WO2014141577A1 - オーディオ再生装置およびオーディオ再生方法 - Google Patents

オーディオ再生装置およびオーディオ再生方法 Download PDF

Info

Publication number
WO2014141577A1
WO2014141577A1 PCT/JP2014/000491 JP2014000491W WO2014141577A1 WO 2014141577 A1 WO2014141577 A1 WO 2014141577A1 JP 2014000491 W JP2014000491 W JP 2014000491W WO 2014141577 A1 WO2014141577 A1 WO 2014141577A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel signal
audio
audio signal
channel
Prior art date
Application number
PCT/JP2014/000491
Other languages
English (en)
French (fr)
Inventor
田中 直也
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014513835A priority Critical patent/JP5591423B1/ja
Priority to US14/774,126 priority patent/US9497560B2/en
Publication of WO2014141577A1 publication Critical patent/WO2014141577A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems

Definitions

  • the present disclosure relates to an audio playback device, and more particularly, to an audio playback device that forms a diffused sound field by playing back an audio signal from above and below a viewer.
  • Patent Document 1 discloses an audio device (speaker device).
  • the audio device includes a first speaker and a second speaker that are attached to each other in a vertical direction in the vehicle interior, and a drive control unit that outputs sound from the first speaker and the second speaker.
  • the drive control unit performs a predetermined time delay on the sound output from the speaker having the shorter distance from the listener among the first speaker and the second speaker.
  • the present disclosure can suppress a change in the distribution of the diffuse sound field when the reproduced sound of the signal generated using the stereo audio signal is output from the speakers disposed above and below the room, respectively.
  • An audio playback device is provided.
  • An audio reproduction device includes an acquisition unit that acquires a stereo audio signal including an L channel signal and an R channel signal, and (i) an upper part of a listening space using the acquired L channel signal and the R channel signal. And (ii) a correlation degree between the L channel signal and the R channel signal, and a second audio signal for the speaker disposed below the listening space.
  • the audio reproduction device suppresses a change in the distribution of the diffuse sound field when the reproduction sound of the signal generated using the stereo audio signal is output from the speakers arranged above and below the room. can do.
  • FIG. 1 is a diagram illustrating a configuration of a listening space in which a speaker is disposed above.
  • FIG. 2 is a diagram for explaining a simple configuration of a listening space in which an upper speaker is used.
  • FIG. 3 is a diagram for explaining a problem that occurs in the listening space configured as shown in FIG.
  • FIG. 4 is a block diagram showing a functional configuration of the audio playback device according to the first embodiment.
  • FIG. 5 is a flowchart of the operation of the audio playback device according to the first embodiment.
  • FIG. 6 is a diagram for explaining the effect of suppressing the change in the sound field distribution of the audio playback device according to the first embodiment.
  • FIG. 7 is a block diagram illustrating a functional configuration of the audio reproduction device according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a listening space in which a speaker is disposed above.
  • lower speakers 106a to 106d are arranged around listeners 201a and 201b (below the listening space).
  • An upper speaker 105 is disposed above the listeners 201a and 201b (above the listening space).
  • FIG. 2 is a diagram for explaining a simple configuration of a listening space in which the upper speaker 105 is used.
  • the upper speaker 105 is provided on the ceiling 207 of the room.
  • An L channel speaker 106L and an R channel speaker 106R are provided on the floor 206 of the room.
  • the reproduction sound of the stereo audio signal (L channel signal and R channel signal) is output from the L channel speaker 106L and the R channel speaker 106R as before, and the L channel signal and the R channel signal are combined.
  • a configuration in which the reproduced sound of the received signal is output from the upper speaker 105 is conceivable.
  • the sound field 205 shown in FIG. 2 is a visual representation of the sound field formed by the reproduced sound from the upper speaker 105, the L channel speaker 106L, and the R channel speaker 106R.
  • FIG. 3 is a diagram for explaining a problem that occurs in the listening space configured as shown in FIG.
  • the sound field formed by the reproduced sound is not biased upward or downward like the sound field 301 shown in FIG. Ideally it should be localized in position.
  • the distribution of the sound field changes during sound reproduction. Specifically, the distribution of the sound field is biased upward like the sound field 302 shown in FIG. 3B, or the sound field 303 shown in FIG. A phenomenon occurs in which the distribution of the sound field is biased downward, giving the listener 201 a great sense of discomfort.
  • the phenomenon close to this phenomenon is the same in the configuration in which all of the L channel speaker 106L, the R channel speaker 106R, and the upper speaker 105 shown in FIG. 2 are arranged around the listener 201 (approximately the same height). It is thought to occur.
  • the present disclosure provides a sound field that is noticeably perceived by the listener 201 when a reproduced sound of a signal generated using a stereo audio signal is output from speakers arranged above and below a room.
  • an audio playback device that suppresses changes in the distribution of sound. According to the audio reproduction device of the present disclosure, it is possible to provide a stable and comfortable sound field space for the listener 201, and its usefulness is very high.
  • FIG. 4 is a block diagram showing a functional configuration of the audio playback device according to the first embodiment.
  • FIG. 5 is a flowchart of the operation of the audio playback device according to the first embodiment.
  • the audio reproduction device 10 shown in FIG. 4 is a device corresponding to the listening space shown in FIG.
  • the upper speaker 105 is arranged above the listener 201 (the ceiling 207 of the room) as shown in FIG.
  • lower speaker 106 L channel speaker 106L and R channel speaker 106R
  • the upper speaker 105 is not necessarily disposed on the ceiling 207 as long as it is disposed above the L channel speaker 106L and the R channel speaker 106R.
  • a control unit 107 an audio signal generation unit 101, a signal correlation calculation unit 102, a gain coefficient calculation unit 103, and a gain correction unit 104
  • an upper speaker 105 an upper speaker 105.
  • a lower speaker 106 an upper speaker 105.
  • the acquisition unit 100 acquires a stereo audio signal including an L channel signal and an R channel signal (S101 in FIG. 5).
  • the acquisition unit 100 is specifically an input interface such as an audio input terminal (audio input connector).
  • the audio signal generation unit 101 uses the stereo audio signal 110 acquired by the acquisition unit 100 to generate an upper speaker signal 113 (first audio signal) and a lower speaker signal 114 (second audio signal) (see FIG. 5 S102).
  • the upper speaker signal 113 is a signal for the upper speaker 105 disposed above the listening space
  • the lower speaker signal 114 is a signal for the lower speaker 106 disposed below the listening space.
  • the audio signal generation unit 101 generates a signal for interpolating the L channel signal and the R channel signal as the upper speaker signal 113. That is, the upper speaker signal 113 is a signal for filling a sound gap in the sound field space generated by the reproduced sound of the L channel signal and the reproduced sound of the R channel signal.
