WO2014153851A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2014153851A1
WO2014153851A1 PCT/CN2013/077251 CN2013077251W WO2014153851A1 WO 2014153851 A1 WO2014153851 A1 WO 2014153851A1 CN 2013077251 W CN2013077251 W CN 2013077251W WO 2014153851 A1 WO2014153851 A1 WO 2014153851A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
refractive
light
display device
layer
Prior art date
Application number
PCT/CN2013/077251
Other languages
English (en)
French (fr)
Inventor
李凡
黄小妹
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/235,270 priority Critical patent/US9310640B2/en
Publication of WO2014153851A1 publication Critical patent/WO2014153851A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • G02B27/028Viewing or reading apparatus characterised by the supporting structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side

Definitions

  • Embodiments of the invention relate to a display device. Background technique
  • a liquid crystal display device is currently the most commonly used flat panel display, and a thin film transistor liquid crystal display device (TFT-LCD) is a mainstream product in a liquid crystal display device.
  • TFT-LCD thin film transistor liquid crystal display device
  • the liquid crystal display panel is an important component in the liquid crystal display device.
  • the liquid crystal display panel is formed by pairing the array substrate and the color filter substrate with a box process, and a liquid crystal layer is filled between the array substrate and the color filter substrate.
  • the liquid crystal display panel has a display area and a peripheral area located around the periphery of the display area.
  • the surrounding area is located at the edge of the LCD panel.
  • the lead of the liquid crystal display panel usually needs to be disposed in the peripheral region, so that it is necessary to form a bezel outside the peripheral region.
  • the surrounding area cannot display the pattern but occupy a certain area, thus affecting the visual effect of the entire liquid crystal display device. Summary of the invention
  • Embodiments of the present invention provide a display device that improves the visual effect of the display device.
  • An embodiment of the present invention provides a display device, including: a display panel including a display area and a peripheral area located around the display area; an optical module disposed on the light emitting side of the display panel, the optical module is configured to Optionally, the light emitted by the display panel is toward an edge of the display panel, the optical module includes: a refractive layer, the refractive index of the refractive layer is greater than a refractive index of the air; The light emitted by the display panel is refracted to deflect the light toward the edge of the display panel.
  • the optical module further includes: an air layer, the air layer sandwiching each of the refractive layers, the air layer having a refractive index equal to a refractive index of the air; the air layer being used to display the air Light emitted by the panel is transmitted to the refractive layer.
  • the optical module includes a plurality of refractive layers, and the plurality of refractive layers are sequentially disposed on the light emitting surface of the display panel in the width direction of the display panel and the length direction of the display panel; Each of the refractive layers is specifically configured to offset light to a distance of the display panel by a set distance.
  • the set distance A . d - ⁇ ( ⁇ - ⁇ ), where d is each of the refractions
  • the thickness of the layer, "for the refractive index of each of the refractive layers, A is the angle of incidence of the light in each of the refractive layers, and B is the angle of refraction of the light in each of the refractive layers.
  • the set angle is the angle of incidence of the light in each of the refractive layers.
  • the cross-sectional shape of the refractive layer is a diamond shape.
  • the plurality of refractive layers have the same refractive index.
  • the plurality of refractive layers are symmetrically disposed about a central axis of the display panel.
  • the thickness of the refractive layer is closer to the peripheral region from the central axis in the plurality of refractive layers.
  • the display panel comprises: a liquid crystal display panel, an organic electroluminescence display panel, and an electronic paper.
  • FIG. 1 is a cross-sectional structural view of a display device in accordance with an embodiment of the present invention
  • FIG. 2 is a light path diagram of light emitted from a display panel of the display device of FIG. 1;
  • FIG. 3 is a schematic structural view of a unit including a refractive layer of the optical module of FIG. 1;
  • FIG. 4 shows a cross-sectional view of an optical module including a plurality of cells shown in FIG. 3, in accordance with an embodiment of the present invention.
  • FIG. 1 is a cross-sectional structural view of a display device according to an embodiment of the present invention
  • FIG. 2 is a light path diagram of light emitted from a display panel of the display device of FIG. 1.
  • the display device includes: a display panel 1 and an optical module 2 disposed on a light exiting side of the display panel 1.
  • the display panel 1 includes a display area and a peripheral area located around the display area, and is used by the optical module 2
