑,因此将在后面分别详细讨论。
LNG储罐(参见图3)
如前所述,LNG专用组合罐的关键是储液舱为适合储存-162℃低温液体、带有一定内压力、具有真空隔热系统的特殊储罐。例如,本发明LNG储罐16可以采用和LNG槽车基本相似的结构和围护系统:内钢筒22为两端带中拱封头(如椭圆形封头)卧式圆筒形钢制内压压力容器,材料为耐低温且温度膨胀系数小的不锈钢材料,如耐低温的奥氏体不锈钢0Cr18Ni9;外钢筒20为两端带中拱封头(如椭圆形封头)卧式圆筒形钢制外压压力容器,材料为低合金钢板,如16MnR;内外筒水平中心轴线重合,内外筒之间的支承采用耐低温且隔热性能较好的环氧玻璃钢与Cr18Ni9钢板组合结构(图3和图5没有示明),或其它性能相似的材料和结构形式;内外钢筒(22和20)之间填充真空隔热技术所需的材料20(参见图5),真空隔热技术包括高真空多层隔热(简称CD)技术、真空纤维隔热(简称CB)和真空粉末隔热(简称CF)技术,它们的低温隔热性能依次由高向低,施工和维护的难度及造价则正相反,依次由低向高。和LNG槽车不同的是,本发明可以根据需要,在LNG储罐16的外钢筒20外侧紧紧包覆钢筋混凝土保护筒18(参见图5),其目的一是防止海水对于外钢筒的腐蚀,二是有助于提高外钢筒抗曲屈的能力;如果不加混凝土层则必须采取可靠的防腐保护,也可采用玻璃钢保护筒。
LPG储罐(参见图3)
同样,LPG专用组合罐的储液舱为适合储存内部压力(大于等于20bar)常温液体的储罐,为常温内压容器。例如,本发明LPG储罐17内钢筒19(参见图4)为两端带中拱封头(如椭圆形封头)卧式圆筒形钢制内压压力容器,材料为低合金钢板,如16MnR,储罐17的外侧紧紧包覆钢筋混凝土保护筒18(参见图4);如果不加混凝土层则必须采取可靠的防腐保护,也可采用玻璃钢保护筒。多功能基地的下部结构及其定位或固定系统
两种多功能基地中的浮式基地借鉴小水线面双体船和深吃水半潜式平台的优点,它的水下结构的基础是以两个完全相同的、水平平行的、具有一定间距的潜浮体(长圆筒结构单元26)为主要构件的底部结构,长圆筒结构单元26的内部或外部可根据需要,带有不同形式的固定压载舱和固定压载物,采用多点或单点定位系统将浮体系泊在海床上,称之为“双潜体浮式海上基地(TWIN SUBOFFSHORE BASE——TSOB)”。由于水动力特性好,本浮式基地可用于深水和海况条件恶劣的海域。本发明借鉴“卧式连排圆筒形多组储液单元组合罐”(“竹排”式组合罐),坐底固定式基地的底部结构由多个长圆筒结构单元26水平紧密排列,通过横向框架结构32连接形成一体;采用和借鉴了申请人已申请的中国发明专利“带海床储罐的坐底固定式平台”(申请号200810024653.9)的相关技术,不依靠基地的重力而依靠水下桩或吸力锚将基地固定在海床上,可用于浅水和海况条件好的海域;称之为“竹排坐底固定式海上基地(BAMBOORAFT-GROUNDED BASE——BRGB)”。
长圆筒结构单元
浮式和固定式基地底部结构的主体均是长圆筒结构单元26,它由一组或多组组合式储液罐6串接而成,多组组合罐6可以储存同一种类储液,也可以储存不同类种的储液。由单组组合罐6组成的长圆筒结构单元26仅可用于固定式基地;由多组组合罐6组成的长圆筒结构单元26则可用于两种基地。这是因为浮式基地在环境载荷的作用下,会产生纵摇,长圆筒结构单元26的长度很长,如果由仅一个组合罐构成,纵摇角度稍大,储液上部的气体就有可能集中到卧式组合罐的一端,造成储运作业的困难。如果长圆筒结构单元26内包含进出管线多、管线结构复杂(如需要隔热)的组合罐,如LNG组合罐16,该组合罐16的一端或两端可以增设工艺舱29(参见图12),以便管线从组合罐16的端部接出;工艺舱29的圆筒形舱壁的材料、结构形式和其两端组合罐的海水压载舱7相同。对于管线少而简单的混凝土组合罐,也可不设工艺舱,仅需适当加大相邻两罐的连接长度,将罐两端的引出管线浇筑在混凝土的结构内,从连接处引出管线接口。
浮式基地的下部结构及定位系统(参见图7~11)
下部结构的底部结构包括带有和不带有悬挂式固定压载舱的两种形式。如前所述,底部结构的主体是两根完全相同的、水平平行的、有足够间距的长圆筒结构单元26(潜浮体);连接两个潜浮体,使之成为一个整体的是水平连接杆27、艏部水平阻尼板和艉部水平阻尼板28(参见图8和图10)。艏、艉水平阻尼板28分别位于两根长圆筒结构单元26的艏艉两端部,它的形式有单层板和双层板两种,分别如图10的实线和双点划线所示。双层板可进一步增加连体水附加质量。单阻尼层板28和水平连接杆27位于两长圆筒结构单元26(潜浮体)中心轴线所在的平面,双层阻尼板28分别位于两长圆筒结构单元26(潜浮体)外壁的顶部和底部的连线上。艏艉水平阻尼板28应具有足够的水平面积,以利在浮体运动时产生足够的阻尼和连体水附加质量。艏艉水平阻尼板28对于改善浮式基地垂荡和纵摇运动性能具有十分重要的意义。水平连接杆27作为和基地两舷立柱配套的结构构件,它的直径在保证强度的前提下,应尽可能小;它的数量由浮式基地的结构分析来确定。虽然存在艏艉水平阻尼板28和水平连接杆27,但是,两根长圆筒结构单元26之间水体的绝大部分仍然是上下通透的,这是改善本发明浮式基地水动力特性的一个重要关键点。两根长圆筒结构单元26的间距和艏艉水平阻尼板28的面积,由浮式基地的水动力和水池模型试验确定。此外,类似船形FPSO,在每个长圆筒结构单元26(潜浮体)两下角的径向45°方向还可以安装砒龙骨(图10没有示明),以增加阻尼。依靠定位系统,浮式基地被系泊在海床上(图7和10没有示明),浮式基地的两个潜浮体26的顶部位于波浪影响非常小的水深处;例如,在南中国海,这一深度约为40米。底部结构的固定压载物9应根据基地的浮性、浮态和稳性计算的结果来决定是否需要和如何设置。如前所述,本发明浮式基地固定压载物9可以直接置于海水压载舱7的底部,也可以置于外置底部固定压载舱34或悬挂式固定压载舱35内。
