WO2014144592A2 - Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing - Google Patents

Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing Download PDF

Info

Publication number
WO2014144592A2
WO2014144592A2 PCT/US2014/029068 US2014029068W WO2014144592A2 WO 2014144592 A2 WO2014144592 A2 WO 2014144592A2 US 2014029068 W US2014029068 W US 2014029068W WO 2014144592 A2 WO2014144592 A2 WO 2014144592A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
target
dmso
sequence
grna
Prior art date
Application number
PCT/US2014/029068
Other languages
French (fr)
Other versions
WO2014144592A3 (en
Inventor
J. Keith Joung
Jeffry D. Sander
Yanfang FU
Morgan Maeder
Original Assignee
The General Hospital Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51537665&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014144592(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US14/775,930 priority Critical patent/US10119133B2/en
Priority to BR112015023489-5A priority patent/BR112015023489B1/en
Priority to CN201480026133.4A priority patent/CN105408497B/en
Priority to KR1020237038728A priority patent/KR20230157540A/en
Priority to IL289396A priority patent/IL289396B2/en
Priority to EP20172393.9A priority patent/EP3744842A1/en
Priority to JP2016502976A priority patent/JP6980380B2/en
Application filed by The General Hospital Corporation filed Critical The General Hospital Corporation
Priority to CA2906724A priority patent/CA2906724A1/en
Priority to EP21197664.2A priority patent/EP3988667A1/en
Priority to CN201910766412.9A priority patent/CN110540991B/en
Priority to KR1020217002428A priority patent/KR102405549B1/en
Priority to KR1020157029171A priority patent/KR102210323B1/en
Priority to KR1020227018265A priority patent/KR102602047B1/en
Priority to EP14763916.5A priority patent/EP2971125B2/en
Priority to AU2014228981A priority patent/AU2014228981B2/en
Priority to CA2935032A priority patent/CA2935032C/en
Publication of WO2014144592A2 publication Critical patent/WO2014144592A2/en
Priority to EP21191144.1A priority patent/EP3985124A1/en
Priority to EP14875819.6A priority patent/EP3090044B1/en
Priority to KR1020167020111A priority patent/KR20160102056A/en
Priority to PCT/US2014/056416 priority patent/WO2015099850A1/en
Priority to AU2014370416A priority patent/AU2014370416B2/en
Priority to CN201480076396.6A priority patent/CN106103706B/en
Priority to US15/107,550 priority patent/US10526589B2/en
Priority to JP2016542968A priority patent/JP6721508B2/en
Priority to CN202110920229.7A priority patent/CN113684205A/en
Publication of WO2014144592A3 publication Critical patent/WO2014144592A3/en
Priority to ZA2015/06814A priority patent/ZA201506814B/en
Priority to IL241671A priority patent/IL241671B/en
Priority to JP2019218086A priority patent/JP7005580B2/en
Priority to US16/735,146 priority patent/US20200165587A1/en
Priority to AU2020201465A priority patent/AU2020201465B2/en
Priority to AU2021203309A priority patent/AU2021203309B2/en
Priority to AU2022209254A priority patent/AU2022209254A1/en
Priority to AU2023258349A priority patent/AU2023258349A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1031Mutagenizing nucleic acids mutagenesis by gene assembly, e.g. assembly by oligonucleotide extension PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1003Transferases (2.) transferring one-carbon groups (2.1)
    • C12N9/1007Methyltransferases (general) (2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/21Endodeoxyribonucleases producing 5'-phosphomonoesters (3.1.21)
    • C12Y301/21004Type II site-specific deoxyribonuclease (3.1.21.4)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/00033Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/00033Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/80Vectors containing sites for inducing double-stranded breaks, e.g. meganuclease restriction sites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/11Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors (1.14.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y201/00Transferases transferring one-carbon groups (2.1)
    • C12Y201/01Methyltransferases (2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)

Definitions

  • Tru-gRNAs to Increase Specificity for RNA-Guided Genome Editing
  • RNA-guided genome editing e.g., editing using CRISPR/Cas9 systems, using truncated guide RNAs (tru-gRNAs).
  • CRISPR clustered, regularly interspaced, short palindromic repeats
  • Cas CRISPR-associated systems
  • the Cas9 nuclease from S. pyogenes can be guided via base pair complementarity between the first 20 nucleotides of an engineered guide RNA (gRNA) and the complementary strand of a target genomic DNA sequence of interest that lies next to a protospacer adjacent motif (PAM), e.g., a PAM matching the sequence NGG or NAG (Shen et al, Cell Res (2013); Dicarlo et al, Nucleic Acids Res (2013); Jiang et al, Nat Biotechnol 31, 233-239 (2013); Jinek et al, Elife 2, e00471 (2013); Hwang et al, Nat Biotechnol 31, 227-229 (2013); Cong et al, Science 339, 819-823 (2013); Mali et al, Science 339, 823-826 (2013c); Cho et al, Nat Biotechnol 31, 230-232 (2013); Jinek et al, Science 337,
  • PAM protospacer
  • CRISPR-Cas genome editing uses a guide RNA, which includes both a complementarity region (which binds the target DNA by base-pairing) and a Cas9- binding region, to direct a Cas9 nuclease to a target DNA (see Figure 1).
  • the nuclease can tolerate a number of mismatches (up to five, as shown herein) in the complementarity region and still cleave; it is hard to predict the effects of any given single or combination of mismatches on activity. Taken together, these nucleases can show significant off-target effects but it can be challenging to predict these sites.
  • Described herein are methods for increasing the specificity of genome editing using the CRISPR/Cas system, e.g., using Cas9 or Cas9-based fusion proteins.
  • truncated guide RNAs truncated guide RNAs (tru-gRNAs) that include a shortened target complementarity region (i.e., less than 20 nts, e.g., 17-19 or 17-18 nts of target complementarity, e.g., 17, 18 or 19 nts of target complementarity), and methods of using the same.
  • shortened target complementarity region i.e., less than 20 nts, e.g., 17-19 or 17-18 nts of target complementarity, e.g., 17, 18 or 19 nts of target complementarity
  • 17-18 or 17-19 includes 17, 18, or 19 nucleotides.
  • the invention provides a guide RNA molecule (e.g., a single guide RNA or a crRNA) having a target complementarity region of 17-18 or 17-19 nucleotides, e.g., the target complementarity region consists of 17-18 or 17-19 nucleotides, e.g., the target complementarity region consists of 17-18 or 17-19 nucleotides of consecutive target complementarity.
  • the guide RNA includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence.
  • the target complementarity region consists of 17-18 nucleotides (of target complementarity). In some embodiments, the complementarity region is complementary to 17 consecutive nucleotides of the complementary strand of a selected target sequence. In some embodiments, the complementarity region is complementary to 18 consecutive nucleotides of the complementary strand of a selected target sequence.
  • the invention provides a ribonucleic acid consisting of the sequence:
  • Xn-is or X17-19 is a sequence (of 17- 18 or 17- 19 nucleotides) complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5 Of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or .
  • PAM protospacer adjacent motif
  • NNGG (see, for example, the configuration in Figure 1)
  • X N is any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9.
  • X 17-18 or Xi 7 _i9 identical to a sequence that naturally occurs adjacent to the rest of the RNA.
  • the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUU, UUUUUU, UUUUUU, UUUUUU, UUUUUUU, UUUUUUUUUUUUUU) at the 3' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
  • the RNA includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5 ' end of the RNA molecule that is not complementary to the target sequence.
  • the target complementarity region consists of 17-18 nucleotides (of target complementarity). In some embodiments, the complementarity region is complementary to 17 consecutive nucleotides of the complementary strand of a selected target sequence. In some embodiments, the complementarity region is complementary to 18 consecutive target complementarity region.
  • the invention provides DNA molecules encoding the ribonucleic acids described herein, and host cells harboring or expressing the ribonucleic acids or vectors.
  • the invention provides methods for increasing specificity of RNA-guided genome editing in a cell, the method comprising contacting the cell with a guide RNA that includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence, as described herein.
  • the invention provides methods for inducing a single or double-stranded break in a target region of a double-stranded DNA molecule, e.g., in a genomic sequence in a cell.
  • the methods include expressing in or introducing into the cell: a Cas9 nuclease or nickase; and a guide RNA that includes a sequence consisting of 17 or 18 or 19 nucleotides that are complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5 Of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, e.g., a ribonucleic acid as described herein.
  • PAM protospacer adjacent motif
  • dCas9-HFD dCas9-heterologous functional domain fusion protein
  • the guide RNA is (i) a single guide RNA that includes a complementarity region consisting of 17- 18 or 17-19 nucleotides that are
  • a crRNA that includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are
  • the target complementarity region consists of 17-18 nucleotides (of target complementarity). In some embodiments, the complementarity region is complementary to 17 consecutive nucleotides of the complementary strand of a selected target sequence. In some embodiments, the complementarity region is complementary to 18 consecutive target complementarity region.
  • the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUU, UUUUUU, UUUUUU, UUUUUU, UUUUUUUUUUUUUUUUUU) at the 3' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
  • the RNA includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5' end of the RNA molecule that is not complementary to the target sequence.
  • one or more of the nucleotides of the RNA is modified, e.g., locked (2'-0-4'-C methylene bridge), is 5'-methylcytidine, is 2'-0-methyl- pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain, e.g., one or more of the nucleotides within or outside the target complementarity region Xi 7 _i8 or X 17- 1 9.
  • some or all of the tracrRNA or crRNA e.g., within or outside the Xi 7 _i8 or Xi 7 _i9 target complementarity region, comprises deoxyribonucleotides (e.g., is all or partially DNA, e.g. DNA/RNA hybrids).
  • the invention provides methods for modifying a target region of a double-stranded DNA molecule, e.g., in a genomic sequence in a cell.
  • the methods include expressing in or introducing into the cell:
  • dCas9-HFD dCas9-heterologous functional domain fusion protein
  • RNA that includes a sequence consisting of 17-18 or 17-19 nucleotides that are complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5 Of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, e.g., a ribonucleic acid as described herein.
  • PAM protospacer adjacent motif
  • the RNA includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5 ' end of the RNA molecule that is not complementary to the target sequence.
  • the invention provides methods for modifying, e.g., introducing a sequence specific break into, a target region of a double-stranded DNA molecule, e.g., in a genomic sequence in a cell.
  • the methods include expressing in or introducing into the cell: a Cas9 nuclease or nickase, or a dCas9-heterologous functional domain fusion protein (dCas9-HFD);
  • a tracrRNA e.g., comprising or consisting of the sequence
  • a crRNA that includes a sequence consisting of 17-18 or 17-19 nucleotides that are complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5 ' of a protospacer adjacent motif (PAM), e.g., NGG, _,
  • PAM protospacer adjacent motif
  • the crRNA has the sequence:
  • the crRNA is (Xn-is or Xn_
  • the tracrRNA is GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUA UC A ACUUG AAAA AGUGGC AC C G AGUCGGUGC (SEQ ID NO: 8); the cRNA is (Xn-is or Xi 7 -i 9 )GUUUUAGAGCUA (SEQ ID NO:2404) and the tracrRNA is UAGC AAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGC A CCGAGUCGGUGC (SEQ ID NO:2405); or the cRNA is (Xn-is or Xn-19)
  • the RNA (e.g., tracrRNA or crRNA) includes one or more U, e.g., 2 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUU, UUUUUU, UUUUUU, UUUUUU, UUUUUUUU, UUUUUUUU) at the 3' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
  • U e.g., tracrRNA or crRNA
  • U e.g., 2 to 8 or more Us
  • the RNA (e.g., tracrRNA or crRNA) includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5' end of the RNA molecule that is not complementary to the target sequence.
  • one or more of the nucleotides of the crRNA or tracrRNA is modified, e.g., locked (2'-0-4'-C methylene bridge), is 5'- methylcytidine, is 2'-0-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain, e.g., one or more of the nucleotides within or outside the sequence X 17-18 or X17-19.
  • some or all of the tracrRNA or crRNA e.g., within or outside the X 17-18 or X17-19 target complementarity region, comprises deoxyribonucleotides (e.g., is all or partially DNA, e.g. DNA/RNA hybrids).
  • the dCas9-heterologous functional domain fusion protein comprises a HFD that modifies gene expression, histones, or DNA, e.g., transcriptional activation domain, transcriptional repressors (e.g., silencers such as Heterochromatin Protein 1 (HP1), e.g., HPla or ⁇ ), enzymes that modify 0
  • DNA e.g., DNA methyltransferase (DNMT) or TET proteins, e.g., TET1
  • enzymes that modify histone subunit e.g., histone acetyltransferases (HAT), histone deacetylases (HDAC), or histone demethylases.
  • HAT histone acetyltransferases
  • HDAC histone deacetylases
  • the heterologous functional domain is a transcriptional activation domain, e.g., a VP64 or NF- ⁇ p65 transcriptional activation domain; an enzyme that catalyzes DNA demethylation, e.g., a TET protein family member or the catalytic domain from one of these family members; or histone modification (e.g., LSD1, histone methyltransferase, HDACs, or HATs) or a transcription silencing domain, e.g., from Heterochromatin Protein 1 (HP1), e.g., HP la or ⁇ ; or a biological tether, e.g., MS2, CRISPR/Cas Subtype Ypest protein 4 (Csy4) or lambda N protein.
  • a transcriptional activation domain e.g., a VP64 or NF- ⁇ p65 transcriptional activation domain
  • an enzyme that catalyzes DNA demethylation e.g., a TET protein family member or
  • the methods described herein result in an indel mutation or sequence alteration in the selected target genomic sequence.
  • the cell is a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell.
  • Figure 1 Schematic illustrating a gRNA/Cas9 nuclease complex bound to its target DNA site. Scissors indicate approximate cleavage points of the Cas9 nuclease on the genomic DNA target site. Note the numbering of nucleotides on the guide RNA proceeds in an inverse fashion from 5' to 3'.
  • Figure 2 A Schematic illustrating a rationale for truncating the 5'
  • Thick grey lines target DNA site
  • thin dark grey line structure gRNA
  • black lines show base pairing (or lack thereof) between gRNA and target DNA site.
  • FIG. 2B Schematic overview of the EGFP disruption assay. Repair of targeted Cas9-mediated double-stranded breaks in a single integrated EGFP-PEST reporter gene by error-prone NHEJ-mediated repair leads to frame-shift mutations that disrupt the coding sequence and associated loss of fluorescence in cells.
  • FIGS 2C-F Activities of RNA-guided nucleases (RGNs) harboring single guide RNAs (gRNAs) bearing (C) single mismatches, (D) adjacent double
  • mismatches (E) variably spaced double mismatches, and (F) increasing numbers of adjacent mismatches assayed on three different target sites in the EGFP reporter gene sequence. Mean activities of replicates are shown, normalized to the activity of a perfectly matched single gRNA. Error bars indicate standard errors of the mean.
  • EGFP Site 2 GATGCCGTTCTTCTGCTTGTCGG (SEQ ID NO: 10) EGFP Site 3 GGTGGTGC AGATGAACTTC AGGG (SEQ ID NO : 11 )
  • FIG. 2G Mismatches at the 5' end of the gRNA make CRISPR/Cas more sensitive more 3' mismatches.
  • the gRNAs Watson-Crick base pair between the RNA&DNA with the exception of positions indicated with an "m" which are mismatched using the Watson-Crick transversion (i.e., EGFP Site#2 M18-19 is mismatched by changing the gRNA to its Watson-Crick partner at positions 18 & 19.
  • positions near the 5 ' of the gRNA are generally very well tolerated, matches in these positions are important for nuclease activity when other residues are mismatched. When all four positions are mismatched, nuclease activity is no longer detectable.
  • Figure 2H Efficiency of Cas9 nuclease activities directed by gR As bearing variable length complementarity regions ranging from 15 to 25 nts in a human cell- based U20S EGFP disruption assay. Expression of a gRNA from the U6 promoter requires the presence of a 5 ' G and therefore it was only possible to evaluate gRNAs harboring certain lengths of complementarity to the target DNA site (15, 17, 19, 20, 21, 23, and 25 nts).
  • Figure 3C DNA sequences of indel mutations induced by RGNs using a tru- gRNA or a matched full-length gRNA targeted to the EMXl site.
  • the portion of the target DNA site that interacts with the gRNA complementarity region is highlighted in grey with the first base of the PAM sequence shown in lowercase. Deletions are indicated by dashes highlighted in grey and insertions by italicized letters highlighted in grey. The net number of bases deleted or inserted and the number of times each sequence was isolated are shown to the right.
  • FIG. 3E U20S.EGFP cells were transfected with variable amounts of full- length gRNA expression plasmids (top) or tru-gRNA expression plasmids (bottom) together with a fixed amount of Cas9 expression plasmid and then assayed for percentage of cells with decreased EGFP expression. Mean values from duplicate experiments are shown with standard errors of the mean. Note that the data obtained . .
  • Figure 3F U20S.EGFP cells were transfected with variable amount of Cas9 expression plasmid together with fixed amounts of full-length gRNA expression plasmids (top) or tru-gRNA expression plasmids (bottom) for each target (amounts determined for each tru-gRNA from the experiments of Figure 3E). Mean values from duplicate experiments are shown with standard errors of the mean. Note that the data obtained with tru-gRNA matches closely with data from experiments performed with full-length gRNA expression plasmids instead of tru-gRNA plasmids for these three EGFP target sites. The results of these titrations determined the concentrations of plasmids used in the EGFP disruption assays performed in Examples 1 and 2.
  • Figure 4A Schematic illustrating locations of VEGFA sites 1 and 4 targeted by gRNAs for paired double nicks. Target sites for the full-length gRNAs are underlined with the first base in the PAM sequence shown in lowercase. Location of the BamHI restriction site inserted by HDR with a ssODN donor is shown.
  • Figure 4B A tru-gRNA can be used with a paired nickase strategy to efficiently induce indel mutations. Substitution of a full-length gRNA for VEGFA site 1 with a tru-gRNA does not reduce the efficiency of indel mutations observed with a paired full-length gRNA for VEGFA site 4 and Cas9-D10A nickases. Control gRNA used is one lacking a complementarity region.
  • Figure 4C A tru-gRNA can be used with a paired nickase strategy to efficiently induce precise HDR/ssODN-mediated sequence alterations. Substitution of a full-length gRNA for VEGFA site 1 with a tru-gRNA does not reduce the efficiency of indel mutations observed with a paired full-length gRNA for VEGFA site 4 and Cas9-D10A nickases with an ssODN donor template. Control gRNA used is one lacking a complementarity region.
  • Figure 5 A Activities of RGNs targeted to three sites in EGFP using full- length (top) or tru-gRNAs (bottom) with single mismatches at each position (except at the 5 '-most base which must remain a G for efficient expression from the U6 promoter).
  • Grey boxes in the grid below represent positions of the Watson-Crick transversion mismatches.
  • Empty gRNA control used is a gRNA lacking a
  • Figure 5B Activities of RGNs targeted to three sites in EGFP using full- length (top) or tru-gRNAs (bottom) with adjacent double mismatches at each position (except at the 5 '-most base which must remain a G for efficient expression from the U6 promoter). Data presented as in 5A.
  • Figure 6A Absolute frequencies of on- and off-target indel mutations induced by RGNs targeted to three different endogenous human gene sites as measured by deep sequencing. Indel frequencies are shown for the three target sites from cells in which targeted RGNs with a full-length gRNA, a tru-gRNA, or a control gRNA lacking a complementarity region were expressed. Absolute counts of indel mutations used to make these graphs can be found in Table 3B.
  • Figure 6B Fold-improvements in off-target site specificities of three tru- RGNs. Values shown represent the ratio of on/off-target activities of tru-RGNs to on/off-target activities of standard RGNs for the off-target sites shown, calculated using the data from (A) and Table 3B. For the sites marked with an asterisk (*), no indels were observed with the tru-RGN and therefore the values shown represent conservative statistical estimates for the fold-improvements in specificities for these off-target sites (see Results and Experimental Procedures).
  • Figure 6C top: Comparison of the on-target and an off-target site identified by T7EI assay for the tru-RGN targeted to VEGFA site 1 (more were identified by deep sequencing). Note that the full-length gRNA is mismatched to the two nucleotides at the 5 ' end of the target site and that these are the two nucleotides not present in the tru-gRNA target site. Mismatches in the off-target site relative to the on-target are highlighted in bold underlined text. Mismatches between the gRNAs and the off- target site are shown with X's.
  • FIG. 6C bottom: Indel mutation frequencies induced in the off-target site by RGNs bearing full-length or truncated gRNAs. Indel mutation frequencies were determined by T7EI assay. Note that the off-target site in this figure is one that we had examined previously for indel mutations induced by the standard RGN targeted to VEGFA site 1 and designated as site OT1-30 in that earlier study (Example 1 and Fu et al, Nat Biotechnol. 31(9):822-6 (2013)). It is likely that we did not identify off- target mutations at this site in our previous experiments because the frequency of 1 indel mutations appears to be at the reliable detection limit of the T7EI assay (2 - 5%).
  • Figures 7A-D DNA sequences of indel mutations induced by RGNs using tru-gPvNAs or matched full-length gR As targeted to VEGFA sites 1 and 3. Sequences depicted as in Figure 3C.
  • FIG. 7E Indel mutation frequencies induced by tru-gR As bearing a mismatched 5' G nucleotide. Indel mutation frequencies in human U20S.EGFP cells induced by Cas9 directed by tru-gRNAs bearing 17, 18 or 20 nt complementarity regions for VEGFA sites 1 and 3 and EMX1 site 1 are shown. Three of these gRNAs contain a mismatched 5' G (indicated by positions marked in bold text). Bars indicate results from experiments using full-length gRNA (20 nt), tru-gRNA (17 or 18 nt), and tru-gRNA with a mismatched 5 ' G nucleotide (17 or 18 nt with boldface T at 5' end). (Note that no activity was detectable for the mismatched tru-gRNA to EMX1 site 1.)
  • Figures 8A-C Sequences of off-target indel mutations induced by RGNs in human U20S.EGFP cells. Wild-type genomic off-target sites recognized by RGNs
  • Figures 9A-C Sequences of off-target indel mutations induced by RGNs in human HEK293 cells. Wild-type genomic off-target sites recognized by RGNs (including the PAM sequence) are highlighted in grey and numbered as in Table 1 and Table B. Note that the complementary strand is shown for some sites. Deleted bases are shown as dashes on a grey background. Inserted bases are italicized and highlighted in grey. ⁇ Yielded a large number of single bp indels.
  • RGNs CRISPR RNA-guided nucleases
  • off-target sites were seen for a number of RGNs, identification of these sites was neither comprehensive nor genome -wide in scale. For the six RGNs studied, only a very small subset of the much larger total number of potential off-target sequences in the human genome (sites that differ by three to six nucleotides from the intended target site; compare Tables E and C) was examined. Although examining such large numbers of loci for off-target mutations by T7EI assay is neither a practical nor a cost-effective strategy, the use of high-throughput sequencing in future studies might enable the interrogation of larger numbers of candidate off- target sites and provide a more sensitive method for detecting bona fide off-target mutations.
  • a number of strategies can be used to minimize the frequencies of genomic off-target mutations.
  • the specific choice of RGN target site can be optimized; given that off-target sites that differ at up to five positions from the intended target site can be efficiently mutated by RGNs, choosing target sites with minimal numbers of off-target sites as judged by mismatch counting .
  • RGN-induced off-target effects might be to reduce the concentrations of gRNA and Cas9 nuclease expressed in the cell. This idea was tested using the RGNs for VEGFA target sites 2 and 3 in
  • Amounts of gRNA- and Cas9-expressing plasmids transfected into U20S.EGFP cells for these assays are shown at the top of each column. (Note that data for 250 ng gRNA/750 ng Cas9 are the same as those presented in Table 1.) Mean indel frequencies were determined using the T7EI assay from replicate samples as described in Methods.
  • OT Off-target sites, numbered as in Table 1 and Table B. Mismatches from the on-target site (within the 20 bp region to which the gRNA hybridizes) are highlighted as bold, underlined text.
  • N.D. none detected
  • CRISPR-Cas RNA-guided nucleases based on the S.
  • pyogenes Cas9 protein can have significant off-target mutagenic effects that are comparable to or higher than the intended on-target activity (Example 1). Such off-target effects can be problematic for research and in particular for potential therapeutic applications. Therefore, methods for improving the specificity of
  • RGNs RNA guided nucleases
  • Cas9 RGNs can induce high-frequency indel mutations at off-target sites in human cells (see also Cradick et al., 2013; Fu et al., 2013; Hsu et al., 2013; Pattanayak et al, 2013). These undesired alterations can occur at genomic sequences that differ by as many as five mismatches from the intended on- target site (see Example 1).
  • Truncated Guide RNAs (tru-gRNAs) Achieve Greater Specificity
  • RNAs generally speaking come in two different systems: System 1, which uses separate crRNA and tracrRNAs that function together to guide cleavage by Cas9, and System 2, which uses a chimeric crRNA-tracrRNA hybrid that combines the two separate guide RNAs in a single system (referred to as a single guide RNA or sgRNA, see also Jinek et al., Science 2012; 337:816-821).
  • the tracrRNA can be variably truncated and a range of lengths has been shown to function in both the separate system (system 1) and the chimeric gRNA system (system 2).
  • tracrRNA may be truncated from its 3' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the tracrRNA molecule may be truncated from its 5' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the tracrRNA molecule may be truncated from both the 5' and 3' end, e.g., by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nts on the 5' end and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts on the 3' end.
  • vectors complementary to a region that is within about 100-800 bp upstream of the transcription start site, e.g., is within about 500 bp upstream of the transcription start site, includes the transcription start site, or within about 100-800 bp, e.g., within about 500 bp, downstream of the transcription start site.
  • vectors are complementary to a region that is within about 100-800 bp upstream of the transcription start site, e.g., is within about 500 bp upstream of the transcription start site, includes the transcription start site, or within about 100-800 bp, e.g., within about 500 bp, downstream of the transcription start site.
  • plasmids encoding more than one gRNA are used, e.g., plasmids encoding, 2, 3, 4, 5, or more gRNAs directed to different sites in the same region of the target gene.
  • the present application describes a strategy for improving RGN specificity based on the seemingly counterintuitive idea of shortening, rather than lengthening, the gRNA complementarity region.
  • These shorter gRNAs can induce various types of Cas9-mediated on-target genome editing events with efficiencies comparable to (or, in some cases, higher than) full-length gRNAs at multiple sites in a single integrated EGFP reporter gene and in endogenous human genes.
  • RGNs using these shortened gRNAs exhibit increased sensitivity to small numbers of mismatches at the H
  • this shortened gRNA strategy provides a highly effective approach for reducing off-target effects without compromising on-target activity and without the need for expression of a second, potentially mutagenic gRNA.
  • This approach can be implemented on its own or in conjunction with other strategies such as the paired nickase method to reduce the off-target effects of RGNs in human cells.
  • Cas9 nuclease can be guided to specific 17-18 nt genomic targets bearing an additional proximal protospacer adjacent motif (PAM), e.g., of sequence NGG, using a guide RNA, e.g., a single gRNA or a crRNA (paired with a tracrRNA), bearing 17 or 18 nts at its 5 ' end that are complementary to the complementary strand of the genomic DNA target site ( Figure 1).
  • PAM proximal protospacer adjacent motif
  • Decreasing the length of the DNA sequence targeted might also decrease the stability of the gRNA:DNA hybrid, making it less tolerant of mismatches and thereby making the targeting more specific. That is, truncating the gRNA sequence to recognize a shorter DNA target might actually result in a RNA-guided nuclease that is less tolerant to even single nucleotide mismatches and is therefore more specific and has fewer unintended off-target effects.
  • This strategy for shortening the gR A complementarity region could potentially be used with RNA guided proteins other than S. pyogenes Cas9 including other Cas proteins from bacteria or archaea as well as Cas9 variants that nick a single strand of DNA or have no-nuclease activity such as a dCas9 bearing catalytic inactivating mutations in one or both nuclease domains.
  • This strategy can be applied to systems that utilize a single gRNA as well as those that use dual gRNAs (e.g., the crRNA and tracrRNA found in naturally occurring systems).
  • a single guide RNA comprising a crRNA fused to a normally trans-encoded tracrRNA, e.g., a single Cas9 guide RNA as described in Mali et al, Science 2013 Feb 15; 339(6121):823-6, but with a sequence at the 5' end that is complementary to fewer than 20 nucleotides (nts), e.g., 19, 18, or 17 nts, preferably 17 or 18 nts, of the complementary strand to a target sequence immediately 5' of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG.
  • nts nucleotides
  • PAM protospacer adjacent motif
  • the shortened Cas9 guide RNA consists of the sequence:
  • Xi7-i9) GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGG CUAGUCC GUUAUC A ACUUG AAAAAGUGGC AC CG AGUC GGUGC (SEQ ID NO:7); wherein X 17-18 or X17-19 is the nucleotide sequence complementary to 17-18 or 17-19 consecutive nucleotides of the target sequence, respectively.
  • DNAs encoding the shortened Cas9 guide RNAs that have been described previously in the literature (Jinek et al, Science. 337(6096):816-21 (2012) and Jinek et al, Elife. 2:e00471 (2013)).
  • the guide RNAs can include XN which can be any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9.
  • the guide RNA includes one or more Adenine (A) or Uracil (U) nucleotides on the 3' end.
  • the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUU, UUUUUU, UUUUUU, UUUUUU, UUUUUUUUUU, UUUUUUUUUUUUU) at the 3' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
  • RNA oligonucleotides such as locked nucleic acids (LNAs) have been demonstrated to increase the specificity of RNA-DNA hybridization by locking the modified oligonucleotides in a more favorable (stable) conformation.
  • LNAs locked nucleic acids
  • 2'-0-methyl RNA is a modified base where there is an additional covalent linkage between the 2' oxygen and 4' carbon which when incorporated into oligonucleotides can improve overall thermal stability and selectivity (formula I).
  • the tru-gRNAs disclosed herein may comprise one or more modified RNA oligonucleotides.
  • the truncated guide RNAs molecules described herein can have one, some or all of the 17-18 or 17-19 nts 5' region of the guideRNA complementary to the target sequence are modified, e.g., locked (2'-0-4'-C methylene bridge), 5'-methylcytidine, 2'-0-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain (peptide nucleic acid), e.g., a synthetic ribonucleic acid.
  • a polyamide chain peptide nucleic acid
  • one, some or all of the nucleotides of the tru-gRNA sequence may be modified, e.g., locked (2'-0-4'-C methylene bridge), 5'- methylcytidine, 2'-0-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain (peptide nucleic acid), e.g., a synthetic ribonucleic acid.
  • complexes of Cas9 with these synthetic gRNAs could be used to improve the genome-wide specificity of the CRISPR/Cas9 nuclease system.
  • Exemplary modified or synthetic tru-gRNAs may comprise, or consist of, the following sequences:
  • X 17-18 or X 17-1 9 is a sequence complementary to 17-18 or 17-19 nts of a target sequence, respectively, preferably a target sequence immediately 5 ' of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, and further wherein one or more of the nucleotides are locked, e.g., one or more of the nucleotides within the sequence X17-18 or Xi7-i9, one or more of the nucleotides within the sequence XN, or one or more of the nucleotides within any sequence of the tru-gRNA.
  • PAM protospacer adjacent motif
  • X N is any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9.
  • the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUU, UUUUUUU, UUUUUUUU, UUUUUUUUUUUUUU) at the 3 ' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
  • U e.g., 1 to 8 or more Us
  • gRNA e.g., the crRNA and tracrRNA found in naturally occurring systems.
  • a single tracrRNA would be used in conjunction with multiple different crRNAs expressed using the present system, e.g., the following: (X 17-18 or Xi 7 _i 9 )GUUUUAGAGCUA (SEQ ID NO:2404);
  • the methods include contacting the cell with a tracrRNA comprising or consisting of the sequence
  • the tracrRNA molecule may be truncated from its 3 ' end by at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts. In another embodiment, the tracrRNA molecule may be truncated from its 5 ' end by at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • the _din may be truncated from its 3 ' end by at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts.
  • 26 tracrR A molecule may be truncated from both the 5 ' and 3 ' end, e.g., by at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nts on the 5 ' end and at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts on the 3 ' end.
  • Exemplary tracrRNA sequences in addition to SEQ ID NO: 8 include the following:
  • UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCA SEQ ID NO:241 1
  • UAGCAAGUUAAAAUAAGGCUAGUCCG SEQ ID NO:2412
  • one or both can be synthetic and include one or more modified (e.g., locked) nucleotides or deoxyribonucleotides . 2 _,
  • the single guide R As and/or crRNAs and/or tracrR As can include one or more Adenine (A) or Uracil (U) nucleotides on the 3 ' end.
  • RNA-DNA heteroduplexes can form a more promiscuous range of structures than their DNA-DNA counterparts.
  • DNA-DNA duplexes are more sensitive to mismatches, suggesting that a DNA- guided nuclease may not bind as readily to off-target sequences, making them comparatively more specific than RNA-guided nucleases.
  • the truncated guide RNAs described herein can be hybrids, i.e., wherein one or more
  • deoxyribonucleotides e.g., a short DNA oligonucleotide, replaces all or part of the gRNA, e.g., all or part of the complementarity region of a gRNA.
  • This DNA-based molecule could replace either all or part of the gRNA in a single gRNA system or alternatively might replace all of part of the crRNA in a dual crRNA/tracrRNA system.
  • Such a system that incorporates DNA into the complementarity region should more reliably target the intended genomic DNA sequences due to the general intolerance of DNA-DNA duplexes to mismatching compared to RNA-DNA duplexes.
  • Exemplary modified or synthetic tru-gRNAs may comprise, or consist of, the following sequences:
  • Xn-is or X17-19 is a sequence complementary to 17-18 or 17-19 nts of a target sequence, respectively, preferably a target sequence immediately 5 ' of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, and further wherein one or more of the nucleotides are deoxyribonucleotides, e.g., one or more of the nucleotides within the sequence X17-18 or X17-19, one or more of the nucleotides within the sequence X N , or one or more of the nucleotides within any sequence of the tru-gRNA.
  • PAM protospacer adjacent motif
  • XN is any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9.
  • the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUU, UUUUUUU, UUUUUUUU, UUUUUUUUUUUUUU) at the 3 ' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
  • U e.g., 1 to 8 or more Us
  • one or both can be synthetic and include one or more deoxyribonucleotides.
  • the single guide RNAs or crRNAs or tracrRNAs includes one or more Adenine (A) or Uracil (U) nucleotides on the 3 ' end.
  • A Adenine
  • U Uracil
  • the gRNA is targeted to a site that is at least three or more mismatches different from any sequence in the rest of the genome in order to minimize off-target effects.
  • the methods described can include expressing in a cell, or contacting the cell with, a shortened Cas9 gRNA (tru-gRNA) as described herein (optionally a modified or DNA/RNA hybrid tru-gRNA), plus a nuclease that can be guided by the shortened Cas9 gRNAs, e.g., a Cas9 nuclease, e.g., as described in Mali et al, a Cas9 nickase as 2g described in Jinek et al., 2012; or a dCas9-hetero functional domain fusion (dCas9- HFD).
  • a Cas9 nuclease e.g., as described in Mali et al, a Cas9 nickase as 2g described in Jinek et al., 2012
  • dCas9- HFD dCas9- HFD
  • a number of bacteria express Cas9 protein variants.
  • Streptococcus pyogenes is presently the most commonly used; some of the other Cas9 proteins have high levels of sequence identity with the S. pyogenes Cas9 and use the same guide R As. Others are more diverse, use different gR As, and recognize different PAM sequences as well (the 2-5 nucleotide sequence specified by the protein which is adjacent to the sequence specified by the RNA). Chylinski et al. classified Cas9 proteins from a large group of bacteria (RNA Biology 10:5, 1-12; 2013), and a large number of Cas9 proteins are listed in supplementary figure 1 and supplementary table 1 thereof, which are incorporated by reference herein. Additional Cas9 proteins are described in Esvelt et al., Nat Methods.
  • Cas9 molecules of a variety of species can be used in the methods and compositions described herein. While the S. pyogenes and S. thermophilus Cas9 molecules are the subject of much of the disclosure herein, Cas9 molecules of, derived from, or based on the Cas9 proteins of other species listed herein can be used as well. In other words, while the much of the description herein uses S. pyogenes and S. thermophilus Cas9 molecules, Cas9 molecules from the other species can replace them. Such species include those set forth in the following table, which was created based on supplementary figure 1 of Chylinski et al, 2013.
  • Nitratifractor salsugi is DSM 16511
  • the constructs and methods described herein can include the use of any of those Cas9 proteins, and their corresponding guide RNAs or other guide RNAs that are compatible.
  • the Cas9 from Streptococcus thermophilus LMD-9 CRISPR1 system has also been shown to function in human cells in Cong et al (Science 339, 819 (2013)).
  • Cas9 orthologs from N. meningitides are described in Hou et al, Proc Natl Acad Sci U S A. 2013 Sep 24;110(39): 15644-9 and Esvelt et al, Nat Methods. 2013 Nov;10(l 1): 1116-21. Additionally, Jinek et al. showed in vitro that Cas9 orthologs from S. thermophilus and L.
  • innocua (but not from N. meningitidis or C. jejuni, which likely use a different guide RNA), can be guided by a dual S. pyogenes gRNA to cleave target plasmid DNA, albeit with slightly decreased efficiency.
  • the present system utilizes the Cas9 protein from S. pyogenes, either as encoded in bacteria or codon-optimized for expression in mammalian cells, containing mutations at D10, E762, H983, or D986 and H840 or N863, e.g., D10A/D10N and H840A/H840N/H840Y, to render the nuclease portion of the protein catalytically inactive; substitutions at these positions could be alanine (as they are in Nishimasu al, Cell 156, 935-949 (2014)) or they could be other residues, e.g., glutamine, asparagine, tyrosine, serine, or aspartate, e.g.,, E762Q, H983N, H983Y, D986N, N863D, N863S, or N863H ( Figure 1C).
  • H840A are in bold and underlined.
  • PAAFKYFDTT IDRKRYTSTK EVLDATLIHQ SITGLYETRI DLSQLGGD (SEQ ID NO: 33)
  • the Cas9 nuclease used herein is at least about 50% identical to the sequence of S. pyogenes Cas9, i.e., at least 50%> identical to SEQ ID NO:33.
  • the nucleotide sequences are about 50%>, 55%, 60%>, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100% identical to SEQ ID NO:33.
  • any differences from SEQ ID NO:33 are in non-conserved regions, as identified by sequence alignment of sequences set forth in Chylinski et al, R A Biology 10:5, 1-12; 2013 (e.g., in supplementary figure 1 and supplementary table 1 thereof); Esvelt et al, Nat Methods. 2013 Nov; 10(11):1116-21 and Fonfara et al, Nucl. Acids Res. (2014) 42 (4): 2577-2590. [Epub ahead of print 2013 Nov 22] doi: 10.1093/nar/gktl074.
  • the sequences are aligned for optimal comparison purposes (gaps are introduced in one or both of a first and a second amino acid or nucleic acid sequence as required for optimal alignment, and non-homologous sequences can be disregarded for comparison purposes).
  • the length of a reference sequence aligned for comparison purposes is at least 50%> (in some embodiments, about 50%, 55%, 60%, 65%, 70%, 75%, 85%, 90%, 95%, or 100% of the length of the reference sequence is aligned).
  • the nucleotides or residues at corresponding positions are then compared. When a position in the first sequence is occupied by the same nucleotide or residue as the corresponding position in the second sequence, then the molecules are identical at that position.
  • the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
  • the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
  • the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453 ) algorithm which has been incorporated into the GAP program in the GCG software package, using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
  • the Cas9-HFD are created by fusing a heterologous functional domain (e.g., a transcriptional activation domain, e.g., from VP64 or NF- ⁇ p65), to the N-terminus or C-terminus of a catalytically inactive Cas9 protein (dCas9).
  • a heterologous functional domain e.g., a transcriptional activation domain, e.g., from VP64 or NF- ⁇ p65
  • dCas9 catalytically inactive Cas9 protein
  • the dCas9 can be from any species but is preferably from S.
  • the Cas9 contains mutations in the D10 and H840 residues, e.g., D10N/D10A and H840A/H840N/H840Y, to render the nuclease portion of the protein catalytically inactive, e.g., as shown in SEQ ID NO:33 above.
  • transcriptional activation domains can be fused on the N or C terminus of the Cas9.
  • transcriptional repressors e.g., KRAB, ERD, SID, and others, e.g., amino acids 473-530 of the ets2 repressor factor (ERF) repressor domain (ERD), amino acids 1-97 of the KRAB domain of KOX1, or amino acids 1-36 of the Mad mSF 3 interaction domain (SID); see Beerli et al, PNAS USA 95:14628-14633 (1998)) or silencers such as
  • transcriptional repressors e.g., KRAB, ERD, SID, and others, e.g., amino acids 473-530 of the ets2 repressor factor (ERF) repressor domain (ERD), amino acids 1-97 of the KRAB domain of KOX1, or amino acids 1-36 of the Mad mSF 3 interaction domain (SID); see Beerli et al, P
  • Heterochromatin Protein 1 (HP1, also known as swi6), e.g., HP la or ⁇ ; proteins or peptides that could recruit long non-coding RNAs (IncRNAs) fused to a fixed RNA binding sequence such as those bound by the MS2 coat protein, endoribonuclease Csy4, or the lambda N protein; enzymes that modify the methylation state of DNA (e.g., DNA methyltransferase (DNMT) or TET proteins); or enzymes that modify histone subunits (e.g., histone acetyltransferases (HAT), histone deacetylases
  • DNMT DNA methyltransferase
  • HAT histone acetyltransferases
  • HDAC histone methyltransferases
  • histone demethylases e.g., for demethylation of lysine or arginine residues
  • a number of sequences for such domains are known in the art, e.g., a domain that catalyzes hydroxylation of methylated cytosines in DNA.
  • Exemplary proteins include the Ten-Eleven- Translocation (TET)l-3 family, enzymes that converts 5-methylcytosine (5-mC) to 5- hydroxymethylcytosine (5-hmC) in DNA.
  • Variant (1) represents the longer transcript and encodes the longer isoform (a).
  • Variant (2) differs in the 5' UTR and in the 3' UTR and coding sequence compared to variant 1.
  • the resulting isoform (b) is shorter and has a distinct C-terminus compared to isoform a.
  • all or part of the full-length sequence of the catalytic domain can be included, e.g., a catalytic module comprising the cysteine-rich extension and the 20GFeDO domain encoded by 7 highly conserved exons, e.g., the Tetl catalytic domain comprising amino acids 1580-2052, Tet2 comprising amino acids 1290-1905 and Tet3 comprising amino acids 966-1678. See, e.g., Fig. 1 of Iyer et al, Cell Cycle. 2009 Jun 1;8(11): 1698-710. Epub 2009 Jun 27, for an alignment illustrating the key catalytic residues in all three Tet proteins, and the supplementary materials thereof (available at ftp site
  • sequence includes amino acids 1418-2136 of Tetl or the corresponding region in Tet2/3.
  • heterologous functional domain is a biological tether, and comprises all or part of (e.g., DNA binding domain from) the MS2 coat protein, endoribonuclease Csy4, or the lambda N protein. These proteins can be used to recruit RNA molecules containing a specific stem-loop structure to a locale specified by the dCas9 gRNA targeting sequences.
  • a dCas9 fused to MS2 coat protein, endoribonuclease Csy4, or lambda N can be used to recruit a long non-coding RNA (IncRNA) such as XIST or HOTAIR; see, e.g., Keryer-Bibens et al, Biol. Cell 100: 125-138 (2008), that is linked to the Csy4, MS2 or lambda N binding sequence.
  • RNA non-coding RNA
  • the Csy4, MS2 or lambda N protein binding sequence can be linked to another protein, e.g., as described in Keryer-Bibens et al, supra, and the _din
  • the 36 protein can be targeted to the dCas9 binding site using the methods and compositions described herein.
  • the Csy4 is catalytically inactive.
  • the fusion proteins include a linker between the dCas9 and the heterologous functional domains.
  • Linkers that can be used in these fusion proteins (or between fusion proteins in a concatenated structure) can include any sequence that does not interfere with the function of the fusion proteins.
  • the linkers are short, e.g., 2-20 amino acids, and are typically flexible (i.e., comprising amino acids with a high degree of freedom such as glycine, alanine, and serine).
  • the linker comprises one or more units consisting of GGGS (SEQ ID NO:34) or GGGGS (SEQ ID NO:35), e.g., two, three, four, or more repeats of the GGGS (SEQ ID NO:34) or GGGGS (SEQ ID NO:35) unit.
  • Other linker sequences can also be used.
  • the nucleic acid encoding the guide RNA can be cloned into an intermediate vector for transformation into prokaryotic or eukaryotic cells for replication and/or expression.
  • Intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors, or insect vectors, for storage or manipulation of the nucleic acid encoding the guide RNA for production of the guide RNA.
  • the nucleic acid encoding the guide RNA can also be cloned into an expression vector, for administration to a plant cell, animal cell, preferably a mammalian cell or a human cell, fungal cell, bacterial cell, or protozoan cell.
  • a sequence encoding a guide RNA is typically subcloned into an expression vector that contains a promoter to direct transcription.
  • Suitable bacterial and eukaryotic promoters are well known in the art and described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual (3d ed. 2001); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al, eds., 2010).
  • Bacterial expression systems for expressing the engineered protein are available in, e.g., E. coli, Bacillus sp., and
  • Salmonella (Palva et al, 1983, Gene 22:229-235). Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available. 3 _,
  • the promoter used to direct expression of a nucleic acid depends on the particular application. For example, a strong constitutive promoter is typically used for expression and purification of fusion proteins. In contrast, when the guide RNA is to be administered in vivo for gene regulation, either a constitutive or an inducible promoter can be used, depending on the particular use of the guide RNA. In addition, a preferred promoter for administration of the guide RNA can be a weak promoter, such as HSV TK or a promoter having similar activity.
  • the promoter can also include elements that are responsive to transactivation, e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, 1992, Proc. Natl. Acad. Sci. USA, 89:5547; Oligino et al, 1998, Gene Ther., 5:491-496; Wang et al, 1997, Gene Ther., 4:432-441; Neering et al, 1996, Blood, 88: 1147-55; and Rendahl et al, 1998, Nat. BiotechnoL, 16:757-761).
  • elements that are responsive to transactivation e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e
  • the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic.
  • Atypical expression cassette thus contains a promoter operably linked, e.g., to the nucleic acid sequence encoding the gRNA, and any signals required, e.g., for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination.
  • Additional elements of the cassette may include, e.g., enhancers, and heterologous spliced intronic signals.
  • the particular expression vector used to transport the genetic information into the cell is selected with regard to the intended use of the gRNA, e.g., expression in plants, animals, bacteria, fungus, protozoa, etc.
  • Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and commercially available tag-fusion expression systems such as GST and LacZ.
  • Expression vectors containing regulatory elements from eukaryotic viruses are often used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus.
  • eukaryotic vectors include pMSG, pAV009/A+, pMTO10/A+, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 late promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.
  • SV40 vectors e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus.
  • Other exemplary eukaryotic vectors include pMSG
  • the vectors for expressing the guide R As can include R A Pol III promoters to drive expression of the guide RNAs, e.g., the HI, U6 or 7SK promoters. These human promoters allow for expression of gRNAs in mammalian cells following plasmid transfection. Alternatively, a T7 promoter may be used, e.g., for in vitro transcription, and the RNA can be transcribed in vitro and purified. Vectors suitable for the expression of short RNAs, e.g., siRNAs, shRNAs, or other small RNAs, can be used.
  • Some expression systems have markers for selection of stably transfected cell lines such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase.
  • High yield expression systems are also suitable, such as using a baculovirus vector in insect cells, with the gRNA encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.
  • the elements that are typically included in expression vectors also include a replicon that functions in E. coli, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of recombinant sequences.
  • Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of protein, which are then purified using standard techniques (see, e.g., Colley et al, 1989, J. Biol. Chem., 264: 17619-22; Guide to Protein Purification, in Methods in Enzymology, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, 1977, J. Bacteriol. 132:349-351; Clark-Curtiss & Curtiss, Methods in Enzymology 101 :347-362 (Wu et al, eds, 1983).
  • Any of the known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, nucleofection, liposomes,
  • microinjection naked DNA, plasmid vectors, viral vectors, both episomal and integrative, and any of the other well-known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the gRNA.
  • the present invention includes the vectors and cells comprising the vectors. 3g
  • RGNs CRISPR RNA-guided nucleases
  • Example 1 The following materials and methods were used in Example 1.
  • DNA oligonucleotides (Table A) harboring variable 20 nt sequences for Cas9 targeting were annealed to generate short double-strand DNA fragments with 4 bp overhangs compatible with ligation into BsmBI-digested plasmid pMLM3636.
  • pMLM3636 and the expression plasmid pJDS246 (encoding a codon optimized version of Cas9) used in this study are both available through the non-profit plasmid distribution service Addgene (addgene.org/crispr-cas).
  • U20S.EGFP cells harboring a single integrated copy of an EGFP-PEST fusion gene were cultured as previously described (Reyon et al, Nat Biotech 30, 460- 465 (2012)).
  • 200,000 cells were Nucleofected with the indicated amounts of sgRNA expression plasmid and pJDS246 together with 30 ng of a Td- tomato-encoding plasmid using the SE Cell Line 4D-NucleofectorTM X Kit (Lonza) according to the manufacturer's protocol. Cells were analyzed 2 days post- transfection using a BD LSRII flow cytometer. Transfections for optimizing gRNA/Cas9 plasmid concentration were performed in triplicate and all other transfections were performed in duplicate.
  • PCR reactions were performed using Phusion Hot Start II high-fidelity DNA polymerase (NEB) with PCR primers and conditions listed in Table B. Most loci amplified successfully using touchdown PCR (98 °C, 10 s; 72-62 °C, -1 °C/cycle, 15 s; 72 °C, 30 s]10 cycles, [98 °C, 10 s; 62 °C, 15 s; 72 °C, 30 s]25 cycles). PCR for the remaining targets were performed with 35 cycles at a constant annealing temperature of 68 °C or 72 °C and 3% DMSO or 1M betaine, if necessary.
  • NEB Phusion Hot Start II high-fidelity DNA polymerase
  • PCR products were analyzed on a QIAXCEL capillary electrophoresis system to verify both size and purity. Validated products were treated with ExoSap-IT (Affymetrix) and sequenced by the Sanger method (MGH DNA Sequencing Core) to verify each target site.
  • ExoSap-IT Affymetrix
  • Sanger method MGH DNA Sequencing Core
  • Lipofectamine LTX reagent according to the manufacturer's instructions (Life Technologies). Genomic DNA was harvested from transfected U20S.EGFP,
  • HEK293, or K562 cells using the QIAamp DNA Blood Mini Kit (QIAGEN), according to the manufacturer's instructions.
  • QIAGEN QIAamp DNA Blood Mini Kit
  • EGFP Site 2 GATGCCGTTCTTCTGCTTGTCGG (SEQ ID NO: 10) EGFP Site 3 GGTGGTGC AGATGAACTTC AGGG (SEQ ID NO : 11 )
  • Each of these gRNAs can efficiently direct Cas9-mediated disruption of EGFP expression (see Example le and 2a, and FIGs. 3E (top) and 3F (top)).
  • variant gRNAs were generated for each of the three target sites harboring Watson-Crick transversion mismatches at positions 1 through 19 (numbered 1 to 20 in the 3' to 5' direction; see Fig. 1) and the abilities of these various gRNAs to direct Cas9-mediated EGFP disruption in human cells tested (variant gRNAs bearing a substitution at position 20 were not generated because this nucleotide is part of the U6 promoter sequence and therefore must remain a guanine to avoid affecting expression.)
  • target site #1 was particularly sensitive to a mismatch at position 2 whereas target site #3 was most sensitive to mismatches at positions 1 and 8.
  • gRNA/DNA interface To test the effects of more than one mismatch at the gRNA/DNA interface, a series of variant gR As bearing double Watson-Crick transversion mismatches in adjacent and separated positions were created and the abilities of these gRNAs to direct Cas9 nuclease activity were tested in human cells using the EGFP disruption assay. All three target sites generally showed greater sensitivity to double alterations in which one or both mismatches occur within the 3 ' half of the gRNA targeting region. However, the magnitude of these effects exhibited site-specific variation, with target site #2 showing the greatest sensitivity to these double mismatches and target site #1 generally showing the least.
  • variant gRNAs were constructed bearing increasing numbers of mismatched positions ranging from positions 19 to 15 in the 5' end of the gRNA targeting region (where single and double mismatches appeared to be better tolerated).
  • U20S.EGFP cells as detected by T7 Endonuclease I (T7EI) assay (Methods above and Table 1).
  • T7EI T7 Endonuclease I
  • the loci assessed included all genomic sites that differ by one or two nucleotides as well as subsets of genomic sites that differ by three to six nucleotides and with a bias toward those that had one or more of these mismatches in the 5 ' half of the gRNA targeting sequence (Table B).
  • O indicates off-target sites (with numbering of sites as in Table E). Mismatches from the on-target (within the 20 bp region to which the gRNA hybridizes) are highlighted as bold, 5 underlined text.
  • K562 cells provide evidence that the high-frequency off-target mutations we observe with RGNs will be a general phenomenon seen in multiple human cell types.
  • Example le Titration of gRNA- and Cas9-expressing plasmid amounts used for the EGFP disruption assay
  • Single gRNAs were generated for three different sequences (EGFP SITES 1-3, shown above) located upstream of EGFP nucleotide 502, a position at which the introduction of frameshift mutations via non-homologous end-joining can robustly reckon.
  • a range of gRNA-expressing plasmid amounts (12.5 to 250 ng) was initially trans fected together with 750 ng of a plasmid expressing a codon-optimized version of the Cas9 nuclease into our U20S.EGFP reporter cells bearing a single copy, constitutively expressed EGFP-PEST reporter gene. All three RGNs efficiently disrupted EGFP expression at the highest concentration of gRNA-encoding plasmid (250 ng) (Fig. 3E (top)).
  • RGNs for target sites #1 and #3 exhibited equivalent levels of disruption when lower amounts of gRNA-expressing plasmid were transfected whereas RGN activity at target site #2 dropped immediately when the amount of gRNA-expressing plasmid transfected was decreased (Fig. 3E(top)).
  • the amount of Cas9-encoding plasmid (range from 50 ng to 750 ng) transfected into our U20S.EGFP reporter cells was titrated and EGFP disruption assayed. As shown in Fig. 3F (top), target site #1 tolerated a three-fold decrease in the amount of Cas9-encoding plasmid transfected without substantial loss of EGFP disruption activity. However, the activities of RGNs targeting target sites #2 and #3 decreased immediately with a three-fold reduction in the amount of Cas9 plasmid transfected (Fig. 3F (top)).
  • FANCF, and EMX1 genes and the three RGNs targeted to EGFP Target Sites #1, #2 and #3 were identified in human genome sequence build GRCh37. Mismatches were only allowed for the 20 nt region to which the gRNA anneals and not to the PAM sequence.
  • gRNA expression plasmids were assembled by designing, synthesizing, annealing, and cloning pairs of oligonucleotides (IDT) harboring the complementarity region into plasmid pMLM3636 (available from Addgene) as described above (Example 1).
  • IDT oligonucleotides
  • pMLM3636 plasmid pMLM3636
  • the resulting gRNA expression vectors encode a -100 nt gRNA whose expression is driven by a human U6 promoter.
  • Table D The sequences of all oligonucleotides used to construct gRNA expression vectors are shown in Table D.
  • the Cas9 DIOA nickase expression plasmid (pJDS271) bearing a mutation in the RuvC endonuclease domain was generated by mutating plasmid pJDS246 using a QuikChange kit (Agilent Technologies) with the following primers: Cas9 DIOA sense primer 5'- tggataaaaagtattctattggtttagccatcggcactaattccg-3' (SEQ ID NO: 1089); Cas9 DIOA antisense primer 5'-cggaattagtgccgatggctaaaccaatagaatactttttatcca-3' (SEQ ID NO: 1090). All the targeted gRNA plasmids and the Cas9 nickase plasmids used in this study are available through the non-profit plasmid distribution service Addgene (addgene . org/ crispr-cas) .
  • U20S.EGFP cells harboring a single-copy, integrated EGFP-PEST gene reporter have been previously described (Reyon et al, 2012). These cells were maintained in Advanced DMEM (Life Technologies) supplemented with 10% FBS, 2 mM GlutaMax (Life Technologies), penicillin/streptomycin and 400 ⁇ g/ml G418.
  • DMEM Dulbecco's modified Eagle medium
  • FBS fetal bovine serum
  • plasmids were transfected into U20S.EGFP or HEK293 cells using the following conditions: U20S.EGFP cells were transfected using the same conditions as for the EGFP disruption assay described above.
  • HEK293 cells were transfected by seeding them at a density of 1.65 x 10 5 cells per well in 24 well plates in Advanced DMEM (Life Technologies) supplemented with 10% FBS and 2 mM GlutaMax (Life Technologies) at 37°C in a C0 2 incubator.
  • 2xl0 5 U20S.EGFP cells were transfected 250 ng of gRNA expression plasmid or an empty U6 promoter plasmid (as a negative control), 750 ng Cas9 expression plasmid (pJDS246), 50 pmol of ssODN donor (or no ssODN for controls), and 10 ng of td-Tomato expression plasmid (as the transfection control).
  • Genomic DNA was purified three days after transfection using Agencourt
  • T7EI assays were performed as previously described (Example 1 and Fu et al, 2013).
  • PCR reactions to amplify specific on-target or off-target sites were performed with Phusion high-fidelity DNA polymerase (New England Biolabs) using one of the two following programs: (1) Touchdown PCR program [(98°C, 10 s; 72- 62°C, -1 °C/cycle, 15 s; 72°C, 30 s) x 10 cycles, (98°C, 10 s; 62°C, 15 s; 72°C, 30 s) x 25 cycles] or (2) Constant Tm PCR program [(98°C, 10 s; 68°C or 72°C, 15 s; 72°C, 30 s) x 35 cycles], with 3% DMSO or 1 M betaine if necessary.
  • Resulting PCR products ranged in size from 300 to 800 bps and were purified by Ampure XP beads (Agencourt) according to the manufacturer's instructions. 200ng of purified PCR products were 7g hybridized in 1 x NEB buffer 2 in a total volume of 19 ⁇ and denatured to form heteroduplexes using the following conditions: 95 °C, 5 minutes; 95 to 85 °C, -2 °C/s; 85 to 25 °C, -0.1 °C/s; hold at 4 °C.
  • T7 Endonuclease I (New England Biolabs, 10 units/ ⁇ ) was added to the hybridized PCR products and incubated at 37°C for 15 minutes.
  • the T7EI reaction was stopped by adding 2 ⁇ of 0.25 M EDTA solution and the reaction products were purified using AMPure XP beads (Agencourt) with elution in 20 ⁇ 0.1 xEB buffer (QIAgen). Reactions products were then analyzed on a QIAXCEL capillary electrophoresis system and the frequencies of indel mutations were calculated using the same formula as previously described (Reyon et al., 2012).
  • OT1-45 1400 5 1401 TCCTAGCC 1402. DMSO 1 3 1
  • CTCTCCCCCCAC ATCGCGCCCAAAG GGAAAAGT