  • the light emitted from the display panel 1 is shifted toward the edge of the display panel 1 so that part of the light is shifted to and from the peripheral area.
  • the display panel 1 of FIG. 1 and FIG. 2 is shown as a liquid crystal display panel, but the display panel according to the embodiment of the invention may also be an organic light-emitting diode (OLED) display.
  • OLED organic light-emitting diode
  • a display panel capable of realizing a display function such as a panel, a flexible display panel, or an electronic paper, as long as the optical module 2 is disposed on the light-emitting side of these other types of display panels as in FIGS. 1 and 2.
  • the liquid crystal display panel is taken as an example.
  • the display panel 1 may include: a color film substrate 3 and an array substrate 4 disposed opposite to each other; a liquid crystal layer 5 filled between the color filter substrate 3 and the array substrate 4; and a sealant 6, The edges of the color filter substrate 3 and the array substrate 4 are formed. Further, polarizing plates (not shown) are respectively disposed outside the color filter substrate 3 and the array substrate 4.
  • the optical module 2 is disposed on the light-emitting side of the color filter substrate 3.
  • the optical module 2 may be directly disposed on the color filter substrate 3 or on the polarizing plate located on the light-emitting side of the color filter substrate 3.
  • the optical module 2 may include a refractive layer 7, and the refractive index of the refractive layer 7 is greater than the refractive index of air.
  • the refractive layer 7 is for refracting the light emitted from the display panel 1 to deflect the light toward the edge of the display panel 1. Thereby some of the light can be deflected to the surrounding area.
  • the optical module 2 may further comprise an air layer 8 sandwiched by two air layers 8.
  • the refractive index of the air layer 8 is equal to the refractive index of the air.
  • the air layer 8 is for transmitting light emitted from the display panel 1 to the refractive layer 7.
  • the process of shifting the light emitted from the display panel toward the edge of the display panel by one unit of the optical module shown in FIG. 3 is: the light emitted by the display panel 1 enters the air layer 8, due to the refraction of the air layer 8.
  • the rate is equal to the refractive index of the air, so that the light does not refract in the air layer 8, and the air layer 8 transmits the light directly to the refractive layer 7, and the light is incident from the light incident surface of the refractive layer 7 at the incident angle A, in the refractive layer 7.
  • Refraction occurs and is incident on the light exit surface of the refractive layer 7 at a refraction angle B, during which the light is shifted by a set distance h; the light is refracted to the air layer 8 after being refracted again at the light exit surface of the refractive layer 7.
  • the air layer 8 directly transmits light.
  • the light emitted from the display panel is directly incident on the light incident surface of the refractive layer 7 at the incident angle A, and after being refracted, the light is emitted from the refractive layer 7 at an offset distance.
  • the optical module shown in Fig. 1 includes a plurality of units of the optical module shown in Fig. 3 which are continuously disposed on the light exit surface of the display panel.
  • FIG. 4 illustrates a cross-sectional view of an optical module including a plurality of cells shown in FIG. 3, in accordance with an embodiment of the present invention.
  • the number of the refractive layers 7 is plural and is sequentially disposed in one direction, that is, the width direction (for example, the X direction) on the light exit surface of the display panel 1, and of course, is displayed.
  • the refractive layer 7 on the light exit surface of the panel is also sequentially disposed in the same direction in the other direction, that is, in the longitudinal direction (for example, the y direction), wherein the light incident surface of the refractive layer 7 and the light exit surface of the display panel 1 are
  • the refracting layer 7 is exemplified in FIG. 4 , but in practice, the number of the refracting layers 7 can be set as many as needed, which is not limited in the embodiment of the present invention.
  • the shape of the cross section of the refractive layer 7 is a rhombic shape, but in reality, the cross-sectional shape of the refractive layer 7 may be other shapes as long as the refractive layer 7 can shift the light incident from the light incident surface thereof It can be emitted at a certain distance.
  • the incident angle of the light entering the refractive layer 7 is equal to the set angle between the light incident surface of the refractive layer 7 and the light exit surface of the display panel 1.
  • the refractive layer 7 is specifically used to shift the light to the edge of the display panel 1 by a set distance.
  • Fig. 3 depicts the structure of the optical module 2 by taking a unit including a refractive layer 7 as an example.
  • the set distance h is the set distance of the light offset.
  • the set distance of the light offset is determined by the incident angle A, the angle of refraction A, the refractive index n of the refractive layer 7, and the thickness d of the refractive layer 7.