下部结构的立柱30是连接长圆筒结构单元26和基地上部设施结构的重要构件,共两排,每排的结构形式和布局相同(参见图7和图8)。立柱的结构形式为圆筒(管),材料为混凝土或钢材,水线面附近的立柱可为双层圆筒。立柱包括:1)主立柱30-1,直径最大,具有三项功能:结构支撑;圆筒可内安装各种管线、缆线、小型设备如水泵等,称之为竖井;为浮体提供足够的水线面面积,每个基地共4根。2)竖井立柱30-2,在保证功能的前提下直径应尽可能小,兼具结构支撑和竖井两项作用。3)支撑立柱30-3,直径最小,仅作为结构支撑。立柱30的总水线面面积大,浮式基地的垂荡刚度和可变载荷就大;同时,水线面面积对于浮体的耐波性和稳性均有很大的影响。为了既保证浮式基地对于可变载荷和稳性的要求,又降低由此对耐波性所产生的负面影响,在保证浮式基地的垂荡刚度和可变载荷的前提下,立柱30的总水线面面积应尽可能地小,4根主立柱30-1的水线面面积应该占总水线面面积的绝大部分,并尽最大可能加大它们的间距:将它们安装在长圆筒结构单元26的艏艉两端,即位于基础结构的四角(参见图7和图8)。竖井立柱30-2位于长圆筒结构单元内有管线接出的两个组合罐7的连接部位,或工艺舱29中间部位。支撑立柱30-3根据基地结构受力和计算分析结果的需要设立。如前所述,连接两个潜浮体的水平连接杆27应和立柱相配套,使得经过两立柱30的基地垂直横剖面形成一个矩形框架结构,框架的上部为基地上部结构31、两边为立柱30、两下角为圆筒(长圆筒结构单元26)、底部为水平连接杆27(参见图10)。水平连接杆27是上述框架结构的重要构件;如果没有水平连接杆27这一构件,在载荷的作用下,立柱30和上部结构31的连接部位将产生非常大的弯矩。
浮式基地的固定压载(舱)
浮式装置设置固定压载舱、获得压载配重的目的是:第一,平衡浮体多余的浮力,第二,降低浮体重心的位置。位于浮体主结构下方的固定压载舱可以作为主结构的一部分,也可以和浮体主结构分离、垂直下移,以利进一步降低浮体重心的位置。从降低浮体重心的角度,后者显然优于前者。
如前所述,本发明浮式基地的固定压载舱应和下部结构统一设计,并考虑两长圆筒结构单元26(潜浮体)的特点。本发明浮式基地固定压载物的重量沿长圆筒结构单元26的长度方向的分布可以是不均匀的,目的是尽最大的努力减少浮体沿长度方向(纵向)的浮力分布和重量分布的差异,以便降低由此产生的静水总纵弯矩。同时,固定压载物的重量沿浮体宽度方向(横向)必须对称。
浮式基地的外置底部固定压载舱34:在海水压载舱7的外底部两侧对称设置L形开口式固定压载舱9(参见图6),其底板23和海水压载舱7外底齐平或在其下方、单边宽度等于或略大于海水压载舱7的外半径、立壁板24垂直或略向外倾斜、板宽应根据所需压载物9堆积的高度确定,以利海上安装时加固定压载物,固定压载舱依靠沿长度方向适当距离均布的径向连接板25连接固定在海水压载舱7上。
悬挂式固定压载舱35(参见图7、9~11、15、16):目前,和浮体主结构分离的压载舱与主结构固定的方法有两种:一是建造阶段即固定,二是海上安装阶段滑移固定,均给建造或海上安装带来不便,并且压载舱和主结构的距离也将受到限制。本发明采用悬挂式固定压载舱35,包括:(1)压载舱舱体36,它可以是无顶顶板的容器结构(顶部敞开的容器),顶部敞开可十分方便地在海上向舱体36内加入固定压载9,如图11所示,舱内可以设置一些垂直分隔39,如图9所示,目的是保证舱内压载物9的稳定;舱体36也可以是封闭容器,如图15和16所示,但应带有压载物加入口和排水排气口,以便在海上能够将固定压载9加进舱体容器36内部。舱体容器36可采用混凝土或钢材建造。(2)一根或数根悬索37将固定压载舱舱体36悬挂在浮体主结构38的底部,悬索37可采用钢链、钢丝绳或高强度的聚合物绳索(POLYESTER ROPE)。根据主体结构38形式的不同,固定压载舱舱体36的水平投影可以是矩形、环形或圆形,但必须和浮体的结构形式相适应。固定压载舱舱体36和浮体主结构38可以一体建造、临时固定和拖航,也可以分别建造和拖航。浮体主结构38在海上初步安装就位后,连接悬挂绳索37、悬挂固定压载舱舱体36,最后向固定压载舱加灌固定压载物9,完成安装。申请人发明的“带水下储罐的浮式平台”,可采用前一建造安装方法(参见图15、16),本发明浮式基地则采用后一建造安装方法(参见图7、9~11)。本发明采用悬挂式固定压载舱最大的优点是,固定压载舱舱体36和主结构38之间的距离可根据需要随意确定,尤其适用于各种需要确保重心低于浮心的深水浮式结构,只要设计得当,可适用于任何一种海上浮式平台。