WO2014141319A1 - Stress-reducing member for living body - Google Patents

Stress-reducing member for living body Download PDF

Info

Publication number
WO2014141319A1
WO2014141319A1 PCT/JP2013/001649 JP2013001649W WO2014141319A1 WO 2014141319 A1 WO2014141319 A1 WO 2014141319A1 JP 2013001649 W JP2013001649 W JP 2013001649W WO 2014141319 A1 WO2014141319 A1 WO 2014141319A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
living body
inorganic material
particle
composite inorganic
Prior art date
Application number
PCT/JP2013/001649
Other languages
French (fr)
Japanese (ja)
Inventor
佐野 昌隆
宮松 宏樹
吉田 貴美
Original Assignee
株式会社エルブ
株式会社東洋クオリティワン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エルブ, 株式会社東洋クオリティワン filed Critical 株式会社エルブ
Priority to CN201380074481.4A priority Critical patent/CN105073189A/en
Priority to PCT/JP2013/001649 priority patent/WO2014141319A1/en
Priority to JP2015505075A priority patent/JP5920906B2/en
Publication of WO2014141319A1 publication Critical patent/WO2014141319A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light

Definitions

  • the present invention relates to a living body tension alleviating member aiming to exhibit a relaxing effect when used in contact with or close to a living body.
  • the inventors of the present application discovered a relaxing effect on a living body by a noble metal in the process of developing a composite inorganic material, and developed a member utilizing the action effect.
  • the present invention has been completed in view of the above circumstances, and a biological tension relieving member that can relieve tension in a living body using a composite inorganic material that can add further effects when platinum or the like is supported on an inorganic material. Providing is a problem to be solved.
  • the biological strain relief member that solves the above problems is characterized in that a particle material made of platinum, gold, silver, or palladium having a volume average particle diameter of 1 to 300 nm is the same as the particle material and the carbon particles.
  • a substrate made of an inorganic material such as silica, alumina, zirconium carbide, zirconium oxide, titanium carbide, tungsten carbide, silicon carbide, and / or boron carbide supported on the surface of the particles and / or different particles;
  • An adhesive layer made of colloidal silica interposed between substrates, and a composite inorganic material having A resin base material containing the composite inorganic material and / or adhering to the surface and composed of a resin; Have It is to be used in contact with or close to a living body.
  • this living body tension alleviating member will be described in detail in the embodiments described later, it becomes possible to effectively relieve tension generated in the living body (for example, human body).
  • the composite inorganic material described above is supported on the base material with the particulate material exposed, so that the action of the particulate material is effectively exhibited without being blocked by the base material. it is conceivable that.
  • the effect is surely exerted if it is brought into contact with a living body, but the effect is exerted even if it is placed close to the body (in the case of being disposed through a cloth or a film or in a case of being disposed through a slight gap). It is thought to develop. This is because there is an electromagnetic wave (far infrared rays or the like) as one of the mechanisms involved in the expression of the effect.
  • one or more of the components described in the following (2) or (4) can be adopted.
  • the component (3) can be further employed.
  • the components described in (5) or (6) can be employed.
  • the carbon particles have an average particle diameter of 100 nm or more and 3000 nm or less, are amorphous and amorphous, and are fixed to the surface of the base material by lanthanum boride. By setting the particle size of the carbon particles within this range, far infrared rays can be sufficiently emitted.
  • the inorganic material is zirconium carbide, the surface of the carbon particles is coated, and the average particle size is larger than the carbon particles, Lanthanum boride is contained in the vicinity of the site where the carbon particles and the substrate are in contact. By using lanthanum boride in combination, carbon particles can be firmly bonded to the surface of the substrate without reducing far-infrared radiation.
  • the base material is a particle having a volume average particle diameter of 2 ⁇ m or more.
  • the resin base material has a foam shape in which the composite inorganic material is held on the surface and / or dispersed therein, and is a soft foam.
  • the soft foam is a member represented by urethane foam or the like. Soft foam is used for beds, chairs, pillows, seats for vehicles such as automobiles, airplanes, trains and ships. A soft foam is a member that can be used to rest on it. The soft foam can be expected to exhibit a high effect in combination with the effect of the precious metal contained therein and the relaxation effect that the soft foam inherently has.
  • the resin base material is in the form of a fiber that holds the composite inorganic material on the surface and / or is dispersed inside, and constitutes a cloth.
  • the living body tension relieving member of the present invention can exert a high relaxing effect on the living body due to the synergistic effect of the noble metal and the ceramic.
  • the living body tension relieving member of the present invention will be described in detail based on the following embodiments.
  • the living body tension alleviation member of this embodiment has a composite inorganic material and a resin base material.
  • the living body tension relieving member of this embodiment is used in contact with or close to the living body.
  • “adjacent” includes an aspect in which a gap is used and used near the living body, and an aspect in which the living body is contacted via a space or a thin member (cloth, film, thin plate, etc.).
  • the electromagnetic wave generated from the noble metal can reach the living body even through the cloth.
  • the member has a large number of holes, such as a cloth, the generated ions and the like sufficiently reach the living body.
  • the biotension alleviation member of this embodiment can be expected to be applied to a soft foam or cloth.
  • a resin base material is molded into a foam shape to give cushioning properties.
  • the particulate material is attached to the surface of the resin substrate or dispersed inside.
  • the obtained soft foam can be used for a bed mattress, a pillow, a sofa, a chair, a cushion for a vehicle such as an automobile, an airplane, a train, and a ship, and a sound absorbing material.
  • the resin base material can be made into a fiber shape, and the particle material can be adhered to the surface of the resin base material or contained in the fiber.
  • a fabric can be obtained from the fibers.
  • a method in which the composite inorganic material is attached or spread on the surface of the fiber a method in which the composite inorganic material is attached or spread after forming a cloth can be employed in addition to the method in the fiber state.
  • it can be made into a woven fabric or a non-woven fabric.
  • the obtained cloth can be applied to clothes, bedding (duvet cover, mattress cover, pillow cover, etc.), wallpaper, carpet, chair, sofa, shoes, slippers, and car seat covers such as automobiles, airplanes, trains and ships. .
  • the composite inorganic material used for the biological tension relaxation member of this embodiment can employ
  • a carbide such as zirconium carbide (titanium carbide, tungsten carbide, silicon carbide, boron carbide, etc.) is employed, it can be suitably used for applications in which temperature is controlled such as rapid heating, heat retention, and cooling. These carbides can conduct heat energy effectively.
  • the performance of the supported particulate material can be exhibited without adversely affecting the applied target.
  • a composite inorganic material is one in which a particulate material is supported on a base material made of an inorganic material. Colloidal silica is interposed between the particulate material and the substrate. The colloidal silica interposed therebetween includes a case where part or all of the colloidal silica melts, and includes a case where the particles are partially bonded due to melting.
  • the content of colloidal silica is not particularly limited, but is preferably about 20% to 50%, more preferably about 25% to 30%, based on the total mass.
  • the base material is formed from an inorganic material, and its shape is arbitrary. For example, it can be in powder form.
  • the substrate is powdered, it is desirable to set the size so that it bares on the surface when it is attached or spread on a resin substrate described later or dispersed inside ( For example, a size greater than the film thickness).
  • a composite inorganic material is adhered to the surface of a resin substrate with a resin material (corresponding to a vehicle in terms of paint), a substrate having a particle size larger than the assumed thickness of the resin material is adopted. It becomes easy for the composite inorganic material to be bare.
  • the preferred particle diameter is sufficient if the size of the powder is the same as or larger than that of the particulate material, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. Moreover, it is preferable to set it as 0.1 micrometer or more, and it is more preferable to set it as 0.5 micrometer or more.
  • the inorganic material forming the substrate is a carbide such as zirconium carbide, titanium carbide, tungsten carbide, silicon carbide, or boron carbide, or an oxide such as silica, alumina, or zirconium oxide.
  • a carbide such as zirconium carbide is employed, it is desirable that an absorption peak exists at a wavelength of about 0.5 ⁇ m to 10 ⁇ m.
  • the particle material is formed of one or more materials selected from the group consisting of platinum, gold, silver, and palladium, and may contain other elements.
  • the volume average particle size of the particulate material is about 1 nm to 1000 nm, preferably about 10 nm to 300 nm. By making the lower limit of this range, the production is easy, and by making the upper limit, the effect can be surely exhibited. It is desirable that the particle size of the particulate material is as small as possible. In particular, it is desirable that 90% of the particles have a particle diameter of 10 nm to 300 nm on a mass basis.
  • the content of the particulate material is not particularly limited, and an appropriate amount is mixed as necessary.
  • the manufacturing method of a particulate material is not specifically limited, An example is combined and performed by description of a later manufacturing method.
  • the carbon particles are adhered to the surface of the substrate.
  • the particulate material and the carbon particles may be attached together on the same base material, or may be attached to different base materials.
  • the far-infrared action presumed to be the action of the carbon particle
  • the reduction action presumed to be the action of the particle material
  • the method for attaching the carbon particles is not particularly limited, but it is preferable to carry out the method through lanthanum boride.
  • the carbon particles are preferably not small in particle size.
  • the particle size is preferably 3000 nm or less, more preferably 300 nm or less, and particularly preferably 200 nm or less.
  • the existence ratio of the base material to the carbon particles has an appropriate value depending on the particle size and specific surface area of the base material. That is, it is desirable to have carbon particles so that the surface of the substrate can be covered without any gaps.
  • the base material is desirably larger than the particle size of the carbon particles.
  • the amount of lanthanum boride is not particularly limited, but a preferable amount depends on the specific surface area of the substrate, and is desirably an amount capable of sufficiently bonding the carbon particles to the surface of the substrate.
  • the composite inorganic material may contain catechin.
  • catechin can be attached to a portion of the surface of the base material where the particulate material is not attached, can be interposed between the particulate material and the base material, or can cover part or all of the surface of the particulate material.
  • the content of catechin is not particularly limited, but is preferably about 10% to 30%, more preferably about 15% to 20%, based on the total mass.
  • the composite inorganic material manufactured by this manufacturing method is the composite inorganic material described above.
  • the manufacturing method of the composite inorganic material of this embodiment has the carbon particle adhesion process which is a process of attaching carbon particles to the surface of a base material, and also the particle material adhesion process of attaching particle material.
  • the order of mixing the base material, the carbon particle, and the particle material, and the order of bonding are as follows. Not limited
  • the process has the process (heat-treatment process) of heat-processing a base material.
  • the heat treatment step is a step performed by heating the substrate in the presence of the carbon feed material and lanthanum boride.
  • This step is performed in a non-oxidizing atmosphere.
  • the non-oxidizing atmosphere is not particularly limited, and examples thereof include a rare gas such as argon, krypton, xenon, and helium, and the presence of a gas capable of realizing a non-oxidizing atmosphere such as nitrogen and hydrogen, or a vacuum state.
  • an inert gas such as a rare gas.
  • This step is a step that is performed in a temperature range of 1000 ° C. or more and 1200 ° C. or less. By making it into this temperature range, the properties of the produced carbon particles and lanthanum boride are excellent. Specifically, the generated carbon particles and lanthanum boride have a form excellent in far-infrared radiation as described above. What was mentioned above is employable as a base material.
  • the carbon supply material is a material that is carbonized to generate carbon particles under heating conditions of 1000 ° C. or more and 1200 ° C. or less, and is in a gas or liquid state.
  • the material be gasified under the above heating conditions.
  • hydrocarbon gases such as butane, propane, and methane
  • alcohols such as methanol and ethanol can be used.
  • the generated carbon particles have a small particle size.
  • the particle size is preferably 3000 nm or less, more preferably 300 nm or less, and particularly preferably 200 nm or less.
  • a method for reducing the particle size for example, a method of increasing the cooling rate from the maximum temperature to around 800 ° C. (50 to 100 ° C./min) can be mentioned.