  • L A is the width of the entire optical module.
  • each aliquot is a unit of the optical module in FIG. 3, and the width of each unit is L z , a unit includes a refractive layer 7 .
  • the refractive indices of the plurality of refractive layers 7 are the same.
  • the refractive indices n of the plurality of refractive layers 7 may also be different, which may be determined according to actual needs. However, as long as the refractive layer 7 can shift the light emitted from the display panel by a set distance.
  • a plurality of refractive layers 7 are symmetrically arranged with respect to the central axis of the display panel 1.
  • the light incident surface of each of the plurality of refractive layers 7 located on the left side of the central axis of the display panel 1 and the light of the display panel 1 appear from the outgoing direction of the light from the display panel.
  • the angle between the exit faces in the clockwise direction is an angle greater than 0° and less than 90°, and the light incident face of each of the plurality of refractive layers 7 located on the right side of the central axis of the display panel 1 and the display panel 1
  • the angle between the light exit faces in the counterclockwise direction is an angle greater than 0° and less than 90°, such that the light emitted from the display panel is deflected toward the edge of the display panel after being refracted by the refractive layer.
  • the refractive layer 7 in the optical module 2 will be described in detail below by way of a specific example.
  • the number of the refractive layers 7 is 20, and the 20 refractive layers 7 are symmetrically arranged with the central axis of the display panel 1.
  • the refractive index of the refractive layer 7; ⁇ is the same.
  • the incident angle is the same as the set angle, and since the light emitted from the display panel 1 is parallel, the incident angle of each of the refractive layers 7 is the same.
  • the data of the refractive layer in Table 1 below can be obtained, due to the 20 refractive layers 7
  • the center axis of the display panel 1 is symmetrically arranged, so only the data of the ten refractive layers 7 are listed in Table 1,
  • the refractive index n of the refractive layer 7 is 1.8, and the incident angle A and the set angle A are both 45. .
  • the set distance is set. h is determined by the thickness d of the refractive layer 7, and the set distance h is proportional to the thickness of the refractive layer 7.
  • the data of the ten refractive layers 7 are listed in Table 1, and the thickness of the refractive layer 7 varies between 0.25 mm and 2.5 mm, and the distance h is changed between 0.1 mm and 1 mm, and the thickness of the optical module 2 is changed accordingly.
  • the variation is between 0.707 mm and 7.07 mm, that is, the larger the thickness of the refractive layer 7, the larger the set distance of the light shift, and the larger the thickness D3 of the optical module 2.
  • the refractive layer 7 is thicker from the central axis toward the peripheral region, so that the set distance of the light offset from the peripheral region is larger, so that more light can be shifted to the peripheral region. Allows light to better cover the surrounding area.
  • the number of the refractive layers 7 is 20. In practical applications, the number of refractive layers 7 can also be set according to the production needs. The greater the number of refractive layers 7, the better the visual effect of the display device.
  • the optical module 2 can be attached to the display panel 1.
  • the optical module 2 may be made of a polymer material such as: plastic.
  • the optical module 2 may alternatively be made of glass.
  • the display panel 1 may also be an organic electroluminescent display panel, a flexible display panel, or an electronic paper.
  • organic electroluminescent display panel a display panel
  • the positional relationship of the optical modules and the settings of the optical modules are the same as the liquid crystal display panel, so for the sake of cleaning, it will not be described in detail.
  • the light emitted by the display panel when the light emitted by the display panel is offset to the peripheral area, the light is emitted from the peripheral area from the perspective of the user, so that the surrounding area can also be displayed.
  • the display area of the display device is enlarged.
  • the display device provided by the embodiment of the present invention includes a display panel and an optical module disposed on the light exiting side of the display panel, and the optical module is configured to offset the light emitted by the display panel toward the edge of the display panel to offset part of the light.
  • the display area of the display device is enlarged, and the visual effect of the display device is improved.
  • the display device realizes the display effect of the narrow frame.
  • the outdoor large-screen display device does not require a large thickness of the optical module, and a thick optical module can be used. At this time, the light can be offset by a large set distance, so that the large screen display device can display the pattern at the splicing place. Thereby, the assembled large-screen display device realizes seamless docking.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

