JP2008162866A - Composite ceramic material for infrared emission, method for producing the same, member for cookware and rice cooker - Google Patents

Composite ceramic material for infrared emission, method for producing the same, member for cookware and rice cooker Download PDF

Info

Publication number
JP2008162866A
JP2008162866A JP2006356478A JP2006356478A JP2008162866A JP 2008162866 A JP2008162866 A JP 2008162866A JP 2006356478 A JP2006356478 A JP 2006356478A JP 2006356478 A JP2006356478 A JP 2006356478A JP 2008162866 A JP2008162866 A JP 2008162866A
Authority
JP
Japan
Prior art keywords
infrared radiation
ceramic material
composite ceramic
particles
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006356478A
Other languages
Japanese (ja)
Other versions
JP5147101B2 (en
Inventor
Masataka Sano
昌隆 佐野
Hiroki Miyamatsu
宏樹 宮松
Takami Yoshida
貴美 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erubu KK
Original Assignee
Erubu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erubu KK filed Critical Erubu KK
Priority to JP2006356478A priority Critical patent/JP5147101B2/en
Publication of JP2008162866A publication Critical patent/JP2008162866A/en
Application granted granted Critical
Publication of JP5147101B2 publication Critical patent/JP5147101B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite ceramic material for infrared emission having an excellent far-infrared absorptivity, and to provide a method for producing a composite ceramic material for infrared emission. <P>SOLUTION: The method for producing a composite ceramic material for infrared emission comprises: a stage where a carbon feeding material and a boride are allowed to exist in a nonoxidizing atmosphere, and ceramic particles are treated at 1,000 to 1,200°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、遠赤外線放射を目的とした調理器具、寝装具及び電化製品への利用可能な赤外線放射用複合セラミックス材料及びその製造方法並びにその赤外線放射用複合セラミックス材料を利用する調理器具用部材及び炊飯器に関する。   The present invention relates to a composite ceramic material for infrared radiation that can be used for cooking utensils, bedding and electrical appliances intended for far-infrared radiation, a method for producing the same, a member for cooking utensils using the composite ceramic material for infrared radiation, and It relates to rice cookers.

絶対零度(−273℃)という低温でない限り、全ての物質は遠赤外線などの電磁波を放射し、温度が高ければ高いほどその放射量(エネルギー)が多くなる。同じ温度の場合でも、物質の種類やその表面状態により放射量に違いが生じる。中でもセラミックスは遠赤外線を多く放射することが分かっている。金属類は放射量が多いが、逆に反射するためヒーターの裏の反射板として採用されている。   Unless the temperature is as low as absolute zero (−273 ° C.), all materials emit electromagnetic waves such as far infrared rays, and the higher the temperature, the greater the amount of radiation (energy). Even at the same temperature, the amount of radiation varies depending on the type of material and its surface condition. Among these, ceramics are known to emit a lot of far infrared rays. Although metals emit a large amount of radiation, they are used as a reflector on the back of the heater because they reflect in reverse.

私達の身の回りにある金属を除く多くの物質(プラスチック塗料、繊維、木材、ゴム、食物等)は、2.5μm〜30μmの波長域(主に遠赤外域)の電磁波をよく吸収する(近赤外線は0.78μm〜3μmである)。   Many substances except plastics around us (plastic paint, fiber, wood, rubber, food, etc.) absorb a lot of electromagnetic waves in the wavelength range of 2.5μm to 30μm (mainly far infrared region). Infrared rays are 0.78 μm to 3 μm).

セラミックスは加熱するとこの波長域の赤外線を主に吸収する。気体については、空気(N及びO)は、遠赤外線をあまり吸収しないが、炭酸ガス(CO)や水、水蒸気(HO)は、遠赤外線を吸収する。 Ceramics mainly absorb infrared rays in this wavelength region when heated. As for gas, air (N 2 and O 2 ) does not absorb far infrared rays so much, but carbon dioxide (CO 2 ), water, and water vapor (H 2 O) absorb far infrared rays.

遠赤外線の持つエネルギーは、人体の皮膚表面から約200μmの深さまでの間でほとんど吸収されてしまい、熱に変わる。吸収された熱が血液等により体の内部(芯)まで効率よく伝わり体が温まる。近赤外線は、皮膚表面から数mmの深さまで浸透する。この近赤外線の特徴を使い、指や手のひらの内部における静脈模様を近赤外線で調べることで個人を認証する方法が開発されている。   The energy of far infrared rays is almost absorbed from the skin surface of the human body to a depth of about 200 μm, and is converted into heat. The absorbed heat is efficiently transmitted to the inside (core) of the body by blood and the body warms up. Near infrared light penetrates from the skin surface to a depth of several millimeters. A method for authenticating an individual by using the near-infrared feature and examining the vein pattern inside the finger or palm with the near-infrared ray has been developed.

赤外線を放射する程度を表す指標として赤外線放射率が挙げられる。赤外線放射率とは、ある温度の物質の表面から放射するある波長の赤外線のエネルギー量と、同温度の黒体(放射で与えられたエネルギーを100%吸収する仮想物体)から放射するエネルギー量との比率をいう。   Infrared emissivity can be cited as an index representing the degree of infrared radiation. Infrared emissivity is the amount of energy of infrared rays of a certain wavelength radiated from the surface of a substance at a certain temperature, and the amount of energy emitted from a black body (a virtual object that absorbs 100% of the energy given by radiation) at the same temperature. The ratio.

赤外線放射率は物質固有のもので、その物質の種類はもちろん、表面状態や波長にも依存して大きさが変化する。セラミックス(例えば金属酸化物)は、一般に遠赤外域の波長での放射率が高く(約70%〜90%)、与えたエネルギーを有効に放射伝熱できることから、遠赤外線の放射材料として広く利用されている。   The infrared emissivity is specific to a substance, and its size changes depending on the surface state and wavelength as well as the kind of the substance. Ceramics (for example, metal oxides) generally have high emissivity at wavelengths in the far-infrared region (approximately 70% to 90%), and can effectively radiate and transfer the applied energy, so they are widely used as far-infrared radiation materials. Has been.