  • the audio signal generation unit 101 generates the upper speaker signal 113 by smoothly interpolating the L channel signal and the R channel signal. For example, the audio signal generation unit 101 generates the upper speaker signal 113 by combining the L channel signal and the R channel signal based on the following expression.
  • Ce indicates the upper speaker signal 113.
  • L indicates an L channel signal
  • R indicates an R channel signal.
  • M and n represent contributions to the L channel signal and the R channel signal, respectively.
  • m and n a constraint that m + n is 1 is imposed.
  • “synthesize L channel signal and R channel signal” means R channel signal multiplied by a coefficient (real number other than 0) and a coefficient (real number other than 0). It means adding the signal.
  • the audio signal generation unit 101 has the following formula: Based on the above, the upper speaker signal 113 is generated.
  • the audio signal generation unit 101 generates the upper speaker signal 113 by adding the L channel signal multiplied by the positive coefficient and the R channel signal multiplied by the positive coefficient.
  • the audio reproduction device 10 can generate a three-dimensional sound field 205 that envelops the listener 201. Thereby, for example, it is possible to provide the listener 201 with a comfortable sound field space that is wrapped in music.
  • the audio signal generation unit 101 outputs (generates) the L channel signal and the R channel signal included in the stereo audio signal 110 as they are as the lower speaker signal 114. Specifically, the audio signal generation unit 101 generates an L channel signal as the lower speaker signal 114 for the L channel speaker 106L, and generates an R channel signal as the lower speaker signal 114 for the R channel speaker 106R.
  • the audio signal generation unit 101 generates the L channel signal as the lower speaker signal 114 for one of the L channel speaker 106L and the R channel speaker 106R, and the R channel signal as the other speaker.
  • the lower speaker signal 114 may be generated.
  • the signal correlation calculation unit 102 calculates a signal correlation 111 between the L channel signal and the R channel signal included in the stereo audio signal 110. Then, the signal correlation calculation unit 102 outputs the calculated signal correlation 111 to the gain coefficient calculation unit 103.
  • the signal correlation calculation unit 102 uses any method that can calculate information indicating the correlation between two signals of the L channel signal and the R channel signal, such as using a cross correlation function. It doesn't matter.
  • the gain coefficient calculation unit 103 calculates a gain coefficient for gain correction of the upper speaker signal 113 based on at least the signal correlation 111 and the lower speaker signal 114 (S103 in FIG. 5). In other words, the gain coefficient calculation unit 103 determines the gain coefficient according to the degree of correlation between the L channel signal and the R channel signal.
  • the gain coefficient calculation method of the gain coefficient calculation unit 103 will be described in detail. It is assumed that the upper speaker signal 113 is generated based on Equation 2 above. In the following description of the gain coefficient calculation method, the total signal energy of the upper speaker signal 113 is described as ECe, and the total signal energy of the lower speaker signal 114 is described as Es.
  • the gain coefficient ⁇ is calculated (updated) every predetermined time (for example, 50 ms), and L and R in the following expression are each expressed by a vector composed of elements of the number of samples at the predetermined time.
  • each element is a sample value of the signal level.
  • the gain coefficient ⁇ is a coefficient for maintaining ECe and Es at a predetermined ratio k (arbitrary constant).
  • the gain coefficient ⁇ and k, ECe, and Es have a relationship represented by the following expression. Note that the localization position of the sound field can be raised or lowered by changing the value of k. Specifically, the value of k is appropriately set according to the shape of the room.
  • Equation 7 the gain coefficient ⁇ is calculated as Equation 7.
  • the L 2 term and the R 2 term are values that do not depend on the degree of correlation between the L channel signal and the R channel signal, but the (L ⁇ R) term is the L channel signal.
  • the value varies depending on the R channel signal and the degree of correlation. That is, the gain coefficient ⁇ is a parameter determined according to the degree of correlation between the L channel signal and the R channel signal.
  • L and R are vectors, and the term L ⁇ R is a so-called inner product.
  • the gain coefficient calculation unit 103 calculates the gain coefficient ⁇ (gain coefficient 112) based on the equation 7 and the signal correlation 111. Then, the gain coefficient calculation unit 103 outputs the calculated gain coefficient 112 to the gain correction unit 104.
  • the gain correction unit 104 corrects the upper speaker signal 113 using the gain coefficient 112 output from the gain coefficient calculation unit 103 (S104 in FIG. 5). Specifically, the gain correction unit 104 multiplies the upper speaker signal 113 by the gain coefficient 112 and outputs a corrected upper speaker signal 115 obtained by the multiplication to the upper speaker 105.
  • the calculation of the gain coefficient 112 of the gain coefficient calculation unit 103 and the correction (gain coefficient) of the gain correction unit 104 are performed every predetermined time.
  • the control unit 107 (the gain coefficient calculation unit 103 and the gain correction unit 104) updates the gain coefficient 112 every predetermined time and multiplies the upper speaker signal 113.
  • the upper speaker 105 is a speaker disposed above the listener 201.
  • the upper speaker 105 reproduces the corrected upper speaker signal 115 output from the gain correction unit 104.
  • the lower speaker 106 (L channel speaker 106L and R channel speaker 106R) is a speaker disposed below the upper speaker 105.
  • the lower speaker 106 reproduces the lower speaker signal 114 input from the audio signal generation unit 101 (S105 in FIG. 5).
  • the upper speaker signal 113 is generated by adding the L channel signal multiplied by the coefficient and the R channel signal multiplied by the coefficient. For this reason, the energy of the reproduced sound output from the upper speaker 105 varies in accordance with the degree of correlation between the L channel signal and the R channel signal, that is, the size of the (L ⁇ R) term. Due to this, the ratio between the energy of the reproduced sound output from the upper speaker 105 and the energy of the reproduced sound output from the lower speaker 106 varies, so that the sound field distribution changes.
  • FIG. 6 is a diagram for explaining the effect of suppressing the change in the sound field distribution of the audio playback device 10.
  • the vertical axis of the diagram shown in FIG. 6 is the dB value of the ratio of the energy of the sound output from the upper speaker 105 and the sound output from the lower speaker 106. In the example of FIG. 6, 0 is the target value. It shall be.
  • the horizontal axis of the diagram shown in FIG. 6 is time.
  • the “no correction” graph (thin line graph) shown in FIG. 6 is a graph when the correction using the gain coefficient 112 is not performed. on the other hand.
  • the “with correction” graph (thick line graph) shown in FIG. 6 is a graph when correction using the above-described gain coefficient 112 is performed.
  • the ratio between the sound energy output from the upper speaker 105 and the sound energy output from the lower speaker 106 is The fluctuation of the graph in the vertical axis direction is suppressed while approaching the target value. That is, from FIG. 6, the sound field is localized near a desired position by the correction using the gain coefficient 112 of the audio playback device 10, and the change in the sound field distribution is suppressed.
