WO2014143795A1 - Système d'énergie hydraulique - Google Patents
Système d'énergie hydraulique Download PDFInfo
- Publication number
- WO2014143795A1 WO2014143795A1 PCT/US2014/027913 US2014027913W WO2014143795A1 WO 2014143795 A1 WO2014143795 A1 WO 2014143795A1 US 2014027913 W US2014027913 W US 2014027913W WO 2014143795 A1 WO2014143795 A1 WO 2014143795A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- manifold
- outlet
- differential
- control valve
- inlet
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/04—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
- F15B13/044—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by electrically-controlled means, e.g. solenoids, torque-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/06—Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
- B62D5/07—Supply of pressurised fluid for steering also supplying other consumers ; control thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B1/00—Installations or systems with accumulators; Supply reservoir or sump assemblies
- F15B1/26—Supply reservoir or sump assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/08—Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
- F15B11/161—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
- F15B11/162—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for giving priority to particular servomotors or users
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B13/00—Details of servomotor systems ; Valves for servomotor systems
- F15B13/02—Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
- F15B13/026—Pressure compensating valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/20—Fluid pressure source, e.g. accumulator or variable axial piston pump
- F15B2211/21—Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
- F15B2211/212—Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/40—Flow control
- F15B2211/405—Flow control characterised by the type of flow control means or valve
- F15B2211/40553—Flow control characterised by the type of flow control means or valve with pressure compensating valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/505—Pressure control characterised by the type of pressure control means
- F15B2211/50563—Pressure control characterised by the type of pressure control means the pressure control means controlling a differential pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/50—Pressure control
- F15B2211/515—Pressure control characterised by the connections of the pressure control means in the circuit
- F15B2211/5158—Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and an output member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/71—Multiple output members, e.g. multiple hydraulic motors or cylinders
- F15B2211/7135—Combinations of output members of different types, e.g. single-acting cylinders with rotary motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B2211/00—Circuits for servomotor systems
- F15B2211/70—Output members, e.g. hydraulic motors or cylinders or control therefor
- F15B2211/78—Control of multiple output members
- F15B2211/781—Control of multiple output members one or more output members having priority
Definitions
- the present disclosure relates to vehicle hydraulic power systems, including hydraulically-actuated differentials .
- Vehicles often include several hydraulically powered units - i.e. , power steering units and differential units.
- each hydraulically-powered unit includes its own source of fluid and its own pump.
- including such individual pumps and sources of fluid for each hydraulically-powered unit may undesirably increase the weight of the vehicle and reduce efficiency.
- a hydraulic actuation system in accordance with an embodiment of the present disclosure includes a differential unit having a hydraulically-actuated differential, a power steering unit, a hydraulic pump, a reservoir, a controller, an electronically-controlled flow control manifold, and a proportional pressure control solenoid valve.
- a flow control manifold may control fluid flow to the power steering unit and the differential.
- the manifold may include a manifold inlet connected to a pump; a first manifold outlet connected to a differential; a second manifold outlet connected to a reservoir; a third manifold outlet connected to a power steering unit; a two-way solenoid valve connected to a manifold inlet and controlled by a controller; a flow control valve connected to a two-way solenoid valve and a first manifold outlet; and a pressure differential sensing valve connected to a two-way solenoid valve, the manifold inlet, and the third manifold outlet.
- a proportional pressure control solenoid valve may connect the first manifold outlet and the differential.
- a controller may be configured to control fluid flow in the system to prioritize providing fluid flow to the power steering unit relative to providing fluid flow to the differential unit.
- FIG. 1 generally illustrates an embodiment of a hydraulic power system in accordance with teachings of this disclosure.
- FIGS. 2-5 generally illustrate front, top, left, and back views of embodiments of an electronically-controlled flow control manifold in accordance with teachings of this disclosure.
- FIG. 6 generally illustrates an embodiment of a differential unit in accordance with teachings of this disclosure.
- FIG. 7 generally illustrates an embodiment of a hydraulic power system in accordance with teachings of this disclosure.
- FIG. 8 generally illustrates an embodiment of a hydraulic power system in accordance with teachings of this disclosure.
- FIG. 1 generally illustrates a diagram view of an embodiment of a hydraulic power system 10.
- System 10 may be configured to control pressurized fluid flow to and/or between both a power steering unit 16 and a differential unit 70.
- system 10 may be configured to prioritize fluid demands of power steering unit 16 over fluid demands of differential unit 70.
- system 10 may include a pump 12, a reservoir 14, a relief valve 20, an electronically-controlled flow control manifold 30, a power steering unit 16, a differential unit 70, and/or an electronic control unit (ECU) 18.