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Lubricants (AREA)
  • Prostheses (AREA)

Abstract

Methods for increasing specificity of RNA-guided genome editing, e.g., editing using CRISPR/Cas9 systems, using truncated guide RNAs (tru-gRNAs).

Description

Using Truncated Guide NAs (tru-gRNAs to Increase Specificity for RNA-Guided Genome Editing
CLAIM OF PRIORITY
This application claims the benefit of U.S. Patent Application Serial Nos. 61/799,647, filed on March 15, 2013; 61/838,178, filed on June 21, 2013; 61/838,148, filed on June 21, 2013, and 61/921,007, filed on December 26, 2013. The entire contents of the foregoing are hereby incorporated by reference.
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
This invention was made with Government support under Grant Nos. DPI GM 105378 awarded by the National Institutes of Health. The Government has certain rights in the invention.
TECHNICAL FIELD
Methods for increasing specificity of RNA-guided genome editing, e.g., editing using CRISPR/Cas9 systems, using truncated guide RNAs (tru-gRNAs).
BACKGROUND
Recent work has demonstrated that clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems (Wiedenheft et al, Nature 482, 331-338 (2012); Horvath et al, Science 327, 167-170 (2010); Terns et al, Curr Opin Microbiol 14, 321-327 (2011)) can serve as the basis for performing genome editing in bacteria, yeast and human cells, as well as in vivo in whole organisms such as fruit flies, zebrafish and mice (Wang et al, Cell 153, 910-918 (2013); Shen et al, Cell Res (2013); Dicarlo et al, Nucleic Acids Res (2013); Jiang et al, Nat Biotechnol 31, 233-239 (2013); Jinek et al, Elife 2, e00471 (2013); Hwang et al, Nat Biotechnol 31, 227-229 (2013); Cong et al, Science 339, 819-823 (2013); Mali et al, Science 339, 823-826 (2013c); Cho et al, Nat Biotechnol 31, 230-232 (2013); Gratz et al, Genetics 194(4): 1029-35 (2013)). The Cas9 nuclease from S. pyogenes (hereafter simply Cas9) can be guided via base pair complementarity between the first 20 nucleotides of an engineered guide RNA (gRNA) and the complementary strand of a target genomic DNA sequence of interest that lies next to a protospacer adjacent motif (PAM), e.g., a PAM matching the sequence NGG or NAG (Shen et al, Cell Res (2013); Dicarlo et al, Nucleic Acids Res (2013); Jiang et al, Nat Biotechnol 31, 233-239 (2013); Jinek et al, Elife 2, e00471 (2013); Hwang et al, Nat Biotechnol 31, 227-229 (2013); Cong et al, Science 339, 819-823 (2013); Mali et al, Science 339, 823-826 (2013c); Cho et al, Nat Biotechnol 31, 230-232 (2013); Jinek et al, Science 337, 816-821 (2012)). Previous studies performed in vitro (Jinek et al., Science 337, 816-821 (2012)), in bacteria (Jiang et al., Nat Biotechnol 31, 233- 239 (2013)) and in human cells (Cong et al, Science 339, 819-823 (2013)) have shown that Cas9-mediated cleavage can, in some cases, be abolished by single mismatches at the gRNA/target site interface, particularly in the last 10-12 nucleotides (nts) located in the 3' end of the 20 nt gRNA complementarity region.
SUMMARY
CRISPR-Cas genome editing uses a guide RNA, which includes both a complementarity region (which binds the target DNA by base-pairing) and a Cas9- binding region, to direct a Cas9 nuclease to a target DNA (see Figure 1). The nuclease can tolerate a number of mismatches (up to five, as shown herein) in the complementarity region and still cleave; it is hard to predict the effects of any given single or combination of mismatches on activity. Taken together, these nucleases can show significant off-target effects but it can be challenging to predict these sites. Described herein are methods for increasing the specificity of genome editing using the CRISPR/Cas system, e.g., using Cas9 or Cas9-based fusion proteins. In particular, provided are truncated guide RNAs (tru-gRNAs) that include a shortened target complementarity region (i.e., less than 20 nts, e.g., 17-19 or 17-18 nts of target complementarity, e.g., 17, 18 or 19 nts of target complementarity), and methods of using the same. As used herein, "17-18 or 17-19" includes 17, 18, or 19 nucleotides.
In one aspect, the invention provides a guide RNA molecule (e.g., a single guide RNA or a crRNA) having a target complementarity region of 17-18 or 17-19 nucleotides, e.g., the target complementarity region consists of 17-18 or 17-19 nucleotides, e.g., the target complementarity region consists of 17-18 or 17-19 nucleotides of consecutive target complementarity. In some embodiments, the guide RNA includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence. In some embodiments, the target complementarity region consists of 17-18 nucleotides (of target complementarity). In some embodiments, the complementarity region is complementary to 17 consecutive nucleotides of the complementary strand of a selected target sequence. In some embodiments, the complementarity region is complementary to 18 consecutive nucleotides of the complementary strand of a selected target sequence.
In another aspect, the invention provides a ribonucleic acid consisting of the sequence:
(X17-18 or Xi7-i9)GUUUUAGAGCUA (SEQ ID NO:2404);
(Xi7-i8 or Xi7_i9) GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407); or
(X17-18 or Xi7-i9)GUUUUAGAGCUAUGCU (SEQ ID NO:2408);
Xi7-i9)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCG(XN) (SEQ ID NO: l);
Xi7-i9)GUUUUAGAGCUAUGCUGAAAAGCAUAGCAAGUUAAAAUAAGGCU AGUCCGUUAUC(XN) (SEQ ID NO:2);
Xi7-i9)GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCAUAGCAAGU UAAAAUAAGGCUAGUCCGUUAUC(XN) (SEQ ID NO:3);
(Xi7-i8)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(XN) (SEQ ID NO:4),
Xi7-i9)GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(SEQ ID NO:5);
Xi7-i9)GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGG CUAGUCC GUUAUC A ACUUG AAAAAGUGGC AC CG AGUC GGUGC (SEQ ID NO:6); or
Xi7-i9)GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGG CUAGUCC GUUAUC A ACUUG AAAAAGUGGC AC CG AGUC GGUGC (SEQ ID NO:7);
wherein Xn-is or X17-19 is a sequence (of 17- 18 or 17- 19 nucleotides) complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5 Of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or .
4
NNGG (see, for example, the configuration in Figure 1), and XN is any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9. In no case is the X17-18 or Xi7_i9 identical to a sequence that naturally occurs adjacent to the rest of the RNA. In some embodiments the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription. In some embodiments the RNA includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5 ' end of the RNA molecule that is not complementary to the target sequence. In some embodiments, the target complementarity region consists of 17-18 nucleotides (of target complementarity). In some embodiments, the complementarity region is complementary to 17 consecutive nucleotides of the complementary strand of a selected target sequence. In some embodiments, the complementarity region is complementary to 18 consecutive
In another aspect, the invention provides DNA molecules encoding the ribonucleic acids described herein, and host cells harboring or expressing the ribonucleic acids or vectors.
In a further aspect, the invention provides methods for increasing specificity of RNA-guided genome editing in a cell, the method comprising contacting the cell with a guide RNA that includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence, as described herein.
In yet another aspect, the invention provides methods for inducing a single or double-stranded break in a target region of a double-stranded DNA molecule, e.g., in a genomic sequence in a cell. The methods include expressing in or introducing into the cell: a Cas9 nuclease or nickase; and a guide RNA that includes a sequence consisting of 17 or 18 or 19 nucleotides that are complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5 Of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, e.g., a ribonucleic acid as described herein.
Also provided herein are methods for modifying a target region of a double- stranded DNA molecule in a cell. The methods include expressing in or introducing into the cell: a dCas9-heterologous functional domain fusion protein (dCas9-HFD); c
5 and a guide RNA that includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence, as described herein.
In some embodiments, the guide RNA is (i) a single guide RNA that includes a complementarity region consisting of 17- 18 or 17-19 nucleotides that are
complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence, or (ii) a crRNA that includes a complementarity region consisting of 17-18 or 17-19 nucleotides that are
complementary to 17-18 or 17-19 consecutive nucleotides of the complementary strand of a selected target genomic sequence, and a tracrRNA.
In some embodiments, the target complementarity region consists of 17-18 nucleotides (of target complementarity). In some embodiments, the complementarity region is complementary to 17 consecutive nucleotides of the complementary strand of a selected target sequence. In some embodiments, the complementarity region is complementary to 18 consecutive
In no case is the Xi7_i8 or Xi7_i9 of any of the molecules described herein identical to a sequence that naturally occurs adjacent to the rest of the RNA. In some embodiments the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription. In some embodiments the RNA includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5' end of the RNA molecule that is not complementary to the target sequence.
In some embodiments, one or more of the nucleotides of the RNA is modified, e.g., locked (2'-0-4'-C methylene bridge), is 5'-methylcytidine, is 2'-0-methyl- pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain, e.g., one or more of the nucleotides within or outside the target complementarity region Xi7_i8 or X17- 19. In some embodiments, some or all of the tracrRNA or crRNA, e.g., within or outside the Xi7_i8 or Xi7_i9 target complementarity region, comprises deoxyribonucleotides (e.g., is all or partially DNA, e.g. DNA/RNA hybrids).
In an additional aspect, the invention provides methods for modifying a target region of a double-stranded DNA molecule, e.g., in a genomic sequence in a cell. The methods include expressing in or introducing into the cell: „
6 a dCas9-heterologous functional domain fusion protein (dCas9-HFD); and
a guide RNA that includes a sequence consisting of 17-18 or 17-19 nucleotides that are complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5 Of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, e.g., a ribonucleic acid as described herein. In no case is the X17-18 or Xi7_i9 identical to a sequence that naturally occurs adjacent to the rest of the RNA. In some embodiments the RNA includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5 ' end of the RNA molecule that is not complementary to the target sequence.
In another aspect, the invention provides methods for modifying, e.g., introducing a sequence specific break into, a target region of a double-stranded DNA molecule, e.g., in a genomic sequence in a cell. The methods include expressing in or introducing into the cell: a Cas9 nuclease or nickase, or a dCas9-heterologous functional domain fusion protein (dCas9-HFD);
a tracrRNA, e.g., comprising or consisting of the sequence
GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUA UCAACUUGAAAAAGUGGCACCGAGUCGGUGC (SEQ ID NO: 8) or an active portion thereof;
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCA CCGAGUCGGUGC (SEQ ID NO:2405) or an active portion thereof;;
AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGC (SEQ ID NO:2407) or an active portion thereof;
CAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGA AAAAGUGGCACCGAGUCGGUGC (SEQ ID NO:2409) or an active portion thereof;
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUG
(SEQ ID NO:2410) or an active portion thereof;
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCA (SEQ ID NO:241 1) or an active portion thereof; or
UAGC AAGUUAAAAUAAGGCUAGUCCG (SEQ ID NO :2412) or an active portion thereof; and
a crRNA that includes a sequence consisting of 17-18 or 17-19 nucleotides that are complementary to the complementary strand of a selected target sequence, preferably a target sequence immediately 5 ' of a protospacer adjacent motif (PAM), e.g., NGG, _,
NAG, or NNGG; in some embodiments the crRNA has the sequence:
(Xiv-18 or Xi7-i9)GUUUUAGAGCUA (SEQ ID NO:2404);
(Xiv-18 or X17-19) GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407); or (Xiv-18 or Xi7_i9)GUUUUAGAGCUAUGCU (SEQ ID NO:2408).
In some embodiments the crRNA is (Xn-is or Xn_
i9)GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407) and the tracrRNA is GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUA UC A ACUUG AAAA AGUGGC AC C G AGUCGGUGC (SEQ ID NO: 8); the cRNA is (Xn-is or Xi7-i9)GUUUUAGAGCUA (SEQ ID NO:2404) and the tracrRNA is UAGC AAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGC A CCGAGUCGGUGC (SEQ ID NO:2405); or the cRNA is (Xn-is or Xn-19)
GUUUUAGAGCUAUGCU (SEQ ID NO:2408) and the tracrRNA is
AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGC (SEQ ID NO:2406).
In no case is the X17-18 or Xi7_i9 identical to a sequence that naturally occurs adjacent to the rest of the RNA. In some embodiments the RNA (e.g., tracrRNA or crRNA) includes one or more U, e.g., 2 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription. In some embodiments the RNA (e.g., tracrRNA or crRNA) includes one or more, e.g., up to 3, e.g., one, two, or three, additional nucleotides at the 5' end of the RNA molecule that is not complementary to the target sequence. In some embodiments, one or more of the nucleotides of the crRNA or tracrRNA is modified, e.g., locked (2'-0-4'-C methylene bridge), is 5'- methylcytidine, is 2'-0-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain, e.g., one or more of the nucleotides within or outside the sequence X17-18 or X17-19. In some embodiments, some or all of the tracrRNA or crRNA, e.g., within or outside the X17-18 or X17-19 target complementarity region, comprises deoxyribonucleotides (e.g., is all or partially DNA, e.g. DNA/RNA hybrids).
In some embodiments, the dCas9-heterologous functional domain fusion protein (dCas9-HFD) comprises a HFD that modifies gene expression, histones, or DNA, e.g., transcriptional activation domain, transcriptional repressors (e.g., silencers such as Heterochromatin Protein 1 (HP1), e.g., HPla or ΗΡΙβ), enzymes that modify 0
o the methylation state of DNA (e.g., DNA methyltransferase (DNMT) or TET proteins, e.g., TET1), or enzymes that modify histone subunit (e.g., histone acetyltransferases (HAT), histone deacetylases (HDAC), or histone demethylases). In preferred embodiments, the heterologous functional domain is a transcriptional activation domain, e.g., a VP64 or NF-κΒ p65 transcriptional activation domain; an enzyme that catalyzes DNA demethylation, e.g., a TET protein family member or the catalytic domain from one of these family members; or histone modification (e.g., LSD1, histone methyltransferase, HDACs, or HATs) or a transcription silencing domain, e.g., from Heterochromatin Protein 1 (HP1), e.g., HP la or ΗΡΙβ; or a biological tether, e.g., MS2, CRISPR/Cas Subtype Ypest protein 4 (Csy4) or lambda N protein. dCas9- HFD are described in a U.S. Provisional Patent Applications USSN 61/799,647, Filed on March 15, 2013, Attorney docket no. 00786-0882P02, USSN 61/838,148, filed on 6/21/2013, and PCT International Application No. PCT/US 14/27335, all of which are incorporated herein by reference in its entirety.
In some embodiments, the methods described herein result in an indel mutation or sequence alteration in the selected target genomic sequence.
In some embodiments, the cell is a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.
Other features and advantages of the invention will be apparent from the following detailed description and figures, and from the claims.
DESCRIPTION OF DRAWINGS
Figure 1 : Schematic illustrating a gRNA/Cas9 nuclease complex bound to its target DNA site. Scissors indicate approximate cleavage points of the Cas9 nuclease on the genomic DNA target site. Note the numbering of nucleotides on the guide RNA proceeds in an inverse fashion from 5' to 3'.
Figure 2 A: Schematic illustrating a rationale for truncating the 5'
complementarity region of a gRNA. Thick grey lines = target DNA site, thin dark grey line structure = gRNA, black lines show base pairing (or lack thereof) between gRNA and target DNA site.
Figure 2B: Schematic overview of the EGFP disruption assay. Repair of targeted Cas9-mediated double-stranded breaks in a single integrated EGFP-PEST reporter gene by error-prone NHEJ-mediated repair leads to frame-shift mutations that disrupt the coding sequence and associated loss of fluorescence in cells.
Figures 2C-F: Activities of RNA-guided nucleases (RGNs) harboring single guide RNAs (gRNAs) bearing (C) single mismatches, (D) adjacent double
mismatches, (E) variably spaced double mismatches, and (F) increasing numbers of adjacent mismatches assayed on three different target sites in the EGFP reporter gene sequence. Mean activities of replicates are shown, normalized to the activity of a perfectly matched single gRNA. Error bars indicate standard errors of the mean.
Positions mismatched in each single gRNA are highlighted in grey in the grid below. Sequences of the three EGFP target sites were as follows: EGFP Site 1 GGGCACGGGCAGCTTGCCGGTGG (SEQ ID NO:9)
EGFP Site 2 GATGCCGTTCTTCTGCTTGTCGG (SEQ ID NO: 10) EGFP Site 3 GGTGGTGC AGATGAACTTC AGGG (SEQ ID NO : 11 )
Figure 2G: Mismatches at the 5' end of the gRNA make CRISPR/Cas more sensitive more 3' mismatches. The gRNAs Watson-Crick base pair between the RNA&DNA with the exception of positions indicated with an "m" which are mismatched using the Watson-Crick transversion (i.e., EGFP Site#2 M18-19 is mismatched by changing the gRNA to its Watson-Crick partner at positions 18 & 19. Although positions near the 5 ' of the gRNA are generally very well tolerated, matches in these positions are important for nuclease activity when other residues are mismatched. When all four positions are mismatched, nuclease activity is no longer detectable. This further demonstrates that matches at these 5' position can help compensate for mismatches at other more 3' positions. Note these experiments were 1 performed with a non-codon optimized version of Cas9 which can show lower absolute levels of nuclease activity as compared to the codon optimized version.
Figure 2H: Efficiency of Cas9 nuclease activities directed by gR As bearing variable length complementarity regions ranging from 15 to 25 nts in a human cell- based U20S EGFP disruption assay. Expression of a gRNA from the U6 promoter requires the presence of a 5 ' G and therefore it was only possible to evaluate gRNAs harboring certain lengths of complementarity to the target DNA site (15, 17, 19, 20, 21, 23, and 25 nts).
Figure 3 A: Efficiencies of EGFP disruption in human cells mediated by Cas9 and full-length or shortened gRNAs for four target sites in the EGFP reporter gene. Lengths of complementarity regions and corresponding target DNA sites are shown. Ctrl = control gRNA lacking a complementarity region.
Figure 3B: Efficiencies of targeted indel mutations introduced at seven different human endogenous gene targets by matched standard RGNs (Cas9 and standard full-length gRNAs) and tru-RGNs (Cas9 and gRNAs bearing truncations in their 5' complementarity regions). Lengths of gRNA complementarity regions and corresponding target DNA sites are shown. Indel frequencies were measured by T7EI assay. Ctrl = control gRNA lacking a complementarity region.
Figure 3C: DNA sequences of indel mutations induced by RGNs using a tru- gRNA or a matched full-length gRNA targeted to the EMXl site. The portion of the target DNA site that interacts with the gRNA complementarity region is highlighted in grey with the first base of the PAM sequence shown in lowercase. Deletions are indicated by dashes highlighted in grey and insertions by italicized letters highlighted in grey. The net number of bases deleted or inserted and the number of times each sequence was isolated are shown to the right.
Figure 3D: Efficiencies of precise HDR/ssODN-mediated alterations introduced at two endogenous human genes by matched standard and tru-RGNs. %HDR was measured using a BamHl restriction digest assay (see the Experimental Procedures for Example 2). Control gRNA = empty U6 promoter vector.
Figure 3E: U20S.EGFP cells were transfected with variable amounts of full- length gRNA expression plasmids (top) or tru-gRNA expression plasmids (bottom) together with a fixed amount of Cas9 expression plasmid and then assayed for percentage of cells with decreased EGFP expression. Mean values from duplicate experiments are shown with standard errors of the mean. Note that the data obtained . .
1 1 with tru-gRNA matches closely with data from experiments performed with full- length gRNA expression plasmids instead of tru-gRNA plasmids for these three EGFP target sites.
Figure 3F: U20S.EGFP cells were transfected with variable amount of Cas9 expression plasmid together with fixed amounts of full-length gRNA expression plasmids (top) or tru-gRNA expression plasmids (bottom) for each target (amounts determined for each tru-gRNA from the experiments of Figure 3E). Mean values from duplicate experiments are shown with standard errors of the mean. Note that the data obtained with tru-gRNA matches closely with data from experiments performed with full-length gRNA expression plasmids instead of tru-gRNA plasmids for these three EGFP target sites. The results of these titrations determined the concentrations of plasmids used in the EGFP disruption assays performed in Examples 1 and 2.
Figure 4A: Schematic illustrating locations of VEGFA sites 1 and 4 targeted by gRNAs for paired double nicks. Target sites for the full-length gRNAs are underlined with the first base in the PAM sequence shown in lowercase. Location of the BamHI restriction site inserted by HDR with a ssODN donor is shown.
Figure 4B: A tru-gRNA can be used with a paired nickase strategy to efficiently induce indel mutations. Substitution of a full-length gRNA for VEGFA site 1 with a tru-gRNA does not reduce the efficiency of indel mutations observed with a paired full-length gRNA for VEGFA site 4 and Cas9-D10A nickases. Control gRNA used is one lacking a complementarity region.
Figure 4C: A tru-gRNA can be used with a paired nickase strategy to efficiently induce precise HDR/ssODN-mediated sequence alterations. Substitution of a full-length gRNA for VEGFA site 1 with a tru-gRNA does not reduce the efficiency of indel mutations observed with a paired full-length gRNA for VEGFA site 4 and Cas9-D10A nickases with an ssODN donor template. Control gRNA used is one lacking a complementarity region.
Figure 5 A: Activities of RGNs targeted to three sites in EGFP using full- length (top) or tru-gRNAs (bottom) with single mismatches at each position (except at the 5 '-most base which must remain a G for efficient expression from the U6 promoter). Grey boxes in the grid below represent positions of the Watson-Crick transversion mismatches. Empty gRNA control used is a gRNA lacking a
complementarity region. RGN activities were measured using the EGFP disruption assay and values shown represent the percentage of EGFP-negative observed relative . _
12 to an RGN using a perfectly matched gRNA. Experiments were performed in duplicate and means with error bars representing standard errors of the mean are shown.
Figure 5B: Activities of RGNs targeted to three sites in EGFP using full- length (top) or tru-gRNAs (bottom) with adjacent double mismatches at each position (except at the 5 '-most base which must remain a G for efficient expression from the U6 promoter). Data presented as in 5A.
Figure 6A: Absolute frequencies of on- and off-target indel mutations induced by RGNs targeted to three different endogenous human gene sites as measured by deep sequencing. Indel frequencies are shown for the three target sites from cells in which targeted RGNs with a full-length gRNA, a tru-gRNA, or a control gRNA lacking a complementarity region were expressed. Absolute counts of indel mutations used to make these graphs can be found in Table 3B.
Figure 6B: Fold-improvements in off-target site specificities of three tru- RGNs. Values shown represent the ratio of on/off-target activities of tru-RGNs to on/off-target activities of standard RGNs for the off-target sites shown, calculated using the data from (A) and Table 3B. For the sites marked with an asterisk (*), no indels were observed with the tru-RGN and therefore the values shown represent conservative statistical estimates for the fold-improvements in specificities for these off-target sites (see Results and Experimental Procedures).
Figure 6C, top: Comparison of the on-target and an off-target site identified by T7EI assay for the tru-RGN targeted to VEGFA site 1 (more were identified by deep sequencing). Note that the full-length gRNA is mismatched to the two nucleotides at the 5 ' end of the target site and that these are the two nucleotides not present in the tru-gRNA target site. Mismatches in the off-target site relative to the on-target are highlighted in bold underlined text. Mismatches between the gRNAs and the off- target site are shown with X's.
Figure 6C, bottom: Indel mutation frequencies induced in the off-target site by RGNs bearing full-length or truncated gRNAs. Indel mutation frequencies were determined by T7EI assay. Note that the off-target site in this figure is one that we had examined previously for indel mutations induced by the standard RGN targeted to VEGFA site 1 and designated as site OT1-30 in that earlier study (Example 1 and Fu et al, Nat Biotechnol. 31(9):822-6 (2013)). It is likely that we did not identify off- target mutations at this site in our previous experiments because the frequency of 1 indel mutations appears to be at the reliable detection limit of the T7EI assay (2 - 5%).
Figures 7A-D: DNA sequences of indel mutations induced by RGNs using tru-gPvNAs or matched full-length gR As targeted to VEGFA sites 1 and 3. Sequences depicted as in Figure 3C.
Figure 7E. Indel mutation frequencies induced by tru-gR As bearing a mismatched 5' G nucleotide. Indel mutation frequencies in human U20S.EGFP cells induced by Cas9 directed by tru-gRNAs bearing 17, 18 or 20 nt complementarity regions for VEGFA sites 1 and 3 and EMX1 site 1 are shown. Three of these gRNAs contain a mismatched 5' G (indicated by positions marked in bold text). Bars indicate results from experiments using full-length gRNA (20 nt), tru-gRNA (17 or 18 nt), and tru-gRNA with a mismatched 5 ' G nucleotide (17 or 18 nt with boldface T at 5' end). (Note that no activity was detectable for the mismatched tru-gRNA to EMX1 site 1.)
Figures 8A-C: Sequences of off-target indel mutations induced by RGNs in human U20S.EGFP cells. Wild-type genomic off-target sites recognized by RGNs
(including the PAM sequence) are highlighted in grey and numbered as in Table 1 and Table B. Note that the complementary strand is shown for some sites. Deleted bases are shown as dashes on a grey background. Inserted bases are italicized and highlighted in grey.
Figures 9A-C: Sequences of off-target indel mutations induced by RGNs in human HEK293 cells. Wild-type genomic off-target sites recognized by RGNs (including the PAM sequence) are highlighted in grey and numbered as in Table 1 and Table B. Note that the complementary strand is shown for some sites. Deleted bases are shown as dashes on a grey background. Inserted bases are italicized and highlighted in grey. ^Yielded a large number of single bp indels.
DETAILED DESCRIPTION
CRISPR RNA-guided nucleases (RGNs) have rapidly emerged as a facile and efficient platform for genome editing. Although Marraffmi and colleagues (Jiang et al., Nat Biotechnol 31, 233-239 (2013)) recently performed a systematic investigation of Cas9 RGN specificity in bacteria, the specificities of RGNs in human cells have not been extensively defined. Understanding the scope of RGN-mediated off-target effects in human and other eukaryotic cells will be critically essential if these nucleases are to be used widely for research and therapeutic applications. The present . .
14 inventors have used a human cell-based reporter assay to characterize off-target cleavage of Cas9-based RGNs. Single and double mismatches were tolerated to varying degrees depending on their position along the guide RNA (gRNA)-DNA interface. Off-target alterations induced by four out of six RGNs targeted to endogenous loci in human cells were readily detected by examination of partially mismatched sites. The off-target sites identified harbor up to five mismatches and many are mutagenized with frequencies comparable to (or higher than) those observed at the intended on-target site. Thus RGNs are highly active even with imperfectly matched RNA-DNA interfaces in human cells, a finding that might confound their use in research and therapeutic applications.
The results described herein reveal that predicting the specificity profile of any given RGN is neither simple nor straightforward. The EGFP reporter assay experiments show that single and double mismatches can have variable effects on RGN activity in human cells that do not strictly depend upon their position(s) within the target site. For example, consistent with previously published reports, alterations in the 3 ' half of the sgRNA/DNA interface generally have greater effects than those in the 5' half (Jiang et al., Nat Biotechnol 31, 233-239 (2013); Cong et al, Science 339, 819-823 (2013); Jinek et al, Science 337, 816-821 (2012)); however, single and double mutations in the 3 ' end sometimes also appear to be well tolerated whereas double mutations in the 5' end can greatly diminish activities. In addition, the magnitude of these effects for mismatches at any given position(s) appears to be site- dependent. Comprehensive profiling of a large series of RGNs with testing of all possible nucleotide substitutions (beyond the Watson-Crick transversions used in our EGFP reporter experiments) may help provide additional insights into the range of potential off-targets. In this regard, the recently described bacterial cell-based method of Marraffmi and colleagues (Jiang et al., Nat Biotechnol 31, 233-239 (2013)) or the in vitro, combinatorial library-based cleavage site-selection methodologies previously applied to ZFNs by Liu and colleagues (Pattanayak et al, Nat Methods 8, 765-770 (2011)) might be useful for generating larger sets of RGN specificity profiles.
Despite these challenges in comprehensively predicting RGN specificities, it was possible to identify bona fide off-targets of RGNs by examining a subset of genomic sites that differed from the on-target site by one to five mismatches. Notably, under conditions of these experiments, the frequencies of RGN-induced mutations at many of these off-target sites were similar to (or higher than) those observed at the . c
15 intended on-target site, enabling the detection of mutations at these sites using the T7EI assay (which, as performed in our laboratory, has a reliable detection limit of ~2 to 5% mutation frequency). Because these mutation rates were very high, it was possible to avoid using deep sequencing methods previously required to detect much lower frequency ZFN- and TALEN-induced off-target alterations (Pattanayak et al., Nat Methods 8, 765-770 (2011); Perez et al, Nat Biotechnol 26, 808-816 (2008); Gabriel et al, Nat Biotechnol 29, 816-823 (2011); Hockemeyer et al, Nat Biotechnol 29, 731-734 (2011)). Analysis of RGN off-target mutagenesis in human cells also confirmed the difficulties of predicting RGN specificities - not all single and double mismatched off-target sites show evidence of mutation whereas some sites with as many as five mismatches can also show alterations. Furthermore, the bona fide off- target sites identified do not exhibit any obvious bias toward transition or transversion differences relative to the intended target sequence (Table E; grey highlighted rows).
Although off-target sites were seen for a number of RGNs, identification of these sites was neither comprehensive nor genome -wide in scale. For the six RGNs studied, only a very small subset of the much larger total number of potential off- target sequences in the human genome (sites that differ by three to six nucleotides from the intended target site; compare Tables E and C) was examined. Although examining such large numbers of loci for off-target mutations by T7EI assay is neither a practical nor a cost-effective strategy, the use of high-throughput sequencing in future studies might enable the interrogation of larger numbers of candidate off- target sites and provide a more sensitive method for detecting bona fide off-target mutations. For example, such an approach might enable the unveiling of additional off-target sites for the two RGNs for which we failed to uncover any off-target mutations. In addition, an improved understanding both of RGN specificities and of any epigenomic factors (e.g., DNA methylation and chromatin status) that may influence RGN activities in cells might also reduce the number of potential sites that need to be examined and thereby make genome-wide assessments of RGN off-targets more practical and affordable.
As described herein, a number of strategies can be used to minimize the frequencies of genomic off-target mutations. For example, the specific choice of RGN target site can be optimized; given that off-target sites that differ at up to five positions from the intended target site can be efficiently mutated by RGNs, choosing target sites with minimal numbers of off-target sites as judged by mismatch counting .„
1 b seems unlikely to be effective; thousands of potential off-target sites that differ by four or five positions within the 20 bp R A:DNA complementarity region will typically exist for any given RGN targeted to a sequence in the human genome (see, for example, Table C). It is also possible that the nucleotide content of the gRNA complementarity region might influence the range of potential off-target effects. For example, high GC-content has been shown to stabilize RNA:DNA hybrids (Sugimoto et al., Biochemistry 34, 11211-11216 (1995)) and therefore might also be expected to make gRNA/genomic DNA hybridization more stable and more tolerant to
mismatches. Additional experiments with larger numbers of gRNAs will be needed to assess if and how these two parameters (numbers of mismatched sites in the genome and stability of the RNA:DNA hybrid) influence the genome-wide specificities of RGNs. However, it is important to note that even if such predictive parameters can be defined, the effect of implementing such guidelines would be to further restrict the targeting range of RGNs.
One potential general strategy for reducing RGN-induced off-target effects might be to reduce the concentrations of gRNA and Cas9 nuclease expressed in the cell. This idea was tested using the RGNs for VEGFA target sites 2 and 3 in
U20S.EGFP cells; transfecting less sgRNA- and Cas9-expressing plasmid decreased the mutation rate at the on-target site but did not appreciably change the relative rates of off-target mutations (Tables 2A and 2B). Consistent with this, high-level off-target mutagenesis rates were also observed in two other human cell types (HEK293 and K562 cells) even though the absolute rates of on-target mutagenesis are lower than in U20S.EGFP cells. Thus, reducing expression levels of gRNA and Cas9 in cells is not likely to provide a solution for reducing off-target effects. Furthermore, these results also suggest that the high rates of off-target mutagenesis observed in human cells are not caused by overexpression of gRNA and/or Cas9.
Table 2 A
Indel mutation frequencies at on- and off-target genomic sites induced by
different amounts of Cas9- and single gRNA-expressing plasmids
for the RGN targeted to VEGFA Target Site 2
Figure imgf000018_0001
Amounts of gRNA- and Cas9-expressing plasmids transfected into U20S.EGFP cells for these assays are shown at the top of each column. (Note that data for 250 ng gRNA/750 ng Cas9 are the same as those presented in Table 1.) Mean indel frequencies were determined using the T7EI assay from replicate samples as described in Methods. OT = Off-target sites, numbered as in Table 1 and Table B. Mismatches from the on-target site (within the 20 bp region to which the gRNA hybridizes) are highlighted as bold, underlined text. N.D. = none detected
Table 2B
Indel mutation frequencies at on- and off-target genomic sites induced by
different amounts of Cas9- and single gRNA-expressing plasmids for the RGN
targeted to VEGFA Target Site 3
Figure imgf000019_0001
Amounts of gRNA- and Cas9-expressing plasmids transfected into U20S.EGFP cells for these assays are shown at the top of each column. (Note that data for 250 ng gRNA/750 ng Cas9 are the same as those presented in Table 1.) Mean indel frequencies were determined using the T7EI assay from replicate samples as described in Methods . OT = Off-target sites, numbered as in Table 1 and Table B. N.D. = none detected
1
The finding that significant off-target mutagenesis can be induced by RGNs in three different human cell types has important implications for broader use of this genome-editing platform. For research applications, the potentially confounding effects of high frequency off-target mutations will need to be considered, particularly for experiments involving either cultured cells or organisms with slow generation times for which the outcrossing of undesired alterations would be challenging. One way to control for such effects might be to utilize multiple RGNs targeted to different DNA sequences to induce the same genomic alteration because off-target effects are not random but instead related to the targeted site. However, for therapeutic applications, these findings clearly indicate that the specificities of RGNs will need to be carefully defined and/or improved if these nucleases are to be used safely in the longer term for treatment of human diseases.
Methods for Improving Specificity
As shown herein, CRISPR-Cas RNA-guided nucleases based on the S.
pyogenes Cas9 protein can have significant off-target mutagenic effects that are comparable to or higher than the intended on-target activity (Example 1). Such off- target effects can be problematic for research and in particular for potential therapeutic applications. Therefore, methods for improving the specificity of
CRISPR-Cas RNA guided nucleases (RGNs) are needed.
As described in Example 1 , Cas9 RGNs can induce high-frequency indel mutations at off-target sites in human cells (see also Cradick et al., 2013; Fu et al., 2013; Hsu et al., 2013; Pattanayak et al, 2013). These undesired alterations can occur at genomic sequences that differ by as many as five mismatches from the intended on- target site (see Example 1). In addition, although mismatches at the 5' end of the gRNA complementarity region are generally better tolerated than those at the 3 ' end, these associations are not absolute and show site-to-site-dependence (see Example 1 and Fu et al., 2013; Hsu et al., 2013; Pattanayak et al., 2013). As a result,
computational methods that rely on the number and/or positions of mismatches currently have limited predictive value for identifying bona fide off-target sites.
Therefore, methods for reducing the frequencies of off-target mutations remain an important priority if RNA-guided nucleases are to be used for research and therapeutic applications. 2Q
Truncated Guide RNAs (tru-gRNAs) Achieve Greater Specificity
Guide RNAs generally speaking come in two different systems: System 1, which uses separate crRNA and tracrRNAs that function together to guide cleavage by Cas9, and System 2, which uses a chimeric crRNA-tracrRNA hybrid that combines the two separate guide RNAs in a single system (referred to as a single guide RNA or sgRNA, see also Jinek et al., Science 2012; 337:816-821). The tracrRNA can be variably truncated and a range of lengths has been shown to function in both the separate system (system 1) and the chimeric gRNA system (system 2). For example, in some embodiments, tracrRNA may be truncated from its 3' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts. In some embodiments, the tracrRNA molecule may be truncated from its 5' end by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts. Alternatively, the tracrRNA molecule may be truncated from both the 5' and 3' end, e.g., by at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nts on the 5' end and at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts on the 3' end. See, e.g., Jinek et al, Science 2012; 337:816-821; Mali et al, Science. 2013 Feb 15;339(6121):823-6; Cong et al, Science. 2013 Feb 15;339(6121):819-23; and Hwang and Fu et al, Nat Biotechnol. 2013 Mar;31(3):227-9; Jinek et al, Elife 2, e00471 (2013)). For System 2, generally the longer length chimeric gRNAs have shown greater on-target activity but the relative specificities of the various length gRNAs currently remain undefined and therefore it may be desirable in certain instances to use shorter gRNAs. In some embodiments, the gRNAs are
complementary to a region that is within about 100-800 bp upstream of the transcription start site, e.g., is within about 500 bp upstream of the transcription start site, includes the transcription start site, or within about 100-800 bp, e.g., within about 500 bp, downstream of the transcription start site. In some embodiments, vectors
(e.g., plasmids) encoding more than one gRNA are used, e.g., plasmids encoding, 2, 3, 4, 5, or more gRNAs directed to different sites in the same region of the target gene.
The present application describes a strategy for improving RGN specificity based on the seemingly counterintuitive idea of shortening, rather than lengthening, the gRNA complementarity region. These shorter gRNAs can induce various types of Cas9-mediated on-target genome editing events with efficiencies comparable to (or, in some cases, higher than) full-length gRNAs at multiple sites in a single integrated EGFP reporter gene and in endogenous human genes. In addition, RGNs using these shortened gRNAs exhibit increased sensitivity to small numbers of mismatches at the H
21 gR A-target DNA interface. Most importantly, use of shortened gRNAs
substantially reduces the rates of genomic off-target effects in human cells, yielding improvements of specificity as high as 5000-fold or more at these sites. Thus, this shortened gRNA strategy provides a highly effective approach for reducing off-target effects without compromising on-target activity and without the need for expression of a second, potentially mutagenic gRNA. This approach can be implemented on its own or in conjunction with other strategies such as the paired nickase method to reduce the off-target effects of RGNs in human cells.
Thus, one method to enhance specificity of CRISPR/Cas nucleases shortens the length of the guide RNA (gRNA) species used to direct nuclease specificity. Cas9 nuclease can be guided to specific 17-18 nt genomic targets bearing an additional proximal protospacer adjacent motif (PAM), e.g., of sequence NGG, using a guide RNA, e.g., a single gRNA or a crRNA (paired with a tracrRNA), bearing 17 or 18 nts at its 5 ' end that are complementary to the complementary strand of the genomic DNA target site (Figure 1).
Although one might expect that increasing the length of the gRNA
complementarity region would improve specificity, the present inventors (Hwang et al, PLoS One. 2013 Jul 9;8(7):e68708) and others (Ran et al, Cell. 2013 Sep
12;154(6): 1380-9) have previously observed that lengthening the target site complementarity region at the 5 ' end of the gRNA actually makes it function less efficiently at the on-target site.
By contrast, experiments in Example 1 showed that gRNAs bearing multiple mismatches within a standard length 5 ' complementarity targeting region could still induce robust Cas9-mediated cleavage of their target sites. Thus, it was possible that truncated gRNAs lacking these 5 '-end nucleotides might show activities comparable to their full-length counterparts (Fig. 2A). It was further speculated that these 5' nucleotides might normally compensate for mismatches at other positions along the gRNA-target DNA interface and therefore predicted that shorter gRNAs might be more sensitive to mismatches and thus induce lower levels of off-target mutations (Fig. 2A).
Decreasing the length of the DNA sequence targeted might also decrease the stability of the gRNA:DNA hybrid, making it less tolerant of mismatches and thereby making the targeting more specific. That is, truncating the gRNA sequence to recognize a shorter DNA target might actually result in a RNA-guided nuclease that is less tolerant to even single nucleotide mismatches and is therefore more specific and has fewer unintended off-target effects.
This strategy for shortening the gR A complementarity region could potentially be used with RNA guided proteins other than S. pyogenes Cas9 including other Cas proteins from bacteria or archaea as well as Cas9 variants that nick a single strand of DNA or have no-nuclease activity such as a dCas9 bearing catalytic inactivating mutations in one or both nuclease domains. This strategy can be applied to systems that utilize a single gRNA as well as those that use dual gRNAs (e.g., the crRNA and tracrRNA found in naturally occurring systems).
Thus, described herein is a single guide RNA comprising a crRNA fused to a normally trans-encoded tracrRNA, e.g., a single Cas9 guide RNA as described in Mali et al, Science 2013 Feb 15; 339(6121):823-6, but with a sequence at the 5' end that is complementary to fewer than 20 nucleotides (nts), e.g., 19, 18, or 17 nts, preferably 17 or 18 nts, of the complementary strand to a target sequence immediately 5' of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG. In some
embodiments, the shortened Cas9 guide RNA consists of the sequence:
(X17-18 or Xi7-i9)GUUUUAGAGCUA (SEQ ID NO:2404);
(X17-18 or X17-19) GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407); or (X17-18 or Xi7-i9)GUUUUAGAGCUAUGCU (SEQ ID NO:2408);
Xi7-i9)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCG(XN) (SEQ ID NO: l);
Xi7-i9)GUUUUAGAGCUAUGCUGAAAAGCAUAGCAAGUUAAAAUAAGGCU AGUCCGUUAUC(XN) (SEQ ID NO:2);
Xi7-i9)GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCAUAGCAAGU UAAAAUAAGGCUAGUCCGUUAUC(XN) (SEQ ID NO:3); (Xn-is or
Xi7-i9)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(XN) (SEQ ID NO:4),
Xi7-i9)GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(SEQ ID NO:5);
(X17-18 or Xi7-i9)GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGG CUAGUCC GUUAUC A ACUUG AAAAAGUGGC AC CG AGUC GGUGC (SEQ ID NO:6); or (X17-18 or
Xi7-i9)GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGG CUAGUCC GUUAUC A ACUUG AAAAAGUGGC AC CG AGUC GGUGC (SEQ ID NO:7); wherein X17-18 or X17-19 is the nucleotide sequence complementary to 17-18 or 17-19 consecutive nucleotides of the target sequence, respectively. Also described herein are DNAs encoding the shortened Cas9 guide RNAs that have been described previously in the literature (Jinek et al, Science. 337(6096):816-21 (2012) and Jinek et al, Elife. 2:e00471 (2013)).
The guide RNAs can include XN which can be any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9.
In some embodiments, the guide RNA includes one or more Adenine (A) or Uracil (U) nucleotides on the 3' end. In some embodiments the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
Modified RNA oligonucleotides such as locked nucleic acids (LNAs) have been demonstrated to increase the specificity of RNA-DNA hybridization by locking the modified oligonucleotides in a more favorable (stable) conformation. For example, 2'-0-methyl RNA is a modified base where there is an additional covalent linkage between the 2' oxygen and 4' carbon which when incorporated into oligonucleotides can improve overall thermal stability and selectivity (formula I).
Figure imgf000024_0001
formula I - Locked Nucleic Acid
Thus in some embodiments, the tru-gRNAs disclosed herein may comprise one or more modified RNA oligonucleotides. For example, the truncated guide RNAs molecules described herein can have one, some or all of the 17-18 or 17-19 nts 5' region of the guideRNA complementary to the target sequence are modified, e.g., locked (2'-0-4'-C methylene bridge), 5'-methylcytidine, 2'-0-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain (peptide nucleic acid), e.g., a synthetic ribonucleic acid.
In other embodiments, one, some or all of the nucleotides of the tru-gRNA sequence may be modified, e.g., locked (2'-0-4'-C methylene bridge), 5'- methylcytidine, 2'-0-methyl-pseudouridine, or in which the ribose phosphate backbone has been replaced by a polyamide chain (peptide nucleic acid), e.g., a synthetic ribonucleic acid.
In a cellular context, complexes of Cas9 with these synthetic gRNAs could be used to improve the genome-wide specificity of the CRISPR/Cas9 nuclease system.
Exemplary modified or synthetic tru-gRNAs may comprise, or consist of, the following sequences:
(X17-18 or Xi7-i9)GUUUUAGAGCUA(XN) (SEQ ID NO:2404);
(X17-18 or X17-19) GUUUUAGAGCUAUGCUGUUUUG (XN) (SEQ ID NO:2407);
(Xi7-i8 or Xi7_i9)GUUUUAGAGCUAUGCU(XN) (SEQ ID NO:2408);
Xi7-i9)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCG(XN) (SEQ ID NO: l);
Xi7-i9)GUUUUAGAGCUAUGCUGAAAAGCAUAGCAAGUUAAAAUAAGGCU AGUCCGUUAUC(XN) (SEQ ID NO:2);
Xi7-i9)GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCAUAGCAAGU UAAAAUAAGGCUAGUCCGUUAUC(XN) (SEQ ID NO:3);
(Xi7-i8)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(XN) (SEQ ID NO:4),
Xi7-i9)GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(SEQ ID NO:5);
Xi7-i9)GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGG CUAGUCC GUUAUC A ACUUG AAAAAGUGGC AC CG AGUC GGUGC (SEQ ID NO:6); or „c
25
Xi7-i9)GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGG CUAGUCC GUUAUC A ACUUG AAAAAGUGGC AC CG AGUC GGUGC (SEQ ID NO:7);
wherein X17-18 or X17-19 is a sequence complementary to 17-18 or 17-19 nts of a target sequence, respectively, preferably a target sequence immediately 5 ' of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, and further wherein one or more of the nucleotides are locked, e.g., one or more of the nucleotides within the sequence X17-18 or Xi7-i9, one or more of the nucleotides within the sequence XN, or one or more of the nucleotides within any sequence of the tru-gRNA. XN is any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9. In some embodiments the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3 ' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
Although some of the examples described herein utilize a single gRNA, the methods can also be used with dual gRNAs (e.g., the crRNA and tracrRNA found in naturally occurring systems). In this case, a single tracrRNA would be used in conjunction with multiple different crRNAs expressed using the present system, e.g., the following: (X17-18 or Xi7_i9)GUUUUAGAGCUA (SEQ ID NO:2404);
(X17-18 or Xi7_i9) GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407); or (X17-18 or Xi7-i9)GUUUUAGAGCUAUGCU (SEQ ID NO:2408); and a tracrRNA sequence. In this case, the crRNA is used as the guide RNA in the methods and molecules described herein, and the tracrRNA can be expressed from the same or a different DNA molecule. In some embodiments, the methods include contacting the cell with a tracrRNA comprising or consisting of the sequence
GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUA UCAACUUGAAAAAGUGGCACCGAGUCGGUGC (SEQ ID NO: 8) or an active portion thereof (an active portion is one that retains the ability to form complexes with Cas9 or dCas9). In some embodiments, the tracrRNA molecule may be truncated from its 3 ' end by at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts. In another embodiment, the tracrRNA molecule may be truncated from its 5 ' end by at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts. Alternatively, the _„
26 tracrR A molecule may be truncated from both the 5 ' and 3 ' end, e.g., by at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 or 20 nts on the 5 ' end and at least 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35 or 40 nts on the 3 ' end. Exemplary tracrRNA sequences in addition to SEQ ID NO: 8 include the following:
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCA CCGAGUCGGUGC (SEQ ID NO:2405) or an active portion thereof;
AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGC (SEQ ID NO:2407) or an active portion thereof;
CAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGA AAAAGUGGCACCGAGUCGGUGC (SEQ ID NO:2409) or an active portion thereof;
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUG
(SEQ ID NO:2410) or an active portion thereof;
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCA (SEQ ID NO:241 1) or an active portion thereof; or UAGCAAGUUAAAAUAAGGCUAGUCCG (SEQ ID NO:2412) or an active portion thereof.
In some embodiments wherein (Xn-is or Xi7_
i9)GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407) is used as a crRNA, the following tracrRNA is used:
GGAACCAUUCAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUA UCAACUUGAAAAAGUGGCACCGAGUCGGUGC (SEQ ID NO: 8) or an active portion thereof. In some embodiments wherein (Xi7_i8 or Xi7_i9)GUUUUAGAGCUA (SEQ ID NO:2404) is used as a crRNA, the following tracrRNA is used:
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCA CCGAGUCGGUGC (SEQ ID NO:2405) or an active portion thereof. In some embodiments wherein (Xl7AS or Xi7_i9) GUUUUAGAGCUAUGCU (SEQ ID
NO:2408) is used as a crRNA, the following tracrRNA is used:
AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGU GGCACCGAGUCGGUGC (SEQ ID NO:2406) or an active portion thereof.
In addition, in a system that uses separate crRNA and tracrRNA, one or both can be synthetic and include one or more modified (e.g., locked) nucleotides or deoxyribonucleotides . 2_,
In some embodiments, the single guide R As and/or crRNAs and/or tracrR As can include one or more Adenine (A) or Uracil (U) nucleotides on the 3 ' end.
Existing Cas9-based RGNs use gRNA-DNA heteroduplex formation to guide targeting to genomic sites of interest. However, RNA-DNA heteroduplexes can form a more promiscuous range of structures than their DNA-DNA counterparts. In effect, DNA-DNA duplexes are more sensitive to mismatches, suggesting that a DNA- guided nuclease may not bind as readily to off-target sequences, making them comparatively more specific than RNA-guided nucleases. Thus, the truncated guide RNAs described herein can be hybrids, i.e., wherein one or more
deoxyribonucleotides, e.g., a short DNA oligonucleotide, replaces all or part of the gRNA, e.g., all or part of the complementarity region of a gRNA. This DNA-based molecule could replace either all or part of the gRNA in a single gRNA system or alternatively might replace all of part of the crRNA in a dual crRNA/tracrRNA system. Such a system that incorporates DNA into the complementarity region should more reliably target the intended genomic DNA sequences due to the general intolerance of DNA-DNA duplexes to mismatching compared to RNA-DNA duplexes. Methods for making such duplexes are known in the art, See, e.g., Barker et al, BMC Genomics. 2005 Apr 22;6:57; and Sugimoto et al, Biochemistry. 2000 Sep 19;39(37): 11270-81.
Exemplary modified or synthetic tru-gRNAs may comprise, or consist of, the following sequences:
Xi7-i9)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCG(XN) (SEQ ID NO: l);
Xi7-i9)GUUUUAGAGCUAUGCUGAAAAGCAUAGCAAGUUAAAAUAAGGCU AGUCCGUUAUC(XN) (SEQ ID NO:2); Xi7-i9)GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCAUAGCAAGU UAAAAUAAGGCUAGUCCGUUAUC(XN) (SEQ ID NO:3); (Xn-is or
Xi7-i9)GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(XN) (SEQ ID NO:4),
(X17-18 or 0
Xi7-i9)GUUUAAGAGCUAGAAAUAGCAAGUUUAAAUAAGGCUAGUCCGUU AUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(SEQ ID NO:5);
Xi7-i9)GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGG CUAGUCC GUUAUC A ACUUG AAAAAGUGGC AC CG AGUC GGUGC (SEQ ID NO:6); or
Xi7-i9)GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAAGG CUAGUCC GUUAUC A ACUUG AAAAAGUGGC AC CG AGUC GGUGC (SEQ ID NO:7);
wherein Xn-is or X17-19 is a sequence complementary to 17-18 or 17-19 nts of a target sequence, respectively, preferably a target sequence immediately 5 ' of a protospacer adjacent motif (PAM), e.g., NGG, NAG, or NNGG, and further wherein one or more of the nucleotides are deoxyribonucleotides, e.g., one or more of the nucleotides within the sequence X17-18 or X17-19, one or more of the nucleotides within the sequence XN, or one or more of the nucleotides within any sequence of the tru-gRNA. XN is any sequence, wherein N (in the RNA) can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9. In some embodiments the RNA includes one or more U, e.g., 1 to 8 or more Us (e.g., U, UU, UUU, UUUU, UUUUU, UUUUUU, UUUUUUU, UUUUUUUU) at the 3 ' end of the molecule, as a result of the optional presence of one or more Ts used as a termination signal to terminate RNA PolIII transcription.
In addition, in a system that uses separate crRNA and tracrRNA, one or both can be synthetic and include one or more deoxyribonucleotides.
In some embodiments, the single guide RNAs or crRNAs or tracrRNAs includes one or more Adenine (A) or Uracil (U) nucleotides on the 3 ' end.
In some embodiments, the gRNA is targeted to a site that is at least three or more mismatches different from any sequence in the rest of the genome in order to minimize off-target effects.
The methods described can include expressing in a cell, or contacting the cell with, a shortened Cas9 gRNA (tru-gRNA) as described herein (optionally a modified or DNA/RNA hybrid tru-gRNA), plus a nuclease that can be guided by the shortened Cas9 gRNAs, e.g., a Cas9 nuclease, e.g., as described in Mali et al, a Cas9 nickase as 2g described in Jinek et al., 2012; or a dCas9-hetero functional domain fusion (dCas9- HFD).
Cas9
A number of bacteria express Cas9 protein variants. The Cas9 from
Streptococcus pyogenes is presently the most commonly used; some of the other Cas9 proteins have high levels of sequence identity with the S. pyogenes Cas9 and use the same guide R As. Others are more diverse, use different gR As, and recognize different PAM sequences as well (the 2-5 nucleotide sequence specified by the protein which is adjacent to the sequence specified by the RNA). Chylinski et al. classified Cas9 proteins from a large group of bacteria (RNA Biology 10:5, 1-12; 2013), and a large number of Cas9 proteins are listed in supplementary figure 1 and supplementary table 1 thereof, which are incorporated by reference herein. Additional Cas9 proteins are described in Esvelt et al., Nat Methods. 2013 Nov; 10(11): 1116-21 and Fonfara et al., "Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems." Nucleic Acids Res. 2013 Nov 22. [Epub ahead of print] doi: 10.1093/nar/gktl074.
Cas9 molecules of a variety of species can be used in the methods and compositions described herein. While the S. pyogenes and S. thermophilus Cas9 molecules are the subject of much of the disclosure herein, Cas9 molecules of, derived from, or based on the Cas9 proteins of other species listed herein can be used as well. In other words, while the much of the description herein uses S. pyogenes and S. thermophilus Cas9 molecules, Cas9 molecules from the other species can replace them. Such species include those set forth in the following table, which was created based on supplementary figure 1 of Chylinski et al, 2013.
Alternative Cas9 proteins
GenBank Acc No. Bacterium
303229466 Veillonella atypica ACS-134-V-Col7a
34762592 Fusobacterium nucleatum subsp. vincentii
374307738 Filifactor alocis ATCC 35896
320528778 Solobacterium moorei F0204
291520705 Coprococcus catus GD-7
42525843 Treponema denticola ATCC 35405
304438954 Peptoniphilus duerdenii ATCC BAA- 1640
224543312 Catenibacterium mitsuokai DSM 15897
24379809 Streptococcus mutans UA159
15675041 Streptococcus pyogenes SF370