  • Adhesion process process to attach particulate material to the substrate
  • the base material is directly applied to the particle material colloid-containing dispersion (when the particulate material is attached to another base material different from the base material on which the carbon particles are attached.
  • the base material on which the carbon particles are attached After mixing, disperse it in the resin substrate described later), or the product obtained in the carbon particle adhesion step (carbon particle adhesion substrate: both particle material and carbon particles are adhered to the same substrate) Is a step of adhering the particulate material colloid to the surface of the substrate.
  • the particulate material colloid is a dispersion having a particulate material, a colloid agent for colloiding the particulate material, and colloidal silica, and dispersed in some dispersion medium.
  • the dispersion medium include water and alcohol (such as ethanol).
  • it does not specifically limit as a colloid agent So-called thickener, surfactant, and the carboxy group containing compound which contains a carboxy group in a chemical structure can be illustrated.
  • colloidal agents include polyacrylic acid (including salts such as Na salt and K salt), polymethacrylic acid (including salts such as Na salt and K salt), polyacrylic acid ester, polymethacrylic acid ester, and polyvinylpyrrolidone.
  • poly-1-vinyl-2-pyrrolidone polyvinyl alcohol, aminopectin, pectin, methylcellulose, methylsulose, glutathione, cyclodextrin, polycyclodextrin, dodecanethiol, organic acids (hydroxycarboxylic acids such as citric acid) And glycerin fatty acid ester (polysorbate), cationic micelle-cetyltrimethylammonium bromide, surfactant (anionic, cationic, amphoteric, nonionic), alkali metal salt of alkyl sulfate, and mixtures thereof.
  • organic acids hydroxycarboxylic acids such as citric acid
  • glycerin fatty acid ester polysorbate
  • cationic micelle-cetyltrimethylammonium bromide surfactant (anionic, cationic, amphoteric, nonionic), alkali metal salt of alkyl sulfate, and mixtures thereof.
  • the colloidal agent is a carboxy group-containing compound
  • the content of the colloidal silica is preferably 10% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 30% by mass or less based on the whole solid content.
  • Colloidal silica has a particle size of about 1 nm to 1 ⁇ m.
  • the particle material colloid-containing dispersion is prepared by precipitating the particle material by refluxing a solution prepared by dissolving a noble metal salt and a protective agent (for example, an organic acid) in a mixed solution of water and alcohol. it can. Thereafter, the dispersion medium can be replaced with alcohol (such as ethanol).
  • the substitution method include a method of repeating the operation of adding a dispersion medium (such as alcohol) after substitution after evaporating a part of the dispersion medium before substitution.
  • the particle material colloid-containing dispersion After the particle material colloid-containing dispersion is brought into contact with the substrate, the particle material colloid is adhered to the surface of the substrate, and then the dispersion medium is removed by any method (for example, drying) to obtain the deposit. .
  • a spray drying process is a desirable method for making the form of the deposit into powder.
  • the spray drying process is a method in which a powdery form is adopted as a base material, and spray drying is performed in a state where the base material is dispersed in a dispersion containing colloidal particle material.
  • the conditions for performing spray drying are not particularly limited, but it is desirable to set the temperature so that the dispersion medium can be removed quickly. For example, when water is used as the dispersion medium, the dispersion medium can be quickly removed by evaporation when the temperature for spray drying is about 180 ° C. to 250 ° C.
  • catechin When employing the spray drying process, catechin can be contained in the particle material colloid-containing dispersion. By adding catechin, the antioxidant ability can be improved. However, since the catechin is also removed when the above heating step is performed, the heating step is not performed when catechin is added, and only the powder is formed in the spray drying step.
  • the content of catechin is not particularly limited, but can be about 10% to 20% based on the total mass. Moreover, you may carry
  • the heating step is a step of oxidizing and removing the colloidal agent by heating in an oxidizing atmosphere. At this time, it is particularly desirable that the colloidal silica is melted or softened to bond between the particulate material and the base.
  • the form of the deposit when performing the heating step is not particularly limited, and can be performed in a powder form or a lump form (for example, a plate form).
  • the composite inorganic material can be formed in a required shape by performing this heating step after finally forming into the required shape. Moreover, it can also be made into powder by adding operations, such as grind
  • the heating temperature is preferably about 800 ° C.
  • the heating time can be appropriately set according to the time required for removing the bound state and the colloidal agent by colloidal silica, and can be set to, for example, about 1 to 3 hours. Note that it is not always necessary to completely remove the colloidal agent.
  • -Resin base material It does not specifically limit except being comprised from a resin material as a resin base material. It does not specifically limit as a form of a resin base material, It shape
  • the resin material include a polymer material.
  • polyurethane, rubber material, latex (foam), polyolefin resin such as polyethylene and polypropylene, polyester resin such as polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polyamide such as nylon 6 and nylon 66 Resin, ABS resin, etc. can be employed.
  • the heating conditions were 1000 ° C. or higher and 1200 ° C. or lower.
  • the mixture was heated in a hydrogen gas atmosphere, and after reaching the set temperature, butane gas was supplied and treated for 45 minutes.
  • the supply amount of butane gas was 2% by mass or more (preferably 3% by mass or more and 4% by mass or less) with respect to zirconium carbide. Actually, since the butane gas concentration differs depending on the space of the atmosphere furnace in which these are sintered, the gas corresponding to the replacement of the hydrogen gas staying in the furnace space with the butane gas was continued.
  • the cooling rate until the temperature reaches 400 ° C. or less, which is a safe temperature at which carbon does not reignite, was set to 50 ° C./min or more.
  • an air cooling method was adopted.
  • the cooling method may be other than the air cooling method as long as it can be rapidly cooled to a safe temperature.
  • the particle diameter of the carbon particles to be generated was changed by changing the conditions.
  • the condition for reducing the particle size of the carbon particles is to increase the cooling rate of 1200 ° C. to 800 ° C. (for example, 50 to 100 ° C./min).
  • the spray drying process was performed on the deposit using a spray dryer.
  • the spray drying was performed by spraying the deposits in a tank having a temperature of about 180 ° C. to 250 ° C.
  • the obtained powder was recovered, then placed in a ceramic container (sheath) and heated in an electric furnace at about 900 to 1000 ° C. for 1 hour (heating step).
  • citric acid as a colloid agent is oxidized and volatilized, and platinum nanoparticles having a volume average particle diameter of about 5 nm are fixed on a silica surface of about 10 ⁇ m, and a fine powdery composite with water resistance.
  • An inorganic material (Test Sample 1) was obtained.
  • Test sample 1 was kneaded into PET fibers (Example 1) and nylon fibers (Example 2) to prepare fibers of the examples.
  • the PET fiber was 150d. In kneading, fibers that were not different from those not kneaded were obtained.
  • the content of the test sample was 7.5 parts by mass with respect to 100 parts by mass of the fiber. Platinum as a noble metal will contain 22.6 micrograms per 1g of mass of the obtained fiber.
  • a mattress cover was manufactured by weaving this fiber into a cloth.
  • a mattress cover of the same shape was manufactured from PET fiber and nylon fiber not containing a test sample.
  • Test 1 Measurement of antioxidant capacity
  • a part (200 mg) of the mattress covers of the examples and comparative examples was cut out and immersed in 12 mL of pure water. Thereafter, 4 mL of an ethanol solution of 0.125 mmol / L DPPH (1,1-diphenyl-2-picrylhydrazyl: manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred, and left in the dark for 1 hour.
  • the main peak (515 nm) of DPPH was measured.
  • the antioxidant ability of the mattress covers of Examples and Comparative Examples can be measured from the change in the peak size derived from DPPH. If there is an antioxidant ability, the concentration of DPPH (size of peak at 515 nm) becomes small. It shows a value converted into the amount of ascorbic acid from a calibration curve in which the magnitude of the decrease in DPPH peak was measured and calculated in advance.
  • the mattress cover of the comparative example was 0.288 ppm, and when this value was 100, the mattress cover of Example 1 (PET fiber) was 1.578 ppm and 548.
  • the mattress cover of the comparative example was 641 at 1.845 ppm, and the mattress cover of Example 2 (nylon fiber) was 1427 at 4.106 ppm.
  • test sample 2 was attached to the surface of a soft urethane foam as a soft foam.
  • the amount of test sample 2 attached was 80 g / m 2 in a wet state.
  • the mattress before attachment was used as it was for a comparative example (comparative example).
  • Infrared emissivity was measured for the mattresses of Examples and Comparative Examples (based on JIS R 1801). Specifically, the black body and the sample were set to the same temperature (140 ° C.), and each infrared ray (average value of wavelengths 4 to 8 ⁇ m) emitted therefrom was measured by FT-IR. (An ideal black body is an ideal radiator that emits 100% of all wavelengths. Since it does not actually exist, the one close to the ideal black body was used.) The amount of far-infrared emitted from the sample with respect to the amount of far-infrared was calculated and used as the far-infrared emissivity.
  • the Far-Infrared Association has established a standard for far-infrared processing that there is a far-infrared emissivity difference of 5% or more in the entire wavelength range and 10% or more in the specific wavelength range compared to the unprocessed product. As a result, it was 94% for the mattress of the example and 62% for the mattress of the comparative example. That is, it was found that the mattress of this example can exhibit the antioxidant ability and emit infrared rays.
  • chromogranin A CgA
  • POMS saliva and subjective emotion evaluation
  • VAS visual analog scale
  • POMS measures mood by six factors: tension, depression, anger, vitality, fatigue, and confusion, and can also evaluate total mood disorders (TMD).
  • TMD total mood disorders
  • VAS is a visual analog scale of stress that is evaluated by quantifying the position of the line by attaching a line to the position corresponding to the current state on the 10 cm line segment from “I don't feel at all” to “I feel very much”. How to do it.
  • the statistical analysis confirms that there is no difference between the conditions before and after the calculation task, and then sets the baseline after the calculation task, and shows the difference in changes after rest compared to the baseline for each evaluation index.
  • Non-parametric methods were used between mattresses.
  • VAS change The results of statistical analysis are shown in FIG. In FIG. 1, the result of the mattress of the example is described as platinum (or platinum), and the result of the mattress of the comparative example is described as normal (or normal) (the same applies to FIGS. 2 and 3 below). . There was no statistically significant difference between each mattress. However, it is assumed that the overall impression from the average value may affect the mood improvement direction of the mattress of the embodiment.
  • POMS change The results of statistical analysis are shown in FIG. Regarding the POMS score, a tendency to suppress an increase in the fatigue score was observed when taking a break with the mattress of the example.
  • the increase in the fatigue level of the mattress of the comparative example is considered to be fatigue due to the button press reaction task, and it is considered that the mattress of the example can reduce this fatigue.
  • CgA The rate of change of CgA concentration in saliva is shown in FIG. From FIG. 3, the rate of change of the mattress of the example was significantly lower than that of the mattress of the comparative example. That is, the person who took a break with the mattress of the example had the effect of lowering the degree of stress compared with the mattress of the comparative example.
  • the breaks in the mattresses of the examples tend to suppress fatigue due to the execution of mental loads such as calculation tasks and button press tasks compared to the breaks in the mattresses of the comparative examples, and biochemical stress markers It was confirmed that the increase in chromogranin A, which is the above, was suppressed, and it was suggested that there was a stress reduction effect.
  • the living body tension relieving member of the present invention can exert a high relaxing effect on the living body due to the synergistic effect of the noble metal and the ceramic.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

The present invention addresses the problem of providing a stress-reducing member for a living body, said stress-reducing member being capable of relieving a living body from stress or the like. This stress-reducing member comprises: a composite inorganic material which comprises both a zirconium carbide substrate that carries a platinum particulate material on the surface and a colloidal silica adhesive layer interposed between the particulate material and the substrate; and a resin base material. The composite inorganic material is contained in the resin base material or adheres to the surface of the resin base material. The stress-reducing member is used either in contact with or near to a living body. As described in Example in detail, the stress-reducing member can effectively reduce the stress occurring in a living body (such as a human body). Although the stress reduction mechanism of the member is not clear, it is thought that the particulate material in the composite inorganic material can act effectively without being interfered by the substrate, because the particulate material is carried on the substrate in an exposed state.

