TWI289064B - Photocatalyst composite and fabrication method thereof - Google Patents

Photocatalyst composite and fabrication method thereof Download PDF

Info

Publication number
TWI289064B
TWI289064B TW95111579A TW95111579A TWI289064B TW I289064 B TWI289064 B TW I289064B TW 95111579 A TW95111579 A TW 95111579A TW 95111579 A TW95111579 A TW 95111579A TW I289064 B TWI289064 B TW I289064B
Authority
TW
Taiwan
Prior art keywords
photocatalyst
composite structure
structure according
photocatalyst composite
forming
Prior art date
Application number
TW95111579A
Other languages
Chinese (zh)
Other versions
TW200735901A (en
Inventor
Syh-Yuh Cheng
Chia-Hsin Lin
Yu-Chih Lin
Original Assignee
Ind Tech Res Inst
Globe Union Ind Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst, Globe Union Ind Corp filed Critical Ind Tech Res Inst
Priority to TW95111579A priority Critical patent/TWI289064B/en
Publication of TW200735901A publication Critical patent/TW200735901A/en
Application granted granted Critical
Publication of TWI289064B publication Critical patent/TWI289064B/en

Links

Landscapes

  • Catalysts (AREA)

Abstract

A photocatalystic composite structure and fabrication method thereof. The photocatalystic composite structure includes transition or noble metal dendritic substrate coated with nano-sized titanium dioxide, with all-weather and long-term sterilization. The composite structure provides sterilization under either dark or light and photocatalystic reduction. Additionally, the dendritic structure is easily adhered to substrate without the help of adhesive or glaze due to its large surface area.