従来、ガスコンロの表面や調理鍋内面のような調理器具等に、被調理物に対する遠赤外線の食味向上効果が周知の事実であることから、遠赤外線を放射する物質を調理器具等に付与することが、近年、よく行われている。赤外線を放射する材料としては炭素材料が知られており炊飯器の内釜などに適用されている(特許文献1)。特許文献1では、炊飯器の内釜内面に木炭や竹炭の赤外線を放射する微粒子を含有したフッ素樹脂コート処理を施した発明が提示されている。   Conventionally, it has been a well-known fact that the far-infrared taste-enhancing effect on the food to be cooked, such as the surface of a gas stove or the inner surface of a cooking pan, so that a substance that emits far-infrared rays is given to the cooking utensil. However, it is often done in recent years. A carbon material is known as a material that emits infrared rays, and is applied to an inner pot of a rice cooker (Patent Document 1). In patent document 1, the invention which performed the fluororesin coat | court processing which contains the microparticles | fine-particles which radiate | emit the infrared rays of charcoal or bamboo charcoal on the inner pot inner surface of a rice cooker is proposed.

しかしながら、炭素材料は赤外線放射能力には優れるものの、物理的特性が充分でない場合があるので、物性などの向上を目的として種々の複合材料が提案されている。   However, although carbon materials are excellent in infrared radiation ability, physical properties may not be sufficient, so various composite materials have been proposed for the purpose of improving physical properties and the like.

赤外線を放射する微粒子としては、遠赤外線セラミックスが多種利用されており、そのほとんどは組成が単一(シリカ、アルミナ、ジルコニア等)であった。   As the fine particles that emit infrared rays, various types of far-infrared ceramics are used, and most of them have a single composition (silica, alumina, zirconia, etc.).

例えば、特許文献2では、調理器具等の表面の内部層に遠赤外線効果を有する物質、外部層にフッ素樹脂を含有する被膜を施す発明が提示されている。   For example, Patent Document 2 proposes an invention in which a material having a far-infrared effect is applied to an inner layer on the surface of a cooking utensil or the like, and a coating containing a fluororesin is applied to an outer layer.

このような複合セラミックス材料を製造する従来技術としてセラミックス粒子にカーボンを複合させる方法が開示されている(特許文献3)。   As a conventional technique for producing such a composite ceramic material, a method of combining carbon with ceramic particles is disclosed (Patent Document 3).

特許文献3の方法は、セラミックス粉末の表面に球状カーボン微粒子を付着させる方法である。
特開2000−287846号公報 特開2003−276129号公報 特開平7−257920号公報
The method of Patent Document 3 is a method of attaching spherical carbon fine particles to the surface of a ceramic powder.
JP 2000-287846 A JP 2003-276129 A JP-A-7-257920

しかしながら、特許文献3に記載の方法は材料の生成に2000℃以上の高温度での焼成が必要であり、製造に高いコストが必要になる。また、特許文献3に記載の方法では赤外線放射に適した材料を目指すものではないので、充分な赤外線の放射が実現されていなかった。   However, the method described in Patent Document 3 requires firing at a high temperature of 2000 ° C. or higher for production of the material, and high cost is required for production. Further, since the method described in Patent Document 3 does not aim at a material suitable for infrared radiation, sufficient infrared radiation has not been realized.

本発明は上記課題に鑑みてなされたもので、遠赤外線吸収率の優れた赤外線放射用複合セラミックス材料及びその製造方法を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the composite ceramic material for infrared rays radiation excellent in the far-infrared absorptivity, and its manufacturing method.

また、本発明では上記赤外線放射用複合セラミックス材料を応用した調理器具用部材及び炊飯器を提供することも解決すべき課題とする。   Another object of the present invention is to provide a cooking utensil member and a rice cooker to which the composite ceramic material for infrared radiation is applied.

課題を解決するための手段及び効果Means and effects for solving the problems

上記課題を解決する目的で本発明者らは鋭意研究を行った結果、以下の発明に想到した。すなわち、本発明の赤外線放射用複合セラミックス材料の製造方法は、非酸化雰囲気下、カーボン供給材料及びホウ化物を存在させて、セラミックス粒子を1000℃以上、1200℃以下で処理する工程を有することを特徴とする。   In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, have come up with the following invention. That is, the method for producing a composite ceramic material for infrared radiation of the present invention includes a step of treating ceramic particles at 1000 ° C. or more and 1200 ° C. or less in the presence of a carbon supply material and a boride in a non-oxidizing atmosphere. Features.

また、上記課題を解決する本発明の赤外線放射用複合セラミックス材料は上記方法にて製造しうるものである。   Moreover, the composite ceramic material for infrared radiation of the present invention that solves the above-mentioned problems can be produced by the above method.

すなわち、セラミックス粒子をカーボン供給材料の存在下で加熱処理することで、セラミックス粒子の表面にカーボン供給材料から生成したカーボン微粒子を付着させる方法である。ここで、ホウ化物を共存させた状態で加熱処理することで、赤外線を放射する性質に影響を与えずにカーボン微粒子をセラミックス粒子の表面に付着させることができる。ここで、加熱する温度条件として1000℃以上1200℃以下の範囲を設定したことで、上記構成が実現できる。つまり、従来技術のように、2000℃以上での加熱を行うと、ホウ化物が生成するカーボン微粒子と反応したり、ホウ化物がセラミックス粒子に固溶したりして性質が変化するので、赤外線放射の観点からは充分な性能を発揮することが困難になる。   That is, this is a method in which the ceramic particles are heat-treated in the presence of the carbon supply material, so that the carbon fine particles generated from the carbon supply material adhere to the surface of the ceramic particles. Here, by performing the heat treatment in the state of coexisting boride, the carbon fine particles can be attached to the surface of the ceramic particles without affecting the property of emitting infrared rays. Here, the said structure is realizable by setting the range of 1000 to 1200 degreeC as temperature conditions to heat. In other words, as in the prior art, when heating at 2000 ° C. or higher, the properties change due to the reaction with the carbon fine particles produced by the boride, or the boride dissolves in the ceramic particles. From this point of view, it becomes difficult to exhibit sufficient performance.

カーボンを2000℃以上で加熱すると、カーボン微粒子の結晶化が進行し、球状の微粒子が形成する。それに対して、本発明方法によると、生成するカーボンの結晶化の程度が低い、塊状カーボン微粒子とでも言うべき不定形の微粒子が生成する。   When carbon is heated at 2000 ° C. or higher, crystallization of carbon fine particles proceeds and spherical fine particles are formed. On the other hand, according to the method of the present invention, amorphous particles, which can be referred to as bulk carbon particles, with a low degree of crystallization of generated carbon are generated.