显示装置,包括显示面板(1)和光学模块(2)。显示面板(1)包括显示区域和位于所述显示区域周边的周边区域。光学模块(2)设置于显示面板(1)的出光侧。光学模块(2)用于将显示面板(1)发出的光线向显示面板(1)的边缘方向偏移,以使部分光线偏移至周边区域并从所述周边区域射出。

Description

显示装置 技术领域
本发明的实施例涉及一种显示装置。 背景技术
液晶显示装置是目前最常用的平板显示器, 其中薄膜晶体管液晶显示装 置( Thin Film Transistor Liquid Crystal Display, 筒称 TFT-LCD )是液晶显示 装置中的主流产品。
液晶显示面板是液晶显示装置中的重要部件。 液晶显示面板是通过对盒 工艺将阵列基板和彩膜基板对盒而形成, 并且在阵列基板和彩膜基板之间填 充有液晶层。
液晶显示面板具有显示区域和位于显示区域周边的周边区域。 周边区域 位于液晶显示面板的边缘。液晶显示面板的引线通常需要设置在周边区域内, 因此需要在周边区域外部形成有边框。 周边区域无法显示图案却又占据一定 的面积, 因此会影响整个液晶显示装置的视觉效果。 发明内容
本发明的实施例提供一种显示装置, 改善了显示装置的视觉效果。
本发明的实施例提供了一种显示装置, 包括: 显示面板, 包括显示区域 和位于所述显示区域周边的周边区域; 光学模块, 设置于所述显示面板出光 侧, 所述光学模块用于将所述显示面板发出的光线向所述显示面板的边缘方 可选地, 所述光学模块包括: 折射层, 所述折射层的折射率大于空气的 折射率; 所述折射层用于对所述显示面板发出的光线进行折射, 使所述光线 向所述显示面板的边缘方向偏移。
可选地, 所述光学模块还包括: 空气层, 所述空气层夹置每个所述折射 层, 所述空气层的折射率等于空气的折射率; 所述空气层用于将所述显示面 板发出的光线透射至所述折射层。 可选地, 所述光学模块包括多个折射层, 所述多个折射层在所述显示面 板的光出射面上沿所述显示面板的宽度方向和所述显示面板的长度方向依次 连续设置; 每个所述折射层具体用于将光线向所述显示面板的边缘偏移设定 距离。 可选地, 所述设定距离 A = . d - ήη(Α - Β) , 其中 d为每个所述折射
层的厚度, 《为每个所述折射层的折射率, A为光线在每个所述折射层中的 入射角, B为光线在每个所述折射层中的折射角所述入射角等于所述设定角 度。
可选地, 所述折射层的截面形状为菱形。
可选地, 所述多个折射层的折射率相同。
可选地, 所述多个折射层关于所述显示面板的中心轴对称设置。
可选地, 所述多个折射层中从所述中心轴开始越靠近周边区域所述折射 层的厚度越大。
可选地, 所述显示面板包括: 液晶显示面板、 有机电致发光显示面板、 电子纸。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 筒单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为根据本发明实施例的一种显示装置的截面结构图;
图 2为从图 1的显示装置的显示面板出射的光的光路图;
图 3为图 1中光学模块的包括一个折射层的一个单元的结构示意图; 以 及
图 4示出了根据本发明实施例的包括多个图 3所示的单元的光学模块的 截面图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
为使本领域的技术人员更好地理解本发明的技术方案, 下面结合附图对 本发明实施例提供的显示装置进行详细描述。
图 1为根据本发明实施例的一种显示装置的截面结构图, 图 2为从图 1 的显示装置的显示面板出射的光的光路图。 如图 1和图 2所示, 该显示装置 包括: 显示面板 1和设置于显示面板 1的出光侧的光学模块 2, 显示面板 1 包括显示区域和位于显示区域周边的周边区域, 光学模块 2用于将显示面板 1发出的光线向显示面板 1的边缘方向偏移, 以使部分光线偏移至周边区域 并从所述周边区域射出。
示例性地, 图 1和图 2中的显示面板 1示出为液晶显示面板, 但根据本 发明实施例的显示面板也可以为有机电致发光 ( Organic Light-Emitting Diode, 筒称: OLED )显示面板、 柔性显示面板或者电子纸等能实现显示功 能的显示面板, 只要如同图 1和图 2—样在这些其他类型的显示面板的出光 侧设置光学模块 2即可。