Description

12,890^4 九、發明說明: 【發明所屬之技術領域】 本發明係有關於光觸媒複合結構,且特別有關於一種 •具抗菌功能的分枝狀光觸媒複合結構體及其形成方法。 ~ 【先前技術】 光觸媒作用的基本原理為價帶之電子與電洞對受紫外 光激發時,電子克服能障而躍遷至表面引發其他反應,如 形成OH*或〇*等自由基來降解污染物。目前奈米光觸媒 (主要以二氧化鈦為主)製作方法主要有溶膠_凝膠法 (US5840111、US6129786、US6429169、US6479031)、高 溫水熱法(US5776239、US630636卜 US6440383)、氣相冷 凝法(US5851507)、化學火焰燃燒法(US5672330、 US6254940、US6409780)、化學氣相沉積法(US6027766、 US6413581)、微乳液法(US5879715)、電弧電漿法 (US5460701、US5874684、US6379419)、脈衝雷射裂解法 (US6387531)及機械球磨法(US6503475)等方法。 單以Ti〇2而言,由於所激發出之電子與電洞重新結合 率(Recombination)太快,因而減少表面之活性自由基分子 數量而使光觸媒活性不彰。因此目前在光觸媒活性改良的 方法中’主要以光觸媒表面結合金屬作為電子捕捉者或改 變電子傳遞路徑,以降低電子與電洞對的結合速率來提升 光觸媒活性。金屬粒子結合光觸媒的製備方法有光催化沉 積法(US6368668、US626534卜 US5961843、JP11.315224、 0178-A21521TWF(N2);P05940084TW;kai 1289064 TW495384);鍛燒法(US6210779、US6268050、US6294246、 US6294247、JT2002-320862、TW539579、TW471981、 TW460322、TW279175)及氧化還原法(US5853866、 US6027797、JP11-322524、JP2000-157839、TW406031、 TW539579)等。上述方法所製作的光觸媒多以二氧化鈦為 主要光觸媒成分,結合的金屬成份依功能性區分為抗菌性 金屬Zn、Ag及Cu,提而氧化分解力之金屬Ag、Pt、Cu、 Pd,及可提高親水性之金屬如Li、Ca、Mg及A1。金屬結 合光觸媒所形成之形狀多為奈米級至次微米級球狀結構 物。活性金屬結合其他載體如硫化鋅(JP2〇〇5_12〇117)、二 氧化矽(TW592824)或沸石(TW574074)等亦有採用。 在光觸媒結合應用基材形成抗菌物件方面,一般均有 使用黏著劑、釉料或有機溶劑來促進塗覆效果。例如 TW375534以鈦、铪、硼、鋅等氧化物及鈦酸锆作為光觸 媒主體,以有機溶劑或水配合黏著劑於基材表面披覆後鍛 燒形成抗菌物件。US6294246及TW406031使用釉料、無 機玻璃、熱塑性樹脂及含矽之粘結劑在基材表面製作多層 光觸媒結構。TW27,則以氟化聚合物黏著劑將氧化^ 和Fe和Zn之金屬或金屬化合物固定於基材上。 而US6368668則以2至60秒快速高溫加熱法使金屬 氧化物等_雜子群在每單位面·熱量為⑽船心 之基材上,溫度控制在HKKTC左右的高温使金屬氧化物光 觸媒粒子因高熱直接與基材結合。 【發明内容】 0178-A21521TWF(N2);P05940084TW;kai 1289064 就先前專利文獻結果仍將遇到下列幾個問題點·· 1·光觸媒凝團:奈米化光觸媒在應用塗佈時會容易形 成凝團凝聚,且有使用後不易過濾去除之二次污染問題。 2·額外枯著劑··文獻以各式黏著劑固定奈米光觸媒粒 子群及與基材接合。然而二氧化鈦光觸媒亦會分解劣化魅 著劑,造成光觸媒剝落。此外整體觸媒層的製作成本亦將 提兩。 、 3·尚溫接著··如US6368668以高溫l〇〇〇QC將金屬氣化 物觸媒與基材接著,雖然作用時間短,但容易造成光觸媒 相轉變而使活性下降。 ” 4·額外紫外光光源:單純以Ti〇2為成分之觸媒需在有 光環境下才能發揮效能。因此在一般家庭之室内生活應用 即受到限制。 ^ 為避免上述潛在問題,本發明提供一種光觸媒複合結 構體,此光觸媒複合結構體由奈米光觸媒粒子均勻披 分枝金屬結構表面所構成,其功能特性如下: 、 L奈米光觸媒粒子有效分散於光觸媒複合結構體表 面,避免了凝團現象,使獨立化(is〇lated)的奈米光觸媒粒 子效能完全展現。 2_奈米光觸媒粒子藉由表面電性差異而與分枝結構金 屬形成複合結構,無額外粘著劑添加,具有製作程序簡易 優點。 曰 3.光觸媒複合結構體之奈純分枝金屬結構溶點大幅 降低’可在相對低溫環境下與其他基材結合應用,而不需 0178-A2l521TWF(N2);P05940084TW;kai 1289064 额外的有機或無機 與分枝金屬的相轉 黏結劑。低溫接合亦可防止光觸 變。 媒粒子 主是合結構體可在有光(以奈米光觸媒粒子為 :)及無先(以奈米化分枝金屬為主)環境下皆具抗 結構=^述目:’本發明另提供一種形成光觸媒複合 為了讓本兔明之上述和其他目的、徵、 明顯易懂,下女姓斑, 々1炎…、占月b更 文特舉較佳實施例,並配合所附圖 細說明如下: 1下砰 屬-構上:=ί括形成一分枝金屬結構’及在該分枝金 …冓句勻坡覆奈米光觸媒粒子。 【實施方式】 發明係揭示—種光觸媒複合結構體,包括(a)抗菌分 、至屬、、、"構’(b)奈米光觸媒粒子,以形成全天候與長效之 減菌功能的抗菌複合結構體。 一 '、弟圖’ 一分枝金展結構體,可由金、銀、|白、 鋼、或錄所構成’其結構包括分枝結構103。分枝結構1〇3 的尺寸,制於奈米至次微求,範圍約在Ο.ΟΙμιη^ Ιμιη之 ,。接著均勻分散披覆奈米光觸媒粒子101,如二氧化鈦、 氧化鋅等在分枝結構上,此光觸媒粒子的大小控制在5 nm 至100 nm ’最好在5 11111至2〇 nm之間。上述複合結構體 兼=無光裱境下之抗菌消毒(次微米及微米貴重金屬或過 度^屬載體之功能)、光催化抗3肖光觸媒粒子之功能) 及光催化還原(光觸媒粒子受光激發電子還原貴重金屬及 0178-A21521TWF(N2);P〇594〇〇84TW;kaj 1289064 過渡金屬之功能)等特性。 且因奈米化分枝結構103的高表面積’使其在 溫了易與其他基材結合,不需額外添加黏著劑或釉料辅 • 助,有利於實際應用時的彼覆(Coating)製作。但上述1 - 分枝結構也可如第la圖所示更包括一主幹1〇5。 Ί屬 本發明金屬結構體可以低溫溶液環境之氧化、衰 、 脈衝放電辅助氧化還原法完成,先將氧化還;電:較 金屬電極置入貴金屬或過渡金屬鹽類前驅物水溶液内, 由不同金屬離子之氧化還原電位差異,於液相環境成^ 析出金屬載體,輔以脈衝直流放電、改變溶液溫度、^ 度、及反應物濃度等條件來調控分枝構造。來昭 % 當溶液PH值在2至4之間時,可形成較完整的分y 則文所述,所形成的分枝金屬結構體可為金、、低如 或鎳等金屬。 艮触銅、 接著,可以溶液法或溶凝膠法將 於金屬結構表面。此光觸媒粒子 中^ J並彼覆 鈦礦相,最好含t肌以上的銳赫:U 5〇%以上的銳 光觸媒粒子兩者介面荷電性之广目。利用金屬載體及 值與光觸絲子濃度的方式,㈣錢環境酸鹼 屬結構體的表面。如第3圖戶^有^刀散光觸媒粒子於金 _,二氧化欽粒子呈現以大,容液為峰^ 時(以PH=m2為最佳),旦/谷液提升至驗性範園 金屬表*’成為均勻披覆光觸二 ==:: 0178-A2152mVF(N2);P05940084TW;kai 1289064 抗菌 光觸媒複合結構體 的材料 【實施例】 實施:二製:分枝金屬結構物的方法 將不同濃度(1、2 利用氧化還原電“ s%)的鑛銀溶液與金屬混合, 水調整溶液pH值,:析岐分枝結構物,並以硝酸及氨 結果顯示,3職以2值介於3至9之間。參照第2圖 完整,肖酸銀溶液卿成的分枝結構最為 面積的分枝結:。::中:酸鹽比例增加,可形成較高表 硝酸#及雍、货、ν 卜,在酸性條件下(pH值=3),3 wt % 2/ 合次所形成之成品其比表面積(BET)為1.27 m/g,而隨著合成璟产t 性),則所合成之^ 增加(由酸性變為中性及驗 值為夕队Μ· πσ比表面積有逐漸下降之趨勢,在pH 因此# 欢备、件下,合成之結構比表面積減少76%。 結構離子濃度與酸驗值可得到形貌不同之分枝 實施例2:披覆奈米二氧化鈦粒子 將lwt%至5wt%二氧化鈦加入上述娘分枝結構體中, 以确酸及氨水調整溶液中的pH值,使pH值介於3至12 之間,金屬及金屬氧化物表面電性不同產生相互結合 的特性’將奈米二氧化鈦粒子均勻披覆於金屬結構體表 、面。二氧化鈦彼覆量以不超過5wt%為最佳,過多則易造成 凝團。參照第3圖結果顯示,在酸性條件(pH值6)之下, 0178-A21521 TWF(N2);P05940084TW;kai 1289064 奈米二氧化鈦粒子不易彼覆於分枝構造物表面,隨著阳 增加至中性條件時,二氧化鈦粒子呈現聚集現象 (Aggregation)。在pH值為鹼性溶液環境條件下(以pH値 11至12為最佳),奈米二氧化鈦粒子可均勻的附著於金屬 結構體表面。 實施例3 ··測試光觸媒複合結構體的效能 將光觸媒複合結構體以短波紫外光光源對高濃度的次 甲基藍溶進行光催化反應,分析吸收光譜改變的情況,以 下列麥數作為測試條件(次甲基藍染料濃度〇 〇lwt%,測試 次甲基藍染料體積100m卜添加之光觸媒重量l 5g,以短 波备'外光(波長235nm)為光源,光照時間2〇分鐘)。參 照第4 ®顯示,以次甲絲轉未㈣光催化所得之光吸 收度為100%當基準(次甲基藍物種對應波長約在67_左 右)°參照第5圖結果顯示,單由具分枝構造之金屬結構物 在20分鐘的光催化後,次甲基藍的分解效率就可達到 3〇%,隨著增加披覆的奈米二氧化欽粒子(披覆比例由u 5 wt/〇) ’則所得到之光催化分解效率從了㈣提升至以 上且h著增加光催化時間,i至5 Ti〇2的複合結構 體對次曱基藍分解率皆可達到99%。其中以彼覆5感奈 来Τι〇2複合結構體的效果最佳,在2小時内即可將次甲基 藍光催化完全去除。 