- ECU electronice control unit
- a pump 12 may, for example, comprise a hydraulic pump. Pump 12 may be unidirectional or bidirectional, and may provide fixed displacement and/or variable
- the pump 12 may be coupled to a pump driver 13, which may comprise an electric motor and/or a vehicle engine.
- pump 12 may be coupled with a serpentine belt of a vehicle 78.
- Pump 12 may be connected to reservoir 14 and may be configured to provide fluid from reservoir 14 to electronically-controlled flow control manifold 30. Pump 12 may be included in power steering unit 16.
- a reservoir 14 may be configured to at least temporarily store fluid, and may, without limitation, include a tank and/or sump.
- the reservoir 14 may be configured to provide a source of fluid for system 10.
- Reservoir 14 may, additionally or alternatively, be configured to receive return fluid associated with system 10.
- System 10 may include at least one relief valve 20.
- relief valve 20 may be disposed or connected between pump 12 and electronically-controlled flow control manifold 30.
- Relief valve 20 may include an inlet 21, an outlet 22, and/or a sensing port 23.
- Relief valve inlet 21 may be connected to pump 12, and relief valve outlet 22 may be connected to reservoir 14.
- Relief valve may have a first position which may correspond to relief valve 20 preventing fluid flow from relief valve inlet 21 to relief valve outlet 22.
- Relief valve 20 may include a second position, generally shown in phantom, which may correspond to relief valve 20 permitting fluid flow from relief valve inlet 21 to relief valve outlet 22.
- relief valve 20 may be configured to transition between its first and second positions according to a fluid pressure at relief valve inlet 21.
- relief valve 20 may be configured to transition from the first position to the second position if the fluid pressure at relief valve inlet 21 exceeds a set or threshold pressure.
- relief valve 20 may include a biasing member 26 that may provide a force that, for example, can correspond to a set or threshold pressure.
- system 10 may include an electronically-controlled flow control manifold 30.
- Manifold 30 may include an inlet 31, a first manifold outlet 32A, a second manifold outlet 32B, and/or a third manifold outlet 32C.
- manifold 30 may include a check valve 36, a two-way solenoid control valve 40, an adjustable flow control valve 50, a pressure differential sensing valve 60, and/or at least one fixed restriction 28.
- a manifold inlet 31 may be connected to pump 12 and/or relief valve 20, two-way solenoid valve 40, and/or sensing valve 60.
- First outlet 32A and second outlet 32B may be connected to each other and/or connected to adjustable flow control valve 50. Additionally or alternatively, first manifold outlet 32a may be connected to differential unit 70, and/or second manifold outlet 32B may be connected to reservoir 14.
- Third manifold outlet 32C may be connected to power steering unit 16 and/or sensing valve outlet 62.
- a two-way solenoid control valve 40 which may be referred to as control valve
- Control valve 40 may include an inlet 41, an outlet 42, a solenoid 45, a first portion 43, and/or a second portion 44.
- Control valve inlet 41 may be connected to manifold inlet 31 , sensing valve inlet 61 , and/or sensing valve second sensing port 63B.
- Control valve outlet 42 may be connected to adjustable flow control valve 50.
- Control valve outlet 42 may be connected to adjustable flow control valve 50 via a fixed restriction 28.
- a control valve first portion 43 may correspond to control valve 40 preventing fluid flow from control valve inlet 41 to control valve outlet 42.
- First portion 43 may, additionally or alternatively, correspond to control valve 40 permitting fluid flow from control valve outlet 42 to control valve inlet 41.
- Control valve second portion 44 may permit relatively unrestricted fluid flow from control valve inlet 41 to control valve outlet 42.
- Control valve second portion 44 may, additionally or alternatively, correspond to control valve 40 permitting restricted fluid flow from control valve outlet 42 to control valve inlet 41.
- a solenoid 45 may be configured to transition control valve 40 between a first position in which first portion 43 may be connected to inlet 41 and outlet 42, and a second position in which second portion 44 may be connected to inlet 41 and outlet 42.
- Solenoid 45 may be connected to ECU 18, for example, via connector 47.
- ECU 18 may be configured to cause control valve solenoid 45 to transition control valve 40 between its first and second positions.
- Control valve 40 may include a biasing member 46 that may bias control valve 40 toward its first position and/or its second position.
- An adjustable flow control valve 50 which may be referred to as flow control valve 50, may include an inlet 51 and an outlet 52.
- Flow control valve 50 may permit relatively unrestricted fluid flow in a direction from its outlet 52 to its inlet 51.
- Flow control valve 50 may also permit and/or restrict fluid flow in a direction from its inlet 51 to its outlet 52.