16801805 Listeria innocua Clip 11262 Alternative Cas9 proteins
GenBank Acc No. Bacterium
1 16628213 Streptococcus thermophilus LMD-9
323463801 Staphylococcus pseudintermedius ED99
352684361 Acidaminococcus intestini RyC-MR95
302336020 Olsenella uli DSM 7084
366983953 Oenococcus kitaharae DSM 17330
310286728 Bifidobacterium bifidum SI 7
258509199 Lactobacillus rhamnosus GG
300361537 Lactobacillus gasseri JV-V03
169823755 Finegoldia magna ATCC 29328
47458868 Mycoplasma mobile 163K
284931710 Mycoplasma gallisepticum str. F
363542550 Mycoplasma ovipneumoniae SCOl
384393286 Mycoplasma canis PG 14
71894592 Mycoplasma synoviae 53
238924075 Eiibacterium rectale ATCC 33656
1 16627542 Streptococcus thermophilus LMD-9
315149830 Enterococcus faecalis TX0012
315659848 Staphylococcus lugdunensis M23590
160915782 Eubacterium dolichum DSM 3991
336393381 Lactobacillus coryniformis subsp. torquens
310780384 Ilyobacter polytropus DSM 2926
325677756 Ruminococcus albus 8
187736489 Akkermansia muciniphila ATCC BAA-835
1 17929158 Acidothermus cellulolyticus I IB
189440764 Bifidobacterium longum D JO 10 A
283456135 Bifidobacterium dentium Bdl
38232678 Corynebacterium diphtheriae NCTC 13129
187250660 Elusimicrobium minutum Peil91
319957206 Nitratifractor salsugi is DSM 16511
325972003 Sphaerochaeta globus str. Buddy
261414553 Fibrobacter succinogenes subsp. succinogenes
60683389 Bacteroides fragilis NCTC 9343
256819408 Capnocytophaga ochracea DSM 7271
90425961 Rhodopseudomonas palustris BisBIS
373501 184 Prevotella micans F0438
294674019 Prevotella ruminicola 23
365959402 Flavobacterium columnar e A TCC 49512
312879015 Aminomonas paucivorans DSM 12260
83591793 Rhodospirillum rubrum A TCC 11170
2940861 1 1 Candidatus Puniceispirillum marinum IMCC1322
12160821 1 Verminephrobacter eiseniae EF01-2
344171927 Ralstonia syzygii R24
159042956 Dinoroseobacter shibae DFL 12
288957741 Azospirillum sp- B510
92109262 Nitrobacter hamburgensis XI 4
148255343 Bradyrhizobium sp- BTAil Alternative Cas9 proteins
GenBank Acc No. Bacterium
34557790 Wolinella succinogenes DSM 1740
218563121 Campylobacter jejuni subsp. jejuni
291276265 Helicobacter mustelae 12198
229113166 Bacillus cereus Rockl-15
222109285 Acidovorax ebreus TPSY
189485225 uncultured Termite group 1
182624245 Clostridium perfringens D str.
220930482 Clostridium cellulolyticum H10
154250555 Parvibaculum lavamentivorans DS-1
257413184 Roseburia intestinalis LI -82
218767588 Neisseria meningitidis Z2491
15602992 Pasteurella multocida subsp. multocida
319941583 Sutterella wadsworthensis 3 1
254447899 gamma proteobacterium HTCC5015
54296138 Legionella pneumophila str. Paris
331001027 Parasutterella excrementihominis YIT 11859
34557932 Wolinella succinogenes DSM 1740
118497352 Francisella novicida U112
The constructs and methods described herein can include the use of any of those Cas9 proteins, and their corresponding guide RNAs or other guide RNAs that are compatible. The Cas9 from Streptococcus thermophilus LMD-9 CRISPR1 system has also been shown to function in human cells in Cong et al (Science 339, 819 (2013)). Cas9 orthologs from N. meningitides are described in Hou et al, Proc Natl Acad Sci U S A. 2013 Sep 24;110(39): 15644-9 and Esvelt et al, Nat Methods. 2013 Nov;10(l 1): 1116-21. Additionally, Jinek et al. showed in vitro that Cas9 orthologs from S. thermophilus and L. innocua, (but not from N. meningitidis or C. jejuni, which likely use a different guide RNA), can be guided by a dual S. pyogenes gRNA to cleave target plasmid DNA, albeit with slightly decreased efficiency.
In some embodiments, the present system utilizes the Cas9 protein from S. pyogenes, either as encoded in bacteria or codon-optimized for expression in mammalian cells, containing mutations at D10, E762, H983, or D986 and H840 or N863, e.g., D10A/D10N and H840A/H840N/H840Y, to render the nuclease portion of the protein catalytically inactive; substitutions at these positions could be alanine (as they are in Nishimasu al, Cell 156, 935-949 (2014)) or they could be other residues, e.g., glutamine, asparagine, tyrosine, serine, or aspartate, e.g.,, E762Q, H983N, H983Y, D986N, N863D, N863S, or N863H (Figure 1C). The sequence of the catalytically inactive S. pyogenes Cas9 that can be used in the methods and compositions described herein is as follows; the exemplary mutations of DIOA and
H840A are in bold and underlined.
10 20 30 40 50 60
MDKKYSIGLA IGTNSVGWAV ITDEYKVPSK KFKVLGNTDR HSIKKNLIGA LLFDSGETAE
70 80 90 100 110 120
ATRLKRTARR RYTRRKNRIC YLQEIFSNEM AKVDDSFFHR LEESFLVEED KKHERHPIFG
130 140 150 160 170 180
NIVDEVAYHE KYPTIYHLRK KLVDSTDKAD LRLIYLALAH MIKFRGHFLI EGDLNPDNSD
190 200 210 220 230 240
VDKLFIQLVQ TYNQLFEENP INASGVDAKA ILSARLSKSR RLENLIAQLP GEKKNGLFGN
250 260 270 280 290 300
LIALSLGLTP NFKSNFDLAE DAKLQLSKDT YDDDLDNLLA QIGDQYADLF LAAKNLSDAI
310 320 330 340 350 360
LLSDILRVNT EITKAPLSAS MIKRYDEHHQ DLTLLKALVR QQLPEKYKEI FFDQSKNGYA
370 380 390 400 410 420
GYIDGGASQE EFYKFIKPIL EKMDGTEELL VKLNREDLLR KQRTFDNGSI PHQIHLGELH
430 440 450 460 470 480
AILRRQEDFY PFLKDNREKI EKILTFRIPY YVGPLARGNS RFAWMTRKSE ETITPWNFEE
490 500 510 520 530 540
WDKGASAQS FIERMTNFDK NLPNEKVLPK HSLLYEYFTV YNELTKVKYV TEGMRKPAFL
550 560 570 580 590 600
SGEQKKAIVD LLFKTNRKVT VKQLKEDYFK KIECFDSVEI SGVEDRFNAS LGTYHDLLKI
610 620 630 640 650 660
IKDKDFLDNE ENEDILEDIV LTLTLFEDRE MIEERLKTYA HLFDDKVMKQ LKRRRYTGWG
670 680 690 700 710 720
RLSRKLINGI RDKQSGKTIL DFLKSDGFAN RNFMQLIHDD SLTFKEDIQK AQVSGQGDSL
730 740 750 760 770 780
HEHIANLAGS PAIKKGILQT VKWDELVKV MGRHKPENIV IEMARENQTT QKGQKNSRER
790 800 810 820 830 840
MKRIEEGIKE LGSQILKEHP VENTQLQNEK LYLYYLQNGR DMYVDQELDI NRLSDYDVDA
850 860 870 880 890 900
IVPQSFLKDD SIDNKVLTRS DKNRGKSDNV PSEEWKKMK NYWRQLLNAK LITQRKFDNL
910 920 930 940 950 960
TKAERGGLSE LDKAGFIKRQ LVETRQITKH VAQILDSRMN TKYDENDKLI REVKVITLKS
970 980 990 1000 1010 1020
KLVSDFRKDF QFYKVREINN YHHAHDAYLN AWGTALIKK YPKLESEFVY GDYKVYDVRK
1030 1040 1050 1060 1070 1080
MIAKSEQEIG KATAKYFFYS NIMNFFKTEI TLANGEIRKR PLIETNGETG EIVWDKGRDF
1090 1100 1110 1120 1130 1140
ATVRKVLSMP QVNIVKKTEV QTGGFSKESI LPKRNSDKLI ARKKDWDPKK YGGFDSPTVA 1150 1160 1170 1180 1190 1200
YSVLWAKVE KGKSKKLKSV KELLGITIME RSSFEKNPID FLEAKGYKEV KKDLI IKLPK
1210 1220 1230 1240 1250 1260 YSLFELENGR KRMLASAGEL QKGNELALPS KYVNFLYLAS HYEKLKGSPE DNEQKQLFVE
1270 1280 1290 1300 1310 1320
QHKHYLDEI I EQISEFSKRV ILADANLDKV LSAYNKHRDK PIREQAE I I HLFTLTNLGA
1330 1340 1350 1360
PAAFKYFDTT IDRKRYTSTK EVLDATLIHQ SITGLYETRI DLSQLGGD (SEQ ID NO: 33)
In some embodiments, the Cas9 nuclease used herein is at least about 50% identical to the sequence of S. pyogenes Cas9, i.e., at least 50%> identical to SEQ ID NO:33. In some embodiments, the nucleotide sequences are about 50%>, 55%, 60%>, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or 100% identical to SEQ ID NO:33. In some embodiments, any differences from SEQ ID NO:33 are in non-conserved regions, as identified by sequence alignment of sequences set forth in Chylinski et al, R A Biology 10:5, 1-12; 2013 (e.g., in supplementary figure 1 and supplementary table 1 thereof); Esvelt et al, Nat Methods. 2013 Nov; 10(11):1116-21 and Fonfara et al, Nucl. Acids Res. (2014) 42 (4): 2577-2590. [Epub ahead of print 2013 Nov 22] doi: 10.1093/nar/gktl074.
To determine the percent identity of two sequences, the sequences are aligned for optimal comparison purposes (gaps are introduced in one or both of a first and a second amino acid or nucleic acid sequence as required for optimal alignment, and non-homologous sequences can be disregarded for comparison purposes). The length of a reference sequence aligned for comparison purposes is at least 50%> (in some embodiments, about 50%, 55%, 60%, 65%, 70%, 75%, 85%, 90%, 95%, or 100% of the length of the reference sequence is aligned). The nucleotides or residues at corresponding positions are then compared. When a position in the first sequence is occupied by the same nucleotide or residue as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.
The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For purposes of the present application, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J. Mol. Biol. 48:444-453 ) algorithm which has been incorporated into the GAP program in the GCG software package, using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
Cas9-HFD
Cas9-HFD are described in a U.S. Provisional Patent Applications USSN 61/799,647, Filed on March 15, 2013, USSN 61/838,148, filed on 6/21/2013, and PCT International Application No. PCT/US 14/27335, all of which are incorporated herein by reference in its entirety.
The Cas9-HFD are created by fusing a heterologous functional domain (e.g., a transcriptional activation domain, e.g., from VP64 or NF-κΒ p65), to the N-terminus or C-terminus of a catalytically inactive Cas9 protein (dCas9). In the present case, as noted above, the dCas9 can be from any species but is preferably from S. pyogenes, In some embodiments, the Cas9 contains mutations in the D10 and H840 residues, e.g., D10N/D10A and H840A/H840N/H840Y, to render the nuclease portion of the protein catalytically inactive, e.g., as shown in SEQ ID NO:33 above.
The transcriptional activation domains can be fused on the N or C terminus of the Cas9. In addition, although the present description exemplifies transcriptional activation domains, other heterologous functional domains (e.g., transcriptional repressors (e.g., KRAB, ERD, SID, and others, e.g., amino acids 473-530 of the ets2 repressor factor (ERF) repressor domain (ERD), amino acids 1-97 of the KRAB domain of KOX1, or amino acids 1-36 of the Mad mSF 3 interaction domain (SID); see Beerli et al, PNAS USA 95:14628-14633 (1998)) or silencers such as
Heterochromatin Protein 1 (HP1, also known as swi6), e.g., HP la or ΗΡΙβ; proteins or peptides that could recruit long non-coding RNAs (IncRNAs) fused to a fixed RNA binding sequence such as those bound by the MS2 coat protein, endoribonuclease Csy4, or the lambda N protein; enzymes that modify the methylation state of DNA (e.g., DNA methyltransferase (DNMT) or TET proteins); or enzymes that modify histone subunits (e.g., histone acetyltransferases (HAT), histone deacetylases
(HDAC), histone methyltransferases (e.g., for methylation of lysine or arginine residues) or histone demethylases (e.g., for demethylation of lysine or arginine residues)) as are known in the art can also be used. A number of sequences for such domains are known in the art, e.g., a domain that catalyzes hydroxylation of methylated cytosines in DNA. Exemplary proteins include the Ten-Eleven- Translocation (TET)l-3 family, enzymes that converts 5-methylcytosine (5-mC) to 5- hydroxymethylcytosine (5-hmC) in DNA.
Sequences for human TET1-3 are known in the art and are shown
following table:
Figure imgf000036_0001
* Variant (1) represents the longer transcript and encodes the longer isoform (a).
Variant (2) differs in the 5' UTR and in the 3' UTR and coding sequence compared to variant 1. The resulting isoform (b) is shorter and has a distinct C-terminus compared to isoform a. In some embodiments, all or part of the full-length sequence of the catalytic domain can be included, e.g., a catalytic module comprising the cysteine-rich extension and the 20GFeDO domain encoded by 7 highly conserved exons, e.g., the Tetl catalytic domain comprising amino acids 1580-2052, Tet2 comprising amino acids 1290-1905 and Tet3 comprising amino acids 966-1678. See, e.g., Fig. 1 of Iyer et al, Cell Cycle. 2009 Jun 1;8(11): 1698-710. Epub 2009 Jun 27, for an alignment illustrating the key catalytic residues in all three Tet proteins, and the supplementary materials thereof (available at ftp site
ftp.ncbi.nih.gov/pub/aravind/DONS/supplementary_material_DONS.html) for full length sequences (see, e.g., seq 2c); in some embodiments, the sequence includes amino acids 1418-2136 of Tetl or the corresponding region in Tet2/3.
Other catalytic modules can be from the proteins identified in Iyer et al., 2009. In some embodiments, the heterologous functional domain is a biological tether, and comprises all or part of (e.g., DNA binding domain from) the MS2 coat protein, endoribonuclease Csy4, or the lambda N protein. These proteins can be used to recruit RNA molecules containing a specific stem-loop structure to a locale specified by the dCas9 gRNA targeting sequences. For example, a dCas9 fused to MS2 coat protein, endoribonuclease Csy4, or lambda N can be used to recruit a long non-coding RNA (IncRNA) such as XIST or HOTAIR; see, e.g., Keryer-Bibens et al, Biol. Cell 100: 125-138 (2008), that is linked to the Csy4, MS2 or lambda N binding sequence. Alternatively, the Csy4, MS2 or lambda N protein binding sequence can be linked to another protein, e.g., as described in Keryer-Bibens et al, supra, and the _„
36 protein can be targeted to the dCas9 binding site using the methods and compositions described herein. In some embodiments, the Csy4 is catalytically inactive.
In some embodiments, the fusion proteins include a linker between the dCas9 and the heterologous functional domains. Linkers that can be used in these fusion proteins (or between fusion proteins in a concatenated structure) can include any sequence that does not interfere with the function of the fusion proteins. In preferred embodiments, the linkers are short, e.g., 2-20 amino acids, and are typically flexible (i.e., comprising amino acids with a high degree of freedom such as glycine, alanine, and serine). In some embodiments, the linker comprises one or more units consisting of GGGS (SEQ ID NO:34) or GGGGS (SEQ ID NO:35), e.g., two, three, four, or more repeats of the GGGS (SEQ ID NO:34) or GGGGS (SEQ ID NO:35) unit. Other linker sequences can also be used.
Expression Systems
In order to use the guide R As described, it may be desirable to express them from a nucleic acid that encodes them. This can be performed in a variety of ways. For example, the nucleic acid encoding the guide RNA can be cloned into an intermediate vector for transformation into prokaryotic or eukaryotic cells for replication and/or expression. Intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors, or insect vectors, for storage or manipulation of the nucleic acid encoding the guide RNA for production of the guide RNA. The nucleic acid encoding the guide RNA can also be cloned into an expression vector, for administration to a plant cell, animal cell, preferably a mammalian cell or a human cell, fungal cell, bacterial cell, or protozoan cell.
To obtain expression, a sequence encoding a guide RNA is typically subcloned into an expression vector that contains a promoter to direct transcription. Suitable bacterial and eukaryotic promoters are well known in the art and described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual (3d ed. 2001); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al, eds., 2010). Bacterial expression systems for expressing the engineered protein are available in, e.g., E. coli, Bacillus sp., and
Salmonella (Palva et al, 1983, Gene 22:229-235). Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available. 3_,
The promoter used to direct expression of a nucleic acid depends on the particular application. For example, a strong constitutive promoter is typically used for expression and purification of fusion proteins. In contrast, when the guide RNA is to be administered in vivo for gene regulation, either a constitutive or an inducible promoter can be used, depending on the particular use of the guide RNA. In addition, a preferred promoter for administration of the guide RNA can be a weak promoter, such as HSV TK or a promoter having similar activity. The promoter can also include elements that are responsive to transactivation, e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, 1992, Proc. Natl. Acad. Sci. USA, 89:5547; Oligino et al, 1998, Gene Ther., 5:491-496; Wang et al, 1997, Gene Ther., 4:432-441; Neering et al, 1996, Blood, 88: 1147-55; and Rendahl et al, 1998, Nat. BiotechnoL, 16:757-761).
In addition to the promoter, the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic. Atypical expression cassette thus contains a promoter operably linked, e.g., to the nucleic acid sequence encoding the gRNA, and any signals required, e.g., for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination. Additional elements of the cassette may include, e.g., enhancers, and heterologous spliced intronic signals.
The particular expression vector used to transport the genetic information into the cell is selected with regard to the intended use of the gRNA, e.g., expression in plants, animals, bacteria, fungus, protozoa, etc. Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and commercially available tag-fusion expression systems such as GST and LacZ.
Expression vectors containing regulatory elements from eukaryotic viruses are often used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus. Other exemplary eukaryotic vectors include pMSG, pAV009/A+, pMTO10/A+, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 late promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells. 0
oo
The vectors for expressing the guide R As can include R A Pol III promoters to drive expression of the guide RNAs, e.g., the HI, U6 or 7SK promoters. These human promoters allow for expression of gRNAs in mammalian cells following plasmid transfection. Alternatively, a T7 promoter may be used, e.g., for in vitro transcription, and the RNA can be transcribed in vitro and purified. Vectors suitable for the expression of short RNAs, e.g., siRNAs, shRNAs, or other small RNAs, can be used.
Some expression systems have markers for selection of stably transfected cell lines such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase. High yield expression systems are also suitable, such as using a baculovirus vector in insect cells, with the gRNA encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.
The elements that are typically included in expression vectors also include a replicon that functions in E. coli, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of recombinant sequences.
Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of protein, which are then purified using standard techniques (see, e.g., Colley et al, 1989, J. Biol. Chem., 264: 17619-22; Guide to Protein Purification, in Methods in Enzymology, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, 1977, J. Bacteriol. 132:349-351; Clark-Curtiss & Curtiss, Methods in Enzymology 101 :347-362 (Wu et al, eds, 1983).
Any of the known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, nucleofection, liposomes,
microinjection, naked DNA, plasmid vectors, viral vectors, both episomal and integrative, and any of the other well-known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the gRNA.
The present invention includes the vectors and cells comprising the vectors. 3g
EXAMPLES
The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.
Example 1. Assessing specificity of RNA-guided endonucleases
CRISPR RNA-guided nucleases (RGNs) have rapidly emerged as a facile and efficient platform for genome editing. This example describes the use of a human cell-based reporter assay to characterize off-target cleavage of Cas9-based RGNs. Materials and Methods
The following materials and methods were used in Example 1.
Construction of guide RNAs
DNA oligonucleotides (Table A) harboring variable 20 nt sequences for Cas9 targeting were annealed to generate short double-strand DNA fragments with 4 bp overhangs compatible with ligation into BsmBI-digested plasmid pMLM3636.
Cloning of these annealed oligonucleotides generates plasmids encoding a chimeric +103 single-chain guide RNA with 20 variable 5' nucleotides under expression of a U6 promoter (Hwang et al., Nat Biotechnol 31, 227-229 (2013); Mali et al., Science 339, 823-826 (2013)). pMLM3636 and the expression plasmid pJDS246 (encoding a codon optimized version of Cas9) used in this study are both available through the non-profit plasmid distribution service Addgene (addgene.org/crispr-cas).
Table A
gRNA Target Sequence Position | Oligos for generating gRNA expression plasmid
EGFP Target Site 1
Figure imgf000041_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000046_0001
Sequences of o igonucleotides used to generate expression plasmids encoding single gRNAs/variant single gRNAs targeted to sites in the EGFP reporter gene and single gRNAs targeted to six endogenous human gene targets. #, SEQ ID NO:.
.„
46
EGFP Activity Assays
U20S.EGFP cells harboring a single integrated copy of an EGFP-PEST fusion gene were cultured as previously described (Reyon et al, Nat Biotech 30, 460- 465 (2012)). For transfections, 200,000 cells were Nucleofected with the indicated amounts of sgRNA expression plasmid and pJDS246 together with 30 ng of a Td- tomato-encoding plasmid using the SE Cell Line 4D-Nucleofector™ X Kit (Lonza) according to the manufacturer's protocol. Cells were analyzed 2 days post- transfection using a BD LSRII flow cytometer. Transfections for optimizing gRNA/Cas9 plasmid concentration were performed in triplicate and all other transfections were performed in duplicate.
PCR amplification and sequence verification of endogenous human genomic sites
PCR reactions were performed using Phusion Hot Start II high-fidelity DNA polymerase (NEB) with PCR primers and conditions listed in Table B. Most loci amplified successfully using touchdown PCR (98 °C, 10 s; 72-62 °C, -1 °C/cycle, 15 s; 72 °C, 30 s]10 cycles, [98 °C, 10 s; 62 °C, 15 s; 72 °C, 30 s]25 cycles). PCR for the remaining targets were performed with 35 cycles at a constant annealing temperature of 68 °C or 72 °C and 3% DMSO or 1M betaine, if necessary. PCR products were analyzed on a QIAXCEL capillary electrophoresis system to verify both size and purity. Validated products were treated with ExoSap-IT (Affymetrix) and sequenced by the Sanger method (MGH DNA Sequencing Core) to verify each target site.
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Sequences and characteristics of genomic on- and off-target sites for six RGNs targeted to endogenous human genes and primers and PCR conditions used to amplify these sites.
Determination of RGN-induced on- and off-target mutation frequencies in human cells
For U20S.EGFP and K562 cells, 2 x 105 cells were transfected with 250 ng of gR A expression plasmid or an empty U6 promoter plasmid (for negative controls), 750 ng of Cas9 expression plasmid, and 30 ng of td-Tomato expression plasmid using the 4D Nucleofector System according to the manufacturer's instructions (Lonza). For HEK293 cells, 1.65 x 105 cells were transfected with 125 ng of gRNA expression plasmid or an empty U6 promoter plasmid (for the negative control), 375 ng of Cas9 expression plasmid, and 30 ng of a td-Tomato expression plasmid using
Lipofectamine LTX reagent according to the manufacturer's instructions (Life Technologies). Genomic DNA was harvested from transfected U20S.EGFP,
HEK293, or K562 cells using the QIAamp DNA Blood Mini Kit (QIAGEN), according to the manufacturer's instructions. To generate enough genomic DNA to amplify the off-target candidate sites, DNA from three Nucleofections (for
U20S.EGFP cells), two Nucleofections (for K562 cells), or two Lipofectamine LTX transfections was pooled together before performing T7EI. This was done twice for each condition tested, thereby generating duplicate pools of genomic DNA
representing a total of four or six individual transfections. PCR was then performed using these genomic DNAs as templates as described above and purified using
Ampure XP beads (Agencourt) according to the manufacturer's instructions. T7EI assays were performed as previously described (Reyon et al, 2012, supra).
DNA sequencing of NHE J-mediated indel mutations
Purified PCR products used for the T7EI assay were cloned into Zero Blunt TOPO vector (Life Technologies) and plasmid DNAs were isolated using an alkaline lysis miniprep method by the MGH DNA Automation Core. Plasmids were sequenced using an Ml 3 forward primer (5' - GTAAAACGACGGCCAG - 3' (SEQ ID
NO: 1059) by the Sanger method (MGH DNA Sequencing Core).
Example la. Single Nucleotide Mismatches
To begin to define the specificity determinants of RGNs in human cells, a large-scale test was performed to assess the effects of systematically mismatching various positions within multiple gRNA/target DNA interfaces. To do this, a quantitative human cell-based enhanced green fluorescent protein (EGFP) disruption „_
63 assay previously described (see Methods above and Reyon et al, 2012, supra) that enables rapid quantitation of targeted nuclease activities (Fig. 2B) was used. In this assay, the activities of nucleases targeted to a single integrated EGFP reporter gene can be quantified by assessing loss of fiuorescence signal in human U20S.EGFP cells caused by inactivating frameshift insertion/deletion (indel) mutations introduced by error prone non-homologous end-joining (NHEJ) repair of nuclease-induced double- stranded breaks (DSBs) (Fig. 2B). For the studies described here, three -100 nt single gRNAs targeted to different sequences within EGFP were used, as follows: EGFP Site 1 GGGCACGGGCAGCTTGCCGGTGG (SEQ ID NO:9)
EGFP Site 2 GATGCCGTTCTTCTGCTTGTCGG (SEQ ID NO: 10) EGFP Site 3 GGTGGTGC AGATGAACTTC AGGG (SEQ ID NO : 11 )
Each of these gRNAs can efficiently direct Cas9-mediated disruption of EGFP expression (see Example le and 2a, and FIGs. 3E (top) and 3F (top)).
In initial experiments, the effects of single nucleotide mismatches at 19 of 20 nucleotides in the complementary targeting region of three EG -targeted gRNAs were tested. To do this, variant gRNAs were generated for each of the three target sites harboring Watson-Crick transversion mismatches at positions 1 through 19 (numbered 1 to 20 in the 3' to 5' direction; see Fig. 1) and the abilities of these various gRNAs to direct Cas9-mediated EGFP disruption in human cells tested (variant gRNAs bearing a substitution at position 20 were not generated because this nucleotide is part of the U6 promoter sequence and therefore must remain a guanine to avoid affecting expression.)
For EGFP target site #2, single mismatches in positions 1 - 10 of the gRNA have dramatic effects on associated Cas9 activity (Fig. 2C, middle panel), consistent with previous studies that suggest mismatches at the 5 ' end of gRNAs are better tolerated than those at the 3' end (Jiang et al., Nat Biotechnol 31, 233-239 (2013); Cong et al, Science 339, 819-823 (2013); Jinek et al, Science 337, 816-821 (2012)). However, with EGFP target sites #1 and #3, single mismatches at all but a few positions in the gRNA appear to be well tolerated, even within the 3 ' end of the sequence. Furthermore, the specific positions that were sensitive to mismatch differed for these two targets (Fig. 2C, compare top and bottom panels) - for „ .
64 example, target site #1 was particularly sensitive to a mismatch at position 2 whereas target site #3 was most sensitive to mismatches at positions 1 and 8.
Example lb. Multiple Mismatches
To test the effects of more than one mismatch at the gRNA/DNA interface, a series of variant gR As bearing double Watson-Crick transversion mismatches in adjacent and separated positions were created and the abilities of these gRNAs to direct Cas9 nuclease activity were tested in human cells using the EGFP disruption assay. All three target sites generally showed greater sensitivity to double alterations in which one or both mismatches occur within the 3 ' half of the gRNA targeting region. However, the magnitude of these effects exhibited site-specific variation, with target site #2 showing the greatest sensitivity to these double mismatches and target site #1 generally showing the least. To test the number of adjacent mismatches that can be tolerated, variant gRNAs were constructed bearing increasing numbers of mismatched positions ranging from positions 19 to 15 in the 5' end of the gRNA targeting region (where single and double mismatches appeared to be better tolerated).
Testing of these increasingly mismatched gRNAs revealed that for all three target sites, the introduction of three or more adjacent mismatches results in significant loss of RGN activity. A sudden drop off in activity occurred for three different EGFP-targeted gRNAs as one makes progressive mismatches starting from position 19 in the 5' end and adding more mismatches moving toward the 3' end. Specifically, gRNAs containing mismatches at positions 19 and 19+18 show essentially full activity whereas those with mismatches at positions 19+18+17, 19+18+17+16, and 19+18+17+16+15 show essentially no difference relative to a negative control (Figure 2F). (Note that we did not mismatch position 20 in these variant gRNAs because this position needs to remain as a G because it is part of the U6 promoter that drives expression of the gRNA.)
Additional proof of that shortening gRNA complementarity might lead to RGNs with greater specificities was obtained in the following experiment: for four different EGFP-targeted gRNAs (Figure 2H), introduction of a double mismatch at positions 18 and 19 did not significantly impact activity. However, introduction of another double mismatch at positions 10 and 11 then into these gRNAs results in near complete loss of activity. Interestingly introduction of only the 10/11 double mismatches does not generally have as great an impact on activity. Taken together, these results in human cells confirm that the activities of RGNs can be more sensitive to mismatches in the 3 ' half of the gRNA targeting sequence. However, the data also clearly reveal that the specificity of RGNs is complex and target site-dependent, with single and double mismatches often well tolerated even when one or more mismatches occur in the 3 ' half of the gRNA targeting region. Furthermore, these data also suggest that not all mismatches in the 5 ' half of the gRNA/DNA interface are necessarily well tolerated.
In addition, these results strongly suggest that gRNAs bearing shorter regions of complementarity (specifically ~17 nts) will be more specific in their activities. We note that 17 nts of specificity combined with the 2 nts of specificity conferred by the PAM sequence results in specification of a 19 bp sequence, one of sufficient length to be unique in large complex genomes such as those found in human cells.
Example lc. Off-Target Mutations
To determine whether off-target mutations for RGNs targeted to endogenous human genes could be identified, six single gRNAs that target three different sites in the VEGFA gene, one in the EMX1 gene, one in the RNF2 gene, and one in the FANCF gene were used (Table 1 and Table A). These six gRNAs efficiently directed Cas9-mediated indels at their respective endogenous loci in human
U20S.EGFP cells as detected by T7 Endonuclease I (T7EI) assay (Methods above and Table 1). For each of these six RGNs, we then examined dozens of potential off- target sites (ranging in number from 46 to as many as 64) for evidence of nuclease- induced NHEJ-mediated indel mutations in U20S.EGFP cells. The loci assessed included all genomic sites that differ by one or two nucleotides as well as subsets of genomic sites that differ by three to six nucleotides and with a bias toward those that had one or more of these mismatches in the 5 ' half of the gRNA targeting sequence (Table B). Using the T7EI assay, four off-target sites (out of 53 candidate sites examined) for VEGFA site 1, twelve (out of 46 examined) for VEGFA site 2, seven (out of 64 examined) for VEGFA site 3 and one (out of 46 examined) for the EMX1 site (Table 1 and Table B) were readily identified. No off-target mutations were detected among the 43 and 50 potential sites examined for the RNF2 or FANCF genes, respectively (Table B). The rates of mutation at verified off-target sites were very high, ranging from 5.6% to 125% (mean of 40%) of the rate observed at the intended target site (Table 1). These bona fide off-targets included sequences with „
DO mismatches in the 3 ' end of the target site and with as many as a total of five mismatches, with most off-target sites occurring within protein coding genes (Table 1). DNA sequencing of a subset of off-target sites provided additional molecular confirmation that indel mutations occur at the expected RGN cleavage site (Figs. 8A- C).
Table 1 On- and off-target mutations induced by RGNs
desi ned to endo enous human enes
Figure imgf000068_0001
"OT" indicates off-target sites (with numbering of sites as in Table E). Mismatches from the on-target (within the 20 bp region to which the gRNA hybridizes) are highlighted as bold, 5 underlined text. Mean indel mutation frequencies in U20S.EGFP, HEK293, and K562 cells were determined as described in Methods. Genes in which sites were located (if any) are shown. All sites listed failed to show any evidence of modification in cells transfected with Cas9 expression plasmid and a control U6 promoter plasmid that did not express a functional gRNA. N.D. = none detected;— = not tested. Example Id. Off-Target Mutations in Other Cell Types
Having established that RGNs can induce off-target mutations with high frequencies in U20S.EGFP cells, we next sought to determine whether these nucleases would also have these effects in other types of human cells. We had chosen U20S.EGFP cells for our initial experiments because we previously used these cells to evaluate the activities of TALENs15 but human HEK293 and K562 cells have been more widely used to test the activities of targeted nucleases. Therefore, we also assessed the activities of the four RGNs targeted to VEGFA sites 1, 2, and 3 and the EMX1 site in HEK293 and K562 cells. We found that each of these four RGNs efficiently induced NHEJ-mediated indel mutations at their intended on-target site in these two additional human cell lines (as assessed by T7EI assay) (Table 1), albeit with somewhat lower mutation frequencies than those observed in U20S.EGFP cells. Assessment of the 24 off-target sites for these four RGNs originally identified in U20S.EGFP cells revealed that many were again mutated in HEK293 and K562 cells with frequencies similar to those at their corresponding on-target site (Table 1). As expected, DNA sequencing of a subset of these off-target sites from HEK293 cells provided additional molecular evidence that alterations are occurring at the expected genomic loci (Figs. 9A-C). We do not know for certain why in HEK293 cells four and in K562 cells eleven of the off-target sites identified in U20S.EGFP cells did not show detectable mutations. However, we note that many of these off-target sites also showed relatively lower mutation frequencies in U20S.EGFP cells. Therefore, we speculate that mutation rates of these sites in HEK293 and K562 cells may be falling below the reliable detection limit of our T7EI assay (-2-5%) because RGNs generally appear to have lower activities in HEK293 and K562 cells compared with
U20S.EGFP cells in our experiments. Taken together, our results in HEK293 and
K562 cells provide evidence that the high-frequency off-target mutations we observe with RGNs will be a general phenomenon seen in multiple human cell types.
Example le. Titration of gRNA- and Cas9-expressing plasmid amounts used for the EGFP disruption assay
Single gRNAs were generated for three different sequences (EGFP SITES 1-3, shown above) located upstream of EGFP nucleotide 502, a position at which the introduction of frameshift mutations via non-homologous end-joining can robustly „.
69 disrupt expression of EGFP (Maeder, M . et al, Mol Cell 31 , 294-301 (2008);
Reyon, D. et al, Nat Biotech 30, 460-465 (2012)).
For each of the three target sites, a range of gRNA-expressing plasmid amounts (12.5 to 250 ng) was initially trans fected together with 750 ng of a plasmid expressing a codon-optimized version of the Cas9 nuclease into our U20S.EGFP reporter cells bearing a single copy, constitutively expressed EGFP-PEST reporter gene. All three RGNs efficiently disrupted EGFP expression at the highest concentration of gRNA-encoding plasmid (250 ng) (Fig. 3E (top)). However, RGNs for target sites #1 and #3 exhibited equivalent levels of disruption when lower amounts of gRNA-expressing plasmid were transfected whereas RGN activity at target site #2 dropped immediately when the amount of gRNA-expressing plasmid transfected was decreased (Fig. 3E(top)).
The amount of Cas9-encoding plasmid (range from 50 ng to 750 ng) transfected into our U20S.EGFP reporter cells was titrated and EGFP disruption assayed. As shown in Fig. 3F (top), target site #1 tolerated a three-fold decrease in the amount of Cas9-encoding plasmid transfected without substantial loss of EGFP disruption activity. However, the activities of RGNs targeting target sites #2 and #3 decreased immediately with a three-fold reduction in the amount of Cas9 plasmid transfected (Fig. 3F (top)). Based on these results, 25ng/250ng, 250ng/750ng, and 200ng/750ng of gRNA-/Cas9-expressing plasmids were used for EGFP target sites #1, #2, and #3, respectively, for the experiments described in Examples la- Id.
The reasons why some gRNA/Cas9 combinations work better than others in disrupting EGFP expression is not understood, nor is why some of these combinations are more or less sensitive to the amount of plasmids used for transfection. Although it is possible that the range of off-target sites present in the genome for these three gRNAs might influence each of their activities, no differences were seen in the numbers of genomic sites that differ by one to six bps for each of these particular target sites (Table C) that would account for the differential behavior of the three gRNAs. Table C
Numbers of off-target sites in the human genome for six RGNs targeted to endo enous human genes and three RGNs tar eted to the EGFP re orter ene
Figure imgf000071_0001
Off-target sites for each of the six RGNs targeted to the VEGFA, RNF2,
FANCF, and EMX1 genes and the three RGNs targeted to EGFP Target Sites #1, #2 and #3 were identified in human genome sequence build GRCh37. Mismatches were only allowed for the 20 nt region to which the gRNA anneals and not to the PAM sequence.
Example 2: Shortening gRNA complementarity length to improve RGN cleavage specificity
It was hypothesized that off-target effects of RGNs might be minimized without compromising on-target activity simply by decreasing the length of the gRNA-DNA interface, an approach that at first might seem counterintuitive. Longer gRNAs can actually function less efficiently at the on-target site (see below and Hwang et al., 2013a; Ran et al., 2013). In contrast, as shown above in Example 1, gRNAs bearing multiple mismatches at their 5 ' ends could still induce robust cleavage of their target sites (Figures 2A and 2C-2F), suggesting that these nucleotides might not be required for full on-target activity. Therefore, it was hypothesized that truncated gRNAs lacking these 5 ' nucleotides might show activities comparable to full-length gRNAs (Figure 2A). It was speculated that if the 5' nucleotides of full-length gRNAs are not needed for on-target activity then their presence might also compensate for mismatches at other positions along the gRNA- target DNA interface. If this were true, it was hypothesized that gRNAs might have greater sensitivity to mismatches and thus might also induce substantially lower levels of Cas9-mediated off-target mutations (Figure 2A). Experimental Procedures
The following experimental procedures were used in Example 2.
Plasmid construction
All gRNA expression plasmids were assembled by designing, synthesizing, annealing, and cloning pairs of oligonucleotides (IDT) harboring the complementarity region into plasmid pMLM3636 (available from Addgene) as described above (Example 1). The resulting gRNA expression vectors encode a -100 nt gRNA whose expression is driven by a human U6 promoter. The sequences of all oligonucleotides used to construct gRNA expression vectors are shown in Table D. The Cas9 DIOA nickase expression plasmid (pJDS271) bearing a mutation in the RuvC endonuclease domain was generated by mutating plasmid pJDS246 using a QuikChange kit (Agilent Technologies) with the following primers: Cas9 DIOA sense primer 5'- tggataaaaagtattctattggtttagccatcggcactaattccg-3' (SEQ ID NO: 1089); Cas9 DIOA antisense primer 5'-cggaattagtgccgatggctaaaccaatagaatactttttatcca-3' (SEQ ID NO: 1090). All the targeted gRNA plasmids and the Cas9 nickase plasmids used in this study are available through the non-profit plasmid distribution service Addgene (addgene . org/ crispr-cas) .
Table D Sequences of oligonucleotides used to construct gRNA expression plasmids
EGFP Target Site 1
Figure imgf000073_0001
Figure imgf000074_0001
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001
Human cell-based EGFP disruption assay
U20S.EGFP cells harboring a single-copy, integrated EGFP-PEST gene reporter have been previously described (Reyon et al, 2012). These cells were maintained in Advanced DMEM (Life Technologies) supplemented with 10% FBS, 2 mM GlutaMax (Life Technologies), penicillin/streptomycin and 400 μg/ml G418. To assay for disruption of EGFP expression, 2 x 105 U20S.EGFP cells were transfected in duplicate with gRNA expression plasmid or an empty U6 promoter plasmid as a negative control, Cas9 expression plasmid (pJDS246) (Example 1 and Fu et al, 2013), and 10 ng of td-Tomato expression plasmid (to control for transfection efficiency) using a LONZA 4D-Nucleofector™, with SE solution and DN100 program according to the manufacturer's instructions. We used 25 ng/250 ng, 250 ng/750 ng, 200 ng/750 ng, and 250 ng/750 ng of gRNA expression plasmid/Cas9 expression plasmid for experiments with EGFP site #1, #2, #3, and #4, respectively. Two days following transfection, cells were trypsinized and resuspended in
Dulbecco's modified Eagle medium (DMEM, Invitrogen) supplemented with 10% (vol/vol) fetal bovine serum (FBS) and analyzed on a BD LSRII flow cytometer. For each sample, transfections and flow cytometry measurements were performed in duplicate.
Transfection of human cells and isolation of genomic DNA
To assess the on-target and off-target indel mutations induced by RGNs targeted to endogenous human genes, plasmids were transfected into U20S.EGFP or HEK293 cells using the following conditions: U20S.EGFP cells were transfected using the same conditions as for the EGFP disruption assay described above.
HEK293 cells were transfected by seeding them at a density of 1.65 x 105 cells per well in 24 well plates in Advanced DMEM (Life Technologies) supplemented with 10% FBS and 2 mM GlutaMax (Life Technologies) at 37°C in a C02 incubator. After 22 - 24 hours of incubation, cells were transfected with 125 ng of gRNA expression plasmid or an empty U6 promoter plasmid (as a negative control), 375 ng of Cas9 expression plasmid (pJDS246) (Example 1 and Fu et al, 2013), and 10 ng of a td-Tomato expression plasmid, using Lipofectamine LTX reagent according to the manufacturer's instructions (Life Technologies). Medium was changed 16 hours after transfection. For both types of cells, genomic DNA was harvested two days post- transfection using an Agencourt DNAdvance genomic DNA isolation kit (Beckman) according to the manufacturer's instructions. For each RGN sample to be assayed, 12 ,0
/ o individual 4D transfection replicates were performed, genomic DNA was isolated from each of these 12 transfections, and then these samples were combined to create two "duplicate" pools each consisting of six pooled genomic DNA samples. Indel mutations were then assessed at on-target and off-target sites from these duplicate samples by T7EI assay, Sanger sequencing, and/or deep sequencing as described below.
To assess frequencies of precise alterations introduced by HDR with ssODN donor templates, 2xl05 U20S.EGFP cells were transfected 250 ng of gRNA expression plasmid or an empty U6 promoter plasmid (as a negative control), 750 ng Cas9 expression plasmid (pJDS246), 50 pmol of ssODN donor (or no ssODN for controls), and 10 ng of td-Tomato expression plasmid (as the transfection control). Genomic DNA was purified three days after transfection using Agencourt
DNAdvance and assayed for the introduction of a BamHl site at the locus of interest as described below. All of these transfections were performed in duplicate.
For experiments involving Cas9 nickases, 2 x 105 U20S.EGFP cells were transfected with 125 ng of each gRNA expression plasmid (if using paired gRNAs) or 250 ng of gRNA expression plasmid (if using a single gRNA), 750 ng of Cas9-D10A nickase expression plasmid (pJDS271), 10 ng of td-Tomato plasmid, and (if performing HDR) 50 pmol of ssODN donor template (encoding the BamHl site). All transfections were performed in duplicate. Genomic DNA harvested two days after transfection (if assaying for indel mutations) or three days after transfection (if assaying for HDR/ssODN-mediated alterations) using the Agencourt DNAdvance genomic DNA isolation kit (Beckman).
T7EI assays for quantifying frequencies of indel mutations
T7EI assays were performed as previously described (Example 1 and Fu et al, 2013). In brief, PCR reactions to amplify specific on-target or off-target sites were performed with Phusion high-fidelity DNA polymerase (New England Biolabs) using one of the two following programs: (1) Touchdown PCR program [(98°C, 10 s; 72- 62°C, -1 °C/cycle, 15 s; 72°C, 30 s) x 10 cycles, (98°C, 10 s; 62°C, 15 s; 72°C, 30 s) x 25 cycles] or (2) Constant Tm PCR program [(98°C, 10 s; 68°C or 72°C, 15 s; 72°C, 30 s) x 35 cycles], with 3% DMSO or 1 M betaine if necessary. All primers used for these amplifications are listed in Table E. Resulting PCR products ranged in size from 300 to 800 bps and were purified by Ampure XP beads (Agencourt) according to the manufacturer's instructions. 200ng of purified PCR products were 7g hybridized in 1 x NEB buffer 2 in a total volume of 19 μΐ and denatured to form heteroduplexes using the following conditions: 95 °C, 5 minutes; 95 to 85 °C, -2 °C/s; 85 to 25 °C, -0.1 °C/s; hold at 4 °C. 1 μΐ of T7 Endonuclease I (New England Biolabs, 10 units/μΐ) was added to the hybridized PCR products and incubated at 37°C for 15 minutes. The T7EI reaction was stopped by adding 2 μΐ of 0.25 M EDTA solution and the reaction products were purified using AMPure XP beads (Agencourt) with elution in 20 μΐ 0.1 xEB buffer (QIAgen). Reactions products were then analyzed on a QIAXCEL capillary electrophoresis system and the frequencies of indel mutations were calculated using the same formula as previously described (Reyon et al., 2012).
TABLE E
Wats
Mismatche non- on-
Expected s in Watso
Cric
Off-Target target Actual Target SEQ Reverse SEQ PCR n- Tran-
Publicatio Forward PCR k
Sequences compared in U20S.EGFP ID PCR ID Condi Crick sitio n ID Primer Tran
(Expected) - to on- cells NO : Primer NO : tions Trans ns sver
HS GRCh37 target -version
site sions
s
AGGGAGCA
GGGTGGGGGGAG TCCAGATGGCACA
Target 1 1269. 1270, GGAAAGTG 1271, DMSO
TTTGCTCCTGG TTGTCAG AGGT
ACCCAGAC
GGGTGGGGGGAG GGGGCCCACTCTT No
OTl-1 1272. 1 1273 TCCTGGTG 1274. 0 0 1
TTTGCCCCAGG CTTCCAT DMSO TGGC
ACCACCCT
GCGTGGGGGGTG GCTAAGCAGAGAT
OT1-2 1275. 2 1276 TTCCCCCA 1277. DMSO 2 0 0
TTTGCTCCCGG GCCTATGCC GAAA
GAATCACT
GGATGGAGGGAG ACCCCACAGCCAG
OT1-3 1278. 2 1279 GCACCTGG 1280. DMSO 0 0 2
TTTGCTCCTGG GTTTTCA CCATC
TAAAGGGC
GGGAGGGTGGAG TGCGGCAACTTCA
OT1-4 1281. 2 1282 GTGCTGGG 1283. DMSO 1 1 0
TTTGCTCCTGG GACAACC AGAG
TGCAGGGC
GGGTGGGTGGAG GCATGTCAGGATC
OT1-5 1284. 2 1285 CATCTTGT 1286. DMSO 0 2 0
TTTGCTACTGG TGACCCC GTGT
CTGGGTCT
CGGGGGAGGGAG CCACCACATGTTC
ΟΊ1-6 1287. 3 1288 GTTCCCTG 1289. DMSO 1 1 1
TTTGCTCCTGG TGGGTGC TGGG
GCAGGTCA
GAGTGGGTGGAG GGCTCTCCCTGCC
OT1-7 1290. 3 1291 AGTTGGAA 1292. DMSO 0 2 1
TTTGCTACAGG CTAGTTT CCCG
AGATTTGT
GGGAGGGGAGAG GGGGCTGAGAACA
0T1- TTTGTTCCAGG 1293. 1294, GCACTGCC 1295, DMSO
CATGAGATGCA TGCCT
TABLE E
GGACCTCT
GGGAGGGGGCAG CCCGACCTCCGCT
OTl-9 1296. 3 1297 GCACACCC 1298. DMSO 2 1 0
GTTGCTCCAGG CCAAAGC TGGC
CAGGAGGG
GGGAGGGGGGAG TGCAAGGTCGCAT
OTl-10 1299. 3 1300 GGAAGTGT 1301. DMSO 1 1 1
TGTGTTCCGGG AGTCCCA GTCC
GAGAGCAA
GGGGAGGGGAAG GCCCATTCTTTTT
OTl-11 1302. 3 1303 GTTTGTTC 1304. DMSO 0 1 2
TTTGCTCCTGG GCAGTGGA CCCAGG
GCTGCTGG
GGGGGTGGGGAC GCCCCCAGCCCCT
0T1-12 1305. 3 1306 TAGGGGAG 1307. DMSO 1 2 0
T TGCTCCAGG CTGTTTC CTGG
72C
GGGTGACG
GGGTCGGGGGAG CGGCTGCCTTCCC Annea
0T1-13 1308. 3 1309 CTTGCCAT 1310. 1 2 0
TGGGCTCCAGG TGAGTCC 1, 3%
GAGC DMSO
72C
GCTGAGAC
GGGTGGCTGGAG TGACCCTGGAGTA Annea
0T1-14 1311. 3 1312 AACCAGCC 1313. 2 1 0
TTTGCTGCTGG CAAAATGTTCCCA 1, 3%
CAGCT DMSO
GCAGCCGA
GGGTGGGGGGTG TGCCTCCACCCTT
0T1-15 1314. 3 1315 TCCACACT 1316. DMSO 1 0 2
CCTGCTCCAGG AGCCCCT
GGGG
CCCAGGAG
GGTTGAGGGGAG AAC ΊCAGGACAAC
0T1-16 1317. 3 1318 CAGGGTAC 1319. DMSO 0 1 2
TCTGCTCCAGG ACTGCCTGT AA GC
CCTTGGAA
GTGIGGGTGGCG TCCTCCTTGGAGA
0T1-17 1320. 3 1321 GGGGCCTT 1322. DMSO 0 3 0
TTTGCTCCAGG GGGGCCC GGTGG
GGCTGCTG
AGG1GGTGGGAG CCGAGGGCATGGG
0T1-18 1323. 4 1324 CGAGTTGC 1325. DMSO 0 1 3
CTTGTTCCTGG CAATCCT CAAC
GGGTTGCT
AGTTTGGGGGAG TGC ΊTTGCATGGG
0T1-19 1326. 4 1327 TGCCCTCT 1328. DMSO 0 2 2
T GCCCCAGG GTCTCAGACA GTGT
AGCTCCTTCTCAT CACAGAAG
ArGTGTGGGGAA.
OT1-20 1329. 4 TTCTCTTCTGCTG 1330 GATGTGTG 1331. DMSO 0 2 2
T TGCTCCAGG T CAGGTT
GGTCAGGT
CAGTGGGGGGAG AGCAGACACAGGT
0T1-21 1332. 4 1333 GTGCTGCT 1334. DMSO 1 1 2
CTT CTCCTGG GAATGCTGCT
AGGCA
TABLE E
ACTGCCTG No
GAGGGGGAGCAG CCTGTGGGGCTCT
OTl- -22 1335. 4 1336 CCAAAGTG 1337. DMSO 1 1 2
TTTGCTCCAGG CAGGTGC GGTGT TD
TGCCGGGT
GGAGGAGGGGAG AGCTGCACTGGGG
OTl -23 1338. 4 1339 AATAGCTG 1340. DMSO 0 1 3
TCTGCTCCAGG AATGAGT GCTT
72C
Annea
GGGGGCTT
GGAGGGGGGGCT CCAGCCTGGGCAA 1, 3%
OTl -24 1341. 4 1342 CCAGGTCA 1343. 0 3 1
TTTGCTCCAGG CAAAGCG DMSO,
CAGG
6%
DMSO
ACAGGTCC
GGGCAAGGGGAG TACCCCCACTGCC
OTl- -25 1344. 4
GTTGCTCCTGG 1345 ATGCTTAG 1346. DMSO 0 1 3
CCATTGC CAGAGGG
GGGTGATTGAAGTT
TGCTCCAGG (SEQ
CCGAGTCC
GGGTGATTGAAG
OTl- -26 1347. 4 ID NO:2225) ACGGATTCACGAC 0 /
1348 GTGGCAGA 1349. DMSO 2 2
TTTGCTCCAGG GGGTGATTGAAGTT GGAGGTGC 1
GAGC
TGCTGCAGG (SEQ
ID NO:2226)
TGGCCCAA
GGGTGTGGGGTC TGTGGTTGAAGTA
OTl- -27 1350. 4 1351 TTGGAAGT 1352. DMSO 3 1 0
ATTGCTCCAGG GGGGACAGGT GATTTCGT
GGCCCAAT
GGTGGGGGTGGG TGGGATGGCAGAG
OTl- -28 1353. 4 1354 CGGTAGAG 1355. DMSO 0 3 1
TTTGCTCCTGG TCATCAACGT GATGCA
TGCACCCA
GTGGGGGTAGAG ATGGGGCGCTCCA
OTl- -29 1356. 4 1357 CACAGCCA 1358. DMSO 0 3 1
TTTGCTCCAGG GTCTGTG GCAA
72C
AATTAGCT
TAGTGGAGGGAG GGGGAGGGAGGAC Annea
OTl -30 1359. 4 1360 GGGCGCGG 1361. 0 1 3
CTTGCTCCTGG CAGGGAA 1, 3%
TGGT DMSO
CAGGCGGC
TGCTCGGGGGAG ATCCCGTGCAGGA
OTl- -31 1362. 4 CTTGAG 1364.
TTTGCACCAGG AGTCGCC 1363 CC DMSO 3 1 0
GAAT
TGAGGAGA
TGGAGAGGGGAG CCCCAACCCTTTG
OTl- -32 1365. 4 1366 ACACCACA 1367. DMSO 1 2 1
TTGGCTCCTGG CTCAGCG GGCAGA
TABLE E
CCCCTCAC
TGGTGTTGGGAG ATCGACGAGGAGG
OTl-33 1368. 4 1369 TCAAGCAG 1370. DMSO 0 3 1
TCTGCTCCAGG GGGCCTT GCCC
CAGGGGCA
TTGGGGGGGCAG TGCTCAAGGGGCC No
OT1-34 1371. 4 1372 GTGGCAGG 1373. 1 3 0
TTTGCTCCTGG TGTTCCA DMSO AGTC
GGGAAGGG
AAGTAAGGGAAG TGCCTGGCACGCA
OT1-35 1374. 5 1375 GGAACAGG 1376. DMSO 0 0 5
TTTGCTCCTGG GTAGGTG TGCA
AGAAGAGGGGAT
OT1-36 1377. 5 Not optimized 1 1 3
TTTGCTCCTGG
GCTGCTCG
ATCTGGGGTGAT ACCTGGGCTTGCC
OT1-37 1378. 5 1379 CAG TAAG 1380. DMSO 1 3 1
TTTGCTCCTGG ACTAGGG CACCA
GGTTCCAC
CTCTGCTGGGAG GTGGCCGGGCTAC
OT1-38 1381. 5 1382 AAGCTGGG 1383. DMSO 3 2 0
TTTGCTCCTGG TGCTACC GGCA
CTGGTGGGGGAG
OT1-39 1384. 5 Not optimized 1 3 1
CTTGCTCCAGG
AGAGTCAT
CTTTCGGGGGAG GCAAGAGGCGGAG
OT1-40 1385. 5 1386 CCATTTCC 1387. DMSO 2 3 0
TTTGCGCCGGG GAGACCC TGGGGGC
AGGGAATC 1M
CTTTGGGGTTAG GGGGTCAGTGGTG CTTTTTCC betai
0T1-41 1388. 5 1389 1390. 1 4 0
TTTGCTCCTGG ATATCCCCCT ATTGCTTG ne,
TTT TD
GCCTCCCC
GCTCTGGGGTAG AGAGAGGCCACGT
OT1-42 1391. 5 1392 TCCTCCTT 1393. DMSO 1 3 1
TTTGCTCCAGG GGAGGGT CCCA
TCTGACCG
GTCTCTCGGGAG GACAGTGCCTTGC
OT1-43 1394. 5 1395 GTATGCCT 1396. DMSO 3 2 0
TTTGCTCCGGG GATGCAC GACG
TGGTC AG
TCCTGAGGGCAG TGTGTGAACGCAG
OT1-44 1397. 5 1398 TACTTCCT 1399. DMSO 3 1 1
TTTGCTCCAGG CCTGGCT CCAGCCTT
CCCACTGC
TCTTTGGGAGAG GGTTCTCCCTTGG
OT1-45 1400. 5 1401 TCCTAGCC 1402. DMSO 1 3 1
TTTGCTCCAGG CTCCTGTGA CTGC
TABLE E
AGCTTTGG
TGAAGTCAACAAT
ACAACTGGGGAG TAGTTGGA
OTl-46 1403. 6 CTAAGCTTCCACC 1404 1405. DMSO 3 1 2
TTTGCTCCTGG GTCTTTGA T AGG
GCACAGCC
ACAAGGTGGAAG TGATTGGGCTGCA
OT1-47 1406. 6 1407 TGCCCTTG 1408. DMSO 2 1 3
TTTGCTCCTGG GTTCATGTACA
GAAG
AGCGGCTT
ACATAGAAGGAG TCCATGGGCCCCT
OT1-48 1409. 6 1410 CTGCTTCT 1411. DMSO 1 0 5
TTTGCTCCAGG CTGAAAGA GCGA
GAGTTCCT
AGACCCAGGGAG GCGGTTGGTGGGG
OT1-49 1412. 6 1413 CCTCCCGC 1414. DMSO 2 0 4
TTTGCTCCCGG TTGATGC CAGT
GCTTTTGC
AGACCCAGGGAG AGGCAAGATTTTC
OT1-50 1415. 6 1416 CTGGGACT 1417. DMSO 2 0 4
TTTGCTCCCGG C GTGTGCAAGA CCGC
GCTCTGTC No
CACGGAGGGGTG GCTGCTGGTCGGG
0T1-51 1418. 6 1419 CCACTTCC 1420. DMSO 3 1 2
TTTGCTCCTGG CTCTCTG CCTGG TD
CGCCCCTA
CAGAGCTTGGAG GCTGCGAGGCTTC
OT1-52 1421. 6 1422 GAGCTAAG 1423. DMSO 3 2 1
TTTGCTCCAGG CGTGAGA GGGGT
AGGGCTAG
CTATTGATGGAG CCAGGAGCCTGAG
OT1-53 1424. 6 1425 GACTGCAG 1426. DMSO 1 3 2
TTTGCTCCTGG AGCTGCC TGAGC
GCCTGGGG
C!TTTCTAGGGAG CTGTGCTCAGCCT
OT1-54 1427. 6 1428 CTGTGAGT 1429. DMSO 2 3 1
TTTGCTCCTGG GGGTGCT AGTTT
72C
ACTTGGCA
GCCATGCTGGAG AGCTCGCGCCAGA Annea
OT1-55 1430. 6 1431 GGCTGAGG 1432. 4 2 0
TTTGCTCCAGG TCTGTGG 1, 3%
CAGG DMSO
1433. 1434 1435.
CAGCAGAA
GACCCCCTCCAC AGAGAAGTCGAGG
Target 2 1436. 0 1437 AGTTCATG 1438. DMSO
CCCGCCTCCGG AAGAGAGAG GTTTCG
ACTGATCG
GACCCCCCCCAC TGGACAGCTGCAG
0T2-1 1439. 2 1440 ATGATGGC 1441. DMSO 0 0 2
CCCGCCCCCGG TACTCCCTG CTATGGGT
TABLE E
GCAGCCTA
GGGCCCCTCCAC CAAGATGTGCACT
ΟΊ2-2 1442. 2 1443 TTGTCTCC 1444. DMSO 1 0 1
CCCGCCTCTGG TGGGCTA TGGT
AGCATCAT
AACCCCA CCAC GTCCAGTGCCTGA
ΟΊ2-3 1445. 3 1446 GCCTCCAG 1447. DMSO 1 1 1
CCGGCCTCAGG CCCTGGC CTTCA
GCAGCTCC
CACCCCCTCAAC GCTCCCGATCCTC
OT2-4 1448. 3 1449 CACCACCC 1450. DMSO 1 2 0
ACCGCCTCAGG TGCCACC TCAG
GTGCGTGT
CACCCCCTCCCC GGGGACAGGCAGG
ΟΊ2-5 1451. 3 1452 CCGTTCAC 1453. DMSO 1 1 1
TCCGCCTCAGG CAAGGAG CCCT
CGTGATTC
CTACCCCTCCAC AAGGGGCTGCTGG
OT2-6 1454. 3 1455 GAGTTCCT 1456. DMSO 2 1 0
CCCGCCTCCGG GTAGGAC GGCA
1M
CTGCGAGA
GACCCGCCCCGC GACCCTCAGGAAG betai
OT2-7 1457. 3 1458 TGCCCCAA 1459. 1 0 2
CCCGCCTCTGG CTGGGAG ne,
ATCG TD
TGCTGGGA
GATCGACTCCAC CCGCGGCGCTCTG
ΟΊ2-8 1460. 3 1461 TTACAGGC 1462. DMSO 1 1 1
CCCGCCTCTGG CTAGA GCGA
TGCCTGGC
GCCCCCACCCAC CCAGGTGGTGTCA
ΟΊ2-9 1463. 3 1464 CCTCTCTG 1465. DMSO 0 2 1
CCCGCCTCTGG GCGGAGG AGTCT
1M
CAGCGCAG
GCCCCGCTCCTC CGACTCCACGGCG betai
OT2-10 1466. 3 1467 TCCAGCCC 1468. 2 1 0
CCCGCCTCCGG TCTCAGG ne,
GATG
TD
GCTACAGG
GGCCCCCTCCAC CTTCCCTCCCCCA
0T2-11 1469. 3 1470 TTGCACAG 1471. DMSO 1 1 1
CAGGCCTCAGG GCACCAC TGAGAGGT
72C
CCCAGCCG
GGCCCCCTCCTC CCCCGGGGAGTCT Annea
OT2-12 1472. 3 1473 TTCCAGGT 1474. 1 0 2
CTCGCCTCTGG GTCCTGA 1, 3%
CTTCC
DMSO
TCCAGGGT
GGCGCCCTCCAC GAAGCGCGAAAAC
OT2-13 1475. 3 1476 CCTTCTCG 1477. DMSO 1 0 2
CCTGCCTCGGG CCGGCTC GCCC
TABLE E
CATGGGGC
GTCCTCCACCAC AGGGTGGTCAGGG
0T2- -14 1478. 3 1479 TCGGACCT 1480. DMSO 2 0 1
CCCGCCTCTGG AGGCCTT CGTC
72C
TGCCAGGA
TACCCCCCACAC GGGAAGAGGCAGG Annea
0T2- -15 1481. 3 1482 AGGAAGCT 1483. 0 2 1
CCCGCCTCTGG GCTGTCG 1, 3%
GGCC
DMSO
68C
CCCTTAGC
AACCCATTCCAC GAGTGACGATGAG Annea
0T2 -16 1484. 4 1485 TGCAGTCG 1486. 0 1 3
CCTGCCTCAGG CCCCGGG 1, 3%
CCCC
DMSO
TGAAGATG
ACACCCCCCCAC CCCATGAGGGGTT
0T2- -17 1487. 4 1488 GGCAGTTT 1489. DMSO 0 2 2
CCCGCCTCAGG TGAGTGC GGGG
ACTGGGGT
AGCCCCCACCTC CACCTGGGGCATC
0T2 -18 1490. 4 1491 TGGGGAGG 1492. DMSO 2 0 2
CCCGCCTCGGG TGGGTGG GGAT
CCATTTGT
ATTCCCCCCCAC TCATGATCCCCAA
0T2- -19 1493. 4 1494 GCTGATCT 1495. DMSO 1 0 3
CCCGCCTCAGG AAGGGCT GTGGGT
AGGAAATG
CCCCACCCCCAC TGGTGCCCAGAAT
0T2 -20 1496. 4 1497 TGTTGTGC 1498. DMSO 1 2 1
CCCGCCTCAGG AGTGGCCA
CAGGGC
GCCAAGTG
No
CCCCCCCACCAC GCCTCAGACAACC TTACTCAT
0T2- -21 1499. 4 1500 1501. DMSO 2 1 1
CCCGCCCCGGG CTGCCCC CAAGAAAG TD
TGG
TCCCGAAC
CCCCCCCCCCCC GCCGGGACAAGAC
0T2- -22 1502. 4 1503 TCCCGCAA 1504. DMSO 1 2 1
CCCGCCTCAGG TGAGTTGGG AACG
C GGAACC No
CGCCCTCCCCAC TGCTGCAGGTGGT
0T2- -23 1505. 4 1506 GCATCCTC 1507. DMSO 1 0 3
CCCGCCTCCGG TCCGGAG CGCA TD
GGCTGTGC
CTCCCCACCCAC ACACTGGTCCAGG
0T2- -24 1508. 4 1509 CTTCCGAT 1510. DMSO 2 1 1
CCCGCCTCAGG TCCCGTCT GGAA
AGGCTTCT
CTCTCCCCCCACCC
CTCTCCCCCCAC ATCGCGCCCAAAG GGAAAAGT
0T2 -25 1511. 4 CCCCTCTGG (SEQ 1512 1513. DMSO 3 0 2
CCCGCCTCTGG CACAGGT CCTCAATG ID NO:2227)
CA
TABLE E
GCCTCTCTGCAC
OT2-26 1514. 4 Not optimized 1 1 2
CCCGCCTCAGG
AGCCACAC
GrCACTCCCCAC CCCTCATGGTGGT
OT2-27 1515. 4 1516 ATCTTTCT 1517. DMSO 1 1 2
CCCGCCTCTGG CTTACGGCA GGTAGGG
AGGGTGGG
TGCCCCCTCCCC TGCGTCGCTCATG
OT2-28 1518. 4 1519 GTGTACTG 1520. DMSO 0 3 1
CCAGCCTCTGG CTGGGAG GCTCA
1M
TGGCCTTG
TGCCCCTCCCAC GAGCTGAGACGGC betai
OT2-29 1521. 4 1522 AACTCTTG 1523. 0 1 3
CCCGCCTCTGG ACCAC G ne,
GGCT TD
rrCCCCTTCCAC
OT2-30 1524. 4 Not optimized 1 2 1
CCAGCCTCTGG
CAGTAGGT
rrCTCCCTCCTC AGTGAGAGTGGCA
OT2-31 1525. 4 1526 GGTCCCTT 1527. DMSO 2 1 1
CCCGCCTCGGG CGAACCA CCGC
ACCCTCGCCCAC
OT2-32 1528. 5 Not optimized 1 1 3
CCCGCCTCAGG
AAGCCGAA
AGCCAACCCCAC GGGAGAACCTTGT
OT2-33 1529. 5 1530 AAGCTGGG 1531. DMSO 0 2 3
CCCGCCTCTGG CCAGCCT CAAA
ACACAGTC
AGGCCCCCACAC CTTCCCAGTGTGG
OT2-34 1532. 5 1533 AGAGCTCC 1534. DMSO 1 1 3
CCCGCCTCAGG CCCGTCC GCCG
AGGCCCCCCCGC
OT2-35 1535. 5 Not optimized 1 0 4
CCCGCCTCAGG
68C
TCGACTGG
AFCTGCCACCAC CTGAGAGGGGGAG Annea
OT2-36 1536. 5 1537 TCTTGTCC 1538. 3 0 2
CCCGCCTCCGG GGGGAGG 1, 3%
TCCCA DMSO
1M
TGCAGCCA
CATCTTCCCCAC CAGCCTGCTGCAT betai
OT2-37 1539. 5 1540 AGAGAAAA 1541. 1 0 4
CCCGCCTCTGG CGGAAAA ne,
AGCCT
TD
ACCCGACT
C1TTTCCCTCCAC TCCCTCTGACCCG
OT2-38 1542. 5 1543 TCCTCCCC 1544. DMSO 2 1 2
CCAGCCTCTGG GAACCCA ATTGC
GCCAGGAG
GrCGAGGTCCAC TGGGGGTTGCGTG
OT2-39 1545. 5 1546 GACACCAG 1547. DMSO 4 1 0
CCCGCCTCAGG CTTGTCA GACC
TABLE E
GGCCTGAG
GrCGAGGTCCAC ATCAGGTGCCAGG
0T2- -40 1548. 5 1549 AGTGGAGA 1550. DMSO 4 1 0
CCCGCCTCAGG AGGACAC
GTGG
TCAGACCTCCAC
0T2- -41 1551. 5 Not optimized 1 4 0
CCCGCCTCAGG
ACCTCTCC
TGCAACCTCCTC TGAGCCACATGAA AAGTCTCA
0T2 -42 1552. 5 1553 1554. DMSO 1 3 1
CCCGCCTCGGG TCAAGGCCTCC GTAACTCT CT
CTTTGGTG
ACCAGTCTGCAC GGTCCCTCTGTGC
0T2- -43 1555. 6 1556 GACCTGCA 1557. DMSO 2 2 2
CCCGCCTCTGG AGTGGAA CAGC
GCTGGGAC
ACTACCCACCTC GCGAGGCTGCTGA
0T2- -44 1558. 6 1559 TACAGACA 1560. DMSO 2 2 2
CCCGCCTCAGG CTTCCCT TGTGCCA
ArrTCCTCCCCCCC AAATCCTG
ArTTCCCCCCCC ATTGCAGGCGTGT
0T2- -45 1561. 6 C-CCTCAGG (SEQ CCAGGCA 1562 CATGGTGA 1563. DMSO 1 1 5
CCCGCCTCAGG ID NO:2228) CCAGGCA TGGGAGT
TGCTCTGCCA T ACAGCCTC
CCACCATCCCAC
0T2 -46 1564. 6 ATGTCCTATGAAC 1565 TTCTCCAT 1566. DMSO 1 3 2
CCCGCCTCTGG T GACTGAGC
GCGGTGGG
CCCAAGCCCCAC TCCGCCCAAACAG
0T2 -47 1567. 6 1568 GAAGCCAT 1569. DMSO 2 3 1
CCCGCCTCGGG GAGGCAG TGAG
CCTGTCGG
CCGCGCTTCCGC GGGGGTCTGGCTC
0T2- -48 1570. 6 1571 GAGAGTGC 1572. DMSO 3 1 2
CCCGCCTCTGG ACCTGGA CTGC
TCCTGGTTCATTT ACTCCAGA
CCTGCCATGCAC
0T2- -49 1573. 6 GCTAGAACTCTGG 1574 TGCAACCA 1575. DMSO 3 2 1
CCCGCCTCAGG A GGGCT
GCTTCACC
CrGCCTCCTCAC CGTGTGGTGAGCC
0T2 -50 1576. 6 1577 GTAGAGGC 1578. DMSO 3 0 3
CCCGCCTCAGG TGAGTCT TGCT
TCAGTGAC
TCTTCTTTCCAC AGGCCCTGATAAT AACCTTTT
0T2- -51 1579. 6 1580 1581. DMSO 0 2 4
CCCGCCTCAGG TCATGCTACCAA GTATTCGG CA
rrGACCCCCCGC
0T2- -52 1582. 6 Not optimized 2 2 2
CCCGCCTCAGG
TABLE E
AGGGAGCA
GGTGAGTGAGTG TCCAGATGGCACA
Target 3 1583. 0 1584 GGAAAGTG 1585. DMSO
TGTGCGTGTGG TTGTCAG AGGT
CACCGACA
GGTGAGTGAGTG GCAGGCAAGCTGT
0T3-1 1586. 1 1587 CACCCACT 1588. DMSO 0 0 1
TGTGTGTGAGG CAAGGGT CACC
TACCCGGG
AGTGAGTGAGTG GAGGGGGAAGTCA
OT3-2 1589. 2 1590 CCGTCTGT 1591. DMSO 0 0 2
TGTGTGTGGGG CCGACAA TAGA
TGAATCCC
AGTGTGTGAGTG GACACCCCACACA
0T3-3 1592. 2 1593 TTCACCCC 1594. DMSO 1 0 1
TGTGCGTGTGG CTCTCATGC CAAG
CCAATCCA
GCTGAGTGAGTG TCCTTTGAGGTTC
OT3-4 1595. 2 1596 GGATGATT 1597. DMSO 1 0 1
TATGCGTGTGG ATCCCCC CCGC
GGGAGGTA
GGTGAGTCAGTG CAGGGCCAGGAAC
OT3-5 1598. 2 1599 TGTGCGGG 1600. DMSO 1 1 0
TGTGAGTGAGG ACAGGAA AGTG
GCCCAGGT
GGTGAGTGAGAG TGCAGCCTGAGTG
OT3-6 1601. 2 1602 GCTAAGCC 1603. DMSO 1 0 1
TGTGTGTGTGG AGCAAGTGT CCTC
1M
TGTGTCAT
GGTGAGTGAGTG TACAGCCTGGGTG betai
OT3-7 1604. 2 1605 GGACTTTC 1606. 1 1 0
AGTGAGTGAGG ATGGAGC ne,
CCATTGT
TD CTCCCCC
GGTGAGTGAGTG GGCAGGCATTAAA
OT3-8 1607. 2 1608 AAGGTATC 1609. DMSO 1 1 0
AGTGAGTGAGG CTCATCAGGTCC AGAGAGCT
GCTGCCGT
GGTGAGTGAGTG GGGCCTCCCTGCT
OT3-9 1610. 2 1611 CCGAACCC 1612. DMSO 0 1 1
CGTGCGGGTGG GGTTCTC AAGA
ACTCCGAA
GGTGAGTGTGTG ACAAACGCAGGTG
OT3-10 1613. 2 1614 AATGCCCC 1615. DMSO 1 1 0
TGTGAGTGTGG GACCGAA GCAGT
TTGAGAGG
GGTGAGTGTGTG AGGGGAGGGGACA
0T3-11 1616. 2 16Π GTTCAGTG 1618. DMSO 1 0 1
TGTGCATGTGG TTGCCT GTTGC
AGCCAACG
GGTGTGTGAGTG CTAATGCTTACGG
OT3-12 1619. 2 1620 GCAGATGC 1621. DMSO 1 0 1
TGTGTGTGTGG CTGCGGG AAAT
TABLE E
CACACATG 68C,
GGTGTGTGTGTG GAGCGAAGTTAAC
OT3-13 1622. 2 1623 CACATGCC 1624. 3% 2 0 0
TGTGCGTGCGG CCACCGC CCTG DMSO
GCATGTGTCTAAC TCCCCCAT