實施例4 :光卿複合結構體的滅菌測試 〇178~A21521TWF(N2);P05940084TW;kai 1289064 將含5wt%奈米二氧化鈦之分枝銀結構體依據日本JIS Z 2801: 2000測試標準,針對金黃色葡萄球菌 (Staphylococcus aureus)、大陽桿菌(Escherichia c〇li)、綠霡 桿菌(朽從办m⑽似此、金黃色葡萄球菌之曱氧西 林抗性株(MRSA)、大%桿菌 μ/z· 0157 : H7)等具指標性菌種進行滅菌效率測試,測試條件分別為無 光及有光(波長36〇 nm,強度❹见^^/⑽^照射^斗小時) 的辅助,參照表一及附件一顯示,二種條件皆可將以上指 標性菌種完全滅除,5種菌種最後的菌數皆小於1〇 CFU, 表示滅菌率達99.9% 〇 表一 菌種 無紫外光源辅助 下滅菌效率 (%) 紫外光源辅助 下滅菌效率 (%) 似rewy (金黃色葡葙减菌) \/ ^/ Escherichia coli (大陽择審) 99.9 Pseudomonas aeruginosa (綠騰桿勤 MRSA (金黃色葡萄球菌之甲氧西林抗性 株) Escherichia coli 0157 註··本表資料節錄財團法人食品工業發展研究所之抑 菌試驗報告(報告書號碼94CT229,如附件一)。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 0178-A21521TWF(N2);P05940084TW;kai 1289064 和範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 0178-A21521TWF(N2);P05940084TW;kai 13 1289064 【圖式簡單說明】 第la、lb圖顯示抗菌光觸媒複合結構體的結構。 第2圖顯示分枝金屬結構體的製作條件與結果。 第3圖顯示分枝金屬載體載持奈米二氧化鈦的條件。 第4圖顯示載持不同濃度的二氧化鈦粒子之複合結構 體分解次曱基藍的吸收光譜。 第5圖顯示次甲基藍分解效率之時間演變關係圖。 附件一:財團法人食品工業發展研究所報告書號碼 94CT229之抑菌試驗報告。 【主要元件符號說明】 101〜光觸媒粒子; 103〜分枝結構, 105〜主幹。 0178-A21521 TWF(N2);P05940084TW;kai12,890^4 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a photocatalyst composite structure, and more particularly to a branched photocatalytic composite structure having an antibacterial function and a method of forming the same. ~ [Prior Art] The basic principle of photocatalytic action is that when the electrons and holes of the valence band are excited by ultraviolet light, the electrons overcome the energy barrier and jump to the surface to initiate other reactions, such as the formation of free radicals such as OH* or 〇* to degrade the pollution. Things. At present, nano photocatalysts (mainly mainly titanium dioxide) are mainly produced by a sol-gel method (US 5,804,111, US Pat. No. 6,129,786, US Pat. No. 6,429,169, US Pat. No. 6,479,031), a high-temperature hydrothermal method (US Pat. No. 5,776,239, US Pat. No. 6,640,383), and a gas phase condensation method (US5851507). Chemical flame combustion method (US5672330, US6254940, US6409780), chemical vapor deposition method (US6027766, US6413581), microemulsion method (US5879715), arc plasma method (US5460701, US5874684, US6379419), pulsed laser lysis method (US6387531) And mechanical ball milling (US6503475) and other methods. In the case of Ti〇2 alone, since the recombination rate of electrons and holes excited is too fast, the amount of active radical molecules on the surface is reduced to make the photocatalytic activity ineffective. Therefore, in the current method for improving photocatalytic activity, the photocatalyst surface is combined with a metal as an electron trapper or an electron transport path is changed to reduce the bonding rate of electrons and holes to enhance photocatalytic activity. The preparation method of metal particle combined with photocatalyst is photocatalytic deposition method (US6368668, US626534, US5961843, JP11.315224, 0178-A21521TWF(N2); P05940084TW; kai 1289064 TW495384); calcination method (US6210779, US6268050, US6294246, US6294247, JT2002) -320862, TW539579, TW471981, TW460322, TW279175) and redox method (US5853866, US6027797, JP11-322524, JP2000-157839, TW406031, TW539579) and the like. The photocatalyst produced by the above method mostly uses titanium dioxide as a main photocatalyst component, and the combined metal components are classified into antibacterial metals Zn, Ag and Cu according to their functions, and the metals oxidized and decomposed are Ag, Pt, Cu, Pd, and can be improved. Hydrophilic metals such as Li, Ca, Mg and A1. The shape formed by the metal bonding photocatalyst is mostly a nano- to sub-micron spherical structure. Active metals in combination with other supports such as zinc sulfide (JP2〇〇5_12〇117), ruthenium dioxide (TW592824) or zeolite (TW574074) are also employed. In the case of a photocatalyst combined with a substrate to form an antibacterial article, an adhesive, a glaze or an organic solvent is generally used to promote the coating effect. For example, TW375534 uses an oxide such as titanium, tantalum, boron or zinc and zirconium titanate as the main body of the photocatalyst, and is coated with an organic solvent or water in combination with an adhesive on the surface of the substrate to form an antibacterial article. US 6,294,246 and TW406031 use a glaze, an