- the degree to which flow control valve 50 permits and/or restricts flow may be adjustable.
- Flow control valve 50 may be adjusted manually and/or automatically.
- Flow control valve may be connected to ECU 18.
- ECU 18 may be configured to adjust the degree of flow restriction provided by flow control valve 50.
- a manifold 30 may include a pressure differential sensing valve 60, which may be referred to as sensing valve 60.
- Sensing valve 60 may include an inlet 61, an outlet 62, a first sensing port 63 A, and/r a second sensing port 63B.
- First sensing port 63 A may be connected to flow control valve outlet 52, first manifold outlet 32A, and/or second manifold outlet 32B.
- First sensing port 63 A may be configured to receive pressurized fluid that may correspond to a fluid pressure of differential unit 70.
- Second pressure sensing port 63B may be connected to sensing valve inlet 61 , manifold inlet 31 , and/or control valve inlet 41. Second pressure sensing port 63B may be configured to provide fluid that may be pressurized at a pressure corresponding to a pressure at manifold inlet 41.
- a sensing valve 60 may include a first position that may correspond to sensing valve 60 preventing fluid flow in a direction from its inlet 61 to its outlet 62.
- Sensing valve 60 may include a second position, shown in phantom, that may correspond to sensing valve 60 permitting fluid flow in a direction from its inlet 61 to its outlet 62.
- sensing valve 60 may include a biasing member 66 that may be configured to bias sensing valve 60 toward its first position and/or its second position.
- Sensing valve biasing member 66 may be configured to provide a biasing force that may correspond to a desired pressure differential between first sensing port 63A and second sensing port 63B.
- sensing valve biasing member 66 may comprise a spring configured to bias sensing valve 60 toward its first position. If a pressure at second sensing port 63B is sufficiently high, the biasing force of biasing member 66 may be overcome and sensing valve 60 may transition sensing valve 60 from its first position toward its second position.
- manifold 30 may include one or more fixed restrictions 28,
- Fixed restrictions 28, 28A may comprise an orifice and/or a pre-set flow regulator. Fixed restrictions 28, 28A may limit the amount of fluid that can flow through them.
- fixed restriction 28 may comprise an orifice and may be connected and/or disposed between two-way solenoid valve 40 and flow control valve 50
- fixed restriction 28A may comprise a pre-set flow regulator may be connected and/or disposed between flow control valve 50 and reservoir 14.
- System 10 may include a power steering unit 16.
- Power steering unit 16 may be configured to be disposed in a vehicle.
- Power steering unit 16 may be configured to generate a force to cause a vehicle (e.g., vehicle 78) to turn.
- system 10 may include a differential unit 70.
- Differential unit 70 may include a first pressure sensor 71 A, a second pressure sensor 7 IB, an accumulator 72, a proportional pressure control valve 80, and/or a hydraulically-actuated differential 90.
- First pressure sensor 71 A and/or second pressure sensor 71B may be configured to sense a fluid pressure.
- Pressure sensors 71A, 71B may include pressure transducers.
- First pressure sensor 71 A may be connected between accumulator 72 and proportional pressure control valve 80, and/or may be configured to sense an accumulator pressure.
- Second pressure sensor 71B may be connected between proportional pressure control valve 80 and hydraulically-actuated differential 90, and/or may be configured to sense a clutch pressure of hydraulically-actuated differential 90.
- First pressure sensor 71 A and/or second pressure sensor 7 IB may be connected to and/or monitored by ECU 18.
- a differential unit 70 may include a proportional pressure control valve 80, which may be referred to as proportional valve 80.
- Proportional valve 80 may include a first port 81 A, a second port 8 IB, a third port 81C, a first portion 82, a second portion 83, a solenoid 85, and/or a biasing member 86.
- first port 81 A may be connected to reservoir 14
- second port 8 IB may be connected to accumulator 72 and/or manifold 30
- third port 81C may be connected to hydraulically-actuated differential 90.
- First portion 82 may correspond to proportional valve 80 permitting fluid flow between first port 81 A and third port 81C. First portion 82 may also correspond to proportional valve 80 blocking second port 8 IB. For example, and without limitation, first position 82 may be configured to permit fluid flow from hydraulically-actuated differential 90 to reservoir 14.
- Second portion 83 may correspond to proportional valve 80 permitting flow between second port 81B and third port 81C. Second portion 83 may also correspond to proportional valve 80 blocking first port 81 A. For example, and without limitation, second portion 83 may be configured to permit to fluid flow from manifold 30 and/or accumulator 72 to hydraulically-actuated differential 90.