GGTGTGTGTGTG
OT3-14 1625. 2 TGGAGACAATAGC 1626 ATCAACAC 1627. DMSO 2 0 0
TGTGCGTGTGG A ACACA
TGGGCAAA
GGTGTGTGTGTG GCCCCTCCCGCCT
OT3-15 1628. 2 1629 GGACATGA 1630. DMSO 2 0 0
TGTGCGTGTGG TTTGTGT AACAGACA
ACGAACAG
GGTGTGTGTGTG GCCTCAGCTCTGC ATCATTTT
OT3-16 1631. 2 1632 1633. DMSO 2 0 0
TGTGCGTGTGG TCTTAAGCCC TCATGGCT TCC
CCCTCTCC
GTTGAGTGAATG CTCCAGAGCCTGG
OT3-17 1634. 2 1635 GGAAGTGC 1636. DMSO 0 1 1
TGTGCGTGAGG CCTACCA CTTG
GTTGCCTG
TGTGGGTGAGTG TCTGTCACCACAC
OT3-18 1637. 2 1638 GGGATGGG 1639. DMSO 0 1 1
TGTGCGTGAGG AGTTACCACC GTAT
GGGCATCA
ACTGTGTGAGTG GGGGACCCTCAAG
OT3-19 1640. 3 1641 AAGGATGG 1642. DMSO 2 0 1
TGTGCGTGAGG AGGCACT GGAT
ACAGTGAG
AGAGAGTGAGTG TGTGGAGGGTGGG
OT3-20 1643. 3 1644 GTGCGGTC 1645. DMSO 1 0 2
TGTGCATGAGG ACCTGGT TTTGGG
GGTGCAGT
AGCGAGTGGGTG CGGGGTGGCAGTG
OT3-21 1646. 3 1647 CCAAGAGC 1648. DMSO 0 0 3
TGTGCGTGGGG ACGTCAA CCCC
GGGAGACA
AGGGAGTGACTG AGCTGAGGCAGAG
OT3-22 1649. 3 1650 GAGCAGCG 1651. DMSO 1 1 1
TGTGCGTGTGG TCCCCGA CCTC
72C
AGGACGAC
AGTGAGTGAGTG ACCACCAGACCCC Annea
OT3-23 1652. 3 1653 TTGTGCCC 1654. 1 1 1
AGTGAGTGAGG ACCTCCA 1, 3%
CATTCA DMSO
72C
TCCACCCA
CATGAGTGAGTG GGGTCAGGACGCA Annea
OT3-24 1655. 3 1656 CCCACCCA 1657. 2 0 1
TGTGGGTGGGG GGTCAGA 1, 3%
TCCT DMSO
TABLE E
GCCCCCTC
CGTGAGTGTGTG ACACTCTGGGCTA
OT3-25 1658. 3 1659 ACCACATG 1660. DMSO 2 0 1
TATGCGTGTGG GGTGCTGGA ATGCT
TGGGGATC
GGACTGTGAGTG GGGGCCATTCCTC
OT3-26 1661. 3 1662 CTTGCTCA 1663. DMSO 3 0 0
TGTGCGTGAGG TGCTGCA TGGC
CCTGCACG
GGTGTGTGCCTG ACACACTGGCTCG
OT3-27 1664. 3 1665 AGGCCAGG 1666. DMSO 2 1 0
TGTGCGTGTGG CATTCACCA TGTT
CTCGCCGC
GriTCATGAGTG TGGGCACGTAGTA
OT3-28 1667. 3 1668 CGTGACTG 1669. DMSO 0 3 1
TGTGCGTGGGG AACTGCACCA TAGG
AGAGCACT
TGAGTGTGAGTG TCAGCTGGTCCTG
OT3-29 1670. 3 1671 GGGTAGCA 1672. DMSO 2 1 0
TGTGCGTGGGG GGCTTGG GTCAGT
GGTGGGCG 68C,
TGCCAGTGAGTG AGACACAGCCAGG
OT3-30 1673. 3 1674 TGTGTGTG 1675. 3% 1 1 1
TGTGCGTGTGG GCCTCAG ACC DMSO
72C
GAGAAGTC
TGGGTGTGAGTG ACACTCTCACACA Annea
OT3-31 1676. 3 1677 AGGGCTGG 1678. 1 2 0
TGTGCGTGTGG CGCACCAA 1, 3%
CGGG DMSO
TGGTGAGG
TGTATGTGAGTG ACTGCCTGCATTT
OT3-32 1679. 3 1680 GCTTCAGG 1681. DMSO 1 1 1
TGTGCGTGTGG CCCCGGT GAGC
TCCTTCTA
TGTGAGAGAGAG GCCAGGTTCATTG
OT3-33 1682. 3 1683 CACATCGG 1684. DMSO 2 1 0
TGTGCGTGTGG ACTGCCC CGGC
CTGACCTG
TGTGCCTGAGTG CGAGGGAGCCGAG
OT3-34 1685. 3 1686 GGGCTCTG 1687. DMSO 1 2 0
TGTGCGTGTGG TTCGTAA GTAC
GCACTGAG
TGTGTGTGTGTG TCCTCGGGAAGTC
OT3-35 1688. 3 1689 CAACCAGG 1690. DMSO 2 1 0
TGTGCGTGTGG ATGGCTTCA AGCAC
AGCGTGTGAGTG
OT3-36 1691. 4 Not optimized 1 0 3
TATGCGTGGGG
GCTCCCCT
A!TTGAGTGTGTG TAAACCGTTGCCC
OT3-37 1692. 4 1693 GCCAGGTG 1694. DMSO 2 1 1
AGTGCGTGGGG CCGCCTC AACC
TABLE E
CTGCGGAG
CATGTGTGGGTG CCTGCTGAGACTC
OT3-38 1695. 4 1696 TGGCTGGC 1697. DMSO 2 0 2
TGTGCGTGTGG CAGGTCC TATA
GGAGCAGC
CCCGAGTGTGTG CTCGGGGACTGAC
OT3-39 1698. 4 1699 TCTTCCAG 1700. DMSO 3 0 1
TGTGCGTGTGG AAGCCGG GGCC
CTGGCAGC
C GGAGTGAGTG CCCCGACCAAAGC
OT3-40 1701. 4 1702 CTCTGGAT 1703. DMSO 1 2 1
TGTGTGTGTGG AGGAGCA GGGG
G!TTTCATGAGTG
OT3-41 1704. 4 Not optimized 0 3 1
TGTGCGTGGGG
AGGCCGCG
TATGTGTGCGTG ATTTCAGAGCCCC
OT3-42 1705. 4 1706 GTGTTATG 1707. DMSO 1 2 1
TGTGCGTGTGG GGGGAAA GTTA
TGACATAT
TATGTGTGTGTG GCCAGTGGCTTAG TTTCCTGG
OT3-43 1708. 4 1709 1710. DMSO 2 1 1
TGTGCGTGGGG TGTCTTTGTGT GCCATGGG T
CCATGCTG
TCTGTGTGTGTG TGCCAGAAGAACA ACATCATA
OT3-44 1711. 4 1712 1713. DMSO 3 1 0
TGTGCGTGGGG TGGGCCAGA TACTGGGA AGC
CCAGGCTG
TCTGTGTGTGTG GCGTGTCTCTGTG
OT3-45 1714. 4 1715 GGCACACA 1716. DMSO 3 1 0
TGTGCGTGTGG TGCGTGC GGTT
TGAGCGTGAGTG
OT3-46 1717. 4 Not optimized 2 2 0
TGAGCGTGTGG
AGGATGAG
TGTCTTTGAGTG TGCCCAGTCCAAT TTCATGTC
OT3-47 1718. 4 1719 1720. DMSO 2 2 0
TGTGCGTGTGG ATTTCAGCAGCT CTTTGTGG GG
AATGACTC
GGGTGAAAATTTG
TrTGTGTGTGTG ATTCCCTG
OT3-48 1721. 4 GTACTGTTAGCTG 1722 1723. DMSO 2 2 0
TGTGCGTGTGG GGTATCTC T CCA
CAAGGTCG
AAGGCGTGTGTG TGCCCCATCAATC
OT3-49 1724. 5 1725 GCAGGGCA 1726. DMSO 1 2 2
TGTGCGTGTGG ACCTCGGC GTGA
TGAGAGTT
AATTCGTGTGTG GCCTCCTCTGCCG
OT3-50 1727. 5 1728 CCTGTTGC 1729. DMSO 1 2 2
TGTGCGTGGGG CTGGTAA
TCCACACT
TABLE E
A!TGGTGTGTGTG
OT3-51 1730. 5 Not optimized 2 2 1
TGTGCGTGTGG
ACATGCAT
CACGTGTGTGTG GCCACCAAAATAG
OT3-52 1731. 5 1732 CTGTGTGT 1733. DMSO 3 0 2
TGTGCGTGTGG CCAGCGT GCGT
TGTATCTT
ACAGACTGACCCT
GAAATTTGAGTG TCTTGCCA
OT3-53 1734. 5 TGAAAAATACCAG 1735 1736. DMSO 2 1 2
TGTGCGTGTGG ATGGTTTT T CCC
TCCTGGAG
TAAGTGTGTGTG AGCCAAATTTCTC
OT3-54 1737. 5 1738 AGCAGGCA 1739. DMSO 3 1 1
TGTGCGTGTGG AACAGCAGCACT TTTTTGT
GGCGGGAA
TATATGTGTGTG ACCTCCTTGTGCT
OT3-55 1740. 5 1741 GGTAACCC 1742. DMSO 2 1 2
TGTGCGTGGGG GCCTGGC TGGG
CACAAAGCTCTAC TGATCCGA
TATCTGTGTGTG
OT3-56 1743. 5 CTTTCCAGTAGTG 1744 TGGTTGTT 1745. DMSO 3 1 1
TGTGCGTGTGG T CACAGCT
ACGCACAA
T!TTATGTGTGTG TGTGGGGATTACC
OT3-57 1746. 5 1747 AAATGCCC 1748. DMSO 2 2 1
TGTGCGTGTGG TGCCTGGC TTGTCA
GCCCGAGC
rrTTTGTGTGTG TGAGGCAGACCAG
OT3-58 1749. 5 1750 ACAGTGTA 1751. DMSO 2 3 0
TGTGCGTGGGG TCATCCAGC GGGC
ACTGCATC
AAAAATTGTGTG ATTAGCTGGGCGT
OT3-59 1752. 6 1753 TCATCTCA 1754. DMSO 2 1 3
TGTGCGTGGGG GGCGGAG GGCAGCT
TCAGCTTC
ACAATGTGTGTG TGAAGCAGAAGGA ACATCTGT
OT3-60 1755. 6 1756 1757. DMSO 4 0 2
TGTGCGTGTGG GTGGAGAAGGA TTCAGTTC AGT
AGAGCAGA
AITGTGGTGTGTG TGGTGGAGTGTGT
OT3-61 1758. 6 1759 AAGAGAGT 1760. DMSO 1 3 2
TGTGCGTGTGG GTGTGGT GCCCA
TGCACAAG
CAAAATTGTGTG GCCCCTGTACGTC
OT3-62 1761. 6 1762 CCAC AG 1763. DMSO 3 1 2
TGTGCGTGTGG CTGACAGC CCTCTCT
TCTCTCGC
CCCTGGTGTGTG AGCGCAGGTAAAC
OT3-63 1764. 6 1765 CCCGTTTC 1766. DMSO 3 1 2
TGTGCGTGTGG AGGCCCA CTTGT
TABLE E
ACAGCAGG
TCCGCTTGTGTG ATGGGTGCCAGGT
OT3-64 1767. 6 1768 AAGGAGCC 1769. DMSO 2 3 1
TGTGCGTGGGG ACCACGC GCAG
AGGAGGTC
TCCTCGTGTGTG CGGGCGGGTGGAC
OT3-65 1770. 6 1771 TCGAGCCA 1772. DMSO 2 3 1
TGTGCGTGTGG AGATGAG GGGG
GTCTATAT
TTAAGGTGGGTG TCAACCTAGTGAA ACAGCCCA
OT3-66 1773. 6 1774 1775. DMSO 1 2 3
TGTGCGTGGGG CACAGACCACTGA CAACCTCA TGT
TGTCATTT
TTATATTGTGTG GCCAGGGCCAGTG CTTAGTAT
OT3-67 1776. 6 1777 1778. DMSO 2 4 0
TGTGCGTGGGG GATTGCT GTCAGCCG GA
GCCAGAGC
TTGAGGAGAGTG GAGCCCCACCGGT
OT3-68 1779. 6 1780 TACCCACT 1781. DMSO 1 3 2
TGTGCGTGAGG TCAGTCC CGCC
1782. 1783 1784.
GGGAAGGG
GAGTCCGAGCAG GGAGCAGCTGGTC
Target 4 1785. 0 1786 GGACACTG 1787. DMSO
AAGAAGAAGGG AGAGGGG GGGA
ATCTGCAC
GAGTTAGAGCAG TCTCTCCTTCAAC ATGTATGT
0T4-1 1788. 2 1789 1790. DMSO 0 1 1
AAGAAGAAAGG TCATGACCAGCT ACAGGAGT CAT
AAGACAGAGGAGAA AGGGTGTA
AAGTCAGAGGAG TGGGGAATCTCCA
OT4-2 1791. 3 QC 1792 CTGTGGGA 1793. DMSO 2 1 1
AAGAAGAAGGG GAAGAAGGG (SEQ ^^QCC
ID NO: 2229) AAGAACCCCC ACTTTGCA
ACTTCGTA
AAGTCCGAGGAG GATGGCCCCACTG GAGCCTTA
OT4-3 1794. 3 1795 1796. DMSO 1 0 2
AGGAAGAAAGG AGCACGT AACATGTG GC
1M
AGGATTAATGTTT TCAAACAA
AAGTCTGAGCAC betai
OT4-4 1797. 3 AAAGTCACTGGTG 1798 GGTGCAGA 1799. 1 0 2
AAGAAGAATGG ne,
G TACAGCA TD
TGCTCTGT
ACGTCTGAGCAG TCCAAGCCACTGG GGATCATA
OT4-5 1800. 3 1801 1802. DMSO 0 1 2
AAGAAGAATGG TTTCTCAGTCA TTTTGGGG
TABLE E
CCCACGCT
GACTCCTAGCAA ACΊΊΊCAGAGCTT
OT4-6 1803. 3 1804 GAAGTGCA 1805. DMSO 1 1 1
AAGAAGAATGG GGGGCAGGT ATGGC
1M
GGCTCTTC
GAGACTGAGAAG CAAAGCATGCCTT betai
OT4-7 1806. 3 1807 GATTTGGC 1808. 1 1 1
AAGAAGAAAGG TCAGCCG ne,
ACCT TD
GAGCCGGAGCAG
OT4-8 1809. 3 Not optimized 1 0 2
AAGAAGGAGGG
72C
AGGAACAC
GAGCCTGAGCAG GGACTCCCTGCAG Annea
OT4-9 1810. 3 1811 AGGCCAGG 1812. 0 0 3
AAGGAGAAGGG CTCCAGC 1, 6%
CTGG
DMSO
CCGACCTT
GAGGCCGAGCAG CCCTTTAGGCACC
OT4-10 1813. 3 1814 CATCCCTC 1815. DMSO 0 1 2
AAGAAAGACGG TTCCCCA CTGG
TGGGCTCT
GAGTAAGAGAAG TGATTCTGCCTTA
0T4-11 1816. 3 1817 GTGTCCCT 1818. DMSO 0 3 0
AAGAAGAAGGG GAGTCCCAGGT ACCCA
GAGTAGGAGGAG
OT4-12 1819. 3 Not optimized 2 1 0
AAGAAGAAAGG
ACCCTGAC
GAGTCCGGGAAG AGGCAGGAGAGCA
OT4-13 1820. 3 1821 TACTGACT 1822. DMSO 0 1 2
GAGAAGAAAGG AGCAGGT GACCGCT
AGAGGCAT
GATTCCTACCAG CTCCCCATTGCGA
OT4-14 1823. 3 1824 TGACTTGG 1825. DMSO 1 2 0
AAGAAGAATGG CCCGAGG AGCACCT
CCTCAGGG
GCGACAGAGCAG CTGGAGCCCAGCA
OT4-15 1826. 3 1827 AGGGGGCC 1828. DMSO 1 2 0
AAGAAGAAGGG GGAAGGC TGAT
AGGTCGGT
ΑΑΑΊCCAACCAG ACTGTGGGCGTTG
OT4-16 1829. 4 1830 GCAGGGTT 1831. DMSO 1 0 3
AAGAAGAAAGG TCCCCAC TAAGGA
CGTCACCC
AAGTCTGAGGAC GGCGCTCCCTTTT
OT4-17 1832. 4 1833 ATCGTCTC 1834. DMSO 2 0 2
AAGAAGAATGG TCCCTTTGT GTGGA
GCATCTTG
AAGTTGGAGCAG TGCCATCTATAGC CTAACCGT
OT4-18 1835. 4 1836 1837. DMSO 1 0 3
GAGAAGAAGGG AGCCCCCT ACTTCTTC
TABLE E
GCTCCTGG
AATACAGAGCAG GTGGAGACGCTAA
OT4-19 1838. 4 1839 CCTCTTCC If 340. DMSO 1 2 1
AAGAAGAATGG ACCTGTGAGGT TACAGC
CCAAGTCA
AGGTACTAGCAG CCGAACTTCTGCT
OT4-20 1841. 4 1842 ATGGGCAA 1! 343. DMSO 0 2 2
AAGAAGAAAGG GAGCTTGATGC CAAGGGA
AGGTGCTAGCAG
OT4-21 1844. 4 Not optimized 1 1 2
AAGAAGAAGGG
ATGGCAGG
AGGTGGGAGCAG TGCCCCCAAGACC
OT4-22 1845. 4 1846 CAGAGGAG 1847. DMSO 2 0 2
AAGAAGAAGGG TTTCTCC GAAG
CTGGGGCC
CAAACGGAGCAG GGGTGGGGCCATT
OT4-23 1848. 4 1849 AGGGTTTC li 350. DMSO 3 0 1
AAGAAGAAAGG GTGGGTT TGCC
TCCTTCTG
CACTCTGAGGAG TGGAGAACATGAG
OT4-24 1851. 4 1852 TAGGCAAT 1! 353. DMSO 3 0 1
AAGAAGAAAGG AGGC GCAA GGGAACAA
1M
GGCAGAT
CAGTCATGGCAG GCCACATGGTAGA betai
OT4-25 1854. 4 1855 TCCCCCAT 1856. 1 2 1
AAGAAGAAAGG AGTCGGC ne,
GCTG TD
AAGGGGAG
CCGTCCCAGCAG TGTACACCCCAAG
OT4-26 1857. 4 1858 TGTGCAAG 1859. DMSO 3 1 0
TAGAAGAATGG TCCTCCC CCTC
AGTCCAAC
GTCTGCGATCAG AGGTC GGC AGA
OT4-27 1860. 4 1861 ACTCAGGT 1862. DMSO 3 1 0
AAGAAGAAAGG GATGCAGCA GAGACCCT
GGGTATGG
ΓΑΑΊCCAATCAG CCAAGAGGACCCA AATTCTGG
OT4-28 1863. 4 1864 li 365. DMSO 0 2 2
AAGAAGAAGGG GCTGTTGGA ATTAGCAG AGC
ACACTGTG
TATACGGAGCAG ACCATCTCTTCAT
OT4-29 1866. 4 1867 AGTATGCT li 368. DMSO 2 2 0
AAGAAGAATGG TGATGAGTCCCAA TGGCGT
TCGGATGC
ACTTCCCTGCAG GGCTGCGGGGAGA
OT4-30 1869. 5 1870 TTTTCCAC 1871. DMSO 2 2 1
AAGAAGAAAGG TGAGCTC AGGGCT
CCAATCCT
AGGACTGGGCAG TCTTCCAGGAGGG
OT4-31 1872. 5 1873 GAGCTCCT li 374. DMSO 1 0 4
AAGAAGAAGGG CAGCTCC ACAAGGCT
TABLE E
TGCTGGTT
AGGTTGGAGAAG GAGCTGCACTGGA
OT4-32 1875. 5 1876 AAGGGGTG If 377. DMSO 1 1 3
AAGAAGAAGGG TGGCACT TTTTGGA
TGGGGGAC
AGTTCAGAGCAG TCTGGGAAGGTGA
OT4-33 1878. 5 1879 AATGGAAA 1 E 380. DMSO 0 2 3
GAGAAGAATGG GGAGGCCA AGCAATGA
AGCCCTTG
ArGACACAGCAG CTTGCTCCCAGCC
OT4-34 1881. 5 1882 CCATGCAG If 383. DMSO 3 1 1
AAGAAGAAGGG TGACCCC GACC
AACCACAG
ATGACAGAGAAG GGGAT TTTATCT
OT4-35 1884. 5 1885 ATGTACCC li 386. DMSO 2 2 1
AAGAAGAAAGG GTTGGGTGCGAA TCAAAGC
72C
TCTGGAAC
CCGCCCCTGCAG ACCCATCAGGACC Annea
OT4-36 1887. 5 1888 CTGGGAGG li 389. 3 1 1
AAGAAGAACGG GCAGCAC 1, 3%
CGGA DMSO
CCTCCTTG
GCAGGAGAGCAG CGTCCCTCACAGC
OT4-37 1890. 5 1891 GGCCTGGG 1892. DMSO 1 3 1
AAGAAGAAAGG CAGCCTC GTTC
AGATGTTC
GrTCAAGAGCAG CCCTCTGCAAGGT
OT4-38 1893. 5 1894 TGTCCCCA 1895. DMSO 1 3 1
AAGAAGAATGG GGAGTCTCC GGCCT
TGCCGCTC
GTTTTGAAGCAG GGCTTCCACTGCT
OT4-39 1896. 5 1897 CACATACC li 398. DMSO 2 1 2
AAGAAGAAAGG GAAGGCCT
CTCC
AGCACCTA
TATGGCAAGCAG AGCATTGCCTGTC TTGGACAC
OT4-40 1899. 5 1900 1901. DMSO 1 3 1
AAGAAGAAAGG GGGTGATGT TGGTTCTC T
TGGAGATG
TGGTGGGATCAG TCTAGAGCAGGGG
OT4-41 1902. 5 1903 GAGCCTGG 1904. DMSO 2 2 1
AAGAAGAAAGG CACAATGC TGGGA
GGTCTCAGAAAAT CCCACAGA
ACCCACGGGCAG
OT4-42 1905. 6 GGAGAGAAAGCAC 1906 AACCTGGG 1907. DMSO 1 2 3
AAGAAGAAGGG G CCCT
TGGGTCCT
ACTCCTGATCAG GGTTGCTGATACC
OT4-43 1908. 6 1909 CTCCACCT 1910. DMSO 0 3 3
AAGAAGAAGGG AAAACGTTTGCCT CTGCA
ACTCTCCTTAAGT CAGAATCT
ACTGATGAGCAG
OT4-44 1911. 6 ACTGATATGGCTG 1912 TGCTCTGT 1913. DMSO 0 4 2
AAGAAGAAAGG T TGCCCA
TABLE E
A!TTTTAGTGCAG
OT4-45 1914. 6 Not optimized 2 2 2
AAGAAGAAAGG
AITTTAGTGCAG
OT4-46 1915. 6 Not optimized 2 2 2
AAGAAGAAAGG
TCCCAAGA
CCATGGCAGCAG CAATGCCTGCAGT GAAAACTC
OT4-47 1916. 6 19Π 1918. DMSO 4 1 1
AAGAAGAAGGG CCTCAGGA TGTCCTGA CA
TGGCTGTG
CCATTACAGCAG GCATTGGCTGCCC
OT4-48 1919. 6 1920 CTGGGCTG 1921. DMSO 2 2 2
AAGAAGAAGGG AGGGAAA TGTT
ACAGGTGC
CGAGGCGGGCAG CCACAAGCCTCAG
OT4-49 1922. 6 1923 CAAAACAC 1924. DMSO 2 1 3
AAGAAGAAAGG CCTACCCG TGCCT
TCATTGCAGCAGAA
GAAGAAAGG CGATCAGT
TCATTGCAGCAG GCC C TGCAAAT 2 /
OT4-50 1925. 6 TCATTGTAGCAGAA 1926 CCCCTGGC 1927. DMSO 2 / 3 2
AAGAAGAAAGG GAGACTCCTTTT 1
GAAGAAAGG (SEQ GTCC
ID NO: 2230)
AGGGGTTT
TCTCCAGGGCAG TCCCAGAATCTGC
OT4-51 1928. 6 1929 CCAGGCAC 1930. DMSO 0 4 2
AAGAAGAAAGG CTCCGCA ATGGG
1931. 1932 1933.
AAAGTGTT
TCCTAAAAATCAG
GTCATCTTAGTC AGCCAACA
Target 5 1934. 0 TTTTGAGATTTAC 1935 1936. DMSO
ATTACCTGAGG TACAGAAG
TTCC TCAGGA
GGTATCTAAGTCAT
TACCTGTGG (SEQ TGTCTGAG
GGTATCTAAGTC ID NO: 2231) ACATCTGGGGAAA TATCTAGG 1 /
0T5-1 1937. 3 1938 1939. DMSO 1 1
ATTACCTGTGG GGTATCTAAGTCAA GCAAAAGTCAACA CTAAAAGT 2
TACCTGTGG (SEQ GGT
ID NO:2232)
AGTGCTTT
GTAATATTAGTC ACGATCTTGCTTC GTGAACTG
OT5-2 1940. 3 1941 1942. DMSO 0 3 0
ATTACCGGTGG ATTTCCCTGTACA AAAAGCAA ACA
GGGCAACT
GTAATCTGAGTC GCACCTTGGTGCT
OT5-3 1943. 3 1944 GAACAGGC 1945. DMSO 1 2 0
ATTTCCTGGGG GCTAAATGCC ATGAATGG
TABLE E
GGTGCACC
GTCATCCTAGTC AACTGTCCTGCAT
OT5-4 1946. 3 1947 TGGATCCA 1948. DMSO 1 1 1
ATTTACTGGGG CCCCGCC CCCA
GTCATCCTAGTG
OT5-5 1949. 3 Not optimized 1950 1951. 1 1 1
CTTACCTGAGG
72C
ACCACTGC
GTCA CTGAGGC CATCACCCTCCAC Annea
OT5-6 1952. 3 1953 TGCAGGCT 1954. 0 3 0
AT AACTGGGG CAGGCCC 1, 3%
CCAG DMSO
AATATGTTAGTC
OT5-7 1955. 4 Not optimized 2 0 2
ATTACCTGAGG
72C
TGGTGCGT
ATAAACGTAGTC CCTGACCCGTGGT Annea
OT5-8 1956. 4 1957 GGTGTGTG 1958. 1 2 1
ATTACCTGGGG TCCCGAC 1, 3%
TGGT DMSO
CCATGTGA
ATCATCATCGTC TGGGAACATTGGA
OT5-9 1959. 4 1960 CTACTGGG 1961. DMSO 1 1 2
ATTATCTGGGG GAAGTTTCCTGA CTGCCC
GGTTCTCT
ATCATTTTACTC AGCCTTGGCAAGC CTCTCAGA
OT5-10 1962. 4 1963 1964. DMSO 1 0 3
ATTACTTGTGG AACTCCCT AAAGAAAG AGG
GCCAGAGG
ATCATTTTAGTC GGCAGCGGACTTC
0T5-11 1965. 4 1966 CTCTCAGC 1967. DMSO 1 0 3
ATCrCCTGTGG AGAGCCA
AGTGC
ACTGTGCC
CACAGCTTAGTC CCAGCCTGGTCAA
OT5-12 1968. 4 1969 CAGCCCCA 1970. DMSO 2 1 1
ATCACCTGGGG TATGGCA TATT
CGGGTTGT
CCCAGCTTAGTC ATGCCAACACTCG
OT5-13 1971. 4 1972 GGCACCGG 1973. DMSO 2 1 1
ATTAGCTGTGG AGGGGCC GTTA
AGAGTTCA
CTCACCTTTGTC TTGCTCTAGTGGG GGCATGAA
OT5-14 1974. 4 1975 1976. DMSO 3 0 1
AT TCCTGAGG GAGGGGG AAGAAGCA
ACA
TGCAAT T
CTCATTTTATTC AGC ΊGAAGATAGC
OT5-15 1977. 4 1978 GAGGGGCT 1979. DMSO 1 1 2
ATTGCCTGGGG AGTGT TAAGCCT CTCTTCA
TABLE E
TGCCAGCC
CTCTCCTTAGTC AGTCACTGGAGTA AAAAGTTG
0T5- 16 1980. 4 1981 1982. DMSO 2 0 2
ACTACCTGAGG AGCCTGCCT TTAGTGTG T
TGTGTGGT
CTTATCTCTGTC GGGTC CCCTCAG
0T5- -17 1983. 4 1984 AGGGAGCA 1985. DMSO 2 0 2
ATTACCTGGGG TGCCCTG
AAACGACA
TGACCACA
GACAGCTCCGTC TGGGGGCTGTTAA
0T5- 18 1986. 4 1987 CACACCCC 1988. DMSO 1 2 1
ATTACCTGGGG GAGGCACA CACG
TGTGTTTT
GCCACCTCAGTC TCAAAACAGATTG
0T5- -19 1989. 4 1990 TAAGCTGC 1991. DMSO 1 0 3
AT AGCTGGGG ACCAAGGCCAAAT ACCCCAGG
GCACGCAG
GGAATCTTACTC TCTGGCACCAGGA
0T5- 20 1992. 4 1993 CTGACTCC 1994. DMSO 1 2 1
ATTACTTGGGG CTGATTGTACA CAGA
GTGGCCTCAGTC
0T5- 21 1995. 4 Not optimized 1 0 3
ATTACCTGCGG
ACCAGGGC
GTTGTTTTAGTG AGCATCTGTGATA
0T5- -22 1996. 4 1997 TGCCACAG 1998. DMSO 1 0 3
ATTACCTGAGG CCCTACCTGTCT AGTC
CTCGGCCC
TACATCTTAGTC TAGTCTTGTTGCC
0T5- -23 1999. 4 2000 C GAGAGT 2001. DMSO 1 2 1
CTCACCTGTGG CAGGCTG TCAT
TCCATCTCACTCAT
TACCTGAGG (SEQ
GAGCAGCA
TCCATCTCACTC ID NO:2233) CTGCAACCAGGGC
0T5- 24 2002. 4 2003 GCAAAGCC 2004. DMSO 1 1 2
ATTACCTGAGG TCCATCTCACTCAT CCTTACC
ACCG
TACCTGATG (SEQ
ID NO:2234)
AGCCGAGA
TTCATCCTAGTC GCCTGGAGAGCAA
0T5- -25 2005. 4 2006 CAATCTGC 2007. DMSO 1 1 2
AACACCTGGGG GCCTGGG CCCG
TTΓΑΊΑΤTAGTGAT GGCAGGTC No
TTTATATTAGTG AGTGAAACAAACA
0T5- 26 2008. 4 TACCTGCGG (SEQ 2009 TGACCAGT 2010. DMSO 1 2 1
ATTACCTGTGG AGCAGCAGTCTGA ID NO:2235) GGGG TD
TGAGTAGA
AACGTGTAAGTC AGGCTCAGAGAGG CAGAAATG
0T5- -27 2011. 5 2012 2013. DMSO 3 0 2
ATTACCTGAGG TAAGCAATGGA TTACCGGT
G T
TABLE E
AGTGAACC
AAGATCACAGTC TCAGAGATGTTAA
OT5-28 2014. 5 2015 AAGGGAAT 2016. DMSO 3 0 2
ATTACCTGGGG AGCCTTGGTGGG GGGGGA
CACCTCAG
AGAATATTAGTC TGTGCTTTCTGGG
OT5-29 2017. 5 2018 CCCTGTAG 2019. DMSO 0 4 1
CTTACCTGGGG GTAGTGGCA TCCTGG
1M
GCCACTGT
AGCAGATTAGTG CCATTGGGTGACT betai
OT5-30 2020. 5 2021 CCCCAGCC 2022. 1 3 1
ATTACCTGGGG GAATGCACA ne,
TATT TD
TGAGATGG
AGTAGCTTAGTG ACCAAGAAAGTGA
OT5-31 2023. 5 2024 CATACGAT 2025. DMSO 1 2 2
ATTACCTGGGG AAAGGAAACCC TTACCCA
TGGCATCA
CACGGCTTACTC AGGGTGGGGACTG CTCAGAGA
OT5-32 2026. 5 2027 2028. DMSO 3 1 1
ATTACCTGGGG AAAGGAGC TTGGAACA CA
TCCTATGG
CATATGTTAGGC ACCAGTGCTGTGT
OT5-33 2029. 5 2030 GAGGGGAG 2031. DMSO 3 1 1
ATTACCTGGGG GACCTTGGA GCTTCT
GCATACGG 68C,
CATTTCTTAGTC CCAGGTGTGGTGG
OT5-34 2032. 5 2033 CAGTAGAA 2034. 3% 4 0 1
ATTTCCTGAGG TTCATGAC
TGAGCC DMSO
CCTTCCTG
TGCAGCTAACTC CAGGCGCTGGGTT
OT5-35 2035. 5 2036 GGCCCCAT 2037. DMSO 2 3 0
ATTACCTGCGG CTTAGCCT GGTG
TGAAACTG
TTGCTTTTAGTT TGGGGTCCAAGAT
OT5-36 2038. 5 2039 CTTGATGA 2040. DMSO 1 2 2
ATTACCTGGGG GTCCCCT GGTGTGGA
ACTTGCAA
AACTTGAAAGTC GCTGGGCTTGGTG AGCTGATA
OT5-37 2041. 6 2042 2043. DMSO 5 0 1
ATTACCTGTGG GTATATGC ACTGACTG A
CGCAGCGC
AAGGTCACAGTC AGTTGGTGTCACT
OT5-38 2044. 6 2045 ACGAGTTC 2046. DMSO 3 0 3
ATTACCTGGGG GACAATGGGA ATCA
GGCTGGGG
AATGTCTTCATC AGAGGAGGCACAA
OT5-39 2047. 6 2048 AGGCCTCA 2049. DMSO 1 1 4
ATTACCTGAGG TTCAACCCCT CAAT
TABLE E
AGGACAAG
AGATGCTTGGTC GGGAAAGTTTGGG
OT5-40 2050. 6 2051 CTACCCCA 2052. DMSO 1 3 2
ATTACCTGTGG AAAGTCAGCA
CACC
TCATTCCA
AGTAGAT AGTT TGGTGCATCAAAG
OT5-41 2053. 6 2054 GCACGCCG 2055. DMSO 0 3 3
ATTACCTGGGG GGTTGCTTCT GGAG
TGGAGTAA
AGTAGGTTAGTA CCCAGGCTGCCCA GTATACCT
OT5-42 2056. 6 2057 2058. DMSO 1 3 2
ATTACCTGGGG TCACACT TGGGGACC T
TGTGCAAA
CAAATGAGAGTC TCAGTGCCCCTGG
OT5-43 2059. 6 2060 TACCTAGC 2061. DMSO 4 2 0
ATTACCTGAGG GTCCTCA ACGGTGC
ACTGAAGT
CATGTCTGAATC AGCACTCCCTTTT CCAGCCTC
OT5-44 2062. 6 2063 2064. DMSO 2 1 3
ATTACCTGAGG GAATTTTGGTGCT TTCCATTT CA
GGGGAGTA
CCTGACTTGGTC GAAACCGGTCCCT
OT5-45 2065. 6 2066 GAGGGTAG 2067. DMSO 2 0 4
ATTACCTGTGG GGTGCCA TGTTGCC
AGGTGCCG
CGTGCATTAGTC TTGCGGGTCCCTG
OT5-46 2068. 6 2069 TGTTGTGC 2070. DMSO 1 2 3
ATTACCTGAGG TGGAGTC
CCAA
GGGCCGGG
GGAATCCCTTCT GCCCTACATCTGC
Target 6 2071. 0 2072 AAAGAG 2073. DMSO
GCAGCACCTGG TCTCCCTCCA GCTG
ACCTCTCT
GGAACCCCGTCT TTGGAGTGTGGCC
0T6-1 2074. 2 2075 TTCTCTGC 2076. DMSO 0 1 1
GCAGCACCAGG CGGGTTG CTCACTGT
GCAGTACG
GGAACACCTTCT CACACCATGCTGA
OT6-2 2077. 3 2078 GAAGCACG 2079. DMSO 1 1 1
GCAGCTCCAGG TCCAGGC AAGC
CTGGGCTC
GGAAGCTCTGCT CTCCAGGGCTCGC
OT6-3 2080. 3 2081 TGCTGGTT 2082. DMSO 0 2 1
GCAGCACCTGG TGTCCAC CCCC
CCCCATAC
GGAATATCTTCT CTGTGGTAGCCGT
OT6-4 2083. 3 2084 CACCTCTC 2085. DMSO 0 2 1
GCAGCCCCAGG GGCCAGG CGGGA
TABLE E
1M
CCAGCGTG
GGAATCACTTTT GGTGGCGGGACTT betai
0T6- -5 2086. 3 2087 TTTCCAAG 2088. 0 1 2
ACAGCACCAGG GAATGAG ne,
GGAT TD
GGAATCCCCTCTCC
AGCCCCTGG (SEQ
TTTCCACA
GGAATCCCCTCT ID NO: 2236) CCAGAGGTGGGGC
0T6- -6 2089. 3 2090 CTCAGTTC 2091. DMSO 1 1 1 / 2
CCAGCCCCTGG GGAATCCCCTCTCC CCTGTGA TGCAGGA AGCCTCTGG (SEQ
ID NO:2237)
1M
GGAATCTCTTCCTT GCAGTGTT
GGAATCTCTTCT TGTGACTGGTTGT betai
0T6- -7 2092. 3 GGCA!TCTGG (SEQ 2093 TTGTGGTG 2094. 0 1 5
TCAGCATCTGG CCTGCTTTCCT ne,
ID NO: 2238) ATGGGCA
TD
TGGGACCC
GGAATTGCTTCT CTGGCCAAGGGGT
0T6- -8 2095. 3 2096 CAGCAGCC 2097. DMSO 1 0 2
GCAGCGCCAGG GAGTGGG AATG
ACAGTGCT
GGACTCCCCTCT ACGGTGTGCTGGC
0T6- -9 2098. 3 2099 GACCGTGC 2100. DMSO 1 1 1
GCAGCAGCTGG TGCTCTT TGGG
TGCCTCCC
GGAGTCCCTCCT TGGTTTGGGCCTC
0T6- 10 2101. 3 2102 ACAAAAAT 2103. DMSO 0 0 3
ACAGCACCAGG AGGGATGG GTCTACCT
ACCCCTTA
GGAGTCCCTCCT TGGTTTGGGCCTC
0T6- 11 2104. 3 2105 TCCCAGAA 2106. DMSO 0 0 3
ACAGCACCAGG AGGGATGG CCCATGA
TGGGAGCT
GGCATCCATTCT TCCAAGTCAGCGA
0T6- 12 2107. 3 2108 GTTCCTTT 2109. DMSO 0 3 0
GCAGCCCCTGG TGAGGGCT TTGGCCA
GCTAGAGG
GGCTTCCCTTCT CACCCCTCTCAGC
0T6- 13 2110. 3 2111 GTCTGCTG 2112. DMSO 1 2 0
GCAGCCCCAGG TTCCCAA CCTT
CTTGCTCT
TGAATCCCATCT AGACCCCTTGGCC
0T6- 14 2113. 3 2114 CACCCCGC 2115. DMSO 2 1 0
CCAGCACCAGG AAGCACA CTCC
TCTCACTT
AAAATACCTTCT ACATGTGGGAGGC TGCTGTTA
0T6- 15 2116. 4 2117 2118. DMSO 0 1 3
GCAGTACCAGG GGACAGA CCGATGTC
TABLE E
72C
AGTGCCCA
AAAATCCCTTCT GGACGACTGTGCC Annea
OT6-16 2119. 4 2120 GAGTGTTG 2121. 0 1 3
TCAACACCTGG TGGGACA 1, 3%
TAACTGCT DMSO
CAGCGTGG
ACACTCCCTCCT GGAGAGCTCAGCG
OT6-17 2122. 4 2123 CCCGTGGG 2124. DMSO 1 1 2
GCAGCACCTGG CCAGGTC AATA
ACCCCACT
ACCATCCCTCCT GCTGAAGTGCTCT GTGGATGA
OT6-18 2125. 4 2126 2127. DMSO 1 1 2
GCAGCACCAGG GGGGTGCT ATTGGTAC
C
TTGCCTCG
AGAGGCCCCTCT TCGGGGTGCACAT
OT6-19 2128. 4 2129 CAGGGGAA 2130. DMSO 0 1 3
GCAGCACCAGG GGCCATC GCAG
AGCCACCA
AGGATCCCTTGT CTCGTGGGAGGCC
OT6-20 2131. 4 2132 ACACATAC 2133. DMSO 2 0 2
GCAGCTCCTGG AACACCT CAGGCT
AGGATTTC
CCACTCCTTTCT GCATGCCTTTAAT
OT6-21 2134. 4 2135 AGAGTGAT 2136. DMSO 2 1 1
GCAGCACCCGG CCCGGCT GGGGCT
GCAAATTT
GAAGGCCCTTCA CGCCCAGCCACAA CTGCACCT
OT6-22 2137. 4 2138 2139. DMSO 1 1 2
GCAGCACCTGG AGTGCAT ACTCTAGG CCT
GCAGTCAC
GATATCCCTTCT AGC ΊCACAAGAAT
OT6-23 2140. 4 2141 CCTTCACT 2142. DMSO 1 1 2
GTATCACCTGG TGGAGGTAACAGT GCCTGT
GGGGCTAA
GGGTCCGCTTCT AAACTGGGCTGGG
OT6-24 2143. 4 2144 GGCATTGT 2145. DMSO 2 0 2
GCAGCACCTGG CTTCCGG CAGACCC
1M
TCTCCTGC
G!TCTCCCCTTCT GCAGGTAGGCAGT betai
OT6-25 2146. 4 2147 CTCAGCCT 2148. 1 2 1
GCAGCACCAGG CTGGGGC ne,
CCCA TD
1M
TCTCCTGC
GTCTCCCCTTCT GCAGGTAGGCAGT betai
OT6-26 2149. 4 2150 CTCAGCCT 2151. 1 2 1
GCAGCACCAGG CTGGGGC ne,
CCCA TD
TABLE E
1M
TCTCCTGC
GTCTCCCCTTCT GCAGGTAGGCAGT betai
OT6-27 2152. 4 2153 CTCAGCCT 2154. 1 2 1
GCAGCACCAGG CTGGGGC ne,
CCCA TD
GGCCTGTC
TCATTCCCGTCT GCTCTGGGGTAGA
OT6-28 2155. 4 2156 AACCAACC 2157. DMSO 2 2 0
GCAGCACCCGG AGGAGGC
AACC
AAATCCTG
TGCACCCCTCCT TGACATGTTGTGT
OT6-29 2158. 4 2159 CAGCCTCC 2160. DMSO 0 2 2
GCAGCACCAGG GCTGGGC CCTT
TCCTCCCC
TGCATACCCTCT TCCTGGTGAGATC
OT6-30 2161. 4 2162 ACTCAGCC 2163. DMSO 0 3 1
GCAGCACCAGG GTCCACAGGA TCCC
TCCTAATCCAAGT AGGGACCA
TGCATGGCTTCT
OT6-31 2164. 4 CCTTTGTTCAGAC 2165 GCCACTAC 2166. DMSO 2 2 0
GCAGCACCAGG A CCTTCA
GGGGGAGA
AATATTCCCTCT GGGACACCAGTTC
OT6-32 2167. 5 2168 TTGGAGTT 2169. DMSO 1 0 4
GCAGCACCAGG CTTCCAT CCCC
TCTGCCTG
ACCATTTCTTCT ACACCACTATCAA
OT6-33 2170. 5 2171 GGGTGCTT 2172. DMSO 1 1 3
GCAGCACCTGG GGCAGAGTAGGT TCCC
GCCCCGAC
AGCTCCCATTCT CTGGGAGCGGAGG
OT6-34 2173. 5 2174 AGATGAGG 2175. DMSO 1 2 2
GCAGCACCCGG GAAGTGC CCTC
CAGATTACTGCTGC ACCCAGGA
CAGATTCCTGCT CGGGTCTCGGAAT
OT6-35 2176. 5 AGCACCGGG (SEQ 2177 ATTGCCAC 2178. DMSO 1 2 3
GCAGCACCGGG GCCTCCA ID NO: 2239) CCCC
GCAGACAC
CCAAGAGCTTCT TTGCTGTGGTCCC
OT6-36 2179. 5 2180 TAGAGCCC 2181. DMSO 3 2 0
GCAGCACCTGG GGTGGTG GCCC
ACCTGCGT
CCCAGCCCTGCT GGTGTGGTGACAG
OT6-37 2182. 5 2183 CTCTGTGC 2184. DMSO 2 3 0
GCAGCACCCGG GTCGGGT TGCA
CCTGGCCC
CCCCTCCCTCCT CTCCCAGGACAGT
OT6-38 2185. 5 2186 CATGCTGC 2187. DMSO 2 2 1
GCAGCACCGGG GCTCGGC CTG
AGGGAATG
CTACTGACTTCT TGCGTAGGTTTTG
OT6-39 2188. 5 2189 ATGTTTTC 2190. DMSO 2 3 0
GCAGCACCTGG CCTCTGTGA CACCCCCT
TABLE E
TGCATTGA
CrCCTCCCTCCT CTCCGCAGCCACC
0T6- 40 2191. 5 2192 CGTACGAT 2193. DMSO 1 3 1
GCAGCACCTGG GTTGGTA GGCTCA
ACCTGAGC
TCTGTCCCTCCT ACCTGCAGCATGA
0T6- -41 2194. 5 2195 AACATGAC 2196. DMSO 2 1 2
GCAGCACCTGG ACTCTCGCA TCACCTGG
ACACAAAC TC GC
1M
AGCACCTGG ACCATTGG
ACACAAACTTCT TCTCCAGTTTCTT betai 3 /
0T6- 42 2197. 6 ACACAAACTTCTGC 2198 TGAACCCA 2199. 3 1
GCAGCACCTGG GCTCTCATGG ne, 2
AGCACGTGG (SEQ GTCA
TD
ID NO: 2240)
TCAGCTAT
ACTGTCATTTCT TGGGGTGGTGGTC AACCTGGG
0T6- 43 2200. 6 2201 2202. DMSO 2 1 3
GCAGCACCTGG TTGAATCCA ACTTGTGC T
CCCTTTCA
ACTTTATCTTCT AGCAGCCAGTCCA
0T6- -44 2203. 6 2204 TCGAGAAC 2205. DMSO 3 1 2
GCAGCACCTGG GTGTCCTG CCCAGGG
GAGGTCTC
ATCCTTTCTTCT TGGACGCTGCTGG
0T6- -45 2206. 6 2207 GGGCTGCT 2208. DMSO 0 3 3
GCAGCACCTGG GAGGAGA CGTG
TGGGGTGA
CACCACCGTTCT AGGTTTGCACTCT
0T6- 46 2209. 6 2210 TTGGTTGC 2211. DMSO 3 2 1
GCAGCACCAGG GTTGCCTGG CAGGT
TGCAGGAA
CATGTGGCTTCT TCTTCCTTTGCCA TAGCAGGT
0T6- -47 2212. 6 2213 2214. DMSO 4 0 2
GCAGCACCTGG GGCAGCACA ATGAGGAG T
GCCCTGGC
CATTTTCTTTCT GGACGCCTACTGC
0T6- 48 2215. 6 2216 AGCCCATG 2217. DMSO 3 0 3
GCAGCACCTGG CTGGACC GTAC
GGTCCCAC
CTCTGTCCTTCT AGGCAGTCATCGC
0T6- -49 2218. 6 2219 CTTCCCCT 2220. DMSO 2 3 1
GCAGCACCTGG CTTGCTA
ACAA
CTGTACCCTCCT
0T6- 50 2221. 6 Not optimized 3 1 2
GCAGCACCAGG
CAGCCCAG
TTGAGGCCGTCT CCCCAGCCCCCAC
0T6- 51 2222. 6 2223 GCCACAGC 2224. DMSO 1 4 1
GCAGCACCGGG CAGTTTC TTCA
Sanger sequencing for quantifying frequencies of indel mutations
Purified PCR products used for T7EI assay were ligated into a Zero Blunt TOPO vector (Life Technologies) and transformed into chemically competent Top 10 bacterial cells. Plasmid DNAs were isolated and sequenced by the Massachusetts General Hospital (MGH) DNA Automation Core, using an Ml 3 forward primer (5'- GTAAAACGACGGCCAG-3 ') (SEQ ID NO: 1059).
Restriction digest assay for quantifying specific alterations induced by HDR with ssODNs
PCR reactions of specific on-target sites were performed using Phusion high- fidelity DNA polymerase (New England Biolabs). The VEGF and EMX1 loci were amplified using a touchdown PCR program ((98 °C, 10 s; 72-62 °C, -1 °C/cycle, 15 s; 72 °C, 30 s) x 10 cycles, (98 °C, 10 s; 62 °C, 15 s; 72 °C, 30 s) x 25 cycles), with 3% DMSO. The primers used for these PCR reactions are listed in Table E. PCR products were purified by Ampure XP beads (Agencourt) according to the
manufacturer's instructions. For detection of the BamHl restriction site encoded by the ssODN donor template, 200 ng of purified PCR products were digested with BamHI at 37 °C for 45 minutes. The digested products were purified by Ampure XP beads (Agencourt), eluted in 20ul O.lxEB buffer and analyzed and quantified using a QIAXCEL capillary electrophoresis system.
TruSeq library Generation and Sequencing Data Analysis
Locus-specific primers were designed to flank on-target and potential and verified off-target sites to produce PCR products ~300bp to 400 bps in length.
Genomic DNAs from the pooled duplicate samples described above were used as templates for PCR. All PCR products were purified by Ampure XP beads
(Agencourt) per the manufacturer's instructions. Purified PCR products were quantified on a QIAXCEL capillary electrophoresis system. PCR products for each locus were amplified from each of the pooled duplicate samples (described above), purified, quantified, and then pooled together in equal quantities for deep sequencing. Pooled amplicons were ligated with dual-indexed Illumina TruSeq adaptors as previously described (Fisher et al, 2011). The libraries were purified and run on a
QIAXCEL capillary electrophoresis system to verify change in size following adaptor ligation. The adapter-ligated libraries were quantified by qPCR and then sequenced using Illumina MiSeq 250 bp paired-end reads performed by the Dana-Farber Cancer Institute Molecular Biology Core Facilities. We analyzed between 75,000 and 1,270,000 (average -422,000) reads for each sample. The TruSeq reads were analyzed for rates of indel mutagenesis as previously described (Sander et al, 2013).
Specificity ratios were calculated as the ratio of observed mutagenesis at an on-target locus to that of a particular off-target locus as determined by deep sequencing. Fold- improvements in specificity with tru-RGNs for individual off-target sites were calculated as the specificity ratio observed with tru-gRNAs to the specificity ratio for that same target with the matched full-length gRNA. As mentioned in the text, for some of the off-target sites, no indel mutations were detected with tru-gRNAs. In these cases, we used a Poisson calculator to determine with a 95% confidence that the upper limit of the actual number of mutated sequences would be three in number. We then used this upper bound to estimate the minimum fold-improvement in specificity for these off-target sites.
Example 2a. Truncated gRNAs can efficiently direct Cas9-mediated genome editing in human cells
To test the hypothesis that gRNAs truncated at their 5' end might function as efficiently as their full-length counterparts, a series of progressively shorter gRNAs were initially constructed as described above for a single target site in the EGFP reporter gene, with the following sequence: 5'-
GGCGAGGGCGATGCCACCTAcGG-3 ' (SEQ ID NO:2241). This particular EGFP site was chosen because it was possible to make gRNAs to it with 15, 17, 19, and 20 nts of complementarity that each have a G at their 5 ' end (required for efficient expression from the U6 promoter used in these experiments). Using a human cell- based reporter assay in which the frequency of RGN -induced indels could be quantified by assessing disruption of a single integrated and constitutively expressed enhanced green fluorescent protein {EGFP) gene (Example 1 and Fu et al., 2013;
Reyon et al., 2012) (Figure 2B), the abilities of these variable-length gRNAs to direct Cas9-induced indels at the target site were measured.
As noted above, gRNAs bearing longer lengths of complementarity (21, 23, and 25 nts) exhibit decreased activities relative to the standard full-length gRNA containing 20 nts of complementary sequence (Figure 2H), a result that matches those recently reported by others (Ran et al, Cell 2013). However, gRNAs bearing 17 or 19 nts of target complementarity showed activities comparable to or higher than the full-length gRNA, while a shorter gRNA bearing only 15 nts of complementary failed to show significant activity (Figure 2H).
To test the generality of these initial findings, full-length gRNAs and matched gRNAs bearing 18, 17 and/or 16 nts of complementarity to four additional EGFP reporter gene sites {EGFP sites #1, #2, #3, and #4; Figure 3 A) were assayed. At all four target sites, gRNAs bearing 17 and/or 18 nts of complementarity functioned as efficiently as (or, in one case, more efficiently than) their matched full-length gRNAs to induce Cas9-mediated disruption of EGFP expression (Figure 3A). However, gRNAs with only 16 nts of complementarity showed significantly decreased or undetectable activities on the two sites for which they could be made (Figure 3A). For each of the different sites tested, we transfected the same amounts of the full- length or shortened gRNA expression plasmid and Cas9 expression plasmid. Control experiments in which we varied the amounts of Cas9 and truncated gRNA expression plasmids transfected for EGFP sites #1, #2, and #3 suggested that shortened gRNAs function equivalently to their full-length counterparts (Figures 3E (bottom) and 3F (bottom)) and that therefore we could use the same amounts of plasmids when making comparisons at any given target site. Taken together, these results provide evidence that shortened gRNAs bearing 17 or 18 nts of complementarity can generally function as efficiently as full-length gRNAs and hereafter the truncated gRNAs with these complementarity lengths are referred to as "tru-gRNAs" and RGNs using these tru-gRNAs as "tru-RGNs".
Whether tru-RGNs could efficiently induce indels on chromatinized endogenous gene targets was tested next. Tru-gRNAs were constructed for seven sites in three endogenous human genes (VEGFA, EMX1, and CLTA), including four sites that had previously been targeted with standard full-length gRNAs in three endogenous human genes: VEGFA site 1, VEGFA site 3, EMX1, and CTLA (Example 1 and Fu et al, 2013; Hsu et al, 2013; Pattanayak et al, 2013) (Figure 3B). (It was not possible to test a tru-gRNA for VEGFA site 2 from Example 1 , because this target sequence does not have the G at either position 17 or 18 of the complementarity region required for gRNA expression from a U6 promoter.) Using a well-established T7 Endonuclease I (T7EI) genotyping assay (Reyon et al, 2012) as described above, the Cas9-mediated indel mutation frequencies induced by each of these various gRNAs at their respective target sites was quantified in human U20S.EGFP cells. For all five of the seven four sites, tru-RGNs robustly induced indel mutations with efficiencies comparable to those mediated by matched standard RGNs (Figure 3B). For the two sites on which tru-RGNs showed lower activities than their full-length counterparts, we note that the absolute rates of mutagenesis were still high (means of 13.3% and 16.6%) at levels that would be useful for most applications. Sanger sequencing for three of these target sites (VEGFA sites 1 and 3 and EMXl) confirmed that indels induced by tru-RGNs originate at the expected site of cleavage and that these mutations are essentially indistinguishable from those induced with standard RGNs (Figure 3C and Figures 7A-D).
We also found that tru-gRNAs bearing a mismatched 5 ' G and an 18 nt complementarity region could efficiently direct Cas9-induced indels whereas those bearing a mismatched 5 ' G and a 17 nt complementarity region showed lower or undetectable activities compared with matched full-length gRNAs (Figure 7E), consistent with our findings that a minimum of 17 nts of complementarity is required for efficient RGN activity.
To further assess the genome-editing capabilities of tru-RGNs, their abilities to induce precise sequence alterations via HDR with ssODN donor templates were tested. Previous studies have shown that Cas9-induced breaks can stimulate the introduction of sequence from a homologous ssODN donor into an endogenous locus in human cells (Cong et al., 2013; Mali et al., 2013c; Ran et al., 2013; Yang et al., 2013). Therefore, the abilities were compared of matched full-length and tru-gRNAs targeted to VEGFA site 1 and to the EMXl site to introduce a BamHl restriction site encoded on homologous ssODNs into these endogenous genes. At both sites, tru- RGNs mediated introduction of the BamHl site with efficiencies comparable to those seen with standard RGNs harboring their full-length gRNA counterparts (Figure 3D). Taken together, this data demonstrate that tru-RGNs can function as efficiently as standard RGNs to direct both indels and precise HDR-mediated genome editing events in human cells.
Example 2b. tru-RGNs exhibit enhanced sensitivities to gRNA/DNA interface mismatches
Having established that tru-RGNs can function efficiently to induce on-target genome editing alterations, whether these nucleases would show greater sensitivity to mismatches at the gRNA/DNA interface was tested. To assess this, a systematic series of variants was constructed for the tru-gRNAs that were previously tested on . . .
1 1 1
EGFP sites #1, #2, and #3 (Figure 3A above). The variant gRNAs harbor single Watson-Crick substitutions at each position within the complementarity region (with the exception of the 5' G required for expression from the U6 promoter) (Figure 5A). The human cell-based EGFP disruption assay was used to assess the relative abilities of these variant tru-gRNAs and an analogous set of matched variant full-length gRNAs made to the same three sites as described in Example 1 to direct Cas9- mediated indels. The results show that for all three EGFP target sites, tru-RGNs generally showed greater sensitivities to single mismatches than standard RGNs harboring matched full-length gRNAs (compare bottom and top panels of Figure 5A). The magnitude of sensitivity varied by site, with the greatest differences observed for sites #2 and #3, whose tru-gRNAs harbored 17 nts of complementarity.
Encouraged by the increased sensitivity of tru-RGNs to single nucleotide mismatches, we next sought to examine the effects of systematically mismatching two adjacent positions at the gRNA-DNA interface. We therefore made variants of the tru-gRNAs targeted to EGFP target sites #1, #2, and #3, each bearing Watson-Crick transversion substitutions at two adjacent nucleotide positions (Figure 5B). As judged by the EGFP disruption assay, the effects of adjacent double mismatches on RGN activity were again substantially greater for tru-gRNAs than for the analogous variants made in Example 1 for matched full-length gRNAs targeted to all three EGFP target sites (compare bottom to top panels in Figure 5B). These effects appeared to be site-dependent with nearly all of the double-mismatched tru-gRNAs for EGFP sites #2 and #3 failing to show an increase in EGFP disruption activities relative to a control gRNA lacking a complementarity region and with only three of the mismatched tru-gRNA variants for EGFP site #1 showing any residual activities (Figure 5B). In addition, although double mutations generally showed greater effects on the 5' end with full-length gRNAs, this effect was not observed with tru-gRNAs. Taken together, our data suggest that tru-gRNAs exhibit greater sensitivities than full- length gRNAs to single and double Watson-Crick transversion mismatches at the gRNA-DNA interface. Example 2c. tru-RGNs targeted to endogenous genes show improved specificities in human cells
The next experiments were performed to determine whether tru-RGNs might show reduced genomic off-target effects in human cells relative to standard RGNs harboring full-length gRNA counterparts. We examined matched full-length and tru- gRNAs targeted to VEGFA site 1, VEGFA site 3, and EMX1 site 1 (described in Fig. 3B above) because previous studies (see Example 1 and Fu et al, 2013; Hsu et al, 2013) had defined 13 bona fide off-target sites for the full-length gRNAs targeted to these sites. (We were unable to test a tru-gRNA for VEGFA site 2 from our original study6 because this target sequence does not have the G at either position 17 or 18 of the complementarity region required for efficient gRNA expression from a U6 promoter.) Strikingly, we found that tru-RGNs showed substantially reduced mutagenesis activity in human U20S.EGFP cells relative to matched standard RGNs at all 13 of these bona fide off-target sites as judged by T7EI assay (Table 3 A); for 11 of the 13 off-target sites, the mutation frequency with tru-RGNs dropped below the reliable detection limit of the T7EI assay (2 - 5%) (Table 3 A). We observed similar results when these matched pairs of standard and tru-RGNs were tested at the same 13 off-target sites in another human cell line (FT-HEK293 cells) (Table 3 A).
To quantify the magnitude of specificity improvement observed with tru-
RGNs, we measured off-target mutation frequencies using high-throughput sequencing, which provides a more sensitive method for detecting and quantifying low frequency mutations than the T7EI assay. We assessed a subset of 12 of the 13 bona fide off-target sites for which we had seen decreased mutation rates with tru- gRNAs by T7EI assay (for technical reasons, we were unable to amplify the required shorter amplicon for one of the sites) and also examined an additional off-target site for EMX1 site 1 that had been identified by another group7 (Fig. 6A). For all 13 off- target sites we tested, tru-RGNs showed substantially decreased absolute frequencies of mutagenesis relative to matched standard RGNs (Fig. 6A and Table 3B) and yielded improvements in specificity of as much as -5000-fold or more relative to their standard RGN counterparts (Fig. 6B). For two off-target sites (OTl-4 and OTl-11), it was difficult to quantify the on-target to off-target ratios for tru-RGNs because the absolute number and frequency of indel mutations induced by tru-RGNs fell to background or near-background levels. Thus, the ratio of on-target to off-target rates would calculate to be infinite in these cases. To address this, we instead identified the maximum likely indel frequency with a 95% confidence level for these sites and then used this conservative estimate to calculate the minimum likely magnitude of specificity improvement for tru-RGNs relative to standard RGNs for these off-targets. These calculations suggest tru-RGNs yield improvements of ~ 10,000-fold or more at these sites (Fig. 6B).
To further explore the specificity of tru-RGNs, we examined their abilities to induce off-target mutations at additional closely related sites in the human genome. For the tru-gRNAs to VEGFA site 1 and EMX1, which each possess 18 nts of target site complementarity, we computationally identified all additional sites in the human genome mismatched at one or two positions within the complementarity region (not already examined above in Table 3A) and a subset of all sites mismatched at three positions among which we favored mismatches in the 5 ' end of the site as described in Example 1. For the tru-gRNA to VEGFA site 3, which possesses 17 nts of target site complementarity, we identified all sites mismatched at one position and a subset of all sites mismatched at two positions among which mismatches in the 5 ' end were favored (again not already examined in Table 3A). This computational analysis yielded a total of 30, 30, and 34 additional potential off-target sites for the tru-RGNs targeted to VEGFA site 1, VEFGA site 3, and the EMX1 site, respectively, which we then assessed for mutations using T7EI assay in human U20S.EGFP and HEK293 cells in which the RGNs had been expressed.
Strikingly, the three tru-RGNs to VEGFA site 1, VEFGA site 3, and EMX1 did not induce detectable Cas9-mediated indel mutations at 93 of the 94 potential off- target sites examined in human U20S.EGFP cells or at any of the 94 potential off- target sites in human HEK293 cells (Table 3C). For the one site at which off-target mutations were seen, whether the standard RGN with a full-length gRNA targeted to VEGFA site 1 could also mutagenize this same off-target site was examined; it induced detectable mutations albeit at a slightly lower frequency (Figure 6C). The lack of improvement observed with shortening of the gRNA at this off-target site can be understood by comparing the 20 and 18 nt sequences for the full-length and tru- gRNAs, which shows that the two additional bases in the full-length 20 nt target are both mismatched (Figure 6C). In summary, based on this survey of 94 additional potential off-target sites, shortening of the gRNA does not appear to induce new high- frequency off-target mutations.
Deep sequencing of a subset of the 30 most closely matched potential off- target sites from this set of 94 site (i.e.— those with one or two mismatches) showed either undetectable or very low rates of indel mutations (Table 3D) comparable to what we observed at other previously identified off-target sites (Table 3B). We . . .
1 14 conclude that tru-RGNs generally appear to induce either very low or undetectable levels of mutations at sites that differ by one or two mismatches from the on-target site. This contrasts with standard RGNs for which it was relatively easy to find high- frequency off-target mutations at sites that differed by as many as five mismatches (see Example 1).
Figure imgf000116_0001
Mutation frequencies were measured by T7EI assay. Means of duplicate measurements are shown with error bars representing standard errors of the mean. *Off-target site OT4 53 is the same as EMXl target 3 OT31 from Hsu et al., 2013.
Table 3B
Numbers of wild-type (WT) and indel mutation sequencing reads
from deep sequencing experiments
Control tru-RGN Standard RGN
Site
Indel WT Freq. Indel WT Freq. Indel WT Freq.
VEGFA site 1 45 140169 0.03% 122858 242127 33.66% 150652 410479 26.85%
OT1-3 0 132152 0.00% 1595 205878 0.77% 50973 144895 26.02%
OT1-4 0 133508 0.00% 0 223881 0.00% 22385 240873 8.50%
OT1-6 3 213642 0.00% 339 393124 0.09% 24332 424458 5.21%
OTl-11 1 930894 0.00% 0 274779 0.00% 43738 212212 17.09%
VEGFA site 3 5 212571 0.00% 303913 292413 50.96% 183626 174740 51.24%
OT3-2 1169 162545 0.71% 9415 277616 3.28% 26545 222482 10.66%
OT3-4 7 383006 0.00% 15551 1135673 1.35% 42699 546203 7.25%
OT3-9 73 145367 0.05% 113 227874 0.05% 1923 168293 1.13%
OT3-17 8 460498 0.00% 31 1271276 0.00% 16760 675708 2.42%
OT3-18 7 373571 0.00% 284 1275982 0.02% 72354 599030 10.78%
OT3-20 5 140848 0.00% 593 325162 0.18% 30486 202733 13.07%
EMX1 site 1 1 158838 0.00% 49104 102805 32.32% 128307 307584 29.44%
OT4-1 10 169476 0.01% 13 234039 0.01% 47426 125683 27.40%
OT4-52 2 75156 0.00% 10 231090 0.00% 429 340201 0.13%
OT4-53 0 234069 0.00% 6 367811 0.00% 17421 351667 4.72%
Freq. = frequency of indel mutations = number of indel sequences/number of
wild-type sequences. Control gR A = gRNA lacking a complementarity region
Table 3 C
Indel mutation frequencies at poten tial off-target sites of tru-RGNs
targeted to endogenous g enes in human cells
Indel mutation frequency (%)
SEQ
Number of ± s.e.m.
Target ID Target Site + PAM ID
mismatches U20S.EGFP
NO: HEK293 cells cells
VEGFA 2274.
GTGGGGGGAGTTTGCTCCtGG 0 (on-target) 23.93 ±4.37 8.34 ± 0.01 Site 1
GTGGGGGGAGTTTGCCCCaGG 2275. 1 Not detected Not detected
GTGGGGGGTGTTTGCTCCcGG 2276. 1 Not detected Not detected
GTGGGTGGAGTTTGCTACtGG 2277. 2 Not detected Not detected
GTGGGGGGAGCTTTCTCCtGG 2278. 2 Not detected Not detected
GTGGGTGGCGTTTGCTCCaGG 2279. 2 Not detected Not detected
GTGGAGGGAGCTTGCTCCtGG 2280. 2 6.88 ± 0.19 Not detected
GTGGGTGGAGTTTGCTACaGG 2281 . 2 Not detected Not detected
GGGGGGGCAGTTTGCTCCtGG 2282. 2 Not detected Not detected Table 3 C
Indel mutation frequencies at poten tial off-target sites of tru-RGNs
targeted to endogenous g enes in human cells
SEQ Number of Indel mutation frequency (%)
Target ID Target Site + PAM
ID mismatches ± s.e.m.
GTGTGGGGAATTTGCTCCaGG 2283. 2 Not detected Not detected
CTGCTGGGAGTTTGCTCCtGG 2284. 3 Not detected Not detected
TTTGGGAGAGTTTGCTCCaGG 2285. 3 Not detected Not detected
CTGAGGGCAGTTTGCTCCaGG 2286. 3 Not detected Not detected
GTAAGGGAAGTTTGCTCCtGG 2287. 3 Not detected Not detected
GGGGGTAGAGTTTGCTCCaGG 2288. 3 Not detected Not detected
GGGTGGGGACTTTGCTCCaGG 2289. 3 Not detected Not detected
GGGGGAGCAGTTTGCTCCaGG 2290. 3 Not detected Not detected
TTGGGGTTAGTTTGCTCCtGG 2291. 3 Not detected Not detected
TTGAGGGGAGTCTGCTCCaGG 2292. 3 Not detected Not detected
CTGGGGTGATTTTGCTCCtGG 2293. 3 Not detected Not detected
GAGAGGGGAGTTGGCTCCtGG 2294. 3 Not detected Not detected
TTTGGGGGAGTTTGCCCCaGG 2295. 3 Not detected Not detected
TTCGGGGGAGTTTGCGCCgGG 2296. 3 Not detected Not detected
CTCGGGGGAGTTTGCACCaGG 2297. 3 Not detected Not detected
GTGTTGGGAGTCTGCTCCaGG 2298. 3 Not detected Not detected
GAGGGGGCAGGTTGCTCCaGG 2299. 3 Not detected Not detected
GAGGGGAGAGTTTGTTCCaGG 2300. 3 Not detected Not detected
GTGGCTGGAGTTTGCTGCtGG 2301. 3 Not detected Not detected
GTCGGGGGAGTGGGCTCCaGG 2302. 3 Not detected Not detected
GAGGGGGGAGTGTGTTCCgGG 2303. 3 Not detected Not detected
GTGGTGGGAGCTTGTTCCtGG 2304. 3 Not detected Not detected
GTGGGGGGTGCCTGCTCCaGG 2305. 3 Not detected Not detected
VEGFA 2306.
GAGTGAGTGTGTGCGTGtGG 0 (on-target) 50.49 ± 1 .25 20.05 ± 0.01 Site 3
CAGTGAGTGTGTGCGTGtGG 2307. 1 Not detected Not detected
GTGTGAGTGTGTGCGTGgGG 2308. 1 Not detected Not detected
GTGTGAGTGTGTGCGTGaGG 2309. 1 Not detected Not detected
GTGTGAGTGTGTGCGTGtGG 2310. 1 Not detected Not detected
GAGTGTGTGTGTGCGTGtGG 231 1. 1 Not detected Not detected
GAGTGGGTGTGTGCGTGgGG 2312. 1 Not detected Not detected
GAGTGACTGTGTGCGTGtGG 2313. 1 Not detected Not detected
GAGTGAGTGTGTGGGTGgGG 2314. 1 Not detected Not detected
GAGTGAGTGTGTGTGTGtGG 2315. 1 Not detected Not detected
GAGTGAGTGTGTGTGTGtGG 2316. 1 Not detected Not detected Table 3 C
Indel mutation frequencies at poten tial off-target sites of tru-RGNs
targeted to endogenous g enes in human cells
SEQ Number of Indel mutation frequency (%)
Target ID Target Site + PAM
ID mismatches ± s.e.m.
GAGTGAGTGTGTGTGTGgGG 2317. 1 Not detected Not detected
GAGTGAGTGTGTGTGTGtGG 2318. 1 Not detected Not detected
GAGTGAGTGTGTGCGCGgGG 2319. 1 Not detected Not detected
CTGTGAGTGTGTGCGTGaGG 2320. 2 Not detected Not detected
ATGTGAGTGTGTGCGTGtGG 2321. 2 Not detected Not detected
GCCTGAGTGTGTGCGTGtGG 2322. 2 Not detected Not detected
GTGTGTGTGTGTGCGTGtGG 2323. 2 Not detected Not detected
GTGTGGGTGTGTGCGTGtGG 2324. 2 Not detected Not detected
GCGTGTGTGTGTGCGTGtGG 2325. 2 Not detected Not detected
GTGTGTGTGTGTGCGTGgGG 2326. 2 Not detected Not detected
GTGTGCGTGTGTGCGTGtGG 2327. 2 Not detected Not detected
GTGTGTGTGTGTGCGTGcGG 2328. 2 Not detected Not detected
GAGAGAGAGTGTGCGTGtGG 2329. 2 Not detected Not detected
GAGTGTGTGAGTGCGTGgGG 2330. 2 Not detected Not detected
GTGTGAGTGTGTGTGTGtGG 2331. 2 Not detected Not detected
GAGTGTGTGTATGCGTGtGG 2332. 2 Not detected Not detected
GAGTCAGTGTGTGAGTGaGG 2333. 2 Not detected Not detected
GAGTGTGTGTGTGAGTGtGG 2334. 2 Not detected Not detected
GAGTGTGTGTGTGCATGtGG 2335. 2 Not detected Not detected
GAGTGAGAGTGTGTGTGtGG 2336. 2 Not detected Not detected
GAGTGAGTGAGTGAGTGaGG 2337. 2 Not detected Not detected X7 site GTCCGAGCAGAAGAAGAAgGG 2338. 0 (on-target) 43.01 ± 0.87 17.25 ± 0.64
GTCTGAGCAGAAGAAGAAtGG 2339. 1 Not detected Not detected
GTCCCAGCAGTAGAAGAAtGG 2340. 2 Not detected Not detected
GTCCGAGGAGAGGAAGAAaGG 2341. 2 Not detected Not detected
GTCAGAGGAGAAGAAGAAgGG 2342. 2 Not detected Not detected
GACAGAGCAGAAGAAGAAgGG 2343. 2 Not detected Not detected
GTGGGAGCAGAAGAAGAAgGG 2344. 2 Not detected Not detected
GTACTAGCAGAAGAAGAAaGG 2345. 2 Not detected Not detected
GTCTGAGCACAAGAAGAAtGG 2346. 2 Not detected Not detected
GTGCTAGCAGAAGAAGAAgGG 2347. 2 Not detected Not detected
TACAGAGCAGAAGAAGAAtGG 2348. 3 Not detected Not detected
TACGGAGCAGAAGAAGAAtGG 2349. 3 Not detected Not detected
AACGGAGCAGAAGAAGAAaGG 2350. 3 Not detected Not detected
GACACAGCAGAAGAAGAAgGG 2351. 3 Not detected Not detected Table 3 C
Indel mutation frequencies at poten tial off-target sites of tru-RGNs
targeted to endogenous g enes in human cells
SEQ Number of Indel mutation frequency (%)
Target ID Target Site + PAM
ID mismatches ± s.e.m.
CTGCGATCAGAAGAAGAAaGG 2352. 3 Not detected Not detected
GACTGGGCAGAAGAAGAAgGG 2353. 3 Not detected Not detected
TTCCCTGCAGAAGAAGAAaGG 2354. 3 Not detected Not detected
TTCCTACCAGAAGAAGAAtGG 2355. 3 Not detected Not detected
CTCTGAGGAGAAGAAGAAaGG 2356. 3 Not detected Not detected
ATCCAATCAGAAGAAGAAgGG 2357. 3 Not detected Not detected
GCCCCTGCAGAAGAAGAAcGG 2358. 3 Not detected Not detected
ATCCAACCAGAAGAAGAAaGG 2359. 3 Not detected Not detected
GACTGAGAAGAAGAAGAAaGG 2360. 3 Not detected Not detected
GTGGGATCAGAAGAAGAAaGG 2361. 3 Not detected Not detected
GACAGAGAAGAAGAAGAAaGG 2362. 3 Not detected Not detected
GTCATGGCAGAAGAAGAAaGG 2363. 3 Not detected Not detected
GTTGGAGAAGAAGAAGAAgGG 2364. 3 Not detected Not detected
GTAAGAGAAGAAGAAGAAgGG 2365. 3 Not detected Not detected
CTCCTAGCAAAAGAAGAAtGG 2366. 3 Not detected Not detected
TTCAGAGCAGGAGAAGAAtGG 2367. 3 Not detected Not detected
GTTGGAGCAGGAGAAGAAgGG 2368. 3 Not detected Not detected
GCCTGAGCAGAAGGAGAAgGG 2369. 3 Not detected Not detected
GTCTGAGGACAAGAAGAAtGG 2370. 3 Not detected Not detected
GTCCGGGAAGGAGAAGAAaGG 2371. 3 Not detected Not detected
GGCCGAGCAGAAGAAAGAcGG 2372. 3 Not detected Not detected
GTCCTAGCAGGAGAAGAAgAG 2373. 3 Not detected Not detected
Table 3D: Frequencies of tru-RGN-induced indel mutations at potential off- target sites in human U20S.EGFP as determined by deep sequencing
On- S# tru-RGN Control target Off-target site sequence Ind
WT Freq. Indel WT Freq site el
2374. 150
225640 0.66% 3 135451 0.00%
GTGGGGGGAGTTTGCCCCaGG 0
2375. 155
152386 1.01% 0 86206 0.00%
GTGGGGGGTGTTTGCTCCcGG 2
GTGGGTGGAGTTTGCTACtGG 2376. 1 471818 0.00% 0 199581 0.00%
VEGFA GTGGGTGGAGTTTGCTACaGG 2377. 0 337298 0.00% 1 211547 0.00% site 1
GTGGGTGGCGTTTGCTCCaGG 2378. 2 210174 0.00% 1 105531 0.00%
GTGTGGGGAATTTGCTCCaGG 2379. 673 715547 0.09% 1 387097 0.00%
GTGGGGGGAGCTTTCTCCtGG 2380. 5 107757 0.00% 1 58735 0.00%
2381. 191
566548 0.34% 3 297083 0.00%
GGGGGGGCAGTTTGCTCCtGG 4
GTGTGAGTGTGTGCGTGtGG 2382. 58 324881 0.02% 9 122216 0.01%
GTGTGAGTGTGTGCGTGaGG 2383. 532 194914 0.27% 11 73644 0.01%
GAGTGGGTGTGTGCGTGgGG 2384. 70 237029 0.03% 10 178258 0.01%
GAGTGACTGTGTGCGTGtGG 2385. 6 391894 0.00% 0 239460 0.00%
GAGTGAGTGTGTGGGTGgGG 2386. 15 160140 0.01% 10 123324 0.01%
GTGTGAGTGTGTGCGTGgGG 2387. 19 138687 0.01% 1 196271 0.00%
VEGFA CAGTGAGTGTGTGCGTGtGG 2388. 78 546865 0.01% 41 355953 0.01% site 3 GTGTGAGTGTGTGCGTGtGG 2389. 128 377451 0.03% 56 133978 0.04%
GAGTGTGTGTGTGCGTGtGG 2390. 913 263028 0.35% 78 178979 0.04%
GAGTGAGTGTGTGTGTGtGG 2391. 40 106933 0.04% 36 58812 0.06%
GAGTGAGTGTGTGTGTGtGG 2392. 681 762999 0.09% 63 222451 0.03%
GAGTGAGTGTGTGTGTGgGG 2393. 331 220289 0.15% 100 113911 0.09%
GAGTGAGTGTGTGTGTGtGG 2394. 0 35725 0.00% 8 186495 0.00%
GAGTGAGTGTGTGCGCGgGG 2395. 94 246893 0.04% 16 107623 0.01%
GTCAGAGGAGAAGAAGAAgGG 2396. 0 201483 0.00% 4 148416 0.00%
GTCAGAGGAGAAGAAGAAgGG 2397. 10 545662 0.00% 5 390884 0.00%
GTCTGAGCACAAGAAGAAtGG 2398. 2 274212 0.00% 0 193837 0.00%
EMX1 GTCTGAGCAGAAGAAGAAtGG 2399. 440 375646 0.12% 10 256181 0.00% site 1 GACAGAGCAGAAGAAGAAgGG 2400. 2 212472 0.00% 1 158860 0.00%
GTACTAGCAGAAGAAGAAaGG 2401. 152 229209 0.07% 103 157717 0.07%
GTGGGAGCAGAAGAAGAAgGG 2402. 50 207401 0.02% 36 111183 0.03%
GTCCCAGCAGTAGAAGAAtGG 2403. 0 226477 0.00% 1 278948 0.00%
S#: SEQ ID NO: Example 2d. tru-gRNAs can be used with dual Cas9 nickases to efficiently induce genome editing in human cells
tru-gRNAs were tested with the recently described dual Cas9 nickase approach to induce indel mutations. To do this, the Cas9-D10A nickase together with two full-length gRNAs targeted to sites in the human VEGFA gene (VEGFA site 1 and an additional sequence we refer to as VEGFA site 4) were co-expressed in
U20S.EGFP cells (Figure 4A). As described previously (Ran et al, 2013), this pair of nickases functioned cooperatively to induce high rates of indel mutations at the VEGFA target locus (Figure 4B). Interestingly, Cas9-D10A nickase co-expressed with only the gRNA targeted to VEGFA site 4 also induced indel mutations at a high frequency, albeit at a rate somewhat lower than that observed with the paired full- length gRNAs (Figure 4B). Importantly, use of a tru-gRNA for VEGFA site 1 in place of a full-length gRNA did not affect the efficacy of the dual nickase approach to induce indel mutations (Figure 4B).
The dual nickase strategy has also been used to stimulate the introduction of specific sequence changes using ssODNs (Mali et al, 2013a; Ran et al, 2013) and so whether tru-gRNAs might be used for this type of alteration was also tested. Paired full-length gRNAs for VEGFA sites 1 and 4 together with Cas9-D10A nickase cooperatively enhanced efficient introduction of a short insertion from a ssODN donor (Figure 3 A) into the VEGFA locus in human U20S.EGFP cells as expected (Figure 3C). Again, the efficiency of ssODN-mediated sequence alteration by dual nicking remained equally high with the use of a tru-gRNA in place of the full-length gRNA targeted to VEGFA site 1 (Figure 3C). Taken together, these results demonstrate that tru-gRNAs can be utilized as part of a dual Cas9 nickase strategy to induce both indel mutations and ssODN-mediated sequence changes, without compromising the efficiency of genome editing by this approach.
Having established that use of a tru-gRNA does not diminish the on-target genome editing activities of paired nickases, we next used deep sequencing to examine mutation frequencies at four previously identified bona fide off-target sites of the VEGFA site 1 gRNA. This analysis revealed that mutation rates dropped to essentially undetectable levels at all four of these off-target sites when using paired nickases with a tru-gRNA (Table 4). By contrast, neither a tru-RGN (Table 3B) nor the paired nickases with full-length gRNAs (Table 4) was able to completely eliminate off-target mutations at one of these four off-target sites (OT1-3). These results demonstrate that the use of tru-gRNAs can further reduce the off-target effects
of paired Cas9 nickases (and vice versa) without compromising the efficiency of on- target genome editing.
Table 4 Frequencies of paired nickase-induced indel mutations at on- and off-target sites of VEGFA site 1 using full-length and tru-gRNAs
Paired full-length gRNAs tru-gRNA/full-length gRNA Control
Site
Indel WT Freq. Indel WT Freq. Indel WT Freq.
VEGFA
site 1 78905 345696 18.583% 65754 280720 18.978% 170 308478 0.055%
OT1-3 184 85151 0.216% 0 78658 0.000% 2 107850 0.002%
OT1-4 0 89209 0.000% 1 97010 0.001% 0 102135 0.000%
OT1-6 2 226575 0.001% 0 208218 0.000% 0 254580 0.000%
OTl-ll 0 124729 0.000% 0 121581 0.000% 0 155173 0.000%
References
Cheng, A.W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T.W., Rangarajan, S., Shivalila, C.S., Dadon, D.B., and Jaenisch, R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23, 1163-1171. (2013).
Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31 , 230-232 (2013). Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
Cradick, T.J., Fine, E.J., Antico, C.J., and Bao, G. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. (2013).
Dicarlo, J.E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-
Cas systems. Nucleic Acids Res (2013).
Ding, Q., Regan, S.N., Xia, Y., Oostrom, L.A., Cowan, C.A., and Musunuru, K.
Enhanced efficiency of human pluripotent stem cell genome editing through replacing
TALENs with CRISPRs. Cell Stem Cell 12, 393-394. (2013).
Fisher, S., Barry, A., Abreu, J., Minie, B., Nolan, J., Delorey, T.M., Young, G.,
Fennell, T.J., Allen, A., Ambrogio, L., et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol
12, Rl . (2011).
Friedland, A.E., Tzur, Y.B., Esvelt, K.M., Colaiacovo, M.P., Church, G.M., and Calarco, J. A. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10, 741-743. (2013).
Fu, Y., Foden, J.A., Khayter, C, Maeder, M.L., Reyon, D., Joung, J.K., and Sander, J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826. (2013).
Gabriel, R. et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29, 816-823 (2011).
Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-
Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., et al. (2013). CRISPR- Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell 154, 442-451. Gratz, S.J. et al. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics (2013).
Hockemeyer, D. et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29, 731-734 (2011).
Horvath, P. & Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167-170 (2010).
Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832. (2013).
Hwang, W.Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31 , 227-229 (2013).
Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Kaini, P., Sander, J.D., Joung, J.K., Peterson, R.T., and Yeh, J.R. Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System. PLoS One 8, e68708. (2013a).
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffmi, L.A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233-239 (2013). Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 (2012).
Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).
Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., Li, Y., Gao, N., Wang, L., Lu, X., et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31, 681-683. (2013a).
Li, W., Teng, F., Li, T., and Zhou, Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31, 684-686. (2013b).
Maeder, M ., Linder, S.J., Cascio, V.M., Fu, Y., Ho, Q.H., and Joung, J.K. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10, 977-979.
(2013).
Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L., and Church, G.M. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838. (2013a). Λ ^
125
Mali, P., Esvelt, K.M., and Church, G.M. Cas9 as a versatile tool for engineering biology. Nat Methods 10, 957-963. (2013b).
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823- 826 (2013c).
Pattanayak, V., Lin, S., Guilinger, J.P., Ma, E., Doudna, J.A., and Liu, D.R. High- throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31 , 839-843. (2013).
Pattanayak, V., Ramirez, C.L., Joung, J.K. & Liu, D.R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8, 765-770 (2011).
Perez, E.E. et al. Establishment of HIV- 1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26, 808-816 (2008).
Perez-Pinera, P., Kocak, D.D., Vockley, CM., Adler, A.F., Kabadi, A.M., Polstein, L.R., Thakore, P.I., Glass, K.A., Ousterout, D.G., Leong, K.W., et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10, 973- 976. (2013).
Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., and
Lim, W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183. (2013).
Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E.,
Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., et al. Double nicking by RNA-guided
CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389. (2013).
Reyon, D. et al. FLASH assembly of TALENs for high-throughput genome editing.
Nat Biotech 30, 460-465 (2012).
Sander, J.D., Maeder, M.L., Reyon, D., Voytas, D.F., Joung, J.K., and Dobbs, D.
ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids
Res 38, W462-468. (2010).
Sander, J.D., Ramirez, C.L., Linder, S.J., Pattanayak, V., Shoresh, N., Ku, M., Foden, J.A., Reyon, D., Bernstein, B.E., Liu, D.R., et al. In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. (2013).
Sander, J.D., Zaback, P., Joung, J.K., Voytas, D.F., and Dobbs, D. Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Res 35, W599-605. (2007). Shen, Β. et al. Generation of gene-modified mice via Cas9/R A-mediated gene targeting. Cell Res (2013).
Sugimoto, N. et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34, 11211-11216 (1995).
Terns, M.P. & Terns, R.M. CRISPR-based adaptive immune systems. Curr Opin Microbiol 14, 321-327 (2011).
Wang, H. et al. One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering. Cell 153, 910-918 (2013).
Wiedenheft, B., Sternberg, S.H. & Doudna, J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331-338 (2012).
Yang, L., Guell, M., Byrne, S., Yang, J.L., De Los Angeles, A., Mali, P., Aach, J., Kim-Kiselak, C, Briggs, A.W., Rios, X., et al. (2013). Optimization of scarless human stem cell genome editing. Nucleic Acids Res 41, 9049-9061.
OTHER EMBODIMENTS
It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims

WHAT IS CLAIMED IS:
1. A method of increasing specificity of RNA-guided genome editing in a cell, the method comprising contacting the cell with a guide RNA that includes a complementarity region consisting of 17-18 nucleotides that are complementary to 17-18 consecutive nucleotides of the complementary strand of a selected target genomic sequence.
2. A method of inducing a break in a target region of a double-stranded DNA
molecule in a cell, the method comprising expressing in or introducing into the cell:
a Cas9 nuclease or nickase; and
a guide RNA that includes a complementarity region consisting of 17-18 nucleotides that are complementary to 17-18 consecutive nucleotides of the complementary strand of double-stranded DNA molecule.
3. A method of modifying a target region of a double-stranded DNA molecule in a cell, the method comprising expressing in or introducing into the cell:
a dCas9-heterologous functional domain fusion protein (dCas9-HFD); and a guide RNA that includes a complementarity region consisting of 17-18 nucleotides that are complementary to 17-18 consecutive nucleotides of the complementary strand of a selected target genomic sequence.
4. The method of claims 1-3, wherein the guide RNA is
(i) a single guide RNA that includes a complementarity region consisting of 17-18 nucleotides that are complementary to 17-18 consecutive nucleotides of the complementary strand of a selected target genomic sequence, or
(ii) a crRNA that includes a complementarity region consisting of 17-18 nucleotides that are complementary to 17-18 consecutive nucleotides of the complementary strand of a selected target genomic sequence, and a tracrRNA.
5. The method of claims 1-3, wherein the guide RNA is or comprises a ribonucleic acid selected from the group consisting of:
(Xi7-i8 or Xi7_i9)GUUUUAGAGCUA (SEQ ID NO:2404);
(X17-18 or X17-19) GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407); or (Xiv-18 or Xi7-i9)GUUUUAGAGCUAUGCU (SEQ ID NO:2408);
(Xi 7_ 18)GUUUUAG AGCUAG A AAUAGC AAGUUAAAAUAAGGCUAGUCC G
(XN) (SEQ ID NO: l),
(Xi7-i8)GUUUUAGAGCUAUGCUGAAAAGCAUAGCAAGUUAAAAUAAGG CUAGUCCGUUAUC(XN) (SEQ ID NO:2),
(Xi7-i8)GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCAUAGCAA GUUAAAAUAAGGCUAGUCCGUUAUC(XN) (SEQ ID NO:3),
(Xi 7_ 18)GUUUUAG AGCUAG A AAUAGC AAGUUAAAAUAAGGCUAGUCC G UUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(XN) (SEQ ID NO:4), (Xi 7_ 18)GUUUAAG AGCUAG A AAUAGC AAGUUUAAAUAAGGCUAGUCC G UUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(SEQ ID NO:5); (Xi7-i8)GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAA GGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC
(SEQ ID NO:6); or
(Xi7-is)GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAA GGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC
(SEQ ID NO:7);
wherein Xi7_i8 is a complementarity region that is complementary to 17-18 consecutive nucleotides of the complementary strand of a selected target sequence, preferably a target sequence immediately 5 Of a protospacer adjacent motif (PAM), and XN is any sequence, wherein N can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9.
A guide RNA molecule having a target complementarity region of 17-18 nucleotides.
The gRNA of claim 6, wherein the target complementarity region consists of 17- 18 nucleotides.
The gRNA of claim 6, wherein the target complementarity region consists of 17- 18 nucleotides of target complementarity.
The gRNA of claim 6, consisting of the sequence:
(X17-18 or Xi7-i9)GUUUUAGAGCUA (SEQ ID NO:2404);
(X17-18 or X17-19) GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407); or (Xiv-18 or Xi7-i9)GUUUUAGAGCUAUGCU (SEQ ID NO:2408);
(Xi 7_ 18)GUUUUAG AGCUAG A AAUAGC AAGUUAAAAUAAGGCUAGUCC G
(XN) (SEQ ID NO: l),
(Xi7-i8)GUUUUAGAGCUAUGCUGAAAAGCAUAGCAAGUUAAAAUAAGG CUAGUCCGUUAUC(XN) (SEQ ID NO:2),
(Xi7-i8)GUUUUAGAGCUAUGCUGUUUUGGAAACAAAACAGCAUAGCAA GUUAAAAUAAGGCUAGUCCGUUAUC(XN) (SEQ ID NO:3),
(Xi 7_ 18)GUUUUAG AGCUAG A AAUAGC AAGUUAAAAUAAGGCUAGUCC G UUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(XN) (SEQ ID NO:4), (Xi 7_ 18)GUUUAAG AGCUAG A AAUAGC AAGUUUAAAUAAGGCUAGUCC G UUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(SEQ ID NO:5); (Xi7-i8)GUUUUAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAA GGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC
(SEQ ID NO:6); or
(Xi7-is)GUUUAAGAGCUAUGCUGGAAACAGCAUAGCAAGUUUAAAUAA GGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC
(SEQ ID NO:7);
wherein Xn-is is a sequence complementary to 17- 18 consecutive nucleotides of the complementary strand of a selected target sequence, preferably a target sequence immediately 5 Of a protospacer adjacent motif (PAM), and XN is any sequence, wherein N can be 0-200, e.g., 0-100, 0-50, or 0-20, that does not interfere with the binding of the ribonucleic acid to Cas9.
10. The method of claim 5 or the ribonucleic acid of claim 6, wherein the ribonucleic acid includes one or more U at the 3 ' end of the molecule.
1 1. The method of claim 5 or the ribonucleic acid of claim 6, wherein the ribonucleic acid includes one or more additional nucleotides at the 5 ' end of the RNA molecule that is not complementary to the target sequence.
12. The method of claim 5 or the ribonucleic acid of claim 6, wherein the ribonucleic acid includes one, two, or three additional nucleotides at the 5 ' end of the RNA molecule that are not complementary to the target sequence.
13. The method of claims 1-5 or the ribonucleic acid of claims 6-12, wherein the complementarity region is complementary to 17 consecutive nucleotides of the complementary strand of a selected target sequence.
14. The method of claims 1-5 or the ribonucleic acid of claims 6-12, wherein the
complementarity region is complementary to 18 consecutive nucleotides of the complementary strand of a selected target sequence.
15. A DNA molecule encoding the ribonucleic acid of claims 6-14.
16. A vector comprising the DNA molecule of claim 15.
17. A host cell expressing the vector of claim 16.
18. The method of claims 1-5 or the ribonucleic acid of claims 6-12, wherein the
target region is in a target genomic sequence.
19. The method of claims 1-5 or the ribonucleic acid of claims 6-12, wherein the
target genomic sequence is immediately 5 Of a protospacer adjacent motif (PAM).
The method of claim 4, wherein the tracrRNA consists of the sequence
GG AAC C AUUC AAAAC AGC AUAGC A AGUUAAA AUAAGGCUAGUCC GU UAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC (SEQ ID NO: 8), or an active portion thereof;
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGG CACCGAGUCGGUGC (SEQ ID NO:2405) or an active portion thereof;
AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAA GUGGCACCGAGUCGGUGC (SEQ ID NO:2407) or an active portion thereof; CAAAACAGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUU GAAAAAGUGGCACCGAGUCGGUGC (SEQ ID NO:2409) or an active portion thereof;
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUG
(SEQ ID NO:2410) or an active portion thereof;
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCA (SEQ ID NO:2411) or an active portion thereof; or
UAGCAAGUUAAAAUAAGGCUAGUCCG (SEQ ID NO:2412) or an active portion thereof.
20. The method of claim 4, wherein the cR A is (X17-18 or X17- i9)GUUUUAGAGCUAUGCUGUUUUG (SEQ ID NO:2407) and the tracrRNA is GG AAC C AUUC AAAAC AGC AUAGC A AGUUAAA AUAAGGCUAGUCC GU UAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC (SEQ ID NO: 8); the cRNA is (Xi7-i8 or Xi7_i9)GUUUUAGAGCUA (SEQ ID NO:2404) and the tracrRNA is
UAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGG CACCGAGUCGGUGC (SEQ ID NO:2405); or the cRNA is (Xl7AS or X17-19) GUUUUAGAGCUAUGCU (SEQ ID NO:2408) and the tracrRNA is
AGCAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAA GUGGC ACC G AGUC GGUGC (SEQ ID NO:2406).
21. The method of claim 3, wherein the dCas9-heterologous functional domain fusion protein (dCas9-HFD) comprises a HFD that modifies gene expression, histones, or DNA.
22. The method of claim 21 , wherein the heterologous functional domain is a
transcriptional activation domain, an enzyme that catalyzes DNA demethylation, an enzyme that catalyzes histone modification, or a transcription silencing domain.
23. The method of claim 22, wherein the transcriptional activation domain is from VP64 or NF-κΒ p65.
24. The method of claim 22, wherein the enzyme that catalyzes histone modification is LSD1 , a histone methyltransferase (HNMT), histone acetyltransferase (HAT), histone deacetylase (HDAC), or histone demethylase.
25. The method of claim 22, wherein the transcription silencing domain is from
Heterochromatin Protein 1 (HP1), e.g., HP la or ΗΡΙ β.
26. The method of any of claims 1-5, which results in an indel mutation or sequence alteration in the selected target genomic sequence.
27. The method of any of claims 1-5, wherein the cell is a eukaryotic cell.
28. The method of claim 27, wherein the cell is a mammalian cell.
PCT/US2014/029068 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing WO2014144592A2 (en)