  • the part where the “no correction” graph and the “correction” graph overlap is because the output sound is very small. In other words, the correction using the gain coefficient 112 is not performed. This is because, when the output sound is very small, if correction using the gain coefficient 112 is performed, an adverse effect may occur.
  • the audio reproduction device 10 According to the audio reproduction device 10 according to the first embodiment, it is possible to suppress the change in the distribution of the diffuse sound field and to localize the diffuse sound field in the vicinity of the desired position. Can reduce the sense of incongruity.
  • the gain coefficient calculation unit 103 multiplies the upper speaker signal 113 by the gain coefficient 112.
  • the purpose of the audio playback device 10 is to keep the ratio of the energy of the reproduced sound output from the upper speaker 105 and the energy of the reproduced sound output from the lower speaker 106 as constant as possible.
  • the gain coefficient calculation unit 103 calculates the gain coefficient 112 for the lower speaker signal 114, and the gain correction unit 104 corrects the lower speaker signal 114 by multiplying the lower speaker signal 114 by the calculated gain coefficient 112. Also good.
  • the gain coefficient calculation unit 103 calculates the gain coefficient 112 for both the upper speaker signal 113 and the lower speaker signal 114, and the gain correction unit 104 calculates both the upper speaker signal 113 and the lower speaker signal 114. It may be corrected.
  • the number of the upper speakers 105 and the number of the lower speakers 106 are not limited to the configurations shown in FIG. 1 and FIG.
  • a plurality of upper speakers 105 may be arranged and a plurality of lower speakers 106 may be arranged.
  • one of the sum of the signal energies of the plurality of upper speaker signals 113 and the sum of the signal energies of the plurality of lower speaker signals 114 is divided by the other.
  • at least an operation for obtaining the square root of the value after division is performed. Then, for example, the calculated gain coefficient 112 is multiplied by each of the plurality of upper speaker signals 113 (or each of the plurality of lower speaker signals 114).
  • the audio signal generation unit 101 generates the L channel signal and the R channel signal included in the stereo audio signal 110 as the lower speaker signal 114 as they are.
  • the audio signal generation unit 101 may generate a signal obtained by synthesizing the L channel signal and the R channel signal as the lower speaker signal 114. In this way, in the audio reproduction device 10, by adding the L channel signal multiplied by the coefficient and the R channel signal multiplied by the coefficient, at least one of the upper speaker signal 113 and the lower speaker signal 114 is generated. Just do it.
  • Embodiment 2 describes an audio playback device that generates a signal obtained by synthesizing an L channel signal and an R channel signal as a lower speaker signal 114.
  • FIG. 7 is a block diagram illustrating a functional configuration of the audio reproduction device according to the second embodiment.
  • an audio signal generation unit 401 and a gain coefficient calculation unit 403 are provided instead of the audio signal generation unit 101 and the gain coefficient calculation unit 103, respectively. Is different. That is, in the audio playback device 40, the operations of the audio signal generation unit 401 and the gain coefficient calculation unit 403 in the control unit 407 are different from those of the audio playback device 10.
  • the number of upper speakers 105 and lower speakers 106 used is arbitrary, but in the following description, one upper speaker 105 and two lower speakers 106 are used. .
  • the audio signal generation unit 401 generates a lower speaker signal 414 by combining (mixing) the L channel signal and the R channel signal included in the stereo audio signal 110 at a predetermined ratio. Then, the audio signal generation unit 401 outputs a lower speaker signal 414 to the lower speaker 106.
  • the signal L ′ for the new L channel speaker 106L which is the lower speaker signal 414 generated by the audio signal generation unit 401
  • the signal R ′ for the new R channel speaker 106R are calculated using the following equations. Is done.
  • b is an arbitrary constant (b> 0).
  • the audio signal generation unit 401 generates the upper speaker signal 113 based on Expression 2 and outputs it to the gain correction unit 104 as in the first embodiment.
  • the gain coefficient calculation unit 403 calculates a gain coefficient for correcting the gain of the upper speaker signal 113 based on at least the signal correlation 111 and the lower speaker signal 414.
  • the gain coefficient calculation method of the gain coefficient calculation unit 403 will be specifically described. It is assumed that the upper speaker signal 113 is generated based on Equation 2 above. In addition, it is assumed that the lower speaker signal 414 (L ′ and R ′) is generated based on Equation 8 above.
  • the total signal energy Es ′ of the lower speaker signal 414 is expressed by the following equation.
  • Equation 11 is obtained, and by transforming this, the gain coefficient ⁇ (gain coefficient 412) is calculated as in Equation 12.
  • the gain correction unit 104 corrects the upper speaker signal 113 using the gain coefficient 412 generated and output by the gain coefficient calculation unit 403. Specifically, the gain correction unit 104 multiplies the upper speaker signal 113 by the gain coefficient 412 and outputs a corrected upper speaker signal 115 obtained by the multiplication to the upper speaker 105.
  • the audio reproduction device 40 even when a signal obtained by combining the L channel signal and the R channel signal is generated as the lower speaker signal 114, an appropriate gain coefficient 412 is calculated and the sound field is calculated. Distribution change can be suppressed.
  • Embodiments 1 and 2 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. Moreover, it is also possible to combine each component demonstrated in the said Embodiment 1 and 2 into a new embodiment.
  • the listener 201 may set the value of k in Equation 7 or Equation 12 above.
  • the audio playback device further includes an input reception unit that receives the setting of the k value of the listener 201, and the gain coefficient ⁇ is changed according to the value of k received by the input reception unit. Accordingly, the listener 201 can adjust the localization position in the vertical direction of the sound field to a desired position.
  • a comprehensive or specific aspect of the technology in the present disclosure may be realized by a recording medium such as a system, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM.
  • a comprehensive or specific aspect of the technology in the present disclosure may be realized by any combination of a system, a method, an integrated circuit, a computer program, and a recording medium.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the control unit described in the above embodiment may be realized as a DSP (Digital Signal Processor) or a function of the DSP.
  • the present disclosure can be applied to an audio playback device used in a playback environment in which speakers are arranged so that fluctuations in the sound field distribution occur.
  • the present disclosure can be applied to an AV amplifier or the like.
  • Audio playback device 100 Acquisition unit 101, 401 Audio signal generation unit 102 Signal correlation calculation unit 103, 403 Gain coefficient calculation unit 104 Gain correction unit 105 Upper speaker 106, 106a, 106b, 106c, 106d Lower speaker 106L L channel speaker 106R R channel speaker 107, 407 Control unit 110 Stereo audio signal 111 Signal correlation 112, 412 Gain coefficient 113 Upper speaker signal 114, 414 Lower speaker signal 115 Corrected upper speaker signal 201, 201a, 201b Listeners 205, 301, 302 303 Sound field 206 Floor 207 Ceiling