下面以液晶显示面板为例, 该显示面板 1可包括: 相对设置的彩膜基板 3和阵列基板 4; 液晶层 5, 填充在彩膜基板 3和阵列基板 4之间; 以及封框 胶 6, 形成在彩膜基板 3和阵列基板 4的边缘。 进一步地, 在彩膜基板 3和 阵列基板 4的外侧还分别设置有偏振片 (图中未示出) 。 本实施例中, 光学 模块 2设置于彩膜基板 3的出光侧, 示例性地, 光学模块 2可直接设置于彩 膜基板 3上或者设置于位于彩膜基板 3出光侧的偏振片上。
图 3为图 1中光学模块的一个单元的结构示意图, 如图 3所示, 光学模 块 2可包括折射层 7, 折射层 7的折射率大于空气的折射率。 折射层 7用于 对显示面板 1发出的光线进行折射, 使光线向显示面板 1的边缘方向偏移。 从而使得部分光线能够偏移至周边区域。 可选地, 光学模块 2还可以包括空 气层 8, 折射层 7被两个空气层 8夹置。 空气层 8的折射率等于空气的折射 率。 空气层 8用于将显示面板 1发出的光线透射至折射层 7。 示例性地, 图 3所示的光学模块的一个单元将从显示面板出射的光线向 显示面板的边缘方向偏移的过程为: 显示面板 1发出的光线进入空气层 8 , 由于空气层 8的折射率等于空气的折射率, 因此光线在空气层 8内不发生折 射, 空气层 8将光线直接透射至折射层 7 , 光线以入射角 A从折射层 7的光 入射面入射, 在折射层 7内发生折射, 并以折射角 B入射至折射层 7的光出 射面, 在此过程中光线偏移设定距离 h; 光线在折射层 7的光出射面再次发 生折射后, 折射至空气层 8中, 空气层 8直接将光线透射出。 当然, 如果没 有空气层 8, 则从显示面板出射的光线直接以入射角 A入射到折射层 7的光 入射面, 经过折射后, 光线以偏移距离从折射层 7出射。
在本发明的实施例中, 图 1中示出的光学模块包括在显示面板的光出射 面上连续设置的多个图 3所示的光学模块的单元。
示例性地, 图 4示出了根据本发明实施例的包括多个图 3所示的单元的 光学模块的截面图。 如图 4所示, 本实施例中, 折射层 7的数量为多个且在 显示面板 1的光出射面上沿一方向, 即, 宽度方向 (例如, X方向)依次连 续设置, 当然在显示面板的光出射面上折射层 7也沿另一方向, 即, 长度方 向 (例如, y方向) 以相同的方式依次连续设置, 其中折射层 7的光入射面 与显示面板 1的光出射面之间具备设定角度 图 4中以 8个折射层 7为例 进行了描述, 但实际中, 折射层 7的数量可以根据需要而设置为多个, 本发 明的实施例对此不做限定。
示例性, 在本实施例中, 折射层 7的截面的形状为菱形, 但是实际上, 折射层 7的截面形状可以为其他形状, 只要折射层 7能将从其光入射面入射 的光线偏移一定距离出射即可。
在本发明的实施例中, 从图 3和图 4可以看出, 光线进入折射层 7的入 射角等于折射层 7的光入射面与显示面板 1的光出射面之间的设定角度。 折 射层 7具体用于将光线向显示面板 1的边缘偏移设定距离 。 图 3以包括一 个折射层 7的一个单元为例对光学模块 2的结构进行描述。 如图 3所示, 由三角形的几何关系可以得出设定距离 /ι = ^~ η04 - β) , cosfi
其中, d为折射层 7的厚度, "为折射层 7的折射率, A为光线在折射层 7 中的入射角, β为光线在折射层 7中的折射角。 再将入射角和折射角的公式 代入上述设定距离的公式,可得出设定距离 h
Figure imgf000007_0001
由上述设定距离的公式可以看出, 光线偏移的设定距离由入射角 A、 折射角 A、 折射层 7的折射率 n和折射层 7的厚度 d确定。
进一步地, 如图 3所示, 在已知设定角度^、 设定距离 d、 光学模块的 宽度 ^和折射层的数量 N的前提下, 根据三角形的几何关系, 可计算出光学 模块 2的厚度/ ) - ta A , 可得到 )3 = )2 + )1 = 光学
Figure imgf000007_0002
模块的宽度。 LA为整个光学模块的宽度, 当将整个光学模块按照折射层的数 量 N分成 N等分时, 每个等分即为图 3中的光学模块的一个单元, 而每个单 元的宽度即为 Lz , —个单元包括一个折射层 7。