ここで、カーボンは原料や製造方法によって密度や粒子径状、粒度が大きく変化する。例えば、熱処理条件の他、添加する元素の有無・種類により様々な形態の物質に変化する。結果、炭素材料の形態としては、球状、塊状、粉状、薄膜状、繊維状等様々な形態が存在する。従来技術の2000℃以上での加熱を採用すると、生成するカーボン微粒子の粒径がμmオーダーと粒径が大きく球状になるので、赤外線の吸収率が低かった。   Here, the density, particle size, and particle size of carbon vary greatly depending on the raw material and the production method. For example, in addition to the heat treatment conditions, the substance changes into various forms depending on the presence / absence / type of element to be added. As a result, the carbon material has various forms such as a spherical shape, a lump shape, a powder shape, a thin film shape, and a fibrous shape. When the conventional heating at 2000 ° C. or higher is adopted, the particle size of the generated carbon fine particles is large on the order of μm and becomes spherical, so that the infrared absorption rate is low.

また、共存させたホウ化物は、本発明方法の温度範囲とすると、カーボン微粒子とホウ化物との化学反応が進行せず、セラミックス粒子の表面にカーボン微粒子を固定する作用を発揮することができる。   Further, when the coexisting boride is within the temperature range of the method of the present invention, the chemical reaction between the carbon fine particles and the boride does not proceed, and the action of fixing the carbon fine particles to the surface of the ceramic particles can be exhibited.

製造される赤外線放射用複合セラミックス材料の赤外線放射能力の向上の観点からは、前記非酸化雰囲気中にはアルゴン、クリプトン及びキセノンからなる群から選択される1以上の希ガスを含むことが望ましい。   From the viewpoint of improving the infrared radiation ability of the manufactured composite ceramic material for infrared radiation, it is desirable that the non-oxidizing atmosphere contains one or more rare gases selected from the group consisting of argon, krypton and xenon.

上記課題を解決する本発明の赤外線放射用複合セラミックス材料は、100nm以上、300nm以下の平均粒径をもつカーボン微粒子と、
該カーボン微粒子に表面が被覆され且つ該カーボン微粒子より平均粒径が大きいセラミックス粒子と、を有し、
該カーボン微粒子及び該セラミックス粒子が接する部位近傍にホウ化物を含有することを特徴とする。
The composite ceramic material for infrared radiation according to the present invention that solves the above-mentioned problems includes carbon fine particles having an average particle size of 100 nm or more and 300 nm or less,
Ceramic particles having a surface coated with the carbon fine particles and an average particle size larger than the carbon fine particles,
A boride is contained in the vicinity of a portion where the carbon fine particles and the ceramic particles are in contact with each other.

本発明の赤外線放射用複合セラミックス材料は上記方法にて製造されるものの1種であり、ホウ化物によりカーボン微粒子がセラミックス粒子の表面に固定(接着)されたものである。   The composite ceramic material for infrared radiation of the present invention is one of those produced by the above-described method, in which carbon fine particles are fixed (adhered) to the surface of the ceramic particles with a boride.

そして、セラミックス粒子は炭化ジルコニウムであり、ホウ化物はホウ素とランタンとを含むものであることが望ましい。特に、前記カーボン微粒子は不定形炭素から構成されることが望ましい。   The ceramic particles are preferably zirconium carbide, and the boride preferably contains boron and lanthanum. In particular, the carbon fine particles are preferably composed of amorphous carbon.

ここで、前記カーボン微粒子と前記炭化ジルコニウム粒子との質量比は5:95〜8:92であることが望ましい。   Here, the mass ratio between the carbon fine particles and the zirconium carbide particles is preferably 5:95 to 8:92.

そして、前記カーボン微粒子の平均粒径は100nm以上、3000nm以下であることが望ましい。また、本発明の赤外線放射用複合セラミックス材料は平均粒径が0.5μm以上、10μm以下が望ましい。   The average particle size of the carbon fine particles is preferably 100 nm or more and 3000 nm or less. The composite ceramic material for infrared radiation of the present invention preferably has an average particle size of 0.5 μm or more and 10 μm or less.

上記課題を解決する本発明の調理器具用部材は、基体と、上述の赤外線放射用複合セラミックス材料からなるセラミックス微粉末を含有し該基体を被覆する内部層とフッ素樹脂を含有し該内部層を被覆する外部層とからなる被膜と、を有することを特徴とする。   A member for a cooking utensil according to the present invention that solves the above-mentioned problems includes a base, a ceramic fine powder made of the above-mentioned composite ceramic material for infrared radiation, an inner layer that covers the base, and a fluororesin. And an outer layer to be coated.

また、上記課題を解決する本発明の別の調理器具用部材は、基体と、請求項2〜8のいずれかに記載の赤外線放射用複合セラミックス材料からなるセラミックス微粉末と、該セラミックス微粉末を分散するフッ素樹脂とを含有し該基体を被覆する被膜と、を有することを特徴とする。   Further, another cooking utensil member of the present invention for solving the above-mentioned problems comprises a base, a ceramic fine powder comprising the composite ceramic material for infrared radiation according to any one of claims 2 to 8, and the ceramic fine powder. And a coating film containing the fluororesin to be dispersed and covering the substrate.

前記セラミックス微粉末は前記被膜の質量を基準として10質量%〜40質量%であることが望ましい。   The ceramic fine powder is preferably 10% by mass to 40% by mass based on the mass of the coating film.

調理器具用部材としては炊飯器の内釜への適用が挙げられる。   The cooking utensil member may be applied to the inner pot of a rice cooker.