Description

生体緊張緩和部材Biological strain relief member
 本発明は、生体に接触乃至近接して用いたときにリラックス効果を発現することを目指した生体緊張緩和部材に関する。 The present invention relates to a living body tension alleviating member aiming to exhibit a relaxing effect when used in contact with or close to a living body.
 近年、種々のアプローチから新たな機能をもった材料が開発されている。その中でも、プラチナなどの貴金属から形成される微粒子は触媒的な作用を発揮することが知られている。本願発明者らはこのような貴金属の効果を充分に発揮できる材料(複合無機材料)の開発に成功している(特許文献1)。 In recent years, materials with new functions have been developed from various approaches. Among them, fine particles formed from noble metals such as platinum are known to exert a catalytic action. The inventors of the present application have succeeded in developing a material (composite inorganic material) that can sufficiently exhibit the effect of such a noble metal (Patent Document 1).
再表2009/125847公報Reissue 2009/125847
 本願発明者らは複合無機材料の開発の過程において貴金属による生体へのリラックス効果を発見し、その作用効果を利用した部材の開発を行った。
 本発明は上記実情に鑑み完成されたものであり、プラチナなどを無機材料に担持させる際に更なる効果を追加できる複合無機材料を利用し生体における緊張などをほぐすことができる生体緊張緩和部材を提供することを解決すべき課題とする。
The inventors of the present application discovered a relaxing effect on a living body by a noble metal in the process of developing a composite inorganic material, and developed a member utilizing the action effect.
The present invention has been completed in view of the above circumstances, and a biological tension relieving member that can relieve tension in a living body using a composite inorganic material that can add further effects when platinum or the like is supported on an inorganic material. Providing is a problem to be solved.
(1)上記課題を解決する生体緊張緩和部材の特徴は、体積平均粒径が1~300nmの白金、金、銀、又はパラジウムからなる粒子材料と、前記粒子材料及びカーボン粒子を、それぞれ同一の粒子及び/又は異なる粒子の表面に担持するシリカ、アルミナ、炭化ジルコニウム、酸化ジルコニウム、炭化チタン、炭化タングステン、炭化ケイ素、及び/又は炭化ホウ素である無機材料からなる基材と、前記粒子材料及び前記基材の間に介設されるコロイダルシリカからなる接着層と、を有する複合無機材料と、
 前記複合無機材料を含有するか及び/又は表面に付着するかしており樹脂から構成される樹脂基材と、
 を有し、
 生体に接触乃至近設して用いられることにある。
(1) The biological strain relief member that solves the above problems is characterized in that a particle material made of platinum, gold, silver, or palladium having a volume average particle diameter of 1 to 300 nm is the same as the particle material and the carbon particles. A substrate made of an inorganic material such as silica, alumina, zirconium carbide, zirconium oxide, titanium carbide, tungsten carbide, silicon carbide, and / or boron carbide supported on the surface of the particles and / or different particles; An adhesive layer made of colloidal silica interposed between substrates, and a composite inorganic material having
A resin base material containing the composite inorganic material and / or adhering to the surface and composed of a resin;
Have
It is to be used in contact with or close to a living body.
 この生体緊張緩和部材は後述する実施例にて詳説するが生体(例えば人体)に生じた緊張などを効果的に緩和することが可能になる。その機構は明確では無いが、上述の複合無機材料は粒子材料を露出した状態で基材上に担持しているため、粒子材料の作用が基材によって遮られること無く効果的に発揮されるものと考えられる。なお、生体に接触させれば確実に効果を発揮するが、近設(布、フィルムを介して配設される場合や、少し間隙を介して配設される場合など)されていても効果を発現すると考えられる。効果の発現に関与する機構の1つとして電磁波(遠赤外線など)があるからである。 Although this living body tension alleviating member will be described in detail in the embodiments described later, it becomes possible to effectively relieve tension generated in the living body (for example, human body). Although the mechanism is not clear, the composite inorganic material described above is supported on the base material with the particulate material exposed, so that the action of the particulate material is effectively exhibited without being blocked by the base material. it is conceivable that. In addition, the effect is surely exerted if it is brought into contact with a living body, but the effect is exerted even if it is placed close to the body (in the case of being disposed through a cloth or a film or in a case of being disposed through a slight gap). It is thought to develop. This is because there is an electromagnetic wave (far infrared rays or the like) as one of the mechanisms involved in the expression of the effect.
 上記(1)の構成を採用する場合、以下の(2)又は(4)に記載の構成要素のうちの1以上を採用することができる。(2)の構成要素を採用する場合には(3)の構成要素を更に採用することができる。そして(1)~(4)の構成を採用する場合には(5)又は(6)記載の構成要素を採用することができる。 When adopting the configuration of (1) above, one or more of the components described in the following (2) or (4) can be adopted. When the component (2) is employed, the component (3) can be further employed. When the configurations (1) to (4) are employed, the components described in (5) or (6) can be employed.
(2)前記カーボン粒子は100nm以上、3000nm以下の平均粒径をもち、不定形且つ非晶質であり、ホウ化ランタンにより前記基材の表面に固定されたものである。カーボン粒子の粒径をこの範囲にすることにより遠赤外線を充分に放射することができる。 (2) The carbon particles have an average particle diameter of 100 nm or more and 3000 nm or less, are amorphous and amorphous, and are fixed to the surface of the base material by lanthanum boride. By setting the particle size of the carbon particles within this range, far infrared rays can be sufficiently emitted.
(3)前記無機材料は炭化ジルコニウムであり、前記カーボン粒子に表面が被覆され且つ前記カーボン粒子より平均粒径が大きく、
 前記カーボン粒子及び前記基材が接する部位近傍にホウ化ランタンを含有する。
 ホウ化ランタンを併用することにより、遠赤外線の放射光かを低減させることなくカーボン粒子を基材の表面に強固に結合できる。
(3) The inorganic material is zirconium carbide, the surface of the carbon particles is coated, and the average particle size is larger than the carbon particles,
Lanthanum boride is contained in the vicinity of the site where the carbon particles and the substrate are in contact.
By using lanthanum boride in combination, carbon particles can be firmly bonded to the surface of the substrate without reducing far-infrared radiation.
(4)前記基材は体積平均粒径が2μm以上の粒子である。基材として、上述したような微粒子状のものを採用することにより、微粒子状の基材上に粒子材料が均一に分散した複合無機材料を得ることができる。複合無機材料は粒子材料を基材上に担持しているため、担持された粒子材料は凝集などすることがなくなると共に、微粒子状にすることにより、他の材料に混合したり、付着させたりすることが容易になる。 (4) The base material is a particle having a volume average particle diameter of 2 μm or more. By adopting the fine particles as described above as the substrate, a composite inorganic material in which the particle material is uniformly dispersed on the fine particle substrate can be obtained. Since the composite inorganic material supports the particle material on the base material, the supported particle material does not agglomerate or the like, and is mixed or adhered to other materials by making it into fine particles. It becomes easy.
(5)前記樹脂基材は前記複合無機材料を表面にもつか、及び/又は、内部に分散するフォーム状で有り、軟質発泡体である。複合無機材料を表面にもたせるためには表面に添着乃至展着させることが望ましい。軟質発泡体はウレタンフォームなどにて代表される部材である。軟質発泡体はベッド、椅子、枕、自動車・飛行機・電車・船舶など乗り物のシートなどに利用される。軟質発泡体はその上に乗って休息するために使用できる部材である。軟質発泡体は、含有する貴金属の効果と自身が本来的に有するリラックス効果とが相俟って高い効果が発現できることが期待できる。 (5) The resin base material has a foam shape in which the composite inorganic material is held on the surface and / or dispersed therein, and is a soft foam. In order to give the composite inorganic material to the surface, it is desirable to attach or spread on the surface. The soft foam is a member represented by urethane foam or the like. Soft foam is used for beds, chairs, pillows, seats for vehicles such as automobiles, airplanes, trains and ships. A soft foam is a member that can be used to rest on it. The soft foam can be expected to exhibit a high effect in combination with the effect of the precious metal contained therein and the relaxation effect that the soft foam inherently has.
(6)前記樹脂基材は前記複合無機材料を表面にもつか、及び/又は、内部に分散する繊維状で有り、布を構成する。複合無機材料を表面にもたせるためには表面に添着乃至展着させることが望ましい。生体に接触乃至近接して用いられる布としては、被服や、寝具、椅子(背もたれやクッションなど)、カーペット、壁紙などへの応用が考えられる。これらのように日常的に存在する部材に用いることで常にリラックス効果が発現することが期待できる。 (6) The resin base material is in the form of a fiber that holds the composite inorganic material on the surface and / or is dispersed inside, and constitutes a cloth. In order to give the composite inorganic material to the surface, it is desirable to attach or spread on the surface. As the cloth used in contact with or in close proximity to a living body, application to clothing, bedding, chairs (backrest, cushion, etc.), carpet, wallpaper, etc. can be considered. It can be expected that a relaxing effect is always exhibited by using such a member that exists on a daily basis.
 本発明の生体緊張緩和部材は貴金属とセラミックスとの相乗効果により生体に対して高いリラックス効果を発揮することができる。 The living body tension relieving member of the present invention can exert a high relaxing effect on the living body due to the synergistic effect of the noble metal and the ceramic.
実施例におけるマットレスの生体(人体)への影響(VAS変化量平均値)について検討したグラフである。It is the graph which examined the influence (VAS variation | change_quantity average value) on the biological body (human body) of the mattress in an Example. 実施例におけるマットレスの生体(人体)への影響(POMS疲労スコア変化量平均値)について検討したグラフである。It is the graph which examined about the influence (POMS fatigue score variation | change_quantity average value) on the biological body (human body) of the mattress in an Example. 実施例におけるマットレスの生体(人体)への影響(クロモグラニンA変化率平均値)について検討したグラフである。It is the graph which examined about the influence (chromogranin A change rate average value) to the biological body (human body) of the mattress in an Example.
(生体緊張緩和部材)
 本発明の生体緊張緩和部材について以下の実施形態に基づき詳細に説明する。本実施形態の生体緊張緩和部材は複合無機材料と樹脂基材とを有する。本実施形態の生体緊張緩和部材は生体に接触するか、近接するかして用いられる。ここで、「近接する」とは、隙間を開けて生体の近くで使用する態様や、間に空間、薄い部材(布、フィルム、薄板など)を介して生体に接触する態様などが挙げられる。布などを介しても貴金属から発生する電磁波は充分に生体に到達する。また、布のように多数の孔を有する部材であれば生成するイオンなども充分に生体に到達する。
(Biological strain relief member)
The living body tension relieving member of the present invention will be described in detail based on the following embodiments. The living body tension alleviation member of this embodiment has a composite inorganic material and a resin base material. The living body tension relieving member of this embodiment is used in contact with or close to the living body. Here, “adjacent” includes an aspect in which a gap is used and used near the living body, and an aspect in which the living body is contacted via a space or a thin member (cloth, film, thin plate, etc.). The electromagnetic wave generated from the noble metal can reach the living body even through the cloth. In addition, if the member has a large number of holes, such as a cloth, the generated ions and the like sufficiently reach the living body.
 本実施形態の生体緊張緩和部材は軟質発泡体や布などへの応用が期待できる。軟質発泡体に応用するためには樹脂基材をフォーム状に成型し、クッション性を付与する。粒子材料はその樹脂基材の表面に付着させるか、内部に分散させる。得られた軟質発泡体はベッドのマットレスに用いたり、枕、ソファー、椅子、自動車・飛行機・電車・船舶など乗り物のシートなどのクッションや、吸音材に用いたりすることができる。 The biotension alleviation member of this embodiment can be expected to be applied to a soft foam or cloth. In order to apply to a soft foam, a resin base material is molded into a foam shape to give cushioning properties. The particulate material is attached to the surface of the resin substrate or dispersed inside. The obtained soft foam can be used for a bed mattress, a pillow, a sofa, a chair, a cushion for a vehicle such as an automobile, an airplane, a train, and a ship, and a sound absorbing material.
 布に応用するためには樹脂基材を繊維状にしてその樹脂基材の表面に粒子材料を付着させたり、繊維の内部に含有させたりすることができる。その繊維から布を得ることができる。繊維の表面に複合無機材料を添着乃至展着するときには繊維の状態で行う方法の他に、布を形成してから複合無機材料を添着乃至展着させる方法も採用できる。繊維から布にするには織物にしたり、不織布にしたりすることができる。得られた布は被服、寝具(布団カバー、マットレスカバー、枕カバーなど)、壁紙、絨毯、椅子、ソファー、靴、スリッパ、自動車・飛行機・電車・船舶など乗り物のシートの表布などに応用できる。 In order to apply to cloth, the resin base material can be made into a fiber shape, and the particle material can be adhered to the surface of the resin base material or contained in the fiber. A fabric can be obtained from the fibers. In addition to the method in which the composite inorganic material is attached or spread on the surface of the fiber, a method in which the composite inorganic material is attached or spread after forming a cloth can be employed in addition to the method in the fiber state. In order to make a cloth from a fiber, it can be made into a woven fabric or a non-woven fabric. The obtained cloth can be applied to clothes, bedding (duvet cover, mattress cover, pillow cover, etc.), wallpaper, carpet, chair, sofa, shoes, slippers, and car seat covers such as automobiles, airplanes, trains and ships. .
・複合無機材料及びその製造方法
 本実施形態の生体緊張緩和部材に用いる複合無機材料は基材としてシリカ、アルミナが採用できる。これらの無機材料は物理的安定性に優れている。また、炭化ジルコニウムなどの炭化物(炭化チタン、炭化タングステン、炭化ケイ素、炭化ホウ素など)を採用すると、速やかな加熱や保温、冷却など温度を制御する用途に好適に用いることができる。これら炭化物は熱エネルギーを効果的に伝導させることが可能である。