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Abstract

 オーディオ再生装置(10)は、Lチャネル信号およびRチャネル信号を含むステレオオーディオ信号を取得する取得部(100)と、(i)取得されたLチャネル信号およびRチャネル信号を用いて、受聴空間の上方に配置されたスピーカ用の第1オーディオ信号と、受聴空間の下方に配置されたスピーカ用の第2オーディオ信号とを生成し、(ii)Lチャネル信号とRチャネル信号との相関度に応じてゲイン係数を決定し、第1オーディオ信号および第2オーディオ信号のうち少なくとも一方に対して決定したゲイン係数を乗算することにより、第1オーディオ信号の再生音のエネルギと、第2オーディオ信号の再生音のエネルギとの比率が所定の値に近づくように制御する制御部(107)とを備える。

Description

オーディオ再生装置およびオーディオ再生方法
 本開示は、オーディオ再生装置に関し、特に、オーディオ信号を視聴者の上方および下方の双方から再生することにより、拡散音場を形成するオーディオ再生装置に関する。
 特許文献1は、オーディオ装置(スピーカ装置)を開示する。このオーディオ装置は、車室内の上下方向に互いに離れた位置に取り付けられた第1スピーカおよび第2スピーカと、第1スピーカおよび第2スピーカから音を出力させる駆動制御部とを有する。駆動制御部は、第1スピーカおよび第2スピーカのうち聴取者との距離が短い方のスピーカから出力される音に所定の時間遅延を行う。
 これにより、音の拡がり感を向上させると共に、受聴者が感ずる音像の位置を上昇させることができる。
特開2005-051324号公報
 本開示は、部屋の上方および下方のそれぞれに配置されたスピーカから、ステレオオーディオ信号を用いて生成された信号の再生音を出力する場合に、拡散音場の分布の変化を抑制することができるオーディオ再生装置を提供する。
 本開示におけるオーディオ再生装置は、Lチャネル信号およびRチャネル信号を含むステレオオーディオ信号を取得する取得部と、(i)取得された前記Lチャネル信号および前記Rチャネル信号を用いて、受聴空間の上方に配置されたスピーカ用の第1オーディオ信号と、前記受聴空間の下方に配置されたスピーカ用の第2オーディオ信号とを生成し、(ii)前記Lチャネル信号と前記Rチャネル信号との相関度に応じてゲイン係数を決定し、前記第1オーディオ信号および前記第2オーディオ信号のうち少なくとも一方に対して決定したゲイン係数を乗算することにより、前記第1オーディオ信号の再生音のエネルギと、前記第2オーディオ信号の再生音のエネルギとの比率が所定の値に近づくように制御する制御部とを備え、前記制御部は、前記Lチャネル信号と前記Rチャネル信号とを合成することにより、前記第1オーディオ信号および前記第2オーディオ信号の少なくとも一方を生成する。
 本開示におけるオーディオ再生装置は、部屋の上方および下方のそれぞれに配置されたスピーカから、ステレオオーディオ信号を用いて生成された信号の再生音を出力する場合に、拡散音場の分布の変化を抑制することができる。
図1は、スピーカが上方に配置される受聴空間の構成を示す図である。 図2は、上方スピーカが用いられる受聴空間のシンプルな構成を説明するための図である。 図3は、図2に示されるような構成の受聴空間において生じる課題を説明するための図である。 図4は、実施の形態1に係るオーディオ再生装置の機能構成を示すブロック図である。 図5は、実施の形態1に係るオーディオ再生装置の動作のフローチャートである。 図6は、実施の形態1に係るオーディオ再生装置の音場分布の変化の抑制効果を説明するための図である。 図7は、実施の形態2に係るオーディオ再生装置の機能構成を示すブロック図である。
 (本開示の基礎となった知見)
 従来、スピーカ付の照明装置(照明器具)など、天井に配置することができるスピーカが知られている。このようにスピーカを天井に配置することで、部屋の上方からも音を出力させることができる。図1は、スピーカが上方に配置される受聴空間の構成を示す図である。
 図1に示される受聴空間では、受聴者201aおよび201bの周囲(受聴空間の下方)に下方スピーカ106a~106dが配置されている。そして、受聴者201aおよび201bの上方(受聴空間の上方)には、上方スピーカ105が配置されている。
 このような構成の受聴空間においては、受聴者201aおよび201bを包むような音場を形成することが可能となる。
 ここで、上方スピーカ105が用いられる受聴空間は、シンプルには、図2のように構成される。図2は、上方スピーカ105が用いられる受聴空間のシンプルな構成を説明するための図である。
 図2に示される構成の受聴空間では、部屋の天井207には上方スピーカ105が設けられる。また、部屋の床面206には、Lチャネルスピーカ106LおよびRチャネルスピーカ106Rが設けられている。
 ここで、典型的には、ステレオオーディオ信号(Lチャネル信号およびRチャネル信号)の再生音が、従来通りLチャネルスピーカ106LおよびRチャネルスピーカ106Rから出力され、Lチャネル信号とRチャネル信号とを合成した信号の再生音が上方スピーカ105から出力される構成が考えられる。これにより、受聴者201を包むような音場205を形成することが可能となる。なお、図2に示される音場205は、上方スピーカ105、Lチャネルスピーカ106L、および、Rチャネルスピーカ106Rからの再生音により形成される音場を視覚的に表現したものである。
 このような構成の受聴空間において、発明者は、以下のような課題が生じることを見出した。図3は、図2に示されるような構成の受聴空間において生じる課題を説明するための図である。
 図2に示されるような構成の受聴空間においては、再生音によって形成される音場は、図3の(a)に示される音場301のように、上方または下方に偏ることなく、所望の位置に定位することが理想的である。
 しかしながら、図2のような構成の受聴空間においては、音の再生中に音場の分布の変化が生じる。具体的には、不定期に、図3の(b)に示される音場302のように音場の分布が上方に偏ったり、図3の(c)に示される音場303のように、音場の分布が下方に偏ったりする現象が生じ、受聴者201に多大な違和感を与えてしまう。
 この現象に近い現象は、図2に示されるLチャネルスピーカ106L、Rチャネルスピーカ106R、および上方スピーカ105の全てが、受聴者201の周囲(ほぼ同じ高さ)に配置される構成においても同様に発生するものと考えられる。
 しかしながら、各スピーカが受聴者201の周囲にのみ配置される場合は、音場の分布の変化は、受聴者201の前後方向や左右方向において生じるため、受聴者201が知覚する違和感は小さい。また、このような平面的な音場の変化を積極的に利用する技術等も知られており、上方スピーカ105を用いない受聴空間においては音場の偏りは問題となりにくい。
 そこで、本開示は、部屋の上方および下方のそれぞれに配置されたスピーカからステレオオーディオ信号を用いて生成された信号の再生音を出力する場合に、受聴者201に顕著に知覚されてしまう音場の分布の変化を抑制するオーディオ再生装置を提供する。本開示のオーディオ再生装置によれば、受聴者201に対して安定した心地よい音場空間を提供することができ、その有用性は非常に高い。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。また、各図は模式図であり、必ずしも厳密に図示されたものではない。
 (実施の形態1)
 まず、実施の形態1に係るオーディオ再生装置の機能構成および動作について説明する。図4は、実施の形態1に係るオーディオ再生装置の機能構成を示すブロック図である。図5は、実施の形態1に係るオーディオ再生装置の動作のフローチャートである。
 なお、図4に示されるオーディオ再生装置10は、図2に示される受聴空間に対応する装置である。以下の説明においては、図2に示されるように受聴者201の上方(部屋の天井207)に上方スピーカ105が配置されているものとする。また、上方スピーカ105よりも下方に下方スピーカ106(Lチャネルスピーカ106LおよびRチャネルスピーカ106R)が配置されているものとする。なお、上方スピーカ105は、Lチャネルスピーカ106LおよびRチャネルスピーカ106Rよりも上方に配置されていれば、必ずしも天井207に配置される必要はない。
 図4に示されるオーディオ再生装置10は、取得部100と、制御部107(オーディオ信号生成部101、信号相関算出部102、ゲイン係数算出部103、および、ゲイン補正部104)と、上方スピーカ105と、下方スピーカ106とを備える。
 取得部100は、Lチャネル信号およびRチャネル信号を含むステレオオーディオ信号を取得する(図5のS101)。取得部100は、具体的には、音声入力端子(音声入力コネクタ)などの入力インターフェースである。
 オーディオ信号生成部101は、取得部100によって取得されたステレオオーディオ信号110を用いて、上方スピーカ信号113(第1オーディオ信号)と、下方スピーカ信号114(第2オーディオ信号)とを生成する(図5のS102)。上方スピーカ信号113は、受聴空間の上方に配置された上方スピーカ105用の信号であり、下方スピーカ信号114は、受聴空間の下方に配置された下方スピーカ106用の信号である。
