WO2014140896A2 - Metodo para el diagnostico, pronostico y tratamiento de la metastasis de un cancer - Google Patents

Metodo para el diagnostico, pronostico y tratamiento de la metastasis de un cancer Download PDF

Info

Publication number
WO2014140896A2
WO2014140896A2 PCT/IB2014/001128 IB2014001128W WO2014140896A2 WO 2014140896 A2 WO2014140896 A2 WO 2014140896A2 IB 2014001128 W IB2014001128 W IB 2014001128W WO 2014140896 A2 WO2014140896 A2 WO 2014140896A2
Authority
WO
WIPO (PCT)
Prior art keywords
expression
gene
maf
cancer
levels
Prior art date
Application number
PCT/IB2014/001128
Other languages
English (en)
French (fr)
Other versions
WO2014140896A9 (es
WO2014140896A3 (es
Inventor
Roger GOMIS
Anna ARNAL
Maria TARRAGONA
Milica Pavlovic
Evarist Planet
Original Assignee
Fundacio Privada Institut De Recerca Biomedica
Fundacio Privada Institucio Catalana de Recerca i Estudis Avancats
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2015011373A priority Critical patent/MX368575B/es
Priority to EP17181286.0A priority patent/EP3272880B1/en
Priority to US14/776,453 priority patent/US20160040247A1/en
Priority to KR1020157027318A priority patent/KR20150122786A/ko
Application filed by Fundacio Privada Institut De Recerca Biomedica, Fundacio Privada Institucio Catalana de Recerca i Estudis Avancats filed Critical Fundacio Privada Institut De Recerca Biomedica
Priority to AU2014229563A priority patent/AU2014229563B2/en
Priority to BR112015023510A priority patent/BR112015023510A2/pt
Priority to CA2903306A priority patent/CA2903306A1/en
Priority to JP2015562396A priority patent/JP2016518815A/ja
Priority to CN201480015519.5A priority patent/CN105431548A/zh
Priority to EP14752365.8A priority patent/EP2975138A2/en
Publication of WO2014140896A2 publication Critical patent/WO2014140896A2/es
Publication of WO2014140896A3 publication Critical patent/WO2014140896A3/es
Priority to US15/944,499 priority patent/US11591599B2/en
Publication of WO2014140896A9 publication Critical patent/WO2014140896A9/es
Priority to US18/154,295 priority patent/US20230323356A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Definitions

  • the present invention relates to methods for determining the probability that a subject affected by a cancer, in particular breast, colon, lung, kidney or thyroid cancer, develops metastases, as well as methods of designing personalized therapies for a subject affected by cancer, in particular breast, colon, lung, kidney or thyroid cancer.
  • Such methods comprise determining the level of expression of a set of genes whose expression is related to that of the c-MAF gene.
  • the invention also relates to the use of PTHLH, PODXL inhibitors and RERG activators in the treatment and / or prevention of metastasis of a cancer, in particular breast, colon, lung, kidney or thyroid cancer.
  • breast cancer is the second most common type of cancer (10.4%; after lung cancer) and the fifth most common cause of cancer death (after lung cancer, stomach cancer, liver cancer , and colon cancer).
  • breast cancer is the most common cause of cancer death.
  • breast cancer produced 502,000 deaths worldwide (7% of cancer deaths; almost 1% of all deaths).
  • the number of global cases has increased significantly since the 1970s, a phenomenon partially blamed on modern lifestyles in the western world.
  • All cells have receptors on their surface, in their cytoplasm and in the cell nucleus. Certain chemical messengers such as hormones bind to these receptors and this causes changes in the cell.
  • estrogen receptor ER
  • PR progesterone receptor
  • HER2 / neu the third most common cause of cancer death.
  • ER positive ER +
  • ER negative ER-
  • PR + positive
  • PR negative PR-
  • HER2 + positive
  • HER2 negative HER2-
  • Receptor status has become a critical evaluation of all breast cancers, since it determines the suitability of the use of specific treatments, for example, tamoxifen or trastuzumab.
  • the estrogen receptor alpha (ER) isoform is overexpressed in about 65% of diagnosed breast cancer cases. This type of breast cancer is referred to as "ER-positive" (ER +). In this case, the binding of estrogen to ER stimulates the proliferation of tumor mammary cells. ER + tumor cells are highly dependent on this stimulus to proliferate so that ER is currently used as a therapeutic target.
  • Patent application EP1961825-A1 describes a method to predict the occurrence of metastases from breast to bone, lung, liver or brain cancer, which comprises determining in a sample of tumor tissue the level of expression of one or more markers with respect to its corresponding level of expression in a control sample, among which is c-MAF.
  • c-MAF a control sample
  • Bos, PD, et al. [Nature, 2009, 459: 1005-1009] describes genes involved in the metastasis of breast cancer to the brain.
  • Patent application US2005 / 0181375 describes methods for the detection of metastatic breast cancer based on the detection of expression levels of a series of genes that are regulated up or down in metastatic tumors and, in particular, in tumors that metastasize to the brain.
  • the authors of the present invention have identified a group of genes whose expression is increased or decreased in breast tumor samples as a result of changes in the expression of the c-MAF gene. Through experiments of function gain and clinical correlation data, the authors have validated the role of these genes and, in particular, of the RERG gene, whose expression is inversely correlated with that of c-MAF, and of the PTHLH and PODXL genes, whose expression is directly correlated with that of c-MAF, as prognostic markers of bone metastasis of ER + breast cancer.
  • the invention relates to an in vitro method for predicting the metastasis of a cancer, in particular breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer, in a subject comprising determining the level of expression in a tumor tissue sample of said subject of one or more genes whose expression is modulated in response to an increase in c-MAF expression levels in said tumor where altered expression levels of said one or more genes with respect to a reference value are indicative of high risk of metastasis development.
  • the invention relates to an in vitro method for designing a personalized therapy for a subject affected by a cancer, in particular breast, colon, lung, kidney or thyroid cancer, more particularly cancer of breast, which comprises determining the level of expression in a tumor tissue sample of said subject of one or more genes whose expression is modulated in response to an increase in c-MAF expression levels where altered expression levels of said one or more genes with respect to a reference value are indicative that said subject is susceptible to receiving a therapy aimed at preventing metastasis.
  • the invention relates to the use of an agent that inhibits the expression of a gene or the activity of the expression product of said gene for the preparation of a medicament for the treatment and / or prevention of metastasis of a cancer, in particular breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer, wherein said gene is characterized in that its expression in tumor cells, in particular breast, colon, of lung, kidney or thyroid, more particularly breast, increases in response to an increase in c-MAF expression levels in these cells or decreases in response to a decrease in c-MAF expression levels in said cells.
  • the invention relates to the use of an agent that stimulates the expression of a gene or the activity of the expression product of said gene for the preparation of a medicament for the treatment and / or prevention of metastasis of a gene.
  • cancer in particular breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer, wherein said gene is characterized in that its expression in tumor cells, in particular of breast, colon, of lung, kidney or thyroid, more particularly breast, decreases in response to an increase in c-MAF expression levels in said cells or because its expression increases in response to a decrease in c- expression levels MAF in said cells.
  • the invention relates to an in vitro method for the identification of a marker gene for metastasis proneness in a subject suffering from cancer, a cancer, in particular breast, colon, lung, kidney, and kidney cancer. or thyroid, more particularly breast cancer, which comprises ( ⁇ ) Determine the expression levels of a candidate gene and c-MAF in a sample of primary cancer tumor, particularly breast cancer, and
  • ( ⁇ I) determine the change in the expression levels of said candidate gene in a population of cancer cells, in particular breast, in response to a modulation of the expression of the c-MAF gene where if the expression levels of said gene correlates in a statistically significant way with the expression of c-MAF in the sample of primary cancer tumor, particularly breast cancer, and the change in expression levels in response to the modulation of c-MAF gene expression It correlates statistically significantly with the change in the levels of said gene is indicative that said gene is a marker of propensity to metastasis in a subject.
  • FIGURES Figure 1 (A) Association of the increased (left) or decreased (right) genes of the MBP with the bone metastasis phenotype in ER + breast cancer patients ("GSEA” algorithm). (B) Association by means of the increased (left) or decreased (right) genes of the MBP with the bone metastasis phenotype in a series of bone, lung, liver and brain metastases derived from a primary breast cancer tumor (algorithm "GSEA"). The same approach for increased genes has been performed for lung, brain and liver metastases.
  • FIG. 1 A) Analysis of Ki-67 expression levels, proliferation marker, in metastatic lesions in experimental xenograft-type mouse models using ER +, moderately metastatic MCF7 breast cancer cells (parental or parental), and its derivatives feed bone metastatic (BoM2).
  • B Validation by quantitative RT-PCR of the relationship between MAF expression and the RERG gene.
  • C Bone metastasis in mice from BoM2 cells with or without MAF. The Ki-67 signal and caspase-3 activity is quantified by immunhistochemistry.
  • D The RERG gain is induced in highly metastatic cells in bone.
  • Cells are injected without or with c-MAF expression and, in the latter case, a group is treated with an inoculation of a PTHLH antagonist peptide intraperitoneally every day twice daily (12 micrograms / mouse / day) in the Left ventricle of the mouse and the appearance and growth of the bone lesion is quantified.
  • the graphic on the left shows the signal strength at the end point.
  • the graph to the right quantifies the number of osteolytic lesions in each group.
  • White triangles point to osteoclasts.
  • FIG. 4 shows the quantification of the area of the TRAP signal normalized by the perimeter.
  • Figure 4. (A) Quantification by fluorescence of the number of cells expressing high (shControl) or reduced (shMAF) levels of the c-MAF gene that adhere to a layer of bone marrow derived cells (BMSC). (B) Quantification by fluorescence of the number of cells expressing high (shControl) or reduced (shMAF # 1 or # 2) levels of the c-MAF gene that adhere to a layer of lung extracellular matrix protein such as fibronectin. In this case, an opposite effect is observed in bone marrow cells. (C) Panel of genes whose expression changes with c-MAF expression changes and that have been validated by RT-PCR.
  • PODXL a gene that expresses a protein from the family of selectins (glycoproteins) that can participate in transient and weak intercellular adhesion processes.
  • D Functional validation of the PODXL gene as responsible for adhesion to bone marrow cells by breast cancer cells that express c-MAF. Comparison with the competitive effect of a neutral peptide (RGES) or blocker (RGDS) of integrin-mediated junctions. This process is specific since it does not reproduce in human umbilical cord endothelial cells (HUVEC)
  • C-MAF inhibitor agent refers to any molecule capable of totally or partially inhibiting the expression of the c-MAF gene, both preventing the expression product of said gene from being produced (interrupting the transcription of the c-MAF gene and / or blocking the translation of the mRNA from the expression of the c-MAF gene) as directly inhibiting the activity of the c-MAF protein.
  • Inhibitors of c-MAF gene expression can be identified using methods based on the ability of the supposed inhibitor to block the ability of c-MAF to promote cell proliferation in vitro, as shown in international patent application WO2005 / 046731, based on the ability of the supposed inhibitor to block the transcription ability of a reporter gene under the control of the cyclin D2 promoter or a promoter containing the c-MAF response region (MARE or c-MAF responsive element) in cells expressing c-MAF as described in WO2008098351 or based on the ability of the alleged inhibitor to block the expression of a reporter gene under the control of the IL-4 promoter in response to stimulation with PMA / ionomycin in cells expressing NFATc2 and c-MAF as described in US20090481 17A.
  • inhibitor antibody in the context of the present invention any antibody that is capable of binding specifically to the expression product and inhibiting one or more of the functions of said protein.
  • small interfering RNA refers to duplex of small inhibitory RNAs that induce the RNA interference pathway. These molecules may vary in length (generally 18-30 base pairs) and contain varying degrees of complementarity to their target mRNAs in the antisense chain. Some SiRNA, but not all, have outstanding unpaired bases at the 5 'or 3' end of the sense strand and / or the antisense strand.
  • siRNA includes duplexes with two separate chains.
  • siRNA molecules are not limited to RNA molecules but also encompass nucleic acids with one or more chemically modified nucleotides, such as morpholinos.
  • RNA he or "short bracketed RNA” as used herein, refers to a dsRNA where the two chains are linked by an uninterrupted nucleotide chain between the 3 'end of a strand and the 5' end of the another respective strand to form a duplex structure.
  • the term "increased expression of a gene” refers to the fact that the expression levels of a gene are elevated with respect to the reference values or controls, which would correspond to the level of expression of the same gene in a control sample.
  • the expression levels of a gene are considered to be increased with respect to a reference value when the levels in the patient sample are increased by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55 %, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%: at least 85%, at least 90%, at least 95%, at least 100%, at least 10%, at least 120%, at least 130%, at least 140%, at least 150% or more.
  • c-MAF refers to a gene, also known as "v-maf musculoaponeurotic fibrosarcoma oncogene homologue” (avian), MAF or MGC71685) which is a transcription factor that contains a zipper of leucines that acts as a homodimer or as a heterodimer.
  • the encoded protein can be an activator or a transcriptional repressor.
  • the DNA sequence encoding c-MAF is described in the NCBI database under accession number NG_016440 (NCBI version corresponding to December 18, 201 1).
  • cancer refers to a disease characterized by an uncontrolled proliferation of abnormal cells capable of invading adjacent tissues and spreading to distant organs.
  • This term includes, without limitation, breast, heart, lung, small intestine, colon, spleen, kidney, bladder, head, neck, ovary, prostate, brain, pancreas, skin, bone, bone marrow, blood, thymus, uterus , testicles, hepatobiliary and liver; as well as tumors such as, without limitation, adenoma, angiosarcoma, astrocytoma, epithelial carcinoma, germinoma, glioblastoma, glioma, hemangioendothelioma, hemangiosarcoma, hematoma, hepatoblastoma, leukemia, lymphoma, medulloblastoma, melanoma, neuroblastoma, hepatom
  • This term also includes acrolentiginous melanoma, actinic adenocarcinoma, keratosis, adenoid cystic carcinoma, adenomas, adenosarcoma, adenoescamosal carcinoma, astrocytic tumors, Bartholin gland carcinoma, basal cell carcinoma, bronchial gland carcinoma, capillary carcinoid, carcinoma, carcinoma, carcinoma, carcinoma, carcinoma, carcinoma cholangiocarcinoma, cystadenoma, endodermal sinus tumor, endometrial hyperplasia, stromal endometrial sarcoma, endometrioid adenocarcinoma, ependymal sarcoma, Swing sarcoma, focal nodular hyperplasia, germ cell tumors, glioblastoma, glucagonoma, hemangioblastoma, hemangioendoma, hepatic adenoma , hepato
  • colon cancer refers to any malignant proliferative disorder of colon, rectum and appendix cells.
  • colon cancer includes any of the following stages of the disease:
  • Stage 2 disseminated cancer through the muscular wall of the colon
  • breast cancer breast cancer
  • breast cancer breast cancer
  • breast cancer breast cancer
  • TNM system TNM system.
  • the prognosis is closely linked to the results of the phase classification, and the phase classification is also used to assign patients to treatments both in clinical trials and in medical practice.
  • the information to classify in phases is as follows:
  • TX The primary tumor cannot be evaluated. T0: There is no evidence of tumor. Tis:
  • T1 The tumor is 2 cm or less.
  • T2 The tumor is more than 2 cm but less than 5 cm.
  • T3 The tumor is more than 5 cm.
  • T4 Tumor of any size that grows on the chest wall or skin, or inflammatory breast cancer.
  • NX Nearby lymph nodes cannot be evaluated.
  • the cancer has not spread to regional lymph nodes.
  • N1 The cancer has spread to 1 to 3 lymph nodes in the armpit or to one internal breast.
  • N2 The cancer has spread to 4 to 9 lymph nodes in the armpit or to multiple internal mammary nodes.
  • N3 One of the following applies:
  • the cancer has spread to 10 or more lymph nodes in the armpit, or the cancer has spread to the lymph nodes under the collarbone, or the cancer has spread to the lymph nodes Above the clavicle or cancer affects the lymph nodes in the armpit and has spread to the internal mammary lymph nodes, or the cancer affects 4 or more lymph nodes in the armpit, and minimal amounts of cancer are found in the internal mammary nodes or sentinel lymph node biopsy.
  • MX The presence of distant extension (metastasis) cannot be evaluated.
  • M1 Extension to distant organs has occurred, which does not include the supraclavicular lymph node.
  • lung cancer or "lung cancer” or “lung carcinoma” refers to any lung cancer and includes non-small cell lung carcinomas or non-small cell lung cancer (NSCLC) and small cell lung carcinomas.
  • NSCLC non-small cell lung cancer
  • kidney cancer or "renal cancer” or “renal carcinoma” refers to any malignant proliferative disorder of kidney cells.
  • thyroid cancer or thyroid cancer or thyroid carcinoma refers to any proliferative disorder of thyroid gland cells and includes, without limitation, papillary thyroid carcinoma and thyroid follicular carcinoma.
  • the indication is the alteration of the expression levels of one or more genes whose expression is modulated in response to an increase in c-MAF expression levels with respect to a reference value.
  • alteration of the expression levels of a gene is meant a variation, either upwards or downwards, in the level of expression of the gene with respect to the reference value.
  • a "high” or “increased” or “increased” probability in the probability of developing metastases in a subject affected by cancer, in particular breast, colon, lung, kidney or thyroid cancer, preferably of Breast cancer is given by the alteration in the expression levels of one or more genes whose expression is modulated in response to an increase in c-MAF expression levels with respect to a reference value.
  • the term "decreased expression of a gene” refers to the expression levels of a gene that are diminished or repressed with respect to the reference values or controls, which would correspond to the level of expression of the same gene in a control sample.
  • the expression levels of a gene are considered to be decreased with respect to a reference value when the levels in the patient sample are decreased by at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55 %, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%: at least 85%, at least 90%, at least 95%, at least 100%, at least 10%, at least 120%, at least 130%, at least 140%, at least 150% or more.
  • marker gene or “informational gene”, as used in the present invention refers to a gene that is differentially expressed in populations that show different phenotypes and whose differential expression, in isolation or in combination with other genes is correlated. with a specific phenotype to a greater degree than what would be expected randomly.
  • PODXL gene also known as podocalyxin-like refers to a gene that encodes a protein that is part of the sialomucine family, and that acts as an important component of glomerular podocytes.
  • Podocytes are highly differentiated epithelial cells with interdigital protuberances that cover the outer appearance of the glomerular basement membrane.
  • Another biological activity for which this protein encodes includes: its binding in a protein membrane complex with the regulatory factor of the Na + / H + exchanger of the elements of the intracellular cytoskeleton and its binding to L-selectin.
  • PTHLH gene parathyroid hormone-like hormone
  • PTHrP parathyroid hormone-related protein
  • This protein regulates endochondrial bone development as well as the interactions between epithelium and mesenchyme during the formation of the mammary glands and teeth.
  • the receptor for this hormone is called PTHR1.
  • the DNA sequence corresponding to PTHLH is collected in the NCBI database with the accession number NG_023197 (NCBI version corresponding to November 6, 201 1).
  • PTHLH transcripts Four variants of PTHLH transcripts have been described, housed in the NCBI database (November 20, 201 version 1) with accession numbers NIVM 98965.1 (variant 1), NM_002820.2 (variant 2), NM_198964. 1 (variant 3) and NM_198966.1 (variant 4).
  • the protein sequences encoded by the PTHLH gene are housed in the NCBI database (January 10, 1995 version) with accession numbers AAA60360.1 (form A), AAA60358.1 (form B) and AAA60359.1 (form C).
  • RERG gene also known as Ras-like estrogen-regulated growth inhibitor refers to a gene that encodes a protein that is part of the RAS superfamily of GTPases, and that acts as an inhibitor of cell proliferation and tumor formation .
  • Two RERG transcriptional variants have been described, collected in the NCBI database (in its version corresponding to November 28, 201 1) with access numbers NM_032918.2 (variant 1) and NM_001 190726.1 (variant 2).
  • the sequences of the protein encoded by the RERG gene are identified in the NCBI database (November 28, 201 version 1) by access numbers NP_1 16307 (isoform 1) and NP_001 177655 (isoform 2).
  • Methodastasis to the spread of a cancerous focus to an organ other than the one in which it started. It usually occurs by blood or lymph. When cancer cells spread and form a new tumor, this is called a secondary, or metastatic tumor
  • the cancer cells that make up the secondary tumor are like those of the original tumor.
  • the secondary tumor is made up of malignant breast cancer cells.
  • the disease in the lung is metastatic breast cancer and not lung cancer.
  • the metastasis is breast cancer, colon cancer, lung cancer, kidney cancer or thyroid cancer that has spread (metastasized) to the bone.
  • the metastasis is ER + breast cancer that has spread (metastasized) to the bone.
  • Osteolytic bone metastasis refers to a type of metastasis in which bone resorption (progressive loss of bone density) occurs in the vicinity of the metastasis resulting from the stimulation of osteoclast activity by tumor cells and characterized due to severe pain, pathological fractures, hypercalcemia, spinal cord compression and other syndromes resulting from nerve compression.
  • micro RNA refers to short single stranded RNA molecules, typically about 21-23 nucleotides in length capable of regulating gene expression.
  • the miRNAs can be synthetic (i.e., recombinant) or natural.
  • Natural miRNAs are encoded by genes that are transcribed from DNA and processed from primary transcripts ("pri-miRNA”) to short stem-loop structures (“pre-miRNA”) and finally to mature miRNA.
  • pri-miRNA primary transcripts
  • pre-miRNA short stem-loop structures
  • Mature miRNA molecules are partially complementary to one or more mRNA molecules and decrease gene expression through a process similar to RNA interference or by inhibiting mRNA translation.
  • Tumor tissue sample to the tissue sample from the primary tumor, in particular breast cancer, colon cancer, lung cancer, kidney cancer or thyroid cancer, more particularly breast cancer ER + or ER-Her2-.
  • Said sample can be obtained by conventional methods, for example, biopsy, using methods well known to those skilled in related medical techniques. Methods for obtaining a biopsy sample include partitioning a large piece of a tumor, or microdissection or other cell separation methods known in the art. Tumor cells can be obtained in a way additional by aspiration cytology with a fine needle.
  • sample according to the present invention also comprises any body biofluid that contains tissue from the tumor, RNA from the tumor, DNA from the tumor or protein from the tumor including, but not limited to, plasma or serum, such as plasma or serum with the presence of exosomes or DNA of tumor origin.
  • negative dominant mutant of an expression product of a gene refers to a variant of said expression product that is capable of interfering with the activity of the native expression product.
  • inhibitor peptide refers to those peptides capable of binding to an expression product and inhibiting its activity.
  • metastasis prediction is used here to refer to the probability that a patient develops metastases.
  • the prediction methods of the present invention can be used clinically to make decisions about choosing the most appropriate treatment for each particular patient.
  • the prediction methods of the present invention are valuable tools for predicting whether a patient will respond favorably to a treatment regimen, such as chemotherapy.
  • the prediction may include prognostic factors.
  • the prediction although preferred, does not have to be correct for 100% of the subjects that can be diagnosed or evaluated. The term, however, requires that a significant part of the subjects can be identified as most likely to have a certain outcome.
  • a subject is statistically significant it can be determined without further ado by the person skilled in the art, using different known statistical evaluation tools, for example, the determination of confidence intervals, the determination of p-value, cross-validation classification rates and details, etc., as shown in Dowdy and Wearden, Wiley Research Statistics, John & Sons, New York 1983.
  • Recommended confidence intervals are at least 50%, so minus 60%, at least 70%, at least 80%, at least 90% or at least 95%.
  • the p-values are preferably 0.01, 0.005 or less.
  • the term "probability”, as used herein, measures the frequency with which a result (or set of results) is obtained when conducting a randomized experiment, of which all possible outcomes are known, under sufficiently stable conditions.
  • the probability can be "high” or “low.” As those skilled in the art will understand, the probability does not have to be 100% for all the subjects evaluated, although preferably it should be. If a correlation is statistically significant or not, it can be determined without major complications, by a person skilled in the art, using different known tools of statistical evaluation, for example, by determining confidence intervals, determining the value of p, the Student test, Mann-Whitney test, etc. Additional information on these statistical tools can be found in Dowdy and Wearden, Statistics for Research. John Wiley & Sons, New York 1983.
  • the preferred confidence intervals are at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or at least 95%. P values are preferably 0.05, 0.02, 0.01 or less.
  • “Breast tissue specific promoter”, as used in the present invention, refers to a nucleic acid sequence that functions as a promoter and that allows the expression of a nucleic acid operatively associated with said promoter specifically in breast tissue without significant expression is observed in other tissues.
  • subject refers to all animals classified as mammals and includes, but is not restricted to, domestic and farm animals, primates and humans, for example, humans, primates nonhumans, cows, horses, pigs, sheep, goats, dogs, cats, or rodents.
  • the subject is a human male or female of any age or race.
  • Primary tumor refers to a tumor that has its origin in the tissue or organ in which it is found and has not metastasized to that location from another location.
  • ER + tumor refers to tumors that express ER above a certain level. ER levels greater than or equal to 10 fmol / mg, a positive detection by immunohistochemistry of more or 10% of the nuclei are common criteria to consider an ER + breast tumor.
  • ER- tumor refers to tumors in which less than 5% of the tumor cell nuclei show ER expression using immunohistochemical techniques (for example, using the method described by Elizabeth H et al., 2010, Journal of Clinical Oncology, 28: 2784-2795)
  • Tumor Her2- refers to tumors in which cells do not show an amplification of the HER2 gene. Tumor cells are considered to be negative for HER2 when the value obtained using a semi-quantitative immunohistochemical assay based on an anti-HER2 polyclonal antibody (for example Herceptest kit (Reference K5204, Dako North America, Inc., (Reference K5204) is 0, 1 + or 2+ Alternatively, a tumor is considered Her2- when the number of copies of the HER2 gene per nucleus is less than 4 or when the ratio of the number of copies of the HER2 gene to the number of copies of chromosome 17 determined by FISH is less than 1, 8.
  • PR tumor refers to tumors that do not express the progeny receptor detectably sterona
  • progesterone receptor levels below 10 fmol / mg and / or an immunohistochemical observation of less than 10 percent of the positive nuclei are considered PR-negative.
  • Triple negative tumor refers to a breast cancer characterized by being ER-, PR- and HER2-.
  • reference value refers to a laboratory value used as a reference for the values / data obtained from samples obtained from patients or patients.
  • the reference value or reference level can be an absolute value, a relative value, a value that has an upper and / or lower limit, a series of values, an average value, a median, an average value, or a value expressed by reference to a control or reference value .
  • a reference value may be based on the value obtained from an individual sample, such as a value obtained from a sample of the patient under study but obtained at an earlier point in time.
  • the reference value may be based on a large number of samples, such as the values obtained in a population of the subjects of the chronological age group coinciding with that of the patient under study or based on a set of samples of inclusion or exclusion of The sample to analyze.
  • antisense oliqonucleotide specific for a gene refers to an oligonucleotide whose sequence is partially- or totally complementary to a region of said gene, of the pre-mRNA encoded by said gene or of the mRNA of said gene, so that it is able to hybridize specifically with said gene, pre-mRNA or mRNA thus blocking the transcription of the gene or the translation of the mRNA.
  • Antisense nucleic acids can be bound to the potential target of the drug by conventional base complementarity or, for example, in the case of binding to double stranded DNA, through specific interactions in the major groove of the double helix. In general, these methods refer to the range of techniques generally employed in the art and include any method that is based on specific binding to oligonucleotide sequences.
  • an antisense construct of the present invention can be provided, for example, as an expression plasmid which, when transcribed in the cell, produces RNA that is complementary to at least a single part of the cellular mRNA encoding the target gene.
  • the antisense construct is an oligonucleotide probe that is generated ex vivo and that, when introduced into the cell, produces inhibition of gene expression by hybridizing with mRNA and / or genomic sequences of a target nucleic acid.
  • oligonucleotide probes are preferably modified oligonucleotides, which are resistant to endogenous nucleases, for example, exonucleases and / or endonucleases, and which are therefore stable in vivo.
  • Exemplary nucleic acid molecules for use as Antisense oligonucleotides are DNA analogs of phosphoramidate, phosphothionate and methylphosphonate (see also US Pat. Nos. 5176996; 5264564; and 5256775). Additionally, the general approaches to construct oligomers useful in antisense therapy have been reviewed, for example, in Van der Krol et al., BioTechniques 6: 958-976, 1988; and Stein et al., Cancer Res 48: 2659-2668, 1988.