-Composite inorganic material and its manufacturing method The composite inorganic material used for the biological tension relaxation member of this embodiment can employ | adopt a silica and an alumina as a base material. These inorganic materials are excellent in physical stability. Further, when a carbide such as zirconium carbide (titanium carbide, tungsten carbide, silicon carbide, boron carbide, etc.) is employed, it can be suitably used for applications in which temperature is controlled such as rapid heating, heat retention, and cooling. These carbides can conduct heat energy effectively.
 また、基材として酸化ジルコニウムを採用することで適用した対象に悪影響を与えること無く担持した粒子材料の性能を発現させることができる。 Also, by adopting zirconium oxide as the base material, the performance of the supported particulate material can be exhibited without adversely affecting the applied target.
 それらの無機材料からなる基材は担持されている粒子材料の効果により種々の作用が発現(空気中や接触する物に含まれる水分に作用してイオン化したり、接触する物に対して作用(臭いなどを分解)したりする)する。 Various base materials made of these inorganic materials develop various effects due to the effect of the supported particle material (acting on the moisture in the air or in contact with the water or acting on the contact material ( Odor etc.).
 また、複合無機材料は粉末状とすることにより、繊維や樹脂に練り込み安くなり、また、樹脂基材の表面に添着乃至展着しやすくなる。
 複合無機材料は無機材料からなる基材に粒子材料が担持されているものである。粒子材料と基材との間にはコロイダルシリカが介設されている。間に介設されたコロイダルシリカは一部乃至全部が融解する場合を含み、粒子間が融解などにより一部、接着している場合を含む。コロイダルシリカの含有量は特に限定されないが、全体の質量を基準として、20%~50%程度とすることが望ましく、25%~30%程度とすることが更に望ましい。この範囲の下限を採用することにより粒子材料と基材との間の接合を行うことができ、またこの範囲の上限を採用することにより粒子材料の添加量を充分にすることができる。
In addition, when the composite inorganic material is powdered, it can be kneaded into a fiber or a resin, and can be easily attached or spread on the surface of the resin base material.
A composite inorganic material is one in which a particulate material is supported on a base material made of an inorganic material. Colloidal silica is interposed between the particulate material and the substrate. The colloidal silica interposed therebetween includes a case where part or all of the colloidal silica melts, and includes a case where the particles are partially bonded due to melting. The content of colloidal silica is not particularly limited, but is preferably about 20% to 50%, more preferably about 25% to 30%, based on the total mass. By adopting the lower limit of this range, the particle material and the base material can be joined, and by adopting the upper limit of this range, the amount of addition of the particulate material can be made sufficient.
 基材は無機材料から形成されており、その形状は任意である。例えば、粉末状とすることができる。基材を粉末状とした場合であって、後述する樹脂基材に添着乃至展着させた場合や内部に分散させた場合に、表面に裸出するような大きさに設定することが望ましい(例えば膜厚以上の大きさ)。複合無機材料を樹脂材料(塗料でいうところのビヒクルに相当)にて樹脂基材の表面に付着させる場合には想定される樹脂材料の厚みよりも大きな粒径をもつ基材を採用することにより複合無機材料が裸出することが容易になる。具体的に好ましい粒径としては、粉末の大きさは粒子材料と同じかそれ以上の大きさであれば十分であり、好ましくは10μm以下であり、より好ましくは5μm以下である。また、0.1μm以上とすることが好ましく、0.5μm以上とすることがより好ましい。 The base material is formed from an inorganic material, and its shape is arbitrary. For example, it can be in powder form. When the substrate is powdered, it is desirable to set the size so that it bares on the surface when it is attached or spread on a resin substrate described later or dispersed inside ( For example, a size greater than the film thickness). When a composite inorganic material is adhered to the surface of a resin substrate with a resin material (corresponding to a vehicle in terms of paint), a substrate having a particle size larger than the assumed thickness of the resin material is adopted. It becomes easy for the composite inorganic material to be bare. Specifically, the preferred particle diameter is sufficient if the size of the powder is the same as or larger than that of the particulate material, preferably 10 μm or less, more preferably 5 μm or less. Moreover, it is preferable to set it as 0.1 micrometer or more, and it is more preferable to set it as 0.5 micrometer or more.
 粉末状であっても多孔質体とすることもできる。そして、基材の形状としてはその他の形状とすることもできる。例えば、ハニカム形状、ボール状、板状などが挙げられる。基材として内部を貫通する孔をもつ多孔質体にすることにより、内部を気体や液体が通過可能にできる。 Even if it is powdery, it can be made porous. And as a shape of a base material, it can also be set as another shape. Examples thereof include a honeycomb shape, a ball shape, and a plate shape. By making a porous body having pores penetrating the inside as a base material, gas or liquid can pass through the inside.
 基材を形成する無機材料としては、炭化ジルコニウム、炭化チタン、炭化タングステン、炭化ケイ素、炭化ホウ素などの炭化物か、シリカ、アルミナ、酸化ジルコニウムなどの酸化物である。炭化ジルコニウムなどの炭化物を採用するときには波長0.5μm~10μm程度にて吸収ピークが存在することが望ましい。 The inorganic material forming the substrate is a carbide such as zirconium carbide, titanium carbide, tungsten carbide, silicon carbide, or boron carbide, or an oxide such as silica, alumina, or zirconium oxide. When a carbide such as zirconium carbide is employed, it is desirable that an absorption peak exists at a wavelength of about 0.5 μm to 10 μm.
 粒子材料は白金、金、銀、及びパラジウムからなる群から選択される1種以上の材料から形成されており、その他の元素を含有することもできる。粒子材料の体積平均粒径は1nm~1000nm程度であり、好ましくは10nm~300nm程度である。この範囲の下限にすることにより製造が容易であり、上限にすることにより確実に効果を発現できる。粒子材料の粒径は可能な限り小さい方が望ましい。そして、特に質量基準で90%の粒子の粒径が10nm~300nmに入るものであることが望ましい。粒子材料の含有量は特に限定されず、必要に応じて適正な量だけ混合される。粒子材料の製造方法は特に限定されないが、一例を後の製造方法の説明にて併せて行う。 The particle material is formed of one or more materials selected from the group consisting of platinum, gold, silver, and palladium, and may contain other elements. The volume average particle size of the particulate material is about 1 nm to 1000 nm, preferably about 10 nm to 300 nm. By making the lower limit of this range, the production is easy, and by making the upper limit, the effect can be surely exhibited. It is desirable that the particle size of the particulate material is as small as possible. In particular, it is desirable that 90% of the particles have a particle diameter of 10 nm to 300 nm on a mass basis. The content of the particulate material is not particularly limited, and an appropriate amount is mixed as necessary. Although the manufacturing method of a particulate material is not specifically limited, An example is combined and performed by description of a later manufacturing method.
 基材にはカーボン粒子を表面に付着させる。ここで、粒子材料とカーボン粒子とは同一の基材の粒子上に合わせて付着させても良いし、異なる基材に付着させても良い。粒子材料とカーボン粒子とは異なる基材に付着させる方が遠赤外線作用(カーボン粒子の作用と推測される)と、還元作用(粒子材料の作用と推測される)とが充分に発揮されるため望ましい。カーボン粒子の付着法は特に限定しないがホウ化ランタンを介して行うことが望ましい。カーボン粒子としては粒径が小さくないことが望ましい。例えば、粒径が3000nm以下、更には300nm以下、特に200nm以下とすることが望ましい。 The carbon particles are adhered to the surface of the substrate. Here, the particulate material and the carbon particles may be attached together on the same base material, or may be attached to different base materials. When the particle material and the carbon particle are attached to different substrates, the far-infrared action (presumed to be the action of the carbon particle) and the reduction action (presumed to be the action of the particle material) are sufficiently exhibited. desirable. The method for attaching the carbon particles is not particularly limited, but it is preferable to carry out the method through lanthanum boride. The carbon particles are preferably not small in particle size. For example, the particle size is preferably 3000 nm or less, more preferably 300 nm or less, and particularly preferably 200 nm or less.
 基材とカーボン粒子との存在比は基材の粒径や比表面積により適正値が存在する。すなわち、基材の表面を隙間なく覆うことができるようにカーボン粒子をもつことが望ましい。基材はカーボン粒子の粒径よりも大きいことが望ましい。 The existence ratio of the base material to the carbon particles has an appropriate value depending on the particle size and specific surface area of the base material. That is, it is desirable to have carbon particles so that the surface of the substrate can be covered without any gaps. The base material is desirably larger than the particle size of the carbon particles.
 ホウ化ランタンの量は特に限定しないが、好ましい量としては基材の比表面積に依存し、基材の表面にカーボン粒子を充分に結合させることが可能な量にすることが望ましい。
 複合無機材料はその他にもカテキンを含有することができる。例えば、基材表面における粒子材料が付着していない部分に付着させたり、粒子材料と基材との間に介設したり、粒子材料の表面の一部乃至全部を被覆したりすることができる。カテキンの含有量も特に限定しないが、全体の質量を基準として、10%~30%程度とすることが望ましく、15%~20%程度とすることがより望ましい。
The amount of lanthanum boride is not particularly limited, but a preferable amount depends on the specific surface area of the substrate, and is desirably an amount capable of sufficiently bonding the carbon particles to the surface of the substrate.
In addition, the composite inorganic material may contain catechin. For example, it can be attached to a portion of the surface of the base material where the particulate material is not attached, can be interposed between the particulate material and the base material, or can cover part or all of the surface of the particulate material. . The content of catechin is not particularly limited, but is preferably about 10% to 30%, more preferably about 15% to 20%, based on the total mass.
(複合無機材料の製造方法)
 この製造方法にて製造される複合無機材料は前述した複合無機材料である。本実施形態の複合無機材料の製造方法は、基材の表面にカーボン粒子を付着させる工程であるカーボン粒子付着工程、さらに粒子材料を付着させる粒子材料付着工程とを有する。ここで、粒子材料とカーボン粒子とを同一の基材に付着させる場合にはこの2つの工程を両方共に行うが、基材、カーボン粒子、及び、粒子材料を混合する順序、結合させる順序については特に限定しない
(Production method of composite inorganic material)
The composite inorganic material manufactured by this manufacturing method is the composite inorganic material described above. The manufacturing method of the composite inorganic material of this embodiment has the carbon particle adhesion process which is a process of attaching carbon particles to the surface of a base material, and also the particle material adhesion process of attaching particle material. Here, when attaching the particle material and the carbon particle to the same base material, both of these two steps are performed. However, the order of mixing the base material, the carbon particle, and the particle material, and the order of bonding are as follows. Not limited
・カーボン粒子付着工程
 本工程は、基材を加熱処理する工程(加熱処理工程)を有する。
 加熱処理工程は、カーボン供給材料及びホウ化ランタンの存在下、基材を加熱することで行う工程である。本工程は非酸化雰囲気下で行う。非酸化雰囲気としては特に限定しないが、アルゴン、クリプトン、キセノン、ヘリウムなどの希ガスや、その他、窒素、水素などの非酸化性の雰囲気が実現できるガスの存在下、又は真空状態が挙げられる。特に、希ガスなどの非活性ガスの存在下とすることが望ましい。希ガスの中でもアルゴン、クリプトン及びキセノンからなる群から選択される1以上のガス乃至混合ガスを選択することで製造される物の遠赤外線の放射能力が向上する。
-Carbon particle adhesion process This process has the process (heat-treatment process) of heat-processing a base material.
The heat treatment step is a step performed by heating the substrate in the presence of the carbon feed material and lanthanum boride. This step is performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere is not particularly limited, and examples thereof include a rare gas such as argon, krypton, xenon, and helium, and the presence of a gas capable of realizing a non-oxidizing atmosphere such as nitrogen and hydrogen, or a vacuum state. In particular, it is desirable to be in the presence of an inert gas such as a rare gas. By selecting at least one gas or mixed gas selected from the group consisting of argon, krypton and xenon among the rare gases, the far infrared radiation ability of the manufactured product is improved.
 本工程は1000℃以上1200℃以下の温度範囲にて処理される工程である。この温度範囲にすることで、生成するカーボン粒子及びホウ化ランタンの性状が優れたものになる。具体的には生成するカーボン粒子及びホウ化ランタンが前述したような遠赤外線放射に優れた形態になる。基材としては前述したものが採用できる。 This step is a step that is performed in a temperature range of 1000 ° C. or more and 1200 ° C. or less. By making it into this temperature range, the properties of the produced carbon particles and lanthanum boride are excellent. Specifically, the generated carbon particles and lanthanum boride have a form excellent in far-infrared radiation as described above. What was mentioned above is employable as a base material.
 カーボン供給材料としては1000℃以上1200℃以下の加熱条件において炭化してカーボン粒子を生成する材料であり気体乃至液体状である。特に、前述の加熱条件において気体化する材料であることが望ましい。例えば、ブタン、プロパン、メタンなどの炭化水素ガスや、メタノール、エタノールなどのアルコールが挙げられる。 The carbon supply material is a material that is carbonized to generate carbon particles under heating conditions of 1000 ° C. or more and 1200 ° C. or less, and is in a gas or liquid state. In particular, it is desirable that the material be gasified under the above heating conditions. For example, hydrocarbon gases such as butane, propane, and methane, and alcohols such as methanol and ethanol can be used.
 生成するカーボン粒子としては粒径が小さくなることが望ましい。例えば、粒径が3000nm以下、更には300nm以下、特に200nm以下とすることが望ましい。粒径を小さくする方法としては例えば最高温度から800℃付近までの冷却速度を早くする(50~100℃/分)方法が挙げられる。 It is desirable that the generated carbon particles have a small particle size. For example, the particle size is preferably 3000 nm or less, more preferably 300 nm or less, and particularly preferably 200 nm or less. As a method for reducing the particle size, for example, a method of increasing the cooling rate from the maximum temperature to around 800 ° C. (50 to 100 ° C./min) can be mentioned.
・付着工程(粒子材料を基材に付着させる工程)