 オーディオ信号生成部101は、具体的には、Lチャネル信号およびRチャネル信号を補間する信号を上方スピーカ信号113として生成する。つまり、上方スピーカ信号113は、Lチャネル信号の再生音とRチャネル信号の再生音とによって生成される音場空間における音の隙間を埋めるための信号となる。
 オーディオ信号生成部101は、Lチャネル信号とRチャネル信号とを滑らかに補間することで上方スピーカ信号113を生成する。例えば、オーディオ信号生成部101は、次式に基づいてLチャネル信号およびRチャネル信号を合成することにより上方スピーカ信号113を生成する。
Figure JPOXMLDOC01-appb-M000001
 ここで、Ceは、上方スピーカ信号113を示す。また、Lは、Lチャネル信号を示し、Rは、Rチャネル信号を示す。そして、mおよびnはそれぞれLチャネル信号およびRチャネル信号に対する寄与度を示す。なお、実施の形態1では、mおよびnについては、m+nが1となる制約が課せられる。
 なお、本明細書中における「Lチャネル信号とRチャネル信号とを合成する」は、係数(0以外の実数)が乗算されたLチャネル信号と係数(0以外の実数)が乗算されたRチャネル信号とを加算することを意味する。
 例えば、上方スピーカ信号113の再生音がLチャネルスピーカ106Lの位置とRチャネルスピーカ106Rの位置の中間位置に定位するように上方スピーカ信号113を生成する場合は、オーディオ信号生成部101は、次式に基づいて上方スピーカ信号113を生成する。
Figure JPOXMLDOC01-appb-M000002
 つまり、オーディオ信号生成部101は、正の係数が乗算されたLチャネル信号と正の係数が乗算されたRチャネル信号とを加算することによって上方スピーカ信号113を生成する。
 上記のように、オーディオ信号生成部101が上方スピーカ信号113を生成することにより、オーディオ再生装置10は、受聴者201を包み込むような立体的な音場205を生成することができる。これにより、例えば、音楽に包み込まれるような快適な音場空間を受聴者201に提供することが可能となる。
 一方、オーディオ信号生成部101は、ステレオオーディオ信号110に含まれるLチャネル信号およびRチャネル信号をそのまま下方スピーカ信号114として出力(生成)する。具体的には、オーディオ信号生成部101は、Lチャネル信号をLチャネルスピーカ106L用の下方スピーカ信号114として生成し、Rチャネル信号をRチャネルスピーカ106R用の下方スピーカ信号114として生成する。
 なお、この場合、オーディオ信号生成部101は、Lチャネル信号を、Lチャネルスピーカ106LおよびRチャネルスピーカ106Rのうちいずれか一方のスピーカ用の下方スピーカ信号114として生成し、Rチャネル信号を他方のスピーカ用の下方スピーカ信号114として生成してもよい。
 信号相関算出部102は、ステレオオーディオ信号110に含まれるLチャネル信号およびRチャネル信号間の信号相関111を算出する。そして、信号相関算出部102は、算出した信号相関111をゲイン係数算出部103に出力する。
 信号相関111の算出においては、信号相関算出部102は、相互相関関数を利用するなど、Lチャネル信号およびRチャネル信号の2つの信号の相関を示す情報を算出できるどのような方法を利用しても構わない。
 ゲイン係数算出部103は、少なくとも信号相関111および下方スピーカ信号114に基づいて、上方スピーカ信号113をゲイン補正するためのゲイン係数を算出する(図5のS103)。言い換えれば、ゲイン係数算出部103は、Lチャネル信号とRチャネル信号との相関度に応じてゲイン係数を決定する。
 以下、ゲイン係数算出部103のゲイン係数の算出方法について具体的に説明する。なお、上方スピーカ信号113は、上記の式2に基づいて生成されているものとする。また、以下ゲイン係数の算出方法の説明では、上方スピーカ信号113の信号エネルギの総和をECeと記載し、下方スピーカ信号114の信号エネルギの総和をEsと記載する。
 また、ゲイン係数αは、所定時間(例えば、50ms)ごとに算出(更新)されるものであり、以下の式における、LおよびRは、それぞれ所定時間におけるサンプル数の要素からなるベクトルで表される。この場合、各要素は、信号レベルのサンプル値となる。
 ゲイン係数αは、ECeとEsとをあらかじめ定めた比率k(任意の定数)に保つための係数である。ゲイン係数αと、k、ECe、およびEsとは、以下の式で表される関係となる。なお、kの値を変更することにより、音場の定位位置を上下させることができる。kの値は、具体的には、部屋の形状等に応じて適宜設定される。
Figure JPOXMLDOC01-appb-M000003
 ここで、ECeおよびEsはそれぞれ以下の式で算出される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 式4および式5を式3に代入すると以下の式6が得られ、これを変形することにより、ゲイン係数αは、式7のように算出される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ここで、式7において、Lの項およびRの項は、Lチャネル信号とRチャネル信号との相関度に依存しない値となるが、(L・R)の項は、Lチャネル信号とRチャネル信号と相関度によって値が変化する。つまり、ゲイン係数αは、Lチャネル信号とRチャネル信号との相関度に応じて定まるパラメータである。なお、上述のように、LおよびRは、ベクトルであり、L・Rの項はいわゆる内積である。
 このように、ゲイン係数算出部103は、式7および信号相関111に基づいてゲイン係数α(ゲイン係数112)を算出する。そして、ゲイン係数算出部103は、算出したゲイン係数112をゲイン補正部104に出力する。
 ゲイン補正部104は、ゲイン係数算出部103から出力されたゲイン係数112を用いて上方スピーカ信号113を補正する(図5のS104)。具体的には、ゲイン補正部104は、上方スピーカ信号113に対してゲイン係数112を乗算し、乗算して得られる補正された上方スピーカ信号115を上方スピーカ105に出力する。
 なお、上述のように、ゲイン係数算出部103のゲイン係数112の算出と、ゲイン補正部104の補正(ゲイン係数)とは、所定の時間ごとに行われる。言い換えれば、制御部107(ゲイン係数算出部103およびゲイン補正部104)は、ゲイン係数112を所定の時間ごとに更新して上方スピーカ信号113に乗算する。
 最後に、補正された上方スピーカ信号115と、下方スピーカ信号114とが再生される(図5のS105)。
 上方スピーカ105は、受聴者201の上方に配置されるスピーカである。上方スピーカ105は、ゲイン補正部104から出力される補正された上方スピーカ信号115を再生する。
 下方スピーカ106(Lチャネルスピーカ106LおよびRチャネルスピーカ106R)は、上方スピーカ105よりも下方に配置されるスピーカである。下方スピーカ106は、オーディオ信号生成部101から入力される下方スピーカ信号114を再生する(図5のS105)。
 以上のようなゲイン係数112を用いた補正により、音場分布の変化を抑制することができる。
 上述の式1および式2に示されるように、上方スピーカ信号113は、係数が乗算されたLチャネル信号と係数が乗算されたRチャネル信号とを加算することにより生成されている。このため、上方スピーカ105から出力される再生音のエネルギは、Lチャネル信号とRチャネル信号との相関度、つまり、(L・R)の項の大きさに応じて変動する。これに起因して、上方スピーカ105から出力される再生音のエネルギと、下方スピーカ106から出力される再生音のエネルギとの比率が変動するため、音場分布の変化が生じる。
 ここで、上方スピーカ信号113を相関度に応じたゲイン係数112で事前に補正することで、上方スピーカ105から出力される再生音のエネルギと下方スピーカ106から出力される再生音のエネルギとの比率が、所定の値になるように(所定の値に近づくように)制御され、音場分布の変化を抑制することができる。
 図6は、オーディオ再生装置10の音場分布の変化の抑制効果を説明するための図である。図6に示される図の縦軸は、上方スピーカ105から出力される音と下方スピーカ106から出力される音とのエネルギの比率のdB値であり、図6の例では、0が目標値であるものとする。図6に示される図の横軸は、時間である。
 図6に示される「補正なし」のグラフ(細線のグラフ)は、ゲイン係数112を用いた補正を行わない場合のグラフである。一方。図6に示される「補正あり」のグラフ(太線のグラフ)は、上述のゲイン係数112を用いた補正を行った場合のグラフである。
 図6のグラフでは、縦軸方向のグラフの変動が大きいほど、音場分布の変化が大きくなることを意味する。図6に示されるように、オーディオ再生装置10がゲイン係数112を用いた補正を行うことで、上方スピーカ105から出力される音のエネルギと下方スピーカ106から出力される音のエネルギとの比率は目標値に近づき、かつ、縦軸方向のグラフの変動が抑制されている。つまり、図6からオーディオ再生装置10のゲイン係数112を用いた補正により、音場が所望の位置付近に定位され、かつ、音場分布の変化が抑制されている。