  • oligodeoxyribonucleotide regions derived from the translation initiation site are preferred, for example, between -10 and +10 of the target gene.
  • Antisense approaches involve the design of oligonucleotides (either DNA or RNA) that are complementary to the mRNA encoding the target polypeptide. Antisense oligonucleotides will bind to mRNA transcripts and prevent translation.
  • Oligonucleotides that are complementary to the 5 'end of the mRNA should work in the most efficient way to inhibit translation. However, it has recently been shown that sequences complementary to the 3 'untranslated sequences of mRNAs are also effective in inhibiting the translation of mRNAs (Wagner, Nature 372: 333, 1994). Therefore, oligonucleotides complementary to the 5 'or 3' untranslated, non-coding regions of a gene in an antisense approach could be used to inhibit the translation of that mRNA. Oligonucleotides complementary to the 5 'untranslated region of the mRNA should include the complement of the AUG initiation codon.
  • Oligonucleotides complementary to mRNA coding regions are less effective translation inhibitors but could also be used according to the invention. If they are designed to hybridize with the 5 ', 3' or mRNA coding region, the antisense nucleic acids should be at least six nucleotides in length and preferably be less than about 100 and more preferably less than about 50, 25, 17 or 10 nucleotides in length.
  • the antisense oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single chain or double chain.
  • the oligonucleotide can be modified in the base group, the sugar group or the phosphate skeleton, for example, to improve the stability of the molecule, its hybridization capacity etc.
  • the oligonucleotide may include other bound groups, such as peptides (for example, to direct them to host cell receptors) or agents to facilitate transport across the cell membrane (see, for example, Letsinger et al., Proc. Nati. Acad. Sci. USA 86: 6553-6556, 1989; Lemaitre et al., Proc. Nati. Acad. Sci.
  • the oligonucleotide may be conjugated to another molecule, for example, a peptide, a transport agent, hybridization triggered cutting agent, etc.
  • Antisense oligonucleotides may comprise at least one modified base group.
  • the antisense oligonucleotide may also comprise at least one modified sugar group selected from the group that includes but is not limited to arabinose, 2-fluoroarabinous, xylulose, and hexose.
  • the antisense oligonucleotide may also contain a neutral peptide-like skeleton. Such molecules are called peptide nucleic acid oligomers (ANP) and are described, for example, in Perry-O'Keefe et al., Proc. Nati Acad. Sci. U.S.A.
  • the antisense oligonucleotide comprises at least one modified phosphate skeleton. In yet another embodiment, the antisense oligonucleotide is an alpha-anomeric oligonucleotide.
  • antisense oligonucleotides complementary to the coding region of the mRNA target sequence can be used, those complementary to the untranslated transcribed region can also be used.
  • a preferred approach uses a recombinant DNA construct in which the antisense oligonucleotide is placed under the control of a strong pol III or pol II promoter.
  • the expression of the target gene can be reduced by directing deoxyribonucleotide sequences complementary to the regulatory region of the gene. (i.e. the promoter and / or enhancers) to form triple helix structures that prevent transcription of the gene in the target cells in the body (see generally, Helene, Anticancer Drug Des. 6 (6): 569-84, 1991).
  • the antisense oligonucleotides are antisense morpholinos.
  • RNA interference is a process of post-transcriptional repression of gene expression and sequence specificity that can occur in eukaryotic cells. In general, this process involves the degradation of an mRNA of a particular sequence induced by double stranded RNA (dsRNA) that is homologous to said sequence. This dsRNA is capable of causing the silencing of gene expression by converting RNA into siRNA by means of a RNase III type (Dicer).
  • dsRNA double stranded RNA
  • nucleic acid refers to a polymer that has two or more deoxyribonucleotide, ribonucleotide or nucleotide analog molecules as well as molecules that are structurally similar to a native nucleic acid, but differ from nucleic acid.
  • nucleic acid skeleton e.g., phosphate in native nucleic acids
  • nucleic acid sugar e.g., deoxyribose for native DNA and ribose in native RNA
  • base of the nucleic acid for example, adenosine, cytosine, guanine, thymidine or purine in native nucleic acids.
  • an "antisense sequence” includes antisense or sense oligonucleotides comprising a single stranded nucleic acid (RNA or DNA) sequence capable of binding to target mRNA (sense) or DNA (antisense) sequences.
  • RNA or DNA single stranded nucleic acid
  • the ability to derive an antisense or sense oligonucleotide based on a cDNA sequence encoding a particular protein in, for example, Stein and Cohen, Cancer Res. 48: 2659, (1988) and van der Krol et al., Is described. BioTechniques 6: 958, (1988).
  • ribozyme or "RNA enzyme” or “catalytic RNA” refers to an RNA molecule that catalyzes a chemical reaction.
  • Many natural ribozymes catalyze the hydrolysis of one or more of their own phosphodiester bonds or the hydrolysis of bonds in other RNAs, but they have also been found to catalyze the aminotransferase activity of the ribosome, the ligase activity of a DNA ligase and a number of other chemical reactions performed by conventional protein enzymes.
  • treatment refers to the administration of a drug to alleviate or eliminate a pathology, to reduce or eliminate one or more symptoms associated with said pathology or for a patient to obtain clinical benefit from the patient, broadly defined as: size reduction of the tumor, reduction of the occurrence or size of metastases, reduction or arrest of tumor growth, induction of remission, duration increase before recurrence, reduction of pain associated with the tumor, inhibition of tumor cell division, extermination of tumor cells, induced apoptosis in a tumor cell, reduction, reduction of tumor recurrence and / or increased patient survival.
  • the authors of the present invention have identified a group of genes whose expression is positively or negatively correlated with the expression of c-MAF. Specifically, the authors have identified a series of genes characterized in that (i) their expression in primary tumors correlates significantly with the expression of MAF and (ii) their expression in MCF7 cells is modified with the overexpression of c-MAF (isoform long or short) or with c-MAF silencing in highly metastatic bone cells derived from MCF7 expressing MAF. Genes that meet these conditions are considered members of the bone metastasis program mediated by c-MAF. These genes are collected in Tables 1 (increased genes of the c-MAF program) and 2 (deleted genes of the MAF program).
  • the invention relates to an in vitro method (hereinafter, the first method of the invention) for predicting the metastasis of a cancer, in particular breast, colon, lung, kidney or kidney cancer. thyroid, more particularly breast cancer, in a subject that comprises determining the level of expression in a tumor tissue sample of said subject of one or more genes whose expression is modulated in response to an increase in c-MAF expression levels where altered expression levels of said one or more genes with respect to a value of reference are indicative of high risk of metastasis development.
  • the first method of the invention comprises, in a first step, quantifying the level of expression of one or more genes whose expression is modulated in response to an increase in c-MAF expression levels in a tumor tissue sample of a subject affected by cancer, in particular breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer.
  • genes whose expression is modulated in response to an increase in c-MAF expression levels refers to genes whose expression is significantly modified in response to changes in levels. of c-MAF expression. Genes whose expression is modulated in response to an increase in c-MAF expression levels include genes whose expression in primary tumor samples correlates significantly with the expression of c-MAF and / or genes whose expression is modified in cells of breast cancer in response to changes in c-MAF expression levels.
  • genes whose expression is modulated in response to an increase in c-MAF expression levels include genes whose expression increases in samples of primary tumors that show high expression of c-MAF and / or genes whose expression increases in cancer cells, preferably breast, colon, lung, kidney or thyroid, even more preferably breast, in response to an increase in c-MAF expression levels and / or genes whose expression decreases in cancer cells, preferably breast, colon, lung, kidney or thyroid, even more preferably breast, in response to c-MAF expression silencing.
  • genes whose expression is modulated in response to an increase in c-MAF expression levels include genes whose expression decreases in samples of primary tumors that show high expression of c-MAF and / or genes whose expression decreases in cancer cells, preferably breast, colon, lung, kidney or thyroid, even more preferably breast, in response to an increase in the expression levels of c-MAF and / or genes whose expression increases in cancer cells, preferably breast, colon, lung, kidney or thyroid, even more preferably breast, in response to silencing expression of c-MAF.
  • the expression level refers to levels higher than those of the reference value.
  • a sample of a subject can be considered to have increased levels of expression when the expression levels in the subject's sample are at least 1, 1 times, 1, 5 times, 5 times, 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, 100 times or even more with respect to the reference value.
  • the level of expression refers to levels below those of the reference value.
  • a sample of a subject can be considered to have decreased levels of expression when the expression levels in the reference sample are at least 1, 1 times, 1, 5 times, 5 times, 10 times, 20 times, 30 times, 40 times, 50 times, 60 times, 70 times, 80 times, 90 times, 100 times or even more with respect to the subject's sample.
  • the first method of the invention comprises quantifying the level of expression of one or more genes selected from the group formed by the genes comprised in Table 1 and / or one or more genes selected from the group formed by the genes included in Table 2 in a sample of tumor tissue from a subject affected by cancer, particularly breast.
  • Table 1 Genes whose expression correlates positively with c-MAF expression.
  • A Genes whose expression in primary tumors correlates significantly with MAF expression.
  • B Genes whose expression in MCF7 cells is modified with the expression of the long isoform c-MAF.
  • C Genes whose expression in MCF7 cells is modified with the expression of the short isoform MAF.
  • D Genes whose expression in MCF7 cells is modified with c-MAF silencing. + Increased expression, - Decreased expression.
  • Table 1 corresponds to a group of 76 genes characterized by (i) their level of expression is directly correlated with the level of c-MAF expression in primary tumor samples and (ii) their level of expression increases when expression is induced of c-MAF in breast cancer cell lines or decreases when silenced-MAF.
  • the increase in the level of expression of one or more of the genes included in Table 1 with respect to the reference value is indicative that the subject has a high probability of developing metastases.
  • the expression level of the PTHLH gene is quantified, so that if the expression level of the PTHLH gene is increased with respect to the reference value, the subject has a high probability of developing metastasis.
  • the expression level of the PODXL gene is quantified, so that if the expression level of the PODXL gene is increased with respect to the reference value, the subject has a high probability of developing metastasis.
  • Table 2 corresponds to a group of 33 genes characterized by (i) their level of expression is inversely correlated with the level of c-MAF expression in primary tumor samples and (ii) their level of expression decreases when expression is induced of c-MAF in breast cancer cell lines or increases when c-MAF is silenced in breast cancer cell lines.
  • the decrease in the level of expression of one or more of the genes included in Table 2 with respect to the reference value is indicative that the subject has a high probability of developing metastases.
  • the level of expression of the RERG gene is quantified, so that if the level of expression of the RERG gene is decreased with respect to the reference value, the subject has a high probability of developing metastasis.
  • the quantification of the expression levels of a gene can be determined by measuring the levels of the messenger RNA of said gene or of the protein encoded by said gene.
  • the biological sample can be treated to physically or mechanically disintegrate the structure of the tissue or cell, releasing the intracellular components in an aqueous or organic solution to prepare the nucleic acids.
  • Nucleic acids are extracted by methods known to the person skilled in the art and commercially available (Sambroock, J., et al., "Molecular cloning: a Laboratory Manual", 3rd ed., Cold Spring Harbor Laboratory Press, NY, Vol. 1 -3.)
  • quantification of the expression level of a gene whose expression is modulated in response to an increase in the level of c-MAF expression can be performed from the RNA resulting from the transcription of said gene (messenger RNA or mRNA) or, alternatively , from the complementary DNA (cDNA) of said gene.
  • the quantification of the expression levels of a gene whose expression is modulated in response to an increase in the c-MAF expression level comprises the quantification of the messenger RNA of said gene, or a fragment of said mRNA, DNA complementary to said gene, or a fragment of said cDNA, or mixtures thereof.
  • any conventional method can be used within the framework of the invention to detect and quantify mRNA levels encoded by a gene whose expression is modulated in response to an increase in the level of c-MAF expression or its corresponding cDNA.
  • the levels of mRNA encoded by said gene can be quantified by the use of conventional methods, for example, methods comprising amplification of mRNA and quantification of the product of amplification of said mRNA, such as electrophoresis.
  • the levels of the cDNA corresponding to said mRNA encoded by the gene can also be quantified by using conventional techniques; in this case, the method of the invention includes a step of synthesis of the corresponding cDNA by reverse transcription (RT) of the corresponding mRNA followed by amplification and quantification of the amplification product of said cDNA.
  • RT reverse transcription
  • the quantification of the expression levels of a gene whose expression is modulated in response to an increase in the level of c-MAF expression is performed by a quantitative polymerase chain reaction (PCR) or an array of DNA or RNA
  • the quantification of the expression level of a gene whose expression is modulated in response to an increase in the c-MAF expression level can also be performed by quantifying the expression levels of the protein encoded by said gene, or any functionally equivalent variant of the protein.
  • the quantification of the expression level of a gene whose expression is modulated in response to an increase in the c-MAF expression level can be carried out by quantifying the expression levels of any of the protein isoforms.
  • the quantification of the levels of the protein encoded by a gene whose expression level is modulated in Response to an increase in the level of c-MAF expression comprises quantification of the protein.
  • the level of expression of a protein can be quantified by any conventional method that allows detecting and quantifying said protein in a sample of a subject.
  • the levels of said protein can be quantified, for example, by the use of antibodies capable of binding to the protein (or fragments thereof containing an antigenic determinant) and the subsequent quantification of the complexes formed.
  • the antibodies used in these assays may or may not be labeled.
  • markers that can be used include radioactive isotopes, enzymes, fluorophores, chemiluminescent reagents, enzyme substrates or cofactors, enzyme inhibitors, particles, dyes, etc.
  • any antibody or reagent that is known to bind to the protein with high affinity can be used to detect the amount thereof.
  • an antibody is preferred, for example, polyclonal sera, hybridoma supernatants or monoclonal antibodies, antibody fragments, Fv, Fab, Fab 'and F (ab') 2, scFv, nanobodies, diabodies, triabodies, humanized tetrabodies and antibodies.
  • polyclonal sera for example, polyclonal sera, hybridoma supernatants or monoclonal antibodies, antibody fragments, Fv, Fab, Fab 'and F (ab') 2, scFv, nanobodies, diabodies, triabodies, humanized tetrabodies and antibodies.
  • PTHrP or RERG proteins there are commercial antibodies against PTHrP or RERG proteins that can be used in the context of the present invention.
  • Antibodies specific for the PTHrP protein include, but are not limited to, mouse monoclonal antibody 3H 1-5G8 that recognizes human PTHrP from Abcam (ab1 15488), rabbit polyclonal antibody P12272 that recognizes rat, mouse and human PTHrP from Abbiotech ( catalog number 251478), the rabbit polyclonal antibody that recognizes human PTHrP from BioVision (catalog number 5652-100) or the mouse monoclonal antibody that recognizes human PTHrP from Novus Biologicals (catalog number NBP1-26542), among others.
  • Antibodies specific for the RERG protein include, but are not limited to, goat polyclonal antibodies that recognize Santa Cruz human RERG (sc-109008 and sc-109009), the rabbit polyclonal antibody that recognizes human, rat and mouse RERG ProteinTech (10687-1 -AP), the rabbit polyclonal antibody that recognizes RERG from Abcam rat (ab1 15806) and the mouse polyclonal antibody that recognizes human RERG from Novus Biologicals (H00085004-B01).
  • the quantification of protein levels is performed by western blotting, ELISA or an array of proteins.
  • the first method of the invention comprises comparing the level of expression obtained for the genes analyzed in the first stage with respect to a reference value.
  • the level of expression of one or more genes comprised in Table 1 in a tumor tissue sample of a subject affected by cancer, in particular breast, colon, lung, kidney or Thyroid, even more particularly of the breast are increased with respect to the reference value, and / or the level of expression of one or more genes included in Table 2 in a tumor tissue sample of a subject affected by cancer, in particular of breast, colon, lung, kidney or thyroid, even more particularly of breast, are diminished with respect to the reference value, then said subject has a high probability of developing metastases.
  • the determination of expression levels of genes whose expression is modulated in response to an increase in c-MAF expression levels needs to be correlated with reference values.
  • the exact nature of the reference value may vary.
  • the reference value is derived from a sample of tumor tissue from a subject with cancer, in particular breast, colon, lung, kidney or thyroid cancer , even more particularly of breast, that has not undergone metastases or that correspond to the median value of the expression levels measured in a collection of tumor tissues in biopsy samples of subjects with cancer, in particular breast, colon, lung cancer, kidney or thyroid, even more particularly breast, that have not undergone metastasis.
  • Said reference sample is typically obtained by combining equal amounts of samples from a population of subjects.
  • typical reference samples will be obtained from subjects who are clinically well documented and in whom the absence of metastasis is well characterized.
  • normal (reference) concentrations of the biomarker can be determined, for example by providing the average concentration over the reference population.
  • considerations are taken into account. Among such considerations are the age, weight, sex, general physical condition of the patient and the like. For example, equal amounts of a group of at least 2, at least 10, at least 100 to preferably more than 1000 subjects are taken as reference group, preferably classified according to the above considerations, for example of various age categories.
  • the collection of samples from which the reference level derives will preferably consist of subjects suffering from the same type of cancer as the patient under study.
  • the level of this marker expressed in tumor tissues of patients with this median value can be compared, and thus be assigned to the "increased” expression level. Due to the variability between subjects (for example, aspects related to age, race, etc.) it is very difficult (if not practically impossible) to establish absolute reference values of gene expression. Thus, in a particular embodiment, the reference values for "increased” or “decreased” expression of a gene whose expression is modulated in response to an increase in c-MAF expression levels are determined. calculating the percentiles by means Conventional that involves testing in one or several isolated samples of subjects in which the disease is well documented by any of the methods mentioned above the expression levels of the gene whose expression is modulated by c-MAF.
  • the "reduced" levels can then be assigned, preferably, to samples where the expression levels are equal to or less than the 50th percentile in the normal population, including, for example, expression levels equal to or less than the 60th percentile in the normal population. , equal to or below the 70th percentile in the normal population, equal to or below the 80th percentile in the normal population, equal to or below the 90th percentile in the normal population, and equal to or below the 95th percentile in the normal population.
  • the "increased" expression levels can then preferably be assigned to samples where the expression levels are equal to or exceed the 50th percentile in the normal population, including, for example, expression levels equal to or in excess of the 60th percentile in the normal population, equal to or in excess of the 70th percentile in the normal population, equal to or in excess of the 80th percentile in the normal population, equal to or in excess of the 90th percentile in the normal population, and equal to or in excess of the 95th percentile in the normal population
  • the cancer is selected from the group consisting of breast cancer, colon cancer, lung cancer, kidney cancer and thyroid cancer.
  • the cancer is breast cancer.
  • breast cancer can be any type of ER + or triple negative breast cancer.
  • metastasis in a subject affected by cancer, in particular breast cancer, colon cancer, lung cancer, kidney cancer or thyroid cancer, more particularly cancer of breast it is bone metastasis.
  • metastasis in a subject affected by cancer, in particular breast cancer, colon cancer, lung cancer, kidney cancer or thyroid cancer, more particularly of breast cancer is osteolytic bone metastasis.
  • Method of designing a personalized therapy for a subject affected by cancer particularly breast cancer
  • the treatment to be administered to a subject suffering from cancer may vary depending on whether there is an associated high probability of metastasis development
  • the treatment of choice includes a systemic treatment such as chemotherapy.
  • the determination of the levels of said genes modulated by c-MAF allows decisions to be made as to the most appropriate therapy for the subject suffering from cancer.
  • the invention relates to an in vitro method (hereinafter, second method of the invention) to design a personalized therapy for a subject affected by cancer, in particular breast, colon, lung cancer, of kidney or thyroid, more particularly breast cancer, which comprises determining the level of expression in a tumor tissue sample of said subject of one or more genes whose expression is modulated in response to an increase in c expression levels -MAF wherein altered expression levels of said one or more genes with respect to a reference value are indicative that said subject is susceptible to receiving a therapy aimed at preventing metastasis.
  • the second method of the invention comprises, in a first stage, quantifying the level of expression in a tumor tissue sample of a subject affected by cancer, in particular breast, colon, lung, kidney or thyroid cancer, more in particular breast cancer, of one or more genes whose expression is modulated in response to an increase in c-MAF expression levels.
  • the gene or genes whose expression is modulated in response to an increase in c-MAF expression levels is selected from the group formed the genes comprised in Table 1 and / or one or more of the genes included in Table 2 in a sample of tumor tissue of said subject, where if the expression levels of one or more of the genes in Table 1 are increased with respect to the reference value and / or the expression levels of one or more of the genes in Table 2 are decreased with respect to at the reference value, then the subject is susceptible to receiving a therapy to prevent metastasis.
  • the expression level of the PTHLH gene is quantified, so that if the expression level of the PTHLH gene is increased with respect to the reference value, the subject is likely to receive a targeted therapy. to the prevention of metastasis.
  • the expression level of the PODXL gene is quantified, so that if the expression level of the PODXL gene is increased with respect to the reference value, the subject is likely to receive a targeted therapy.
  • the level of expression of the RERG gene is quantified, so that if the level of expression of the RERG gene is decreased with respect to the reference value, the subject is likely to receive a targeted therapy. to the prevention of metastasis.
  • the cancer is selected from the group consisting of breast cancer, colon cancer, lung cancer, kidney cancer or thyroid cancer, preferably breast cancer.
  • breast cancer can be any type of ER + or ER-Her2- breast cancer (ER-Her2-Pr + or ER-HEr2-Pr-).
  • the metastasis is bone metastases.
  • bone metastasis is osteolytic metastasis.
  • the sample is a sample of the primary tumor tissue of the subject.
  • the expression level of one or more genes whose expression is modulated in response to an increase in c-MAF expression levels in the subject's tumor sample is compared with respect to a reference value.
  • This reference value is obtained from the level of expression in a control sample of the gene whose expression is modulated in response to an increase in c-MAF expression levels.
  • the exact nature of the control sample may vary.
  • the control sample is a sample of tumor tissue from a subject with breast, colon, lung, kidney or thyroid cancer that has not undergone metastasis.
  • control sample is a sample of tumor tissue from a subject with ER + breast cancer that has not undergone metastasis.
  • the reference value corresponds to the median c-MAF gene expression levels measured in a collection of tumor tissues in biopsy samples from subjects with cancer, in particular breast, colon, lung, kidney, and kidney cancer. or thyroid, even more particularly ER + breast cancer, which has not undergone metastasis.
  • the expression levels obtained in the tumor tissue sample of the subject affected by cancer, in particular breast, colon, lung, kidney or thyroid cancer, more particularly cancer of breast, for one or more genes whose expression is modulated in response to an increase in c-MAF expression levels are compared with the reference value, so that if the expression levels of said one or more genes are altered with respect to the reference value, then it can be concluded that said subject is susceptible to receiving a therapy aimed at preventing (if the subject has not yet undergone metastasis) and / or treating the metastasis (if the subject has already undergone metastasis).
  • systemic treatments are used, including but not limited to chemotherapy, hormonal treatment, immunotherapy, or a combination of these. Additionally, radiation therapy and / or surgery may be used.
  • the choice of treatment generally depends on the type of primary cancer, the size, location of the metastasis, age, the general health of the patient and the types of treatments previously used.
  • Treatments aimed at the prevention and / or treatment of metastasis in a subject suffering from cancer, such as breast cancer, include chemotherapy, hormonal therapy and immunotherapy.
  • Chemotherapy is the use of medications to destroy cancer cells. Usually, medications are given orally or intravenously. Occasionally, chemotherapy is used in conjunction with radiation treatment. Suitable chemotherapeutic treatments for breast cancer include, without limitation, anthracyclines (doxorubicin, epirubicin, pegylated liposomal doxorubicin), Taxanes (paclitaxel, docetaxel, paclitaxel bound to albumin nanoparticles), 5-fluorouracil, vincalobin vinca (vincablast) , Gemcitabine, platinum salts (cisplatin, carboplatin), cyclophosphamide, Etoposide and combinations of one or more of the above such as cyclophosphamide / anthracycline +/- 5-fluorouracil regimens (for example doxorubicin / cyclophosphamide (AC), epirubicin / cyclophosphamide , (EC) cyclophospham
  • Hormone therapy is based on the fact that some hormones promote the growth of some cancers. For example, estrogen in women, which is produced by the ovaries, sometimes promotes the growth of breast cancer. There are several ways to stop the production of these hormones. One way is to remove the organs that produce them: the ovaries in the case of women, the testicles in the case of men. More frequently, medications can be used to prevent these organs from producing hormones or to prevent hormones from acting on cancer cells. Immunotherapy is a treatment that helps the patient's own immune system to fight cancer. There are several types of immunotherapy that are used to treat patients with metastases. These include, but are not limited to, cytokines, monoclonal antibodies and antitumor vaccines. Therapeutic methods based on gene inhibition whose expression correlates positively with c-MAF expression
  • the authors of the present invention have shown that the inhibition of PHTLH in a bone metastatic colonization model from a breast tumor xenograft results in a decrease in the number of osteolytic lesions in metastasis.
  • genes whose expression increases in response to an increase in c-MAF expression in a breast tumor are targets causal in bone metastasis processes in ER + breast cancer and, therefore, its inhibition may be useful to stop the occurrence of breast cancer metastases.
  • the authors of the present invention have functionally validated the correlation of the expression of the metastatic PODXL gene in an adhesion test to bone marrow derived cells in an experimental model from purified mouse bone marrow cells (Example 5 ).
  • the expression of the PODXL gene was reduced in very in vivo bone metastatic cells, MCF7, which have high levels of expression of the c-MAF gene responsible for increasing the endogenous levels of the PODXL gene. Therefore, this gene has a value as a prognostic marker and causal target gene in bone metastatic processes in ER + breast cancer and as part of the bone metastasis program mediated by c-MAF.
  • the invention relates to the use of an agent that inhibits the expression of a gene or the activity of the expression product of said gene for the preparation of a medicament for the treatment and / or prevention of metastasis of cancer, in particular breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer, wherein said gene is characterized in that its expression in tumor cells, in particular of breast, of colon, lung, kidney or thyroid, more particularly breast, increases in response to an increase in c-MAF expression levels in these cells or decreases in response to a decrease in c- expression levels MAF in said cells.
  • the invention relates to an agent that inhibits the expression of a gene or the activity of the expression product of said gene for use in treatment. and / or the prevention of cancer metastasis, in particular breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer, wherein said gene is characterized in that its expression in tumor cells, in particular breast, colon, lung, kidney or thyroid, more particularly breast, increases in response to an increase in c-MAF expression levels in said cells or decreases in response to a decrease in c-MAF expression levels in said cells.
  • the invention relates to a method for the treatment and / or prevention of cancer metastasis, in particular breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer, in a subject comprising the administration to said subject of an agent that inhibits the expression of a gene or the activity of the expression product of said gene wherein said gene is characterized in that its expression in tumor cells, in particular breast, colon , lung, kidney or thyroid, more particularly breast, increases in response to an increase in c-MAF expression levels in these cells or decreases in response to a decrease in c-MAF expression levels in these cells.
  • an agent that inhibits the expression of a gene refers to any molecule that is capable of producing a decrease in gene transcription, of causing a destabilization of the corresponding mRNA and / or of decreasing the translation of said mRNA.
  • Expression inhibiting agents can be identified by standard methods to determine the ability of a compound to inhibit transcription of a particular gene (RT-PCR, Northern blotting and hybridization, run-on assays, etc.), to destabilize mRNA. or to inhibit mRNA translation (in vitro translation assays in reticulocyte lysates or wheat germ lysate).
  • a compound is considered to be an inhibitor of the expression of a gene when it is capable of causing a decrease in the amount of mRNA of said gene, in the transcription of said gene and / or in the translation of said gene of at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or 100% (complete inactivation of said expression product).
  • inhibitors of the expression of a gene for use in the present invention include antisense oligonucleotides specific to said gene, interference RNAs (siRNAs) specific to said gene and catalytic RNAs or ribozymes specific to said gene. gen.
  • the expression inhibiting agent of a gene for use in the present invention is an antisense oligonucleotide specific to said gene.
  • the agent that inhibits the expression of a gene is an interfering RNA specific to said gene.