本实施例中, 折射层 7的数量为多个时, 备选地, 多个折射层 7的折射 率《相同, 当然, 多个折射层 7的折射率 n也可以不同, 这可以视实际需要 而定, 只要折射层 7能将显示面板出射的光线偏移设定距离即可。
备选地, 如图 2和图 4所示, 多个折射层 7以显示面板 1的中心轴对称 设置。
示例性地, 如图 4所示, 从来自显示面板的光线的出射方向看上去, 位 于显示面板 1的中心轴左侧的多个折射层 7的每个的光入射面与显示面板 1 的光出射面之间沿顺时针方向的夹角为大于 0°且小于 90°的角, 而位于显示 面板 1的中心轴右侧的多个折射层 7的每个的光入射面与显示面板 1的光出 射面之间沿逆时针方向的夹角为大于 0°且小于 90°的角, 这样, 从显示面板 出射的光线经过折射层的折射后便会向显示面板的边缘偏移。
下面通过一个具体的实例对光学模块 2中的折射层 7进行详细说明。 在 此实例中, 折射层 7的数量为 20个, 20个折射层 7以显示面板 1的中心轴 对称设置。 折射层 7的折射率; ^相同。 入射角与设定角度相同, 且由于显示 面板 1发出的光线是平行的, 因此每个折射层 7的入射角是相同的。 根据上 述设定距离的公式可以得出下表 1中折射层的各项数据, 由于 20个折射层 7 以显示面板 1的中心轴对称设置,因此表 1中仅列举出 10个折射层 7的数据,
:¾口下表 1所示:
表 1
Figure imgf000008_0001
如上表 1所示, 折射层 7的折射率 n均为 1.8 , 入射角 A和设定角度 A 均为 45。 。根据上述设定距离的公式可知,在折射率 n和入射角 A确定的情 况下(折射角 B可根据折射率 η和入射角 Α由入射角和折射角的公式计算得 出) , 设定距离 h由折射层 7的厚度 d决定, 且设定距离 h与折射层 7的厚 度 呈正比。 上表 1中列举了 10个折射层 7的数据, 折射层 7的厚度 在 0.25mm至 2.5mm之间变化, 而相应地设定距离 h在 0.1mm至 1mm之间变 化, 光学模块 2的厚度 在 0.707mm至 7.07mm之间变化, 也就是说, 折 射层 7的厚度 越大, 光线偏移的设定距离 越大, 并且光学模块 2的厚度 D3也越大。结合图 2所示,折射层 7从中心轴开始越靠近周边区域厚度越大, 这样越靠近周边区域光线偏移的设定距离 就越大, 从而使得更多的光线能 够偏移至周边区域, 使得光线能够更好的覆盖周边区域。
上述实例中,折射层 7的数量为 20个。在实际应用中,还可以根据生产 需要设置折射层 7的数量。折射层 7的数量越多,显示装置的视觉效果越好。
本实施例中, 光学模块 2可粘贴于显示面板 1上。 备选地, 光学模块 2 可由高分子材料制成, 例如: 塑料。 在实际应用中, 可选地, 光学模块 2还 可由玻璃制成。
本发明的实施例中, 可选地, 显示面板 1还可以为有机电致发光显示面 板、 柔性显示面板或者电子纸, 对于这些类型的显示面板, 其于光学模块的 位置关系以及光学模块的设置等与液晶显示面板相同, 因此为了筒洁, 便不 再具体描述。
本发明的实施例中, 当显示面板发出的光线偏移至周边区域时, 从用户 的角度来看, 光线是从周边区域发出的, 这样看起来周边区域也可以显示图 案, 从而扩大了显示装置的显示区域。
本发明的实施例提供的显示装置包括显示面板和设置于所述显示面板出 光侧的光学模块, 光学模块用于将显示面板发出的光线向显示面板的边缘方 向偏移, 以使部分光线偏移至周边区域, 从而扩大了显示装置的显示区域, 改善了显示装置的视觉效果。 采用本发明实施例提供的技术方案, 由于光线 可以偏移至周边区域, 因此使得显示装置实现了窄边框的显示效果。 户外拼 装式的大屏幕显示装置对于光学模块的厚度要求不高, 其可采用较厚的光学 模块, 此时光线可偏移较大的设定距离, 使得大屏幕显示装置拼接处可显示 图案, 从而使得拼装式的大屏幕显示装置实现无缝对接。
可以理解的是, 以上实施方式仅仅是为了说明本发明的原理而采用的示 例性实施方式, 然而本发明并不局限于此。 对于本领域内的普通技术人员而 言, 在不脱离本发明的精神和实质的情况下, 可以做出各种变型和改进, 这 些变型和改进也视为本发明的保护范围。