- proportional valve 80 may include a first position in which first portion 82 is connected to first, second, and third ports 81A, 81B, 81C. Proportional valve may also include a second position in which second portion 83 is connected to first, second, and third ports 81 A, 81B, 81C.
- differential unit may include an accumulator 72. Accumulator
- Accumulator 72 may be connected between manifold 30 and proportional valve 80. Accumulator 72 may be configured to receive and/or at least temporarily store pressurized fluid. Manifold 30 may be configured to provide pressurized fluid to accumulator 72. For example, and without limitation, accumulator 72 may be configured to receive pressurized fluid if it is not desired to provide the pressurized fluid to proportional valve 80, such as if proportional valve 80 is in its first position. Accumulator 72 may be configured to at least temporarily provide a source of fluid to system 10. For example, and without limitation, accumulator 72 may provide pressurized fluid to proportional valve 80 if manifold 30 is not providing a desired amount of pressurized fluid.
- manifold 30 may not provide a desired amount of pressurized fluid if proportional valve 80 is in its second position, but manifold 30 is directing most or all of the pressurized fluid from pump 12 to power steering unit 16.
- Differential unit 70 may include a fiydraulically-actuated differential 90.
- Hydraulically-actuated differential 90 may include at least one clutch pack 92.
- Clutch pack 92 may comprise a multi-plate wet clutch pack.
- Differential unit 70 may include one or more actuators 94, which may comprise a cylinder. Actuator 94 may be configured to actuate clutch pack 92. Actuator 94 may be biased by a biasing member 96.
- Proportional valve 80 may be configured to provide pressurized fluid to actuator 94.
- Proportional valve 80 may be configured to provide a sufficient amount of pressurized fluid to overcome biasing member 96 and to actuate clutch pack 92.
- differential unit 70 may be at least partially disposed in a transaxle case 76 of a vehicle 78 that may be a front-wheel drive automobile.
- system 10 may include a differential unit control valve 100 and a differential unit 120.
- Differential unit control valve 100 which may be referred to as control valve 100, may be configured to at least partially control fluid flow between power steering unit 16 and differential unit 120.
- Power steering unit may be configured to provide fluid to control valve 100.
- ECU 18 may be configured control the amount of fluid power steering unit 16 provides to control valve 100, which may include prioritizing the availability of pressurized fluid for power steering unit 16 relative to the availability of pressurized fluid for control valve 100.
- Control valve 100 may include a first control valve port 102A that may be connected to power steering unit outlet 16A, a second control valve port 102B that may be connected to differential unit outlet 122 and/or power steering unit inlet 16B, and a third control valve port 102C that may be connected to differential unit inlet 121.
- Control valve 100 may include a first portion 104 and a second portion 105.
- First portion 104 may correspond to control valve 100 permitting fluid flow between its second and third ports 102B, 102C, which may permit fluid flow between differential unit outlet 122 and power steering unit inlet 16A.
- Second portion 105 may correspond to control valve 100 permitting fluid flow between its first and third ports 101 A, 101B, which may permit fluid flow between power steering unit outlet 16B and differential unit inlet 121.
- control valve 100 may include a first position in which first portion 104 is connected to first, second, and third ports 102A, 102B, 102C. Control valve 100 may also include a second position in which second portion 105 is connected to first, second, and third ports 102A, 102B, 102C. Control valve 100 may include a solenoid 108 that may be configured to transition control valve 100 between its first and second positions. Control valve solenoid 108 may be connected to and/or controlled by ECU 18. Control valve 100 may include a biasing member 106 that may bias control valve 100 toward first position 104 and/or second position 105.
- Differential unit 120 may include a control manifold 130 and a hydraulically- actuated differential 150.
- Control manifold 130 may be configured to at least partially control fluid flow to hydraulically-actuated differential 150.
- Control manifold 130 may include an inlet 132, an outlet 134, a check valve 136, a first control valve 150, a second control valve 160, a first pressure sensor 142A, a second pressure sensor 142B, an actuator port 144, and/or an
- Check valve 136 may permit fluid flow in a direction out of differential unit 120 through outlet 122 and may prevent fluid flow in a direction into differential unit 120 through control manifold outlet 122.
- Accumulator port 146 may be connected to control manifold inlet 132 and may be configured to be connected to an accumulator 148.
- Accumulator 148 may be configured to receive and/or at least temporarily store pressurized fluid.
- Control valve 100 may be configured to provide pressurized fluid to accumulator 148.
- accumulator 148 may be configured to receive pressurized fluid if it is not desired to provide the pressurized fluid to first control valve 150.
- Accumulator 148 may also be configured to at least temporarily provide a source of fluid to system 10.