inorganic glass, a thermoplastic resin, and a binder containing ruthenium to form a multilayer photocatalyst structure on the surface of the substrate. TW27, a metal or metal compound of oxidized and Fe and Zn is fixed to a substrate with a fluorinated polymer adhesive. On the other hand, US6368668 uses a rapid high-temperature heating method of 2 to 60 seconds to make metal oxides and other hetero-groups on the substrate of the core of (10) ship core per unit surface, and the temperature is controlled at a high temperature of about HKKTC to cause metal oxide photocatalyst particles. High heat is directly bonded to the substrate. SUMMARY OF THE INVENTION 0178-A21521TWF(N2); P05940084TW; kai 1289064 The following problems will still be encountered in the results of the prior patent documents. 1. Photocatalyst coagulum: Nano-photocatalyst will easily form coagulation when applied. The group is agglomerated, and there is a secondary pollution problem that is difficult to filter and remove after use. 2. Additional Drying Agents·· The literature fixes the nanophotocatalyst particles and bonds with the substrate with various adhesives. However, the titanium dioxide photocatalyst also decomposes the deteriorating agent, causing the photocatalyst to peel off. In addition, the production cost of the overall catalyst layer will also be raised. 3, Shang Wen continued · · US6368668 to high temperature l 〇〇〇 QC after the metal gasification catalyst and the substrate, although the action time is short, but it is easy to cause photocatalyst phase transition and reduce activity. 4. Additional ultraviolet light source: The catalyst with Ti〇2 as the composition needs to be effective in a light environment. Therefore, the indoor living application in the general family is limited. ^ To avoid the above potential problems, the present invention provides The photocatalyst composite structure is composed of nano photocatalyst particles uniformly divulating the surface of the metal structure, and the functional characteristics thereof are as follows: L-light photocatalyst particles are effectively dispersed on the surface of the photocatalyst composite structure to avoid coagulation The effect of the isolized nano photocatalyst particles is fully demonstrated. 2_Nano photocatalyst particles form a composite structure with the branched structure metal by surface electrical difference, without additional adhesive addition, and have a production procedure Simple advantages. 曰3. Photocatalyst composite structure of the neat pure branching metal structure melting point is greatly reduced' can be combined with other substrates in relatively low temperature environment, without 0178-A2l521TWF (N2); P05940084TW; kai 1289064 A phase-to-bonding agent of organic or inorganic and branched metals. Low temperature bonding also prevents photo-thixotropy. The structure can be anti-structure in the presence of light (with nano-photocatalyst particles as:) and without first (in the case of nano-branched metal) = ^Review: 'The present invention further provides a photocatalyst In order to make the above-mentioned and other purposes, signs, and obvious understanding of the rabbit, the lower female name, the sputum, the sputum, the sputum, the sputum, the sputum, the spleen, the spleen砰 - 构 构 = = = = = = = = = = = = = = = = = = = = 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及 及Antibacterial, genus, and, "construction" (b) nano-photocatalyst particles to form an antibacterial composite structure with all-weather and long-lasting bacteriostatic functions. A ', brother'' a branching gold exhibition structure It can be composed of gold, silver, white, steel, or recorded. Its structure includes the branching structure 103. The size of the branching structure 1〇3 is made from nanometer to submicron, and the range is about Ο.