以下、本発明の赤外線放射用複合セラミックス材料及びその製造方法について実施形態に基づき詳細に説明を行う。本発明の赤外線放射用複合セラミックス材料は適用する製品中に含有(練り込みなど)させたり、表面に塗布させて用いることができる。例えば、(1)炊飯器、オーブン、フライパン、鍋などの調理器具用部材や冷蔵庫、(2)暖房器具(ガス/石油/電気ストーブ、パネルヒータ、電気コタツ、床・壁面暖房、エアコン、工場/体育館/屋内プール/ゴルフ練習場の暖房、サウナ、畜舎暖房など)の発熱体、(3)繊維に練り込んで製造した赤外線放射繊維(被服、絨毯、カーテン、靴の中敷きなどに応用される)、寝具(マッドレス、ベッドパッド、枕など)、(4)タイル、陶磁器、風呂釜などのセラミックス製品、プラスチック製品中に含有させる、(5)産業用乾燥機(塗料、印刷物、織物の染色、陶磁器の絵付け、高度無機化学品粉末、もみ、穀類、豆類など)、(6)その他産業用(せんべいの焼成、コーヒー豆の焙煎、液晶ディスプレー用ガラス基板の加熱など)、(7)センサー・計測(赤外線センサー、放射温度計、サーモグラフィー、体温計、防犯装置、センサーライド、赤外線通信など)、(8)医療・バイオ(ハイパーサーミア(癌の温熱療法)、赤外線治療器、レーザーメス、眼底画像撮影など)などの用途が考えられる。本実施形態の赤外線放射用複合セラミックス材料は非晶質のカーボン微粒子で表面が覆われており、表面への化学物質の吸着効果の発現が期待できる。従って、消臭効果を期待する消臭材料としての応用も考えられる。   Hereinafter, the composite ceramic material for infrared radiation of the present invention and the manufacturing method thereof will be described in detail based on the embodiments. The composite ceramic material for infrared radiation of the present invention can be used by being contained (kneaded or the like) in a product to be applied or applied to the surface. For example, (1) cooking appliances such as rice cookers, ovens, frying pans, pans, refrigerators, (2) heating appliances (gas / petroleum / electric stoves, panel heaters, electric kotatsu, floor / wall heating, air conditioners, factory / Heating element of gymnasium / indoor pool / golf driving range, sauna, barn heating, etc.) (3) Infrared radiation fibers kneaded into fibers (applied to clothing, carpets, curtains, insoles, etc.) , Bedding (Mudless, bed pad, pillow, etc.), (4) Tile, ceramics, bath pots and other ceramic products, plastic products, (5) Industrial dryers (paints, printed materials, textile dyeing, ceramics) (6) Other industrial use (baking of rice crackers, roasting of coffee beans, heating of glass substrates for liquid crystal displays, etc.) ), (7) Sensors / measurements (infrared sensors, radiation thermometers, thermography, thermometers, security devices, sensor rides, infrared communications, etc.), (8) medical / bio (hyperthermia (cancer thermotherapy), infrared therapy devices, Applications such as laser scalpel and fundus image photography are conceivable. The surface of the composite ceramic material for infrared radiation according to the present embodiment is covered with amorphous carbon fine particles, and it can be expected that a chemical substance is adsorbed on the surface. Therefore, application as a deodorizing material that expects a deodorizing effect is also conceivable.

(赤外線放射用複合セラミックス材料の製造方法)
本実施形態の赤外線放射用複合セラミックス材料の製造方法は、セラミックス粒子を加熱処理する工程(加熱処理工程)を有する。
(Production method of composite ceramic material for infrared radiation)
The manufacturing method of the composite ceramic material for infrared radiation of this embodiment has the process (heat-processing process) of heat-processing ceramic particles.

加熱処理工程は、カーボン供給材料及びホウ化物の存在下、セラミックス粒子を加熱することで行う工程である。本工程は非酸化雰囲気下で行う。非酸化雰囲気としては特に限定しないが、アルゴン、クリプトン、キセノン、ヘリウムなどの希ガスや、その他、窒素、水素などの非酸化性の雰囲気が実現できるガスの存在下、又は真空状態が挙げられる。特に、希ガスなどの非活性ガスの存在下とすることが望ましい。希ガスの中でもアルゴン、クリプトン及びキセノンからなる群から選択される1以上のガス乃至混合ガスを選択することで製造される赤外線放射用複合セラミックス材料の赤外線の放射能力が向上する。   The heat treatment step is a step performed by heating the ceramic particles in the presence of the carbon feed material and the boride. This step is performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere is not particularly limited, and examples thereof include a rare gas such as argon, krypton, xenon, and helium, and the presence of a gas capable of realizing a non-oxidizing atmosphere such as nitrogen and hydrogen, or a vacuum state. In particular, it is desirable to be in the presence of an inert gas such as a rare gas. Among the rare gases, the infrared radiation ability of the composite ceramic material for infrared radiation is improved by selecting one or more gas or mixed gas selected from the group consisting of argon, krypton and xenon.

本工程は1000℃以上1200℃以下の温度範囲にて処理される工程である。この温度範囲にすることで、生成するカーボン微粒子及びホウ化物の性状が優れたものになる。具体的には生成するカーボン微粒子及びホウ化物が前述したような赤外線放射に優れた形態になる。   This process is a process processed in the temperature range of 1000 degreeC or more and 1200 degrees C or less. By making it into this temperature range, the properties of the generated carbon fine particles and boride are excellent. Specifically, the fine carbon particles and borides that are produced are in a form excellent in infrared radiation as described above.

セラミックス粒子としては特に限定しないが、金属炭化物、金属酸化物、金属窒化物、例えば、炭化ジルコニウム、炭化タングステン、アルミナ、シリカや、それらの複合酸化物が挙げられる。セラミックス粒子の粒径は最終的に必要になる本実施形態の赤外線放射用複合セラミックス材料の大きさにより適正に選択可能である。例えば、炊飯器の内釜や、繊維に練り込むなど、他の製品中に含有させて使用する場合にはその製品の大きさ(炊飯器の内釜や繊維に練り込む用途では5μm以下、3μm以下など)によって適正に選択可能である。   Although it does not specifically limit as ceramic particle | grains, Metal carbide, a metal oxide, metal nitride, for example, zirconium carbide, tungsten carbide, alumina, silica, and those complex oxides are mentioned. The particle size of the ceramic particles can be appropriately selected depending on the size of the composite ceramic material for infrared radiation of the present embodiment that is finally required. For example, when it is used in other products such as kneaded in the inner pot of a rice cooker or fiber, the size of the product (5 μm or less, 3 μm for applications kneaded in the inner pot or fiber of a rice cooker) The following can be selected appropriately.

カーボン供給材料としては1000℃以上1200℃以下の加熱条件において炭化する材料であれば特に限定されないが、気体乃至液体状であることが望ましい。特に、前述の加熱条件において気体化する材料であることが望ましい。例えば、ブタン、プロパン、メタンなどの炭化水素ガスや、メタノール、エタノールなどのアルコールが挙げられる。   The carbon supply material is not particularly limited as long as it is a material that is carbonized under a heating condition of 1000 ° C. or higher and 1200 ° C. or lower, but it is preferably a gas or liquid. In particular, it is desirable that the material be gasified under the above heating conditions. For example, hydrocarbon gases such as butane, propane, and methane, and alcohols such as methanol and ethanol can be used.

生成するカーボン微粒子としては粒径が小さくなることが望ましい。例えば、粒径が300nm以下、特に200nm以下とすることが望ましい。粒径を小さくする方法としては例えば最高温度から800℃付近までの冷却速度を早くする(50〜100℃/分)方法が挙げられる。   The carbon fine particles to be produced preferably have a small particle size. For example, the particle size is desirably 300 nm or less, particularly 200 nm or less. Examples of a method for reducing the particle size include a method of increasing the cooling rate from the maximum temperature to around 800 ° C. (50 to 100 ° C./min).