 付着工程は、粒子材料コロイド含有分散液に基材そのまま(カーボン粒子を付着させた基材とは別の基材に粒子材料を付着させる場合。この場合にはカーボン粒子を付着させた基材と混合した上で後述する樹脂基材に分散させる)、又は、カーボン粒子付着工程にて得られた物(カーボン粒子付着基材:粒子材料及びカーボン粒子を両方共、同じ基材に付着させる場合)を接触させて基材の表面に粒子材料コロイドを付着させる工程である。粒子材料コロイドは粒子材料とその粒子材料をコロイド化するコロイド化剤とコロイダルシリカとを有し、何らかの分散媒中に分散された分散液である。分散媒としては水、アルコール(エタノールなど)などが例示できる。コロイド化剤としては特に限定されないが、いわゆる増粘剤、界面活性剤、カルボキシ基を化学構造中に含むカルボキシ基含有化合物が例示できる。コロイド化剤としては、ポリアクリル酸(塩を含む、例えばNa塩、K塩)、ポリメタクリル酸(塩を含む、例えばNa塩、K塩)、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリビニルピロリドン(特に、ポリ-1-ビニル-2-ピロリドン)、ポリビニルアルコール、アミノペクチン、ペクチン、メチルセルロース、メチルスロース、グルタチオン、シクロデキストリン、ポリシクロデキストリン、ドデカンチオール、有機酸(クエン酸などのヒドロキシカルボン酸)、グリセリン脂肪酸エステル(ポリソルベート)、カチオン性ミセル-臭化セチルトリメチルアンモニウム、界面活性剤(アニオン性、カチオン性、両性、ノニオン性)、アルキル硫酸エステルのアルカリ金属塩、それらの混合物が例示できる。コロイド化剤がカルボキシ基含有化合物である場合は粒子材料に対して、カルボキシ基のモル数が白金のモル数を基準として80~180モル程度になるように含有させることが望ましい。コロイダルシリカの含有量としては固形分の質量が全体を基準として10質量%以上50質量%以下にすることが望ましく、10質量%以上30質量%以下にすることがより望ましい。コロイダルシリカは粒径が1nm~1μm程度のものをいう。
・ Adhesion process (process to attach particulate material to the substrate)
In the attaching step, the base material is directly applied to the particle material colloid-containing dispersion (when the particulate material is attached to another base material different from the base material on which the carbon particles are attached. In this case, the base material on which the carbon particles are attached) After mixing, disperse it in the resin substrate described later), or the product obtained in the carbon particle adhesion step (carbon particle adhesion substrate: both particle material and carbon particles are adhered to the same substrate) Is a step of adhering the particulate material colloid to the surface of the substrate. The particulate material colloid is a dispersion having a particulate material, a colloid agent for colloiding the particulate material, and colloidal silica, and dispersed in some dispersion medium. Examples of the dispersion medium include water and alcohol (such as ethanol). Although it does not specifically limit as a colloid agent, So-called thickener, surfactant, and the carboxy group containing compound which contains a carboxy group in a chemical structure can be illustrated. Examples of colloidal agents include polyacrylic acid (including salts such as Na salt and K salt), polymethacrylic acid (including salts such as Na salt and K salt), polyacrylic acid ester, polymethacrylic acid ester, and polyvinylpyrrolidone. (Especially poly-1-vinyl-2-pyrrolidone), polyvinyl alcohol, aminopectin, pectin, methylcellulose, methylsulose, glutathione, cyclodextrin, polycyclodextrin, dodecanethiol, organic acids (hydroxycarboxylic acids such as citric acid) And glycerin fatty acid ester (polysorbate), cationic micelle-cetyltrimethylammonium bromide, surfactant (anionic, cationic, amphoteric, nonionic), alkali metal salt of alkyl sulfate, and mixtures thereof. When the colloidal agent is a carboxy group-containing compound, it is desirable that the colloidal agent is contained so that the number of moles of carboxy groups is about 80 to 180 moles based on the number of moles of platinum relative to the particulate material. The content of the colloidal silica is preferably 10% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 30% by mass or less based on the whole solid content. Colloidal silica has a particle size of about 1 nm to 1 μm.
 粒子材料コロイド含有分散液は貴金属塩と保護剤(例えば有機酸)とを水及びアルコールの混合液に溶解させた溶液を還流することにより粒子材料を析出させることで粒子材料コロイド含有分散液が調製できる。その後、分散媒をアルコール(エタノールなど)に置換することもできる。置換方法としては置換前の分散媒の一部を蒸発させた後に、置換後の分散媒(アルコールなど)を添加する操作を繰り返す方法が例示できる。 The particle material colloid-containing dispersion is prepared by precipitating the particle material by refluxing a solution prepared by dissolving a noble metal salt and a protective agent (for example, an organic acid) in a mixed solution of water and alcohol. it can. Thereafter, the dispersion medium can be replaced with alcohol (such as ethanol). Examples of the substitution method include a method of repeating the operation of adding a dispersion medium (such as alcohol) after substitution after evaporating a part of the dispersion medium before substitution.
 粒子材料コロイド含有分散液を基材に接触させることにより、基材の表面に粒子材料コロイドを付着させた後、何らかの方法(例えば乾燥など)にて分散媒を除去することにより付着物が得られる。 After the particle material colloid-containing dispersion is brought into contact with the substrate, the particle material colloid is adhered to the surface of the substrate, and then the dispersion medium is removed by any method (for example, drying) to obtain the deposit. .
 付着物の形態を粉末状にするための望ましい方法としては噴霧乾燥工程を採用することが挙げられる。噴霧乾燥工程は基材として粉末状の形態を採用し、その基材を粒子材料コロイド含有分散液中に分散させた状態で噴霧乾燥を行う方法である。噴霧乾燥を行う条件は特に限定しないが、分散媒が速やかに除去できる温度にすることが望ましい。例えば、分散媒として水を採用する場合には噴霧乾燥を行う温度として、180℃~250℃程度を採用すると速やかに分散媒を蒸発除去することができる。 望 ま し い Adopting a spray drying process is a desirable method for making the form of the deposit into powder. The spray drying process is a method in which a powdery form is adopted as a base material, and spray drying is performed in a state where the base material is dispersed in a dispersion containing colloidal particle material. The conditions for performing spray drying are not particularly limited, but it is desirable to set the temperature so that the dispersion medium can be removed quickly. For example, when water is used as the dispersion medium, the dispersion medium can be quickly removed by evaporation when the temperature for spray drying is about 180 ° C. to 250 ° C.
 噴霧乾燥工程を採用する場合には粒子材料コロイド含有分散液中にカテキンを含有させることができる。カテキンを添加することにより、抗酸化能力を向上させることができる。ただし、前述の加熱工程を行うとカテキンも除去されてしまうため、カテキンを添加する場合には加熱工程は行わず、噴霧乾燥工程にて粉末状にするに留めるものとする。カテキンの含有量としては特に限定されないが、全体の質量を基準として10%~20%程度にすることができる。また、後述の加熱工程後にカテキンを担持させても良い。 When employing the spray drying process, catechin can be contained in the particle material colloid-containing dispersion. By adding catechin, the antioxidant ability can be improved. However, since the catechin is also removed when the above heating step is performed, the heating step is not performed when catechin is added, and only the powder is formed in the spray drying step. The content of catechin is not particularly limited, but can be about 10% to 20% based on the total mass. Moreover, you may carry | support catechin after the below-mentioned heating process.
 その後、付着物に対して加熱工程を行う。加熱工程は酸化雰囲気下で、加熱することによりコロイド化剤を酸化除去する工程である。このときに特にコロイダルシリカが熔融乃至軟化して粒子材料と基剤との間を接着することが望ましい。加熱工程を行う場合の付着物の形態は特に限定されず、粉末状、塊状(例えば板状など)の状態にて行うことができる。最終的に必要な形状に成形した後に、本加熱工程を行うことにより、複合無機材料を必要な形状にて成形可能である。また、得られた複合無機材料を粉砕するなどの操作を加えることにより、粉末にすることもできる。加熱温度は800℃~1100℃程度にすることが望ましく、900℃~1000℃にすることが更に望ましい。加熱時間はコロイダルシリカにより結合状態やコロイド化剤が除去されるために必要な時間に応じて適正に設定可能であり、例えば、1時間~3時間程度にすることができる。なお、コロイド化剤の除去は必ずしも完全に行うことは必須では無い。 Then, a heating process is performed on the deposit. The heating step is a step of oxidizing and removing the colloidal agent by heating in an oxidizing atmosphere. At this time, it is particularly desirable that the colloidal silica is melted or softened to bond between the particulate material and the base. The form of the deposit when performing the heating step is not particularly limited, and can be performed in a powder form or a lump form (for example, a plate form). The composite inorganic material can be formed in a required shape by performing this heating step after finally forming into the required shape. Moreover, it can also be made into powder by adding operations, such as grind | pulverizing the obtained composite inorganic material. The heating temperature is preferably about 800 ° C. to 1100 ° C., more preferably 900 ° C. to 1000 ° C. The heating time can be appropriately set according to the time required for removing the bound state and the colloidal agent by colloidal silica, and can be set to, for example, about 1 to 3 hours. Note that it is not always necessary to completely remove the colloidal agent.
・樹脂基材
 樹脂基材としては樹脂材料から構成されること以外は特に限定しない。樹脂基材の形態としては特に限定されず、本実施形態の生体緊張緩和部材が適用される形態に成型される。樹脂材料としては高分子材料から構成されることが例示できる。例えば、ポリウレタン、ゴム系材料、ラテックス(フォーム)、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂などのポリエステル系樹脂、ナイロン6、ナイロン66などのポリアミド樹脂、ABS樹脂などが採用可能である。
-Resin base material It does not specifically limit except being comprised from a resin material as a resin base material. It does not specifically limit as a form of a resin base material, It shape | molds in the form to which the biological tension relaxation member of this embodiment is applied. Examples of the resin material include a polymer material. For example, polyurethane, rubber material, latex (foam), polyolefin resin such as polyethylene and polypropylene, polyester resin such as polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polyamide such as nylon 6 and nylon 66 Resin, ABS resin, etc. can be employed.
(複合無機材料(貴金属担持セラミックス:粉末状)の製造)
・カーボン粒子付着基材の製造
 カーボン供給材料としてのブタンガスを供給しながら、基材としての炭化ジルコニウム(平均粒径1μm:100質量部)とホウ化ランタン(平均粒径1μm:15質量部以下)との混合物(予め、パワーミル(ダルトン)により混合した)をセラミックス板上に薄く付着させて加熱した。
(Manufacture of composite inorganic materials (ceramics carrying precious metals: powder))
・ Manufacture of carbon particle-attached base material While supplying butane gas as a carbon feed material, zirconium carbide as a base material (average particle size 1 μm: 100 parts by mass) and lanthanum boride (average particle size 1 μm: 15 parts by mass or less) And a mixture (previously mixed with a power mill (Dalton)) were thinly adhered onto the ceramic plate and heated.
 加熱条件としては1000℃以上1200℃以下とした。混合物を水素ガス雰囲気下で加熱した後、設定温度になった後に、ブタンガスを供給し45分間処理した。 The heating conditions were 1000 ° C. or higher and 1200 ° C. or lower. The mixture was heated in a hydrogen gas atmosphere, and after reaching the set temperature, butane gas was supplied and treated for 45 minutes.
 ブタンガスの供給量としては、炭化ジルコニウムに対して2質量%以上(3質量%以上4質量以下が好ましい)供給した。実際には、これらを焼結させる雰囲気炉の空間によりブタンガス濃度が異なるので、炉の空間に滞留している水素ガスが完全にブタンガスに交換されるのに相当するガスを送り続けた。 The supply amount of butane gas was 2% by mass or more (preferably 3% by mass or more and 4% by mass or less) with respect to zirconium carbide. Actually, since the butane gas concentration differs depending on the space of the atmosphere furnace in which these are sintered, the gas corresponding to the replacement of the hydrogen gas staying in the furnace space with the butane gas was continued.
 ブタンガス注入後は、雰囲気炉を急冷した。十分なブタンガスを送った時点で、炉内への空気の流入は未燃カーボンの酸化(発火)現象を誘発させるため、速やかにガス流入を停止した。 After the butane gas injection, the atmosphere furnace was quenched. When enough butane gas was sent, the inflow of air into the furnace caused an oxidation (ignition) phenomenon of unburned carbon, so the gas inflow was stopped immediately.
 炉内の冷却速度が遅いと、カーボンの結晶化が進み、いわゆるグラファイトと呼ばれる黒鉛粒子が生成させ、遠赤外線の吸収特性を低下させてしまうからである。 This is because if the cooling rate in the furnace is low, crystallization of carbon proceeds, so-called graphite particles called graphite are generated, and far infrared absorption characteristics are deteriorated.
 従って、カーボンが再燃しない安全温度である400℃以下になるまでの冷却速度を50℃/分以上とした。この強制冷却方法には、風冷方法を採用した。冷却方法は、安全温度に急冷することができる方法であれば、風冷方法以外でも良い。 Therefore, the cooling rate until the temperature reaches 400 ° C. or less, which is a safe temperature at which carbon does not reignite, was set to 50 ° C./min or more. For this forced cooling method, an air cooling method was adopted. The cooling method may be other than the air cooling method as long as it can be rapidly cooled to a safe temperature.
 上記製造方法としては、条件を変化させることで、生成するカーボン粒子の粒径を変化させた。カーボン粒子の粒径が小さくなる条件としては、1200℃~800℃の冷却速度を早くする(例えば、50~100℃/分)である。 As the manufacturing method, the particle diameter of the carbon particles to be generated was changed by changing the conditions. The condition for reducing the particle size of the carbon particles is to increase the cooling rate of 1200 ° C. to 800 ° C. (for example, 50 to 100 ° C./min).
・基材への粒子材料の担持(カーボン粒子を付着した基材とは異なる基材への付着)
 シリカ(SiO)が35.5%、HOが64.5%の組成に配合されたコロイダルシリカ分散液10質量部と、体積平均粒子径5nm程度の白金ナノコロイド分散液(アプト社製、白金含有量20μg/0.1g:白金微粒子の体積平均粒径5nm、コロイド化剤:クエン酸、粒子材料に相当)12質量部とを純水100質量部と共に混合したものに、シリカ粒子(体積平均粒径10μm)を100質量部混合して基材の表面に白金ナノコロイド微粒子が付着した付着物(分散液)を得た(付着工程)。
・ Support of particulate material on substrate (attachment to substrate different from substrate to which carbon particles are attached)