ΟΙμιη^ Ιμιη Then, uniformly disperse the coated nano photocatalyst particles 101, such as titanium dioxide, oxidation In the branched structure, the size of the photocatalyst particles is controlled between 5 nm and 100 nm', preferably between 5 11111 and 2 〇 nm. The above composite structure also has antibacterial disinfection in the absence of light (submicron and Micron precious metal or over-type carrier function), photocatalytic resistance to 3 Xiao photocatalyst particles) and photocatalytic reduction (photocatalytic particles are photoexcited by electron-reduction of precious metals and 0178-A21521TWF(N2); P〇594〇〇84TW; Kaj 1289064 transition metal function) and other characteristics. And because of the high surface area of the nano-branched structure 103, it is easy to combine with other substrates at the temperature, no additional adhesive or glaze supplement is needed, which is beneficial to The production of Coating in actual application. However, the above 1-branch structure may also include a trunk 1〇5 as shown in FIG. The metal structure of the present invention can be completed by oxidation, decay and pulse discharge assisted oxidation reduction in a low temperature solution environment, and the oxidation is further performed; electricity: the metal electrode is placed in the precious metal or transition metal salt precursor aqueous solution, and the different metal The difference in the oxidation-reduction potential of ions is determined by the precipitation of the metal carrier in the liquid phase environment, supplemented by pulsed DC discharge, changing the temperature of the solution, the degree of the solution, and the concentration of the reactants to control the branching structure. When the pH of the solution is between 2 and 4, a relatively complete fraction can be formed, and the branched metal structure formed can be a metal such as gold or as low as nickel. The copper is contacted and then applied to the surface of the metal structure by solution or sol gel. In the photocatalyst particles, the surface of the photocatalyst particles is covered with a titanium ore phase, preferably containing a sharpness above the t-muscle: more than U 5〇% of the sharp photocatalyst particles. Using the metal carrier and the value of the phototribe concentration, (iv) the surface of the acid-base structure of the money environment. For example, in Figure 3, there are ^ knife astigmatism catalyst particles in gold _, the dioxide particles appear large, the liquid is the peak ^ (with PH = m2 is the best), Dan / Valley liquid is upgraded to the experimental nature park Metal sheet*' becomes uniform coating light touch two ==:: 0178-A2152mVF(N2); P05940084TW; kai 1289064 Antibacterial photocatalyst composite structure material [Example] Implementation: Two systems: method of branching metal structure Different concentrations (1, 2 using redox "s%" of silver ore solution mixed with metal, water to adjust the pH value of the solution: analysis of the branched structure, and the results of nitric acid and ammonia, 3 jobs with 2 values Between 3 and 9. Referring to Figure 2, the branching structure of the silver silicate solution is the largest area of the branching:::: medium: the ratio of the acid salt increases, which can form higher nitric acid # and 雍, Goods, ν Bu, under acidic conditions (pH = 3), 3 wt % 2 / combined to form a finished product with a specific surface area (BET) of 1.27 m / g, and with the synthesis of t-products, The synthesized ^ increases (from acid to neutral and the test value is eve Μ · πσ specific surface area has a tendency to gradually decline, in the pH therefore #欢,,下下,合The specific surface area of the structure is reduced by 76%. The structure ion concentration and the acid value can be obtained as branches with different morphology. Example 2: coated nano titanium dioxide particles, lwt% to 5wt% titanium dioxide is added to the above-mentioned mother-branched structure, Adjusting the pH of the solution with acid and ammonia to make the pH between 3 and 12, the metal and metal oxide surface are different in electrical properties to produce a combination of characteristics. The nano titanium dioxide particles are evenly coated on the metal structure. Table, surface. The amount of titanium dioxide is not more than 5 wt%, and too much is easy to cause condensation. Refer to the results of Figure 3, under acidic conditions (pH 6), 0178-A21521 TWF (N2); P05940084TW;kai 1289064 Nano titanium dioxide particles are not easy to cover the surface of the branched structure, and the titanium dioxide particles exhibit Aggregation as the yang increases to neutral conditions. Under