ホウ化物としては特に限定しない。例えば、金属ホウ化物が挙げられる。金属ホウ化物は、融点、硬度、熱伝導性、電気伝導性が高く、化学的にも安定な化合物である。その中でもLaBやCeBなどに代表される希土類系ホウ化物は、優れた熱・電気伝導性を有する。LaB、CeBは、熱電子放射性(放出特性)を示すことが知られ、半導体(EuB、V)、熱伝導(VB)、強磁性(EuB)など電気的、磁気的特性を示すものが知られており、LaBは特に熱電子放出特性に優れた伝導性セラミックス結合体素材である。その他に、ホウ化物として、希土類ホウ化物(RB、RB、RB、RB12(Rは希土類:Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLu):その中でも、ホウ化ランタン、ホウ化カルシウムなど)、ホウ砂、ホウ化などが好ましい例として挙げられる。本発明では、特にホウ化ランタンが望ましい。 The boride is not particularly limited. For example, a metal boride is mentioned. Metal boride is a chemically stable compound having a high melting point, hardness, thermal conductivity, and electrical conductivity. Among them, rare earth borides represented by LaB 6 and CeB 6 have excellent thermal and electrical conductivity. LaB 6 and CeB 6 are known to exhibit thermionic emission (emission characteristics), such as semiconductors (EuB 6 , V 6 B 6 ), heat conduction (VB 6 ), and ferromagnetism (EuB 6 ). LaB 6 is a conductive ceramic composite material that is particularly excellent in thermionic emission characteristics. In addition, as borides, rare earth borides (RB 2 , RB 4 , RB 6 , RB 12 (R is a rare earth: Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm, Yb and Lu): Among them, preferred examples include lanthanum boride, calcium boride, etc.), borax, boride and the like. In the present invention, lanthanum boride is particularly desirable.

(赤外線放射用複合セラミックス材料)
本実施形態の赤外線放射用複合セラミックス材料はセラミックス粒子とセラミックス粒子の表面を覆うカーボン微粒子とを有する。セラミックス粒子とカーボン微粒子との間にはホウ化物をもつ。ここで、セラミックス粒子、カーボン微粒子、ホウ化物としては、前述した製造方法にて説明したものと同じものが採用できるのでここでの説明を省略する。
(Composite ceramic materials for infrared radiation)
The composite ceramic material for infrared radiation of this embodiment has ceramic particles and carbon fine particles covering the surface of the ceramic particles. There is a boride between the ceramic particles and the carbon fine particles. Here, as the ceramic particles, the carbon fine particles, and the boride, the same ones as those described in the above-described manufacturing method can be adopted, and the description thereof is omitted here.

セラミックス粒子とカーボン微粒子との存在比はセラミックス粒子の粒径や比表面積により適正値が存在する。すなわち、セラミックス粒子の表面を隙間なく覆うことができるようにカーボン微粒子をもつことが望ましい。セラミックス粒子はカーボン微粒子の粒径よりも大きい。   The abundance ratio between the ceramic particles and the carbon fine particles has an appropriate value depending on the particle size and specific surface area of the ceramic particles. That is, it is desirable to have the carbon fine particles so that the surface of the ceramic particles can be covered without gaps. Ceramic particles are larger than the particle size of carbon fine particles.

ホウ化物の量は特に限定しないが、好ましい量としてはセラミックス粒子の比表面積に依存し、セラミックス粒子の表面にカーボン微粒子を充分に結合させることが可能な量にすることが望ましい。   The amount of boride is not particularly limited, but the preferred amount depends on the specific surface area of the ceramic particles, and is desirably an amount that can sufficiently bond the carbon fine particles to the surface of the ceramic particles.

以下、本発明の遠赤外線放射用複合セラミックス材料の製造方法の具体的な説明と、その複合セラミックス材料と一般的なセラミックス材料との比較を行う。   Hereinafter, a specific description of a method for producing a far-infrared radiation composite ceramic material of the present invention and a comparison between the composite ceramic material and a general ceramic material will be given.

(製造)
カーボン供給材料としてのブタンガスを供給しながら、セラミックス粒子としての炭化ジルコニウム(平均粒径1μm:100質量部)とホウ化ランタン(平均粒径1μm:15質量部以下)との混合物(予め、パワーミル(ダルトン)により混合した)をセラミックス板上に薄く付着させて加熱した。
(Manufacturing)
While supplying butane gas as a carbon feed material, a mixture of zirconium carbide (average particle size: 1 μm: 100 parts by mass) and lanthanum boride (average particle size: 1 μm: 15 parts by mass or less) as ceramic particles (in advance, a power mill ( Was mixed with a thin plate on a ceramic plate and heated.

加熱条件としては1000℃以上1200℃以下とした。混合物を水素ガス雰囲気下で加熱した後、設定温度になった後に、ブタンガスを供給し45分間処理した。   The heating conditions were 1000 ° C. or higher and 1200 ° C. or lower. The mixture was heated in a hydrogen gas atmosphere, and after reaching the set temperature, butane gas was supplied and treated for 45 minutes.

ブタンガスの供給量としては、炭化ジルコニウムに対して2質量%以上(3質量%以上4質量以下が好ましい)供給した。実際には、これらを焼結させる雰囲気炉の空間によりブタンガス濃度が異なるので、炉の空間に滞留している水素ガスが完全にブタンガスに交換されるのに相当するガスを送り続けた。   The amount of butane gas supplied was 2% by mass or more (preferably 3% by mass or more and 4% by mass or less) with respect to zirconium carbide. Actually, since the butane gas concentration differs depending on the space of the atmosphere furnace in which these are sintered, the gas corresponding to the replacement of the hydrogen gas staying in the furnace space with the butane gas was continued.

ブタンガス注入後は、雰囲気炉を急冷した。十分なブタンガスを送った時点で、炉内への空気の流入は未燃カーボンの酸化(発火)現象を誘発させるため、速やかにガス流入を停止した。   After the butane gas injection, the atmosphere furnace was quenched. When enough butane gas was sent, the inflow of air into the furnace caused an oxidation (ignition) phenomenon of unburned carbon, so the gas inflow was stopped immediately.

炉内の冷却速度が遅いと、カーボンの結晶化が進み、いわゆるグラファイトと呼ばれる黒鉛粒子が生成させ、遠赤外線の吸収特性を低下させてしまうからである。   This is because if the cooling rate in the furnace is slow, the crystallization of carbon proceeds, so that graphite particles called so-called graphite are generated, and the absorption characteristics of far-infrared rays are deteriorated.