 なお、「補正なし」のグラフと「補正あり」のグラフとが重なっている部分(「補正あり」のグラフが目標値から大きく外れている部分)は、出力される音が微小であるために、ゲイン係数112を用いた補正があえて行われていない部分である。出力される音が微小であるときにゲイン係数112を用いた補正を行うと悪影響が生じる場合があるからである。
 以上説明したように、実施の形態1に係るオーディオ再生装置10によれば、拡散音場の分布の変化を抑制し、かつ、拡散音場を所望の位置付近に定位させることができ、受聴者に与える違和感を軽減することができる。
 なお、上記実施の形態1では、ゲイン係数算出部103は、上方スピーカ信号113にゲイン係数112を乗算している。ここで、オーディオ再生装置10の目的は、上方スピーカ105から出力される再生音のエネルギと、下方スピーカ106から出力される再生音のエネルギとの比率をなるべく一定に保つことである。
 したがって、ゲイン係数算出部103は、下方スピーカ信号114に対するゲイン係数112を算出し、ゲイン補正部104は、算出したゲイン係数112を下方スピーカ信号114に乗算することによって下方スピーカ信号114を補正してもよい。
 また、ゲイン係数算出部103は、上方スピーカ信号113および下方スピーカ信号114の両方に対してのゲイン係数112をそれぞれ算出し、ゲイン補正部104は、上方スピーカ信号113および下方スピーカ信号114の両方を補正してもよい。
 なお、上方スピーカ105の数や、下方スピーカ106の数は、図1や、図2に示される構成に限定されるものではない。例えば、上方スピーカ105が複数配置され、かつ、下方スピーカ106が複数配置されてもよい。
 このような場合、上述のように、ゲイン係数112の算出においては、複数の上方スピーカ信号113の信号エネルギの総和、および、複数の下方スピーカ信号114の信号エネルギの総和のうち一方を他方によって除算し、かつ、除算後の値の平方根をとる演算が少なくとも行われる。そして、算出されたゲイン係数112は、例えば、複数の上方スピーカ信号113のそれぞれ(または、複数の下方スピーカ信号114のそれぞれ)に乗算される。
 なお、本明細書中における「相関度」について、以下、補足する。Lチャネル信号とRチャネル信号との相関度が高い(相関が大きい)ときは、Lチャネルスピーカの位置とRチャネルスピーカの位置との中間点に強い音像(仮想音源)が存在することを意味する。
 逆に、Lチャネル信号とRチャネル信号の相関度が低い(相関が小さい)ときは、Lチャネルスピーカの位置とRチャネルスピーカの位置との中間点に弱い音像(仮想音源)が存在する、もしくは音像が存在しないことを意味する。
 (実施の形態2)
 上記実施の形態1では、オーディオ信号生成部101は、ステレオオーディオ信号110に含まれるLチャネル信号およびRチャネル信号をそのまま下方スピーカ信号114として生成した。
 ここで、オーディオ信号生成部101は、Lチャネル信号とRチャネル信号とを合成した信号を下方スピーカ信号114として生成してもよい。このように、オーディオ再生装置10においては、係数が乗算されたLチャネル信号と係数が乗算されたRチャネル信号とを加算することにより、上方スピーカ信号113および下方スピーカ信号114の少なくとも一方が生成されればよい。
 実施の形態2では、Lチャネル信号とRチャネル信号とを合成した信号を下方スピーカ信号114として生成するオーディオ再生装置について説明する。図7は、実施の形態2に係るオーディオ再生装置の機能構成を示すブロック図である。
 図7に示されるオーディオ再生装置40は、オーディオ再生装置10と比較して、オーディオ信号生成部101およびゲイン係数算出部103に代えて、オーディオ信号生成部401およびゲイン係数算出部403をそれぞれ備える点が異なる。つまり、オーディオ再生装置40では、制御部407のうちオーディオ信号生成部401およびゲイン係数算出部403の動作がオーディオ再生装置10と異なる。
 以下、オーディオ信号生成部401およびゲイン係数算出部403の動作について詳細に説明する。なお、実施の形態1と実質的に同一である構成要素等についての詳細な説明は省略される。
 また、実施の形態1と同様に、使用する上方スピーカ105および下方スピーカ106の数は任意であるが、以下の説明では、1つの上方スピーカ105と2つの下方スピーカ106とが用いられるものとする。
 オーディオ信号生成部401は、ステレオオーディオ信号110に含まれるLチャネル信号とRチャネル信号とをあらかじめ定められた割合で合成(混合)した下方スピーカ信号414を生成する。そして、オーディオ信号生成部401は、下方スピーカ106に対して下方スピーカ信号414を出力する。
 ここで、オーディオ信号生成部401が生成する下方スピーカ信号414である新たなLチャネルスピーカ106L用の信号L’と、新たなRチャネルスピーカ106R用の信号R’とは、次式を用いて算出される。
Figure JPOXMLDOC01-appb-M000008
 ここでbは、任意の定数(b>0)である。このように、ステレオオーディオ信号110を構成する各チャネル信号に対して、対となるチャネル信号に負のゲイン(負の係数)を掛けた信号(逆相信号)を混合することによって、音場空間の広がり感を強調することができる。
 また、オーディオ信号生成部401は、上記実施の形態1と同様に、式2に基づいて上方スピーカ信号113を生成し、ゲイン補正部104に出力する。
 一方、ゲイン係数算出部403は、少なくとも信号相関111および下方スピーカ信号414に基づいて、上方スピーカ信号113をゲイン補正するためのゲイン係数を算出する。
 以下、ゲイン係数算出部403のゲイン係数の算出方法について具体的に説明する。なお、上方スピーカ信号113は、上記の式2に基づいて生成されているものとする。また、下方スピーカ信号414(L’およびR’)は、上記の式8に基づいて生成されているものとする。
 下方スピーカ信号414の信号エネルギの総和Es’は、次式で表される。
Figure JPOXMLDOC01-appb-M000009
 式4および式9を次の式10に代入することにより、式11が得られ、これを変形することによりゲイン係数α(ゲイン係数412)は、式12のように算出される。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 ゲイン補正部104は、ゲイン係数算出部403が生成および出力したゲイン係数412を用いて上方スピーカ信号113を補正する。具体的には、ゲイン補正部104は、上方スピーカ信号113に対してゲイン係数412を乗算し、乗算して得られる補正された上方スピーカ信号115を上方スピーカ105に出力する。
 以上説明したように、オーディオ再生装置40によれば、Lチャネル信号とRチャネル信号とを合成した信号が下方スピーカ信号114として生成される場合にも、適切なゲイン係数412が算出され、音場分布の変化を抑制することができる。
 (その他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1および2を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記実施の形態1および2で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 例えば、上記式7や上記式12のkの値は、受聴者201によって設定されてもよい。この場合、オーディオ再生装置は、さらに、受聴者201のkの値の設定を受け付ける入力受付部を備え、ゲイン係数αは、入力受付部が受け付けたkの値に応じて変更される。これにより、受聴者201は、音場の上下方向の定位位置を所望の位置に調整することができる。
 また、本開示における技術の包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、本開示における技術の包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 また、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。具体的には、上記実施の形態で説明した制御部は、DSP(Disital Signal Processor)や、DSPの一機能として実現されてもよい。
 (まとめ)
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、音場の分布の変動が発生するようにスピーカが配置された再生環境において利用されるオーディオ再生装置に適用可能である。具体的には、AVアンプなどに、本開示は適用可能である。
 10、40 オーディオ再生装置
 100 取得部
 101、401 オーディオ信号生成部
 102 信号相関算出部
 103、403 ゲイン係数算出部
 104 ゲイン補正部
 105 上方スピーカ
 106、106a、106b、106c、106d 下方スピーカ
 106L Lチャネルスピーカ
 106R Rチャネルスピーカ
 107、407 制御部
 110 ステレオオーディオ信号
 111 信号相関
 112、412 ゲイン係数
 113 上方スピーカ信号
 114、414 下方スピーカ信号
 115 補正された上方スピーカ信号
 201、201a、201b 受聴者
 205、301、302、303 音場
 206 床面
 207 天井