  • Small interfering RNAs or siRNAs are agents that are capable of inhibiting the expression of a target gene by RNA interference.
  • An siRNA can be chemically synthesized, can be obtained by in vitro transcription or can be synthesized in vivo in the target cell.
  • siRNAs consist of a double strand of RNA between 15 and 40 nucleotides in length and which may contain a 3 'and / or 5' protruding region of 1 to 6 nucleotides.
  • the length of the protuberant region is independent of the total length of the siRNA molecule.
  • SiRNAs act by degradation or post-transcriptional silencing of the target messenger.
  • siRNAs of the invention are substantially homologous to the mRNA of the gene encoding PTHLH, the gene encoding PODXL, or the genomic sequence encoding said protein.
  • substantially homologous is meant that they have a sequence that is sufficiently complementary or similar to the target mRNA, so that the siRNA is capable of causing degradation of the latter by RNA interference.
  • Suitable siRNAs to cause such interference include siRNAs formed by RNA, as well as siRNAs containing different chemical modifications such as:
  • RNA chain conjugates of the RNA chain with a functional reagent, such as a fluorophore.
  • a functional reagent such as a fluorophore
  • RNA chains Modifications of the ends of the RNA chains, in particular the 3 'end by modification with different functional groups of the hydroxyl in position 2'.
  • Nucleotides with modified sugars such as O-alkylated moieties in 2 'position such as 2'-0-methylribose p 2'-0-fluorosibose.
  • Nucleotides with modified bases such as halogenated bases (for example 5-bromouracil and 5-iodouracil), alkylated bases (for example 7- methylguanosine).
  • halogenated bases for example 5-bromouracil and 5-iodouracil
  • alkylated bases for example 7- methylguanosine
  • the siRNAs can be used as is, that is, in the form of a double stranded RNA with the aforementioned characteristics.
  • vectors containing the sequences of the sense and antisense chains of the siRNAs under the control of promoters suitable for expression in the cell of interest.
  • Suitable vectors for the expression of siRNA are those in which the two DNA regions encoding the two siRNA chains are arranged in tandem in the same DNA chain separated by a separator region that, when transcribed, forms a loop and in where a single promoter directs the transcription of the DNA molecule that gives rise to shRNA.
  • each of the chains that form the siRNA is formed from the transcription of a different transcriptional unit.
  • These vectors are in turn divided into divergent and convergent transcription vectors.
  • divergent transcription vectors the transcriptional units encoding each of the DNA chains that form the siRNA are located in tandem in a vector so that the transcription of each DNA chain depends on its own promoter, which can be same or different (Wang, J. et al., 2003, Proc.Natl.Acad.Sci.USA., 100: 5103-5106 and Lee, NS, et al.,
  • Promoters suitable for use in the expression of siRNA from convergent or divergent expression vectors include any promoter or pair of promoters compatible with the cells in which it is desired to express siRNAs.
  • suitable promoters for the realization of the present invention include, without necessarily being limited, constitutive promoters such as those derived from eukaryotic virus genomes such as polyomavirus, adenovirus, SV40, CMV, avian sarcoma virus, virus hepatitis B, the metallothionein gene promoter, the herpes simplex virus thymidine kinase gene promoter, retrovirus LTR regions, the immunoglobuin gene promoter, the actin gene promoter, the promoter of the EF-1 alpha gene as well as inducible promoters in which protein expression depends on the addition of a molecule or an exogenous signal, such as the tetracycline system, the NFkappaB / UV light system, the Cre / Lox system and the heat shock
  • the promoters are RNA polymerase III promoters that act constitutively.
  • RNA polymerase III promoters appear in a limited number of genes such as 5S RNA, tRNA, 7SL RNA and U6 RNAs.
  • type III promoters do not require any intragenic sequence but need sequences in the 5 'direction that comprise a TATA box at positions -34 and -24, a proximal sequence element (proximal sequence element or PSE) between -66 and -47 and, in some cases, a distal element (distal sequence element or DSE) between positions -265 and -149.
  • the type III RNA polymerase III promoters are promoters of the H1 and U6 genes of human or murine origin.
  • the promoters are 2 human or murine U6 promoters, a mouse U6 promoter and a human H1 promoter or a human U6 promoter and a mouse H1 promoter.
  • RNAs can be generated intracellularly from the so-called shRNA (short hairpin RNA), characterized in that the antiparallel chains that form the siRNA are connected by a loop or hairpin region.
  • shRNAs may be encoded by plasmids or viruses, particularly retroviruses and be under the control of a promoter. Promoters suitable for shRNA expression are those indicated in the previous paragraph for the expression of siRNA.
  • Suitable vectors for the expression of siRNA and shRNA include prokaryotic expression vectors such as pUC18, pUC19, Bluescript and its derivatives, mp18, mp19, pBR322, pMB9, Col El, pCRI, RP4, phage and shuttle vectors such as pSA3 and pAT28, yeast expression vectors such as 2 micron plasmid type vectors, integration plasmids, YEP vectors, centromeric plasmids and the like, insect cell expression vectors such as pAC series and series vectors pVL, plant expression vectors such as pIBI, pEarleyGate, pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE and the like series and expression vectors in upper eukaryotic cells well based on viral vectors (adenovirus, associated viruses to adenoviruses as well as retroviruses and, in particular,
  • the siRNAs and siRNAs of the invention can be obtained using a series of techniques known to the person skilled in the art.
  • the region of the nucleotide sequence that is taken as the basis for designing the siRNAs is not limiting and may contain a region of the coding sequence (between the initiation codon and the termination codon) or, alternatively, may contain sequences from the region untranslated 5 'or 3', preferably between 25 and 50 nucleotides in length and in any position in a 3 'sense position with respect to the initiation codon.
  • N can be any nucleotide in the gene sequence, in particular the PTHLH gene or the PODXL gene, and the selection of those with a high G / C content. If this motif is not found, it is possible to identify the motif NA (N21), where N can be any nucleotide.
  • the agent that inhibits the expression of a gene is a DNA enzyme specific to said gene. DNA enzymes incorporate some of the mechanistic characteristics of both antisense and ribozyme technologies.
  • the DNA enzymes are designed to recognize a particular nucleic acid target sequence, similar to the antisense oligonucleotide, however ribozyme-like are catalytic and specifically cut the target nucleic acid.
  • the agent that inhibits the expression of a gene is a ribozyme designed to catalytically cut transcripts of a target mRNA to prevent the translation of mRNAs encoding PTHLH or PODXL whose activity it is desired to inhibit.
  • Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cut of RNA.
  • the mechanism of action of ribozyme involves sequence-specific hybridization of the ribozyme molecule to a complementary target RNA, followed by an endonucleolytic cut-off event.
  • the composition of the ribozyme molecules preferably includes one or more sequences complementary to the target mRNA, and the well-known sequence responsible for mRNA cutting or a functionally equivalent sequence (see, for example, U.S. Patent No. 5093246) .
  • Ribozymes used in the present invention include hammerhead ribozymes, endoribonuclease RNAs (hereinafter "Cech type ribozymes") (Zaug et al., Science 224: 574-578, 1984.
  • Ribozymes may be composed of modified oligonucleotides (for example to improve stability, targeting, etc.) and should be distributed to cells expressing the target gene in vivo.
  • a preferred method of distribution involves using a DNA construct that "encodes" the ribozyme under the control of a strong constitutive promoter of pol III or pol II, so that the transfected cells will produce sufficient amounts of the ribozyme to destroy the endogenous target messengers. and inhibit translation. Since ribozymes, contrary to other antisense molecules, are catalytic, a lower intracellular concentration is required for their effectiveness. In the case of compounds that inhibit the activity of an expression product, they can be identified using specific assays capable of determining the activity of said product.
  • compounds that inhibit the activity of the expression product of a gene can be identified using the assay described in example 3 of the present invention characterized based on the determination of the ability of said inhibitory agent to decrease the formation of Osteolytic lesions and / or osteoclast differentiation in in vitro metastatic lesions in an animal model of breast cancer metastasis using breast cancer cells with high metastatic colonization capacity.
  • a compound is considered to be an inhibitor of the activity of an expression product when it is capable of causing a decrease in the activity of said product of at least 10%, at least 20%, at least 30 %, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or 100% (complete inactivation of said expression product) .
  • agents that inhibit the activity of the gene expression product for use in the present invention include inhibitor antibodies specific for the gene expression product, dominant dominant negative variants of the gene expression product. and inhibitor peptides of said expression product.
  • the agent that inhibits the activity of the expression product of said gene is a specific inhibitor antibody for said product.
  • the antibodies can be prepared using any of the methods that are known to the person skilled in the art, some of which has been cited above.
  • polyclonal antibodies are prepared by immunization of an animal with the protein to be inhibited.
  • Monoclonal antibodies are prepared using the method described by Kohler, Milstein et al. (Nature, 1975, 256: 495).
  • Suitable antibodies in the context of the present invention include intact antibodies comprising a variable region of antigen binding and a constant region, "Fab", “F (ab ' ) 2" and “Fab “ "fragments, Fv, scFv, nanobodies , bispecific antibodies and antibodies
  • Fab fragments, Fv, scFv, nanobodies , bispecific antibodies and antibodies
  • the agent that inhibits the activity of the expression product of said gene is a peptide inhibitor of said product.
  • the agent that inhibits the activity of the expression product of said gene is a "negative dominant mutant" of said expression product.
  • the invention contemplates the use of both dominant negative mutants of a gene expression product and of the polynucleotides encoding said mutants.
  • Promoters that can be used to regulate the transcription of the polynucleotide of the invention can be constitutive promoters, that is, they direct transcription basically or inducible promoters in which the transcriptional activity requires an external signal.
  • Constitutive promoters suitable for transcription regulation are, among others, the CMV promoter, the SV40 promoter, the DHFR promoter, the mouse mammary tumor virus (MMTV) promoter, the elongation factor 1 a promoter (EFIa) , the albumin promoter, the ApoA1 promoter, the keratin promoter, the CD3 promoter, the immunoglobulin heavy or light chain promoter, the neurofilament promoter, the neuron specific enolase promoter, the L7 promoter , the CD2 promoter, the myosin light chain kinase promoter, the HOX gene promoter, the thymidine kinase promoter, the RNA polymerase II promoter, the MyoD gene promoter, the gene promoter phosphoglycerokinase (PGK), the low density lipoprotein (LDL) promoter, the actin gene promoter.
  • the CMV promoter the CMV promoter
  • the SV40 promoter the DH
  • the promoter that regulates the expression of the transactivator is the promoter of the PGK gene.
  • the promoter that regulates the transcription of the polynucleotide of the invention is the T7 phage RNA polymerase promoter.
  • the inducible promoters that can be used in the context of the present invention are those that respond to an inducing agent, which show zero or negligible basal expression in the absence of inducing agent and which are capable of promoting activation of the gene located in 3 'position.
  • inducible promoters are classified into Tet on / off promoters (Gossen, M. and H. Bujard (1992) Proc.Natl.Acad.Sci.USA, 89: 5547-5551; Gossen, M et al., 1995, Science 268: 1766-1769; Rossi, FMV and HM Blau, 1998, Curr. Opin. Biotechnol.
  • Suitable vectors for the expression of the polynucleotide encoding the dominant dominant variant of c-MAF include vectors derived from prokaryotic expression vectors such as pUC18, pUC19, Bluescript and its derivatives, mp18, mp19, pBR322, pMB9, ColEI, pCRI, RP4 , phage and shuttle vectors such as pSA3 and pAT28, yeast expression vectors such as 2 micron plasmid type vectors, integration plasmids, YEP vectors, centromeric plasmids and the like, insect cell expression vectors such as pAC series and pVL series vectors, plant expression vectors such as pIBI, pEarleyGate, pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE and similar vectors and expression vectors in higher eukaryotic cells either based on viral vectors (adeno
  • the gene whose expression increases in response to an increase in c-MAF expression levels in a tumor, in particular breast, colon, lung, kidney or thyroid, more particularly of breast, or whose expression decreases in response to a decrease in c-MAF expression levels in a tumor, particularly breast, colon, lung, kidney or thyroid, more particularly breast, is selected of the genes described in Table 1.
  • the gene whose expression increases in response to an increase in c-MAF expression levels in a breast tumor is the PHTLH gene.
  • the gene whose expression increases in response to an increase in c-MAF expression levels in a breast tumor is the PODXL gene.
  • agents that inhibit PHTHL expression or the activity of the expression product of said gene include, without limitation, a specific siRNA for the PHTHL gene, an antisense oligonucleotide specific for the PHTHL gene, a ribozyme specific for the PHTHL gene, an inhibitor antibody specific for the PHTHL protein, a dominant PHTHL negative variant of said expression product and a PHTHL inhibitor peptide.
  • Agents that inhibit the expression of PODXL or the activity of the expression product of said gene include, without limitation, a siRNA specific for the PODXL gene, an antisense oligonucleotide specific for the PODXL gene, a ribozyme specific for the PODXL gene, an antibody specific inhibitor for PODXL protein, a dominant dominant PODXL variant of said expression product and a PODXL inhibitor peptide.
  • PTHLH-specific siRNAs include, without limitation, commercially available siRNAs such as Abgent PTHLH pre-designed siRNA (catalog number RI 14318), Qiagen mouse PTHLH siRNA (GS19227), human PTHLH duplex siRNA Cambridge Bioscience (catalog number SR303874), among others.
  • PODXL specific siRNAs include, without limitation, commercially available siRNAs such as the Santa Cruz Biotechnology siRNA sc-44765, the OriGene human PODXL duplex siRNA (SR30361 1) or the Cambridge Bioscience human PODXL duplex siRNA (no. of catalog SR30361 1), among others.
  • PTHLH inhibitor antibodies useful for use in the present invention comprise, but are not limited to, mouse monoclonal antibody 3H1-5G8 that recognizes human PTHLH from Abcam (ab1 15488), rabbit polyclonal antibody P12272 that recognizes rat PTHLH, mouse and Abbiotech human (catalog number 251478), the rabbit polyclonal antibody that recognizes human PTHLH from BioVision (catalog number 5652-100) or the mouse monoclonal antibody that recognizes human PTHLH from Novus Biologicals (catalog number NBP1-26542 ), among others.
  • PODXL inhibitor antibodies useful for use in the present invention comprise, without limitation, the rabbit polyclonal antibody ab62594 which recognizes the N-terminal region of human PODXL, or the sc-23903 mouse monoclonal antibody that recognizes human PODXL from Santa Cruz Biotechnology.
  • PTHLH inhibitor peptides include, without limitation:
  • Truncated variants of PTHLH such as hPTHrP (7-34) of sequence LLHDKGKSIQDLRRRFFLHHLIAEIHTA (SEO ID NO: 8), PTHrP (3-34), PTHrP (8-34), PTHrP (9-34), PTHrP (10-34) as well as amidated variants thereof and variants resulting from the substitution of the amino acids corresponding to positions 10, 1 1 and 12 of PTHLH with Asn (variants Asn10), Leu (variants Leu1 1) and D-Trp (variants D-Trp12 ), respectively and, in particular, peptides [Nle 8 '18 , Tyr 34 ] bPTH (7-34) NH 2 , [Tyr 34 ] bPTH (7- 34) NH 2 , hPTHrP (7-34), [Leu 11 , D-Trp 12 ] hPTHrP (7-34) NH 2 ,
  • TIP thyroidoinfundibular peptide
  • 1-39 the TIP peptide (tuberoinfundibular peptide 1-39), and derivatives thereof described in Hoare et al, Peptides 23: 989-998, 2002).
  • Functionally equivalent variants of said peptides means all those peptides derived from the sequence of a peptide of the invention by modification, insertion and / or elimination of one or more amino acids, provided and when the function of said peptide is maintained at least 20%, at least 50%, at least 80%, with respect to the function of the corresponding peptide of the invention without modifications, insertions and / or Eliminations
  • Variants suitable for use in the present invention include those showing at least 25%, at least 40%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, at at least 96%, at least 97%, at least 98% or at least 99% sequence identity with respect to the peptide sequence indicated above.
  • the degree of identity between two amino acid sequences can be determined by conventional methods, for example, by standard sequence alignment algorithms known in the state of the art, such as, for example, BLAST (AltschuI SF et al. Basic Local Alignment Search Tool J Mol Biol. 1990 Oct 5; 215 (3): 403-10).
  • PTHLH inhibitors include, without limitation, polypeptides that specifically bind to the N-terminal region of PTHLH as described in WO201 1003935.
  • cancer is a breast, colon, lung, renal or thyroid cancer, preferably breast cancer.
  • breast cancer is ER + or triple negative.
  • the metastasis of cancer in particular of breast, colon, lung, renal or thyroid cancer, preferably breast cancer, is bone metastasis.
  • bone metastasis is osteolytic metastasis.
  • the invention relates to the use of an agent that stimulates the expression of a gene or the activity of the expression product of said gene for the preparation of a medicament for the treatment and / or prevention of metastasis of cancer, in particular breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer, wherein said gene is characterized in that its expression in tumor cells, in particular of breast, of colon, lung, kidney or thyroid, more particularly breast, decreases in response to an increase in c-MAF expression levels in these cells or because their expression increases in response to a decrease in expression levels of c-MAF in said cells.
  • the invention relates to an agent that stimulates the expression of a gene or the activity of the expression product of said gene for use in the preparation of a medicament for the treatment and / or prevention of cancer metastasis.
  • a gene or the activity of the expression product of said gene for use in the preparation of a medicament for the treatment and / or prevention of cancer metastasis.
  • breast, colon, lung, kidney or thyroid cancer more particularly breast cancer
  • said gene is characterized in that its expression in tumor cells, in particular breast, colon, lung , kidney or thyroid, more particularly breast, decreases in response to an increase in c-MAF expression levels in these cells or because its expression increases in response to a decrease in c-MAF expression levels in these cells.
  • the invention relates to a method for the treatment and / or prevention of cancer metastasis, in particular breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer, in a subject comprising the administration to said subject of an agent that stimulates the expression of a gene or the activity of the expression product of said gene wherein said gene is characterized in that its expression in tumor cells, in particular breast, colon , lung, kidney or thyroid, more particularly breast, decreases in response to an increase in c-MAF expression levels in said cells or because its expression increases in response to a decrease in the expression levels of c- MAF in said cells.
  • the agent that stimulates the expression of said gene is a polynucleotide that contains the coding sequence of said gene or wherein the agent that stimulates the activity of the expression product of said gene is a polypeptide encoded by said gene.
  • the polynucleotide that stimulates the expression of said gene can be found as part of a gene construct.
  • the gene constructs contain the polynucleotide of the invention together with regions suitable for regulating the expression of said polynucleotide including promoters, transcription terminators, 5 'and 3' untranslated regions, polyadenylation signals and the like.
  • any promoter can be used to clone vectors in the context of the present invention as long as said promoters are compatible with the cells in which it is desired to express the polynucleotide.
  • suitable promoters for the realization of the present invention include, without necessarily being limited, constitutive promoters such as those derived from eukaryotic virus genomes such as polyomavirus, adenovirus, SV40, CMV, avian sarcoma virus, virus hepatitis B, the metallothionein gene promoter, the herpes simplex virus thymidine kinase gene promoter, retrovirus LTR regions, the immunoglobuin gene promoter, the actin gene promoter, the promoter of the EF-1 alpha gene as well as inducible promoters in which protein expression depends on the addition of an exogenous molecule or signal, such as the tetracycline system, the N FKB / IUZ UV system, the Cre / Lox system and the heat shock
  • the polynucleotide is operatively coupled to a specific breast tissue promoter.
  • breast tissue specific promoters suitable for use in the present invention include, by way of illustration:
  • the stromelysin 3 promoter (Basset et al., Nature 348: 699, 1990)
  • the mucin-like glycoprotein promoter (DF3, MUCI) ((Abe et al., Proc. Nati. Acad. Sci. USA 90: 282 , 1993)
  • the c-erbB-3, c-erbB-2 or c-erbB-4 promoters The mouse mammary tumor virus (MMTV) promoter,
  • the human ⁇ -lactalbumin promoter The human ⁇ -lactalbumin promoter
  • the promoter of ovine ⁇ -lactoglobulin The promoter of ovine ⁇ -lactoglobulin.
  • the agent that stimulates the expression of a gene is part of a vector.
  • the invention contemplates the use of vectors derived from prokaryotic expression vectors such as pUC18, pUC19, Bluescript and their derivatives, mp18, mp19, pBR322, pMB9, ColEI, pCRI, RP4, phage and "shuttie" vectors such as pSA3 and pAT28, yeast expression vectors such as 2 micron plasmid type vectors, integration plasmids, YEP vectors, centromeric plasmids and the like, insect cell expression vectors such as pAC series and series vectors pVL, plant expression vectors such as pIBI, pEarleyGate, pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE and the like series and expression vectors in upper eukaryotic cells well based on viral
  • the agent that stimulates the expression of a gene is administered in the form of a viral vector.
  • viral vectors suitable for use in the present invention include, without limitation, adenoviral vectors, lentiviral vectors, retroviral vectors, vectors derived from vaccinia virus, adeno-associated virus (AAV) and herpes virus.
  • the present invention contemplates several non-viral methods for transferring expression constructs to cultured mammalian cells. These include precipitation of calcium phosphate, DEAE-dextran, electroporation, direct microinjection, loaded DNA liposomes and lipofectamine-DNA complexes, cellular sonication, genetic bombardment using velocity micropoyectiles and receptor-mediated transfection. Some of these techniques can be adapted correctly for in vivo or ex vivo use.
  • the agent that stimulates the expression of a gene can be trapped in a liposome. Liposomes are vesicular structure characterized by a phospholipid bilayer membrane and by an internal aqueous medium.
  • the present invention contemplates the administration of agents that stimulate the expression of a gene or the activity of the expression product of said gene locally, regionally or systemically.
  • the administration of the agents can be performed locally, in which case the agents are administered directly in the tumor, in the vasculature of the tumor, in a lymphatic vessel associated with the tumor or in a conduit associated with the tumor.
  • Administration may be intraperitoneal, intrapleural, intravesicular, or intrathecal.
  • Gene therapy may include regional administration in the vascular system of a member associated with the tumor.
  • a polypeptide is used as an agent that stimulates the activity of the expression product of a gene
  • the invention contemplates the use of variants of said modified polypeptide with a peptide that is capable of promoting translocation of the protein into the interior.
  • cellular such as the Tat peptide derived from the TAT protein of HIV-1, the third helix of the homeodomain of the Antennapedia protein of D.melanogaster, the VP22 protein of the herpes simplex virus and arginine oligomers (Lindgren, A. et al ., 2000, Trends Pharmacol. Sci, 21: 99-103, Schwarze, SR et al., 2000, Trends Pharmacol.
  • the gene whose expression decreases in response to an increase in c-MAF expression levels in a tumor, in particular breast, colon, lung, kidney or thyroid, more in particular breast, or whose expression increases in response to a decrease in c-MAF expression levels in a tumor, particularly breast, colon, lung, kidney or thyroid, more particularly breast, is select from the genes described in Table 2.
  • the gene whose expression decreases in response to an increase in c-MAF expression levels in a tumor is the RERG gene.
  • the RERG activating agent is selected from the group consisting of
  • the nucleic acid encoding RERG corresponds to any of its two transcriptional variants, collected in the NCBI database (in its version corresponding to November 28, 201 1) with access numbers NM_032918 .2 (variant 1) and NM_001 190726.1 (variant 2).
  • "Functionally equivalent variant of the RERG protein” means those polypeptides whose sequence is derived from that of the RERG protein by substitution, insertion or deletion of one or more amino acids and which retain substantially the same function as the RERG protein, that is, act as an inhibitor of cell proliferation and tumor formation.
  • Variants of the RERG protein can be identified using methods based on the ability of RERG to inhibit cell proliferation such as those described in Example 4 of the present invention.
  • the variants according to the invention preferably have a sequence identity with the nucleotide sequence of any of the variants of the RERG gene or with the amino acid sequence of any of the isoforms of the RERG protein of at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95 %, at least 96%, at least 97%, at least 98% or at least 99%.
  • the degree of identity between the variants and the specific sequences of the gene or RERG protein defined above is determined using algorithms and computer procedures that are widely known to those skilled in the art.
  • the identity between two nucleic acid sequences is preferably determined using the BLASTN algorithm, and the identity between two amino acid sequences is preferably determined using the BLASTP algorithm [BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990)].
  • the cancer is breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer.
  • breast cancer is selected from the group consisting of ER + and ER-Her2- cancer.
  • the metastasis is bone metastases. In an even more preferred embodiment, bone metastasis is osteolytic metastasis.
  • compositions and administration methods are provided.
  • agents that inhibit the expression of a gene whose expression increases in response to an increase in c-MAF expression levels in a tumor, in particular breast, colon, lung, kidney or thyroid, more particularly breast, or whose expression decreases in response to a decrease in c-MAF expression levels in a tumor, in particular breast, colon, lung, kidney or thyroid, more particularly breast agents that inhibit the activity of the expression product of a gene whose expression increases in response to an increase in c-MAF expression levels in a tumor, in particular of the breast, colon, lung, kidney or thyroid , more particularly of breast, or whose expression decreases in response to a decrease in c-MAF expression levels in a tumor, in particular of breast, colon, lung, kidney or thyroid, more particularly of breast, the agents that stimulate the expression of a gene whose e xpression decreases in response to an increase in c-MAF expression levels in a tumor, in particular breast, colon, lung, kidney or thyroid, more particularly breast, or whose expression increases in response to a decrease in c-
  • vehicle refers to a diluent or excipient with which the active substance is administered.
  • Such pharmaceutical vehicles may be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
  • water or aqueous solutions of saline solution and aqueous solutions of dextrose and glycerol are used as vehicles, particularly for injectable solutions.
  • Suitable pharmaceutical vehicles are described in "Remington's Pharmaceutical Sciences” by EW Martin, 1995.
  • the vehicles of the invention are approved by the regulatory agency of a state or federal government or are listed in the United States Pharmacopoeia or other pharmacopoeia recognized in general for use in animals, and more particularly in humans.
  • the vehicles and auxiliary substances necessary to manufacture the desired pharmaceutical form of administration of the pharmaceutical composition of the invention will depend, among other factors, on the pharmaceutical form of administration chosen.
  • Said pharmaceutical forms of administration of the pharmaceutical composition will be manufactured according to conventional methods known to those skilled in the art. A review of different methods of administration of active ingredients, excipients to be used and procedures to produce them can be found in "Treaty of Galician Pharmacy", C. Faul ⁇ i Trillo, Luzán 5, SA of Ediations, 1993.
  • compositions include any solid composition (tablets, pills, capsules, granules, etc.) or liquid (solutions, suspensions or emulsions) for oral, topical or parenteral administration.
  • the pharmaceutical composition may contain as necessary stabilizers, suspensions, preservatives, surfactants and the like.
  • the inhibitory / activating agents of the present invention may be in the form of prodrug, salt, solvate or clathrate, either in isolation or in combination with additional active agents and may be formulated together with an excipient that is acceptable. from the pharmaceutical point of view.
  • Preferred excipients for use in the present invention include sugars, starches, celluloses, gums and proteins.
  • the pharmaceutical composition of the invention will be formulated in a form pharmaceutical solid administration (for example tablets, capsules, dragees, granules, suppositories, sterile crystalline or amorphous solids that can be reconstituted to provide liquid forms etc.), liquid (for example solutions, suspensions, emulsions, elixirs, lotions, ointments etc. ) or semi-solid (gels, ointments, creams and the like).
  • a form pharmaceutical solid administration for example tablets, capsules, dragees, granules, suppositories, sterile crystalline or amorphous solids that can be reconstituted to provide liquid forms etc.
  • liquid for example solutions, suspensions, emulsions, elixirs, lotions, ointments etc.
  • semi-solid gels, ointments, creams and the like.
  • compositions of the invention can be administered by any route, including, but not limited to, oral, intravenous, intramuscular, intrarterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteric, topical, sublingual or rectal.
  • routes including, but not limited to, oral, intravenous, intramuscular, intrarterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteric, topical, sublingual or rectal.
  • compositions comprising said vehicles can be formulated by conventional procedures known in the state of the art.
  • nucleic acids siRNA, polynucleotides encoding siRNA or shRNA or polynucleotides encoding negative dominant
  • the invention contemplates pharmaceutical compositions specially prepared for the administration of said nucleic acids.