本发明浮式基地的悬挂式固定压载舱35采用两个完全相同的长条形无盖的盒体(舱体容器36),它的横剖面如图11所示,盒体内部每隔一定的纵向距离安装横向垂直隔板39(参见图9);二盒体36的横向中心距和两个长圆筒结构单元26的横向中心距相同,两盒体底部每隔一定的纵向距离安装横向连接杆(板)40,使之成为一个整体,如图9所示。本发明浮式基地的舱体36还可以采用两端封闭的圆管(如图15、16所示)、异型(如矩形)管,取代长条形无盖的盒体,但需要加设压载物加入口和排水排气口41。本发明浮式基地可根据需要,采用纵向连续的悬挂式固定压载舱35,或纵向不连续的悬挂式固定压载舱35(如图9所示,仅在浮式基地的艏底部和艉底部悬挂固定压载)。无论哪种形式,均应根据降低静水总纵弯矩的要求,确定固定压载物9的重量沿长圆筒结构单元26的分布。当悬挂式固定压载舱35安装在浮式基地艏底部或艉底部时,应采用具有一定面积的连接板取代连接杆40,它同样可作为阻尼板,改善浮体的水动力性能(参见图9)。压载舱体36和连接杆(板)40可采用混凝土、钢材或玻璃钢建造。
浮式基地的总体性能
本发明浮式多功能基地兼具小水线面双体船和深吃水半潜式装置的特点,具有双潜体、小水线面、深吃水、浮心可根据需要,低于或高于重心。
浮性、浮态和稳性
本发明浮式基地的操作重量的绝大部分由底部结构的排水量提供支承,其余小部分由立柱的排水量提供支承;基地在静水中为正浮态。
本发明不带有悬挂式固定压载舱的浮式基地的重心高于浮心,稳性依靠立柱30的水线面面积所形成惯性矩。虽然本发明立柱30的水线面面积的值应尽可能地小,但由于立柱30间的距离比较大,本发明浮式基地的纵摇和横摇两个自由度的惯性矩都还是比较大。同时,本发明浮式基地应尽可能减小浮心至重心的距离,以利增大GM值,提高稳性,增大恢复力矩。
本发明带有悬挂式固定压载舱的浮式基地的浮心可以高于也可以不高于重心;高于重心时,稳性既依靠立柱30的水线面面积所形成惯性矩,也依靠不倒翁效应。
为了确保浮式基地的破舱稳性,本发明采取了三个措施。第一,立柱30在水线面附近可采用双层壁或加厚加强。第二,双潜体长圆筒结构单元26是对称的,如果某一个组合罐6的海水压载舱破舱,可相应调整其它舱的压载海水,以保证稳性和浮态。第三,基地上部结构31的下部采用全水密舱结构或对称的部分水密舱结构,作为确保破舱稳性的最后一道防线。
耐波性
计算机水动力分析的结果表明,本发明浮式基地在恶劣海况条件下6个自由度,尤其是垂荡、横摇和纵摇的运动性能良好。这是因为本发明浮体的总体构形决定的:本发明基础结构的吃水深;立柱30虽然穿过波浪作用影响较大的水深,但立柱30的数量有限,总水线面面积较小,立面的尺度较小,截面积最大的主立柱30-1位于潜浮体26艏艉两端,间距很大;大尺度的底部结构位于波浪作用影响很小的水深,底部结构的两个潜浮体26之间除艏、艉阻尼板28和水平连接板27之外,绝大部分是上下通透的,这一点十分重要。上述总体构形使得:浮体所受到的波浪力比较小;阻尼,特别是垂荡阻尼和纵摇阻尼矩均比较大;连体水的附加质量大。本发明浮式基地的固有周期均大于20秒,远离波浪有效波高所对应的周期(通常12~16秒)。如前所述,本发明浮式基地兼具小水线面双体船和深吃水半潜式平台的特点,浮体的底部结构的长度至少是宽度的3~4倍,它稳性所需的纵向复原力、以及垂荡和纵摇的运动性能均应特别重视,本发明浮体的总体构形对此均予以了特别的考虑。以上设计措施既大大降低了浮体所受到的环境载荷,又压制了浮体的运动、避免和降低了谐振,使得本发明浮式基地的耐波性优于任何一种现有的浮式平台。
浮式基地带有悬挂式固定压载舱35后,它的阻尼和连体水的附加质量均有所增加,有利于进一步改善浮式基地的水动力特性。
定位系统
根据环境条件和设施的功能要求,将浮式基地系泊在海床上的定位系统可分别采用:多点系泊或单点系泊装置,并可辅以动力定位系统。多点系泊的形式和半潜式平台的系泊形式相同,系泊腿的导缆孔位于基地四角的主立柱上,系泊腿可采用垂悬线、张紧索(TUAT MOORING LEG)或半张紧索(SEMI-TUATMOORING LEG)之中的任一种形式。由于本发明浮式基地的水动力优异,即使在恶劣的海况条件下,采用多点系泊,也能满足FPDSO、FLNG和FONG、以及采用干式井口的设计条件。单点系泊装置位于基地的艏部,可采用内转塔单点装载或外转塔单点装置,系泊腿同样可采用垂悬线、张紧索和半张紧索之中的任一种形式。采用具有风标效应的单点系泊,浮式基地的运动性能将更好,将更适合FGTL的设计条件,更有利于液体的外输作业;但由于单点的转塔的限制,安装钻井设备目前尚比较困难。
坐底固定式基地的基础结构及固定系统(参见图13和图14)
坐底固定式基地的底部结构包括:多根水平紧密排列的长圆筒结构单元26、将多根长圆筒结构单元连接而形成一个整体结构的横向框架32,形成竹排形结构。事实上,坐底固定式基地的底部结构与前面引述的发明专利“带海床储罐的坐底固定式平台”所采用的“卧式连排圆筒形多组储液单元组合罐”(“竹排”式组合罐)基本相同。所不同的是,长圆筒结构单元26可以由单组或多组储存不同储液组合罐串接而成。对于具有钻井功能的基地,底部结构和上方井口区相对应的部位设有上下贯通的矩形月池。