Claims

权利要求书
1、 一种显示装置, 包括:
显示面板, 包括显示区域和位于所述显示区域周边的周边区域; 光学模块, 设置于所述显示面板出光侧, 所述光学模块用于将所述显示 面板发出的光线向所述显示面板的边缘方向偏移, 以使部分所述光线偏移至 所述周边区域并从所述周边区域射出。
2、 根据权利要求 1所述的显示装置, 其中所述光学模块包括: 折射层, 所述折射层的折射率大于空气的折射率;
所述折射层用于对所述显示面板发出的光线进行折射, 使所述光线向所 述显示面板的边缘方向偏移。
3、根据权利要求 1所述的显示装置,其中所述光学模块包括多个折射层, 所述多个折射层在所述显示面板的光出射面上沿所述显示面板的宽度方向和 所述显示面板的长度方向依次连续设置。
4、根据权利要求 2或 3所述的显示装置, 其中所述光学模块还包括: 空 气层, 所述空气层夹置每个所述折射层, 所述空气层的折射率等于空气的折 射率;
所述空气层用于将所述显示面板发出的光线透射至所述折射层。
5、根据权利要求 3所述的显示装置,其中所述多个折射层的每个的折射 率不等且都大于空气的折射率。
6、根据权利要求 3所述的显示装置,其中所述多个折射层的每个的折射 率相等且大于空气的折射率。
7、根据权利要求 2-6之一所述的显示装置, 其中每个所述折射层的光入 射面与所述显示面板的光出射面之间具备一设定角度;
每个所述折射层具体用于将光线向所述显示面板的边缘偏移设定距离。
8、 根据权利要求 7 所述的显示装置, 其中所述设定距离 h = - sm(A - B) , 其中 d为每个所述折射层的厚度, w为每个所述折
Figure imgf000010_0001
射层的折射率, A为光线在每个所述折射层中的入射角, β为光线在每个所 述折射层中的折射角所述入射角等于所述设定角度。
9、根据权利要求 2-8之一所述的显示装置, 其中所述折射层的截面形状 为菱形。
10、 根据权利要求 3所述的显示装置, 其中所述多个折射层关于所述显 示面板的中心轴对称设置。
11、 根据权利要求 3所述的显示装置, 其中从来自所述显示面板的光线 的出射方向看上去, 位于所述显示面板的中心轴左侧的所述多个折射层的每
0。且小于 90。的角, 而位于所述显示面板的中心轴右侧的所述多个折射层的
0°且小于 90°的角。
12、根据权利要求 3-11所述的显示装置, 其中所述多个折射层中从所述 中心轴开始越靠近周边区域所述折射层的厚度越大。
13、根据权利要求 1-12之一所述的显示装置, 其中所述显示面板为有机 电致发光显示面板或电子纸。
14、根据权利要求 1-12之一所述的显示装置, 其中所述显示面板为液晶 显示面板, 所述液晶显示面板包括:
彩膜基板, 其出光侧设置有上偏光片;
阵列基板, 与所述彩膜基板对置, 且其入光侧设置有下偏光片; 液晶材料, 夹置在所述彩膜基板与所述阵列基板之间,
其中所述光学模块设置在所述上偏光片的出光侧。
PCT/CN2013/077251 2013-03-29 2013-06-14 显示装置 WO2014153851A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/235,270 US9310640B2 (en) 2013-03-29 2013-06-14 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310109373.8 2013-03-29
CN201310109373.8A CN103217831B (zh) 2013-03-29 2013-03-29 显示装置

Publications (1)

Publication Number Publication Date
WO2014153851A1 true WO2014153851A1 (zh) 2014-10-02

Family

ID=48815753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077251 WO2014153851A1 (zh) 2013-03-29 2013-06-14 显示装置

Country Status (3)