  • the pharmaceutical compositions can comprise said nucleic acids in a naked form, that is, in the absence of compounds that protect nucleic acids from their degradation by the body's nucleases, which entails the advantage that the toxicity associated with the reagents used is eliminated for transfection.
  • Suitable routes of administration for naked compounds include intravascular, intratumoral, intracranial, intraperitoneal, intrasplenic, intramuscular, subretinal, subcutaneous, mucosa, topical and oral (Templeton, 2002, DNA Cell Biol., 21: 857-867).
  • nucleic acids can be administered as part of liposomes, cholesterol conjugates or conjugates to compounds capable of promoting translocation through cell membranes such as the Tat peptide derived from the HIV-1 TAT protein, the third helix of the homeodomain of Antennapedia protein of D. melanogaster, VP22 protein of herpes simplex virus, arginine oligomers and peptides such as described in WO07069090 (Lindgren, A. et al., 2000, Trends Pharmacol. Sci, 21: 99-103, Schwarze, SR et al., 2000, Trends Pharmacol.
  • the polynucleotide can be administered as part of a plasmid vector or a viral vector, preferably adenovirus-based vectors, adeno-associated viruses or retroviruses, such as murine leukemia virus (MLV) or lentivirus (HIV) based viruses. , IVF, EIAV).
  • adenovirus-based vectors preferably adenovirus-based vectors, adeno-associated viruses or retroviruses, such as murine leukemia virus (MLV) or lentivirus (HIV) based viruses. , IVF, EIAV).
  • the inhibitory / activating agents or the pharmaceutical compositions containing them can be administered in doses of less than 10 mg per kilogram of body weight, preferably less than 5, 2, 1, 0.5, 0.1, 0.05, 0 , 01, 0.005, 0.001, 0.0005, 0.0001, 0.00005 or 0.00001 mg per kg of body weight.
  • the unit dose can be administered by injection, by inhalation or by topical administration. The dose depends on the severity and response of the condition to be treated and may vary between several days and several months or until it is observed that the condition remits.
  • the optimal dosage can be determined by periodic measurements of the agent concentrations in the patient's organism. The optimal dose can be determined from the EC50 values obtained by previous tests in vitro or in vivo in animal models.
  • the unit dose can be administered once a day or less than once a day, preferably, less than once every 2, 4, 8 or 30 days.
  • the maintenance regimen may involve treating the patient with doses ranging from 0.01 ⁇ g to 1.4 mg / kg body weight per day, for example 10, 1, 0, 1, 0.01, 0.001, or 0, 00001 mg per kg body weight per day.
  • Maintenance doses are preferably administered at most once every 5, 10 or 30 days.
  • the treatment should be continued for a time that will vary according to the type of alteration suffered by the patient, its severity and the patient's condition.
  • Method for the identification of marker genes for metastasis propensity The authors of the present invention have developed a methodology by which it is possible to identify genes related to the propensity of a subject suffering from breast cancer to develop metastases. This methodology is based on the identification of genes whose expression in breast tumors correlates with c-MAF expression and whose expression in a breast cancer cell line is altered in response to a change in c expression levels -MAF.
  • the invention relates to an in vitro method (hereinafter the method of identifying genes of the invention) for the identification of a marker gene for metastasis propensity in a subject suffering from cancer, in particular breast cancer , colon, lung, kidney or thyroid, more particularly breast cancer, which comprises
  • the gene identification method of the invention comprises determining the expression levels of a candidate gene and c-MAF in a sample of primary cancer tumor, in particular breast, colon, lung cancer, of kidney or thyroid, more particularly of breast cancer.
  • the determination of the expression levels of said candidate gene and of c-MAF in the primary tissue sample can be carried out essentially as described in the context of the in vitro method to predict metastasis in a subject affected by cancer. , particularly breast cancer.
  • the expression levels of said candidate gene and c-MAF can be performed from the RNA resulting from the transcription of said gene (messenger RNA or mRNA), from the complementary DNA (cDNA) of said gene or by quantification of the expression levels of the protein encoded by said gene.
  • the gene identification method of the invention comprises determining the change in the expression levels of said candidate gene in a population of cancer cells, in particular breast, colon, lung, kidney or kidney cancer. of thyroid, more particularly breast cancer, in response to a modulation of c-MAF gene expression.
  • the determination of the change in the expression levels of the candidate gene requires determining the levels of expression in the tumor cells at two different times in time between which a change in the expression levels of c-MAF has been induced.
  • Said change in c-MAF expression levels between said first moment and said second moment may be an increase in c-MAF expression or a decrease in c-MAF expression level.
  • the modulation in the c-MAF levels that is carried out in step (ii) is an increase in the c-MAF levels.
  • this step requires the introduction into the cell of a polynucleotide encoding c-MAF or c-MAF.
  • Suitable methods for the introduction of a gene of interest in a cell and constructs suitable for the expression of a gene of interest in a cell have been described in the context of therapeutic methods based on the activation of genes whose expression is inversely correlated. with the expression of c-MAF and are used in the same way in the present method.
  • the cell can be modified by introducing a polynucleotide encoding c-MAF therein being operatively coupled to a promoter that allows the expression in tumor cells, such as breast, colon, lung, kidney or thyroid tumors, preferably breast tumors.
  • a polynucleotide is usually provided as part of a vector comprising, in addition to said polynucleotide, additional sequences to ensure its propagation in prokaryotic hosts (for example, an origin of replication) as well as selection markers.
  • prokaryotic hosts for example, an origin of replication
  • the mucin-like glycoprotein promoter (DF3, MUCI) ((Abe et al.,
  • the mouse mammary tumor virus (MMTV) promoter The mouse mammary tumor virus (MMTV) promoter,
  • the human ⁇ -lactalbumin promoter The human ⁇ -lactalbumin promoter
  • the promoter of ovine ⁇ -lactoglobulin The promoter of ovine ⁇ -lactoglobulin.
  • the polynucleotide encoding c-MAF or the vector containing said polynucleotide is introduced into the cells under study using any of the transfection methods known to those skilled in the art (see sections 9.1 to 9.5 in Ausubel, FM et al., Current Protocols in Molecular Biology, John Wiley & Sons Inc, 2003).
  • cells can be transfected by co-precipitation of DNA with calcium phosphate, DEAE-dextran, polibreon, electroporation, microinjection, liposome-mediated fusion, lipofection, retrovirus infection and biolistic transfection.
  • the cell can be modified by introducing the c-MAF protein therein.
  • the invention contemplates the use of modified c-MAF variants with a peptide that is capable of promoting translocation of the protein into the cell interior, such as the Tat peptide derived from the TAT protein of HIV-1, the third helix of the home domain of the Antennapedia protein of D.melanogaster, the VP22 protein of herpes simplex virus and arginine oligomers (Lindgren, A. et al., 2000, Trends Pharmacol. Sci, 21: 99-103, Schwarze, SR et al ., 2000, Trends Pharmacol. Sci., 21: 45-48, Lundberg, M et al., 2003, Mol. Therapy 8: 143-150 and Snyder, EL and Dowdy, SF, 2004, Pharm. Res. 21: 389-393).
  • a peptide that is capable of promoting translocation of the protein into the cell interior, such as the Tat
  • the increase in c-MAF expression is carried out by expression in cancer cells, in particular breast, colon, lung, kidney or thyroid cancer, more particularly of breast cancer, from the short isoform of c-MAF.
  • the increase in c-MAF expression is carried out by expression in cancer cells, in particular breast, colon, lung, kidney or thyroid cancer, more particularly breast cancer, of the long isoform of c -MAF.
  • the increase in c-MAF expression is carried out by co-expression in cancer cells, in particular breast, colon, lung, kidney or thyroid cancer, more in particular of breast cancer, of the long and short isoform of c-MAF.
  • the modulation in the levels of c-MAF carried out in the second stage is a reduction in the levels of c-MAF
  • this stage requires the introduction into the cell of an agent capable of silencing c- MAF
  • agents to achieve a reduction in c-MAF levels include antisense oligonucleotides specific to said gene, interference RNAs (siRNAs) specific to said gene, catalytic RNAs or ribozymes specific to said gene, c-MAF inhibitors and inhibitory antibodies.
  • siRNAs for c-MAF include the siRNA described in WO2005046731, one of whose chains is ACGGCUCGAGCAGCGACAA (SEQ ID NO: 1).
  • Other cRNA sequences specific for c-MAF include, without limitation, CUUACCAGUGUGUUCACAA (SEQ ID NO: 2), UGGAAGACUACUACUGGAUG (SEQ ID NO: 3), AUUUGCAGUCAUGGAGAACC (SEQ ID NO: 4), CAAGGAGAAAACACAGAAGU (SEQ ID NO: 4): ACAAGGAGAAAUACGAGAAG (SEQ ID NO: 6) and ACCUGGAAGACUACUACUGG (SEQ ID NO: 7).
  • Negative c-MAF dominants that can be used in the context of the present invention include mutants capable of dimerizing with c-MAF but lacking the ability to activate transcription since they are unable to homodimerize and heterodimerize with other family members AP-1, such as Fos and Jun.
  • c-MAF negative dominant can be any of the small maf proteins that exist in the cell and lack two thirds of the amino terminal end that contains the transactivation domain (for example, mafK, mafF, mafg and pi 8) (Fujiwara et al (1993) Oncogene 8, 2371-2380; Igarashi et al. (1995) J. Biol.Chem. 270, 7615-7624; Andrews et al.
  • c-MAF negative dominant include c-MAF variants that maintain the ability to dimerize with other proteins but lack the ability to activate transcription. These variants are, for example, those that lack the c-MAF transactivation domain, located at the N-terminal end of the protein.
  • dominant dominant variants of c-MAF include, illustratively, variants in which at least amino acids 1 to 122 have been removed at least amino acids 1-187 or at least amino acids 1 to 257 (considering numbering of human c-MAF as described in US6274338).
  • the tumor sample used in step (i) is derived from a breast, colon, lung, kidney or thyroid tumor, more particularly breast tumor.
  • the tumor sample, particularly breast, used in step (i) is from an ER + tumor or a triple negative tumor.
  • the cancer cells, particularly breast cells, used in step (ii) are ER + or are derived from a triple negative tumor.
  • metastasis is a bone metastasis.
  • Other c-MAF inhibitor compounds suitable for use in the present invention include:
  • Ri and R2 are independently of each other
  • alkyl, alkenyl and alkynyl are straight or branched chain, and in which the alkyl, alkenyl and alkynyl groups are mono- or disubstituted with:
  • substituents 2.3, 2.4, 2.6 and 2.7 may be further substituted with -CN functions -amide or -oxime, and 2.5 may be further substituted by -CN or amide functions, or Ri and R2 together form a ring, where Ri and R 2 mean a group -0- [rent (dC 6 )] - 0-,
  • alkyl, alkenyl and alkynyl are straight or branched chain, and in which the alkyl, alkenyl and alkynyl groups are mono- or disubstituted with:
  • substituents 2.3, 2.4, 2.6 and 2.7 may be additionally substituted with -CN, -amide or -oxim functions, and 2.5 may be additionally substituted with -CN or amide functions
  • R 4 is C0 2 R 3 , CO2NHR3, CHO, CH 2 OR 3 , CH 2 OSi (R 3 ) 3 , CH 2 Br, CH 2 CN, in which R 3 is as defined above
  • R1 is selected from the group of N02, NH2, NH (C1-6alkyl) and N (C1-6alkyl) (C1-6alkyl); R2 is selected from H, halogen, C1-6alkyl, and C1 -6alkyl fluoride substitutes,
  • R1 is Cl and R2 is Br or H
  • R1 is selected from the group of H, C1-4alkyl, C (0) OC1 -4alkyl, C (0) C1-
  • R2 is selected from H and C1-4alkyl
  • R3 is selected from H and C1-4alkyl
  • R2 and R3 are linked together with the carbon and nitrogen atom to which they are attached to form a piperidine ring,
  • R4 and R5 are independently selected from H, halogen, hydroxyl, C1-
  • X is selected from C and N. and preferred compounds such as
  • Cyproheptadine (4- (5H-dibenzo [a, d] cycloheptan-S-ylidene) -1-methylpiperidine)
  • Amitryptiline (3- (10, 1 1-dihydro-5H-dibenzo [[a, d]] cycloheptene-5- ilidene) -N, N-dimethyl-1-propanamine)
  • Cyclobenzapine (3- (5H-dibenzo [a, d] cycloheptan-5-ylidlene) -N, N-dimethyl-1- propanamine)
  • Nivalenol (12, 13-Epoxy-3,4,7, 15-tetrahydroxytrrichotec-9-en-8-one) as described in WO0359249
  • Table 3 Small molecules with the ability to inhibit c-MAF Other c-MAF inhibitors are described in patent application WO2005063252, as shown in the following table (Table 4).
  • the decrease in c-MAF expression levels is accomplished by silencing in the breast, colon, lung, kidney or thyroid tumor cells, more particularly tumor. of breast, of the short isoform of c-MAF.
  • the decrease in c-MAF levels is accomplished by silencing in the breast, colon, lung, kidney or thyroid tumor cells, more particularly breast tumor, of the long isoform of c-MAF.
  • the decrease in c-MAF levels is accomplished by silencing in the breast, colon, lung, kidney or thyroid tumor cells, more particularly breast tumor , of the long and short isoform of c-MAF.
  • the population of cancer cells can be obtained from biopsy samples of patients suffering from such cancers, or they can be cell lines of such cancers, such as breast cancer cell lines that comprise, without limitation, the cells of the MCF-7, T47D and MDA-MB-231, MDA-MB-435, MDA-MB lines -468, BT20, SkBr3, HCC-1937, BT-474 and ZR75.1.
  • step (ii) is carried out using cells of the MCF7 cell line.
  • Colon cancer cell lines comprise, without limitation, HCA-7, KM12C, KM12SM, KM12l4a, SW480, SW620.
  • Lung cancer cell lines comprise, but are not limited to, NCI-H1781, NCI-H1373, LC319, A549, PC14, SK-MES-1, NCI-H2170, NCI-H 1703, NCI-H520, LU61, LX1, SBC-3, SBC-5, DMS273 and DMS1 14.
  • Lung cancer cell lines comprise, without limitation, 786-0, 769-P, A-498, SW-156, SW-839, A-704, ACHN, CaKi-1 and CaKi-2.
  • Lung cancer cell lines comprise, but are not limited to, BCPAP, KTC-1, K1, TCP1, FTC133, ML1, 8505C, SW1736, Cal-62, T235, T238, Uhth-104, Uhth-104, HTh74, KAT18, TTA1, FR081-2, HTh7, C643, BHT101 and KTC-2.
  • the in vitro method for the identification of metastatic propensity marker genes comprises
  • the expression of said gene determined in step (i) correlates directly with c-MAF levels in the primary tumor sample and if the change in expression levels in response to The modulation of the c-MAF gene expression correlates directly with said modulation is indicative that elevated levels of said gene are indicative of metastasis propensity.
  • the expression of said gene determined in step (i) is inversely correlated with c-MAF levels in the primary tumor sample and if the change in expression levels in response to The modulation of the c-MAF gene expression is inversely correlated with said modulation is indicative that reduced levels of said gene are indicative of metastasis propensity.
  • the correlation between the expression of a candidate gene and the expression of c-MAF in the primary tumor sample is carried out by comparing the expression levels of both genes with respect to a reference value, where it is considered that There is a correlation between the expression of both genes if both genes show a variation in their expression with respect to the reference value.
  • the correlation can be direct (the increase in the expression of the candidate gene with respect to the reference value correlates with an increase in the expression of c-MAF with respect to the reference value for said gene or the decrease in the expression of the candidate gene with respect to the reference value is correlated with a decrease in c-MAF expression with respect to the reference value for said gene) or inverse (the increase in the expression of the candidate gene with respect to the reference value is correlated with a decrease increase in c-MAF expression with respect to the reference value for said gene or decrease in expression of the candidate gene with respect to the reference value correlates with an increase in c-MAF expression with respect to the reference value for said gene).
  • the correlation between the change in the expression levels of the candidate gene in response to the modulation of the expression of the c-MAF gene is carried out by determining the expression level of said gene before inducing the modulation of the c-MAF expression and the expression level of said gene in the same sample after modulation in c-MAF expression has occurred, considering that there is a correlation if there has been a variation in the expression of the candidate gene concomitantly with the change in expression of c-MAF.
  • the correlation can be direct (there is an increase in the expression of the candidate gene concomitantly with an increase in the expression of c-MAF or a decrease in the expression of the candidate gene with respect to concomitant with a decrease in the expression of c-MAF) or inverse (there is an increase in the expression of the candidate gene concomitantly with a decrease in the expression of c-MAF or there is a decrease in the expression of the candidate gene with respect to the reference value concomitantly with an increase in c-MAF expression with respect to the reference value for said gene).
  • the metastasis is a bone metastasis.
  • the invention is described below by means of the following examples that are merely illustrative and not limiting the scope of the invention.
  • New experimental models have been developed for the study of metastasis in ER + and ER-PR-Her2- breast cancer.
  • a cell line has been used for this purpose.
  • Human breast cancer ER + called MCF7, which was stably transfected with a vector that allows GFP / Luciferase expression.
  • This cell line was inoculated in immunodeficient mice (Balb-c / nude) by intraventricular injection or in the caudal vein to be able to select cells with metastatic capacity in different organs. The mice carried subcutaneous estrogen implants that guaranteed the presence of this hormone throughout the experiment.
  • Metastatic populations in different tissues were selected by identifying and isolating cells from metastatic lesions.
  • bioluminescence imaging techniques were used using the technology that allows to detect the establishment and growth of tumor cells in organs of interest at different times and quantify the number of tumor cells present.
  • the cells have been transduced to express the luciferase gene and the GFP and with them they are allowed to monitor non-invasive methods in vivo in real time.
  • the luminescence image capture (luciferase activity) is performed with the animal under anesthesia, using Xenogen IVIS type equipment and Livingimage software as the preferred methodology due to its sensitivity and speed.
  • the tumor lesion is dissected and, subsequently, by means of fluorescence laser scanning cytometry (GFP) metastatic cells are isolated from those of the host organism itself. Once these cells were isolated, the process was repeated to enrich their tropism through the different tissues. Through these procedures, different metastatic populations with tissue specificity including bone and brain metastases were isolated.
  • GFP fluorescence laser scanning cytometry
  • genes whose expression correlates either positively (directly) or negatively (inversely) with the expression of c-MAF were identified.
  • the validation of the genes thus obtained was carried out by analyzing their expression in relation to the expression of c-MAF in defined cellular models.
  • the ER + breast cancer MCF7 cells were modified to express either the long isoform or the short isoform of c-MAF and mRNA expression profiles were determined by Affymetrix U133A2Plus. Routine techniques derived MCF-7 cells from bone metastases in which c-MAF was depleted. Gene expression profiles in previous cell populations were determined and those genes whose expression was significantly modified based on c-MAF expression were selected.
  • the metastatic c-MAF program in bone includes cytokines, cell adhesion molecules, membrane-anchored proteases, signaling mediators and transcription factors.
  • PTHLH gene Functional validation in vivo of members of the bone metastasis program mediated by c-MAF: PTHLH gene
  • the metastatic PTHLH gene positive in the previous analysis and directly correlated with c-MAF expression (Table 1 and Figure 3), was functionally validated in a bone metastatic colonization assay in an experimental xenograft model of breast cancer metastasis in mice.
  • the standard approaches to validate the candidate gene to direct the metastasis process were the trials of loss of PTHLH function in poorly metastatic cells expressing c-MAF.
  • the expression of the c-MAF gene was induced in moderately metastatic cells to bone in vivo, MCF7, which have low levels of expression of the c-MAF gene.
  • Overexpression of c-MAF was responsible for the increase in endogenous levels of the PTHLH gene (( Figure 3). In this context, the activity of the PTHLH cytokine was blocked by an antagonistic peptide ( Figure 3).
  • lentiviral systems were used to infect and introduce the expression of the candidate gene into tumor cells.
  • the metastatic facilitating functions of the c-MAF gene and its PTHLH effector were determined by means of bioluminescence monitoring techniques of the inoculated metastatic cells in the mouse intra-cardiac route.
  • the corresponding control cells infected with empty lentiviral vectors were injected into a parallel cohort of immunodeficient mice for comparison.
  • Figure 3 The formation capacity of osteolytic lesions, osteoclast differentiation in metastatic lesions in vivo and the causal function of PTHLH in this process were evaluated (Figure 3).
  • the RERG metastasis suppressor gene is involved in proliferation.
  • the previous analysis showed that the expression of the RERG gene is inversely correlated with the expression of c-MAF (Table 2 and Figure 2).
  • the RERG gene was functionally validated in a metastatic bone colonization assay in an experimental xenograph model of breast cancer metastasis in mice.
  • the involvement of the RERG gene in metastasis was validated by a function gain test in highly metastatic cells.
  • the expression of RERG was induced in highly metastatic bone cells selected in vivo, BoM2, which have high levels of expression of the c-MAF gene, responsible for suppressing the endogenous levels of RERG ( Figure 2).
  • BoM2 highly metastatic bone cells selected in vivo
  • lentiviral systems were used to infect and introduce the expression of the candidate gene into tumor cells.
  • the metastasis facilitating functions of RERG suppression were determined by bioluminescence monitoring techniques of inoculated metastatic cells in the mouse intra-cardiac. In all cases, the corresponding control cells infected with empty lentiviral vectors were injected into a Parallel cohort of immunodeficient mice for comparison. ( Figure 2).
  • the standard approaches to validate the candidate gene to direct the process of metastasis were trials of loss of function in very metastatic cells to bone or endothelial.
  • the expression of the PODXL gene was reduced in very in vivo bone metastatic cells, MCF7, which have high levels of expression of the c-MAF gene responsible for increasing the endogenous levels of the PODXL gene.
  • Sequence listing and “Artificial sequence” of the sequence listing are translated, respectively, as “Sequence listing” and “Artificial sequence”.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Oncology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Hospice & Palliative Care (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Mycology (AREA)

Abstract

Se describe un método para determinar la probabilidad de desarrollo de metástasis en un sujeto afectado de cáncer, así como con un método para diseñar una terapia personalizada en un sujeto afectado de cáncer, en particular cáncer de mama, de colon, de pulmón, de riñón o de tiroides, basado en la determinación del nivel de expresión de uno o más genes cuya expresión es modulada por un aumento de expresión de c-MAF. También se describe un método de identificación de genes marcadores de propensión a metástasis de cáncer basado en la inducción de la modulación de la expresión de c- MAF'. Finalmente, se describe el uso de agentes inhibidores de PTHLH y PODXL y de agentes activadores de RERG en el tratamiento y/o prevención de la metástasis de un cáncer, en particular cáncer de mama, de colon, de pulmón, de riñón o de tiroides.

Description

DESCRIPCIÓN
METODO PARA EL DIAGNOSTICO, PRONOSTICO Y TRATAMIENTO DE LA
METÁSTASIS DE UN CÁNCER
OBJETO DE LA INVENCIÓN
La presente invención se relaciona con métodos para determinar la probabilidad de que un sujeto afectado por un cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, desarrolle metástasis, así como con métodos de diseño de terapias personalizadas para un sujeto afectado por un cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides. Tales métodos comprenden determinar el nivel de expresión de un conjunto de genes cuya expresión está relacionada con la del gen c-MAF. La invención se relaciona también con el empleo de inhibidores de PTHLH, PODXL y activadores de RERG en el tratamiento y/o prevención de la metástasis de un cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides.
ANTECEDENTES DE LA INVENCIÓN
Mundialmente, el cáncer de mama es el segundo tipo más común de cáncer (10,4%; tras el cáncer de pulmón) y la quinta causa más común de muerte por cáncer (tras el cáncer de pulmón, cáncer de estómago, cáncer de hígado, y cáncer de colon). Entre las mujeres, el cáncer de mama es la causa más común de muerte por cáncer. En 2005, el cáncer de mama produjo 502.000 muertes en el mundo (el 7% de las muertes por cáncer; casi el 1 % de todas las muertes). El número de casos mundiales ha aumentado significativamente desde la década de 1970, un fenómeno del que se culpa parcialmente a los estilos de vida modernos en el mundo occidental. Todas las células tienen receptores en su superficie, en su citoplasma y el núcleo celular. Ciertos mensajeros químicos tales como las hormonas se unen a dichos receptores y esto provoca cambios en la célula. Existen tres receptores importantes que pueden afectar a las células del cáncer de mama: receptor de estrógeno (ER), receptor de progesterona (PR) y HER2/neu. Con el fin de nombrar las células que presentan alguno de estos receptores, se les coloca un signo positivo cuando el receptor está presente y un signo negativo si está ausente: ER positivo (ER+), ER negativo (ER-), PR+ (positivo), PR negativo (PR-), HER2+ (positivo) y HER2 negativo (HER2-). El estado de receptor ha convertido en una evaluación crítica de todos los cánceres de mama, ya que determina la idoneidad del uso de tratamientos específicos, por ejemplo, tamoxifeno o trastuzumab. La isoforma alfa del receptor de estrógenos (ER), está sobreexpresada en alrededor del 65% de los casos de cáncer de mama diagnosticados. Este tipo de cáncer de mama se refiere como "ER-positivo" (ER+). En este caso la unión del estrógeno al ER estimula la proliferación de las células mamarias tumorales. Las células tumorales ER+ son altamente dependientes de este estímulo para proliferar por lo que el ER se utiliza en la actualidad como una diana terapéutica.
El hecho de que la mayoría de las muertes en pacientes con cáncer por tumores sólidos se produzca por posterior metástasis hace que sea crucial comprender los mecanismos moleculares y celulares que permiten a un tumor metastatizar. Publicaciones recientes han demostrado cómo la metástasis se produce mediante mecanismos complejos aún poco conocidos y también cómo los diferentes tipos celulares metastásicos presentan un tropismo hacia determinados órganos. Estas células metastásicas tejido específicas tienen una serie de funciones adquiridas que les permiten colonizar órganos concretos.
La solicitud de patente EP1961825-A1 describe un método para predecir la aparición de metástasis de cáncer de mama a hueso, pulmón, hígado o cerebro, que comprende determinar en una muestra de tejido tumoral el nivel de expresión de uno o más marcadores respecto a su correspondiente nivel de expresión en una muestra control, entre los que se encuentra c-MAF. Sin embargo, este documento requiere la determinación de varios genes simultáneamente para poder determinar la supervivencia de pacientes de cáncer de mama y la correlación entre la capacidad de la firma genómica de predecir la supervivencia libre de metástasis en hueso no resultó estadísticamente significativa.
Bos, P.D., et al. [Nature, 2009, 459:1005-1009] describe genes involucrados en la metástasis de cáncer de mama al cerebro. La solicitud de patente US2005/0181375 describe métodos para la detección de cáncer de mama metastásico basados en la detección de los niveles de expresión de una serie de genes que se encuentran regulados al alza o a la baja en tumores metastásicos y, en particular, en tumores que metastizan al cerebro.
La solicitud de patente internacional WO2010/000907 describe una firma genética útil como predictor genómico de metástasis distal en pacientes de cáncer de mama.
Sin embargo, existe una necesidad en el estado de la técnica marcadores genéticos que permitan diagnosticar y/o pronosticar si un paciente que sufre un determinado cáncer de mama va a sufrir o no metástasis, lo que permitiría aplicar una terapia adecuada al sujeto que padece dicho cáncer. La identificación de nuevos factores de pronóstico servirá como guía en la selección de los tratamientos más adecuados. COMPENDIO DE LA INVENCIÓN
Los autores de la presente invención han identificado un grupo de genes cuya expresión está aumentada o disminuida en muestras de tumor de mama como consecuencia de cambios en la expresión del gen c-MAF. Mediante experimentos de ganancia de función y datos de correlación clínica los autores han validado el papel de dichos genes y, en particular, del gen RERG, cuya expresión está inversamente correlacionada con la de c-MAF, y de los genes PTHLH y PODXL, cuya expresión está directamente correlacionada con la de c-MAF, como marcadores pronósticos de la metástasis en hueso del cáncer de mama ER+.