由于坐底固定式基地功能多,设施复杂,上部甲板面积比“带海床储罐的坐底固定式平台”大很多,立柱可以根据需要采用多排多根。立柱包括竖井立柱30-2和支撑立柱30-3,立柱的根部必须坐落在横向框架32上,在保证功能和结构要求的前提下,立柱30-2或30-3的水线面面积应尽可能地小,数量应尽可能地少,以减小波浪和海流和载荷。
本发明坐底固定式基地采用发明专利“带海床储罐的坐底固定式平台”的相关技术,不依靠重力而依靠水下桩或吸力锚33,使基地坐落和固定在海床上。有关本基地的重量控制、总体设计、建造和安装等内容,可参阅上述专利,不再赘述。需要注意的是,如果个别安装在横向框架32上的立柱30-2或30-3根部的内力过大,可以加设水下桩穿过底部结构打入海床,再将立柱安装在水下桩上,以免除立柱作用于底部结构的力。
上部结构
本发明海上基地上部结构31可以采用沿基地长度方向连续的、单层或多层甲板结构,也可以采用多个不连续的单层或多层模块结构,相邻模块间有通道连接。就海上安装的灵活性和生产操作的安全性而言,后者优于前者。如前所述,浮式基地上部结构31的下部采用全水密舱结构或部分水密舱结构。部分水密舱结构应位于浮式基地的艏艉两端,横向左右对称。无论何种形式,水密舱的设置均应能满足浮式基地破舱稳性的要求。在进行基地总体设计时,对于基地上部结构和设施操作重量的分布,对于基础结构浮力和湿重的分布,均应予以特别的注意,尽最大的可能减小浮力分布和操作重量分布的差异,尤其是浮式基地。由于本发明浮式基地水线面面积较小,沿长度方向分布的基地总纵弯矩和剪力,主要取决于湿重和浮力的分布差异所产生的静水弯矩和剪力。
海上基地建造和海上安装
本发明基地的基础结构除前述的LNG和LPG储罐(16和17)必须采用钢板制造,浮式基地底部结构的水平连接杆27如果拉应力过大,可能需要采用钢材建造,其余绝大部分的结构均推荐采用混凝土结构。发明专利“压载海水和储液置换方法、组合罐和液体水下储运装置”对于采用混凝土结构的优点已作了详细的说明和比较,不再赘述。基础结构采用钢材建造也并非绝对不可以,但必须要解决添加大量的固定压载物和防海水腐蚀的问题。如前所述,储存常温常压液体(如原油)组合罐的内罐(储液舱)还可以采用玻璃钢建造。采用钢材和玻璃钢建造基础结构的优点是重量轻,吃水不太深即可漂浮,由此可利用干船坞进行建造,建造场地选择余地大。
玻璃钢(管)具有耐高温和高压,耐腐蚀,材料重度小、结构重量轻,导热系数小、保温性能好,安装、运输方便,免维护许多优点。
本发明基地可采用多种方法,用现有成熟的技术和设施完成建造和海上安装。例如,混凝土基础结构可采用和混凝土重力平台建造方法相同的方法,在深度足够的土干坞建造底部结构,然后在遮蔽的深水场地完成后续的建造。钢制基础结构可利用干船坞建造。上部结构和设施可采用浮托法完成海上安装;等等,不再赘述。
浮式基地的悬挂式固定压载舱舱体容器36和基础结构的主体分开建造,可采用干坞建造,但可能需要安装临时漂浮物,以便漂浮出坞,或者采用驳船进坞,将固定压载舱舱体36悬挂在船底出坞。采用漂浮拖航或水下拖航进行海上运输。舱体容器36材料可采用混凝土、钢材或玻璃钢。悬挂式固定压载舱舱体容器36和基础结构的主体的海上连接的关键是,将水下悬挂式固定压载舱舱体容器36移位至基础结构的主体的下方,再将悬索37连接和固定在基础结构的主体上。多功能海上基地的优点
本发明海上基地的最大的优点是,解决了海上天然气和伴生气利用,如LNG、GTL、CNG、GTW所需的海上固定结构和浮式结构的难题。
本发明坐底固定式和浮式海上基地均具有发明专利“带海床储罐的坐底固定式平台”和发明专利“带水下储罐的浮式平台”的主要优点:如,系统和结构简单、建造工艺简单、建造工期短、安全环保、投资和操作维护费用低、抗腐蚀性能好、结构物的寿命长、浮式基地水动力性能好等;适用范围广,既可用于浅水,也可用于深水;既可用于海上大型、生产寿命长的油气田的开发,又可用于小型、生产寿命短的油气田,尤其是边际油气田的开发,一个油气田开发结束后,基地可以迁移至其它油气田重复使用。
最重要的是,本发明海上基地具有上述两个专利所不具备的特点和优点:单层甲板面积通常远大于FPSO,可同时安装钻井、石油天然气生产和处理、天然气和伴生气的液化、合成加工等多种设施和设备;解决了上述两个专利无法储存和外运LNG和LPG的问题。因此,本发明安装不同的设备设施后可形成下列浮式和坐底固定式石油天然气开发生产装置或其组合装置:
浮式钻井、生产储卸装置(FPDSO)
浮式原油天然气生产储卸装置(FONG)
浮式液化天然气生产储卸装置(FLNG)
浮式天然气合成液烃或甲醇生产储卸装置(FGTL)
坐底固定式原油天然气生产储卸装置(GONG)
坐底固定式液化天然气生产储卸装置(GLNG)
坐底固定式天然气合成液烃或甲醇生产储卸装置(GGTL)
应用实例1:浮式钻井、生产储卸装置(FPDSO)