Priority Applications (33)

Application Number Priority Date Filing Date Title
AU2014228981A AU2014228981B2 (en) 2013-03-15 2014-03-14 Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
JP2016502976A JP6980380B2 (en) 2013-03-15 2014-03-14 Increased specificity of RNA-induced genome editing with shortened guide RNA (tru-gRNA)
CN201480026133.4A CN105408497B (en) 2013-03-15 2014-03-14 The specificity of the genome editor of RNA guidance is improved using truncated guidance RNA (tru-gRNA)
KR1020237038728A KR20230157540A (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
CA2906724A CA2906724A1 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
EP20172393.9A EP3744842A1 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
BR112015023489-5A BR112015023489B1 (en) 2013-03-15 2014-03-14 Methods for increasing the specificity of RNA-driven genome editing in a cell, of inducing a break in a target region of a double-stranded DNA molecule in a cell, and of modifying a target region of a single-stranded DNA molecule double in one cell
US14/775,930 US10119133B2 (en) 2013-03-15 2014-03-14 Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
IL289396A IL289396B2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
EP21197664.2A EP3988667A1 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
CN201910766412.9A CN110540991B (en) 2013-03-15 2014-03-14 Enhancement of specificity of RNA-guided genome editing using truncated guide RNA (tru-gRNA)
KR1020217002428A KR102405549B1 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
KR1020157029171A KR102210323B1 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
KR1020227018265A KR102602047B1 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
EP14763916.5A EP2971125B2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
CN202110920229.7A CN113684205A (en) 2013-12-26 2014-09-18 Multiple guide RNAs
JP2016542968A JP6721508B2 (en) 2013-12-26 2014-09-18 Multiple guide RNA
CA2935032A CA2935032C (en) 2013-12-26 2014-09-18 Multiplex guide rnas
EP21191144.1A EP3985124A1 (en) 2013-12-26 2014-09-18 Multiplex guide rnas
EP14875819.6A EP3090044B1 (en) 2013-12-26 2014-09-18 Multiplex guide rnas
KR1020167020111A KR20160102056A (en) 2013-12-26 2014-09-18 Multiplex guide rnas
PCT/US2014/056416 WO2015099850A1 (en) 2013-12-26 2014-09-18 Multiplex guide rnas
AU2014370416A AU2014370416B2 (en) 2013-12-26 2014-09-18 Multiplex guide RNAs
CN201480076396.6A CN106103706B (en) 2013-12-26 2014-09-18 Multiple guide RNAs
US15/107,550 US10526589B2 (en) 2013-03-15 2014-09-18 Multiplex guide RNAs
ZA2015/06814A ZA201506814B (en) 2013-03-15 2015-09-15 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
IL241671A IL241671B (en) 2013-03-15 2015-09-16 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
JP2019218086A JP7005580B2 (en) 2013-12-26 2019-12-02 Multiple guide RNA
US16/735,146 US20200165587A1 (en) 2013-12-26 2020-01-06 Multiplex Guide RNAS
AU2020201465A AU2020201465B2 (en) 2013-03-15 2020-02-28 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
AU2021203309A AU2021203309B2 (en) 2013-12-26 2021-05-23 Multiplex guide RNAs
AU2022209254A AU2022209254A1 (en) 2013-03-15 2022-07-27 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
AU2023258349A AU2023258349A1 (en) 2013-12-26 2023-10-31 Multiplex guide RNAs

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201361799647P 2013-03-15 2013-03-15
US61/799,647 2013-03-15
US201361838178P 2013-06-21 2013-06-21
US201361838148P 2013-06-21 2013-06-21
US61/838,148 2013-06-21
US61/838,178 2013-06-21
US201361921007P 2013-12-26 2013-12-26
US61/921,007 2013-12-26

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2014/029304 Continuation WO2014144761A2 (en) 2013-03-15 2014-03-14 Increasing specificity for rna-guided genome editing
PCT/US2014/028630 Continuation WO2014144288A1 (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
PCT/US2014/029068 Continuation WO2014144592A2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing

Related Child Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2014/029068 Continuation WO2014144592A2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
US14/211,117 Continuation US10760064B2 (en) 2013-03-15 2014-03-14 RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci

Publications (2)

Publication Number Publication Date
WO2014144592A2 true WO2014144592A2 (en) 2014-09-18
WO2014144592A3 WO2014144592A3 (en) 2014-12-31

Family

ID=51537665

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2014/029304 WO2014144761A2 (en) 2013-03-15 2014-03-14 Increasing specificity for rna-guided genome editing
PCT/US2014/028630 WO2014144288A1 (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
PCT/US2014/029068 WO2014144592A2 (en) 2013-03-15 2014-03-14 Using truncated guide rnas (tru-grnas) to increase specificity for rna-guided genome editing
PCT/US2014/027335 WO2014152432A2 (en) 2013-03-15 2014-03-14 Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/US2014/029304 WO2014144761A2 (en) 2013-03-15 2014-03-14 Increasing specificity for rna-guided genome editing
PCT/US2014/028630 WO2014144288A1 (en) 2013-03-15 2014-03-14 Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2014/027335 WO2014152432A2 (en) 2013-03-15 2014-03-14 Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci

Country Status (12)

Country Link
US (15) US10378027B2 (en)
EP (9) EP3741868B1 (en)
JP (11) JP6980380B2 (en)
KR (8) KR102210319B1 (en)
CN (6) CN113563476A (en)
AU (10) AU2014228981B2 (en)
BR (1) BR112015023489B1 (en)
CA (4) CA2907198C (en)
ES (1) ES2713503T3 (en)
IL (2) IL289396B2 (en)
WO (4) WO2014144761A2 (en)
ZA (1) ZA201506814B (en)