Así, en un primer aspecto, la invención se relaciona con un método in vitro para predecir la metástasis de un cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, en un sujeto que comprende determinar el nivel de expresión en una muestra de tejido tumoral de dicho sujeto de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF en dicho tumor en donde niveles de expresión alterados de dicho uno o más genes con respecto a un valor de referencia son indicativos de alto riesgo de desarrollo de metástasis. En un segundo aspecto, la invención se relaciona con un método in vitro para diseñar una terapia personalizada para un sujeto afectado de un cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, que comprende determinar el nivel de expresión en una muestra de tejido tumoral de dicho sujeto de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF en donde niveles de expresión alterados de dicho uno o más genes con respecto a un valor de referencia son indicativos de que dicho sujeto es susceptible de recibir una terapia dirigida a prevenir la metástasis.
En un tercer aspecto, la invención se relaciona con el uso de un agente que inhibe la expresión de un gen o la actividad del producto de expresión de dicho gen para la preparación de un medicamento para el tratamiento y/o la prevención de la metástasis de un cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, en donde dicho gen se caracteriza porque su expresión en células de tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en dichas células o disminuye en respuesta a una disminución en los niveles de expresión de c-MAF en dichas células.
En un cuarto aspecto, la invención se relaciona con el uso de agente que estimula la expresión de un gen o la actividad del producto de expresión de dicho gen para la preparación de un medicamento para el tratamiento y/o la prevención de la metástasis de un cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, en donde dicho gen se caracteriza porque su expresión en células de tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en dichas células o porque su expresión aumenta en respuesta a una disminución en los niveles de expresión de c-MAF en dichas células.
En un último aspecto, la invención se relaciona con un método in vitro para la identificación de un gen marcador de propensión a metástasis en un sujeto que padece un cáncer, un cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, que comprende (¡) determinar los niveles de expresión de un gen candidato y de c-MAF en una muestra de tumor primario de cáncer, en particular de mama, y
(¡i) determinar el cambio en los niveles de expresión de dicho gen candidato en una población de células de cáncer, en particular de mama, en respuesta a una modulación de la expresión del gen c-MAF en donde si los niveles de expresión de dicho gen se correlacionan de forma estadísticamente significativa con la expresión de c-MAF en la muestra de tumor primario de cáncer, en particular de mama, y el cambio en los niveles de expresión en respuesta a la modulación de la expresión del gen c-MAF se correlaciona de forma estadísticamente significativa con el cambio en los niveles de dicho gen es indicativo de que dicho gen es marcador de propensión a metástasis en un sujeto.
BREVE DESCRIPCIÓN DE LAS FIGURAS Figura 1. (A) Asociación de los genes incrementados (izquierda) o disminuidos (derecha) del MBP con el fenotipo de metástasis en hueso en pacientes de cáncer de mama ER+ (algoritmo "GSEA"). (B) Asociación mediante de los genes incrementados (izquierda) o disminuidos (derecha) del MBP con el fenotipo de metástasis en hueso en una serie de metástasis en hueso, pulmón, hígado y cerebro derivadas de un tumor primario de cáncer de mama (algoritmo "GSEA"). La misma aproximación para los genes incrementados se ha realizado para metástasis en pulmón, cerebro e hígado.
Figura 2. (A) Análisis de los niveles de expresión de Ki-67, marcador de proliferación, en las lesiones metastásicas en modelos experimentales de ratón tipo xenoinjerto usando células de cáncer de mama ER+, MCF7 moderadamente metastásicas (parental o parentales), y sus derivados alimente metastásicos a hueso (BoM2). (B) Validación mediante RT-PCR cuantitativa de la relación entre la expresión de MAF y el gen RERG. (C) Metástasis en hueso en ratones a partir de células BoM2 con o sin MAF. La señal de Ki-67 y actividad caspasa-3 se cuantifica por inmunhistoquímica. (D) La ganancia de RERG se induce en células altamente metastásicas en hueso. Los derivados celulares con expresión de RERG son inyectadas en el ventrículo izquierdo de los ratones y se analiza la colonización a hueso in vivo y en tiempo real mediante técnicas de imagen por bioluminiscencia para validar la contribución de RERG en presencia de MAF en la metástasis a hueso en cáncer de mama ER+. Figura 3. (A) Cuantificación mediante rayos X del número de metástasis óseas osteolíticas en ratones inyectados con distintos tipos celulares que expresan distintos niveles de MAF. (B) Cuantificación del número de células TRAP (fosfatasa alcalina tartárica), marcador de osteoclastos, en el perímetro de las lesiones metastásicas en lesiones causadas por células que expresan distintos niveles de MAF. (C) Validación mediante RT-PCR cuantitativa de la relación entre la expresión de MAF y el gen PTHLH. (D) Experimento de diferenciación de osteoclastos in vitro a partir de células madre de hueso. El proceso de diferenciación se realiza en presencia de ligando RANK, G-CSF y medio procedente de las distintas poblaciones indicadas. Células parentales, células parentales que expresan las isoformas corta y larga de MAF y estas últimas células en presencia de un péptido neutralizante de la función de PTHLH. (E) Experimento de metástasis a hueso en un modelo experimental de metástasis en ratón. Se inyectan células sin o con expresión de c-MAF y, en este último caso, se trata un grupo con una inoculación de un péptido antagonista de PTHLH de forma intraperitoneal cada día dos veces al día (12 microgramos/ratón/día) en el ventrículo izquierdo del ratón y se cuantifica la aparición y crecimiento de la lesión a hueso. El gráfico a la izquierda muestra la intensidad de la señal a punto final. El gráfico a la derecha cuantifica el número de lesiones osteolíticas en cada grupo. (F) Izquierda, panel que muestra una imagen de rayos X (área en blanco muestra la lesión osteolítica, falta de hueso) y una tinción de TRAP+ (marcador de osteoclastos) en huesos representativos de los grupos descritos en (E). Los triángulos blancos apuntan a los osteoclastos. Derecha, panel que muestra la cuantificación del área de la señal de TRAP normalizada por el perímetro. Figura 4. (A) Cuantificación mediante fluorescencia del número de células que expresan altos (shControl) o reducidos (shMAF) niveles del gen c-MAF que se adhieren a una capa de células derivadas de la médula ósea (BMSC). (B) Cuantificación mediante fluorescencia del número de células que expresan altos (shControl) o reducidos (shMAF#1 o #2) niveles del gen c-MAF que se adhieren a una capa de proteína de matriz extracelular de pulmón como la fibronectina. En este caso se observa un efecto contrario al que ocurre en células de médula ósea. (C) Panel de genes cuya expresión cambia con los cambios de expresión de c-MAF y que han sido validados por RT-PCR. Entre ellos PODXL, un gen que expresa una proteína de la familia de las selectinas (glicoproteínas) que pueden participar en los procesos de adhesión intercelulares transitorias y débiles. (D) Validación funcional del gen PODXL como responsable de la adhesión a células de médula ósea por parte de las células de cáncer de mama que expresan c-MAF. Comparación con el efecto competitivo de un péptido neutro (RGES) o bloqueante (RGDS) de las uniones mediadas por integrinas. Este proceso es específico ya que no se reproduce en células endoteliales humanas de cordón umbilical (HUVEC)
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Definiciones de expresiones y términos generales
"Agente inhibidor de c-MAF", según se usa en la presente invención, se refiere a cualquier molécula capaz de inhibir total o parcialmente la expresión del gen c-MAF, tanto impidiendo que se produzca el producto de expresión de dicho gen (interrumpiendo la transcripción del gen c-MAF y/o bloqueando la traducción del ARNm procedente de la expresión del gen c-MAF) como directamente inhibiendo la actividad de la proteína c-MAF. Inhibidores de la expresión del gen c-MAF pueden identificarse usando métodos basados en la capacidad del supuesto inhibidor de bloquear la capacidad de c-MAF para promover la proliferación celular in vitro, tal como se muestra en la solicitud de patente internacional WO2005/046731 , basados en la capacidad del supuesto inhibidor para bloquear la capacidad la transcripción de un gen reportero bajo el control del promotor de ciclina D2 o de un promotor que contenga la región de respuesta a c-MAF (MARE o c-MAF responsive element) en células que expresan c-MAF tal y como se describe en WO2008098351 o basados en la capacidad del supuesto inhibidor de bloquear la expresión de un gen reportero bajo el control del promotor de IL-4 en respuesta a la estimulación con PMA/ionomicina en células que expresan NFATc2 y c-MAF tal y como se describe en US20090481 17A.
Por "anticuerpo inhibidor" se entiende en el contexto de la presente invención todo aquel anticuerpo que es capaz de unirse al producto de expresión de manera específica e inhibir una o más de las funciones de dicha proteína.
El término "ARN interferente pequeño" ("ARNip") se refiere a dúplex de ARN inhibidores pequeños que inducen la vía de interferencia de ARN. Estas moléculas pueden variar en longitud (generalmente de 18-30 pares de bases) y contienen grados variables de complementariedad a sus ARNm diana en la cadena antisentido. Algunos ARNip, pero no todos, tienen bases no apareadas sobresalientes en el extremo 5' ó 3' de la hebra sentido y/o la hebra antisentido. El término "ARNip" incluye dúplex de dos cadenas separadas. Como se usa aquí, las moléculas de ARNip no están limitadas a moléculas de ARN sino que abarcan además ácidos nucleicos con uno o más nucleótidos químicamente modificados, tales como morfolinos.
El término "ARN he" o "ARN horquillado corto" como se usa aquí, se refiere a un ARNbc donde las dos cadenas están unidas por una cadena sin interrumpir de nucleótidos entre el extremo 3' de una hebra y el extremo 5' de la otra hebra respectiva para formar una estructura dúplex.
El término "aumento de expresión de un gen" se refiere a que los niveles de expresión de un gen se encuentran elevados con respecto a los valores de referencia o controles, que corresponderían al nivel de expresión del mismo gen en una muestra control. De acuerdo con la presente invención, se considera que los niveles de expresión de un gen están aumentados con respecto a un valor de referencia cuando los niveles en la muestra del paciente están aumentados al menos un 5%, al menos un 10%, al menos un 15%, al menos un 20%, al menos un 25%, al menos un 30%, al menos un 35%, al menos un 40%, al menos un 45%, al menos un 50%, al menos un 55%, al menos un 60%, al menos un 65%, al menos un 70%, al menos un 75%, al menos un 80%: al menos un 85%, al menos un 90%, al menos un 95%, al menos un 100%, al menos un 1 10%, al menos un 120%, al menos un 130%, al menos un 140%, al menos un 150% o más. "c-MAF", según se usa en la presente invención se refiere a un gen, también conocido como "v-maf musculoaponeurotic fibrosarcoma oncogene homologue" (avian), MAF o MGC71685) que es un factor de transcripción que contiene una cremallera de leucinas que actúa como un homodímero o como un heterodímero. Dependiendo del sitio de unión al ADN, la proteína codificada puede ser un activador o un represor transcripcional. La secuencia de ADN que codifica c-MAF se describe en la base de datos NCBI bajo el número de acceso NG_016440 (versión del NCBI correspondiente al 18 de diciembre de 201 1 ). A partir de dicha secuencia de ADN, se transcriben dos ARN mensajeros, cada uno de los cuales dará lugar a una de las dos isoformas de la proteína c-MAF, la isoforma α o 1 (correspondiente a la isoforma larga de c-MAF) y la isoforma β o 2 (correspondiente a la isoforma corta de c-MAF). Las secuencias de ADN complementario para cada una de dichas isoformas se describen, respectivamente, en la base de datos NCBI bajo los números de acceso NM_005360.4 y NM_001031804.2 (versión del NCBI correspondiente al 18 de diciembre de 201 1 ). El término "cáncer" o "carcinoma" o "tumor" hace referencia a una enfermedad caracterizada por una proliferación descontrolada de células anormales capaces de invadir tejidos adyacentes y diseminarse a órganos lejanos. Este término incluye, sin limitación, cáncer de mama, corazón, pulmón, intestino delgado, colon, bazo, riñon, vejiga, cabeza, cuello, ovario, próstata, cerebro, páncreas, piel, hueso, médula ósea, sangre, timo, útero, testículos, hepatobiliar e hígado; así como tumores tales como, sin limitación, adenoma, angiosarcoma, astrocitoma, carcinoma epitelial, germinoma, glioblastoma, glioma, hemangioendotelioma, hemangiosarcoma, hematoma, hepatoblastoma, leucemia, linfoma, meduloblastoma, melanoma, neuroblastoma, cáncer hepatobiliar, osteosarcoma, retinoblastoma, rabdomiosarcoma, sarcoma y teratoma. Asimismo, este término incluye melanoma acrolentiginoso, adenocarcinoma actínico queratosis, carcinoma adenoide quístico, adenomas, adenosarcoma, carcinoma adenoescamoso, tumores astrocíticos, carcinoma de la glándula de Bartholin, carcinoma de células básales, carcinoma de glándulas bronquiales, carcinoide capilar, carcinoma, carcinosarcoma, colangiocarcinoma, cistadenoma, tumor endodérmico del seno, hiperplasia endometrial, sarcoma endometrial estromal, adenocarcinoma endometrioide, sarcoma ependimal, sarcoma de Swing, hiperplasia nodular focal, tumores de células germinales, glioblastoma, glucagonoma, hemangioblastoma, hemangioendotelioma, hemangioma, adenoma hepático, adenomatosis hepática, carcinoma hepatocelular, cáncer hepatobiliar, insulinoma, neoplasia intraepitelial, neoplasia interepitelial de células escamosas, carcinoma invasivo de células escamosas, carcinoma de células grandes, leiomiosarcoma, melanoma, melanoma maligno, tumor mesotelial maligno, meduloblastoma, meduloepitelioma, carcinoma mucoepidermoide, neuroblastoma, adenocarcinoma neuroepitelial, melanoma nodular, osteosarcoma, adenocarcinoma papilar seroso, tumores de la hipófisis, plasmacitoma, pseudosarcoma, blastoma pulmonar, carcinoma de células renales, retinoblastoma, rabdomiosarcoma, sarcoma, carcinoma seroso, carcinoma microcítico, carcinoma de tejido blando, tumor que secreta somatostatina, carcinoma escamoso, carcinoma de células escamosas, carcinoma indiferenciado, melanoma uveal, carcinoma verrugoso, vipoma, tumor de Wilm, cáncer intracerebral, cáncer de cabeza y cuello, cáncer rectal, astrocitoma, glioblastoma, cáncer microcítico y cáncer no microcítico, melanoma metastásico, cáncer de próstata metastásico independiente de andrógenos, cáncer de próstata metastásico dependiente de andrógenos y cáncer de mama. En una realización particular de la presente invención, el cáncer es un cáncer de mama, de colon, de pulmón, renal o de tiroides, más preferiblemente cáncer de mama.
La expresión "cáncer de colon" se refiere a cualquier desorden proliferativo maligno de células del colon, recto y apéndice. El término cáncer de colon incluye cualquiera de los siguientes estadios de la enfermedad:
- Estadio 0: cáncer muy incipiente en la capa más interna del intestino
Estadio 1 : cáncer en las capas internas del colon
Estadio 2: cáncer diseminado a través de la pared muscular del colon
Estadio 3: cáncer diseminado a los ganglios linfáticos
Estadio 4: el cáncer se ha diseminado a otros órganos
La expresión "cáncer de mama", "cáncer mamario" o "cáncer de seno" aquel tipo de cáncer que comienza en el tejido mamario. El término "cáncer de mama" incluye cánceres clasificados dentro de cualquiera de las fases según el sistema TNM. El pronóstico está íntimamente unido a los resultados de la clasificación en fases, y la clasificación en fases también se usa para asignar pacientes a tratamientos tanto en ensayos clínicos como en la práctica médica. La información para clasificar en fases es como sigue:
• TX: El tumor primario no se puede evaluar. T0: No hay evidencia de tumor. Tis:
Carcinoma in situ, no invasión. T1 : El tumor es de 2 cm o menos. T2: El tumor es de más de 2 cm pero de menos de 5 cm. T3: El tumor es de más de 5 cm.
T4: Tumor de cualquier tamaño que crece en la pared del pecho o piel, o cáncer de mama inflamatorio.
• NX: Los ganglios linfáticos cercanos no se pueden evaluar. NO: El cáncer no se ha extendido a los ganglios linfáticos regionales. N1 : El cáncer se ha extendido a 1 a 3 ganglios linfáticos de la axila o a uno mamario interno. N2: El cáncer se ha extendido a 4 a 9 ganglios linfáticos de la axila o a múltiples ganglios mamarios internos. N3: Aplica uno de los siguientes:
El cáncer se ha extendido a 10 ó más ganglios linfáticos de la axila, o el cáncer se ha extendido a los ganglios linfáticos bajo la clavícula, o el cáncer se ha extendido a los ganglios linfáticos por encima de la clavícula o el cáncer afecta a los ganglios linfáticos de la axila y se ha extendido a los ganglios linfáticos mamarios internos, o el cáncer afecta a 4 ó más ganglios linfáticos de la axila, y se encuentran cantidades mínimas de cáncer en los ganglios mamarios internos o en biopsia de ganglios linfáticos centinelas.
• MX: La presencia de extensión distante (metástasis) no se puede evaluar. M0:
No hay extensión distante. M1 : Se ha producido la extensión a órganos distantes, que no incluyen el ganglio linfático supraclavicular.
La expresión "cáncer de pulmón" o "cáncer pulmonar" o "carcinoma pulmonar" hace referencia a cualquier cáncer del pulmón e incluye carcinomas de pulmón de células no pequeñas o cáncer de pulmón no microcítico (NSCLC) y carcinomas de pulmón de células pequeñas.
La expresión "cáncer de riñon" o "cáncer renal" o "carcinoma renal" hace referencia a cualquier desorden proliferativo maligno de células del riñon.
La expresión "cáncer de tiroides" o "cáncer tiroideo" o "carcinoma tiroideo" hace referencia a cualquier desorden proliferativo de las células de la glándula tiroidea e incluye, sin limitación, carcinoma papilar tiroideo y carcinoma folicular tiroideo.
"Correlación estadísticamente significativa", tal como aquí se utiliza para referirse a dos eventos (niveles de expresión de un gen candidato y niveles de expresión de c- MAF) se refiere existe una alta probabilidad de que dichos eventos estén relacionados y que no sea un cambio aleatorio.
La expresión "determinar la probabilidad de desarrollo de metástasis en un sujeto afectado de cáncer", en particular en un sujeto afectado de cáncer de mama, de colon, de pulmón, de riñon o de tiroides, preferiblemente en un sujeto afectado de cáncer de mama, se refiere a conocer a partir de indicios si el cáncer que afecta a dicho sujeto va a sufrir metástasis en un futuro. En el contexto de la presente invención, el indicio es la alteración de los niveles de expresión de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF con respecto a un valor de referencia. Por "alteración de los niveles de expresión de un gen" se entiende una variación, bien al alza o bien a la baja, en el nivel de expresión del gen con respecto al valor de referencia. Así, una probabilidad "elevada" o "aumentada" o "incrementada" en la probabilidad de desarrollo de metástasis en un sujeto afectado por cáncer, en particular de cáncer de mama, de colon, de pulmón, de riñon o de tiroides, preferiblemente de cáncer de mama, viene dada por la alteración en los niveles de expresión de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF con respecto a un valor de referencia.
El término "disminución de la expresión de un gen" se refiere a que los niveles de expresión un gen se encuentran disminuidos o reprimidos con respecto a los valores de referencia o controles, que corresponderían al nivel de expresión del mismo gen en una muestra control. De acuerdo con la presente invención, se considera que los niveles de expresión de un gen están disminuidos con respecto a un valor de referencia cuando los niveles en la muestra del paciente están disminuidos al menos un 5%, al menos un 10%, al menos un 15%, al menos un 20%, al menos un 25%, al menos un 30%, al menos un 35%, al menos un 40%, al menos un 45%, al menos un 50%, al menos un 55%, al menos un 60%, al menos un 65%, al menos un 70%, al menos un 75%, al menos un 80%: al menos un 85%, al menos un 90%, al menos un 95%, al menos un 100%, al menos un 1 10%, al menos un 120%, al menos un 130%, al menos un 140%, al menos un 150% o más.
El término "gen marcador" o "gen informativo", según se usa en la presente invención se refiere a un gen que se expresa de forma diferencial en poblaciones que muestran fenotipos distintos y cuya expresión diferencial, aisladamente o en combinación con otros genes se correlaciona con un fenotipo específico en mayor grado que el que sería esperable de forma aleatoria.
"Gen PODXL" también conocido como podocalyxin-like se refiere a un gen que codifica una proteína que forma parte de la familia de las sialomucinas, y que actúa como un importante componente de los podocitos glomerulares. Los podocitos son células epiteliales altamente diferenciadas con protuberancias interdigitales que cubren el aspecto exterior de la membrana basal glomerular. Otra actividad biológica para la que codifica esta proteína incluye: su unión en un complejo de membrana proteico con el factor regulador del intercambiador de Na+/H+ de los elementos del citoesqueleto intracelular y su unión a L-selectina. Se han descrito dos variantes transcripcionales de PODXL, recogidas en la base de datos del NCBI (en su versión correspondiente al 3 de marzo de 2013) con los números de acceso NM_0010181 1 1 .2 (variante 1 ) y NM_005397.3 (variante 2). Las secuencias de la proteína codificada por el gen PODXL se identifican en la base de datos del NCBI (versión del 3 de marzo de 2013) mediante los números de acceso NP_001018121 .1 (isoforma 1 ) y NP_005388.2 (isoforma 2).
"Gen PTHLH" (parathyroid hormone-like hormone) se localiza en el cromosoma 12 humano y codifica una proteína que pertenece a la familia de hormonas paratiroides denominada PTHrP (parathyroid hormone-related protein). Esta proteína regula el desarrollo óseo endocondrial así como las interacciones entre epitelio y mesénquima durante la formación de las glándulas mamarias y los dientes. El receptor de esta hormona se denomina PTHR1. La secuencia de ADN correspondiente a PTHLH se recoge en la base de datos del NCBI con el número de acceso NG_023197 (versión del NCBI correspondiente al 6 de noviembre de 201 1 ). Se han descrito cuatro variantes de transcritos de PTHLH, alojadas en la base de datos del NCBI (versión del 20 de noviembre de 201 1 ) con los número de acceso NIVM 98965.1 (variante 1 ), NM_002820.2 (variante 2), NM_198964.1 (variante 3) y NM_198966.1 (variante 4). Asimismo, las secuencias de la proteína codificada por el gen PTHLH se alojan en la base de datos del NCBI (versión del 10 de enero de 1995) con los números de acceso AAA60360.1 (forma A), AAA60358.1 (forma B) y AAA60359.1 (forma C).
"Gen RERG", también conocido como Ras-like estrogen-regulated growth inhibitor se refiere a un gen que codifica una proteína que forma parte de la superfamilia RAS de GTPasas, y que actúa como inhibidor de la proliferación celular y de la formación de tumores. Se han descrito dos variantes transcripcionales de RERG, recogidas en la base de datos del NCBI (en su versión correspondiente al 28 de noviembre de 201 1 ) con los números de acceso NM_032918.2 (variante 1 ) y NM_001 190726.1 (variante 2). Las secuencias de la proteína codificada por el gen RERG se identifican en la base de datos del NCBI (versión del 28 de noviembre de 201 1 ) mediante los números de acceso NP_1 16307 (isoforma 1 ) y NP_001 177655 (isoforma 2).
"Metástasis" a la propagación de un foco canceroso a un órgano distinto de aquel en el que se inició. Ocurre generalmente por vía sanguínea o linfática. Cuando las células cancerosas se diseminan y forman un tumor nuevo, éste se llama un secundario, o tumor metastásico. Las células del cáncer que forman el tumor secundario son como las del tumor original. Por ejemplo, si un cáncer de mama se disemina (metastatiza) al pulmón, el tumor secundario está formado de células malignas del cáncer de mama. La enfermedad en el pulmón es cáncer de mama metastásico y no cáncer de pulmón. En una realización particular de la invención, la metástasis es cáncer de mama, cáncer de colon, cáncer de pulmón, cáncer de riñon o cáncer de tiroides que se ha diseminado (metastatizado) al hueso. En una realización aún más particular de la invención, la metástasis es cáncer de mama ER+ que se ha diseminado (metastatizado) al hueso.
"Metástasis ósea osteolítica" se refiere a un tipo de metástasis en la que se produce resorción ósea (pérdida progresiva de la densidad ósea) en la proximidad de la metástasis resultante de la estimulación de la actividad de los osteoclastos por las células del tumor y caracterizada por dolor severo, fracturas patológicas, hipercalcemia, compresión de la médula espinal y otros síndromes resultantes de la compresión de los nervios.
El término "micro ARN" o "miARN" se refiere a moléculas de ARN monocatenario cortas, típicamente de alrededor de 21-23 nucleótidos de longitud capaces de regular la expresión génica. Los miARN pueden ser sintéticos (es decir, recombinantes) o naturales. Los miARN naturales están codificados por genes que se transcriben del ADN y se procesan de transcritos primarios ("pri-miARN") a estructuras cortas de tallo- bucle ("pre-miARN") y por último a miARN maduro. Las moléculas de miARN maduras son parcialmente complementarias a una o más moléculas de ARNm y disminuyen la expresión génica a través de un proceso similar a la interferencia de ARN o inhibiendo la traducción del ARNm.
"Muestra de tejido tumoral" a la muestra de tejido procedente del tumor primario, en particular de cáncer de mama, de cáncer de colon, de cáncer de pulmón, de cáncer de riñon o de cáncer de tiroides, más en particular de cáncer de mama ER+ o ER-Her2-. Dicha muestra se puede obtener mediante métodos convencionales, por ejemplo, biopsia, utilizando métodos bien conocidos para los expertos en las técnicas médicas relacionadas. Los métodos para obtener una muestra de la biopsia incluyen partición en trozos grandes de un tumor, o microdisección u otros métodos de separación de células conocidos en la técnica. Las células tumorales se pueden obtener de forma adicional mediante citología por aspiración con una aguja fina. Para simplificar la conservación y el manejo de las muestras, estas se pueden fijar en formalina y embeber en parafina o congelar primero y después embeber en un medio criosolidificable, tal como compuesto OCT, mediante inmersión en un medio altamente criogénico que permite la congelación rápida. La muestra de acuerdo a la presente invención también comprende cualquier biofluido corporal que contiene tejido procedente del tumor, RNA procedente del tumor, DNA procedente del tumor o proteína procedente del tumor incluyendo, sin quedar limitado a, plasma o suero, tal como plasma o suero con presencia de exosomas o de DNA de origen tumoral.
La expresión "mutante dominante negativo" de un producto de expresión de un gen, según se usa en la presente invención, se refiere a una variante de dicho producto de expresión que es capaz de interferir con la actividad del producto de expresión nativo. El término "péptido inhibidor", tal como aquí se utiliza, hace referencia a aquellos péptidos capaces de unirse a un producto de expresión e inhibir su actividad.
El término "predicción de la metástasis" se utiliza aquí para referirse a la probabilidad de que un paciente desarrolle metástasis. Los métodos de predicción de la presente invención pueden ser usados clínicamente para tomar decisiones sobre la elección del tratamiento más adecuado para cada paciente en particular. Los métodos de predicción de la presente invención son herramientas valiosas para predecir si un paciente va a responder favorablemente a un régimen de tratamiento, como la quimioterapia. La predicción puede incluir factores pronósticos. Como comprenderán los expertos en el campo, la predicción, aunque se preferiría, no tiene que ser correcta para el 100% de los sujetos que se puedan diagnosticar o evaluar. El término, sin embargo, requiere que una parte significativa de los sujetos puedan ser identificados como con mayor probabilidad de tener un resultado determinado. Si un sujeto es estadísticamente significativo se puede determinar sin más por el experto en la materia, usando diferentes herramientas de evaluación estadística conocidas, por ejemplo, la determinación de los intervalos de confianza, la determinación del valor-p, validación cruzada tasas de clasificación y los detalles, etc, como se muestra en Dowdy y Wearden, Estadística para la Investigación de Wiley, John & Sons, Nueva York 1983. Los intervalos de confianza recomendados son por lo menos 50%, por lo menos el 60%, por lo menos 70%, por lo menos 80%, al menos 90% o al menos el 95%. Los valores-p son, preferentemente, 0,01 , 0,005 o menos.