本装置基础结构为混凝土结构,它的两个完全相同的长圆筒结构单元26,由多组储存原油的组合式储液罐6串接而成,每个组合罐的长度不大于50米,储液舱采用混凝土或玻璃钢建造。在长圆筒结构单元26中部可设置储存钻井完井所需的钻井液、完井液等的组合式储液罐。两个长圆筒结构单元26水平中心轴线的距离通常不小于长圆筒外径的1~2倍。本装置用于深水水域时,长圆筒结构单元26的顶部水深不小于40米。两个长圆筒结构单元26和使二者成为一个整体的水平连接杆27和艏、艉水平阻尼板28,共同组成了底部结构(参见图8)。在底部结构的艏、艉水平阻尼板28下方各连接了一个悬挂式固定压载舱35(参见图7和图9),舱体36采用混凝土或玻璃钢建造。连接底部结构和上部设施结构31的是立柱30,包括位于四角的主立柱30-1、中部的竖井立柱30-2和必要的支撑立柱30-3,其设置形式应根据水动力分析和结构分析的结果确定。和半潜式钻井船类似,本装置采用多点系泊,系泊导缆孔位于装置四角的主立柱30-1上。
本装置采用悬挂式固定压载舱35对于降低装置的重心、增加系统的阻尼和连体水附加质量、改善装置的稳性和耐波性,对于减小装置静水弯矩的中垂、改善结构受力,均具有重要的作用。
为了减少预埋于长圆筒结构单元和水平连接杆混凝土结构的海水和原油管线,减少安装于单元外部的管线,本装置用于原油储运的泵组模块可采用2~4套,通过切换阀门组,为两边各2~4个组合罐6配套。本装载采用密闭气压连通式海水和储液等质量流率自动置换流程系统,内部惰性气体压力低于组合罐外部海水静压力。基础结构的立柱30-1和30-2的竖井圆筒内安装各种管线、缆线、海水压载泵1、海水卸载泵2和原油卸载泵5等。由于组合罐6内部惰性气体具有一定的压力,可以保证卸载泵的吸入口所需的压头,海水卸载泵2所在的甲板位于水下的深度不需要很深,原油卸载泵5所在的甲板通常可位于水面以上
上部设施31的甲板结构采用艏艉两端和横向左右对称的部分水密舱结构。水密舱的设置应能满足浮式装置破舱稳性的要求。上部设施包括钻井设施、干式井口、油气生产设施、含油污水处理设施、公用设施和生活设施等,月池和钻机位于装置的中心部位。卸油采用穿梭油轮艉部串靠或旁靠的方式。
根据长圆筒结构单元26的直径和长度大小,本装置储存原油10~15万方以上,可用于西非和巴西等深水海域。
应用实例2:浮式原油天然气生产储卸装置(FONG)
本装置基础结构为混凝土结构,它的两个完全相同的长圆筒结构单元26,由多组储存原油、凝析油、LPG和LNG的组合式储液罐6串接而成,每个组合罐的长度不大于50米,LNG的储罐16的端部设置工艺舱。两个长圆筒结构单元26水平中心轴线的距离、顶部水深、连接两个长圆筒结构单元26水平连接杆27和艏艉水平阻尼板28、连接底部结构和上部设施结构31的立柱30的设置形式等,和应用实例1相似,不再重复,不同的是采用外置底部固定压载舱34而非悬挂式固定压载舱35,工艺舱的上部必须相应配置竖井立柱30-2。
本装置的原油和凝析油的储运采用密闭气压连通式压载海水和储液等质量流率自动置换流程系统,内部惰性气体压力低于组合罐外部海水静压力。LNG和LPG的储运采用气压式压载海水和LNG(LPG)等质量流率自动置换流程系统。LNG(LPG)卸载泵15的泵舱设置在竖井立柱30-2内部的水面以上的位置,装载泵14可设置在同一舱内或另行设置在上部设施的某一甲板上。上部设施31的甲板结构下部采用全水密舱结构,应能满足浮式装置破舱稳性的要求。上部设施31包括油气生产设施、油田伴生气处理设施、凝析油、LPG和LNG回收和生产装置、含油污水处理设施、公用设施和生活设施等。原油和凝析油卸油采用穿梭油轮艉部串靠的方式,LPG和LNG采用运输船旁靠的方式。
本装置采用位于艏部的外转塔单点系泊装置,并可辅以动力定位系统。
本装置水动力特性非常好,可用于北海、墨西哥湾和南中国海等海况恶劣的深水水域。
应用实例3:坐底固定式钻井和液化天然气生产储卸装置(GDLNG)
本装置的底部结构为竹排形结构,包括:多根水平紧密排列的长圆筒结构单元26、及将它们连接、形成一个整体结构的横向框架32。每根长圆筒结构单元26为一个LNG组合罐6,LNG储罐16两端均设置工艺舱。为了减少LNG组合罐6的数量,可将相邻两个或多个长圆筒结构单元的组合罐的海水压载舱7底部、和顶部、LNG储罐16底部和顶部分别从两端用管线连通,使它们合并为一个大的LNG组合罐,相应的工艺舱的数量也可减少,两端只保各留一个。
本装置的立柱30可以根据需要采用多排多根。其中,竖井立柱30-2位于工艺舱上部与之配套,数量和工艺舱数量相同,其余均为支撑立柱30-3。立柱的根部均坐落在横向框架32上。在保证功能和结构要求的前提下,立柱30-2或30-3的水线面面积应尽可能地小,数量应尽可能地少,以减小波浪和海流和载荷。
LNG的储运采用气压式压载海水和LNG等质量流率自动置换流程系统。LNG卸载泵15的泵舱设置在竖井立柱30-2内部的水面以上的位置,装载泵14可设置在同一舱内或另行设置在上部设施的某一甲板上。
本装置依周边的靠水下桩33,使之坐落和固定在海床上。由于本装置包含钻井设备和干式井口,因此底部结构和甲板井口区相对应的部位设有上下贯通的矩形月池。甲板井口区位于装置下风向的端部。上部设施31除钻井和井口采油树外,主要包括天然气干燥和脱酸处理、压缩设施、液化设施、LNG外输设施、公用设施和生活设施等。本装置既可采用纵向旁靠、也可采用横向旁靠LNG运输船的方式外卸LNG。
本装置适用于海况条件较好的浅水海域的天然气田的开发。