10 parts by mass of a colloidal silica dispersion containing 35.5% silica (SiO 2 ) and 64.5% H 2 O, and a platinum nanocolloid dispersion having a volume average particle diameter of about 5 nm (manufactured by APT) , Platinum content 20 μg / 0.1 g: volume average particle diameter of platinum fine particles 5 nm, colloidal agent: citric acid, corresponding to particle material) 12 parts by mass together with 100 parts by mass of pure water, silica particles ( 100 parts by mass of a volume average particle size of 10 μm) was mixed to obtain a deposit (dispersion) in which platinum nanocolloid fine particles adhered to the surface of the substrate (attachment step).
 付着物に対し噴霧乾燥機を使って噴霧乾燥工程を行った。噴霧乾燥の条件は180℃~250℃程度の温度の槽内に付着物を噴霧することにより行った。得られた粉末を回収し、その後、セラミックス質の容器(鞘)に入れて、電気炉にて約900~1000℃、1時間加熱した(加熱工程)。加熱工程を行った結果、コロイド化剤としてのクエン酸は酸化・揮散して、体積平均粒径5nm程度の白金ナノ微粒子が10μm程度のシリカ表面に固着し、耐水性のある微粉末状の複合無機材料(試験試料1)が得られた。 The spray drying process was performed on the deposit using a spray dryer. The spray drying was performed by spraying the deposits in a tank having a temperature of about 180 ° C. to 250 ° C. The obtained powder was recovered, then placed in a ceramic container (sheath) and heated in an electric furnace at about 900 to 1000 ° C. for 1 hour (heating step). As a result of the heating process, citric acid as a colloid agent is oxidized and volatilized, and platinum nanoparticles having a volume average particle diameter of about 5 nm are fixed on a silica surface of about 10 μm, and a fine powdery composite with water resistance. An inorganic material (Test Sample 1) was obtained.
・マットレスカバーの製造
 PET繊維(実施例1)、ナイロン繊維(実施例2)に試験試料1を練り込み、実施例の繊維を調製した。PET繊維は150dとした。練り込むに当たり、特に練り込まないものと変わりない繊維が得られた。試験試料の含有量は繊維100質量部に対して7.5質量部とした。貴金属としてのプラチナは得られた繊維の質量1g当たり、22.6μg含有することになる。
-Manufacture of mattress cover Test sample 1 was kneaded into PET fibers (Example 1) and nylon fibers (Example 2) to prepare fibers of the examples. The PET fiber was 150d. In kneading, fibers that were not different from those not kneaded were obtained. The content of the test sample was 7.5 parts by mass with respect to 100 parts by mass of the fiber. Platinum as a noble metal will contain 22.6 micrograms per 1g of mass of the obtained fiber.
 この繊維を織って布にしマットレスカバーを製造した。比較例として試験試料を含有しないPET繊維及びナイロン繊維から同形態のマットレスカバーを製造した。 A mattress cover was manufactured by weaving this fiber into a cloth. As a comparative example, a mattress cover of the same shape was manufactured from PET fiber and nylon fiber not containing a test sample.
・試験1(抗酸化能の測定)
 実施例及び比較例のマットレスカバーから一部(200mg)切り取り純水12mL中に浸漬した。その後、0.125mmol/LのDPPH(1,1-ジフェニル-2-ピクリルヒドラジル:和光純薬製)のエタノール溶液4mLを添加・撹拌し、1時間暗所にて放置した。
・ Test 1 (Measurement of antioxidant capacity)
A part (200 mg) of the mattress covers of the examples and comparative examples was cut out and immersed in 12 mL of pure water. Thereafter, 4 mL of an ethanol solution of 0.125 mmol / L DPPH (1,1-diphenyl-2-picrylhydrazyl: manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred, and left in the dark for 1 hour.
 DPPHの主ピーク(515nm)を測定した。DPPH由来のピークの大きさの変化から実施例及び比較例のマットレスカバーの抗酸化能が測定できる。抗酸化能があればDPPHの濃度(515nmのピークの大きさ)が小さくなる。DPPHのピークの低下の大きさを予め測定・算出した検量線から、アスコルビン酸の量に換算した値を示す。 The main peak (515 nm) of DPPH was measured. The antioxidant ability of the mattress covers of Examples and Comparative Examples can be measured from the change in the peak size derived from DPPH. If there is an antioxidant ability, the concentration of DPPH (size of peak at 515 nm) becomes small. It shows a value converted into the amount of ascorbic acid from a calibration curve in which the magnitude of the decrease in DPPH peak was measured and calculated in advance.
 結果、比較例(PET繊維)のマットレスカバーは0.288ppmであり、この値を100とした場合に、実施例1(PET繊維)のマットレスカバーでは1.578ppmで548であった。そして、比較例(ナイロン繊維)のマットレスカバーは1.845ppmで641、実施例2(ナイロン繊維)のマットレスカバーでは4.106ppmで1427であった。 As a result, the mattress cover of the comparative example (PET fiber) was 0.288 ppm, and when this value was 100, the mattress cover of Example 1 (PET fiber) was 1.578 ppm and 548. And the mattress cover of the comparative example (nylon fiber) was 641 at 1.845 ppm, and the mattress cover of Example 2 (nylon fiber) was 1427 at 4.106 ppm.
 以上の結果からPtを含有する実施例のマットレスカバーは抗酸化能を発揮できることが分かった。 From the above results, it was found that the mattress cover of the example containing Pt can exhibit the antioxidant ability.
・試験試料2を添着したマットレスの生体(人体)への影響について
 試験試料2を10質量%の濃度で溶媒としての水中に分散させてインクを製造した。水性バインダ(村上スクリーン)を分散剤として作用させた。このインクを用いて軟質発泡体としての軟質ウレタンフォームを浸の表面に試験試料2を添着した。結果、試験試料2が表面に展着されたマットレスが得られた(実施例)。試験試料2の添着量はウェット状態で80g/mであった。添着前のマットレスをそのまま比較例に用いた(比較例)。実施例及び比較例のマットレスについて赤外線放射率を測定した(JIS R 1801に準拠)。具体的には、黒体及び試料を同じ温度(140℃)にして、そこから放射されるそれぞれの赤外線(波長4~8μmの平均値)をFT-IRで測定した。(理想黒体とは全波長を100%放射している理想的な放射体のことで、実際には存在しないため、理想黒体に近いものを用いた)そして、黒体からの放射された遠赤外線量に対する試料から放射された遠赤外線量を計算し、遠赤外線放射率とした。(社)遠赤外線協会では遠赤外線加工に対して未加工品に比べて全波長域で5%以上、特定波長域で10%以上の遠赤外線放射率差があることという基準を設けている。その結果、実施例のマットレスでは94%、比較例のマットレスでは62%であり、大きな相違があった。つまり、本実施例のマットレスは抗酸化能を発揮できると共に赤外線を放射できることが分かった。
-Effect of mattress with test sample 2 on living body (human body) An ink was produced by dispersing test sample 2 in water as a solvent at a concentration of 10% by mass. An aqueous binder (Murakami screen) was allowed to act as a dispersant. Using this ink, test sample 2 was attached to the surface of a soft urethane foam as a soft foam. As a result, a mattress in which the test sample 2 was spread on the surface was obtained (Example). The amount of test sample 2 attached was 80 g / m 2 in a wet state. The mattress before attachment was used as it was for a comparative example (comparative example). Infrared emissivity was measured for the mattresses of Examples and Comparative Examples (based on JIS R 1801). Specifically, the black body and the sample were set to the same temperature (140 ° C.), and each infrared ray (average value of wavelengths 4 to 8 μm) emitted therefrom was measured by FT-IR. (An ideal black body is an ideal radiator that emits 100% of all wavelengths. Since it does not actually exist, the one close to the ideal black body was used.) The amount of far-infrared emitted from the sample with respect to the amount of far-infrared was calculated and used as the far-infrared emissivity. The Far-Infrared Association has established a standard for far-infrared processing that there is a far-infrared emissivity difference of 5% or more in the entire wavelength range and 10% or more in the specific wavelength range compared to the unprocessed product. As a result, it was 94% for the mattress of the example and 62% for the mattress of the comparative example. That is, it was found that the mattress of this example can exhibit the antioxidant ability and emit infrared rays.
 被験者14名(男性9名、女性5名:全員20代)に対して実施例及び比較例のマットレス(市販の布製マットレスカバーにて表面を覆っている)に対するクロスオーバー試験(異なる日付、同じ時間帯で、実施例及び比較例のマットレスを使用した試験)を行った。具体的には実験前夜に充分な睡眠を取ると共に、実験3時間前からは水の摂取以外の食事を制限した。喫煙や激しい運動も制限した。 Crossover test (different date, same time) for 14 subjects (9 males, 5 females: all in their 20s) against the mattresses of the examples and comparative examples (covered with a commercial cloth mattress cover) The test using the mattresses of the example and the comparative example was performed on the belt. Specifically, sufficient sleep was taken the night before the experiment, and meals other than water intake were restricted from 3 hours before the experiment. Smoking and intense exercise were also restricted.
 実験としては単純計算タスクを計20分間行った後、マットレスに安静臥位で15分間休憩した。休憩中は覚醒状態を保つように約5分間のボタン押し反応タスクを2回課した。ボタン押し反応タスクはランダムに提示される2種類の音(1000Hz又は2000Hzの単音)のうち、高い音が提示されたときのみにマウスの左ボタンをできるだけ速くクリックするように要求した。反応タスクは閉眼で実行してもらい、それ以外の休憩は安静開眼とした。 In the experiment, a simple calculation task was performed for a total of 20 minutes, and then rested on the mattress in a resting position for 15 minutes. During the break, a task of pressing a button for about 5 minutes was imposed twice so as to remain awake. The button press response task required that the left button of the mouse be clicked as fast as possible only when a high sound was presented among two randomly presented sounds (1000 Hz or 2000 Hz single sound). The reaction task was performed with the eyes closed and the rest was rested with the eyes open.
 計算タスク前後、休憩前後に測定を行った。測定は唾液中のクロモグラニンA(CgA)量と主観感情評価(POMS:気分プロフィール検査、VAS:視覚的アナログ尺度)とを行った。POMSは気分状態を緊張、抑うつ、怒り、活気、疲労、混乱の6因子で測定するものであり、総合気分障害(TMD)の評価も可能である。VASはストレスの視覚的アナログ尺度として「全く感じない」から「とっても感じる」までの10cmの線分上に現在の状態に相当する位置に線を付すことでその線の位置を数値化して評価を行う方法である。 Measured before and after the calculation task and before and after the break. The measurement was performed by measuring the amount of chromogranin A (CgA) in saliva and subjective emotion evaluation (POMS: mood profile test, VAS: visual analog scale). POMS measures mood by six factors: tension, depression, anger, vitality, fatigue, and confusion, and can also evaluate total mood disorders (TMD). VAS is a visual analog scale of stress that is evaluated by quantifying the position of the line by attaching a line to the position corresponding to the current state on the 10 cm line segment from “I don't feel at all” to “I feel very much”. How to do it.
 統計解析は、計算タスク前後の条件間に差が無いことを確認してから、計算タスク後をベースラインとし、各評価指標についてそれぞれのベースラインと比較した休息後の変化の違いを、それぞれのマットレス間でノンパラメトリックの手法で検定した。 The statistical analysis confirms that there is no difference between the conditions before and after the calculation task, and then sets the baseline after the calculation task, and shows the difference in changes after rest compared to the baseline for each evaluation index. Non-parametric methods were used between mattresses.
 VASの変化量:統計解析の結果を図1に示す。図1ではプラチナ(又はplatina)と記載した方が実施例のマットレスの結果、ノーマル(又はnormal)と記載した方が比較例のマットレスの結果である(以下の図2及び3でも同じである)。各マットレス間での差異は統計的に有意差は無かった。しかし、平均値から全体を見た印象は、実施例のマットレスの方が気分改善の方向に影響を与える可能性が想定される。 VAS change: The results of statistical analysis are shown in FIG. In FIG. 1, the result of the mattress of the example is described as platinum (or platinum), and the result of the mattress of the comparative example is described as normal (or normal) (the same applies to FIGS. 2 and 3 below). . There was no statistically significant difference between each mattress. However, it is assumed that the overall impression from the average value may affect the mood improvement direction of the mattress of the embodiment.
 POMSの変化量:統計解析の結果を図2に示す。POMSスコアについては実施例のマットレスで休憩を取った方が、疲労スコアの上昇を抑える傾向が認められた。比較例のマットレスの方での疲労度上昇はボタン押し反応タスクによる疲れであると考えられ、この疲れを実施例のマットレスは軽減できていると考えられる。 POMS change: The results of statistical analysis are shown in FIG. Regarding the POMS score, a tendency to suppress an increase in the fatigue score was observed when taking a break with the mattress of the example. The increase in the fatigue level of the mattress of the comparative example is considered to be fatigue due to the button press reaction task, and it is considered that the mattress of the example can reduce this fatigue.
 CgA:唾液中のCgA濃度の変化率を図3に示す。図3より実施例のマットレスの変化率が比較例のマットレスより有意に低かった。つまり、実施例のマットレスで休憩した方が比較例のマットレスに比べてストレス度を低くする効果があった。 CgA: The rate of change of CgA concentration in saliva is shown in FIG. From FIG. 3, the rate of change of the mattress of the example was significantly lower than that of the mattress of the comparative example. That is, the person who took a break with the mattress of the example had the effect of lowering the degree of stress compared with the mattress of the comparative example.
 以上の結果から、実施例のマットレスでの休憩は、比較例のマットレスでの休憩と比べて計算タスクやボタン押しタスクのような精神負荷の遂行による疲労を抑える傾向に有り、生化学的ストレスマーカーであるクロモグラニンAの上昇を抑えることが確認され、ストレス低減効果があることが示唆された。 Based on the above results, the breaks in the mattresses of the examples tend to suppress fatigue due to the execution of mental loads such as calculation tasks and button press tasks compared to the breaks in the mattresses of the comparative examples, and biochemical stress markers It was confirmed that the increase in chromogranin A, which is the above, was suppressed, and it was suggested that there was a stress reduction effect.
 個々には詳細を記載しないが、この効果はマットレスへの試験試料2の添着量に応じて発現されるものである。また、試験試料1を添着した場合でも同傾向の結果が得られている。 Although details are not individually described, this effect is manifested according to the amount of test sample 2 attached to the mattress. Moreover, the result of the same tendency is obtained even when the test sample 1 is attached.
 本発明の生体緊張緩和部材は貴金属とセラミックスとの相乗効果により生体に対して高いリラックス効果を発揮することができる。 The living body tension relieving member of the present invention can exert a high relaxing effect on the living body due to the synergistic effect of the noble metal and the ceramic.