El término "probabilidad", tal como aquí se utiliza, mide la frecuencia con la que se obtiene un resultado (o conjunto de resultados) al llevar a cabo un experimento aleatorio, del que se conocen todos los resultados posibles, bajo condiciones suficientemente estables. La probabilidad puede ser "alta" o "baja". Como entenderán los técnicos en la materia, la probabilidad no tiene por qué ser del 100% para todos los sujetos evaluados, aunque preferentemente debería ser así. Si una correlación es estadísticamente significativa o no, puede ser determinado sin grandes complicaciones, por un técnico en la materia, utilizando distintas herramientas conocidas de evaluación estadística, por ejemplo, mediante la determinación de intervalos de confianza, la determinación del valor de p, el test de Student, el test de Mann-Whitney, etc. Información adicional sobre estas herramientas estadísticas pueden encontrarse en Dowdy y Wearden, Statistics for Research. John Wiley & Sons, New York 1983. Los intervalos de confianza preferidos son de al menos 50%, al menos 60%, al menos 70%, al menos 80%, al menos 90%, o al menos 95%. Los valores de p son, preferentemente, 0,05, 0,02, 0,01 ó inferiores. "Promotor específico de tejido mamario", según se usa en la presente invención, se refiere a una secuencia de ácidos nucleicos que funciona como promotor y que permite la expresión de un ácido nucleico asociado operativamente a dicho promotor de forma específica en tejido mamario sin que se observe expresión significativa en otros tejidos.
El término "sujeto" o "paciente", como se usa aquí, se refiere a todos los animales clasificados como mamíferos e incluye, pero no está restringido a, animales domésticos y de granja, primates y humanos, por ejemplo, seres humanos, primates no humanos, vacas, caballos, cerdos, ovejas, cabras, perros, gatos, o roedores. Preferiblemente, el sujeto es un humano hombre o mujer de cualquier edad o raza.
"Tumor primario" se refiere a un tumor que tiene su origen en el tejido u órgano en el que se encuentra y que no ha metastatizado a dicha localización desde otra localización. "Tumor ER+" se refiere a tumores que expresan ER por encima de un determinado nivel. Niveles de ER superiores o iguales a 10 fmol/mg, una detección positiva por medio de inmunohistoquímica de más o de un 10% de los núcleos son criterios habituales para considerar a un tumor de mama ER+.
"Tumor ER-", según se usa en la presente invención, se refiere a tumores en los que menos del 5% de los núcleos de las células tumorales muestran expresión de ER usando técnicas inmunohistoquímicas (por ejemplo, usando el método descrito por Elizabeth H et al., 2010, Journal of Clinical Oncology, 28: 2784-2795)
"Tumor Her2-" se refiere a tumores en los que las células no muestran una amplificación del gen HER2. Se considera que las células tumorales son negativas para HER2 cuando el valor obtenido usando un ensayo inmunohistoquímico semicuantitativo basado en un anticuerpo policlonal anti-HER2 (por ejemplo el kit Herceptest de (Referencia K5204, Dako North America, Inc., (Referencia K5204) es de 0, 1 + o 2+. Alternativamente, se considera que un tumor es Her2- cuando se el número de copias del gen HER2 por núcleo es inferior a 4 o cuando el cociente del número de copias del gen HER2 con respecto al número de copias del cromosoma 17 determinadas mediante FISH es inferior a 1 ,8. Ensayos estándar para determinar si un tumor es Her2+ o Her2- se describen, por ejemplo, las directrices de la American Society of Clinical Oncology/College of American Pathologists guidelines (Wolff AC, et al. J Clin Oncol., 2007, 25: 1 18-145; Wolff AC, et al., 2007, Archives of Pathology Laboratory Medicine 131 : 18-43). "Tumor PR-" se refiere a tumores que no expresan de forma detectable el receptor de progesterona. En el contexto actual, niveles de receptor de progesterona inferiores a 10 fmol/mg y/o una observación inmunohistoquímica menor al 10 por ciento de los núcleos positivos se considera como PR-negativo. "Tumor triple negativo" se refiere a un cáncer de mama caracterizado por ser ER-, PR- y HER2-.
La expresión "valor de referencia", se refiere a un valor de laboratorio utilizado como referencia para los valores/datos obtenidos mediante a partir de muestras obtenidas de los pacientes o los pacientes. El valor de referencia o nivel de referencia puede ser un valor absoluto, un valor relativo, un valor que tiene un límite superior y/o inferior, una serie de valores, un valor promedio, una mediana, un valor medio, o un valor expresado por referencia a un valor de control o de referencia. Un valor de referencia puede estar basado en el valor obtenido a partir de una muestra individual, como por ejemplo, un valor obtenido de una muestra del paciente objeto de estudio pero obtenido en un punto anterior en el tiempo. El valor de referencia puede estar basado en un elevado número de muestras, tales como los valores obtenidos en una población de los sujetos del grupo de edad cronológica coincidente con la del paciente objeto de estudio o basado en un conjunto de muestras de inclusión o exclusión de la muestra a analizar.
La expresión "oliqonucleótido antisentido específico para un gen", según se usa en la presente invención, se refiere a un oligonucleótido cuya secuencia es parcial- o totalmente complementaria a una región de dicho gen, del pre-ARNm codificado por dicho gen o del ARnm de dicho gen, de forma que es capaz de hibridar específicamente con dicho gen, pre-ARNm o ARNm bloqueando así la transcripción del gen o la traducción del ARNm.
Los ácidos nucleicos antisentido se pueden unir a la diana potencial de la droga mediante complementariedad de bases convencional o, por ejemplo, en el caso de unirse a ADN bicatenario, a través de interacciones específicas en el surco mayor de la doble hélice. En general, estos métodos se refieren al rango de técnicas generalmente empleadas en la técnica e incluyen cualquier método que se basa en la unión específica a secuencias de oligonucleótidos.
Una construcción antisentido de la presente invención se puede aportar, por ejemplo, como un plásmido de expresión que, cuando se transcribe en la célula, produce ARN que es complementario a al menos una parte única del ARNm celular que codifica el gen diana. De forma alternativa, la construcción antisentido es una sonda de oligonucleótidos que se genera ex vivo y que, cuando se introduce en la célula, produce inhibición de la expresión génica hibridando con el ARNm y/o secuencias genómicas de un ácido nucleico diana. Tales sondas de oligonucleótidos son preferiblemente oligonucleótidos modificados, que son resistentes a las nucleasas endógenas, por ejemplo, exonucleasas y/o endonucleasas, y que son por lo tanto estables in vivo. Moléculas de ácidos nucleicos ejemplares para su uso como oligonucleótidos antisentido son análogos de ADN de fosforamidato, fosfotionato y metilfosfonato (ver también las patentes de EE.UU. Nos. 5176996; 5264564; y 5256775). Adicionalmente, se han revisado las aproximaciones generales para construir oligómeros útiles en la terapia antisentido, por ejemplo, en Van der Krol et al., BioTechniques 6: 958-976, 1988; y Stein et al., Cáncer Res 48: 2659-2668, 1988.
Respecto al oligonucleótido antisentido, son preferidas las regiones de oligodesoxirribonucleótidos derivadas del sitio de inicio de la traducción, por ejemplo, entre -10 y +10 del gen diana. Las aproximaciones antisentido implican el diseño de oligonucleótidos (bien ADN bien ARN) que son complementarios al ARNm que codifica el polipéptido diana. Los oligonucleótidos antisentido se unirán a los transcritos de ARNm y prevendrán la traducción.
Los oligonucleótidos que son complementarios al extremo 5' del ARNm, por ejemplo la secuencia 5' no traducida hasta e incluyendo el codón de iniciación AUG, deberían funcionar de la forma más eficaz para inhibir la traducción. Sin embargo, se ha mostrado recientemente que las secuencias complementarias a las secuencias 3' no traducidas de los ARNm también son eficaces para inhibir la traducción de los ARNms (Wagner, Nature 372: 333, 1994). Por lo tanto, se podrían usar oligonucleótidos complementarios bien a las regiones 5' ó 3' no traducidas, no codificantes de un gen en una aproximación antisentido para inhibir la traducción de ese ARNm. Los oligonucleótidos complementarios a la región 5' no traducida del ARNm deberían incluir el complemento del codón de iniciación AUG. Los oligonucleótidos complementarios a las regiones codificantes del ARNm son inhibidores de la traducción menos eficaces pero también se podrían usar según la invención. Si están diseñados para hibridar con la región 5', 3' o codificante del ARNm, los ácidos nucleicos antisentido deberían tener al menos seis nucleótidos de longitud y tener preferiblemente menos de alrededor de 100 y más preferiblemente menos de alrededor de 50, 25, 17 ó 10 nucleótidos de longitud.
Los oligonucleótidos antisentido pueden ser de ADN o ARN o mezclas quiméricas o derivados o versiones modificadas de los mismos, de cadena sencilla o de cadena doble. El oligonucleótido se puede modificar en el grupo de la base, el grupo del azúcar o el esqueleto de fosfato, por ejemplo, para mejorar la estabilidad de la molécula, su capacidad de hibridación etc. El oligonucleótido puede incluir otros grupos unidos, tales como péptidos (por ejemplo, para dirigirlos a receptores de células huésped) o agentes para facilitar el transporte a través de la membrana celular (ver, por ejemplo, Letsinger et al., Proc. Nati. Acad. Sci. U.S.A. 86: 6553-6556, 1989; Lemaitre et al., Proc. Nati. Acad. Sci. 84: 648-652, 1987; Publicación de PCT No. WO88/09810) o la barrera hematoencefálica (ver, por ejemplo, publicación de PCT No. WO89/10134), agentes intercalantes (ver, por ejemplo, Zon, Pharm. Res. 5: 539-549, 1988). Para este fin, el oligonucleótido puede estar conjugado a otra molécula, por ejemplo, un péptido, un agente transportador, agente de corte desencadenado por hibridación, etc.
Los oligonucleótidos antisentido pueden comprender al menos un grupo de base modificada. El oligonucleótido antisentido también puede comprender al menos un grupo azúcar modificado seleccionado del grupo que incluye pero no está limitado a arabinosa, 2-fluoroarabinosa, xilulosa, y hexosa. El oligonucleótido antisentido también puede contener un esqueleto semejante a péptido neutro. Tales moléculas se denominan oligómeros ácido nucleico peptídico (ANP) y se describen, por ejemplo, en Perry-O'Keefe et al., Proc. Nati. Acad. Sci. U.S.A. 93: 14670, 1996, y en Eglom et al., Nature 365: 566, 1993. En aún otra forma de realización, el oligonucleótido antisentido comprende al menos un esqueleto de fosfato modificado. En todavía una forma de realización más, el oligonucleótido antisentido es un oligonucleótido alfa-anomérico.
Mientras que se pueden usar oligonucleótidos antisentido complementarios a la región codificante del la secuencia diana de ARNm, también se pueden usar aquellos complementarios a la región transcrita no traducida.
En algunos casos, puede ser difícil alcanzar las concentraciones intracelulares del antisentido suficientes para suprimir la traducción de los ARNms endógenos. Por lo tanto, una aproximación preferida usa una construcción de ADN recombinante en la que se coloca el oligonucleótido antisentido bajo el control de un promotor fuerte de pol III o pol II.
De forma alternativa, se puede reducir la expresión del gen diana dirigiendo secuencias de desoxirribonucleótidos complementarias a la región reguladora del gen (es decir, el promotor y/o potenciadores) para formar estructuras de triple hélice que previenen la transcripción del gen en las células diana en el cuerpo (ver en general, Helene, Anticancer Drug Des. 6(6): 569-84, 1991 ). En ciertas formas de realización, los oligonucleótidos antisentido son morfolinos antisentido.
La expresión "interferencia del ARN" o ARNi es un proceso de represión post- transcripcional de la expresión de genes y especifico de secuencia que pueden ocurrir en las células eucariotas. En general, este proceso implica la degradación de un mRNA de una secuencia particular inducido por ARN de doble cadena (dsRNA) que es homologa a dicha secuencia. Este dsRNA es capaz de provocar el silenciamiento de la expresión génica mediante la conversión de ARN en siRNA por medio de un tipo RNasa III (Dicer).
El término "ácido nucleico", como se usa aquí, se refiere a un polímero que tiene dos o más moléculas de desoxirribonucleótidos, ribonucleótidos o análogos de nucleótidos así como moléculas que son estructuralmente similares a un ácido nucleico nativo, pero se diferencian del ácido nucleico nativo (por ejemplo, mediante modificación química) en uno o más del esqueleto del ácido nucleico (por ejemplo, fosfato en ácidos nucleicos nativos), azúcar del ácido nucleico (por ejemplo, desoxirribosa para ADN nativo y ribosa en ARN nativo) y base del ácido nucleico (por ejemplo, adenosina, citosina, guanina, timidina o purina en ácidos nucleicos nativos).
Una "secuencia antisentido", como se usa aquí, incluye oligonucleótidos antisentido o sentido que comprenden una secuencia de ácido nucleico monocatenario (ARN o ADN) capaz de unirse a secuencias de ARNm (sentido) o ADN (antisentido) diana. Se describe la capacidad de derivar un oligonucleótido antisentido o sentido, basada en una secuencia de ADNc que codifica una proteína determinada en, por ejemplo, Stein y Cohén, Cáncer Res. 48:2659, (1988) y van der Krol et al., BioTechniques 6:958, (1988).
Como se usa aquí, el término "ribozima" o "enzima de ARN" o "ARN catalítico" se refiere a una molécula de ARN que cataliza una reacción química. Muchas ribozimas naturales catalizan la hidrólisis de uno o más sus propios enlaces fosfodiéster o la hidrólisis de enlaces en otros ARN, pero también se ha encontrado que catalizan la actividad aminotransferasa del ribosoma, la actividad ligasa de una ADN ligasa y un número de otras reacciones químicas realizadas por enzimas proteicas convencionales.
El término tratamiento se refiere a la administración de un fármaco para aliviar o eliminar una patología, para reducir o eliminar uno o más síntomas asociados a dicha patología o para que un paciente obtenga beneficio clínico del paciente, definido de forma amplia como: reducción del tamaño del tumor, reducción de la ocurrencia o tamaño de metástasis, reducción o detención del crecimiento del tumor, inducción de remisión, aumento de la duración antes de la recurrencia, reducción del dolor asociado con el tumor, inhibición de la división de las células tumorales, exterminio de las células del tumor, apoptosis inducida en una célula de tumor, reducción, reducción de la recurrencia del tumor y/o aumento de la supervivencia de los pacientes.
Método in vitro para predecir la metástasis en un sujeto afectado de cáncer, en particular cáncer de mama
Los autores de la presente invención han identificado un grupo de genes cuya expresión está correlacionada de modo positivo o negativo con la expresión de c-MAF. En concreto, los autores han identificado una serie de genes caracterizados porque (i) su expresión en tumores primarios correlaciona significativamente con la expresión de MAF y (ii) su expresión en células MCF7 se modifica con la sobre-expresión de c-MAF (isoforma larga o corta) o con el silenciamiento de c-MAF en células altamente metastásicas a hueso derivadas de MCF7 que expresan MAF. Los genes que cumplen dichas condiciones son considerados miembros del programa de metástasis a hueso mediado por c-MAF. Estos genes se recogen en las Tablas 1 (genes incrementados del programa c-MAF) y 2 (genes suprimidos del programa MAF). Mediante experimentos de ganancia de función y datos de correlación clínica, los inventores han validado funcionalmente el papel de PTHLH, PODXL y RERG como genes diana causales de los procesos metastásicos en hueso del cáncer de mama ER+ y como parte del programa de metástasis en hueso mediado por c-MAF.
Así, en un primer aspecto, la invención se relaciona con un método in vitro (en adelante, primer método de la invención) para predecir la metástasis de un cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, en un sujeto que comprende determinar el nivel de expresión en una muestra de tejido tumoral de dicho sujeto de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF en donde niveles de expresión alterados de dicho uno o más genes con respecto a un valor de referencia son indicativos de alto riesgo de desarrollo de metástasis.
El primer método de la invención comprende, en una primera etapa, cuantificar el nivel de expresión de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF en una muestra de tejido tumoral de un sujeto afectado de cáncer, en particular de cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de cáncer de mama.
La expresión "genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF", según se usa en la presente invención, se refiere a genes cuya expresión se modifica de forma significativa en respuesta a cambios en los niveles de expresión de c-MAF. Genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF incluyen genes cuya expresión en muestras de tumores primarios correlaciona de forma significativa con la expresión de c-MAF y/o genes cuya expresión se modifica en células de cáncer de mama en respuesta a cambios en los niveles de expresión de c-MAF.
En una forma preferida de realización, genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF incluyen genes cuya expresión aumenta en muestras de tumores primarios que muestran expresión elevada de c- MAF y/o genes cuya expresión aumenta en células de cáncer, preferiblemente de mama, colon, pulmón, riñon o tiroides, aún más preferiblemente de mama, en respuesta a un aumento en los niveles de expresión de c-MAF y/o genes cuya expresión disminuye en células de cáncer, preferiblemente de mama, colon, pulmón, riñon o tiroides, aún más preferiblemente de mama, en respuesta al silenciamiento de expresión de c-MAF.
En una forma preferida de realización, genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF incluyen genes cuya expresión disminuye en muestras de tumores primarios que muestran expresión elevada de c- MAF y/o genes cuya expresión disminuye en células de cáncer, preferiblemente de mama, colon, pulmón, riñon o tiroides, aún más preferiblemente de mama, en respuesta a un aumento en los niveles de expresión de c-MAF y/o genes cuya expresión aumenta en células de cáncer, preferiblemente de mama, colon, pulmón, riñon o tiroides, aún más preferiblemente de mama, en respuesta al silenciamiento de expresión de c-MAF.
En la presente invención se entiende por nivel de expresión "aumentado" o "incrementado" que el nivel de expresión se refiere a niveles superiores a los del valor de referencia. En particular, se puede considerar que una muestra de un sujeto presenta niveles aumentados de expresión cuando los niveles de expresión en la muestra del sujeto son de al menos 1 , 1 veces, 1 ,5 veces, 5 veces, 10 veces, 20 veces, 30 veces, 40 veces, 50 veces, 60 veces, 70 veces, 80 veces, 90 veces, 100 veces o incluso más con respecto al valor de referencia.
Asimismo, en la presente invención se entiende por nivel de expresión "disminuido" o "reducido" que el nivel de expresión se refiere a niveles inferiores a los del valor de referencia. En particular, se puede considerar que una muestra de un sujeto presenta niveles disminuidos de expresión cuando los niveles de expresión en la muestra de referencia son de al menos 1 , 1 veces, 1 ,5 veces, 5 veces, 10 veces, 20 veces, 30 veces, 40 veces, 50 veces, 60 veces, 70 veces, 80 veces, 90 veces, 100 veces o incluso más con respecto a la muestra del sujeto.
En una forma preferida de realización, el primer método de la invención comprende cuantificar el nivel de expresión de uno o más genes seleccionados del grupo formado por los genes comprendidos en la Tabla 1 y/o de uno o más genes seleccionados del grupo formado por los genes comprendidos en la Tabla 2 en una muestra de tejido tumoral de un sujeto afectado de cáncer, en particular de mama.
Figure imgf000025_0001
Gene ID (Homo
Gen A B C D sapiens)
MAFB 9935 + + +
NAV3 89795 + -
NPR1 4881 + + + -
PRELP 5549 + + +
PTPRN2 5799 + + +
SCGB2A2 4250 + +
TNFSF10 8743 + + + -
XYLT1 64131 + + + -
ACTG2 72 + + -
BCL1 1A 53335 + -
CCND2 894 + + -
CSRP2 1466 + -
DOK5 55816 + -
DZIP1 22873 + -
FM02 2327 + -
GABRP 2568 + -
IGF1 3479 + + -
IRAK3 1 1213 + -
KCNJ2 3759 + -
LMCD1 29995 + -
LRRC2 79442 + -
LRRN3 54674 + -
NAALAD2 10003 + -
P2RY14 9934 + -
RPL22 6146 + + -
SCG5 6447 + -
VTCN1 79679 + + + -
ABCC3 8714 + + +
ALDH1A3 220 + +
ARID5B 84159 + + + -
ATF1 466 + + -
BTN3A3 10384 + +
CLIP4 79745 + + +
DAB2 1601 + + + -
DIAPH2 1730 + + + -
EDN1 1906 + + + -
FAM70A 55026 + +
FAS 355 + +
FAT1 2195 + +
GAS1 2619 + + +
KCTD12 1 15207 + + -
KRT81 3887 + + -
MALL 7851 + +
NT5E 490 + + +
PDE1A 5136 + + -
PDGFC 5155 + +
PTGS2 5743 + + + -
QKI 9444 + +
TNS3 64759 + + + Gene ID (Homo
Gen A B C D sapiens)
60 VGLL3 389136 + +
61 ABCG2 9429 + + +
62 CD36 948 + + +
63 EFEMP1 2202 + + +
64 FGF18 8817 + + +
65 GEM 2669 + + +
66 HOPX 84525 + + +
67 ITGB5 3693 + + +
68 KRT6B 3854 + + +
69 NR3C1 2908 + + +
70 SEPP1 6414 + + +
71 WIPF1 7456 + + + -
72 PODXL 5420 + + + -
73 STK38L 23012 + + -
74 KRT17 3872 + + + -
75 MME 431 1 + + + -
76 PTHLH 5744 + + + -
Tabla 1. Genes cuya expresión se correlaciona positivamente con la expresión de c-MAF. A: Genes cuya expresión en tumores primarios se correlaciona significativamente con la expresión de MAF. B: Genes cuya expresión en células MCF7 se modifica con la expresión de la isoforma larga c-MAF. C: Genes cuya expresión en células MCF7 se modifica con la expresión de la isoforma corta MAF. D: Genes cuya expresión en células MCF7 se modifica con silenciamiento de c-MAF. + Aumento de expresión, - Disminución de expresión.
Figure imgf000027_0001
Gene ID
Gen (Homo A B C D
sapiens)
96 CRABP2 1382 - +
97 TUBB 203068 - +
98 UPK3B 80761 - +
99 ABHD2 1 1057 - -
100 AKAP10 1 1216 - - -
101 ANXA9 8416 - - +
102 BRD2 6046 - - - +
103 C12orf10 60314 - -
104 CA12 771 - - - +
105 DNAJC12 56521 - -
106 LOC339047 339047 - -
107 PPDPF 79144 - -
108 UBE2S 27338 - -
109 RERG 85004 - - -
Tabla 2. Genes cuya expresión se correlaciona negativamente con la expresión de c-MAF. A: Genes que en tumores primarios su expresión correlaciona significativamente con la expresión de MAF. B: Genes cuya expresión se modifica con la expresión de la isoforma larga c-MAF. C: Genes cuya expresión se modifica con la expresión de la isoforma corta c-MAF. D: Genes cuya expresión se modifica con el silenciamiento de c-MAF. + Aumento de expresión, - Disminución de expresión.
La Tabla 1 corresponde a un grupo de 76 genes caracterizados por (i) su nivel de expresión está directamente correlacionado con el nivel de expresión de c-MAF en muestras de tumores primarios y (ii) su nivel de expresión aumenta cuando se induce la expresión de c-MAF en líneas celulares de cáncer de mama o disminuye cuando se silencia-MAF.
De acuerdo con el primer método de la invención, el aumento del nivel de expresión de uno o más de los genes comprendidos en la Tabla 1 con respecto al valor de referencia es indicativo de que el sujeto presenta una probabilidad elevada de desarrollo de metástasis.
En una realización preferida del primer método de la invención, se cuantifica el nivel de expresión del gen PTHLH, de modo que si el nivel de expresión del gen PTHLH está aumentado con respecto al valor de referencia, el sujeto presenta una probabilidad elevada de desarrollo de metástasis. En otra realización preferida del primer método de la invención, se cuantifica el nivel de expresión del gen PODXL, de modo que si el nivel de expresión del gen PODXL está aumentado con respecto al valor de referencia, el sujeto presenta una probabilidad elevada de desarrollo de metástasis. La Tabla 2 corresponde a un grupo de 33 genes caracterizados por (i) su nivel de expresión está inversamente correlacionado con el nivel de expresión de c-MAF en muestras de tumores primarios y (ii) su nivel de expresión disminuye cuando se induce la expresión de c-MAF en líneas celulares de cáncer de mama o aumenta cuando se silencia c-MAF en líneas celulares de cáncer de mama.
De acuerdo con el primer método de la invención, la disminución del nivel de expresión de uno o más de los genes comprendidos en la Tabla 2 con respecto al valor de referencia es indicativa de que el sujeto presenta una probabilidad elevada de desarrollo de metástasis.
En una realización preferida del primer método de la invención, se cuantifica el nivel de expresión del gen RERG, de modo que si el nivel de expresión del gen RERG está disminuido con respecto al valor de referencia, el sujeto presenta una probabilidad elevada de desarrollo de metástasis.
Como entiende el experto en la materia, la cuantificación de los niveles de expresión de un gen se puede determinar midiendo los niveles del ARN mensajero de dicho gen o de la proteína codificada por dicho gen.
Para este fin, la muestra biológica se puede tratar para disgregar de forma física o mecánica la estructura del tejido o la célula, liberando los componentes intracelulares en una solución acuosa u orgánica para preparar los ácidos nucleicos. Los ácidos nucleicos se extraen mediante procedimientos conocidos para el experto en la materia y disponibles comercialmente (Sambroock, J., et al., "Molecular cloning: a Laboratory Manual", 3rd ed., Cold Spring Harbor Laboratory Press, N.Y., Vol. 1 -3.)
Así, la cuantificación del nivel de expresión de un gen cuya expresión se modula en respuesta a un aumento del nivel de expresión de c-MAF puede realizarse a partir del ARN resultante de la transcripción de dicho gen (ARN mensajero o ARNm) o, alternativamente, a partir del ADN complementario (ADNc) de dicho gen. Por tanto, en una realización particular de la invención, la cuantificación de los niveles de expresión de un gen cuya expresión se modula en respuesta a un aumento del nivel de expresión de c-MAF comprende la cuantificación del ARN mensajero de dicho gen, o un fragmento de dicho ARNm, ADN complementario a dicho gen, o un fragmento de dicho ADNc, o sus mezclas.
Prácticamente cualquier método convencional puede ser utilizado dentro del marco de la invención para detectar y cuantificar los niveles de ARNm codificados por un gen cuya expresión se modula en respuesta a un aumento del nivel de expresión de c-MAF o de su ADNc correspondiente. A modo ilustrativo, no limitativo, los niveles de ARNm codificados por dicho gen pueden ser cuantificados mediante el empleo de métodos convencionales, por ejemplo, métodos que comprenden la amplificación del ARNm y la cuantificación del producto de la amplificación de dicho ARNm, tales como electroforesis y tinción, o alternativamente, mediante Southern blot y empleo de sondas apropiadas, northern blot y empleo de sondas específicas del ARNm del gen de interés modulado por c-MAF o de su ADNc correspondiente, mapeo con la nucleasa S1 , RT-LCR, hibridación, microarrays, etc., preferentemente, mediante PCR cuantitativa a tiempo real usando un marcador apropiado. Análogamente, los niveles del ADNc correspondiente a dicho ARNm codificado por el gen también pueden ser cuantificados mediante el empleo de técnicas convencionales; en este caso, el método de la invención incluye una etapa de síntesis del correspondiente ADNc mediante transcripción inversa (RT) del ARNm correspondiente seguida de amplificación y cuantificación del producto de la amplificación de dicho ADNc. Métodos convencionales de cuantificar los niveles de expresión pueden encontrarse, por ejemplo, en Sambrook y cois., 2001. (citado ad supra).
En una realización particular, la cuantificación de los niveles de expresión de un gen cuya expresión se modula en respuesta a un aumento del nivel de expresión de c-MAF se realiza mediante una reacción en cadena de la polimerasa (PCR) cuantitativa o un array de ADN o ARN. Por otro lado, la cuantificación del nivel de expresión de un gen cuya expresión se modula en respuesta a un aumento del nivel de expresión de c-MAF también puede realizarse mediante la cuantificación de los niveles de expresión de la proteína codificada por dicho gen, o cualquier variante funcionalmente equivalente de la proteína. La cuantificación del nivel de expresión de un gen cuya expresión se modula en respuesta a un aumento del nivel de expresión de c-MAF puede llevarse a cabo mediante la cuantificación de los niveles de expresión de cualquiera de las isoformas de la proteína. Así, en una realización particular, la cuantificación de los niveles de la proteína codificada por un gen cuyo nivel de expresión se modula en respuesta a un aumento del nivel de expresión de c-MAF comprende la cuantificación de la proteína.