the pH condition of alkaline solution environment (as pH)値11 to 12 are optimal), the nano titanium dioxide particles can be uniformly attached to the surface of the metal structure. Example 3 ··Testing the Photocatalytic Composite Structure The photocatalytic composite structure is short-wave ultraviolet The photocatalytic reaction of the high concentration of methylene blue solution was carried out, and the change of the absorption spectrum was analyzed. The following wheat number was used as the test condition (the concentration of the methine blue dye 〇〇lwt%, and the volume of the methylene blue dye was 100 m. The added photocatalyst weighs 5g, and uses short-wavelength 'external light (wavelength 235nm) as the light source, and the illumination time is 2〇 minutes.) Referring to the 4th ® display, the light absorbance obtained by photo-catalysis of the secondary yarn is not 100%. When the reference (the corresponding wavelength of the methine blue species is about 67_), the results of Figure 5 show that the decomposition efficiency of methine blue after 20 minutes of photocatalysis by the metal structure with branched structure It can reach 3〇%, and the photocatalytic decomposition efficiency obtained by increasing the coated nano-dioxide particles (the coating ratio is from u 5 wt/〇) increases from (4) to above and increases the photocatalysis. At the time, the composite structure of i to 5 Ti〇2 can achieve a decomposition rate of 99% for the sulfhydryl blue. Among them, the effect of the Τι〇2 composite structure is best, and the methine blue catalysis can be completely removed within 2 hours. Example 4: Sterilization test of Guangqing composite structure 〇178~A21521TWF(N2); P05940084TW; kai 1289064 A branched silver structure containing 5 wt% of nano titanium dioxide according to Japanese JIS Z 2801: 2000 test standard, for golden yellow Staphylococcus aureus, Escherichia c〇li, and Bacillus licheniformis (such as venom m (10), methicillin-resistant strain (MRSA) of Staphylococcus aureus, large bacillus μ/z· 0157: H7) and other indicator strains were tested for sterilization efficiency. The test conditions were as follows: no light and no light (wavelength 36〇nm, intensity ^^^/(10)^ irradiation^ bucket hours), refer to Table 1 and As shown in Annex I, the above-mentioned indicator species can be completely eliminated under both conditions. The final number of bacteria in the five species is less than 1〇CFU, indicating that the sterilization rate is 99.9%. Efficiency (%) UV light source assisted sterilization efficiency (%) Like rewy (gold yellow Portuguese mites) \/ ^/ Escherichia coli (Dayang selection) 99.9 Pseudomonas aeruginosa (Green Teng Qin MRSA (Staphylococcus aureus) Methicillin resistant strain) Escheric Hia coli 0157 Note ·· This table is an excerpt from the Antibacterial Test Report of the Food Industry Development Research Institute (Report No. 94CT229, as in Annex I). Although the present invention has been disclosed above in the preferred embodiment, it is not used Having defined the present invention, any person skilled in the art can make some modifications and retouchings without departing from the spirit of the present invention, 0178-A21521TWF (N2); P05940084TW; kai 1289064. Therefore, the scope of protection of the present invention is regarded as The scope of the patent application is defined as follows: 0178-A21521TWF(N2); P05940084TW; kai 13 1289064 [Simple description of the diagram] The first and lb diagrams show the structure of the antibacterial photocatalyst composite structure. Fig. 2 shows the branched metal Conditions and results of the formation of the structure. Fig. 3 shows the conditions under which the branched metal carrier carries the nano titanium dioxide. Fig. 4 shows the absorption spectrum of the decomplexed blue of the composite structure carrying the different concentrations of titanium dioxide particles. The graph shows the time evolution diagram of the methine blue decomposition efficiency. Annex I: Antibacterial test of the report number 94CT229 of the Food Industry Development Research Institute Report [Main component symbol description] 101~ Photocatalyst particles; 103~ Branch structure, 105~ backbone. 0178-A21521 TWF(N2); P05940084TW;