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US9322006B2 (en) 2011-07-22 2016-04-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
WO2016089433A1 (en) 2014-12-03 2016-06-09 Agilent Technologies, Inc. Guide rna with chemical modifications
WO2016100951A3 (en) * 2014-12-18 2016-10-20 Integrated Dna Technologies, Inc. Crispr-based compositions and methods of use
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
WO2017011721A1 (en) 2015-07-15 2017-01-19 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
US9567603B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
WO2017044776A1 (en) * 2015-09-10 2017-03-16 Texas Tech University System Single-guide rna (sgrna) with improved knockout efficiency
EP3219799A1 (en) 2016-03-17 2017-09-20 IMBA-Institut für Molekulare Biotechnologie GmbH Conditional crispr sgrna expression
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9932566B2 (en) 2014-08-07 2018-04-03 Agilent Technologies, Inc. CIS-blocked guide RNA
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
WO2018071892A1 (en) 2016-10-14 2018-04-19 Joung J Keith Epigenetically regulated site-specific nucleases
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
WO2018129129A1 (en) 2017-01-05 2018-07-12 Rutgers, The State University Of New Jersey Targeted gene editing platform independent of dna double strand break and uses thereof
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10093910B2 (en) 2015-08-28 2018-10-09 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
WO2018195545A2 (en) 2017-04-21 2018-10-25 The General Hospital Corporation Variants of cpf1 (cas12a) with altered pam specificity
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10136649B2 (en) 2015-05-29 2018-11-27 North Carolina State University Methods for screening bacteria, archaea, algae, and yeast using CRISPR nucleic acids
WO2018218166A1 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Using split deaminases to limit unwanted off-target base editor deamination
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
US10450584B2 (en) 2014-08-28 2019-10-22 North Carolina State University Cas9 proteins and guiding features for DNA targeting and genome editing
US10526589B2 (en) 2013-03-15 2020-01-07 The General Hospital Corporation Multiplex guide RNAs
US10526590B2 (en) 2015-08-31 2020-01-07 Agilent Technologies, Inc. Compounds and methods for CRISPR/Cas-based genome editing by homologous recombination
US10538750B2 (en) 2016-02-29 2020-01-21 Agilent Technologies, Inc. Methods and compositions for blocking off-target nucleic acids from cleavage by CRISPR proteins
US10584358B2 (en) 2013-10-30 2020-03-10 North Carolina State University Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri
US10711267B2 (en) 2018-10-01 2020-07-14 North Carolina State University Recombinant type I CRISPR-Cas system
US10717978B2 (en) 2016-10-07 2020-07-21 Integrated Dna Technologies, Inc. S. pyogenes CAS9 mutant genes and polypeptides encoded by same
WO2020148206A1 (en) 2019-01-14 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity
WO2020163396A1 (en) 2019-02-04 2020-08-13 The General Hospital Corporation Adenine dna base editor variants with reduced off-target rna editing
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US10787654B2 (en) 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
US20210040460A1 (en) 2012-04-27 2021-02-11 Duke University Genetic correction of mutated genes
US11028388B2 (en) 2014-03-05 2021-06-08 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa
US11136567B2 (en) 2016-11-22 2021-10-05 Integrated Dna Technologies, Inc. CRISPR/CPF1 systems and methods
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11155823B2 (en) 2015-06-15 2021-10-26 North Carolina State University Methods and compositions for efficient delivery of nucleic acids and RNA-based antimicrobials
WO2021228944A1 (en) 2020-05-13 2021-11-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Base editing approaches for the treatment of betahemoglobinopathies
US11180793B2 (en) 2015-04-24 2021-11-23 Editas Medicine, Inc. Evaluation of Cas9 molecule/guide RNA molecule complexes
WO2022008935A1 (en) 2020-07-10 2022-01-13 Horizon Discovery Limited Method for producing genetically modified cells
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US11242542B2 (en) 2016-10-07 2022-02-08 Integrated Dna Technologies, Inc. S. pyogenes Cas9 mutant genes and polypeptides encoded by same
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11286480B2 (en) 2015-09-28 2022-03-29 North Carolina State University Methods and compositions for sequence specific antimicrobials
US11286468B2 (en) 2017-08-23 2022-03-29 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11293022B2 (en) 2016-12-12 2022-04-05 Integrated Dna Technologies, Inc. Genome editing enhancement
US11306309B2 (en) 2015-04-06 2022-04-19 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
WO2022079020A1 (en) 2020-10-13 2022-04-21 Centre National De La Recherche Scientifique (Cnrs) Targeted-antibacterial-plasmids combining conjugation and crispr /cas systems and uses thereof
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
WO2022148955A1 (en) 2021-01-05 2022-07-14 Horizon Discovery Limited Method for producing genetically modified cells
US11390884B2 (en) 2015-05-11 2022-07-19 Editas Medicine, Inc. Optimized CRISPR/cas9 systems and methods for gene editing in stem cells
US11414657B2 (en) 2015-06-29 2022-08-16 Ionis Pharmaceuticals, Inc. Modified CRISPR RNA and modified single CRISPR RNA and uses thereof
WO2022180153A1 (en) 2021-02-25 2022-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Allele-specific genome editing of the nr2e3 mutation g56r
US11439712B2 (en) 2014-04-08 2022-09-13 North Carolina State University Methods and compositions for RNA-directed repression of transcription using CRISPR-associated genes
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11466271B2 (en) 2017-02-06 2022-10-11 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
US11542466B2 (en) 2015-12-22 2023-01-03 North Carolina State University Methods and compositions for delivery of CRISPR based antimicrobials
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11566263B2 (en) 2016-08-02 2023-01-31 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
WO2023052366A1 (en) 2021-09-28 2023-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Base editing approaches for the treatment of beta-hemoglobinopathies
US11624077B2 (en) 2017-08-08 2023-04-11 Peking University Gene knockout method
WO2023069987A1 (en) 2021-10-20 2023-04-27 University Of Rochester Rejuvenation treatment of age-related white matter loss cross reference to related application
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
WO2023099591A1 (en) 2021-12-01 2023-06-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for increasing fetal hemoglobin content by editing the +55-kb region of the erythroid-specific bcl11a enhancer
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
EP4198124A1 (en) 2021-12-15 2023-06-21 Versitech Limited Engineered cas9-nucleases and method of use thereof
WO2023144104A1 (en) 2022-01-25 2023-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Base editing approaches for the treatment of βeta-thalassemia
US11718849B2 (en) 2018-02-19 2023-08-08 Agilent Technologies, Inc. Phosphopeptide-encoding oligonucleotide libraries and methods for detecting phosphorylation-dependent molecular interactions
WO2023152351A1 (en) 2022-02-14 2023-08-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Treatment of liver cancers by disrupting the beta-catenin/tcf-4 binding site located upstream of meg3 in the dlk1/dio3 locus
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
WO2023217888A1 (en) 2022-05-10 2023-11-16 Institut National de la Santé et de la Recherche Médicale Base editing approaches for correcting the cd39 (cag>tag) mutation in patients suffering from βeta-thalassemia
US11851690B2 (en) 2017-03-14 2023-12-26 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11859220B2 (en) 2015-03-03 2024-01-02 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
WO2024018056A1 (en) 2022-07-22 2024-01-25 Institut National de la Santé et de la Recherche Médicale Base editing approaches for correcting the ivs2-1 (g>a) mutation in patients suffering from βeta-thalassemia
US11884915B2 (en) 2021-09-10 2024-01-30 Agilent Technologies, Inc. Guide RNAs with chemical modification for prime editing
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11897920B2 (en) 2017-08-04 2024-02-13 Peking University Tale RVD specifically recognizing DNA base modified by methylation and application thereof
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11911415B2 (en) 2015-06-09 2024-02-27 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for improving transplantation
US11920128B2 (en) 2013-09-18 2024-03-05 Kymab Limited Methods, cells and organisms
WO2024047247A1 (en) 2022-09-02 2024-03-07 Institut National de la Santé et de la Recherche Médicale Base editing approaches for the treatment of amyotrophic lateral sclerosis
US11963982B2 (en) 2017-05-10 2024-04-23 Editas Medicine, Inc. CRISPR/RNA-guided nuclease systems and methods
US11970710B2 (en) 2015-10-13 2024-04-30 Duke University Genome engineering with Type I CRISPR systems in eukaryotic cells
US11999947B2 (en) 2023-02-24 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof

Families Citing this family (244)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027558A2 (en) 2006-08-31 2008-03-06 Codon Devices, Inc. Iterative nucleic acid assembly using activation of vector-encoded traits
US20140031250A1 (en) 2010-10-07 2014-01-30 David Tsai Ting Biomarkers of Cancer
CN103502448B (en) 2010-11-12 2017-03-29 Gen9股份有限公司 The method and apparatus of nucleic acid synthesis
WO2012064975A1 (en) 2010-11-12 2012-05-18 Gen9, Inc. Protein arrays and methods of using and making the same
WO2013012674A1 (en) 2011-07-15 2013-01-24 The General Hospital Corporation Methods of transcription activator like effector assembly
WO2013032850A2 (en) 2011-08-26 2013-03-07 Gen9, Inc. Compositions and methods for high fidelity assembly of nucleic acids
US11021737B2 (en) 2011-12-22 2021-06-01 President And Fellows Of Harvard College Compositions and methods for analyte detection
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
US10039777B2 (en) 2012-03-20 2018-08-07 Neuro-Lm Sas Methods and pharmaceutical compositions of the treatment of autistic syndrome disorders
US9150853B2 (en) 2012-03-21 2015-10-06 Gen9, Inc. Methods for screening proteins using DNA encoded chemical libraries as templates for enzyme catalysis
EP4001427A1 (en) 2012-04-24 2022-05-25 Gen9, Inc. Methods for sorting nucleic acids and multiplexed preparative in vitro cloning
DE202013012242U1 (en) 2012-05-25 2016-02-02 Emmanuelle Charpentier Compositions for RNA-directed modification of a target DNA and for RNA-driven modulation of transcription
US9890364B2 (en) 2012-05-29 2018-02-13 The General Hospital Corporation TAL-Tet1 fusion proteins and methods of use thereof
CN113512577A (en) 2012-06-25 2021-10-19 Gen9股份有限公司 Methods for nucleic acid assembly and high throughput sequencing
EP2906602B1 (en) * 2012-10-12 2019-01-16 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins
PL3138910T3 (en) 2012-12-06 2018-01-31 Sigma Aldrich Co Llc Crispr-based genome modification and regulation
SG10201707569YA (en) 2012-12-12 2017-10-30 Broad Inst Inc Delivery, Engineering and Optimization of Systems, Methods and Compositions for Sequence Manipulation and Therapeutic Applications
EP3434776A1 (en) 2012-12-12 2019-01-30 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
EP3919505B1 (en) 2013-01-16 2023-08-30 Emory University Uses of cas9-nucleic acid complexes
WO2014124284A1 (en) 2013-02-07 2014-08-14 The General Hospital Corporation Tale transcriptional activators
US10138509B2 (en) 2013-03-12 2018-11-27 President And Fellows Of Harvard College Method for generating a three-dimensional nucleic acid containing matrix
WO2014150624A1 (en) 2013-03-14 2014-09-25 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
WO2014165825A2 (en) * 2013-04-04 2014-10-09 President And Fellows Of Harvard College Therapeutic uses of genome editing with crispr/cas systems
US20140356956A1 (en) 2013-06-04 2014-12-04 President And Fellows Of Harvard College RNA-Guided Transcriptional Regulation
WO2014197568A2 (en) 2013-06-04 2014-12-11 President And Fellows Of Harvard College Rna-guideded transcriptional regulation
BR112015031608A2 (en) 2013-06-17 2017-08-22 Massachusetts Inst Technology APPLICATION AND USE OF CRISPR-CAS SYSTEMS, VECTORS AND COMPOSITIONS FOR LIVER TARGETING AND THERAPY
AU2014281026B2 (en) 2013-06-17 2020-05-28 Massachusetts Institute Of Technology Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
RU2716421C2 (en) 2013-06-17 2020-03-11 Те Брод Инститьют Инк. Delivery, use and use in therapy of crispr-cas systems and compositions for targeted action on disorders and diseases using viral components
KR20160034901A (en) 2013-06-17 2016-03-30 더 브로드 인스티튜트, 인코퍼레이티드 Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation
WO2014204727A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
JP2016528890A (en) 2013-07-09 2016-09-23 プレジデント アンド フェローズ オブ ハーバード カレッジ Therapeutic use of genome editing using the CRISPR / Cas system
WO2015021426A1 (en) * 2013-08-09 2015-02-12 Sage Labs, Inc. A crispr/cas system-based novel fusion protein and its application in genome editing
EP3611268A1 (en) 2013-08-22 2020-02-19 E. I. du Pont de Nemours and Company Plant genome modification using guide rna/cas endonuclease systems and methods of use
EP3080266B1 (en) * 2013-12-12 2021-02-03 The Regents of The University of California Methods and compositions for modifying a single stranded target nucleic acid
SG10201804974RA (en) 2013-12-12 2018-07-30 Broad Inst Inc Compositions and Methods of Use of Crispr-Cas Systems in Nucleotide Repeat Disorders
BR112016013201B1 (en) 2013-12-12 2023-01-31 The Broad Institute, Inc. USE OF A COMPOSITION COMPRISING A CRISPR-CAS SYSTEM IN THE TREATMENT OF A GENETIC OCULAR DISEASE
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
EP3080271B1 (en) 2013-12-12 2020-02-12 The Broad Institute, Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
KR20160102056A (en) 2013-12-26 2016-08-26 더 제너럴 하스피탈 코포레이션 Multiplex guide rnas
PL3105328T3 (en) 2014-02-11 2020-10-19 The Regents Of The University Of Colorado, A Body Corporate Crispr enabled multiplexed genome engineering
US10066241B2 (en) 2014-05-30 2018-09-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods of delivering treatments for latent viral infections
ES2888976T3 (en) 2014-06-23 2022-01-10 Massachusetts Gen Hospital Pan-genomic unbiased identification of DSBs assessed by sequencing (GUIDE-Seq.)
US20150376586A1 (en) * 2014-06-25 2015-12-31 Caribou Biosciences, Inc. RNA Modification to Engineer Cas9 Activity
US20170198268A1 (en) * 2014-07-09 2017-07-13 Gen9, Inc. Compositions and Methods for Site-Directed DNA Nicking and Cleaving
US10676754B2 (en) 2014-07-11 2020-06-09 E I Du Pont De Nemours And Company Compositions and methods for producing plants resistant to glyphosate herbicide
RU2017112324A (en) 2014-09-12 2018-10-15 Пайонир Хай-Бред Интернэшнл, Инк. CREATION OF WEBSITES OF SITE-SPECIFIC INTEGRATION FOR COMPLEX SIGNS LOCUSES IN CORN AND SOY, AND ALSO WAYS OF APPLICATION
WO2016049258A2 (en) * 2014-09-25 2016-03-31 The Broad Institute Inc. Functional screening with optimized functional crispr-cas systems
WO2016054106A1 (en) * 2014-09-29 2016-04-07 The Regents Of The University Of California SCAFFOLD RNAs
CA2963693A1 (en) * 2014-10-10 2016-04-14 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
CN107109486B (en) * 2014-11-14 2021-08-13 基础科学研究院 Method for detecting off-target sites of genetic scissors in genome
US11352666B2 (en) 2014-11-14 2022-06-07 Institute For Basic Science Method for detecting off-target sites of programmable nucleases in a genome
CN104531633A (en) * 2014-11-18 2015-04-22 李云英 Cas9-scForkI fusion protein and application thereof
CN107109422B (en) * 2014-11-19 2021-08-13 基础科学研究院 Genome editing using split Cas9 expressed from two vectors
CN107208079B (en) * 2014-12-05 2021-06-29 应用干细胞有限公司 Site-directed CRISPR/recombinase compositions and methods for integrating transgenes
WO2016094679A1 (en) 2014-12-10 2016-06-16 Regents Of The University Of Minnesota Genetically modified cells, tissues, and organs for treating disease
EP3230452A1 (en) * 2014-12-12 2017-10-18 The Broad Institute Inc. Dead guides for crispr transcription factors
EP3985115A1 (en) * 2014-12-12 2022-04-20 The Broad Institute, Inc. Protected guide rnas (pgrnas)
US20180179523A1 (en) * 2014-12-18 2018-06-28 Integrated Dna Technologies, Inc. Crispr-based compositions and methods of use
US10190106B2 (en) * 2014-12-22 2019-01-29 Univesity Of Massachusetts Cas9-DNA targeting unit chimeras
US11208638B2 (en) 2015-01-12 2021-12-28 The Regents Of The University Of California Heterodimeric Cas9 and methods of use thereof
EP3250689B1 (en) 2015-01-28 2020-11-04 The Regents of The University of California Methods and compositions for labeling a single-stranded target nucleic acid
LT3250691T (en) 2015-01-28 2023-09-11 Caribou Biosciences, Inc. Crispr hybrid dna/rna polynucleotides and methods of use
WO2016130600A2 (en) 2015-02-09 2016-08-18 Duke University Compositions and methods for epigenome editing
BR122023024788A2 (en) 2015-02-18 2023-12-26 Iowa State University Research Foundation, Inc. PLANT GENOME GENETICALLY MODIFIED TO INCREASE PROTEIN CONTENT AND RESISTANCE TO A PATHOGEN OR A PEST
US10450576B2 (en) 2015-03-27 2019-10-22 E I Du Pont De Nemours And Company Soybean U6 small nuclear RNA gene promoters and their use in constitutive expression of small RNA genes in plants
US10117911B2 (en) 2015-05-29 2018-11-06 Agenovir Corporation Compositions and methods to treat herpes simplex virus infections
US20160346360A1 (en) 2015-05-29 2016-12-01 Agenovir Corporation Compositions and methods for cell targeted hpv treatment
EP3303634B1 (en) 2015-06-03 2023-08-30 The Regents of The University of California Cas9 variants and methods of use thereof
EP3302525A2 (en) 2015-06-05 2018-04-11 Novartis AG Methods and compositions for diagnosing, treating, and monitoring treatment of shank3 deficiency associated disorders
JP6961494B2 (en) * 2015-06-10 2021-11-05 フイルメニツヒ ソシエテ アノニムFirmenich Sa Cell lines for screening odorant and aroma receptors
US20160362705A1 (en) 2015-06-12 2016-12-15 Lonza Walkersville, Inc. Methods for Nuclear Reprogramming Using Synthetic Transcription Factors
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
CA2989830A1 (en) 2015-06-18 2016-12-22 The Broad Institute, Inc. Crispr enzyme mutations reducing off-target effects
WO2017004279A2 (en) * 2015-06-29 2017-01-05 Massachusetts Institute Of Technology Compositions comprising nucleic acids and methods of using the same
WO2017015637A1 (en) 2015-07-22 2017-01-26 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
CA2993431A1 (en) 2015-07-31 2017-02-09 Regents Of The University Of Minnesota Nuclease based knockouts of immunological checkpoint genes in immune cells
WO2017023974A1 (en) * 2015-08-03 2017-02-09 President And Fellows Of Harvard College Cas9 genome editing and transcriptional regulation
WO2017024047A1 (en) * 2015-08-03 2017-02-09 Emendobio Inc. Compositions and methods for increasing nuclease induced recombination rate in cells
MX2018002339A (en) 2015-08-25 2018-12-19 Univ Duke Compositions and methods of improving specificity in genomic engineering using rna-guided endonucleases.
JP2018530536A (en) * 2015-09-11 2018-10-18 ザ ジェネラル ホスピタル コーポレイション Full verification and sequencing of nuclease DSB (FIND-seq)
EP3356526B1 (en) 2015-09-30 2021-08-25 The General Hospital Corporation Comprehensive in vitro reporting of cleavage events by sequencing (circle-seq)
MX2018004264A (en) * 2015-10-06 2018-11-09 Inst Basic Science Method for producing whole plants from protoplasts.
ES2699848T3 (en) 2015-10-23 2019-02-13 Caribou Biosciences Inc Cross-type modified CRISPR class 2 nucleic acid that targets nucleic acids
CN108474022A (en) 2015-11-03 2018-08-31 哈佛学院董事及会员团体 To contain the device and method of the matrix volume imaging of three-dimensional nucleic acid
US11566052B2 (en) 2015-11-11 2023-01-31 Lonza Ltd. CRISPR-associated (Cas) proteins with reduced immunogenicity
WO2017087979A1 (en) 2015-11-20 2017-05-26 Washington University Preparative electrophoretic method for targeted purification of genomic dna fragments
EP3382018B1 (en) * 2015-11-25 2022-03-30 National University Corporation Gunma University Dna methylation editing kit and dna methylation editing method
US11345931B2 (en) 2015-12-14 2022-05-31 President And Fellows Of Harvard College Cas discrimination using tuned guide RNA
BR112018013065A2 (en) * 2015-12-28 2018-12-11 Intellia Therapeutics Inc compositions and methods for the treatment of hemoglobinopathies
JP7012645B2 (en) 2016-01-11 2022-01-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Chimeric proteins and immunotherapeutic methods
IL304088A (en) 2016-01-11 2023-08-01 Univ Leland Stanford Junior Chimeric Proteins- Containing Systems and Uses Thereof in Regulating Gene Expression
US11845933B2 (en) 2016-02-03 2023-12-19 Massachusetts Institute Of Technology Structure-guided chemical modification of guide RNA and its applications
CN114196746A (en) 2016-02-10 2022-03-18 密歇根大学董事会 Detection of nucleic acids
US20190249172A1 (en) 2016-02-18 2019-08-15 The Regents Of The University Of California Methods and compositions for gene editing in stem cells
MX2018011170A (en) 2016-03-15 2019-05-16 Apse Inc Methods and compositions for increased double stranded rna production.
WO2017161043A1 (en) 2016-03-16 2017-09-21 The J. David Gladstone Institutes Methods and compositions for treating obesity and/or diabetes and for identifying candidate treatment agents
CN106701765A (en) * 2016-04-11 2017-05-24 广东赤萌医疗科技有限公司 Polynucleotide for HIV (human immunodeficiency virus) infection treatment and application thereof for preparing medicines
WO2017180915A2 (en) * 2016-04-13 2017-10-19 Duke University Crispr/cas9-based repressors for silencing gene targets in vivo and methods of use
CA3022290A1 (en) 2016-04-25 2017-11-02 President And Fellows Of Harvard College Hybridization chain reaction methods for in situ molecular detection
CN107326046A (en) * 2016-04-28 2017-11-07 上海邦耀生物科技有限公司 A kind of method for improving foreign gene homologous recombination efficiency
RU2745563C2 (en) 2016-05-20 2021-03-29 Регенерон Фармасьютикалс, Инк. Ways to overcome immunological tolerance using multiple guide rnas
US20190100732A1 (en) 2016-06-02 2019-04-04 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Assay for the removal of methyl-cytosine residues from dna
CA3209273A1 (en) * 2016-06-02 2017-12-07 Sigma-Aldrich Co. Llc Using programmable dna binding proteins to enhance targeted genome modification
JP6940117B2 (en) * 2016-06-15 2021-09-22 ツールゲン インコーポレイテッドToolgen Incorporated Methods and Uses for Screening Target-Specific nucleases Using On-Target and Off-Target Multi-Target Systems
LT3474669T (en) 2016-06-24 2022-06-10 The Regents Of The University Of Colorado, A Body Corporate Methods for generating barcoded combinatorial libraries
US11471462B2 (en) 2016-06-27 2022-10-18 The Broad Institute, Inc. Compositions and methods for detecting and treating diabetes
WO2018005117A1 (en) * 2016-07-01 2018-01-04 Microsoft Technology Licensing, Llc Storage through iterative dna editing
US20180004537A1 (en) 2016-07-01 2018-01-04 Microsoft Technology Licensing, Llc Molecular State Machines
US11359234B2 (en) 2016-07-01 2022-06-14 Microsoft Technology Licensing, Llc Barcoding sequences for identification of gene expression
EP3484870B1 (en) * 2016-07-13 2022-11-16 Vertex Pharmaceuticals Incorporated Methods, compositions and kits for increasing genome editing efficiency
US20230151341A1 (en) * 2016-07-13 2023-05-18 Qihan Chen Method for specifically editing genomic dna and application thereof
CN109790527A (en) * 2016-07-26 2019-05-21 通用医疗公司 The variant of the CRISPR1 (Cpf1) of general Bordetella and Francisella
CN109789185A (en) * 2016-07-28 2019-05-21 基础科学研究院 For treating the albumen containing CAS9 of eye disease and the pharmaceutical composition of guide RNA
KR20190041476A (en) 2016-07-29 2019-04-22 리제너론 파마슈티칼스 인코포레이티드 A mouse containing a mutation inducing the expression of C-truncated fibrilin-1
WO2018030457A1 (en) 2016-08-10 2018-02-15 武田薬品工業株式会社 Method for modifying target site in genome of eukaryotic cell, and method for detecting presence or absence of nucleic acid sequence to be detected at target site
EP3502261A4 (en) * 2016-08-19 2020-07-15 Toolgen Incorporated Artificially engineered angiogenesis regulatory system
WO2018035495A1 (en) * 2016-08-19 2018-02-22 Whitehead Institute For Biomedical Research Methods of editing dna methylation
KR102455249B1 (en) 2016-08-24 2022-10-17 상가모 테라퓨틱스, 인코포레이티드 Engineered target specific nuclease
CN110325635B (en) 2016-08-24 2023-12-26 桑格摩生物治疗股份有限公司 Regulation of gene expression using engineered nucleases
US20190255106A1 (en) * 2016-09-07 2019-08-22 Flagship Pioneering Inc. Methods and compositions for modulating gene expression
WO2018048194A1 (en) * 2016-09-07 2018-03-15 울산대학교 산학협력단 Composition and method for improving sensitivity and specificity of detection of nucleic acids using dcas9 protein and grna binding to target nucleic acid sequence
EP3523426A4 (en) 2016-09-30 2020-01-22 The Regents of The University of California Rna-guided nucleic acid modifying enzymes and methods of use thereof
CN107880132B (en) * 2016-09-30 2022-06-17 北京大学 Fusion protein and method for carrying out homologous recombination by using same
US10669539B2 (en) 2016-10-06 2020-06-02 Pioneer Biolabs, Llc Methods and compositions for generating CRISPR guide RNA libraries
EP3529359B1 (en) 2016-10-18 2023-12-13 Regents of the University of Minnesota Tumor infiltrating lymphocytes for use in therapy
EP3535396A1 (en) 2016-11-01 2019-09-11 Novartis AG Methods and compositions for enhancing gene editing
US20180282722A1 (en) * 2016-11-21 2018-10-04 Massachusetts Institute Of Technology Chimeric DNA:RNA Guide for High Accuracy Cas9 Genome Editing
BR112019011509A2 (en) 2016-12-08 2020-01-28 Intellia Therapeutics Inc rnas modified guides
JP7317706B2 (en) 2016-12-14 2023-07-31 リガンダル インコーポレイテッド Methods and compositions for nucleic acid and protein payload delivery
US20190382751A1 (en) * 2016-12-28 2019-12-19 Ionis Pharmaceuticals, Inc. Modified crispr rna and uses thereof
FI3565891T3 (en) 2017-01-09 2023-07-04 Whitehead Inst Biomedical Res Methods of altering gene expression by perturbing transcription factor multimers that structure regulatory loops
WO2018135838A2 (en) * 2017-01-17 2018-07-26 기초과학연구원 Method for identifying base editing off-target site by dna single strand break
CA3049980A1 (en) 2017-01-23 2018-07-26 Regeneron Pharmaceuticals, Inc. Hydroxysteroid 17-beta dehydrogenase 13 (hsd17b13) variants and uses thereof
WO2018148511A1 (en) 2017-02-10 2018-08-16 Zymergen Inc. A modular universal plasmid design strategy for the assembly and editing of multiple dna constructs for multiple hosts
US11518991B2 (en) 2017-02-24 2022-12-06 Georg-August-Universitaet Goettingen Stiftung Oeffentlichen Rechts, Universitaetsmedizin Method for re-expression of different hypermethylated genes involved in fibrosis, like hypermethylated RASAL1 and use thereof in treatment of fibrosis as well as kit of parts for re-expression of hypermethylated genes including RASAL1 in a subject
CN108660161B (en) * 2017-03-31 2023-05-09 中国科学院脑科学与智能技术卓越创新中心 Method for preparing chimeric gene-free knockout animal based on CRISPR/Cas9 technology
US11867661B2 (en) 2017-04-07 2024-01-09 Sage Science, Inc. Systems and methods for detection of genetic structural variation using integrated electrophoretic DNA purification
JP7379160B2 (en) 2017-04-21 2023-11-14 ザ ジェネラル ホスピタル コーポレイション Inducible and tunable multiplex human gene regulation using CRISPR-Cpf1
CN108977442B (en) * 2017-06-05 2023-01-06 广州市锐博生物科技有限公司 System for DNA editing and application thereof
SG11201911597YA (en) 2017-06-05 2020-01-30 Regeneron Pharma B4galt1 variants and uses thereof
WO2018232114A1 (en) 2017-06-14 2018-12-20 Wisconsin Alumni Research Foundation Modified guide rnas, crispr-ribonucleotprotein complexes and methods of use
CA3067382A1 (en) 2017-06-15 2018-12-20 The Regents Of The University Of California Targeted non-viral dna insertions
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
EP3645021A4 (en) 2017-06-30 2021-04-21 Intima Bioscience, Inc. Adeno-associated viral vectors for gene therapy
EP3645721A1 (en) 2017-06-30 2020-05-06 Novartis AG Methods for the treatment of disease with gene editing systems
CN111183226A (en) * 2017-07-11 2020-05-19 西格马-奥尔德里奇有限责任公司 Use of nucleosome interacting protein domains to enhance targeted genomic modifications
AU2018309714A1 (en) 2017-07-31 2020-01-30 Regeneron Pharmaceuticals, Inc. Assessment of CRISPR/Cas-induced recombination with an exogenous donor nucleic acid in vivo
AU2018309716A1 (en) 2017-07-31 2020-01-16 Regeneron Pharmaceuticals, Inc. Cas-transgenic mouse embryonic stem cells and mice and uses thereof
CN111182790A (en) 2017-07-31 2020-05-19 瑞泽恩制药公司 CRISPR reporter non-human animals and uses thereof
EP4276185A3 (en) 2017-09-29 2024-02-21 Regeneron Pharmaceuticals, Inc. Rodents comprising a humanized ttr locus and methods of use
WO2019075197A1 (en) 2017-10-11 2019-04-18 The General Hospital Corporation Methods for detecting site-specific and spurious genomic deamination induced by base editing technologies
CN107602707B (en) * 2017-10-17 2021-04-23 湖北大学 Dcas 9-omega fusion protein for specifically regulating bacillus subtilis exogenous gene expression and application thereof
BR112020008201A2 (en) 2017-10-27 2020-10-06 The Regents Of The University Of California target replacement of endogenous t cell receptors
US20210180053A1 (en) 2017-11-01 2021-06-17 Novartis Ag Synthetic rnas and methods of use
US20210180059A1 (en) 2017-11-16 2021-06-17 Astrazeneca Ab Compositions and methods for improving the efficacy of cas9-based knock-in strategies
US11293019B2 (en) 2017-12-22 2022-04-05 Gflas Life Sciences, Inc. Chimeric genome engineering molecules and methods
CN109504711A (en) * 2018-02-14 2019-03-22 复旦大学 Method based on CRISPR/cas9 and peroxidase APEX2 system identification analysis specific gene group site interaction DNA
CA3089331A1 (en) 2018-03-19 2019-09-26 Regeneron Pharmaceuticals, Inc. Transcription modulation in animals using crispr/cas systems
AU2019247490A1 (en) 2018-04-06 2020-10-22 Children's Medical Center Corporation Compositions and methods for somatic cell reprogramming and modulating imprinting
CN112313241A (en) 2018-04-17 2021-02-02 总医院公司 Sensitive in vitro assay of substrate preference and site for nucleic acid binding, modification, and cleavage reagents
GB2587970B (en) 2018-04-19 2023-02-08 Univ California Compositions and methods for gene editing
CN108588123A (en) * 2018-05-07 2018-09-28 南京医科大学 CRISPR/Cas9 carriers combine the application in the blood product for preparing gene knock-out pig
KR20210045360A (en) 2018-05-16 2021-04-26 신테고 코포레이션 Methods and systems for guide RNA design and use
CN110592141B (en) * 2018-06-13 2023-07-07 中国科学院上海有机化学研究所 Compounds for modulating gene editing efficiency and uses thereof
US10227576B1 (en) 2018-06-13 2019-03-12 Caribou Biosciences, Inc. Engineered cascade components and cascade complexes
CN112513270A (en) 2018-07-13 2021-03-16 加利福尼亚大学董事会 Retrotransposon-based delivery vehicles and methods of use thereof
KR20210044795A (en) 2018-08-15 2021-04-23 지머젠 인코포레이티드 Application of CRISPRi in high-throughput metabolic engineering
KR20210049124A (en) 2018-08-23 2021-05-04 상가모 테라퓨틱스, 인코포레이티드 Engineered target specific base editor
JP2021536250A (en) 2018-09-07 2021-12-27 アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag Compositions and Methods for Improved nucleases
US11407995B1 (en) 2018-10-26 2022-08-09 Inari Agriculture Technology, Inc. RNA-guided nucleases and DNA binding proteins
US11434477B1 (en) 2018-11-02 2022-09-06 Inari Agriculture Technology, Inc. RNA-guided nucleases and DNA binding proteins
US11739320B2 (en) 2018-11-05 2023-08-29 Wisconsin Alumni Research Foundation Gene correction of Pompe disease and other autosomal recessive disorders via RNA-guided nucleases
KR20210104068A (en) 2018-12-14 2021-08-24 파이어니어 하이 부렛드 인터내쇼날 인코포레이팃드 Novel CRISPR-CAS system for genome editing
IL301193A (en) 2018-12-20 2023-05-01 Regeneron Pharma Nuclease-mediated repeat expansion
WO2020163856A1 (en) 2019-02-10 2020-08-13 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Modified mitochondrion and methods of use thereof
DE212020000516U1 (en) 2019-03-07 2022-01-17 The Regents of the University of California CRISPR-CAS effector polypeptides
JP7389135B2 (en) 2019-03-18 2023-11-29 リジェネロン・ファーマシューティカルズ・インコーポレイテッド CRISPR/CAS dropout screening platform to reveal genetic vulnerabilities associated with tau aggregation
JP7461368B2 (en) 2019-03-18 2024-04-03 リジェネロン・ファーマシューティカルズ・インコーポレイテッド CRISPR/CAS Screening Platform to Identify Genetic Modifiers of Tau Seeding or Aggregation
AU2020256225A1 (en) 2019-04-03 2021-09-02 Regeneron Pharmaceuticals, Inc. Methods and compositions for insertion of antibody coding sequences into a safe harbor locus
IL286905B1 (en) 2019-04-04 2024-02-01 Regeneron Pharma Non-human animals comprising a humanized coagulation factor 12 locus
IL286917B (en) 2019-04-04 2022-09-01 Regeneron Pharma Methods for scarless introduction of targeted modifications into targeting vectors
CN113748205A (en) 2019-04-12 2021-12-03 阿斯利康(瑞典)有限公司 Compositions and methods for improved gene editing
EP3801011A1 (en) 2019-06-04 2021-04-14 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus with a beta-slip mutation and methods of use
KR20220017939A (en) 2019-06-07 2022-02-14 리제너론 파마슈티칼스 인코포레이티드 Non-Human Animals Comprising a Humanized Albumin Locus
AU2020290509A1 (en) 2019-06-14 2021-11-11 Regeneron Pharmaceuticals, Inc. Models of tauopathy
EP3783104A1 (en) * 2019-08-20 2021-02-24 Kemijski Institut Coiled-coil mediated tethering of crispr-cas and exonucleases for enhanced genome editing
JP2022548031A (en) 2019-09-13 2022-11-16 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Transcriptional regulation in animals using the CRISPR/CAS system delivered by lipid nanoparticles
US11987791B2 (en) 2019-09-23 2024-05-21 Omega Therapeutics, Inc. Compositions and methods for modulating hepatocyte nuclear factor 4-alpha (HNF4α) gene expression
DK3812472T3 (en) 2019-10-21 2023-02-20 Univ Freiburg Albert Ludwigs TRULY UNBIASED IN VITRO ASSAYS FOR PROFILING THE OFF-TARGET ACTIVITY OF ONE OR MORE TARGET-SPECIFIC PROGRAMMABLE NUCLEASES IN CELLS (ABNOBA-SEQ)
KR20220097414A (en) 2019-11-08 2022-07-07 리제너론 파마슈티칼스 인코포레이티드 CRISPR and AAV Strategies for X-Linked Combustion Retinal Delaminization Therapy
US11331333B2 (en) 2019-11-08 2022-05-17 Georg-August-Universität Göttingen Stiftung Öffentichen Rechts, Universitätsmadizin Treatment of aberrant fibroblast proliferation
WO2021108363A1 (en) 2019-11-25 2021-06-03 Regeneron Pharmaceuticals, Inc. Crispr/cas-mediated upregulation of humanized ttr allele
US20230042198A1 (en) * 2019-11-25 2023-02-09 La Jolla Institute For Immunology Methods and Compositions for Modulationg Heterochromatin Dysfunction, Genomic Instability, and Associate Conditions
IL293569A (en) 2019-12-11 2022-08-01 Intellia Therapeutics Inc Modified guide rnas for gene editing
CN111088357B (en) * 2019-12-31 2022-09-20 深圳大学 Tumor marker for ESCC and application thereof
WO2021151085A2 (en) * 2020-01-24 2021-07-29 The General Hospital Corporation Crispr-cas enzymes with enhanced on-target activity
US20210284978A1 (en) * 2020-01-24 2021-09-16 The General Hospital Corporation Unconstrained Genome Targeting with near-PAMless Engineered CRISPR-Cas9 Variants
EP4114946A1 (en) 2020-03-04 2023-01-11 Regeneron Pharmaceuticals, Inc. Methods and compositions for sensitization of tumor cells to immune therapy
US20230102342A1 (en) 2020-03-23 2023-03-30 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized ttr locus comprising a v30m mutation and methods of use
US20230340435A1 (en) * 2020-04-09 2023-10-26 Verve Therapautics, Inc. Base editing of angptl3 and methods of using same for treatment of disease
US20230193212A1 (en) 2020-05-06 2023-06-22 Orchard Therapeutics (Europe) Limited Treatment for neurodegenerative diseases
WO2021246165A1 (en) * 2020-06-03 2021-12-09 国立大学法人広島大学 Nucleic acid for demethylation of oasis gene and demethylation method using same
IL300374A (en) 2020-08-11 2023-04-01 Yissum Res Dev Co Of Hebrew Univ Jerusalem Ltd Method for the treatment of wwox associated diseases
RU2762831C1 (en) * 2020-10-26 2021-12-23 Федеральное государственное бюджетное научное учреждение "Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии" (ФГБНУ ВНИИСБ) Rna-conductor molecule for genomic editing of promoter region of vrn-a1 gene of monocotyledonous cereals using crispr/cas9 system
CN112430622A (en) * 2020-10-26 2021-03-02 扬州大学 FokI and dCpf1 fusion protein expression vector and site-directed gene editing method mediated by same
WO2022120022A1 (en) 2020-12-02 2022-06-09 Regeneron Pharmaceuticals, Inc. Crispr sam biosensor cell lines and methods of use thereof
KR20220082186A (en) 2020-12-10 2022-06-17 한세준 The portable battery type UV-LED sterilizer
KR20220124652A (en) 2021-03-03 2022-09-14 중앙대학교 산학협력단 Method for Single-Base Genome Editing Using CRISPR/Cas9 System and Uses Thereof
CN113846019B (en) * 2021-03-05 2023-08-01 海南师范大学 Marine nannochloropsis targeted epigenomic genetic control method
EP4095243A1 (en) 2021-05-25 2022-11-30 European Molecular Biology Laboratory System for hybridization-based precision genome cleavage and editing, and uses thereof
JP2024518793A (en) 2021-05-27 2024-05-02 アストラゼネカ・アクチエボラーグ CAS9 Effector Proteins with Enhanced Stability
EP4352225A1 (en) 2021-06-10 2024-04-17 Intellia Therapeutics, Inc. Modified guide rnas comprising an internal linker for gene editing
WO2023010135A1 (en) 2021-07-30 2023-02-02 Tune Therapeutics, Inc. Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2)
CA3227103A1 (en) 2021-07-30 2023-02-02 Matthew P. GEMBERLING Compositions and methods for modulating expression of frataxin (fxn)
CA3229450A1 (en) 2021-08-20 2023-02-23 Wisconsin Alumni Research Foundation Nonviral generation of genome edited chimeric antigen receptor t cells
WO2023052508A2 (en) 2021-09-30 2023-04-06 Astrazeneca Ab Use of inhibitors to increase efficiency of crispr/cas insertions
WO2023077053A2 (en) 2021-10-28 2023-05-04 Regeneron Pharmaceuticals, Inc. Crispr/cas-related methods and compositions for knocking out c5
CA3237303A1 (en) 2021-11-03 2023-05-11 Intellia Therapeutics, Inc. Polynucleotides, compositions, and methods for genome editing
CA3237482A1 (en) 2021-11-03 2023-05-11 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Precise genome editing using retrons
CA3238939A1 (en) 2021-12-08 2023-06-15 Gaurang Patel Mutant myocilin disease model and uses thereof
WO2023137471A1 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems, and methods for programming t cell phenotypes through targeted gene activation
WO2023137472A2 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems, and methods for programming t cell phenotypes through targeted gene repression
WO2023141487A1 (en) * 2022-01-20 2023-07-27 Inari Agriculture Technology, Inc. Improved soybean explant preparation and transformation
WO2023141602A2 (en) 2022-01-21 2023-07-27 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
TW202332767A (en) 2022-02-02 2023-08-16 美商雷傑納榮製藥公司 Anti-tfr:gaa and anti-cd63:gaa insertion for treatment of pompe disease
WO2023212677A2 (en) 2022-04-29 2023-11-02 Regeneron Pharmaceuticals, Inc. Identification of tissue-specific extragenic safe harbors for gene therapy approaches
WO2023220603A1 (en) 2022-05-09 2023-11-16 Regeneron Pharmaceuticals, Inc. Vectors and methods for in vivo antibody production
WO2023235726A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr interference therapeutics for c9orf72 repeat expansion disease
WO2023235725A2 (en) 2022-05-31 2023-12-07 Regeneron Pharmaceuticals, Inc. Crispr-based therapeutics for c9orf72 repeat expansion disease
WO2023250511A2 (en) 2022-06-24 2023-12-28 Tune Therapeutics, Inc. Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression
WO2024015881A2 (en) 2022-07-12 2024-01-18 Tune Therapeutics, Inc. Compositions, systems, and methods for targeted transcriptional activation
WO2024020346A2 (en) 2022-07-18 2024-01-25 Renagade Therapeutics Management Inc. Gene editing components, systems, and methods of use
WO2024026474A1 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle
US20240067968A1 (en) 2022-08-19 2024-02-29 Tune Therapeutics, Inc. Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression
WO2024044723A1 (en) 2022-08-25 2024-02-29 Renagade Therapeutics Management Inc. Engineered retrons and methods of use
WO2024064642A2 (en) 2022-09-19 2024-03-28 Tune Therapeutics, Inc. Compositions, systems, and methods for modulating t cell function
WO2024073606A1 (en) 2022-09-28 2024-04-04 Regeneron Pharmaceuticals, Inc. Antibody resistant modified receptors to enhance cell-based therapies
WO2024084025A1 (en) 2022-10-21 2024-04-25 Keygene N.V. Rna transfection in plant cells with modified rna
WO2024098002A1 (en) 2022-11-04 2024-05-10 Regeneron Pharmaceuticals, Inc. Calcium voltage-gated channel auxiliary subunit gamma 1 (cacng1) binding proteins and cacng1-mediated delivery to skeletal muscle
WO2024107765A2 (en) 2022-11-14 2024-05-23 Regeneron Pharmaceuticals, Inc. Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes
CN115820603A (en) * 2022-11-15 2023-03-21 吉林大学 Modification editing method based on dCasRx-NSUN6 monogene specificity M5C
CN116376975B (en) * 2023-02-27 2024-05-14 中国科学院脑科学与智能技术卓越创新中心 Method for activating heterochromatin genes and application thereof