- accumulator 148 may provide pressurized fluid to first control valve 150 if control valve 100 is not providing a desired amount of pressurized fluid.
- control valve 100 may not provide a desired amount of pressurized fluid if control valve 100 directing most or all of the pressurized fluid provided by power steering unit 16 back to power steering unit 16.
- First control valve 150 may comprise a two-way solenoid control valve.
- First control valve 150 may include a solenoid 151, an inlet 152, an outlet 153, a first portion 154, and/or a second portion 155.
- First control valve inlet 152 may be connected to differential unit inlet 121, first pressure sensor 142A, and/or accumulator 148.
- First control valve outlet 153 may be connected to actuator port 144, second pressure sensor 142B, and/or second control valve 160.
- First portion 154 may correspond to first control valve 150 permitting fluid flow in a direction from its inlet 152 to its outlet 153. First portion 154 may also correspond to first control valve 150 preventing fluid flow in a direction from its outlet 153 to its inlet 152. Second portion 155 may correspond to first control valve 150 permitting fluid flow in a direction from its outlet 153 to its inlet 152. Second portion 155 may also correspond to first control valve 150 allowing restricted fluid flow from its inlet 152 to its outlet 153. First control valve 150 may include a first position in which its first portion 154 is connected to inlet 152 and outlet 153. First control valve 150 may also include a second position in which its second portion 155 is connected to inlet 152 and outlet 153.
- Solenoid 151 may be configured to transition first control valve 150 between its first and second position. Solenoid 151 may be connected to ECU 18. ECU 18 may be configured to cause solenoid 151 to transition first control valve 150 between its first and second positions. First control valve 150 may include a biasing member 156 that may bias first control valve 150 toward its first position and/or its second position. First control valve 150 may, additionally or alternatively, be configured to be pilot operated and may include a pilot port 157.
- Second control valve 160 may comprise a two-way solenoid control valve and may include a solenoid 161, an inlet 162, an outlet 163, a first portion 164, and/or a second portion 165.
- Second control valve inlet 162 may be connected to first control valve outlet 163, second pressure sensor 142B, and/or actuator port 144.
- Second control valve outlet 163 may be connected to control valve second port 102B which may be via check valve 136.
- First portion 164 may correspond to second control valve 160 permitting fluid flow between its inlet 162 and its outlet 163.
- Second portion 165 may correspond to second control valve 160 permitting f uid flow in a direction from its inlet to its outlet.
- Second control valve second portion 165 may also correspond to second control valve 160 preventing fluid flow in a direction from its outlet 163 to its inlet 162.
- Second control valve 160 may include a first position in which its first portion 164 is connected to inlet 162 and outlet 163.
- Second control valve 160 may also include a second position in which its second portion 165 is connected to inlet 162 and outlet 163.
- Solenoid 161 may be configured to transition second control valve 160 between its first and second positions. Solenoid 161 may be connected to ECU 18.
- ECU 18 may be configured to cause second control valve solenoid 161 to transition second control valve 160 between its first and second positions.
- Second control valve 160 may include a biasing member 166 that may bias second control valve 160 toward its first position 164 and/or its second position 165.
- Second control valve 160 may, additionally or alternatively, be configured to be pilot operated and may include a pilot port 167.
- Differential unit 120 may include a first pressure sensor 142 A and a second pressure sensor 142B.
- Pressure sensors 142 A, 142B may be configured to sense a fluid pressure of system 10 and may include pressure transducers.
- First pressure sensor 142A may be connected between accumulator 148 and first control valve 150 and may be configured to sense an accumulator pressure.
- Second pressure sensor 142B may be connected between first control valve 150 and hydraulically-actuated differential 170 and may be configured to sense a clutch pressure of hydraulically-actuated differential 170.
- Hydraulically-actuated differential 170 may include at least one clutch pack 172.
- Clutch pack 172 may comprise a multi-plate wet clutch pack.
- Hydraulically-actuated differential 170 may include at least one actuator 174, which may be connected to actuator port 144.
- Actuator 174 may comprise a cylinder and/or may be configured to actuate clutch pack 172. Actuator 174 may be biased by a biasing member 176 and/or may be connected to a bleed valve 178. Control manifold 130 may be configured to provide pressurized fluid to actuator 174, which may actuate clutch pack 172. For example, and without limitation, control manifold 130 may be configured to provide an amount of sufficiently pressurized fluid to actuator 174 to overcome biasing member 176 and actuate clutch pack 172.
- hydraulically-actuated differential 170 may comprise more than one actuator, such as actuators 174, 174'.