従って、カーボンが再燃しない安全温度である400℃以下になるまでの冷却速度を50℃/分以上とした。この強制冷却方法には、風冷方法を採用した。冷却方法は、安全温度に急冷することができる方法であれば、風冷方法以外でも良い。   Therefore, the cooling rate until the temperature reaches 400 ° C. or lower, which is a safe temperature at which carbon does not reignite, is set to 50 ° C./min or higher. For this forced cooling method, an air cooling method was adopted. The cooling method may be other than the air cooling method as long as it can be rapidly cooled to a safe temperature.

上記製造方法としては、条件を変化させることで、生成するカーボン微粒子の粒径を変化させた。カーボン微粒子の粒径が小さくなる条件としては、1200℃〜800℃の冷却速度を早くする(例えば、50〜100℃/分)である。   As said manufacturing method, the particle diameter of the carbon fine particle to produce | generate was changed by changing conditions. As a condition for reducing the particle size of the carbon fine particles, a cooling rate of 1200 ° C. to 800 ° C. is increased (for example, 50 to 100 ° C./min).

製造したそれぞれの試料50×50×1.5mmについて赤外線放射率を測定した。具体的には、黒体及び試料を同じ温度(140℃)にして、そこから放射されるそれぞれの遠赤外線をFT−IRで測定した。(理想黒体とは全波長を100%放射している理想的な放射体のことで、実際には存在しないため、理想黒体に近いものを用いた)そして、黒体からの放射された遠赤外線量に対する試料から放射された遠赤外線量を計算し、遠赤外線放射率とした。(社)遠赤外線協会では遠赤外線加工に対して未加工品に比べて全波長域で5%以上、特定波長域で10%以上の遠赤外線放射率差があることという基準を設けている。   Infrared emissivity was measured for each manufactured sample 50 × 50 × 1.5 mm. Specifically, the black body and the sample were set to the same temperature (140 ° C.), and each far infrared ray emitted therefrom was measured by FT-IR. (An ideal black body is an ideal radiator that emits 100% of all wavelengths. Since it does not actually exist, the one close to the ideal black body was used.) The amount of far-infrared emitted from the sample with respect to the amount of far-infrared was calculated and used as the far-infrared emissivity. The Far-Infrared Association has established a standard for far-infrared processing that there is a far-infrared emissivity difference of 5% or more in the entire wavelength range and 10% or more in the specific wavelength range compared to the unprocessed product.

図1がカーボン微粒子の粒子径が小さいもの(実施例1)、図2がカーボン微粒子の粒子径が大きいもの(実施例2)の測定結果である。そして、実施例1の試料のSEM写真を図3に示す。後述する比較例1の炭化ジルコニウムの表面と比較して、塊状のカーボン微粒子(実施例1のカーボン微粒子の方が粒径が小さい)が付着していることが明らかになった。   FIG. 1 shows the measurement results of the carbon fine particles having a small particle diameter (Example 1), and FIG. 2 shows the carbon fine particles having a large particle diameter (Example 2). And the SEM photograph of the sample of Example 1 is shown in FIG. It became clear that massive carbon fine particles (the carbon fine particles of Example 1 have a smaller particle size) were attached as compared to the surface of zirconium carbide of Comparative Example 1 described later.

そして、遠赤外線放射率として、波長4.0〜14μmの遠赤外線放射率の平均値をそれぞれについて求めた。粒子径が小さいものは、遠赤外線放射率が94.5%で、大きいものが92%である。これより、両粒子径ともに黒体に近い遠赤外線放射率であり、粒子径が小さい方がより遠赤外線放射率が高いと思われる。   And as a far-infrared emissivity, the average value of the far-infrared emissivity of wavelength 4.0-14 micrometers was calculated | required about each. Those with a small particle diameter have a far-infrared emissivity of 94.5% and those with a large particle size of 92%. From this, both particle diameters are far-infrared emissivities close to a black body, and it seems that the far-infrared emissivity is higher when the particle diameter is smaller.

本発明の製造方法で試作加工した遠赤外線放射用複合セラミックス材料と比較するため、炭化ジルコニウム(比較例1)、アルミナ(比較例2)、酸化チタン(比較例3)、シリカ(比較例4)、炭化ケイ素(比較例5)、炭(比較例6)、ダイヤモンド(比較例7)及びアルミニウム(比較例8)のそれぞれの単体状態での遠赤外線放射率を測定した。測定結果のチャートが図4〜11である。そして、それぞれの遠赤外線放射率の平均値は、炭化ジルコニウムが88%、アルミナが86%、酸化チタンが58%、シリカが79%、炭化珪素が86%、炭が92%、ダイヤモンドが86%、アルミニウムが60%であった。特に比較例1における試料のSEM写真を図12に示す。   Zirconium carbide (Comparative Example 1), Alumina (Comparative Example 2), Titanium Oxide (Comparative Example 3), Silica (Comparative Example 4) , Silicon carbide (Comparative Example 5), charcoal (Comparative Example 6), diamond (Comparative Example 7), and aluminum (Comparative Example 8) were measured for far-infrared emissivity in a single state. The measurement result charts are shown in FIGS. The average values of the far-infrared emissivities are 88% for zirconium carbide, 86% for alumina, 58% for titanium oxide, 79% for silica, 86% for silicon carbide, 92% for charcoal, and 86% for diamond. Aluminum was 60%. In particular, an SEM photograph of the sample in Comparative Example 1 is shown in FIG.

この結果から明らかなように、本実施例の赤外線放射用複合セラミックス材料は高い赤外線放射能を示すことが判った。特に、カーボン微粒子の粒径が小さい実施例1の試験試料では炭を凌ぐような効果が得られた。   As is apparent from this result, it was found that the composite ceramic material for infrared radiation of this example showed high infrared radiation. In particular, the test sample of Example 1 in which the particle size of the carbon microparticles is small has an effect that surpasses that of charcoal.

そして、本実施例の赤外線放射複合セラミックス材料は、遠赤外線による伝熱である放射伝熱だけでなく、ホウ化物の特性として伝導伝熱による伝熱効果も有する。つまり、2種類の伝熱効果による加熱効果を期待することができる。   And the infrared radiation composite ceramic material of a present Example has not only the radiant heat transfer which is the heat transfer by a far-infrared ray, but also has the heat transfer effect by a conductive heat transfer as a characteristic of a boride. That is, the heating effect by two types of heat transfer effects can be expected.