El nivel de expresión de una proteína puede ser cuantificado mediante cualquier método convencional que permita detectar y cuantificar dicha proteína en una muestra de un sujeto. A modo ilustrativo, no limitativo, los niveles de dicha proteína pueden cuantificarse, por ejemplo, mediante el empleo de anticuerpos con capacidad de unirse a la proteína (o a fragmentos de la misma que contenga un determinante antigénico) y la posterior cuantificación de los complejos formados. Los anticuerpos que se emplean en estos ensayos pueden estar marcados o no. Ejemplos ilustrativos de marcadores que se pueden utilizar incluyen isótopos radiactivos, enzimas, fluoróforos, reactivos quimioluminiscentes, sustratos enzimáticos o cofactores, inhibidores enzimáticos, partículas, colorantes, etc. Existe una amplia variedad de ensayos conocidos que se pueden utilizar en la presente invención, que utilizan anticuerpos no marcados (anticuerpo primario) y anticuerpos marcados (anticuerpo secundario); entre estas técnicas se incluyen el Western-blot o transferencia Western, ELISA (ensayo inmunoabsorbente ligado a enzima), RIA (radioinmunoensayo), EIA competitivo (inmunoensayo enzimático competitivo), DAS-ELISA (ELISA sandwich con doble anticuerpo), técnicas inmunocitoquímicas e inmunohistoquímicas, técnicas basadas en el empleo de biochips o microarrays de proteínas que incluyan anticuerpos específicos o ensayos basados en precipitación coloidal en formatos tales como dipsticks. Otras maneras para detectar y cuantificar dicha proteína, incluyen técnicas de cromatografía de afinidad, ensayos de unión a ligando, etc. Cuando se usa un método inmunológico, se puede usar cualquier anticuerpo o reactivo que se sabe se une a la proteína con alta afinidad para detectar la cantidad de la misma. Sin embargo, se prefiere el uso de un anticuerpo, por ejemplo, sueros policlonales, sobrenadantes de hibridomas o anticuerpos monoclonales, fragmentos de anticuerpos, Fv, Fab, Fab' y F(ab')2, scFv, nanocuerpos, diacuerpos, triacuerpos, tetracuerpos y anticuerpos humanizados. En el mercado, existen anticuerpos comerciales contra las proteínas PTHrP o RERG que pueden emplearse en el contexto de la presente invención. Anticuerpos específicos para la proteína PTHrP incluyen, sin limitarse a, el anticuerpo monoclonal 3H 1-5G8 de ratón que reconoce PTHrP humana de Abcam (ab1 15488), el anticuerpo policlonal de conejo P12272 que reconoce PTHrP de rata, ratón y humano de Abbiotech (número de catálogo 251478), el anticuerpo policlonal de conejo que reconoce PTHrP humana de BioVision (número de catálogo 5652-100) o el anticuerpo monoclonal de ratón que reconoce PTHrP humana de Novus Biologicals (número de catálogo NBP1-26542), entre otros. Anticuerpos específicos para la proteína RERG incluyen, sin limitarse a, los anticuerpos policlonales de cabra que reconocen RERG humana de Santa Cruz (sc-109008 y sc-109009), el anticuerpo policlonal de conejo que reconoce RERG humana, de rata y de ratón de ProteinTech (10687-1 -AP), el anticuerpo policlonal de conejo que reconoce RERG de rata de Abcam (ab1 15806) y el anticuerpo policlonal de ratón que reconoce RERG humana de Novus Biologicals (H00085004-B01 ).
En una realización particular, la cuantificación de los niveles de proteína se realiza mediante western blot, ELISA o un array de proteínas.
En una segunda etapa, el primer método de la invención comprende comparar el nivel de expresión obtenido para los genes analizados en la primera etapa con respecto a un valor de referencia.
Una vez medidos los niveles de expresión de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF en una muestra de tejido tumoral de un sujeto afectado de cáncer, preferiblemente de mama, colon, pulmón, riñon o tiroides, aún más preferiblemente de mama, y comparados con un valor de referencia, si los niveles de expresión de dicho(s) gen(es) están aumentados respecto a sus valores de referencia, entonces se puede concluir que dicho sujeto presenta una probabilidad elevada de desarrollo de metástasis.
En una realización particular del primer método de la invención, si el nivel de expresión de uno o más genes comprendidos en la Tabla 1 en una muestra de tejido tumoral de un sujeto afectado de cáncer, en particular de mama, colon, pulmón, riñon o tiroides, aún más en particular de mama, están aumentados con respecto al valor de referencia, y/o el nivel de expresión de uno o más genes comprendidos en la Tabla 2 en una muestra de tejido tumoral de un sujeto afectado de cáncer, en particular de mama, colon, pulmón, riñon o tiroides, aún más en particular de mama, están disminuidos con respecto al valor de referencia, entonces dicho sujeto presenta una probabilidad elevada de desarrollo de metástasis.
La determinación de los niveles de expresión de los genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF necesita ser correlacionada con valores de referencia. Dependiendo del tipo de tumor que está siendo objeto de análisis, la naturaleza exacta del valor de referencia puede variar. Así, en el caso de que se trate de determinar la probabilidad de desarrollo de metástasis, entonces el valor de referencia se deriva de una muestra de tejido tumoral de un sujeto con cáncer, en particular cáncer de mama, colon, pulmón, riñon o tiroides, aún más en particular de mama, que no ha sufrido metástasis o que corresponden al valor mediana de los niveles de expresión medidos en una colección de tejidos tumorales en muestras de biopsias de sujetos con cáncer, en particular cáncer de mama, colon, pulmón, riñon o tiroides, aún más en particular de mama, que no han sufrido metástasis.
Dicha muestra de referencia se obtiene típicamente combinando cantidades iguales de muestras de una población de sujetos. En general, las muestras de referencia típicas se obtendrán de sujetos que están clínicamente bien documentados y en los que la ausencia de metástasis se encuentra bien caracterizada. En tales muestras, las concentraciones normales (de referencia) del biomarcador se pueden determinar, por ejemplo proporcionando la concentración media sobre la población de referencia. Al determinar la concentración de referencia del marcador se toman en cuenta varias consideraciones. Entre tales consideraciones están la edad, peso, sexo, estado físico general del paciente y similares. Por ejemplo, se toman como grupo de referencia cantidades iguales de un grupo de al menos 2, al menos 10, al menos 100 a preferiblemente más de 1000 sujetos, preferiblemente clasificados según las consideraciones anteriores, por ejemplo de varias categorías de edad. La colección de muestras de las que deriva el nivel de referencia estará preferiblemente constituida por sujetos que padecen el mismo tipo de cáncer que el paciente objeto de estudio.
Una vez que se ha establecido este valor mediana, se puede comparar el nivel de este marcador expresado en tejidos tumorales de pacientes con este valor mediana, y de esta manera ser asignado al nivel de expresión "incrementada". Debido a la variabilidad entre sujetos (por ejemplo, aspectos referidos a la edad, raza, etc.) es muy difícil (si no prácticamente imposible) establecer valores de referencia absolutos de expresión de un gen. De esta manera, en una forma de realización particular, los valores de referencia para expresión "incrementada" o "disminuida" de la expresión de un gen cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF se determinan calculando los percentiles por medios convencionales que implica ensayar en una o varias muestras aisladas de sujetos en los que la enfermedad se encuentra bien documentada por alguno de los métodos mencionados anteriormente los niveles de expresión del gen cuya expresión es modulada por c-MAF. Los niveles "reducidos" se pueden entonces asignar, preferiblemente, a muestras en donde los niveles de expresión son iguales a o inferiores al percentil 50 en la población normal, incluyendo, por ejemplo, niveles de expresión iguales a o inferiores del percentil 60 en la población normal, iguales a o inferiores al percentil 70 en la población normal, iguales a o inferiores al percentil 80 en la población normal, iguales a o inferiores al percentil 90 en la población normal, e iguales a o inferiores al percentil 95 en la población normal. Los niveles de expresión "incrementados" se pueden entonces asignar, preferiblemente, a muestras en donde los niveles de expresión son iguales a o superan el percentil 50 en la población normal, incluyendo, por ejemplo, niveles de expresión iguales a o en exceso al percentil 60 en la población normal, iguales a o en exceso al percentil 70 en la población normal, iguales a o en exceso al percentil 80 en la población normal, iguales a o en exceso al percentil 90 en la población normal, e iguales a o en exceso al percentil 95 en la población normal.
En una realización particular de la invención, el cáncer se selecciona del grupo formado por cáncer de mama, cáncer de colon, cáncer de pulmón, cáncer de riñon y cáncer de tiroides. En una realización preferida de la invención, el cáncer es cáncer de mama. En una realización aún más preferida, el cáncer de mama puede ser cualquier tipo de cáncer de mama ER+ o bien de tipo triple negativo. En una forma de realización preferida del primer método de la invención, la metástasis en un sujeto afectado de cáncer, en particular de cáncer de mama, cáncer de colon, cáncer de pulmón, cáncer de riñon o cáncer de tiroides, más en particular de cáncer de mama, es metástasis en hueso. En una forma de realización aún más preferida del primer método de la invención, la metástasis en un sujeto afectado de cáncer, en particular de cáncer de mama, cáncer de colon, cáncer de pulmón, cáncer de riñon o cáncer de tiroides, más en particular de cáncer de mama, es metástasis ósea osteolítica.
Método de diseño de una terapia personalizada para un sujeto afectado de cáncer, en particular cáncer de mama Como es conocido del estado de la técnica, el tratamiento a administrar a un sujeto que padece cáncer, tal como cáncer de mama, de colon, de pulmón, de riñon o de tiroides, puede variar en función de que exista asociada una elevada probabilidad de desarrollo de metástasis. En los casos en los que la probabilidad de sufrir metástasis sea elevada, el tratamiento de elección comprende un tratamiento sistémico como la quimioterapia.
Por lo tanto, según se describe en la presente invención, dado que la alteración en los niveles de expresión de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF está relacionada con la probabilidad de desarrollo de metástasis, la determinación de los niveles de dichos genes modulados por c-MAF permite tomar decisiones en cuanto a la terapia más adecuada para el sujeto que padece cáncer.
Así, en otro aspecto la invención se relaciona con un método in vitro (de ahora en adelante, segundo método de la invención) para diseñar una terapia personalizada para un sujeto afectado de cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, que comprende determinar el nivel de expresión en una muestra de tejido tumoral de dicho sujeto de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF en donde niveles de expresión alterados de dicho uno o más genes con respecto a un valor de referencia son indicativos de que dicho sujeto es susceptible de recibir una terapia dirigida a prevenir la metástasis.
El segundo método de la invención comprende, en una primera etapa, cuantificar el nivel de expresión en una muestra de tejido tumoral de un sujeto afectado de cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF.
En una realización particular del segundo método de la invención, el gen o genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF se selecciona del grupo formado los genes comprendidos en la Tabla 1 y/o uno o más de los genes comprendidos en la Tabla 2 en una muestra de tejido tumoral de dicho sujeto, en donde si los niveles de expresión de uno o más de los genes de la Tabla 1 están aumentados con respecto al valor de referencia y/o los niveles de expresión de uno o más de los genes de la Tabla 2 están disminuidos con respecto al valor de referencia, entonces el sujeto es susceptible de recibir una terapia a prevenir la metástasis.
En una realización preferida del segundo método de la invención, se cuantifica el nivel de expresión del gen PTHLH, de modo que si el nivel de expresión del gen PTHLH está aumentado con respecto al valor de referencia, el sujeto es susceptible de recibir una terapia dirigida a la prevención de la metástasis.
En una realización preferida del segundo método de la invención, se cuantifica el nivel de expresión del gen PODXL, de modo que si el nivel de expresión del gen PODXL está aumentado con respecto al valor de referencia, el sujeto es susceptible de recibir una terapia dirigida a la prevención de la metástasis
En una realización preferida del segundo método de la invención, se cuantifica el nivel de expresión del gen RERG, de modo que si el nivel de expresión del gen RERG está disminuido con respecto al valor de referencia, el sujeto es susceptible de recibir una terapia dirigida a la prevención de la metástasis.
En una realización particular del segundo método de la invención, el cáncer se selecciona del grupo formado por cáncer de mama, cáncer de colon, cáncer de pulmón, cáncer de riñon o cáncer de tiroides, preferiblemente es cáncer de mama. En una realización aún más particular del segundo método de la invención, el cáncer de mama puede ser cualquier tipo de cáncer de mama ER+ o bien de tipo ER-Her2- (ER- Her2-Pr+ o ER-HEr2-Pr-).
En una realización particular del segundo método de la invención, la metástasis es metástasis en hueso. En una realización más particular del segundo método de la invención, la metástasis en hueso es metástasis osteolítica.
En el caso del segundo método de la invención la muestra es una muestra de tejido tumoral primario del sujeto. En una segunda etapa, se compara el nivel de expresión de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF en la muestra tumoral del sujeto con respecto a un valor de referencia. Este valor de referencia es obtenido a partir del nivel de expresión en una muestra control del gen cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF. Dependiendo del tipo de tumor que está siendo objeto de análisis, la naturaleza exacta de la muestra control puede variar. Así, en una forma preferida, la muestra control es una muestra de tejido tumoral de sujeto con cáncer de mama, de colon, de pulmón, de riñon o de tiroides que no ha sufrido metástasis. En una forma aún más preferida, la muestra control es una muestra de tejido tumoral de sujeto con cáncer de mama ER+ que no ha sufrido metástasis. Alternativamente, el valor de referencia corresponde a la mediana de los niveles de expresión del gen c-MAF medidos en una colección de tejidos tumorales en muestras de biopsias de sujetos con cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, aún más en particular cáncer de mama ER+, que no ha sufrido metástasis.
En una segunda etapa del segundo método de la invención, los niveles de expresión obtenidos en la muestra de tejido tumoral del sujeto afectado de cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, para uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF se comparan con el valor de referencia, de modo que si los niveles de expresión de dichos uno o más genes están alterados respecto al valor de referencia, entonces se puede concluir que dicho sujeto es susceptible de recibir una terapia dirigida a prevenir (si el sujeto aún no ha sufrido metástasis) y/o tratar la metástasis (si el sujeto ya ha sufrido metástasis).
Cuando el cáncer ha producido metástasis, se emplean tratamientos sistémicos entre los que se incluyen, sin limitar a, quimioterapia, tratamiento hormonal, inmunoterapia, o una combinación de éstos. Adicionalmente, puede emplearse radioterapia y/o cirugía. La elección del tratamiento depende generalmente del tipo de cáncer primario, del tamaño, la localización de la metástasis, la edad, la salud general del paciente y los tipos de tratamientos usados previamente. Tratamientos dirigidos a la prevención y/o tratamiento de la metástasis en un sujeto que padece cáncer, tal como cáncer de mama, comprenden la quimioterapia, la terapia hormonal y la inmunoterapia.
La quimioterapia es el uso de medicamentos para destruir las células cancerosas. Por lo general, los medicamentos se administran vía oral o intravenosa. En ocasiones, la quimioterapia es utilizada junto con el tratamiento con radiación. Tratamiento quimioterápicos adecuados para cáncer de mama incluyen, sin limitación, antraciclinas (doxorubicina, epirubicina, doxorubicina liposomal pegilada), Taxanos (paclitaxel, docetaxel, paclitaxel unido a nanoparticulas de albúmina), 5-fluorouracilo, alcaloides de la Vinca (vinorelbina, vinblastina), Gemcitabina, sales de platino (cisplatino, carboplatino), ciclofosfamida, Etoposido y combinaciones de uno o más de los anteriores tales como regímenes de ciclofosfamida/antraciclina +/- 5- fluorouracilo (por ejemplo doxorubicina/ ciclofosfamida (AC), epirubicina/ciclofosfamida, (EC) ciclofosfamida/epirubicina/5-fluorouracilo (CEF), ciclofosfamida/doxorubicina/5-fluorouracilo (CAF), 5-fluorouracilo /epirubicina/ciclofosfamida (FEC)), ciclofosfamida/metotrexato/5-fluorouracilo (CMF), antraciclinas/taxanos (por ejemplo doxorubicina/paclitaxel o doxorubicina/docetaxel), Docetaxel/capecitabina, Gemcitabina/paclitaxel, Taxano/sales de platino (por ejemplo paclitaxel/carboplatino o docetaxel/carboplatino).
La terapia hormonal se basa en que algunas hormonas promueven el crecimiento de algunos cánceres. Por ejemplo, el estrógeno en la mujer, que es producido por los ovarios, a veces promueve el crecimiento del cáncer de mama. Existen varias formas de detener la producción de estas hormonas. Una forma es extirpar los órganos que las producen: los ovarios en el caso de las mujeres, los testículos en el caso de los hombres. Más frecuentemente, se pueden usar medicamentos para impedir que estos órganos produzcan las hormonas o para evitar que las hormonas actúen sobre las células cancerosas. La inmunoterapia es un tratamiento que ayuda al propio sistema inmunitario del paciente para combatir el cáncer. Hay varios tipos de inmunoterapia que se utilizan para tratar los pacientes con metástasis. Estos incluyen, pero no se limitan a, citocinas, anticuerpos monoclonales y vacunas antitumorales. Métodos terapéuticos basados en la inhibición de genes cuya expresión se correlaciona de forma positiva con la expresión de c-MAF
Los autores de la presente invención han puesto de manifiesto que la inhibición del PHTLH en un modelo de colonización metastásica a hueso a partir de un xenoinjerto de tumor de mama resulta en una disminución en el número de lesiones osteolíticas en la metástasis. Esto indica que los genes cuya expresión aumenta en respuesta a un aumento en la expresión de c-MAF en un tumor de mama (o cuya expresión disminuye en respuesta a una disminución de la expresión de c-MAF en un tumor de mama) son dianas causales en procesos de metástasis a hueso en cáncer de mama ER+ y que, por tanto, su inhibición puede ser de utilidad para frenar la aparición de metástasis de cáncer de mama.
Por otro lado, los autores de la presente invención han validado funcionalmente la correlación de la expresión del gen metastásico PODXL en un ensayo de adhesión a células derivadas de médula ósea en un modelo experimental a partir de células purificadas de médula ósea de ratón (Ejemplo 5). La expresión del gen PODXL fue reducida en células muy metastásicas a hueso in vivo, MCF7, que presentan altos niveles de expresión del gen c-MAF responsable del aumento de los niveles endógenos del gen PODXL. Por lo tanto, este gen tiene un valor como marcador pronóstico y gen diana causal en procesos de metástasis a hueso en cáncer de mama ER+ y como parte del programa de metástasis a hueso mediado por c-MAF.
Por lo tanto, en otro aspecto, la invención se relaciona con el uso de un agente que inhibe la expresión de un gen o la actividad del producto de expresión de dicho gen para la preparación de un medicamento para el tratamiento y/o la prevención de la metástasis del cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, en donde dicho gen se caracteriza porque su expresión en células de tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en dichas células o disminuye en respuesta a una disminución en los niveles de expresión de c-MAF en dichas células.
En otro aspecto, la invención se relaciona con un agente que inhibe la expresión de un gen o la actividad del producto de expresión de dicho gen para su uso en tratamiento y/o la prevención de la metástasis del cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, en donde dicho gen se caracteriza porque su expresión en células de tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en dichas células o disminuye en respuesta a una disminución en los niveles de expresión de c-MAF en dichas células.
En otro aspecto, la invención se relaciona con un método para el tratamiento y/o prevención de la metástasis del cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, en un sujeto que comprende la administración a dicho sujeto de un agente que inhibe la expresión de un gen o la actividad del producto de expresión de dicho gen en donde dicho gen se caracteriza porque su expresión en células de tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en dichas células o disminuye en respuesta a una disminución en los niveles de expresión de c-MAF en dichas células.
La expresión "un agente que inhibe la expresión de un gen" se refiere a cualquier molécula que es capaz de producir una disminución de la transcripción del gen, de producir una desestabilización del ARNm correspondiente y/o de disminuir de la traducción de dicho ARNm.
Agentes inhibidores de la expresión pueden ser identificados mediante métodos estándar para determinar la capacidad de un compuesto de inhibir la transcripción de un determinado gen (RT-PCR, transferencia de Northern e hibridación, run-on assays, etc.), para desestabilizar el ARNm o para inhibir la traducción del ARNm (ensayos de traducción in vitro en lisados de reticulocitos o en lisado de germen de trigo). En la presente invención, se considera que un compuesto es inhibidor de la expresión de un gen cuando es capaz de provocar una disminución en la cantidad de ARNm de dicho gen, en la transcripción de dicho gen y/o de la traducción de dicho gen de al menos un 10%, al menos un 20%, al menos un 30%, al menos un 40%, al menos un 50%, al menos un 60%, al menos un 70%, al menos un 80%, al menos un 90% o un 100% (inactivación completa de dicho producto de expresión). A modo ilustrativo y no limitativo de ejemplos de agentes inhibidores de la expresión de un gen para su uso en la presente invención incluyen oligonucleótidos antisentido específicos para dicho gen, ARNs de interferencia (ARNips) específicos para dicho gen y ARNs catalíticos o ribozimas específicos para dicho gen.
En una forma preferida de realización, el agente inhibidor de la expresión de un gen para su uso en la presente invención es un oligonucleótido antisentido específico para dicho gen. En otra forma preferida de realización, el agente que inhibe la expresión de un gen es un ARN interferente específico para dicho gen. Los ARN de interferencia pequeños o ARNip (siRNA en su denominación en inglés) son agentes que son capaces de inhibir la expresión de un gen diana mediante interferencia de ARN. Un ARNip se puede sintetizar químicamente, se puede obtener mediante transcripción in vitro o se puede sintetizar in vivo en la célula diana. Típicamente, los ARNip consisten en una cadena doble de ARN de entre 15 y 40 nucleótidos de longitud y que puede contener una región protuberante 3' y/o 5' de 1 a 6 nucleótidos. La longitud de la región protuberante es independiente de la longitud total de la molécula de ARNip. Los ARNip actúan mediante la degradación o el silenciamiento post-transcripcional del mensajero diana.
Los ARNip de la invención son sustancialmente homólogos al ARNm del gen que codifica PTHLH, al gen que codifica PODXL, o a la secuencia genómica que codifica dicha proteína. Por "sustancialmente homólogos" se entiende que tienen una secuencia que es suficientemente complementaria o similar al ARNm diana, de forma que el ARNip sea capaz de provocar la degradación de éste por interferencia de ARN. Los ARNip adecuados para provocar dicha interferencia incluyen ARNip formados por ARN, así como ARNip que contienen distintas modificaciones químicas tales como:
- ARNip en los que los enlaces entre los nucleótidos son distintos a los que aparecen en la naturaleza, tales como enlaces fosforotioato.
- conjugados de la cadena de ARN con un reactivo funcional, tal como un fluoróforo.
- Modificaciones de los extremos de las cadenas de ARN, en particular el extremo 3' mediante la modificación con distintos grupos funcionales del hidroxilo en posición 2'. - Nucleótidos con azúcares modificados tales como restos O-alquilados en posición 2' tales como 2'-0-metilribosa p 2'-0-fluorosibosa.
- Nucleótidos con bases modificadas tales como bases halogenadas (por ejemplo 5-bromouracilo y 5-iodouracilo), bases alquiladas (por ejemplo 7- metilguanosina).
Los ARNip pueden ser usados tal cual, es decir, en forma de un ARN de cadena doble con las características anteriormente mencionadas. Alternativamente, es posible el uso de vectores que contienen las secuencias de las cadenas sentido y antisentido de los ARNip bajo el control de promotores adecuados para su expresión en la célula de interés.
Vectores adecuados para la expresión de ARNip son aquellos en que las dos regiones de ADN que codifican para las dos cadenas del siRNA se encuentran dispuestas en tándem en una misma cadena de ADN separadas por una región separadora que, al transcribirse, forma un bucle y en donde un único promotor dirige la transcripción de la molécula de ADN que da lugar al shRNA.
Alternativamente, es posible el uso de vectores en los que cada una de las cadenas que forman el siRNA se forma a partir de la transcripción de una unidad transcripcional diferente. Estos vectores se dividen a su vez en vectores de transcripción divergente y convergente. En los vectores de transcripción divergente, las unidades transcripcionales que codifican cada una de las cadenas de ADN que forman el siRNA se encuentran localizadas en tándem en un vector de forma que la transcripción de cada cadena de ADN depende de su propio promotor, que puede ser igual o distinto (Wang, J. et al., 2003, Proc.Natl.Acad.Sci.USA., 100:5103-5106 y Lee, N.S., et al.,
2002, Nat.Biotechnol., 20:500-505). En los vectores de transcripción convergente, las regiones de ADN que dan lugar al siRNA se encentran formando las cadenas sentido y antisentido de una región de ADN que se encuentra flanqueada por dos promotores invertidos. Tras la transcripción de las cadenas de ARN sentido y antisentido, éstas formaran el híbrido para formar un siRNA funcional. Se han descrito vectores con sistemas de promotores invertidos en los que se usan 2 promotores U6 (Tran, N. et al.,
2003, BMC Biotechnol., 3:21 ), un promotor U6 de ratón y un promotor H1 humano (Zheng, L, et al., 2004, Proc.Natl.Acad.Sci.USA., 135-140 y WO2005026322) y un promotor U6 humano y un promotor H1 de ratón (Kaykas, A. y Moon, R., 2004, BMC Cell Biol., 5:16).
Promotores adecuados para su uso en la expresión de ARNip a partir de vectores de expresión convergentes o divergentes incluye cualquier promotor o pareja de promotores compatible con las células en las que se desea expresar los ARNip. Así, promotores adecuados para la realización de la presente invención incluyen, sin estar necesariamente limitados, promotores constitutivos tales como los derivados de los genomas de virus eucariotas tales como el virus del polioma, adenovirus, SV40, CMV, virus del sarcoma aviar, virus de la hepatitis B, el promotor del gen de la metalotioneina, el promotor del gen de la timidina kinasa del virus del herpes simplex, regiones LTR de los retrovirus, el promotor del gen de la inmunoglobuina, el promotor del gen de la actina, el promotor del gen EF-1 alpha así como promotores inducibles en los que la expresión de la proteína depende de la adición de una molécula o de una señal exógena, tales como el sistema tetraciclina, el sistema NFkappaB/luz UV, el sistema Cre/Lox y el promotor de los genes de choque térmico, los promotores regulabes de la ARN polimerasa II descritos en WO/2006/135436 así como promotores específicos de tejido ((por ejemplo, el promotor de PSA descrito en WO2006012221 ). En una forma de realización preferida, los promotores son promotores de la ARN polimerasa III que actúan de forma constitutiva. Los promotores de la ARN polimerasa III aparecen en un número limitado de genes tales como 5S ARN, ARNt, ARN 7SL y ARNsn U6. A diferencia de otros promotores de la ARN polimerasa III, los promotores de tipo III no requieren ninguna secuencia intragénica sino que necesitan de secuencias en dirección 5' que comprenden una caja TATA en posiciones -34 y -24, un elemento proximal de secuencia (proximal sequence element o PSE) entre -66 y -47 y, en algunos casos, un elemento distal (distal sequence element o DSE) entre las posiciones -265 y -149. En una forma de realización preferida, los promotores de ARN polimerasa III de tipo III son los promotores de los genes H1 y U6 de origen humano o murino. En una forma de realización aún más preferida, los promotores son 2 promotores U6 de origen humano o murino, un promotor U6 de ratón y un promotor H1 humano o un promotor U6 humano y un promotor H1 de ratón. En el contexto de la presente invención, promotores especialmente adecuados y por lo tanto, especialmente preferidos para expresar de forma específica genes de interés en tumores de mama, preferiblemente, en tumores de mama ER+, son los promotores del gen ER alpha o del gen Cyclina D1. Los ARNip pueden ser generados intracelularmente a partir de los llamados shRNA (short hairpin RNA), caracterizados por que las cadenas antiparalelas que forman el ARNip están conectadas por una región bucle u horquilla. Los shRNAs pueden estar codificados por plásmidos o virus, particularmente retrovirus y estar bajo el control de un promotor. Promotores adecuados para la expresión de shRNA son los indicados en el párrafo anterior para la expresión de ARNip.