- Control manifold 130 may be configured to control fluid flow to both actuators 174, 174' and/or, as generally illustrated in FIG. 8, system 10 may include more than one manifold, such as control manifold 130 and second control manifold 130'.
- Second control manifold 130' may be configured substantially the same as first control manifold 130, but second control manifold 130' may be configured to control fluid flow to actuator 174'.
- second control manifold 130' may include an inlet 132', an outlet 134', an accumulator port 146', an actuator port 144', a first control valve 150', a second control valve 160', a check valve 136', accumulator 148', first pressure sensor 142A', and/or second pressure sensor 142B'.
- Second control manifold 130' may be connected to control manifold 130.
- ECU 18 may comprise a programmable microprocessor and/or microcontroller, and/or may comprise an application specific integrated circuit (ASIC), for example.
- ECU may include a central processing unit (CPU), memory, and/or an input/output (I/O) interface.
- CPU central processing unit
- I/O input/output
- ECU 18 may be configured to perform various functions, such as those described in greater detail herein, with appropriate programming instructions and/or code embodied in software, hardware, and/or other medium.
- ECU 18 may be configured to at least partially control the flow of fluid within system 10.
- ECU 18 may control the flow of fluid between pump 12, power steering unit 16, manifold 30, and differential unit 70.
- ECU 18 may, without limitation, be connected to manifold 30, power steering unit 16, and/or differential unit 70.
- ECU 18 may monitor pressure sensor 71 A to determine an accumulator pressure of accumulator 72. If the accumulator pressure is below a minimum threshold, such as, without limitation, about 300 psi, ECU 18 may energize solenoid 45 to cause control valve 40 toward shift to its second position.
- pressurized fluid from pump 12 may be permitted to flow through fixed restriction 28, flow control valve 50, manifold first outlet 32a, and to differential unit 70.
- the pressurized fluid may flow to accumulator 72 until a maximum accumulator pressure is reached, such as, without limitation, about 800 psi.
- ECU 18 may monitor pressure sensor 71 A to determine that the maximum accumulator pressure has been reached and may de-energize solenoid 45 to cause control valve 40 to shift toward its first position.
- ECU 18 may be configured to prioritize fluid flow to power steering unit 16 and ensure that power steering unit 16 receives sufficient pressurized fluid from pump 12. Providing sufficient pressurized fluid flow to power steering unit 16 may be desirable to maintain proper functioning of power steering unit 16, which may ensure that a driver of a vehicle 78 is able to drive safely. For example, and without limitation, if control valve 40 is in its first position, fluid is not permitted to flow from pump 12 to differential unit 70 and power steering unit may receive all available fluid from pump 12. If transitioned toward its second position, control valve 40 may allow fluid from pump 12 to be directed to differential unit 70, but the flow may be restricted by fixed orifice 28 and/or flow control valve 50.
- the flow restriction provided by fixed orifice 28 may limit fluid flow to differential unit 70 to a maximum flow rate.
- Flow control valve 50 may be configured to further increase the amount of flow restriction between pump 12 and differential unit 70, which may include adjustably limiting fluid flow to a rate below the maximum flow rate. Such flow restrictions may ensure that power steering unit 16 receives sufficient fluid even if control valve 40 is in its second position.
- ECU 18 may be configured to determine if power steering unit 16 requires additional fluid and ECU 18 may be configured to energize solenoid 45 to transition control 40 to its first position and prevent fluid flow to differential unit 70.
- ECU 18 may, additionally or alternatively, be connected to differential unit 70.
- ECU may be connected to first pressure sensor 71 A, second pressure sensor 71B, and/or proportional pressure control valve 80.
- ECU 18 may be configured to energize and/or de-energize solenoid 85, which may cause proportional valve 80 to transition between its first and second positions.
- solenoid 85 may cause proportional valve 80 to transition toward its second position.
- ECU may be connected to first control manifold 130, second control manifold 130', control valve 100, first pressure sensors 142A, 142A', and/or second pressure sensors 142B, 142B'.
- ECU 18 may be configured to independently and/or collectively energize and/or de-energize one or more of solenoids 108, 151, 15 , 161, 161 ', which may, respectively, cause control valve 100, first control valves 150, 150', and/or second control valves 160, 160 'to transition between their respective first and second positions.
- valves having first and/or second positions are not limited to only having two positions and are also not limited to being in only one position or another.
- any of the disclosed valves may be configured to be continuous variable between any number of positions the valve may have, which may allow a valve to provide continuously variable openings and/or ports.
- references to valves have specific ports are not so limited. Instead, valves may have any number of ports. Additionally, references to pressure sensor (e.g., pressure sensor 71 A and/or 71B) may include pressure transducers and may be connected to and/or monitored by ECU 18.