Claims (10)

1.一种多功能海上基地,具有海上油气田钻井、生产、气体利用和储运功能,并能满足GTL、LNG、CNG和GTW的生产要求,包括双潜体浮式海上基地(TWIN SUB OFFSHORE BASE——TSOB)、竹排坐底固定式海上基地(BAMBOO RAFT-GROUNDED BASE——BRGB)两种形式,为了保证在储液装载和卸载作业的过程中,基地的操作重量不变、重心在基地平面投影位置也不变,它们都采用压载海水和储液等质量流率置换流程和流程配套的组合罐储存储液。其技术特征在于:它们均由下部结构和上部结构两部分组成,形成一个整体结构;下部结构由一个底部结构和多个立柱构成,底部结构的主体为可储液的长圆筒结构单元、必要时配置的固定压载舱;上部结构内安装生产设施;立柱连接底部结构和上部结构。
2.一种压载海水和LNG或LPG等质量置换方法,用于LNG和LPG在海上的储存和运输,该方法流程系统的设备主要包括组合罐内部的海水压载舱及其顶部的天然气注入阀和天然气排出阀、LNG或LPG储罐(简称“储液罐”)及其顶部的天然气注入阀和天然气排出阀,海水压载泵、海水卸载泵、储液装载泵、储液卸载泵和相应的管路阀门、控制系统等。流程中压载海水分别由海水压载泵送往海水压载舱,由海水卸载泵从海水压载舱排出;储液(LNG或LPG)由储液装载泵送往储液罐,由储液卸载(外输)泵从储液罐外输;在储液装载或卸载的过程中,压载海水相应地以等质量流率自动同步卸载或压载。其技术特征在于:海水和储液卸载时,经注入阀注入的压缩天然气来自基地上部设施的生产流程,海水和储液卸载所需的能量既来自卸载泵,也来自上部生产流程连续提供的压缩天然气的压缩能;海水或储液压载或装载时,经排出阀排出的压缩天然气依靠压载泵或装载泵所提供的能量,返回基地上部生产流程。
3.一种悬挂式固定压载舱,可用于包括如权利要求1所述的浮式基地在内的各种海上浮式结构(浮体),它包括舱体容器和一根或数根将固定压载舱舱体容器悬挂固定在浮体主结构底部的悬索,共两部分组成,其技术特征在于:固定压载舱容器的安装、悬挂、固定和向容器内添加固定压载物,均属于浮体海上安装作业的一部分内容,均是在海上场地完成的。
4.如权利要求1所述的长圆筒结构单元,其技术特征在于:长圆筒结构单元由一组或多组卧式组合式储液罐串接而成;如果长圆筒结构单元内部有LNG组合罐,则该组合罐的一端或两端可以增设工艺舱,以便管线从组合罐的端部接出;工艺舱的圆筒形舱壁的材料、结构形式和其两端组合罐的海水压载舱相同。
5.如权利要求1所述的双潜体浮式海上基地,其技术特征在于:双潜体、小水线面、深吃水、浮心可根据需要,低于或高于重心。
6.如权利要求1所述的双潜体浮式海上基地下部结构的底部结构,它的主体为两根完全相同的、有足够间距和水平平行的长圆筒结构单元(潜浮体),潜浮体位于受波浪影响很小的水深处;连接两个潜浮体、使之成为一个整体的是艏、艉水平阻尼板和二者之间的数根水平连接杆。其技术特征在于:在两个潜浮体之间,虽然存在水平阻尼板和水平连接杆,但绝大部分必须是上下通透的;水平阻尼板的水平平面面积远大于数根水平连接杆的水平平面面积,水平连接杆在保证结构强度的条件下直径应尽可能地小。
7.如权利要求1所述的双潜体浮式海上基地下部结构的立柱,共两排、连接基地的两个长圆筒结构单元(潜浮体)和基地上部结构,每排的结构形式和布局完全相同;立柱中包括共4根位于基地四角的主立柱、以及数根竖井立柱和支撑立柱。其技术特征在于:在保证浮式基地对于可变载荷和稳性的要求的前提下,立柱的总水线面面积应尽可能地小;三种立柱中,主立柱的直径(水线面面积)最大,在保证竖井立柱内部管线和设施安装要求和强度要求、支撑立柱的强度要求的条件下,它们的直径(水线面面积)均应尽可能地小。
8.如权利要求1所述的双潜体浮式海上基地,其技术特征在于:它可以采用多点系泊的定位系统系泊于海床上,和半潜式钻井船类似,定位系统的系泊腿采用垂悬线、张紧索和半张紧索之中的任一种形式,系泊腿的导缆孔位于主立柱水面线附近。
9.如权利要求1所述的双潜体浮式海上基地,其技术特征在于:它可以采用单点系泊的定位系统,单点系泊装置位于基地的艏部,可采用内转塔单点装载或外转塔单点装置,系泊腿可采用垂悬线、张紧索和半张紧索之中的任一种形式。
10.如权利要求1所述的竹排坐底固定式海上基地,其技术特征在于:它的下部结构包括多个竖井立柱和支撑立柱、一个由多个长圆筒结构单元水平紧密排列而成的“竹排形”底部结构,底部结构采用水下桩或吸力锚,使基地坐落和固定在海床上。
CN200810196337A 2008-09-05 2008-09-05 多功能海上基地和压载海水与lng或lpg等质量置换方法 Pending CN101665143A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200810196337A CN101665143A (zh) 2008-09-05 2008-09-05 多功能海上基地和压载海水与lng或lpg等质量置换方法
PCT/CN2009/001008 WO2010025625A1 (zh) 2008-09-05 2009-09-07 压载海水与液化天然气或液化石油气的等质量流率置换流程和多功能海上基地
CN2009801341937A CN102143885B (zh) 2008-09-05 2009-09-07 压载海水与液化天然气或液化石油气的等质量流率置换流程系统和多功能海上基地
US13/041,224 US8678711B2 (en) 2008-09-05 2011-03-04 Multifunctional offshore base with liquid displacement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810196337A CN101665143A (zh) 2008-09-05 2008-09-05 多功能海上基地和压载海水与lng或lpg等质量置换方法