Claims (6)

  1.  体積平均粒径が1~300nmの白金、金、銀、又はパラジウムからなる粒子材料と、前記粒子材料及びカーボン粒子を、それぞれ同一の粒子及び/又は異なる粒子の表面に担持するシリカ、アルミナ、炭化ジルコニウム、酸化ジルコニウム、炭化チタン、炭化タングステン、炭化ケイ素、及び/又は炭化ホウ素である無機材料からなる基材と、前記粒子材料及び前記基材の間に介設されるコロイダルシリカからなる接着層と、を有する複合無機材料と、
     前記複合無機材料を含有するか及び/又は表面に付着するかしており樹脂から構成される樹脂基材と、
     を有し、
     生体に接触乃至近設して用いられる、
     生体緊張緩和部材。
    A particle material made of platinum, gold, silver, or palladium having a volume average particle diameter of 1 to 300 nm, and silica, alumina, carbonized, which carry the particle material and carbon particles on the same particle surface and / or different particle surfaces, respectively. A base material made of an inorganic material which is zirconium, zirconium oxide, titanium carbide, tungsten carbide, silicon carbide, and / or boron carbide, and an adhesive layer made of colloidal silica interposed between the particle material and the base material; A composite inorganic material having
    A resin base material containing the composite inorganic material and / or adhering to the surface and composed of a resin;
    Have
    Used in contact with or close to a living body,
    Biological strain relief member.
  2.  前記カーボン粒子は100nm以上、3000nm以下の平均粒径をもち、不定形且つ非晶質であり、ホウ化ランタンにより前記基材の表面に固定されたものである請求項1に記載の生態緊張緩和部材。 The ecological tension alleviation according to claim 1, wherein the carbon particles have an average particle diameter of 100 nm or more and 3000 nm or less, are amorphous and amorphous, and are fixed to the surface of the base material by lanthanum boride. Element.
  3.  前記無機材料は炭化ジルコニウムであり、前記カーボン粒子に表面が被覆され且つ前記カーボン粒子より平均粒径が大きく、
     前記カーボン粒子及び前記基材が接する部位近傍にホウ化ランタンを含有する請求項2に記載の生態緊張緩和部材。
    The inorganic material is zirconium carbide, the surface of the carbon particles is coated, and the average particle size is larger than the carbon particles,
    The ecological tension alleviating member according to claim 2, comprising lanthanum boride in the vicinity of a portion where the carbon particles and the substrate are in contact with each other.
  4.  前記基材は体積平均粒径が2μm以上の粒子である請求項1~3のうちの何れか1項に記載の生体安静化部材。 4. The biostatic member according to any one of claims 1 to 3, wherein the base material is a particle having a volume average particle diameter of 2 μm or more.
  5.  前記樹脂基材は前記複合無機材料を表面にもつか、及び/又は、内部に分散するフォーム状で有り、
     軟質発泡体である請求項1~4のうちの何れか1項に記載の生体緊張緩和部材。
    The resin base material is in the form of a foam that holds the composite inorganic material on the surface and / or is dispersed inside,
    The living body tension alleviating member according to any one of claims 1 to 4, wherein the living body tension reducing member is a soft foam.
  6.  前記樹脂基材は前記複合無機材料を表面にもつか、及び/又は、内部に分散する繊維状で有り、
     布を構成する請求項~4のうちの何れか1項に記載の生体緊張緩和部材。
    The resin base material is in the form of a fiber that holds the composite inorganic material on the surface and / or is dispersed inside,
    The biological strain alleviating member according to any one of claims 1 to 4, which constitutes a cloth.
PCT/JP2013/001649 2013-03-13 2013-03-13 Stress-reducing member for living body WO2014141319A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380074481.4A CN105073189A (en) 2013-03-13 2013-03-13 Stress-reducing member for living body
PCT/JP2013/001649 WO2014141319A1 (en) 2013-03-13 2013-03-13 Stress-reducing member for living body
JP2015505075A JP5920906B2 (en) 2013-03-13 2013-03-13 Method for manufacturing bedding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/001649 WO2014141319A1 (en) 2013-03-13 2013-03-13 Stress-reducing member for living body