Country Link
US (1) US9310640B2 (zh)
CN (1) CN103217831B (zh)
WO (1) WO2014153851A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103473997B (zh) * 2013-09-13 2015-06-03 北京京东方光电科技有限公司 显示面板及其制造方法和终端设备
CN104157216B (zh) * 2014-07-21 2017-01-25 京东方科技集团股份有限公司 一种拼接屏的驱动方法
CN104658428B (zh) * 2015-02-12 2017-07-28 苏州佳世达电通有限公司 具有窄边框视觉效果的显示器
KR102347244B1 (ko) * 2015-09-25 2022-01-05 엘지디스플레이 주식회사 광섬유를 포함하는 판상 광학부재 및 그를 포함하는 다중 패널 표시장치
KR102691131B1 (ko) * 2016-06-28 2024-08-01 엘지디스플레이 주식회사 광섬유를 포함하는 광학부재 및 이를 포함하는 다중 패널 표시장치
CN107766027B (zh) * 2017-09-28 2020-09-22 北京磐石广告有限公司 终端显示控制方法、终端及计算机可读存储介质
CN108919546B (zh) * 2018-07-09 2022-08-16 京东方科技集团股份有限公司 一种显示面板及其控制方法、显示装置
CN113260906A (zh) * 2019-01-02 2021-08-13 深圳市柔宇科技股份有限公司 显示设备
CN109658823B (zh) * 2019-02-27 2021-07-30 上海天马微电子有限公司 显示面板和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447930A (zh) * 2000-09-19 2003-10-08 金时焕 复合显示器件
US20050206807A1 (en) * 2001-07-12 2005-09-22 Matthies Dennis L Providing optical elements over emissive displays
CN101965604A (zh) * 2008-03-31 2011-02-02 夏普株式会社 显示装置
CN102257549A (zh) * 2008-12-18 2011-11-23 夏普株式会社 显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973844A (en) * 1996-01-26 1999-10-26 Proxemics Lenslet array systems and methods
GB0223883D0 (en) * 2002-10-15 2002-11-20 Seamless Display Ltd Visual display screen arrangement
US7845825B2 (en) * 2009-12-02 2010-12-07 Abl Ip Holding Llc Light fixture using near UV solid state device and remote semiconductor nanophosphors to produce white light
EP2400479A4 (en) * 2009-03-18 2013-07-03 Sharp Kk DISPLAY APPARATUS AND METHOD FOR MANUFACTURING DISPLAY APPARATUS
US8305294B2 (en) * 2009-09-08 2012-11-06 Global Oled Technology Llc Tiled display with overlapping flexible substrates
CN103493120B (zh) * 2011-04-28 2016-03-09 夏普株式会社 显示装置的制造方法、显示装置以及多显示器系统
CN103515410B (zh) * 2012-06-29 2016-08-03 乐金显示有限公司 有机发光显示装置及其制造方法
CN102981307B (zh) * 2012-12-13 2015-12-02 京东方科技集团股份有限公司 显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1447930A (zh) * 2000-09-19 2003-10-08 金时焕 复合显示器件
US20050206807A1 (en) * 2001-07-12 2005-09-22 Matthies Dennis L Providing optical elements over emissive displays
CN101965604A (zh) * 2008-03-31 2011-02-02 夏普株式会社 显示装置
CN102257549A (zh) * 2008-12-18 2011-11-23 夏普株式会社 显示装置

Also Published As

Publication number Publication date
US9310640B2 (en) 2016-04-12
CN103217831A (zh) 2013-07-24
CN103217831B (zh) 2015-12-09
US20140333865A1 (en) 2014-11-13

Similar Documents

Publication Publication Date Title
WO2014153851A1 (zh) 显示装置
TWI536050B (zh) 光學膜片及具有此光學膜片之顯示裝置
US10627664B2 (en) Display panel, display device and display method
US20180224583A1 (en) Optical structure, method for manufacturing optical structure, display substrate and display device
US8558970B2 (en) Display unit
WO2016107084A1 (zh) 光学模组和反射型显示装置
WO2016131210A1 (zh) 反射式柔性液晶显示器
JP2007219526A5 (zh)
WO2018171170A1 (zh) 三维显示装置
WO2017118224A1 (zh) 视角定向光源装置及显示装置
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
US20150241711A1 (en) 3d display apparatus
WO2020087634A1 (zh) 光学复合膜层、显示面板和显示装置
US20160091726A1 (en) Polarization control unit and 2d and 3d image display device having the same
CN103412441A (zh) 阵列基板、彩膜基板、显示装置及取向层的制作方法
WO2020062591A1 (zh) 偏光板及显示装置
JPWO2015190164A1 (ja) 液晶表示装置
US20170184919A1 (en) Backlight Module and Display Device
CN106526956A (zh) 一种显示装置
CN109031501A (zh) 偏光结构、显示面板及显示装置
US8964318B2 (en) Prism sheet and display device
WO2020062578A1 (zh) 偏光结构及显示装置
CN112445022A (zh) 一种液晶显示面板及显示装置
WO2020087630A1 (zh) 光学复合膜、显示面板和显示装置
US20160306081A1 (en) Prism film, method for manufacturing the prism film, and liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14235270

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13880348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.02.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13880348

Country of ref document: EP

Kind code of ref document: A1