Publications (1)

Publication Number Publication Date
CN101665143A true CN101665143A (zh) 2010-03-10

Family

ID=41796729

Family Applications (2)

Application Number Title Priority Date Filing Date
CN200810196337A Pending CN101665143A (zh) 2008-09-05 2008-09-05 多功能海上基地和压载海水与lng或lpg等质量置换方法
CN2009801341937A Expired - Fee Related CN102143885B (zh) 2008-09-05 2009-09-07 压载海水与液化天然气或液化石油气的等质量流率置换流程系统和多功能海上基地

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2009801341937A Expired - Fee Related CN102143885B (zh) 2008-09-05 2009-09-07 压载海水与液化天然气或液化石油气的等质量流率置换流程系统和多功能海上基地

Country Status (3)

Country Link
US (1) US8678711B2 (zh)
CN (2) CN101665143A (zh)
WO (1) WO2010025625A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292546B2 (en) 2008-03-26 2012-10-23 Zhirong Wu Liquid storage, loading and offloading system
CN103434616A (zh) * 2013-03-28 2013-12-11 武汉武船海洋工程船舶设计有限公司 一种水下浮体及其安装方法
CN105151236A (zh) * 2015-09-28 2015-12-16 大连理工大学 浮墩及塔式潜浮移动运载平台装置及其工作方法
CN106021687A (zh) * 2016-05-13 2016-10-12 中国石油大学(华东) 一种海上模块化lng接收终端的平面布置方法
CN106043602A (zh) * 2016-06-14 2016-10-26 天津市海王星海上工程技术股份有限公司 一种单点靠泊装置
CN106770990A (zh) * 2017-03-21 2017-05-31 中国石油大学(华东) 一种用于深水油气集输管线中天然气水合物研究的实验装置
CN108059009A (zh) * 2016-11-08 2018-05-22 中集海洋工程研究院有限公司 用于船舶货物转运的转驳平台及其建造方法
CN108443699A (zh) * 2018-03-05 2018-08-24 荆门宏图特种飞行器制造有限公司 低温卧式储罐
CN109808839A (zh) * 2017-11-22 2019-05-28 中冶宝钢技术服务有限公司 船舶的装货方法
CN110182298A (zh) * 2014-10-28 2019-08-30 瑞士单浮筒系泊公司 用作浮式烃储存和/或处理设备的壳体的船壳
CN110644378A (zh) * 2019-09-04 2020-01-03 中国一冶集团有限公司 合拢段施工的配重卸载自动调节系统及其施工调节方法
CN111003108A (zh) * 2019-12-24 2020-04-14 安徽中能众诚新能源科技有限公司 一种适应大风力的水上浮体锚固系统
CN111537737A (zh) * 2020-05-18 2020-08-14 巴迪泰(广西)生物科技有限公司 降钙素原与c-反应蛋白联合检测试剂盒
CN112356972A (zh) * 2020-11-19 2021-02-12 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) 液化天然气运输船舶和液化天然气运输系统
CN115012437A (zh) * 2022-06-20 2022-09-06 东北电力大学 一种水田用格构式角钢输电塔装配式基础及其施工方法
CN115593556A (zh) * 2022-09-30 2023-01-13 广船国际有限公司(Cn) 一种风帆船

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079639B2 (en) * 2013-04-06 2015-07-14 Safe Marine Transfer, LLC Large volume subsea chemical storage and metering system
US9156609B2 (en) * 2013-04-06 2015-10-13 Safe Marine Transfer, LLC Large subsea package deployment methods and devices
CN104166760B (zh) * 2014-08-08 2017-03-29 武汉武船重型装备工程有限责任公司 船用lng储罐的应力的有限元分析计算方法
CN104743058B (zh) * 2015-03-24 2017-03-29 中国海洋石油总公司 张力腿平台上部组块浮托安装的方法
US20160348842A1 (en) 2015-05-28 2016-12-01 Sonicu, Llc Liquid container refill remote management system
US10745263B2 (en) 2015-05-28 2020-08-18 Sonicu, Llc Container fill level indication system using a machine learning algorithm
US9470365B1 (en) * 2015-07-13 2016-10-18 Chevron U.S.A. Inc. Apparatus, methods, and systems for storing and managing liquids in an offshore environment
CN105179930B (zh) * 2015-09-30 2017-09-19 赛鼎工程有限公司 液化天然气和压缩天然气合建站的液化天然气槽车卸车装置及应用
US11105526B1 (en) 2017-09-29 2021-08-31 Integrated Global Services, Inc. Safety shutdown systems and methods for LNG, crude oil refineries, petrochemical plants, and other facilities
CN108177750A (zh) * 2018-02-11 2018-06-19 烟台宏远氧业有限公司 深潜器及其可调压载系统
CN109508237A (zh) * 2018-12-18 2019-03-22 北京神州绿盟信息安全科技股份有限公司 一种长期演进lte协议栈数据交互的处理方法及装置
CN112069687B (zh) * 2020-09-09 2021-11-05 长沙理工大学 一种含混合模型的汽车乘员约束系统可靠性优化设计方法
CN112977740B (zh) * 2020-12-04 2022-04-01 招商局重工(江苏)有限公司 一种半潜式起重拆解平台及其控制方法
CN112800688B (zh) * 2021-04-06 2021-07-16 浙江中海达空间信息技术有限公司 基于监测数据时序图自学习的降雨型滑坡位移趋势预测方法
CN113868784A (zh) * 2021-09-01 2021-12-31 中国海洋石油集团有限公司 一种重力式常压干式舱座底稳性计算的方法
CN115303654B (zh) * 2022-06-27 2024-02-13 中国人民解放军海军勤务学院 水下油料存储油囊及装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA946629A (en) * 1970-07-02 1974-05-07 Gulf Oil Corporation Portable products terminal
US3727418A (en) * 1971-07-22 1973-04-17 Oil Co Sub-aqueous storage of liquefied gases
US3828565A (en) * 1973-02-16 1974-08-13 Chicago Bridge & Iron Co Offshore liquid storage facility
US3898846A (en) * 1974-02-19 1975-08-12 Chicago Bridge & Iron Co Offshore storage tank
NO744314L (zh) * 1974-11-29 1976-06-01 Sigurd Heien
GB1598551A (en) * 1977-03-15 1981-09-23 Hoeyer Ellefsen As Marine structure
US4209271A (en) * 1978-08-10 1980-06-24 Chicago Bridge & Iron Company Storage tank with liquid insulator for storing cryogenic fluids using water displacement
US4365576A (en) * 1980-07-21 1982-12-28 Cook, Stolowitz And Frame Offshore submarine storage facility for highly chilled liquified gases
JPS5817913A (ja) * 1981-07-24 1983-02-02 Shimizu Constr Co Ltd 洋上コンクリ−ト製石油プラツトフオ−ムの沈設工法
JPS58146614A (ja) * 1982-02-24 1983-09-01 Sumitomo Metal Ind Ltd 海洋構造物の構築方法
CN85102598B (zh) * 1985-04-01 1987-09-09 大连工学院 贮存高凝原油的油水置换工艺
JP3106575B2 (ja) * 1991-07-30 2000-11-06 石川島播磨重工業株式会社 深海用均圧装置
US6112528A (en) * 1998-12-18 2000-09-05 Exxonmobil Upstream Research Company Process for unloading pressurized liquefied natural gas from containers
NO20011870D0 (no) * 2001-04-11 2001-04-11 Olav Olsen As Dr Techn Lagersystem for olje og kondensat
WO2003070562A1 (en) * 2002-02-20 2003-08-28 Ps Comtek Ltd Floating semi-submersible oil production and storage arrangement
GB2410471B (en) * 2004-01-28 2007-04-11 Moss Maritime As An LNG-carrier with spherical tanks and double bottom
NO20044371D0 (no) * 2004-10-14 2004-10-14 Lund Mohr & Giaever Enger Mari Havneanlegg for flytende naturgass
CN2772957Y (zh) * 2005-02-23 2006-04-19 利策科技(上海)有限公司 改进的海上石油天然气生产平台
JP4600925B2 (ja) * 2005-03-29 2010-12-22 大阪瓦斯株式会社 Lng洋上貯蔵構造体
CN201043270Y (zh) * 2007-04-27 2008-04-02 中国海洋石油总公司 一种海上油气生产储油平台
CN101980917B (zh) * 2008-03-26 2014-03-12 吴植融 液体储存、装卸装置及以其为基础的海上钻井和生产设施