Claims (1)

1289064 十、申請專利範圍: 1. 一種光觸媒複合結構體,包括: 一分枝金屬結構;以及奈米光觸媒粒子,披覆於該分 枝金屬結構上。 2. 如申請專利範圍第1項所述之光觸媒複合結構體, 其中該分枝金屬結構更包括一主幹結構。 3. 如申請專利範圍第2項所述之光觸媒複合結構體, 其中該主幹為一棒狀、球狀或片狀的結構,尺寸約在Ο.ίμιη 至ΙΟμιη之間。 4. 如申請專利範圍第1項所述之光觸媒複合結構體, 其中該分枝金屬結構包含貴金屬或過渡金屬。 5. 如申請專利範圍第1項所述之光觸媒複合結構體, 其中該分枝金屬結構包含金、銀、鉑、鈀、鐵、鈷、鎳、 銅或鋅。 6. 如申請專利範圍第1項所述之光觸媒複合結構體, 其中該奈米光觸媒粒子為二氧化鈦或氧化鋅。 7. 如申請專利範圍第1項所述之光觸媒複合結構體, 其中讀分枝結構的尺寸約在〇.〇 1 μπι至1 μπι之間。 8. 如申請專利範圍第1項所述之光觸媒複合結構體, 其中該奈米光觸媒以溶液法直接將奈米光觸媒粒子彼覆於 分枝金屬結構上。 9. 如申請專利範圍第1項所述之光觸媒複合結構體, 其中該奈米光觸媒以溶凝膠法披覆於分枝金屬結構上。 10. 如申請專利範圍第1項所述之光觸媒複合結構體, 0178-Α21521 TWF(N2);P05940084TW;kai 15 1289064 其中該奈米光觸媒粒子大小約為5 nm至100 nm之間,以 5 nm至20 nm之間為最佳。 11. 如申請專利範圍第1項所述之光觸媒複合結構體, 其中該奈米光觸媒粒子需具有50%以上的銳鈦礦相,以 80%以上的銳鈦礦相為最佳。 12. —種形成光觸媒複合結構體的方法,包括: 形成一分枝金屬結構;以及 在該分枝金屬結構上披覆奈米光觸媒粒子。 13. 如申請專利範圍第12項所述之形成光觸媒複合結 構體的方法,其中該分枝金屬結構以金屬離子還原法形成。 14. 如申請專利範圍第12項所述之形成光觸媒複合結 構體的方法,其中該分枝金屬結構更包括一主幹結構。 15. 如申請專利範圍第14項所述之形成光觸媒複合結 構體的方法,其中該主幹為一棒狀、球狀或片狀的結構, 尺寸約在〇·1μπι至ΙΟμιη之間。 16. 如申請專利範圍第12項所述之形成光觸媒複合結 構體的方法,其中該分枝金屬結構包含貴金屬或過渡金屬。 17. 如申請專利範圍第12項所述之形成光觸媒複合結 構體的方法,其中該分枝金屬結構包含金、銀、鉑、鈀、 鐵、銘、鎳、銅或辞。 18. 如申請專利範圍第12項所述之形成光觸媒複合結 構體的方法,其中該奈米光觸媒粒子大小約為5 nm至100 nm之間,以5 nm至20 nm之間為最佳。 19. 如申請專利範圍第12項所述之形成光觸媒複合結 0178-A21521TWF(N2);P05940084TW;kai 1289064 構體的方法,其中係以溶液法將奈米光觸媒粒子彼覆於分 枝金屬結構上。 20. 如申請專利範圍第19項所述之形成光觸媒複合結 . 構體的方法,其中該溶液法包括以改變酸鹼值的方式直接 ^ 將奈米光觸媒粒子結合於金屬結構上。 21. 如申請專利範圍第12項所述之形成光觸媒複合結 構體的方法,其中係以溶凝膠法將奈米光觸媒粒子坡覆於 分枝金屬結構上。 22. 如申請專利範圍第12項所述之形成光觸媒複合結 構體的方法,其中奈米光觸媒粒子至少需含有50%以上的 銳鈦礦相,以80%以上的銳鈦礦相為最佳。 0178-A21521TWF(N2);P05940084TW;kai 171289064 X. Patent Application Range: 1. A photocatalyst composite structure comprising: a branched metal structure; and nano photocatalyst particles coated on the branched metal structure. 2. The photocatalyst composite structure according to claim 1, wherein the branched metal structure further comprises a trunk structure. 3. The photocatalyst composite structure according to claim 2, wherein the trunk is a rod-shaped, spherical or sheet-like structure having a size between about ί.ίμιη and ΙΟμιη. 4. The photocatalyst composite structure according to claim 1, wherein the branched metal structure comprises a noble metal or a transition metal. 5. The photocatalyst composite structure according to claim 1, wherein the branched metal structure comprises gold, silver, platinum, palladium, iron, cobalt, nickel, copper or zinc. 6. The photocatalyst composite structure according to claim 1, wherein the nano photocatalyst particles are titanium dioxide or zinc oxide. 7. The photocatalyst composite structure according to claim 1, wherein the size of the read branching structure is between about μ1 μπι to 1 μπι. 8. The photocatalyst composite structure according to claim 1, wherein the nano photocatalyst directly coats the nano photocatalyst particles on the branched metal structure by a solution method. 9. The photocatalyst composite structure according to claim 1, wherein the nano photocatalyst is coated on the branched metal structure by a sol gel method. 10. The photocatalyst composite structure according to claim 1, 0178-Α21521 TWF(N2); P05940084TW; kai 15 1289064 wherein the nano photocatalyst particle size is between 5 nm and 100 nm, 5 nm. The best is between 20 nm. 11. The photocatalyst composite structure according to claim 1, wherein the nano photocatalyst particles are required to have an anatase phase of 50% or more, and more preferably 80% or more of anatase phase. 12. A method of forming a photocatalyst composite structure comprising: forming a branched metal structure; and coating the nanophotocatalyst particles on the branched metal structure. 13. The method of forming a photocatalyst composite structure according to claim 12, wherein the branched metal structure is formed by a metal ion reduction method. 14. The method of forming a photocatalyst composite structure according to claim 12, wherein the branched metal structure further comprises a backbone structure. 15. The method of forming a photocatalyst composite structure according to claim 14, wherein the stem is a rod-shaped, spherical or sheet-like structure having a size of between about 1 μm and about ιμηη. 16. The method of forming a photocatalyst composite structure according to claim 12, wherein the branched metal structure comprises a noble metal or a transition metal. 17. The method of forming a photocatalyst composite structure according to claim 12, wherein the branched metal structure comprises gold, silver, platinum, palladium, iron, indium, nickel, copper or rhodium. 18. The method of forming a photocatalyst composite structure according to claim 12, wherein the nano photocatalyst particle size is between about 5 nm and 100 nm, preferably between 5 nm and 20 nm. 19. The method of forming a photocatalyst composite knot 0178-A21521TWF(N2); P05940084TW; kai 1289064 as described in claim 12, wherein the nano photocatalyst particles are coated on the branched metal structure by a solution method. . 20. The method of forming a photocatalyst composite structure according to claim 19, wherein the solution method comprises directly bonding the nano photocatalyst particles to the metal structure by changing the pH value. 21. The method of forming a photocatalyst composite structure according to claim 12, wherein the nano photocatalyst particles are coated on the branched metal structure by a sol gel method. 22. The method of forming a photocatalyst composite structure according to claim 12, wherein the nanophotocatalyst particles need to contain at least 50% of anatase phase, and more preferably 80% or more of anatase phase. 0178-A21521TWF(N2); P05940084TW; kai 17
TW95111579A 2006-03-31 2006-03-31 Photocatalyst composite and fabrication method thereof TWI289064B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95111579A TWI289064B (en) 2006-03-31 2006-03-31 Photocatalyst composite and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95111579A TWI289064B (en) 2006-03-31 2006-03-31 Photocatalyst composite and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW200735901A TW200735901A (en) 2007-10-01
TWI289064B true TWI289064B (en) 2007-11-01