Claims (6)

  1.  Lチャネル信号およびRチャネル信号を含むステレオオーディオ信号を取得する取得部と、
     (i)取得された前記Lチャネル信号および前記Rチャネル信号を用いて、受聴空間の上方に配置されたスピーカ用の第1オーディオ信号と、前記受聴空間の下方に配置されたスピーカ用の第2オーディオ信号とを生成し、(ii)前記Lチャネル信号と前記Rチャネル信号との相関度に応じてゲイン係数を決定し、前記第1オーディオ信号および前記第2オーディオ信号のうち少なくとも一方に対して決定したゲイン係数を乗算することにより、前記第1オーディオ信号の再生音のエネルギと、前記第2オーディオ信号の再生音のエネルギとの比率が所定の値に近づくように制御する制御部とを備え、
     前記制御部は、前記Lチャネル信号と前記Rチャネル信号とを合成することにより、前記第1オーディオ信号および前記第2オーディオ信号の少なくとも一方を生成する
     オーディオ再生装置。
  2.  前記制御部は、前記第1オーディオ信号の信号エネルギの総和、および、前記第2オーディオ信号の信号エネルギの総和のうち一方を他方によって除算し、かつ、除算後の値の平方根をとる演算を少なくとも行って前記ゲイン係数を決定する
     請求項1に記載のオーディオ再生装置。
  3.  前記制御部は、前記ゲイン係数を所定の時間ごとに更新し、前記第1オーディオ信号および前記第2オーディオ信号のうち少なくとも一方に対して更新したゲイン係数を乗算する
     請求項1または2に記載のオーディオ再生装置。
  4.  前記制御部は、
     正の係数が乗算された前記Lチャネル信号と正の係数が乗算された前記Rチャネル信号とを加算する前記合成によって前記第1オーディオ信号を生成し、
     前記Lチャネル信号と前記Rチャネル信号とを2つの前記第2オーディオ信号として生成する
     請求項1~3のいずれか1項に記載のオーディオ再生装置。
  5.  前記制御部は、
     正の係数が乗算された前記Lチャネル信号と正の係数が乗算された前記Rチャネル信号とを加算する前記合成によって前記第1オーディオ信号を生成し、
     正の係数が乗算された前記Lチャネル信号と負の係数が乗算された前記Rチャネル信号とを加算する前記合成が行われた信号、および、正の係数が乗算された前記Rチャネル信号と負の係数が乗算された前記Lチャネル信号とを加算する前記合成が行われた信号を2つの前記第2オーディオ信号として生成する
     請求項1~4のいずれか1項に記載のオーディオ再生装置。
  6.  Lチャネル信号およびRチャネル信号を含むステレオオーディオ信号を取得する取得ステップと、
     取得された前記Lチャネル信号および前記Rチャネル信号を用いて、受聴空間の上方に配置されたスピーカ用の第1オーディオ信号と、前記受聴空間の下方に配置されたスピーカ用の第2オーディオ信号とを生成する生成ステップと、
     前記Lチャネル信号と前記Rチャネル信号との相関度に応じてゲイン係数を決定する決定ステップと、
     前記第1オーディオ信号および前記第2オーディオ信号のうち少なくとも一方に対して決定したゲイン係数を乗算することにより、前記第1オーディオ信号の再生音のエネルギと、前記第2オーディオ信号の再生音のエネルギとの比率が所定の値になるように制御する制御ステップとを含み、
     前記生成ステップにおいては、前記Lチャネル信号と前記Rチャネル信号とを合成することにより、前記第1オーディオ信号および前記第2オーディオ信号の少なくとも一方を生成する
     オーディオ再生方法。
PCT/JP2014/000491 2013-03-13 2014-01-30 オーディオ再生装置およびオーディオ再生方法 WO2014141577A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014513835A JP5591423B1 (ja) 2013-03-13 2014-01-30 オーディオ再生装置およびオーディオ再生方法
US14/774,126 US9497560B2 (en) 2013-03-13 2014-01-30 Audio reproducing apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-050024 2013-03-13
JP2013050024 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014141577A1 true WO2014141577A1 (ja) 2014-09-18