- pressure sensor e.g., pressure sensor 71 A and/or 71B
- pressure transducers may be connected to and/or monitored by ECU 18.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Retarders (AREA)
Abstract
La présente invention concerne un système d'actionnement hydraulique incluant une unité différentielle dotée d'un différentiel actionné de manière hydraulique, d'une unité de servodirection, d'une pompe hydraulique, d'un réservoir, d'un dispositif de commande, d'un collecteur de commande de débit commandé de manière électronique, et d'une électrovanne proportionnelle de commande de pression. Un collecteur de commande de débit permet de réguler le débit d'écoulement vers l'unité de servodirection et le différentiel. Le collecteur peut inclure une entrée de collecteur reliée à une pompe; une première sortie de collecteur reliée à un différentiel; une seconde sortie de collecteur reliée à un réservoir; une troisième sortie de collecteur reliée à une unité de servodirection; une électrovanne à deux voies reliée à une entrée de collecteur et commandée par un dispositif de commande; une vanne de régulation de débit reliée à une électrovanne à deux voies et à une première sortie de collecteur; une vanne de détection de différentiel de pression reliée à une électrovanne à deux voies, à l'entrée de collecteur, et à la troisième sortie de collecteur. Une électrovanne proportionnelle de commande de pression peut relier la première sortie de collecteur et le différentiel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/852,880 US9410562B2 (en) | 2013-03-15 | 2015-09-14 | Hydraulic power system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361798893P | 2013-03-15 | 2013-03-15 | |
US61/798,893 | 2013-03-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/852,880 Continuation US9410562B2 (en) | 2013-03-15 | 2015-09-14 | Hydraulic power system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014143795A1 true WO2014143795A1 (fr) | 2014-09-18 |
Family
ID=51537536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/027913 WO2014143795A1 (fr) | 2013-03-15 | 2014-03-14 | Système d'énergie hydraulique |
Country Status (2)
Country | Link |
---|---|
US (1) | US9410562B2 (fr) |
WO (1) | WO2014143795A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017071596A1 (fr) * | 2015-10-28 | 2017-05-04 | 中国国际海运集装箱(集团)股份有限公司 | Système hydraulique de navette bidirectionnelle |
GB2585444A (en) * | 2019-04-12 | 2021-01-13 | Husco Int Inc | Hydraulic systems and methods for nested pressure regulating valves |
GB2592220A (en) * | 2020-02-19 | 2021-08-25 | Metrol Springs Ltd | Linear actuator assembly control unit |
RU2794243C1 (ru) * | 2022-10-19 | 2023-04-13 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Рязанское гвардейское высшее воздушно-десантное ордена Суворова дважды Краснознаменное командное училище имени генерала армии В.Ф. Маргелова" Министерства обороны Российской Федерации | Система рулевого управления транспортного средства |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9441726B1 (en) * | 2015-09-29 | 2016-09-13 | Borgwarner Inc. | Transfer case lubrication system with pump control |
US10975922B2 (en) | 2016-10-07 | 2021-04-13 | Eaton Intelligent Power Limited | Hydraulically actuated differential |
CN109026861B (zh) * | 2018-08-24 | 2019-11-05 | 浙江海洋大学 | 一种船用液压系统通用型减压装置及减压方法 |
CN109764020A (zh) * | 2019-02-15 | 2019-05-17 | 徽瑞智能装备(黄山)有限责任公司 | 一种伺服液压阀门控制器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3906727A (en) * | 1973-09-26 | 1975-09-23 | Melvin Corp | Hydrostatic drive with direction memory |
US5881630A (en) * | 1995-03-09 | 1999-03-16 | Itt Automotive Electrical Systems, Inc. | Apparatus and method of controlling fluid flow between a plurality of vehicle components |
US6394558B2 (en) * | 1999-07-14 | 2002-05-28 | Ausco Products, Inc. | Method and apparatus for applying a brake force in a towed vehicle hydraulic brake system proportional to a hydraulic pressure generator power input |
US6840345B2 (en) * | 2002-07-29 | 2005-01-11 | Gianni Ferrari S.R.L. | Steering system for vehicle with four drive wheels |