実施例1の赤外線放射用複合セラミックス材料(カーボン微粒子の粒径が小さいもの)における赤外線放射率を示すIRチャートである。2 is an IR chart showing infrared emissivity in a composite ceramic material for infrared radiation of Example 1 (one having a small particle size of carbon fine particles). 実施例2の赤外線放射用複合セラミックス材料(カーボン微粒子の粒径が大きいもの)における赤外線放射率を示すIRチャートである。6 is an IR chart showing the infrared emissivity of the composite ceramic material for infrared radiation of Example 2 (one having a large particle size of carbon fine particles). 実施例1の赤外線放射用複合セラミックス材料のSEM写真である。2 is an SEM photograph of the composite ceramic material for infrared radiation of Example 1. 比較例1(炭化ジルコニウム)の赤外線放射率を示すIRチャートである。It is IR chart which shows the infrared emissivity of the comparative example 1 (zirconium carbide). 比較例2(アルミナ)の赤外線放射率を示すIRチャートである。It is IR chart which shows the infrared emissivity of the comparative example 2 (alumina). 比較例3(酸化チタン)の赤外線放射率を示すIRチャートである。It is IR chart which shows the infrared emissivity of the comparative example 3 (titanium oxide). 比較例4(シリカ)の赤外線放射率を示すIRチャートである。It is IR chart which shows the infrared emissivity of the comparative example 4 (silica). 比較例5(炭化ケイ素)の赤外線放射率を示すIRチャートである。It is IR chart which shows the infrared emissivity of the comparative example 5 (silicon carbide). 比較例6(炭)の赤外線放射率を示すIRチャートである。It is IR chart which shows the infrared emissivity of the comparative example 6 (charcoal). 比較例7(ダイヤモンド)の赤外線放射率を示すIRチャートである。It is IR chart which shows the infrared emissivity of the comparative example 7 (diamond). 比較例8(アルミニウム)の赤外線放射率を示すIRチャートである。It is IR chart which shows the infrared emissivity of the comparative example 8 (aluminum). 比較例1の赤外線放射用複合セラミックス材料のSEM写真である。4 is an SEM photograph of a composite ceramic material for infrared radiation of Comparative Example 1.

Claims (13)

非酸化雰囲気下、カーボン供給材料及びホウ化物を存在させて、セラミックス粒子を1000℃以上、1200℃以下で処理する工程を有することを特徴とする赤外線放射用複合セラミックス材料の製造方法。   A method for producing a composite ceramic material for infrared radiation, comprising a step of treating ceramic particles at 1000 ° C. or more and 1200 ° C. or less in the presence of a carbon feed material and a boride in a non-oxidizing atmosphere. 前記非酸化雰囲気中にはアルゴン、クリプトン及びキセノンからなる群から選択される1以上の希ガスを含む請求項1に記載の赤外線放射用複合セラミックス材料の製造方法。   The method for producing a composite ceramic material for infrared radiation according to claim 1, wherein the non-oxidizing atmosphere contains one or more rare gases selected from the group consisting of argon, krypton, and xenon. 前記セラミックス粒子と該セラミックス粒子の周りを覆うカーボン微粒子とを有し、請求項1又は2に記載の製造方法にて製造しうる赤外線放射用複合セラミックス材料。   The composite ceramic material for infrared radiation which has the said ceramic particle and the carbon fine particle which covers the circumference | surroundings of this ceramic particle, and can be manufactured with the manufacturing method of Claim 1 or 2. 100nm以上、300nm以下の平均粒径をもつカーボン微粒子と、
該カーボン微粒子に表面が被覆され且つ該カーボン微粒子より平均粒径が大きいセラミックス粒子と、を有し、
該カーボン微粒子及び該セラミックス粒子が接する部位近傍にホウ化物を含有することを特徴とする赤外線放射用複合セラミックス材料。
Carbon fine particles having an average particle diameter of 100 nm or more and 300 nm or less;
Ceramic particles having a surface coated with the carbon fine particles and an average particle size larger than the carbon fine particles,
A composite ceramic material for infrared radiation, comprising a boride in the vicinity of a portion in contact with the carbon fine particles and the ceramic particles.
前記セラミックス粒子は炭化ジルコニウムであり、
前記ホウ化物はホウ素とランタンとを含む請求項2〜4のいずれかに記載の赤外線放射用複合セラミックス材料。
The ceramic particles are zirconium carbide,
The composite ceramic material for infrared radiation according to claim 2, wherein the boride contains boron and lanthanum.
前記カーボン微粒子は不定形炭素から構成される請求項3〜5のいずれかに記載の赤外線放射用複合セラミックス材料。   The composite ceramic material for infrared radiation according to any one of claims 3 to 5, wherein the carbon fine particles are composed of amorphous carbon. 前記カーボン微粒子と前記炭化ジルコニウム粒子との質量比は5:95〜8:92である請求項5又は6に記載の赤外線放射用複合セラミックス材料。   The composite ceramic material for infrared radiation according to claim 5 or 6, wherein a mass ratio of the carbon fine particles to the zirconium carbide particles is 5:95 to 8:92. 前記カーボン微粒子の平均粒径は100nm以上、3000nm以下である請求項2〜7のいずれかに記載の赤外線放射用複合セラミックス材料。   The composite particle material for infrared radiation according to any one of claims 2 to 7, wherein the carbon fine particles have an average particle size of 100 nm or more and 3000 nm or less. 平均粒径が0.5μm以上、10μm以下である請求項2〜8のいずれかに記載の赤外線放射用複合セラミックス材料。   The composite ceramic material for infrared radiation according to any one of claims 2 to 8, wherein the average particle size is 0.5 µm or more and 10 µm or less. 基体と、
請求項2〜9のいずれかに記載の赤外線放射用複合セラミックス材料からなるセラミックス微粉末を含有し該基体を被覆する内部層とフッ素樹脂を含有し該内部層を被覆する外部層とからなる被膜と、
を有することを特徴とする調理器具用部材。
A substrate;
A film comprising a ceramic fine powder comprising the composite ceramic material for infrared radiation according to any one of claims 2 to 9 and comprising an inner layer covering the substrate and an outer layer containing a fluororesin and covering the inner layer When,
A member for cooking utensils characterized by comprising:
基体と、
請求項2〜9のいずれかに記載の赤外線放射用複合セラミックス材料からなるセラミックス微粉末と、
該セラミックス微粉末を分散するフッ素樹脂とを含有し該基体を被覆する被膜と、
を有することを特徴とする調理器具用部材。
A substrate;
Ceramic fine powder comprising the composite ceramic material for infrared radiation according to any one of claims 2 to 9,
A coating containing a fluororesin in which the ceramic fine powder is dispersed and covering the substrate;
A member for cooking utensils characterized by comprising:
前記セラミックス微粉末は前記被膜の質量を基準として10質量%〜40質量%である請求項10又は11に記載の調理器具用部材。   The said ceramic fine powder is 10 mass%-40 mass% on the basis of the mass of the said film, The member for cooking appliances of Claim 10 or 11. 請求項10〜12のいずれかに記載の調理器具用部材からなる内釜を有することを特徴とする炊飯器。   A rice cooker having an inner pot made of the cooking utensil member according to claim 10.
JP2006356478A 2006-12-28 2006-12-28 Composite ceramic material for far-infrared radiation, manufacturing method thereof, cooking utensil member and rice cooker Active JP5147101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006356478A JP5147101B2 (en) 2006-12-28 2006-12-28 Composite ceramic material for far-infrared radiation, manufacturing method thereof, cooking utensil member and rice cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356478A JP5147101B2 (en) 2006-12-28 2006-12-28 Composite ceramic material for far-infrared radiation, manufacturing method thereof, cooking utensil member and rice cooker