Publications (1)

Publication Number Publication Date
WO2014141319A1 true WO2014141319A1 (en) 2014-09-18

Family

ID=51536026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001649 WO2014141319A1 (en) 2013-03-13 2013-03-13 Stress-reducing member for living body

Country Status (3)

Country Link
JP (1) JP5920906B2 (en)
CN (1) CN105073189A (en)
WO (1) WO2014141319A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000629A (en) * 2003-06-14 2005-01-06 Takehiko Oki Desk mat and desk sheet
JP2006125015A (en) * 2004-10-28 2006-05-18 Kureatera:Kk Thermal insulating material making use of vaporizing heat, heat insulation method making use thereof and planting ground water retainable mat
JP2008162866A (en) * 2006-12-28 2008-07-17 Erubu:Kk Composite ceramic material for infrared emission, method for producing the same, member for cookware and rice cooker
WO2009125847A1 (en) * 2008-04-11 2009-10-15 株式会社エルブ Noble-metal-supporting inorganic material, process for producing the same, food additive, and process for producing food

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291405B1 (en) * 2000-05-19 2006-03-01 Toshio Komuro Composition for far infrared irradiation with excellent antistatic property and fiber and textile product both containing the same
JP2004314543A (en) * 2003-04-18 2004-11-11 Erubu:Kk Screen printing body and manufacturing method thereof
JP2005226188A (en) * 2004-02-13 2005-08-25 Toray Ind Inc Fiber material
WO2006008785A1 (en) * 2004-07-15 2006-01-26 Sumitomo Metal Mining Co., Ltd. Fiber containing boride microparticle and textile product therefrom
CN1888311B (en) * 2005-06-29 2012-02-01 上商株式会社 Wall material with zeolite layer at surface and wall material adhered with porous substance layer on surface
JP5678332B2 (en) * 2009-09-04 2015-03-04 東洋炭素株式会社 Ceramic carbon composite material and manufacturing method thereof, ceramic-coated ceramic carbon composite material and manufacturing method thereof
JP2011217970A (en) * 2010-04-09 2011-11-04 Keiko Yasukura Healthy cosmetic tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000629A (en) * 2003-06-14 2005-01-06 Takehiko Oki Desk mat and desk sheet
JP2006125015A (en) * 2004-10-28 2006-05-18 Kureatera:Kk Thermal insulating material making use of vaporizing heat, heat insulation method making use thereof and planting ground water retainable mat
JP2008162866A (en) * 2006-12-28 2008-07-17 Erubu:Kk Composite ceramic material for infrared emission, method for producing the same, member for cookware and rice cooker
WO2009125847A1 (en) * 2008-04-11 2009-10-15 株式会社エルブ Noble-metal-supporting inorganic material, process for producing the same, food additive, and process for producing food

Also Published As

Publication number Publication date
CN105073189A (en) 2015-11-18
JP5920906B2 (en) 2016-05-25
JPWO2014141319A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
Li et al. Carbon nanotubes supported mono-and bimetallic Pt and Ru catalysts for selective hydrogenation of phenylacetylene
Attia et al. Synthesis of effective multifunctional textile based on silica nanoparticles
EP2072666B1 (en) Fiber containing nano-sized diamond and platinum nanocolloid, and bedding product comprising the fiber
JP2018507775A5 (en)
Marco et al. Bromate catalytic reduction in continuous mode using metal catalysts supported on monoliths coated with carbon nanofibers
EP2857098A1 (en) Aqueous dispersion, and coating using same, photocatalytic film, and product
WO2019065517A1 (en) Sheet and method of manufacturing same
CN111902151A (en) Pharmaceutical preparation and medical device
US10350854B2 (en) Functional protective material, in particular for use in protective clothing
WO2014083859A1 (en) Ceramic composite material and manufacturing process therefor, inner pot for rice cooker, mattress, and fiber
CN109310937A (en) Photochemical catalyst functionality filter
JP5920906B2 (en) Method for manufacturing bedding
Xu et al. A novel copper/polydimethiylsiloxane nanocomposite for copper‐containing intrauterine contraceptive devices
Cao et al. Carbon-doped porous hollow alpha-Fe2O3 microtubules controlled by absorbent cotton bio-template to detect acetic acid vapor
JP5603939B2 (en) Carbon nanotube-metal particle composite composition and exothermic steering handle using the same
JP7026349B2 (en) Manufacturing method of gas sensitive body, gas sensor, and gas sensitive body
Voogt et al. XPS analysis of the oxidation of palladium model catalysts
JP2006070403A (en) Cloth for printing
JP2019157284A (en) Non-woven fabric and manufacturing method thereof
CN107938320A (en) A kind of automotive seat electrical heating graphene non-woven fabrics preparation method
JP4067547B2 (en) Functional fiber, functional yarn and fabric material
TWI289064B (en) Photocatalyst composite and fabrication method thereof
CN109459474A (en) A kind of preparation and application of gold nanoparticle/three-dimensional graphene composite material
Wang et al. Facile synthesis, microstructure, and photo-catalytic activity of novel flower-like apatite@ Au composite nanosheet spheres
Dubois et al. Protection of industrially-relevant Pd/C catalysts for cyclohexene hydrogenation: Effect of a siliceous coating on the thermal treatment of covered catalysts

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074481.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877500

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015505075

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877500

Country of ref document: EP

Kind code of ref document: A1