WO2010138867A1 (fr) * | 2009-05-29 | 2010-12-02 | Bombardier Recreational Products Inc. | Systèmes de suspension et de pneumatique pour véhicule |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19834765A1 (de) * | 1998-08-01 | 2000-02-03 | Hydraulik Ring Gmbh | Hydrauliksystem zum Betätigen von wenigstens zwei Funktionsbereichen in einem Fahrzeug |
EP2255986B1 (fr) * | 2008-03-27 | 2022-07-06 | Mitsubishi Logisnext Co., Ltd. | Vehicule industriel hybride |
JP5351813B2 (ja) * | 2010-03-31 | 2013-11-27 | 株式会社クボタ | 作業車の油圧システム |
-
2014
- 2014-03-14 WO PCT/US2014/027913 patent/WO2014143795A1/fr active Application Filing
-
2015
- 2015-09-14 US US14/852,880 patent/US9410562B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3906727A (en) * | 1973-09-26 | 1975-09-23 | Melvin Corp | Hydrostatic drive with direction memory |
US5881630A (en) * | 1995-03-09 | 1999-03-16 | Itt Automotive Electrical Systems, Inc. | Apparatus and method of controlling fluid flow between a plurality of vehicle components |
US6394558B2 (en) * | 1999-07-14 | 2002-05-28 | Ausco Products, Inc. | Method and apparatus for applying a brake force in a towed vehicle hydraulic brake system proportional to a hydraulic pressure generator power input |
US6840345B2 (en) * | 2002-07-29 | 2005-01-11 | Gianni Ferrari S.R.L. | Steering system for vehicle with four drive wheels |
WO2010138867A1 (fr) * | 2009-05-29 | 2010-12-02 | Bombardier Recreational Products Inc. | Systèmes de suspension et de pneumatique pour véhicule |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017071596A1 (fr) * | 2015-10-28 | 2017-05-04 | 中国国际海运集装箱(集团)股份有限公司 | Système hydraulique de navette bidirectionnelle |
GB2585444A (en) * | 2019-04-12 | 2021-01-13 | Husco Int Inc | Hydraulic systems and methods for nested pressure regulating valves |
US11415154B2 (en) | 2019-04-12 | 2022-08-16 | Husco International, Inc. | Hydraulic systems and methods for nested pressure regulating valves |
GB2585444B (en) * | 2019-04-12 | 2023-01-18 | Husco Int Inc | Hydraulic systems and methods for nested pressure regulating valves |
GB2592220A (en) * | 2020-02-19 | 2021-08-25 | Metrol Springs Ltd | Linear actuator assembly control unit |
GB2592220B (en) * | 2020-02-19 | 2023-02-22 | Metrol Springs Ltd | Linear actuator assembly control unit |
RU2794243C1 (ru) * | 2022-10-19 | 2023-04-13 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Рязанское гвардейское высшее воздушно-десантное ордена Суворова дважды Краснознаменное командное училище имени генерала армии В.Ф. Маргелова" Министерства обороны Российской Федерации | Система рулевого управления транспортного средства |
Also Published As
Publication number | Publication date |
---|---|
US9410562B2 (en) | 2016-08-09 |
US20150377260A1 (en) | 2015-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9410562B2 (en) | Hydraulic power system | |
CA2878141C (fr) | Organe de commande | |
EP2786915B1 (fr) | Système de direction hydraulique | |
US20110073191A1 (en) | Hydraulic Circuit and Manifold with Multifunction Valve | |
US6880668B2 (en) | Power steering device | |
EP3093213B1 (fr) | Système de direction hydraulique | |
EP2029377B1 (fr) | Systeme de suspension pour vehicule | |
JPH0469281B2 (fr) | ||
WO2008042308A3 (fr) | Moteur/pompe surcentré(e) sécurisé(e) | |
US7694776B2 (en) | Hydraulic steering system with protection against uncontrolled steering movements | |
EP3078570B1 (fr) | Système de direction hydraulique | |
US11415154B2 (en) | Hydraulic systems and methods for nested pressure regulating valves | |
DE102010054100A1 (de) | Hydraulisches System | |
US7828684B2 (en) | Control system for a differential in a transmission | |
US7748720B2 (en) | Vehicle roll control system | |
EP3093214B1 (fr) | Système de direction hydraulique | |
EP2365226B1 (fr) | Système hydraulique | |
JP6161415B2 (ja) | 液圧ブレーキ制御装置 | |
WO2018206256A1 (fr) | Unité de direction à assistance hydraulique | |
SE443409B (sv) | Ventilanordning for styrning av funktionen hos en hydraulmotor | |
WO2018206254A1 (fr) | Unité de direction hydraulique | |
CN211448991U (zh) | 控制设备 | |
US7735846B2 (en) | Hydraulic control circuit | |
KR102350175B1 (ko) | 전자적으로 슬립 제어 가능한 차량 브레이크 시스템 | |
CN108290604B (zh) | 液压转向装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14765308 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14765308 Country of ref document: EP Kind code of ref document: A1 |