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8292546B2 (en) 2008-03-26 2012-10-23 Zhirong Wu Liquid storage, loading and offloading system
CN103434616A (zh) * 2013-03-28 2013-12-11 武汉武船海洋工程船舶设计有限公司 一种水下浮体及其安装方法
CN103434616B (zh) * 2013-03-28 2016-05-25 中船重工(武汉)船舶与海洋工程装备设计有限公司 一种水下浮体及其安装方法
CN110182298A (zh) * 2014-10-28 2019-08-30 瑞士单浮筒系泊公司 用作浮式烃储存和/或处理设备的壳体的船壳
CN110182298B (zh) * 2014-10-28 2021-08-27 瑞士单浮筒系泊公司 用作浮式烃储存和/或处理设备的壳体的船壳
CN105151236A (zh) * 2015-09-28 2015-12-16 大连理工大学 浮墩及塔式潜浮移动运载平台装置及其工作方法
CN105151236B (zh) * 2015-09-28 2017-07-21 大连理工大学 浮墩及塔式潜浮移动运载平台装置及其工作方法
CN106021687A (zh) * 2016-05-13 2016-10-12 中国石油大学(华东) 一种海上模块化lng接收终端的平面布置方法
CN106021687B (zh) * 2016-05-13 2019-02-22 中国石油大学(华东) 一种海上模块化lng接收终端的平面布置方法
CN106043602A (zh) * 2016-06-14 2016-10-26 天津市海王星海上工程技术股份有限公司 一种单点靠泊装置
CN108059009A (zh) * 2016-11-08 2018-05-22 中集海洋工程研究院有限公司 用于船舶货物转运的转驳平台及其建造方法
CN108059009B (zh) * 2016-11-08 2024-05-31 中集海洋工程研究院有限公司 用于船舶货物转运的转驳平台及其建造方法
CN106770990A (zh) * 2017-03-21 2017-05-31 中国石油大学(华东) 一种用于深水油气集输管线中天然气水合物研究的实验装置
CN106770990B (zh) * 2017-03-21 2023-04-11 中国石油大学(华东) 一种用于深水油气集输管线中天然气水合物研究的实验装置
CN109808839A (zh) * 2017-11-22 2019-05-28 中冶宝钢技术服务有限公司 船舶的装货方法
CN108443699A (zh) * 2018-03-05 2018-08-24 荆门宏图特种飞行器制造有限公司 低温卧式储罐
CN108443699B (zh) * 2018-03-05 2024-09-24 荆门宏图特种飞行器制造有限公司 低温卧式储罐
CN110644378A (zh) * 2019-09-04 2020-01-03 中国一冶集团有限公司 合拢段施工的配重卸载自动调节系统及其施工调节方法
CN111003108A (zh) * 2019-12-24 2020-04-14 安徽中能众诚新能源科技有限公司 一种适应大风力的水上浮体锚固系统
CN111537737A (zh) * 2020-05-18 2020-08-14 巴迪泰(广西)生物科技有限公司 降钙素原与c-反应蛋白联合检测试剂盒
CN111537737B (zh) * 2020-05-18 2023-05-12 巴迪泰(广西)生物科技有限公司 降钙素原与c-反应蛋白联合检测试剂盒
CN112356972A (zh) * 2020-11-19 2021-02-12 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) 液化天然气运输船舶和液化天然气运输系统
CN115012437A (zh) * 2022-06-20 2022-09-06 东北电力大学 一种水田用格构式角钢输电塔装配式基础及其施工方法
CN115593556A (zh) * 2022-09-30 2023-01-13 广船国际有限公司(Cn) 一种风帆船

Also Published As

Publication number Publication date
WO2010025625A1 (zh) 2010-03-11
CN102143885B (zh) 2013-09-18
US8678711B2 (en) 2014-03-25
CN102143885A (zh) 2011-08-03
US20110146803A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
CN102143885B (zh) 压载海水与液化天然气或液化石油气的等质量流率置换流程系统和多功能海上基地
AU2009229435B2 (en) Liquid storing and offloading device and drilling and production installations on the sea based thereon
CN104321247B (zh) 一种环翼式浮式平台
CN1292190C (zh) 加温和储存冷流体的方法和设备
AU2014251176B2 (en) Systems and methods for floating dockside liquefaction of natural gas
CN101544270A (zh) 带水下储罐的浮式平台
CN101544272A (zh) 液体水下储存、装载和外卸装置
BRPI0905870B1 (pt) Sistema e método para processamento, armazenamento e transporte de gás natural a partir da fonte de fornecimento para o mercado
CN101545254A (zh) 带海床储罐的坐底固定式平台
JP2023535158A (ja) 蓄電又は発電するための流動密度流体置換
WO2021219739A1 (en) Floating offshore hydrocarbon production support facility
US20080041068A1 (en) Liquefied natural gas re-gasification and storage unit
AU2012207059B2 (en) Linked LNG production facility
AU2008219347B2 (en) Linked LNG production facility
AU2007233572B2 (en) LNG production facility
CN101666080A (zh) 一种可搬迁的混凝土人工岛
AU2008219346B2 (en) Sheltered LNG production facility
Faber et al. Floating LNG solutions from the drawing board to reality
AU2012207058A1 (en) Sheltered LNG production facility
CN1004477B (zh) 半潜式抗台风多用途海洋平台
Dugger et al. Technical and economic feasibility of ocean thermal energy conversion
CN221794848U (zh) 天然气生产平台
Kaiser FPSO global fleet analysis & key correlations
Brown et al. Conversion of a Redundant Drillship to a Floating OTEC Platform
CN119998197A (zh) 用于生产氢气和氨的浮式生产储油卸油船

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100310