Family

ID=39294856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95111579A TWI289064B (en) 2006-03-31 2006-03-31 Photocatalyst composite and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI289064B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492783B (en) * 2012-05-21 2015-07-21 Univ Yuanpei Regeneration method of waste gas filter
US9724675B2 (en) 2012-11-02 2017-08-08 Industrial Technology Research Institute Photocatalyst material and method for fabricating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI670238B (en) * 2018-07-06 2019-09-01 陳世雄 Method of immobilizing and coating nano photo-catalyst and nano silver, apparatus containing the same, and use thereof for water purification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492783B (en) * 2012-05-21 2015-07-21 Univ Yuanpei Regeneration method of waste gas filter
US9724675B2 (en) 2012-11-02 2017-08-08 Industrial Technology Research Institute Photocatalyst material and method for fabricating the same

Also Published As

Publication number Publication date
TW200735901A (en) 2007-10-01

Similar Documents

Publication Publication Date Title
Liu et al. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO
Stathatos et al. Photocatalytically deposited silver nanoparticles on mesoporous TiO2 films
Liu et al. Self-assembled ZnO/Ag hollow spheres for effective photocatalysis and bacteriostasis
Yu et al. Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres
Ju et al. Controllable one-pot synthesis of a nest-like Bi 2 WO 6/BiVO 4 composite with enhanced photocatalytic antifouling performance under visible light irradiation
Jia et al. Fabrication of TiO2–Bi2WO6 binanosheet for enhanced solar photocatalytic disinfection of E. coli: insights on the mechanism
Wu et al. Montmorillonite-supported Ag/TiO2 nanoparticles: an efficient visible-light bacteria photodegradation material
Van Bao et al. Behavior of ZnO-doped TiO2/rGO nanocomposite for water treatment enhancement
Choi et al. Recyclable Ag-coated Fe3O4@ TiO2 for efficient photocatalytic oxidation of chlorophenol
Guo et al. Effect of native defects on photocatalytic properties of ZnO
Gao et al. Preparation of Er3+: YAlO3/Fe-doped TiO2–ZnO and its application in photocatalytic degradation of dyes under solar light irradiation
Liu et al. Ultrasound-assisted two-step water-bath synthesis of gC 3 N 4/BiOBr composites: visible light-driven photocatalysis, sterilization, and reaction mechanism
Ivanova et al. Hexamolybdenum clusters supported on exfoliated h-BN nanosheets for photocatalytic water purification
US20220248682A1 (en) An antimicrobial coating composition
Ai et al. Novel magnetically separable γ-Fe2O3/Ag/AgCl/g-C3N4 composite for enhanced disinfection under visible light
Tseng et al. Antibacterial performance of nanoscaled visible-light responsive platinum-containing titania photocatalyst in vitro and in vivo
Adhikari et al. Synthesis, characterization, organic compound degradation activity and antimicrobial performance of gC 3 N 4 sheets customized with metal nanoparticles-decorated TiO 2 nanofibers
Li et al. Enhanced plasmonic photocatalytic disinfection on noble-metal-free bismuth nanospheres/graphene nanocomposites
Xue et al. Facile fabrication of BiOCl/RGO/protonated g-C3N4 ternary nanocomposite as Z-scheme photocatalyst for tetracycline degradation and benzyl alcohol oxidation
Marino et al. Photocatalytic activity and synthesis procedures of TiO2 nanoparticles for potential applications in membranes
Chang et al. H2Ti3O7 nanowires as a high-performance photocatalytic and surface-enhanced Raman scattering substrate
Huang et al. Preparation and Characterization of Visible‐Light‐Activated Fe‐N Co‐Doped TiO2 and Its Photocatalytic Inactivation Effect on Leukemia Tumors
Guo et al. Fabrication of GO-TiO 2/(Ca, Y) F 2: Tm, Yb composites with high-efficiency optical driving photocatalytic activity for degradation of organic dyes and bacteriostasis
Guo et al. Plasmon-enhanced visible-light photocatalytic antibacterial activity of metal–organic framework/gold nanocomposites
TWI289064B (en) Photocatalyst composite and fabrication method thereof