Family Cites Families (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4603044A (en) 1983-01-06 1986-07-29 Technology Unlimited, Inc. Hepatocyte Directed Vesicle delivery system
US4957773A (en) 1989-02-13 1990-09-18 Syracuse University Deposition of boron-containing films from decaborane
US5436150A (en) 1992-04-03 1995-07-25 The Johns Hopkins University Functional domains in flavobacterium okeanokoities (foki) restriction endonuclease
USRE45721E1 (en) 1994-08-20 2015-10-06 Gendaq, Ltd. Relating to binding proteins for recognition of DNA
US6503717B2 (en) 1999-12-06 2003-01-07 Sangamo Biosciences, Inc. Methods of using randomized libraries of zinc finger proteins for the identification of gene function
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US20020164575A1 (en) 1999-09-14 2002-11-07 Sangamo Biosciences, Inc., A Delaware Corporation Gene identification
AU5391401A (en) 2000-04-28 2001-11-12 Sangamo Biosciences Inc Targeted modification of chromatin structure
US6511808B2 (en) 2000-04-28 2003-01-28 Sangamo Biosciences, Inc. Methods for designing exogenous regulatory molecules
US20030198627A1 (en) 2001-09-01 2003-10-23 Gert-Jan Arts siRNA knockout assay method and constructs
WO2003072788A1 (en) * 2002-02-21 2003-09-04 The Wistar Institute Of Anatomy And Biology Methods and compositions for reversibly controlling expression of target genes in cells
AU2003274404A1 (en) * 2002-06-11 2003-12-22 The Scripps Research Institute Artificial transcription factors
AU2003304086A1 (en) 2002-10-23 2004-11-26 Massachussetts Institute Of Technlogy Context sensitive parallel optimization of zinc finger dna binding domains
US7021555B2 (en) 2004-01-06 2006-04-04 Zoo Med Laboratories, Inc. Spraying/misting for plants and animals
US7919277B2 (en) 2004-04-28 2011-04-05 Danisco A/S Detection and typing of bacterial strains
HUE030881T2 (en) 2005-02-18 2017-06-28 Glaxosmithkline Biologicals Sa Proteins and nucleic acids from meningitis/sepsis-associated Escherichia coli
WO2007014181A2 (en) 2005-07-25 2007-02-01 Johns Hopkins University Site-specific modification of the human genome using custom-designed zinc finger nucleases
CN101273141B (en) 2005-07-26 2013-03-27 桑格摩生物科学股份有限公司 Targeted integration and expression of exogenous nucleic acid sequences
ES2398918T3 (en) 2005-08-26 2013-03-22 Dupont Nutrition Biosciences Aps A method and arrangement to vertically support outstanding electrical resistance elements
DK2426220T3 (en) 2006-05-19 2016-09-26 Dupont Nutrition Biosci Aps Labeled microorganisms, and methods for labeling
DE602007005634D1 (en) 2006-05-25 2010-05-12 Sangamo Biosciences Inc VARIANT FOKI CREVICE HOLLAND DOMAINS
DK2034848T3 (en) 2006-06-16 2017-02-06 Dupont Nutrition Biosci Aps STREPTOCOCCUS THERMOPHILUS BACTERIA
US9201063B2 (en) 2006-11-16 2015-12-01 General Electric Company Sequential analysis of biological samples
WO2008093152A1 (en) * 2007-02-01 2008-08-07 Cellectis Obligate heterodimer meganucleases and uses thereof
ES2719789T3 (en) 2007-03-02 2019-07-16 Dupont Nutrition Biosci Aps Crops with improved phage resistance
US8153863B2 (en) 2007-03-23 2012-04-10 New York University Transgenic plants expressing GLK1 and CCA1 having increased nitrogen assimilation capacity
US8252535B2 (en) 2007-04-10 2012-08-28 Qiagen Gmbh RNA interference tags
WO2008151032A2 (en) 2007-05-31 2008-12-11 Washington University In St. Louis Arrays and methods comprising m. smithii gene products
JP5552053B2 (en) 2007-09-25 2014-07-16 パストラル グリーンハウス ガス リサーチ リミテッド Phage φMRU polynucleotides and polypeptides and uses thereof
FR2925918A1 (en) 2007-12-28 2009-07-03 Pasteur Institut Typing or subtyping Salmonella bacteria comprises determining the variable sequence composition of a nucleic acid fragment amplified from the CRISPR1 and/or CRISPR2 locus
FR2930264B1 (en) 2008-04-18 2013-02-22 Gervais Danone Sa NEW STRAIN OF LACTOBACILLUS PARACASEI SUBSP. PARACASEI WITH ANTIMICROBIAL AND IMMUNOMODULATORY PROPERTIES
JP2010017179A (en) 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method for determining or detecting dna
JP2010017178A (en) 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method for determining or detecting dna
WO2010011961A2 (en) 2008-07-25 2010-01-28 University Of Georgia Research Foundation, Inc. Prokaryotic rnai-like system and methods of use
JP2010048566A (en) 2008-08-19 2010-03-04 Sumitomo Chemical Co Ltd Method for quantifying or detection of dna
JP2010068800A (en) 2008-08-19 2010-04-02 Sumitomo Chemical Co Ltd Method for quantifying or detecting dna
US20100076057A1 (en) 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
WO2010037001A2 (en) * 2008-09-26 2010-04-01 Immune Disease Institute, Inc. Selective oxidation of 5-methylcytosine by tet-family proteins
CA2741351C (en) 2008-10-21 2018-01-23 Animal Health Trust Diagnostic test for eqbe gene of streptococcus equi
US9404098B2 (en) 2008-11-06 2016-08-02 University Of Georgia Research Foundation, Inc. Method for cleaving a target RNA using a Cas6 polypeptide
US10662227B2 (en) 2008-11-07 2020-05-26 Dupont Nutrition Biosciences Aps Bifidobacteria CRISPR sequences
PL2352389T3 (en) 2008-11-11 2016-07-29 Alimentary Health Ltd Bifidobacterium longum
GB2466177A (en) 2008-12-03 2010-06-16 Arab Science & Technology Found Bacteriophage selection and breeding
CN102264895B (en) 2008-12-12 2015-01-28 杜邦营养生物科学有限公司 Genetic cluster of strains of streptococcus thermophilus having unique rheological properties for dairy fermentation
KR20100093626A (en) 2009-02-17 2010-08-26 서강대학교산학협력단 Phage therapy against pseudomonas aeruginosa
AU2010245304B2 (en) 2009-04-27 2015-06-04 Pacific Biosciences Of California, Inc. Real-time sequencing methods and systems
US8609421B2 (en) 2009-06-12 2013-12-17 Pacific Biosciences Of California, Inc. Single-molecule real-time analysis of protein synthesis
US20120178647A1 (en) 2009-08-03 2012-07-12 The General Hospital Corporation Engineering of zinc finger arrays by context-dependent assembly
WO2011036232A1 (en) 2009-09-25 2011-03-31 Basf Plant Science Company Gmbh Plants having enhanced yield-related traits and a method for making the same
US9677125B2 (en) 2009-10-21 2017-06-13 General Electric Company Detection of plurality of targets in biological samples
US20110269119A1 (en) 2009-10-30 2011-11-03 Synthetic Genomics, Inc. Encoding text into nucleic acid sequences
AU2011213242B2 (en) 2010-02-08 2015-01-29 Sangamo Therapeutics, Inc. Engineered cleavage half-domains
WO2011101696A1 (en) * 2010-02-18 2011-08-25 Cellectis Improved meganuclease recombination system
US20120027786A1 (en) 2010-02-23 2012-02-02 Massachusetts Institute Of Technology Genetically programmable pathogen sense and destroy
US10087431B2 (en) 2010-03-10 2018-10-02 The Regents Of The University Of California Methods of generating nucleic acid fragments
JP5897542B2 (en) 2010-03-12 2016-03-30 ブルックヘヴン サイエンス アソシエイツ リミテッド ライアビリティカンパニー Enterobacter species 638 and methods of use
MX2012013037A (en) 2010-05-10 2013-07-29 Univ California Endoribonuclease compositions and methods of use thereof.
EP2580331A4 (en) 2010-06-14 2013-11-27 Univ Iowa State Res Found Inc Nuclease activity of tal effector and foki fusion protein
EA201390586A1 (en) 2010-10-20 2014-11-28 ДюПон НЬЮТРИШН БАЙОСАЙЕНСИЗ АпС CRISPR-CAS LACTOCOCCUS SEQUENCES
CA2815512A1 (en) 2010-10-27 2012-05-03 Philippe Duchateau Method for increasing the efficiency of double-strand break-induced mutagenesis
WO2012093833A2 (en) * 2011-01-03 2012-07-12 Toolgen Incorporation Genome engineering via designed tal effector nucleases
EP2663654A1 (en) 2011-01-14 2013-11-20 Life Technologies Corporation Methods, compositions, and kits for detecting rare cells
WO2012164565A1 (en) 2011-06-01 2012-12-06 Yeda Research And Development Co. Ltd. Compositions and methods for downregulating prokaryotic genes
EP2543255B2 (en) 2011-07-04 2022-12-28 DSM IP Assets B.V. Anti-listerial mixed culture and method for producing cheese
WO2013012674A1 (en) 2011-07-15 2013-01-24 The General Hospital Corporation Methods of transcription activator like effector assembly
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
KR101833589B1 (en) 2012-02-24 2018-03-02 프레드 헛친슨 켄서 리서치 센터 Compositions and methods for the treatment of hemoglobinopathies
BR112014021104B1 (en) 2012-02-29 2023-03-28 Sangamo Biosciences, Inc NON-NATURALLY OCCURRING FUSION PROTEIN COMPRISING AN MANIPULATED ZINC FINGER DNA-BINDING DOMAIN WHICH BINDS TO AN HTT GENE, ITS USE, IN VITRO METHOD OF MODIFYING THE EXPRESSION OF AN HTT GENE IN A CELL, AND METHOD OF GENERATION OF A MODEL SYSTEM FOR THE STUDY OF HUNTINGTON'S DISEASE
WO2013141680A1 (en) 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
NZ701060A (en) 2012-05-02 2016-10-28 Sangamo Biosciences Inc Targeted modification of malate dehydrogenase
RU2650819C2 (en) 2012-05-07 2018-04-17 Сангамо Терапьютикс, Инк. Methods and compositions for nuclease-mediated targeting of transgenes
WO2013169398A2 (en) 2012-05-09 2013-11-14 Georgia Tech Research Corporation Systems and methods for improving nuclease specificity and activity
DE202013012242U1 (en) 2012-05-25 2016-02-02 Emmanuelle Charpentier Compositions for RNA-directed modification of a target DNA and for RNA-driven modulation of transcription
US9102936B2 (en) 2012-06-11 2015-08-11 Agilent Technologies, Inc. Method of adaptor-dimer subtraction using a CRISPR CAS6 protein
EP2674501A1 (en) 2012-06-14 2013-12-18 Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail Method for detecting and identifying enterohemorrhagic Escherichia coli
US10025647B2 (en) * 2012-06-30 2018-07-17 Intel Corporation Memory poisoning with hints
CN105188767A (en) 2012-07-25 2015-12-23 布罗德研究所有限公司 Inducible DNA binding proteins and genome perturbation tools and applications thereof
WO2014059025A1 (en) 2012-10-09 2014-04-17 Liposcience, Inc. Nmr quantification of branched chain amino acids
EP2906602B1 (en) 2012-10-12 2019-01-16 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (lsd1) fusion proteins
US20150315576A1 (en) 2012-11-01 2015-11-05 Massachusetts Institute Of Technology Genetic device for the controlled destruction of dna
PL3138910T3 (en) * 2012-12-06 2018-01-31 Sigma Aldrich Co Llc Crispr-based genome modification and regulation
US20140189896A1 (en) 2012-12-12 2014-07-03 Feng Zhang Crispr-cas component systems, methods and compositions for sequence manipulation
JP6552965B2 (en) 2012-12-12 2019-07-31 ザ・ブロード・インスティテュート・インコーポレイテッド Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
US20140186843A1 (en) 2012-12-12 2014-07-03 Massachusetts Institute Of Technology Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
PL2931898T3 (en) 2012-12-12 2016-09-30 Le Cong Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
WO2014093694A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Crispr-cas nickase systems, methods and compositions for sequence manipulation in eukaryotes
MX2015007549A (en) 2012-12-12 2017-01-20 Broad Inst Inc Engineering of systems, methods and optimized guide compositions for sequence manipulation.
WO2014093701A1 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
SG10201707569YA (en) 2012-12-12 2017-10-30 Broad Inst Inc Delivery, Engineering and Optimization of Systems, Methods and Compositions for Sequence Manipulation and Therapeutic Applications
EP3434776A1 (en) 2012-12-12 2019-01-30 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
RU2678001C2 (en) 2012-12-13 2019-01-22 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Dna detection methods for site-specific nuclease activity
WO2014099744A1 (en) * 2012-12-17 2014-06-26 President And Fellows Of Harvard College Rna-guided human genome engineering
EP2934094A4 (en) * 2012-12-19 2016-06-22 Dow Agrosciences Llc Improved soybean transformation for efficient and high-throughput transgenic event production
CN105142396A (en) 2013-01-14 2015-12-09 重组股份有限公司 Hornless livestock
CN103233028B (en) 2013-01-25 2015-05-13 南京徇齐生物技术有限公司 Specie limitation-free eucaryote gene targeting method having no bio-safety influence and helical-structure DNA sequence
US20140212869A1 (en) 2013-01-25 2014-07-31 Agilent Technologies, Inc. Nucleic Acid Proximity Assay Involving the Formation of a Three-way junction
US10660943B2 (en) 2013-02-07 2020-05-26 The Rockefeller University Sequence specific antimicrobials
WO2014124284A1 (en) 2013-02-07 2014-08-14 The General Hospital Corporation Tale transcriptional activators
WO2014127287A1 (en) 2013-02-14 2014-08-21 Massachusetts Institute Of Technology Method for in vivo tergated mutagenesis
EP2958996B1 (en) 2013-02-25 2019-10-16 Sangamo Therapeutics, Inc. Methods and compositions for enhancing nuclease-mediated gene disruption
JP2016507244A (en) 2013-02-27 2016-03-10 ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー)Helmholtz Zentrum MuenchenDeutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) Gene editing in oocytes by Cas9 nuclease
JP6408494B2 (en) * 2013-03-08 2018-10-17 オックスフォード ナノポール テクノロジーズ リミテッド Enzyme stop method
US10612043B2 (en) 2013-03-09 2020-04-07 Agilent Technologies, Inc. Methods of in vivo engineering of large sequences using multiple CRISPR/cas selections of recombineering events
WO2014150624A1 (en) 2013-03-14 2014-09-25 Caribou Biosciences, Inc. Compositions and methods of nucleic acid-targeting nucleic acids
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
US11332719B2 (en) 2013-03-15 2022-05-17 The Broad Institute, Inc. Recombinant virus and preparations thereof
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US20140349400A1 (en) 2013-03-15 2014-11-27 Massachusetts Institute Of Technology Programmable Modification of DNA
US20140273230A1 (en) 2013-03-15 2014-09-18 Sigma-Aldrich Co., Llc Crispr-based genome modification and regulation
KR102210319B1 (en) 2013-03-15 2021-02-01 더 제너럴 하스피탈 코포레이션 Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
WO2014204578A1 (en) 2013-06-21 2014-12-24 The General Hospital Corporation Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
MX2015011985A (en) 2013-03-15 2016-04-07 Univ Minnesota Engineering plant genomes using crispr/cas systems.
CN105263312A (en) 2013-04-05 2016-01-20 美国陶氏益农公司 Methods and compositions for integration of an exogenous sequence within the genome of plants
US20150056629A1 (en) 2013-04-14 2015-02-26 Katriona Guthrie-Honea Compositions, systems, and methods for detecting a DNA sequence
HUE040575T2 (en) 2013-04-16 2019-03-28 Regeneron Pharma Targeted modification of rat genome
CN103224947B (en) 2013-04-28 2015-06-10 陕西师范大学 Gene targeting system
US10604771B2 (en) 2013-05-10 2020-03-31 Sangamo Therapeutics, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
US9873907B2 (en) 2013-05-29 2018-01-23 Agilent Technologies, Inc. Method for fragmenting genomic DNA using CAS9
US20150067922A1 (en) 2013-05-30 2015-03-05 The Penn State Research Foundation Gene targeting and genetic modification of plants via rna-guided genome editing
AU2014281026B2 (en) 2013-06-17 2020-05-28 Massachusetts Institute Of Technology Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
CN103343120B (en) 2013-07-04 2015-03-04 中国科学院遗传与发育生物学研究所 Wheat genome site-specific modification method
WO2015010114A1 (en) 2013-07-19 2015-01-22 Larix Bioscience, Llc Methods and compositions for producing double allele knock outs
WO2015021426A1 (en) 2013-08-09 2015-02-12 Sage Labs, Inc. A crispr/cas system-based novel fusion protein and its application in genome editing
CN106102781A (en) 2013-08-29 2016-11-09 英联邦高等教育系统天普大学 Methods and compositions for rna-guided treatment of hiv infection
US9388430B2 (en) * 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US9074199B1 (en) 2013-11-19 2015-07-07 President And Fellows Of Harvard College Mutant Cas9 proteins
MX2016007654A (en) 2013-12-11 2017-08-15 Regeneron Pharma Methods and compositions for the targeted modification of a genome.
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
EP3079726B1 (en) 2013-12-12 2018-12-05 The Broad Institute, Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components
US20150191744A1 (en) 2013-12-17 2015-07-09 University Of Massachusetts Cas9 effector-mediated regulation of transcription, differentiation and gene editing/labeling
KR20160102056A (en) 2013-12-26 2016-08-26 더 제너럴 하스피탈 코포레이션 Multiplex guide rnas
US20160362688A1 (en) 2014-02-12 2016-12-15 Thomas Jefferson University Compositions and methods of using microrna inhibitors
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
EP3126503A1 (en) 2014-04-03 2017-02-08 Massachusetts Institute Of Technology Methods and compositions for the production of guide rna
MA41349A (en) 2015-01-14 2017-11-21 Univ Temple RNA-GUIDED ERADICATION OF HERPES SIMPLEX TYPE I AND OTHER ASSOCIATED HERPES VIRUSES
LT3250691T (en) 2015-01-28 2023-09-11 Caribou Biosciences, Inc. Crispr hybrid dna/rna polynucleotides and methods of use
EP3858990A1 (en) 2015-03-03 2021-08-04 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
US9512446B1 (en) 2015-08-28 2016-12-06 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases

Non-Patent Citations (99)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 2010
BARKER ET AL., BMC GENOMICS, vol. 6, 22 April 2005 (2005-04-22), pages 57
BEERLI ET AL., PNAS USA, vol. 95, 1998, pages 14628 - 14633
CHENG, A.W.WANG, H.YANG, H.SHI, L.KATZ, Y.THEUNISSEN, T.W.RANGARAJAN, S.SHIVALILA, C.S.DADON, D.B.JAENISCH, R.: "Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system", CELL RES, vol. 23, 2013, pages 1163 - 1171
CHO ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 230 - 232
CHO, S.W.KIM, S.KIM, J.M.KIM, J.S.: "Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease", NAT BIOTECHNOL, vol. 31, 2013, pages 230 - 232
CHYLINSKI ET AL., RNA BIOLOGY, vol. 10, no. 5, 2013, pages 1 - 12
CHYLINSKI ET AL.: "classified Cas9 proteins from a large group of bacteria", RNA BIOLOGY, vol. 10, no. 5, 2013, pages 1 - 12
CLARK-CURTISSCURTISS ET AL.: "Methods in Enzymology", vol. 101, 1983, pages: 347 - 362
COLLEY ET AL., J. BIOL. CHEM., vol. 264, 1989, pages 17619 - 22
CONG ET AL., SCIENCE, vol. 339, 2013, pages 819
CONG ET AL., SCIENCE, vol. 339, 2013, pages 819 - 823
CONG ET AL., SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 819 - 23
CONG, L. ET AL.: "Multiplex genome engineering using CRISPR/Cas systems", SCIENCE, vol. 339, 2013, pages 819 - 823, XP055400719, DOI: doi:10.1126/science.1231143
CRADICK, T.J.FINE, E.J.ANTICO, C.J.BAO, G.: "CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity", NUCLEIC ACIDS RES., 2013
DICARLO ET AL., NUCLEIC ACIDS RES, 2013
DICARLO, J.E. ET AL.: "Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems", NUCLEIC ACIDS RES, 2013
DING, Q.REGAN, S.N.XIA, Y.OOSTROM, L.A.COWAN, C.A.MUSUNURU, K.: "Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs", CELL STEM CELL, vol. 12, 2013, pages 393 - 394, XP055247447, DOI: doi:10.1016/j.stem.2013.03.006
ESVELT ET AL., NAT METHODS, vol. 10, no. 11, November 2013 (2013-11-01), pages 1116 - 21
FISHER, S.BARRY, A.ABREU, J.MINIE, B.NOLAN, J.DELOREY, T.M.YOUNG, G.FENNELL, T.J.ALLEN, A.AMBROGIO, L. ET AL.: "A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries", GENOME BIOL, vol. 12, 2011, XP021091778, DOI: doi:10.1186/gb-2011-12-1-r1
FONFARA ET AL., NUCL. ACIDS RES., vol. 42, no. 4, 2014, pages 2577 - 2590
FONFARA ET AL.: "Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems", NUCLEIC ACIDS RES., 22 November 2013 (2013-11-22)
FRIEDLAND, A.E.TZUR, Y.B.ESVELT, K.M.COLAIACOVO, M.P.CHURCH, G.M.CALARCO, J.A.: "Heritable genome editing in C. elegans via a CRISPR-Cas9 system", NAT METHODS, vol. 10, 2013, pages 741 - 743, XP055429694, DOI: doi:10.1038/nmeth.2532
FU ET AL., NAT BIOTECHNOL., vol. 31, no. 9, 2013, pages 822 - 6
FU, Y.FODEN, J.A.KHAYTER, C.MAEDER, M.L.REYON, D.JOUNG, J.K.SANDER, J.D.: "High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells", NAT BIOTECHNOL, vol. 31, 2013, pages 822 - 826, XP055548416, DOI: doi:10.1038/nbt.2623
GABRIEL ET AL., NAT BIOTECHNOL, vol. 29, 2011, pages 816 - 823
GABRIEL, R. ET AL.: "An unbiased genome-wide analysis of zinc-finger nuclease specificity", NAT BIOTECHNOL, vol. 29, 2011, pages 816 - 823, XP055073828, DOI: doi:10.1038/nbt.1948
GILBERT, L.A.LARSON, M.H.MORSUT, L.LIU, Z.BRAR, G.A.TORRES, S.E.STERN-GINOSSAR, N.BRANDMAN, O.WHITEHEAD, E.H.DOUDNA, J.A. ET AL.: "CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes", CELL, vol. 154, 2013, pages 442 - 451, XP055115843, DOI: doi:10.1016/j.cell.2013.06.044
GOSSENBUJARD, PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 5547
GRATZ ET AL., GENETICS, vol. 194, no. 4, 2013, pages 1029 - 35
GRATZ, S.J. ET AL.: "Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease", GENETICS, 2013
GUIDE TO PROTEIN PURIFICATION, IN METHODS IN ENZYMOLOGY, vol. 182, 1990
HOCKEMEYER ET AL., NAT BIOTECHNOL, vol. 29, 2011, pages 731 - 734
HOCKEMEYER, D. ET AL.: "Genetic engineering of human pluripotent cells using TALE nucleases", NAT BIOTECHNOL, vol. 29, 2011, pages 731 - 734, XP055018244, DOI: doi:10.1038/nbt.1927
HORVATH ET AL., SCIENCE, vol. 327, 2010, pages 167 - 170
HORVATH, P.BARRANGOU, R.: "CRISPR/Cas, the immune system of bacteria and archaea", SCIENCE, vol. 327, 2010, pages 167 - 170, XP055016971, DOI: doi:10.1126/science.1179555
HOU ET AL., PROC NATL ACAD SCI USA., vol. 110, no. 39, 24 September 2013 (2013-09-24), pages 15644 - 9
HSU, P.D.SCOTT, D.A.WEINSTEIN, J.A.RAN, F.A.KONERMANN, S.AGARWALA, V.LI, Y.FINE, E.J.WU, X.SHALEM, O. ET AL.: "DNA targeting specificity of RNA-guided Cas9 nucleases", NAT BIOTECHNOL, vol. 31, 2013, pages 827 - 832, XP055219426, DOI: doi:10.1038/nbt.2647
HWANG ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 227 - 229
HWANG ET AL., PLOS ONE, vol. 8, no. 7, 9 July 2013 (2013-07-09), pages e68708
HWANG, W.Y. ET AL.: "Efficient genome editing in zebrafish using a CRISPR-Cas system", NAT BIOTECHNOL, vol. 31, 2013, pages 227 - 229, XP055540926, DOI: doi:10.1038/nbt.2501
HWANG, W.Y.FU, Y.REYON, D.MAEDER, M.L.KAINI, P.SANDER, J.D.JOUNG, J.K.PETERSON, R.T.YEH, J.R.: "Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System", PLOS ONE, vol. 8, 2013, pages e68708, XP055196397, DOI: doi:10.1371/journal.pone.0068708
HWANGFU ET AL., NAT BIOTECHNOL., vol. 31, no. 3, March 2013 (2013-03-01), pages 227 - 9
IYER ET AL., CELL CYCLE, vol. 8, no. 11, 1 June 2009 (2009-06-01), pages 1698 - 710
JIANG ET AL., NAT BIOTECHNOL, vol. 31, 2013, pages 233 - 239
JIANG, W.BIKARD, D.COX, D.ZHANG, F.MARRAFFINI, L.A.: "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, 2013, pages 233 - 239, XP055249123, DOI: doi:10.1038/nbt.2508
JINEK ET AL., ELIFE, vol. 2, 2013, pages e00471
JINEK ET AL., SCIENCE, vol. 337, 2012, pages 816 - 821
JINEK ET AL., SCIENCE, vol. 337, no. 6096, 2012, pages 816 - 21
JINEK, M. ET AL.: "A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity", SCIENCE, vol. 337, 2012, pages 816 - 821, XP055299674, DOI: doi:10.1126/science.1225829
JINEK, M. ET AL.: "RNA-programmed genome editing in human cells", ELIFE, vol. 2, 2013, pages e00471, XP002699851, DOI: doi:10.7554/eLife.00471
KERYER-BIBENS ET AL., BIOL. CELL, vol. 100, 2008, pages 125 - 138
KRIEGLER, GENE TRANSFER AND EXPRESSION: A LABORATORY MANUAL, 1990
LI, D.QIU, Z.SHAO, Y.CHEN, Y.GUAN, Y.LIU, M.LI, Y.GAO, N.WANG, L.LU, X. ET AL.: "Heritable gene targeting in the mouse and rat using a CRISPR-Cas system", NAT BIOTECHNOL, vol. 31, 2013, pages 681 - 683, XP055372215, DOI: doi:10.1038/nbt.2661
LI, W.TENG, F.LI, T.ZHOU, Q.: "Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems", NAT BIOTECHNOL, vol. 31, 2013, pages 684 - 686, XP055324100, DOI: doi:10.1038/nbt.2652
MAEDER, M.L. ET AL., MOL CELL, vol. 31, 2008, pages 294 - 301
MAEDER, M.L.LINDER, S.J.CASCIO, V.M.FU, Y.HO, Q.H.JOUNG, J.K.: "CRISPR RNA-guided activation of endogenous human genes", NAT METHODS, vol. 10, 2013, pages 977 - 979, XP055291599, DOI: doi:10.1038/nmeth.2598
MALI ET AL., SCIENCE, vol. 339, 2013, pages 823 - 826
MALI ET AL., SCIENCE, vol. 339, no. 6121, 15 February 2013 (2013-02-15), pages 823 - 6
MALI, P. ET AL.: "RNA-guided human genome engineering via Cas9", SCIENCE, vol. 339, 2013, pages 823 - 826
MALI, P.AACH, J.STRANGES, P.B.ESVELT, K.M.MOOSBURNER, M.KOSURI, S.YANG, L.CHURCH, G.M.: "CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering", NAT BIOTECHNOL, vol. 31, 2013, pages 833 - 838, XP055294730, DOI: doi:10.1038/nbt.2675
MALI, P.ESVELT, K.M.CHURCH, G.M.: "Cas9 as a versatile tool for engineering biology", NAT METHODS, vol. 10, 2013, pages 957 - 963, XP002718606, DOI: doi:10.1038/nmeth.2649
MORRISON, J. BACTERIOL., vol. 132, 1977, pages 349 - 351
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 444 - 453
NEERING ET AL., BLOOD, vol. 88, 1996, pages 1147 - 55
NISHIMASU, CELL, vol. 156, 2014, pages 935 - 949
OLIGINO ET AL., GENE THER., vol. 5, 1998, pages 491 - 496
PALVA ET AL., GENE, vol. 22, 1983, pages 229 - 235
PATTANAYAK ET AL., NAT METHODS, vol. 8, 2011, pages 765 - 770
PATTANAYAK, V.LIN, S.GUILINGER, J.P.MA, E.DOUDNA, J.A.LIU, D.R.: "High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity", NAT BIOTECHNOL, vol. 31, 2013, pages 839 - 843, XP055148795, DOI: doi:10.1038/nbt.2673
PATTANAYAK, V.RAMIREZ, C.L.JOUNG, J.K.LIU, D.R.: "Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection", NAT METHODS, vol. 8, 2011, pages 765 - 770, XP055073829, DOI: doi:10.1038/nmeth.1670
PEREZ ET AL., NAT BIOTECHNOL, vol. 26, 2008, pages 808 - 816
PEREZ, E.E. ET AL.: "Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases", NAT BIOTECHNOL, vol. 26, 2008, pages 808 - 816, XP055024363, DOI: doi:10.1038/nbt1410
PEREZ-PINERA, P.KOCAK, D.D.VOCKLEY, C.M.ADLER, A.F.KABADI, A.M.POLSTEIN, L.R.THAKORE, P.I.GLASS, K.A.OUSTEROUT, D.G.LEONG, K.W. ET: "RNA-guided gene activation by CRISPR-Cas9-based transcription factors", NAT METHODS, vol. 10, 2013, pages 973 - 976, XP055181249, DOI: doi:10.1038/nmeth.2600
QI, L.S.LARSON, M.H.GILBERT, L.A.DOUDNA, J.A.WEISSMAN, J.S.ARKIN, A.P.LIM, W.A.: "Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression", CELL, vol. 152, 2013, pages 1173 - 1183, XP055346792, DOI: doi:10.1016/j.cell.2013.02.022
RAN ET AL., CELL, 2013
RAN ET AL., CELL, vol. 154, no. 6, 12 September 2013 (2013-09-12), pages 1380 - 9
RAN, F.A.HSU, P.D.LIN, C.Y.GOOTENBERG, J.S.KONERMANN, S.TREVINO, A.E.SCOTT, D.A.INOUE, A.MATOBA, S.ZHANG, Y. ET AL.: "Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity", CELL, vol. 154, 2013, pages 1380 - 1389, XP055299681, DOI: doi:10.1016/j.cell.2013.08.021
RENDAHL ET AL., NAT. BIOTECHNOL., vol. 16, 1998, pages 757 - 761
REYON ET AL., NAT BIOTECH, vol. 30, 2012, pages 460 - 465
REYON, D. ET AL., NAT BIOTECH, vol. 30, 2012, pages 460 - 465
REYON, D. ET AL.: "FLASH assembly of TALENs for high-throughput genome editing", NAT BIOTECH, vol. 30, 2012, pages 460 - 465, XP055171172, DOI: doi:10.1038/nbt.2170
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 2001
SANDER, J.D.MAEDER, M.L.REYON, D.VOYTAS, D.F.JOUNG, J.K.DOBBS, D.: "ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool", NUCLEIC ACIDS RES, vol. 38, 2010, pages W462 - 468, XP055247371, DOI: doi:10.1093/nar/gkq319
SANDER, J.D.RAMIREZ, C.L.LINDER, S.J.PATTANAYAK, V.SHORESH, N.KU, M.FODEN, J.A.REYON, D.BERNSTEIN, B.E.LIU, D.R. ET AL.: "In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites", NUCLEIC ACIDS RES., 2013
SANDER, J.D.ZABACK, P.JOUNG, J.K.VOYTAS, D.F.DOBBS, D.: "Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool", NUCLEIC ACIDS RES, vol. 35, 2007, pages W599 - 605, XP002543579, DOI: doi:10.1093/nar/gkm349
SHEN ET AL., CELL RES, 2013
SHEN, B. ET AL.: "Generation of gene-modified mice via Cas9/RNA-mediated gene targeting", CELL RES, 2013
SUGIMOTO ET AL., BIOCHEMISTRY, vol. 34, 1995, pages 11211 - 11216
SUGIMOTO ET AL., BIOCHEMISTRY, vol. 39, no. 37, 19 September 2000 (2000-09-19), pages 11270 - 81
SUGIMOTO, N. ET AL.: "Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes", BIOCHEMISTRY, vol. 34, 1995, pages 11211 - 11216, XP002250298, DOI: doi:10.1021/bi00035a029
TERNS ET AL., CURR OPIN MICROBIOL, vol. 14, 2011, pages 321 - 327
TERNS, M.P.TERNS, R.M.: "CRISPR-based adaptive immune systems", CURR OPIN MICROBIOL, vol. 14, 2011, pages 321 - 327, XP055097823, DOI: doi:10.1016/j.mib.2011.03.005
WANG ET AL., CELL, vol. 153, 2013, pages 910 - 918
WANG ET AL., GENE THER., vol. 4, 1997, pages 432 - 441
WANG, H. ET AL.: "One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering", CELL, vol. 153, 2013, pages 910 - 918, XP028538358, DOI: doi:10.1016/j.cell.2013.04.025
WIEDENHEFT ET AL., NATURE, vol. 482, 2012, pages 331 - 338
WIEDENHEFT, B.STERNBERG, S.H.DOUDNA, J.A.: "RNA-guided genetic silencing systems in bacteria and archaea", NATURE, vol. 482, 2012, pages 331 - 338, XP002723433, DOI: doi:10.1038/nature10886
YANG, L.GUELL, M.BYRNE, S.YANG, J.L.DE LOS ANGELES, A.MALI, P.AACH, J.KIM-KISELAK, C.BRIGGS, A.W.RIOS, X. ET AL.: "Optimization of scarless human stem cell genome editing", NUCLEIC ACIDS RES, vol. 41, 2013, pages 9049 - 9061, XP055113989, DOI: doi:10.1093/nar/gkt555

Cited By (188)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9322006B2 (en) 2011-07-22 2016-04-26 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11976307B2 (en) 2012-04-27 2024-05-07 Duke University Genetic correction of mutated genes
US20210040460A1 (en) 2012-04-27 2021-02-11 Duke University Genetic correction of mutated genes
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US10378027B2 (en) 2013-03-15 2019-08-13 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US10844403B2 (en) 2013-03-15 2020-11-24 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US10138476B2 (en) 2013-03-15 2018-11-27 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10119133B2 (en) 2013-03-15 2018-11-06 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US11634731B2 (en) 2013-03-15 2023-04-25 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US11098326B2 (en) 2013-03-15 2021-08-24 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US9885033B2 (en) 2013-03-15 2018-02-06 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US11168338B2 (en) 2013-03-15 2021-11-09 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US9567603B2 (en) 2013-03-15 2017-02-14 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US11920152B2 (en) 2013-03-15 2024-03-05 The General Hospital Corporation Increasing specificity for RNA-guided genome editing
US10526589B2 (en) 2013-03-15 2020-01-07 The General Hospital Corporation Multiplex guide RNAs
US10415059B2 (en) 2013-03-15 2019-09-17 The General Hospital Corporation Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US10544433B2 (en) 2013-03-15 2020-01-28 The General Hospital Corporation Using RNA-guided FokI nucleases (RFNs) to increase specificity for RNA-guided genome editing
US10011850B2 (en) 2013-06-21 2018-07-03 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9388430B2 (en) 2013-09-06 2016-07-12 President And Fellows Of Harvard College Cas9-recombinase fusion proteins and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US11920128B2 (en) 2013-09-18 2024-03-05 Kymab Limited Methods, cells and organisms
US11499169B2 (en) 2013-10-30 2022-11-15 North Carolina State University Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri
US10584358B2 (en) 2013-10-30 2020-03-10 North Carolina State University Compositions and methods related to a type-II CRISPR-Cas system in Lactobacillus buchneri
US9834791B2 (en) 2013-11-07 2017-12-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US10190137B2 (en) 2013-11-07 2019-01-29 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US11390887B2 (en) 2013-11-07 2022-07-19 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAS
US10640788B2 (en) 2013-11-07 2020-05-05 Editas Medicine, Inc. CRISPR-related methods and compositions with governing gRNAs
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10787654B2 (en) 2014-01-24 2020-09-29 North Carolina State University Methods and compositions for sequence guiding Cas9 targeting
US11028388B2 (en) 2014-03-05 2021-06-08 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US9938521B2 (en) 2014-03-10 2018-04-10 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating leber's congenital amaurosis 10 (LCA10)
US11268086B2 (en) 2014-03-10 2022-03-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating Leber's Congenital Amaurosis 10 (LCA10)
US10253312B2 (en) 2014-03-10 2019-04-09 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating Leber's Congenital Amaurosis 10 (LCA10)
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
US11439712B2 (en) 2014-04-08 2022-09-13 North Carolina State University Methods and compositions for RNA-directed repression of transcription using CRISPR-associated genes
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US9932566B2 (en) 2014-08-07 2018-04-03 Agilent Technologies, Inc. CIS-blocked guide RNA
US10450584B2 (en) 2014-08-28 2019-10-22 North Carolina State University Cas9 proteins and guiding features for DNA targeting and genome editing
US11753651B2 (en) 2014-08-28 2023-09-12 North Carolina State University Cas9 proteins and guiding features for DNA targeting and genome editing
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
US10337001B2 (en) 2014-12-03 2019-07-02 Agilent Technologies, Inc. Guide RNA with chemical modifications
WO2016089433A1 (en) 2014-12-03 2016-06-09 Agilent Technologies, Inc. Guide rna with chemical modifications
US10900034B2 (en) 2014-12-03 2021-01-26 Agilent Technologies, Inc. Guide RNA with chemical modifications
WO2016100951A3 (en) * 2014-12-18 2016-10-20 Integrated Dna Technologies, Inc. Crispr-based compositions and methods of use
JP2017538427A (en) * 2014-12-18 2017-12-28 インテグレイテッド ディーエヌエイ テクノロジーズ インコーポレイテッド CRISPR composition and method of use
US9840702B2 (en) 2014-12-18 2017-12-12 Integrated Dna Technologies, Inc. CRISPR-based compositions and methods of use
EP3786296A1 (en) * 2014-12-18 2021-03-03 Integrated Dna Technologies, Inc. Crispr-based compositions and methods of use
US10767176B2 (en) 2014-12-18 2020-09-08 Integrated Dna Technologies, Inc. CRISPR-based compositions and methods of use
JP2021118714A (en) * 2014-12-18 2021-08-12 インテグレイテッド ディーエヌエイ テクノロジーズ インコーポレイテッド CRISPR-based compositions and methods of use
AU2021204304B2 (en) * 2014-12-18 2023-12-14 Integrated Dna Technologies, Inc. CRISPR-based compositions and methods of use
CN112877327A (en) * 2014-12-18 2021-06-01 综合基因技术公司 CRISPR-based compositions and methods of use
AU2015364282B2 (en) * 2014-12-18 2021-04-15 Integrated Dna Technologies, Inc. CRISPR-based compositions and methods of use
US11459559B2 (en) 2014-12-18 2022-10-04 Integrated Dna Technologies, Inc. CRISPR-based compositions and methods of use
US11859220B2 (en) 2015-03-03 2024-01-02 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11306309B2 (en) 2015-04-06 2022-04-19 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAs for CRISPR/CAS-mediated gene regulation
US11535846B2 (en) 2015-04-06 2022-12-27 The Board Of Trustees Of The Leland Stanford Junior University Chemically modified guide RNAS for CRISPR/Cas-mediated gene regulation
US11851652B2 (en) 2015-04-06 2023-12-26 The Board Of Trustees Of The Leland Stanford Junior Compositions comprising chemically modified guide RNAs for CRISPR/Cas-mediated editing of HBB
US11180793B2 (en) 2015-04-24 2021-11-23 Editas Medicine, Inc. Evaluation of Cas9 molecule/guide RNA molecule complexes
US11390884B2 (en) 2015-05-11 2022-07-19 Editas Medicine, Inc. Optimized CRISPR/cas9 systems and methods for gene editing in stem cells
US11261451B2 (en) 2015-05-29 2022-03-01 North Carolina State University Methods for screening bacteria, archaea, algae, and yeast using CRISPR nucleic acids
US10136649B2 (en) 2015-05-29 2018-11-27 North Carolina State University Methods for screening bacteria, archaea, algae, and yeast using CRISPR nucleic acids
US11911415B2 (en) 2015-06-09 2024-02-27 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for improving transplantation
US11155823B2 (en) 2015-06-15 2021-10-26 North Carolina State University Methods and compositions for efficient delivery of nucleic acids and RNA-based antimicrobials
US11414657B2 (en) 2015-06-29 2022-08-16 Ionis Pharmaceuticals, Inc. Modified CRISPR RNA and modified single CRISPR RNA and uses thereof
US11479793B2 (en) * 2015-07-15 2022-10-25 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
EP3957731A1 (en) 2015-07-15 2022-02-23 Rutgers, The State University of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
WO2017011721A1 (en) 2015-07-15 2017-01-19 Rutgers, The State University Of New Jersey Nuclease-independent targeted gene editing platform and uses thereof
JP7074827B2 (en) 2015-08-28 2022-05-24 ザ ジェネラル ホスピタル コーポレイション Genetically engineered CRISPR-Cas9 nuclease
JP2022023028A (en) * 2015-08-28 2022-02-07 ザ ジェネラル ホスピタル コーポレイション Engineered crispr-cas9 nucleases
JP7326391B2 (en) 2015-08-28 2023-08-15 ザ ジェネラル ホスピタル コーポレイション Engineered CRISPR-Cas9 nuclease
WO2017040348A1 (en) 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
JP2021040644A (en) * 2015-08-28 2021-03-18 ザ ジェネラル ホスピタル コーポレイション ENGINEERED CRISPR-Cas9 NUCLEASE
US10526591B2 (en) 2015-08-28 2020-01-07 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10093910B2 (en) 2015-08-28 2018-10-09 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
JP2021003110A (en) * 2015-08-28 2021-01-14 ザ ジェネラル ホスピタル コーポレイション Engineered crispr-cas9 nucleases
EP4036236A1 (en) 2015-08-28 2022-08-03 The General Hospital Corporation Engineered crispr-cas9 nucleases
US9926546B2 (en) 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
JP2018525019A (en) * 2015-08-28 2018-09-06 ザ ジェネラル ホスピタル コーポレイション Genetic engineering CRISPR-Cas9 nuclease
JP2020010695A (en) * 2015-08-28 2020-01-23 ザ ジェネラル ホスピタル コーポレイション Engineered crispr-cas9 nucleases
US11060078B2 (en) 2015-08-28 2021-07-13 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10633642B2 (en) 2015-08-28 2020-04-28 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
US10526590B2 (en) 2015-08-31 2020-01-07 Agilent Technologies, Inc. Compounds and methods for CRISPR/Cas-based genome editing by homologous recombination
WO2017044776A1 (en) * 2015-09-10 2017-03-16 Texas Tech University System Single-guide rna (sgrna) with improved knockout efficiency
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
US11286480B2 (en) 2015-09-28 2022-03-29 North Carolina State University Methods and compositions for sequence specific antimicrobials
US11970710B2 (en) 2015-10-13 2024-04-30 Duke University Genome engineering with Type I CRISPR systems in eukaryotic cells
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11542466B2 (en) 2015-12-22 2023-01-03 North Carolina State University Methods and compositions for delivery of CRISPR based antimicrobials
US10538750B2 (en) 2016-02-29 2020-01-21 Agilent Technologies, Inc. Methods and compositions for blocking off-target nucleic acids from cleavage by CRISPR proteins
EP3219799A1 (en) 2016-03-17 2017-09-20 IMBA-Institut für Molekulare Biotechnologie GmbH Conditional crispr sgrna expression
WO2017158153A1 (en) 2016-03-17 2017-09-21 Imba - Institut Für Molekulare Biotechnologie Gmbh Conditional crispr sgrna expression
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11512311B2 (en) 2016-03-25 2022-11-29 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (A1AT) deficiency
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US10767175B2 (en) 2016-06-08 2020-09-08 Agilent Technologies, Inc. High specificity genome editing using chemically modified guide RNAs
US11566263B2 (en) 2016-08-02 2023-01-31 Editas Medicine, Inc. Compositions and methods for treating CEP290 associated disease
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11427818B2 (en) 2016-10-07 2022-08-30 Integrated Dna Technologies, Inc. S. pyogenes CAS9 mutant genes and polypeptides encoded by same
US11242542B2 (en) 2016-10-07 2022-02-08 Integrated Dna Technologies, Inc. S. pyogenes Cas9 mutant genes and polypeptides encoded by same
US10717978B2 (en) 2016-10-07 2020-07-21 Integrated Dna Technologies, Inc. S. pyogenes CAS9 mutant genes and polypeptides encoded by same
WO2018071892A1 (en) 2016-10-14 2018-04-19 Joung J Keith Epigenetically regulated site-specific nucleases
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11136567B2 (en) 2016-11-22 2021-10-05 Integrated Dna Technologies, Inc. CRISPR/CPF1 systems and methods
US11293022B2 (en) 2016-12-12 2022-04-05 Integrated Dna Technologies, Inc. Genome editing enhancement
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
WO2018129129A1 (en) 2017-01-05 2018-07-12 Rutgers, The State University Of New Jersey Targeted gene editing platform independent of dna double strand break and uses thereof
US11466271B2 (en) 2017-02-06 2022-10-11 Novartis Ag Compositions and methods for the treatment of hemoglobinopathies
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11851690B2 (en) 2017-03-14 2023-12-26 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
WO2018195545A2 (en) 2017-04-21 2018-10-25 The General Hospital Corporation Variants of cpf1 (cas12a) with altered pam specificity
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
US11963982B2 (en) 2017-05-10 2024-04-23 Editas Medicine, Inc. CRISPR/RNA-guided nuclease systems and methods
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
WO2018218206A1 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing
WO2018218166A1 (en) 2017-05-25 2018-11-29 The General Hospital Corporation Using split deaminases to limit unwanted off-target base editor deamination
US11098297B2 (en) 2017-06-09 2021-08-24 Editas Medicine, Inc. Engineered Cas9 nucleases
US10428319B2 (en) 2017-06-09 2019-10-01 Editas Medicine, Inc. Engineered Cas9 nucleases
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11897920B2 (en) 2017-08-04 2024-02-13 Peking University Tale RVD specifically recognizing DNA base modified by methylation and application thereof
US11624077B2 (en) 2017-08-08 2023-04-11 Peking University Gene knockout method
US11286468B2 (en) 2017-08-23 2022-03-29 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11624058B2 (en) 2017-08-23 2023-04-11 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases with altered PAM specificity
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11718849B2 (en) 2018-02-19 2023-08-08 Agilent Technologies, Inc. Phosphopeptide-encoding oligonucleotide libraries and methods for detecting phosphorylation-dependent molecular interactions
US10711267B2 (en) 2018-10-01 2020-07-14 North Carolina State University Recombinant type I CRISPR-Cas system
US11680259B2 (en) 2018-10-01 2023-06-20 North Carolina State University Recombinant type I CRISPR-CAS system
WO2020148206A1 (en) 2019-01-14 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for generating and selecting a variant of a binding protein with increased binding affinity and/or specificity
WO2020163396A1 (en) 2019-02-04 2020-08-13 The General Hospital Corporation Adenine dna base editor variants with reduced off-target rna editing
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12006520B2 (en) 2019-06-14 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
WO2021228944A1 (en) 2020-05-13 2021-11-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Base editing approaches for the treatment of betahemoglobinopathies
WO2022008935A1 (en) 2020-07-10 2022-01-13 Horizon Discovery Limited Method for producing genetically modified cells
WO2022079020A1 (en) 2020-10-13 2022-04-21 Centre National De La Recherche Scientifique (Cnrs) Targeted-antibacterial-plasmids combining conjugation and crispr /cas systems and uses thereof
WO2022148955A1 (en) 2021-01-05 2022-07-14 Horizon Discovery Limited Method for producing genetically modified cells
WO2022180153A1 (en) 2021-02-25 2022-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Allele-specific genome editing of the nr2e3 mutation g56r
US11884915B2 (en) 2021-09-10 2024-01-30 Agilent Technologies, Inc. Guide RNAs with chemical modification for prime editing
WO2023052366A1 (en) 2021-09-28 2023-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Base editing approaches for the treatment of beta-hemoglobinopathies
WO2023069979A1 (en) 2021-10-20 2023-04-27 University Of Rochester Isolated glial progenitor cells for use in the competition treatment of age-related white matter loss
WO2023069987A1 (en) 2021-10-20 2023-04-27 University Of Rochester Rejuvenation treatment of age-related white matter loss cross reference to related application
WO2023099591A1 (en) 2021-12-01 2023-06-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for increasing fetal hemoglobin content by editing the +55-kb region of the erythroid-specific bcl11a enhancer
EP4198124A1 (en) 2021-12-15 2023-06-21 Versitech Limited Engineered cas9-nucleases and method of use thereof
WO2023144104A1 (en) 2022-01-25 2023-08-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Base editing approaches for the treatment of βeta-thalassemia
WO2023152351A1 (en) 2022-02-14 2023-08-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Treatment of liver cancers by disrupting the beta-catenin/tcf-4 binding site located upstream of meg3 in the dlk1/dio3 locus
WO2023217888A1 (en) 2022-05-10 2023-11-16 Institut National de la Santé et de la Recherche Médicale Base editing approaches for correcting the cd39 (cag>tag) mutation in patients suffering from βeta-thalassemia
WO2024018056A1 (en) 2022-07-22 2024-01-25 Institut National de la Santé et de la Recherche Médicale Base editing approaches for correcting the ivs2-1 (g>a) mutation in patients suffering from βeta-thalassemia
WO2024047247A1 (en) 2022-09-02 2024-03-07 Institut National de la Santé et de la Recherche Médicale Base editing approaches for the treatment of amyotrophic lateral sclerosis
US11999947B2 (en) 2023-02-24 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof

Also Published As

Publication number Publication date
AU2014239665A1 (en) 2015-10-01
AU2019204675A1 (en) 2019-07-18
IL241671B (en) 2022-03-01
JP2021118726A (en) 2021-08-12
AU2022252788A1 (en) 2022-11-03
KR102271292B1 (en) 2021-07-02
BR112015023489A2 (en) 2017-10-10
EP3744842A1 (en) 2020-12-02
US20220090145A1 (en) 2022-03-24
JP2022106710A (en) 2022-07-20
US20140295556A1 (en) 2014-10-02
WO2014144761A2 (en) 2014-09-18
CA2906553A1 (en) 2014-09-25
AU2021203370A1 (en) 2021-06-24
JP6960438B2 (en) 2021-11-05
CN105247066B (en) 2020-10-20
WO2014144592A3 (en) 2014-12-31
EP2971125A2 (en) 2016-01-20
US20230407341A1 (en) 2023-12-21
JP6622183B2 (en) 2019-12-18
JP6878554B2 (en) 2021-05-26
US20190376090A1 (en) 2019-12-12
EP2970986A2 (en) 2016-01-20
EP2971125A4 (en) 2016-08-24
US10119133B2 (en) 2018-11-06
EP2970986A4 (en) 2016-09-07
US9567603B2 (en) 2017-02-14
KR102271291B1 (en) 2021-07-02
EP3467125A1 (en) 2019-04-10
US10138476B2 (en) 2018-11-27
KR102210319B1 (en) 2021-02-01
AU2014228981A1 (en) 2015-10-01
JP6657069B2 (en) 2020-03-04
AU2014227653A1 (en) 2015-10-01
US20170327805A1 (en) 2017-11-16
JP7379572B2 (en) 2023-11-14
EP2971041A4 (en) 2016-09-07
US20160010076A1 (en) 2016-01-14
CN110540991A (en) 2019-12-06
US20140295557A1 (en) 2014-10-02
US9885033B2 (en) 2018-02-06
KR20210013304A (en) 2021-02-03
US20200224222A1 (en) 2020-07-16
KR20150132395A (en) 2015-11-25
JP6980380B2 (en) 2021-12-15
JP2016512264A (en) 2016-04-25
JP2020120661A (en) 2020-08-13
KR20210013302A (en) 2021-02-03
EP2971125B1 (en) 2020-05-06
AU2014228981B2 (en) 2019-11-28
KR102405549B1 (en) 2022-06-08
JP2016512691A (en) 2016-05-09
KR20230157540A (en) 2023-11-16
AU2014227653A2 (en) 2015-11-12
ZA201506814B (en) 2018-11-28
US11168338B2 (en) 2021-11-09
IL289396A (en) 2022-02-01
WO2014144288A1 (en) 2014-09-18
US10415059B2 (en) 2019-09-17
EP2970208A4 (en) 2016-11-30
CN105408497B (en) 2019-09-13
AU2020207840B2 (en) 2022-07-21
EP3988667A1 (en) 2022-04-27
KR20210013303A (en) 2021-02-03
US11634731B2 (en) 2023-04-25
AU2017204909A1 (en) 2017-08-31
CA2907198C (en) 2019-12-10
JP2021192624A (en) 2021-12-23
CA2907198A1 (en) 2014-09-18
KR20220080012A (en) 2022-06-14
EP2970986B1 (en) 2020-05-06
IL289396B2 (en) 2023-12-01
US20160024523A1 (en) 2016-01-28
CN110540991B (en) 2023-10-24
EP3741868B1 (en) 2024-05-22
AU2019204675B2 (en) 2021-03-11
JP2020031637A (en) 2020-03-05
EP2971125B2 (en) 2023-11-22
EP2971041A1 (en) 2016-01-20
CN105408483A (en) 2016-03-16
US20180208921A1 (en) 2018-07-26
JP2024012446A (en) 2024-01-30
EP3865586A1 (en) 2021-08-18
AU2014239665B2 (en) 2020-04-30
US10844403B2 (en) 2020-11-24
KR102602047B1 (en) 2023-11-15
US10378027B2 (en) 2019-08-13
US11098326B2 (en) 2021-08-24
AU2020201465A1 (en) 2020-03-19
AU2020201465B2 (en) 2022-05-12
KR20150131251A (en) 2015-11-24
WO2014152432A2 (en) 2014-09-25
AU2017204909B2 (en) 2019-04-04
US20170152508A1 (en) 2017-06-01
BR112015023489B1 (en) 2022-06-07
CA3161835A1 (en) 2014-09-25
EP3467125B1 (en) 2023-08-30
WO2014144761A3 (en) 2015-10-29
JP2016517276A (en) 2016-06-16
CN112301024A (en) 2021-02-02
AU2022209254A1 (en) 2022-08-18
AU2014227653B2 (en) 2017-04-20
KR20150131250A (en) 2015-11-24
JP7126588B2 (en) 2022-08-26
EP3741868A1 (en) 2020-11-25
EP2971041B1 (en) 2018-11-28
US9567604B2 (en) 2017-02-14
JP2020039350A (en) 2020-03-19
EP2970208A2 (en) 2016-01-20
US20180340189A1 (en) 2018-11-29
AU2020207840A1 (en) 2020-08-13
KR102210322B1 (en) 2021-02-01
KR102210323B1 (en) 2021-02-01
US11920152B2 (en) 2024-03-05
CA2906553C (en) 2022-08-02
CN113563476A (en) 2021-10-29
IL289396B1 (en) 2023-08-01
US20200071730A1 (en) 2020-03-05
US20160024524A1 (en) 2016-01-28
WO2014152432A3 (en) 2015-10-29
AU2021203370B2 (en) 2023-07-27
CN105408497A (en) 2016-03-16
JP7053706B2 (en) 2022-04-12
CN105247066A (en) 2016-01-13
ES2713503T3 (en) 2019-05-22
JP2023061983A (en) 2023-05-02
CA2906724A1 (en) 2014-09-18
US20210130850A1 (en) 2021-05-06
US10544433B2 (en) 2020-01-28

Similar Documents

Publication Publication Date Title
US11634731B2 (en) Using truncated guide RNAs (tru-gRNAs) to increase specificity for RNA-guided genome editing
US20160153003A1 (en) Using RNA-guided FokI Nucleases (RFNs) to Increase Specificity for RNA-Guided Genome Editing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480026133.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763916

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2906724

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14775930

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016502976

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 241671

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2014228981

Country of ref document: AU

Date of ref document: 20140314

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157029171

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014763916

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763916

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015023489

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015023489

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150915