Family

ID=51536262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000491 WO2014141577A1 (ja) 2013-03-13 2014-01-30 オーディオ再生装置およびオーディオ再生方法

Country Status (3)

Country Link
US (1) US9497560B2 (ja)
JP (1) JP5591423B1 (ja)
WO (1) WO2014141577A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774974B2 (en) * 2014-09-24 2017-09-26 Electronics And Telecommunications Research Institute Audio metadata providing apparatus and method, and multichannel audio data playback apparatus and method to support dynamic format conversion
JP2016177204A (ja) * 2015-03-20 2016-10-06 ヤマハ株式会社 サウンドマスキング装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168265A (ja) * 2002-11-22 2004-06-17 Fujitsu Ten Ltd 車載用スピーカ装置
JP2010515290A (ja) * 2006-09-14 2010-05-06 エルジー エレクトロニクス インコーポレイティド ダイアログエンハンスメント技術のコントローラ及びユーザインタフェース
JP2011151633A (ja) * 2010-01-22 2011-08-04 Panasonic Corp マルチチャンネル音響再生装置
JP2012212982A (ja) * 2011-03-30 2012-11-01 Yamaha Corp 音像定位制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1522599A (en) 1974-11-16 1978-08-23 Dolby Laboratories Inc Centre channel derivation for stereophonic cinema sound
JPS6460200A (en) 1987-08-31 1989-03-07 Yamaha Corp Stereoscopic signal processing circuit
JP2924710B2 (ja) * 1995-04-28 1999-07-26 ヤマハ株式会社 ステレオ音場拡大装置
JP4627973B2 (ja) 2003-07-29 2011-02-09 富士通テン株式会社 スピーカ装置
ATE527833T1 (de) 2006-05-04 2011-10-15 Lg Electronics Inc Verbesserung von stereo-audiosignalen mittels neuabmischung
EP2084703B1 (en) 2006-09-29 2019-05-01 LG Electronics Inc. Apparatus for processing mix signal and method thereof
EP2084901B1 (en) 2006-10-12 2015-12-09 LG Electronics Inc. Apparatus for processing a mix signal and method thereof
CA2669091C (en) 2006-11-15 2014-07-08 Lg Electronics Inc. A method and an apparatus for decoding an audio signal
EP2102858A4 (en) 2006-12-07 2010-01-20 Lg Electronics Inc METHOD AND DEVICE FOR PROCESSING AN AUDIO SIGNAL
JP5463143B2 (ja) 2006-12-07 2014-04-09 エルジー エレクトロニクス インコーポレイティド オーディオ信号のデコーディング方法及びその装置
CN101578656A (zh) 2007-01-05 2009-11-11 Lg电子株式会社 用于处理音频信号的装置和方法
US20100121470A1 (en) 2007-02-13 2010-05-13 Lg Electronics Inc. Method and an apparatus for processing an audio signal
CN101647060A (zh) 2007-02-13 2010-02-10 Lg电子株式会社 处理音频信号的方法和装置
US8463413B2 (en) 2007-03-09 2013-06-11 Lg Electronics Inc. Method and an apparatus for processing an audio signal
KR20080082916A (ko) 2007-03-09 2008-09-12 엘지전자 주식회사 오디오 신호 처리 방법 및 이의 장치
CN103299363B (zh) 2007-06-08 2015-07-08 Lg电子株式会社 用于处理音频信号的方法和装置
EP2191462A4 (en) 2007-09-06 2010-08-18 Lg Electronics Inc METHOD AND DEVICE FOR DECODING A SOUND SIGNAL
WO2010076850A1 (ja) * 2009-01-05 2010-07-08 パナソニック株式会社 音場制御装置及び音場制御方法
JP5604275B2 (ja) 2010-12-02 2014-10-08 富士通テン株式会社 相関低減方法、音声信号変換装置および音響再生装置
JP2012120133A (ja) 2010-12-03 2012-06-21 Fujitsu Ten Ltd 相関低減方法、音声信号変換装置および音響再生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168265A (ja) * 2002-11-22 2004-06-17 Fujitsu Ten Ltd 車載用スピーカ装置
JP2010515290A (ja) * 2006-09-14 2010-05-06 エルジー エレクトロニクス インコーポレイティド ダイアログエンハンスメント技術のコントローラ及びユーザインタフェース
JP2011151633A (ja) * 2010-01-22 2011-08-04 Panasonic Corp マルチチャンネル音響再生装置
JP2012212982A (ja) * 2011-03-30 2012-11-01 Yamaha Corp 音像定位制御装置

Also Published As

Publication number Publication date
US20160044435A1 (en) 2016-02-11
JP5591423B1 (ja) 2014-09-17
JPWO2014141577A1 (ja) 2017-02-16
US9497560B2 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
US10812925B2 (en) Audio processing device and method therefor
US11102577B2 (en) Stereo virtual bass enhancement
US10362426B2 (en) Upmixing of audio signals
KR101673232B1 (ko) 수직 방향 가상 채널을 생성하는 장치 및 그 방법
US20110200195A1 (en) Systems and methods for speaker bar sound enhancement
US20150334500A1 (en) Producing a multichannel sound from stereo audio signals
JP5591423B1 (ja) オーディオ再生装置およびオーディオ再生方法
US11388538B2 (en) Signal processing device, signal processing method, and program for stabilizing localization of a sound image in a center direction
CN106688252B (zh) 音频处理装置和方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014513835

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763081

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14774126

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14763081

Country of ref document: EP

Kind code of ref document: A1