Publications (2)

Publication Number Publication Date
JP2008162866A true JP2008162866A (en) 2008-07-17
JP5147101B2 JP5147101B2 (en) 2013-02-20

Family

ID=39692836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356478A Active JP5147101B2 (en) 2006-12-28 2006-12-28 Composite ceramic material for far-infrared radiation, manufacturing method thereof, cooking utensil member and rice cooker

Country Status (1)

Country Link
JP (1) JP5147101B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976796A (en) * 2012-12-21 2013-03-20 广东顺祥陶瓷有限公司 Household porcelain glaze with far infrared ray function and preparation method of household porcelain glaze
WO2014141319A1 (en) * 2013-03-13 2014-09-18 株式会社エルブ Stress-reducing member for living body
JP5911158B1 (en) * 2015-10-16 2016-04-27 株式会社エルブ Infrared radiation resin composition and rice cooker
JP2018015538A (en) * 2016-07-13 2018-02-01 株式会社大木工藝 Hair iron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7340809B2 (en) * 2019-04-01 2023-09-08 ヤマキ電器株式会社 Nanocarbon composite ceramics and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257920A (en) * 1994-03-15 1995-10-09 Agency Of Ind Science & Technol Spherical carbon-boride ceramic composite and production thereof
JP2000281933A (en) * 1999-03-29 2000-10-10 Denki Kagaku Kogyo Kk Carbon black and its preparation and electrically- conductive composition
JP2002167266A (en) * 2000-09-19 2002-06-11 Mie Prefecture Conductive ceramic composite material
JP2003276129A (en) * 2002-03-26 2003-09-30 Osaka Gas Co Ltd Coating structure having far infrared ray effect
JP2006016661A (en) * 2004-07-01 2006-01-19 Utec:Kk Coated-particulate, cvd system, cvd film deposition method, microcapsule and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257920A (en) * 1994-03-15 1995-10-09 Agency Of Ind Science & Technol Spherical carbon-boride ceramic composite and production thereof
JP2000281933A (en) * 1999-03-29 2000-10-10 Denki Kagaku Kogyo Kk Carbon black and its preparation and electrically- conductive composition
JP2002167266A (en) * 2000-09-19 2002-06-11 Mie Prefecture Conductive ceramic composite material
JP2003276129A (en) * 2002-03-26 2003-09-30 Osaka Gas Co Ltd Coating structure having far infrared ray effect
JP2006016661A (en) * 2004-07-01 2006-01-19 Utec:Kk Coated-particulate, cvd system, cvd film deposition method, microcapsule and its production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976796A (en) * 2012-12-21 2013-03-20 广东顺祥陶瓷有限公司 Household porcelain glaze with far infrared ray function and preparation method of household porcelain glaze
WO2014141319A1 (en) * 2013-03-13 2014-09-18 株式会社エルブ Stress-reducing member for living body
CN105073189A (en) * 2013-03-13 2015-11-18 株式会社爱入府 Stress-reducing member for living body
JP5920906B2 (en) * 2013-03-13 2016-05-25 株式会社エルブ Method for manufacturing bedding
JPWO2014141319A1 (en) * 2013-03-13 2017-02-16 株式会社エルブ Method for manufacturing bedding
JP5911158B1 (en) * 2015-10-16 2016-04-27 株式会社エルブ Infrared radiation resin composition and rice cooker
JP2018015538A (en) * 2016-07-13 2018-02-01 株式会社大木工藝 Hair iron

Also Published As

Publication number Publication date
JP5147101B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5147101B2 (en) Composite ceramic material for far-infrared radiation, manufacturing method thereof, cooking utensil member and rice cooker
JP2624291B2 (en) Far infrared heater
CN108886838A (en) Infrared heating unit
WO2006129829A1 (en) Technological development for carrying out cooking and chemical reaction, chemical synthesis, metal working, metal crystallization, metal sintering and metallurgy by heating pottery with microwave for converting into far infrared or infrared wave radiation from pottery with increased heat efficiency
JP2010029666A (en) Apparatus for heating of molding, in particular dental-ceramic moldings and the like
TWM275532U (en) Thermally matched support ring for substrate processing chamber
EP2468157B1 (en) Apparatus for cooking by heat convection comprising temperature control layer
KR20190056767A (en) Coating Composition for Heating Cookware Comprising Spherical Graphene Powder and Heating Cookware
KR101789709B1 (en) Far infrared high emission ceramics coating method of heating cookware
KR20120073507A (en) Energy saving ceramic coating heat-cooker
US20030121421A1 (en) Far infrared uniform-heating cookware
KR20030091175A (en) Ceramic heating element and method of the same
KR102135465B1 (en) Dryer coated with far infrared rays for easy hair styling
CA3027140A1 (en) Dental furnace
US20070185260A1 (en) Heat-resisting silicone materials containing inorganic ceramic hollow microspheres
JP5911158B1 (en) Infrared radiation resin composition and rice cooker
KR102086954B1 (en) Far-infrared ray hair dryer
JPS60134126A (en) Far infrared ray radiant material
KR20170089548A (en) Energy saving ceramic heat-cooker
KR101736961B1 (en) Heating apparatus using radiator panel
JPH01235550A (en) Baking of food
JP2685370B2 (en) Ceramics heater
KR100564822B1 (en) Photo Biotic Rays Shower Clinic System
KR102285636B1 (en) Cooking vessel with insulation coating layer and its manufacture method
JPH0321501B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5147101

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250