Vectores adecuados para la expresión de ARNip y ARNsh incluyen vectores de expresión en procariotas tales como pUC18, pUC19, Bluescript y sus derivados, mp18, mp19, pBR322, pMB9, Col El , pCRI , RP4, fagos y vectores "shuttle" tales como pSA3 and pAT28, vectores de expresión en levaduras tales como vectores del tipo de plásmidos de 2 mieras, plásmidos de integración, vectores YEP, plásmidos centroméricos y similares, vectores de expresión en células de insectos tales como los vectores de la serie pAC y de la serie pVL, vectores de expresión en plantas tales como vectores de la serie pIBI, pEarleyGate, pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE y similares y vectores de expresión en células eucariotas superiores bien basados en vectores virales (adenovirus, virus asociados a los adenovirus así como retrovirus y, en particular, lentivirus) así como vectores no virales tales como pcDNA3, pHCMV/Zeo, pCR3.1 , pEFI/His, pIND/GS, pRc/HCMV2, pSV40/Zeo2, pTRACER- HCMV, pUB6/V5-His, pVAXI, pZeoSV2, pCI, pSVL and pKSV-10, pBPV-1 , pML2d y pTDTI. En una forma preferida de realización, los vectores son vectores lentivirales.
Los ARNip y ARNsh de la invención se pueden obtener usando una serie de técnicas conocidas para el experto en la materia. La región de la secuencia de nucleótidos que se toma como base para diseñar los ARNip no es limitante y puede contener una región de la secuencia codificante (entre el codón de iniciación y el codón de terminación) o, alternativamente, puede contener secuencias de la región no traducida 5' o 3', preferentemente de entre 25 y 50 nucleótidos de longitud y en cualquier posición en posición sentido 3' con respecto al codon de iniciación. Una forma de diseñar un ARNip implica la identificación de los motivos AA(N19)TT, en donde N puede ser cualquier nucleótido en la secuencia del gen, en particular del gen PTHLH o del gen PODXL, y la selección de aquellos que presenten un alto contenido en G/C. Si no se encuentra dicho motivo, es posible identificar el motivo NA(N21 ), en donde N puede ser cualquier nucleótido. En otra forma preferida de realización, el agente que inhibe la expresión de un gen es un enzima de ADN específico para dicho gen. Las enzimas de ADN incorporan algunas de las características mecanísticas tanto de las tecnologías de antisentido como de las de ribozimas. Las enzimas de ADN se diseñan de modo que reconozcan una secuencia diana de ácido nucleico particular, parecido al oligonucleótido antisentido, sin embargo parecido a la ribozima son catalíticas y cortan específicamente el ácido nucleico diana. En otra forma preferida de realización, el agente que inhibe la expresión de un gen es una ribozima diseñadas para cortar de forma catalítica transcritos de un ARNm diana para prevenir la traducción de los ARNms que codifican PTHLH o PODXL cuya actividad se desea inhibir. Las ribozimas son moléculas enzimáticas de ARN capaces de catalizar el corte específico de ARN. (Para una revisión, ver, Rossi, Current Biology 4: 469-471 , 1994). El mecanismo de acción De la ribozima implica hibridación específica de secuencia de la molécula de ribozima a un ARN diana complementario, seguido por un suceso de corte endonucleolítico. La composición de las moléculas de ribozima preferiblemente incluye una o más secuencias complementarias al ARNm diana, y la bien conocida secuencia responsable del corte del ARNm o una secuencia funcionalmente equivalente (ver, por ejemplo, la patente de EE.UU. No. 5093246).
Las ribozimas usadas en la presente invención incluyen las ribozimas de cabeza de martillo, las ARN endorribonucleasa (de aquí en adelante "ribozimas de tipo Cech") (Zaug et al., Science 224:574-578, 1984.
Las ribozimas pueden estar compuestas de oligonucleótidos modificados (por ejemplo para mejorar la estabilidad, direccionamiento, etc.) y se deberían distribuir a células que expresan el gen diana in vivo. Un método preferido de distribución implicar usar una construcción de ADN que "codifica" la ribozima bajo el control de un promotor constitutivo fuerte de pol III ó pol II, de modo que las células transfectadas producirán cantidades suficientes de la ribozima para destruir los mensajeros diana endógenos e inhibir la traducción. Puesto que las ribozimas, contrariamente a otras moléculas antisentido, son catalíticas, se requiere una concentración intracelular menor para su eficacia. En el caso de compuestos inhibidores de la actividad de un producto de expresión, estos pueden ser identificados usando ensayos específicos capaces de determinar la actividad de dicho producto. En una forma preferida, compuestos inhibidores de la actividad del producto de de expresión de un gen pueden ser identificados usando el ensayo descrito en el ejemplo 3 de la presente invención caracterizado basado en la determinación de la capacidad de dicho agente inhibidor de disminuir la formación de lesiones osteolíticas y/o la diferenciación de osteoclastos en lesiones metastásicas in vitro en un modelo animal de metástasis de cáncer de mama usando células de cáncer de mama con alta capacidad de colonización metastásica. En la presente invención, se considera que un compuesto es inhibidor de la actividad de un producto de expresión cuando es capaz de provocar una disminución en la actividad de dicho producto de al menos un 10%, al menos un 20%, al menos un 30%, al menos un 40%, al menos un 50%, al menos un 60%, al menos un 70%, al menos un 80%, al menos un 90% o un 100% (inactivación completa de dicho producto de expresión).
A modo ilustrativo y no limitativo de ejemplos de agentes inhibidores de la actividad del producto de expresión de un gen para su uso en la presente invención incluyen anticuerpos inhibidores específicos para el producto de expresión del gen, variantes dominante negativas del producto de expresión del dicho gen y péptidos inhibidores de dicho producto de expresión.
En otra forma preferida de realización, el agente que inhibe la actividad del producto de expresión de dicho gen es un anticuerpo inhibidor específico para dicho producto Los anticuerpos pueden ser preparados usando cualquiera de los métodos que son conocidos para el experto en la materia, algunos de los cuales ha sido citados anteriormente. Así, los anticuerpos policlonales se preparan mediante inmunización de un animal con la proteína que se desea inhibir. Los anticuerpos monoclonales se preparan usando el método descrito por Kohler, Milstein y col. (Nature, 1975, 256: 495). Anticuerpos adecuados en el contexto de la presente invención incluyen anticuerpos intactos que comprende una región variable de unión a antígeno y una región constante, fragmentos "Fab", "F(ab')2" y "Fab"", Fv, scFv, nanocuerpos, diacuerpos y anticuerpos biespecíficos. Una vez identificados anticuerpos con capacidad de unión a la proteína, en particular a la proteína PTHLH o a la proteína PODXL, se seleccionarán aquellos capaces de inhibir la actividad de ésta proteína usando un ensayo de identificación de agentes inhibidores. En otra forma preferida de realización, el agente que inhibe la actividad del producto de expresión de dicho gen es un péptido inhibidor de dicho producto. En otra forma preferida de realización, el agente que inhibe la actividad del producto de expresión de dicho gen es un "mutante dominante negativo" de dicho producto de expresión. La invención contempla el uso tanto de mutantes dominantes negativos de un producto de expresión de un gen como de los polinucleótidos que codifican dichos mutantes. Los promotores que pueden ser usados para regular la transcripción del polinucleótido de la invención pueden ser promotores constitutivos, es decir, que dirigen la transcripción de forma basal o promotores inducibles en los que la actividad transcripcional requiere de una señal externa. Promotores constitutivos adecuados para la regulación de la transcripción son, entre otros, el promotor CMV, el promotor SV40, el promotor DHFR, el promotor del virus del tumor mamario de ratón (MMTV), el promotor del factor de elongación 1 a (EFIa), el promotor de albúmina, el promotor de ApoA1 , el promotor de queratina, el promotor de CD3, el promotor de las cadenas pesada o ligera de la inmunoglobulina, el promotor de neurofilamento, el promotor de la enolasas específica de neuronas, el promotor L7, el promotor CD2, el promotor de la quinasa de la cadena ligera de miosina, el promotor del gen HOX, el promotor de la timidina quinasa, el promotor de la RNA Polimerasa II, el promotor del gen MyoD, el promotor del gen de la fosfogliceroquinasa (PGK), el promotor de la lipoproteína de baja densidad (LDL), el promotor del gen de actina. En una forma preferida de realización, el promotor que regula la expresión del transactivador es el promotor del gen de PGK. En una forma preferida de realización, el promotor que regula la transcripción del polinucleótido de la invención es el promotor de la RNA polimerasa del fago T7.
Preferiblemente, los promotores inducibles que pueden ser usados en el contexto de la presente invención son aquellos que responden a un agente inductor, que muestran una expresión basal nula o despreciable en ausencia de agente inductor y que son capaces de promover la activación del gen localizado en posición 3'. En función del tipo de agente inductor, los promotores inducibles se clasifican en promotores Tet on/off (Gossen, M. y H. Bujard (1992) Proc.Natl.Acad.Sci.USA, 89:5547-5551 ; Gossen, M. et al., 1995, Science 268:1766-1769; Rossi, F.M.V. y H.M. Blau, 1998, Curr. Opin. Biotechnol. 9:451 -456); promotores Pip on/off (US6287813); promotores dependientes de antiprogestin (US2004132086), promotores dependientes de ecdisona (Christopherson et al., 1992, Proc.Natl.Acad.Sci.USA, 89:6314-6318; No et al., 1996, Proc.Natl.Acad.Sci.USA, 93:3346-3351 , Suhr et al., 1998, Proc.Natl.Acad.Sci.USA, 95:7999-8004 y W097381 17), un promotor dependiente de metalotioneina (WO8604920) y promotores dependientes de rapamicina (Rivera et al., 1996, Nat.Med. 2:1028-32).
Vectores adecuados para la expresión del polinucleótido que codifica la variante dominantes negativa de c-MAF incluyen vectores derivados de vectores de expresión en procariotas tales como pUC18, pUC19, Bluescript y sus derivados, mp18, mp19, pBR322, pMB9, ColEI, pCRI , RP4, fagos y vectores "shuttle" tales como pSA3 and pAT28, vectores de expresión en levaduras tales como vectores del tipo de plásmidos de 2 mieras, plásmidos de integración, vectores YEP, plásmidos centroméricos y similares, vectores de expresión en células de insectos tales como los vectores de la serie pAC y de la serie pVL, vectores de expresión en plantas tales como vectores de la serie pIBI, pEarleyGate, pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE y similares y vectores de expresión en células eucariotas superiores bien basados en vectores virales (adenovirus, virus asociados a los adenovirus así como retrovirus y, en particular, lentivirus) así como vectores no virales tales como pSilencer 4.1 -CMV (Ambion), pcDNA3, pcDNA3.1/hyg pHCMV/Zeo, pCR3.1 , pEFI/His, pIND/GS, pRc/HCMV2, pSV40/Zeo2, pTRACER-HCMV, pUB6/V5-His, pVAXI, pZeoSV2, pCI, pSVL and pKSV-10, pBPV-1 , pML2d y pTDTI.
En una forma preferida de realización, el gen cuya expresión aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, o cuya expresión disminuye en respuesta a una disminución en los niveles de expresión de c- MAF en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, se selecciona de los genes descritos en la Tabla 1.
En una forma de realización aún más preferida, el gen cuya expresión aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor de mama es el gen PHTLH. En una forma de realización preferida alternativa, el gen cuya expresión aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor de mama es el gen PODXL. Así, agentes inhibidores de la expresión de PHTHL o de la actividad del producto de expresión de dicho gen incluyen, sin limitación, un ARNip específico para el gen PHTHL, un oligonucleótido antisentido específico para el gen PHTHL, una ribozima específica para el gen PHTHL, un anticuerpo inhibidor específico para la proteína PHTHL, una variante dominante negativa de PHTHL de dicho producto de expresión y un péptido inhibidor de PHTHL.
Agentes inhibidores de la expresión de PODXL o de la actividad del producto de expresión de dicho gen incluyen, sin limitación, un ARNip específico para el gen PODXL, un oligonucleótido antisentido específico para el gen PODXL, una ribozima específica para el gen PODXL, un anticuerpo inhibidor específico para la proteína PODXL, una variante dominante negativa de PODXL de dicho producto de expresión y un péptido inhibidor de PODXL.
ARNip específicos para PTHLH incluyen, sin limitación, los ARNips disponibles comercialmente tales como el ARNip prediseñado para PTHLH de Abgent (n° de catálogo RI 14318), el ARNip para PTHLH de ratón de Qiagen (GS19227), los ARNip dúplex para PTHLH humana de Cambridge Bioscience (n° de catálogo SR303874), entre otros.
ARNip específicos para PODXL incluyen, sin limitación, los ARNips disponibles comercialmente tales como el ARNip sc-44765 de Santa Cruz Biotechnology, los ARNip dúplex para PODXL humano de OriGene (SR30361 1 ) o los ARNip dúplex para PODXL humano de Cambridge Bioscience (n° de catálogo SR30361 1 ), entre otros.
Anticuerpos inhibidores de PTHLH útiles para su uso en la presente invención comprenden, sin limitarse a, el anticuerpo monoclonal 3H1 -5G8 de ratón que reconoce PTHLH humana de Abcam (ab1 15488), el anticuerpo policlonal de conejo P12272 que reconoce PTHLH de rata, ratón y humano de Abbiotech (número de catálogo 251478), el anticuerpo policlonal de conejo que reconoce PTHLH humana de BioVision (número de catálogo 5652-100) o el anticuerpo monoclonal de ratón que reconoce PTHLH humana de Novus Biologicals (número de catálogo NBP1-26542), entre otros.
Anticuerpos inhibidores de PODXL útiles para su uso en la presente invención comprenden, sin limitarse a, el anticuerpo policlonal de conejo ab62594 que reconoce la región N-terminal de PODXL humana, o el anticuerpo monoclonal de ratón sc-23903 que reconoce PODXL humana de Santa Cruz Biotechnology.
Los péptidos inhibidores de PTHLH incluyen, sin limitación:
Variantes truncadas de PTHLH tales como hPTHrP (7-34) de secuencia LLHDKGKSIQDLRRRFFLHHLIAEIHTA (SEO ID NO: 8), PTHrP (3-34), PTHrP (8-34), PTHrP (9-34), PTHrP (10-34) así como variantes amidadas de los mismos y variantes resultantes de la sustitución de los aminoácidos correspondientes a las posiciones 10, 1 1 y 12 de PTHLH por Asn (variantes Asn10), Leu (variantes Leu1 1 ) y D-Trp (variantes D-Trp12), respectivamente y, en particular, los péptidos [Nle8'18, Tyr34]bPTH (7-34)NH2, [Tyr34]bPTH (7- 34)NH2, hPTHrP(7-34), [Leu11,D-Trp12]hPTHrP(7-34)NH2,
[Asn10Leu11]hPTHrP(7-34)-NH2 y [Asn10,Leu11,D-Trp12]hPTHrP(7-34)-NH2 según se describen en Nutt et al., 1990, Endocrinology 127:491-493, Doppelt et al., 1986, Proc. Nati. Acad. Sci. USA 83:7557-7560 y US6362163 y US5527772). Derivados truncados de TIP (tuberoinfundibular peptide) como el péptido TIP(1- 39) (tuberoinfundibular peptide 1-39), y los derivados del mismo descritos en Hoare et al, Peptides 23: 989-998, 2002).
- el péptido NCT00051779 (Chugai Pharmaceuticals)
- Péptidos descritos en las Tablas 1 a 5 de US2007203071AA
Péptidos cuya estructura se muestra en la fórmula 1 de WO04103273A2
- Péptidos descritos por Olstad et al. (Peptides 1995, 16:1031 -1037) y Roubini et al. (Biochemistry, 1992, 31 : 4026-4033)
- Péptidos [Asn10Leu1 1]-PTHrP(7-34)-NH2 y [Asn10,leu1 1 ,D-Trp12]-PTHrP(7- 34)-NH2 descritos por Nutt et al., (Endocrinology, 1990, 127:491-3)
Conjugados Fe de cualquiera de los péptidos anteriores, tales como los descritos en WO04060386.
Variantes funcionalmente equivalente de dichos péptidos. Por el término "variante funcionalmente equivalente", tal y como se utiliza en la presente invención, se entiende todos aquellos péptidos derivados de la secuencia de un péptido de la invención mediante modificación, inserción y/o eliminación de uno o más aminoácidos, siempre y cuando se mantenga la función de dicho péptido en al menos un 20%, al menos un 50%, al menos un 80%, con respecto a la función del correspondiente péptido de la invención sin modificaciones, inserciones y/o eliminaciones. Variantes adecuadas para su uso en la presente invención incluyen aquellas que muestran al menos un 25%, al menos 40%, al menos 60%, al menos 70%, al menos 80%, al menos 90%, al menos 95%, al menos 96%, al menos 97%, al menos 98% o al menos 99% de identidad de secuencia con respecto a la secuencia del péptido arriba indicadas. El grado de identidad entre dos secuencias de aminoácidos puede determinarse por métodos convencionales, por ejemplo, mediante algoritmos estándar de alineamiento de secuencias conocidos en el estado de la técnica, tales como, por ejemplo BLAST (AltschuI S.F. et al. Basic Local Alignment Search Tool. J Mol Biol. 1990 Oct 5; 215(3):403-10).
Otros inhibidores de PTHLH incluyen, sin limitación, los polipéptidos que se unen de forma específica a la región N-terminal de PTHLH tal y como se han descrito en WO201 1003935. En una forma particular del primer uso de la invención, el cáncer es un cáncer de mama, de colon, de pulmón, renal o de tiroides, preferiblemente cáncer de mama.
En una forma aún más particular del segundo uso de la invención, el cáncer de mama es de tipo ER+ o de tipo triple negativo.
En una forma particular de los usos de la invención, la metástasis del cáncer, en particular del cáncer de mama, de colon, de pulmón, renal o de tiroides, preferiblemente del cáncer de mama, es metástasis en hueso. En una forma aún más particular, la metástasis en hueso es metástasis osteolítica.
Métodos terapéuticos basados en la activación de genes cuya expresión se correlaciona de forma inversa con la expresión de c-MAF
Los autores de la presente invención han puesto de manifiesto que los niveles de expresión del gen RERG están correlacionados de modo inverso con los niveles de expresión de c-MAF y que un aumento en la expresión de RERG en el tumor de mama es capaz de reducir el número de células metastásicas. Por tanto, esto demuestra que la modulación de la expresión de los genes cuya expresión se regula a la baja por c- MAF puede ser usado para el tratamiento y/o la prevención de la metástasis de cáncer de mama. En este caso, los autores muestran ahora que el uso de un agente activador de RERG es capaz de reducir el número de células metastásicas.
Por lo tanto, en un aspecto, la invención se relaciona con el uso de un agente que estimula la expresión de un gen o la actividad del producto de expresión de dicho gen para la preparación de un medicamento para el tratamiento y/o la prevención de la metástasis del cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, en donde dicho gen se caracteriza porque su expresión en células de tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en dichas células o porque su expresión aumenta en respuesta a una disminución en los niveles de expresión de c- MAF en dichas células. En otro aspecto, la invención se relaciona con un agente que estimula la expresión de un gen o la actividad del producto de expresión de dicho gen para su uso en la preparación de un medicamento para el tratamiento y/o la prevención de la metástasis del cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, en donde dicho gen se caracteriza porque su expresión en células de tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en dichas células o porque su expresión aumenta en respuesta a una disminución en los niveles de expresión de c-MAF en dichas células. En otro aspecto, la invención se relaciona con método para el tratamiento y/o la prevención de la metástasis del cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama, en un sujeto que comprende la administración a dicho sujeto de un agente que estimula la expresión de un gen o la actividad del producto de expresión de dicho gen en donde dicho gen se caracteriza porque su expresión en células de tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en dichas células o porque su expresión aumenta en respuesta a una disminución en los niveles de expresión de c- MAF en dichas células. En una forma preferida de realización, el agente que estimula la expresión de dicho gen es un polinucleótido que contiene la secuencia codificante de dicho gen o en donde el agente que estimula la actividad del producto de expresión de dicho gen es un polipéptido codificado por dicho gen.
En otro aspecto, el polinucleótido que estimula la expresión de dicho gen puede encontrarse formando parte de una construcción génica. Preferiblemente, las construcciones génicas contienen el polinucleótido de la invención junto con regiones adecuadas para regular la expresión de dicho polinucleótido incluyendo promotores, terminadores de la transcripción, regiones no traducidas 5' y 3', señales de poliadenilación y similares.
En principio, cualquier promotor puede ser utilizado a los vectores de clonaje en el contexto de la presente invención siempre que dicho promotores sean compatibles con las células en las que se desea expresar el polinucleótido. Así, promotores adecuados para la realización de la presente invención incluyen, sin estar necesariamente limitados, promotores constitutivos tales como los derivados de los genomas de virus eucariotas tales como el virus del polioma, adenovirus, SV40, CMV, virus del sarcoma aviar, virus de la hepatitis B, el promotor del gen de la metalotioneina, el promotor del gen de la timidina kinasa del virus del herpes simplex, regiones LTR de los retrovirus, el promotor del gen de la inmunoglobuina, el promotor del gen de la actina, el promotor del gen EF-1 alpha así como promotores inducibles en los que la expresión de la proteína depende de la adición de una molécula o de una señal exógena, tales como el sistema tetraciclina, el sistema N FKB/IUZ UV, el sistema Cre/Lox y el promotor de los genes de choque térmico, los promotores regulables de la ARN polimerasa II descritos en WO/2006/135436.
En una forma preferida de realización, el polinucleótido se encuentra acoplado operativamente a un promotor específico de tejido mamario. Ejemplos de promotores específicos de tejido mamario adecuados para su uso en la presente invención incluyen, de forma ilustrativa:
El promotor de estromelisina 3 (Basset et al., Nature 348: 699, 1990) El promotor de la glicoproteína similar a mucina (DF3, MUCI) ((Abe et al., Proc. Nati. Acad. Sci. U. S. A. 90: 282, 1993)
- Los promotores c-erbB-3, c-erbB-2 o c-erbB-4 El promotor del virus de tumor mamario de ratón (MMTV),
El promotor de la proteína acídica del suero
El promotor de la α-lactalbúmina humana
El promotor de la β-lactoglobulina ovina.
En una forma preferida de realización, el agente que estimula la expresión de un gen se encuentra formando parte de un vector. Así, la invención contempla el uso de vectores derivados de vectores de expresión en procariotas tales como pUC18, pUC19, Bluescript y sus derivados, mp18, mp19, pBR322, pMB9, ColEI , pCRI , RP4, fagos y vectores "shuttie" tales como pSA3 and pAT28, vectores de expresión en levaduras tales como vectores del tipo de plásmidos de 2 mieras, plásmidos de integración, vectores YEP, plásmidos centroméricos y similares, vectores de expresión en células de insectos tales como los vectores de la serie pAC y de la serie pVL, vectores de expresión en plantas tales como vectores de la serie pIBI, pEarleyGate, pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE y similares y vectores de expresión en células eucariotas superiores bien basados en vectores virales y no virales tales como pcDNA3, pHCMV/Zeo, pCR3.1 , pEFI/His, pIND/GS, pRc/HCMV2, pSV40/Zeo2, pTRACER-HCMV, pUB6/V5-His, pVAXI, pZeoSV2, pCI, pSVL and pKSV-10, pBPV-1 , pML2d y pTDTI.
En una forma preferida de realización, el agente que estimula la expresión de un gen se administra en forma de vector viral. Vectores virales adecuados para su uso en la presente invención incluyen, sin limitación, vectores adenovirales, vectores lentivirales, vectores retrovirales, vectores derivados del virus vaccinia, virus adeno-asociado (AAV) y virus del herpes.
La presente invención contempla varios métodos no-virales para la transferencia de constructos de expresión a células cultivadas de mamíferos. Estos incluyen precipitación de fosfato cálcico, DEAE-dextrano, electroporación, microinyección directa, liposomas cargados de ADN y complejos lipofectamina-ADN, sonicación celular, bombardeo genético usando micropoyectiles de velocidad y transfección mediada por receptor. Algunas de estas técnicas pueden adaptarse de manera correcta al uso in vivo o ex vivo. En una realización adicional de esta invención, el agente que estimula la expresión de un gen puede atraparse en un liposoma. Los liposomas son estructura vesiculares caracterizadas por una membrana bicapa fosfolípida y por un medio acuoso interno. La presente invención contempla la administración de los agentes que estimulan la expresión de un gen o la actividad del producto de expresión de dicho gen de forma local, regional o sistémica. La administración de los agentes puede realizarse de forma localizada, en cuyo caso los agentes se administran de forma directa en el tumor, en la vasculatura del tumor, en un vaso linfático asociado al tumor o en un conducto asociado al tumor. La administración puede ser intraperitoneal, intrapleural, intravesicular, o intratecal. La terapia génica puede incluir la administración regional en el sistema vascular de un miembro asociado al tumor.
En el caso particular de que se use un polipéptido como agente que estimula la actividad del producto de expresión de un gen, la invención contempla el uso de variantes de dicho polipéptido modificada con un péptido que sea capaz de promover la translocación de la proteína al interior celular, tales como el péptido Tat derivado de la proteína TAT de HIV-1 , la tercera hélice del homeodominio de la proteína Antennapedia de D.melanogaster, la proteína VP22 del virus del herpes simplex y oligómeros de arginina (Lindgren, A. et al., 2000, Trends Pharmacol. Sci, 21 :99-103, Schwarze, S.R. et al. , 2000, Trends Pharmacol. Sci., 21 :45-48, Lundberg, M et al., 2003, Mol. Therapy 8:143-150 y Snyder, E.L. y Dowdy, S.F., 2004, Pharm. Res. 21 :389-393). En una forma de realización más preferida, el gen cuya expresión disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, o cuya expresión aumenta en respuesta a una disminución en los niveles de expresión de c-MAF en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, se selecciona de los genes descritos en la Tabla 2.
En una forma aún más preferida de realización, el gen cuya expresión disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, es el gen RERG.
En una realización particular del segundo uso de la invención, el agente activador de RERG se selecciona del grupo formado por
(i) un ácido nucleico que codifica RERG o una variante funcionalmente equivalente de RERG y
(ii) la proteína RERG o una variante funcionalmente equivalente de RERG. En una forma preferida de realización, el ácido nucleico que codifica RERG se corresponde a cualquiera de sus dos variantes transcripcionales, recogidas en la base de datos del NCBI (en su versión correspondiente al 28 de noviembre de 201 1 ) con los números de acceso NM_032918.2 (variante 1 ) y NM_001 190726.1 (variante 2). Se entiende por "variante funcionalmente equivalente de la proteína RERG" a aquellos polipéptidos cuya secuencia deriva de la de la proteína RERG mediante sustitución, inserción o deleción de uno o más aminoácidos y que conservan sustancialmente la misma función que la proteína RERG, es decir, actuar como un inhibidor de la proliferación celular y de la formación de tumores. Variantes de la proteína RERG pueden identificarse usando métodos basados en la capacidad de RERG de inhibir la proliferación celular tales como los descritos en el ejemplo 4 de la presente invención.
Las variantes según la invención tienen preferentemente una identidad de secuencias con la secuencia de nucleótidos de cualquiera de las variantes del gen RERG o con la secuencia de aminoácidos de cualquiera de las isoformas de la proteína RERG de, al menos, el 50%, al menos el 60%, al menos el 70%, al menos el 80%, al menos el 90%, al menos el 91 %, al menos el 92%, al menos el 93%, al menos el 94%, al menos el 95%, al menos el 96%, al menos el 97%, al menos el 98% o al menos el 99%. El grado de identidad entre las variantes y las secuencias específicas del gen o de la proteína RERG definidas anteriormente se determina usando algoritmos y procedimientos informáticos que son ampliamente conocidos para los expertos en la materia. La identidad entre dos secuencias de ácidos nucleicos se determina preferentemente usando el algoritmo BLASTN, y la identidad entre dos secuencias de aminoácidos se determina preferentemente usando el algoritmo BLASTP [BLAST Manual, Altschul, S., y col., NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., y col., J. Mol. Biol. 215: 403-410 (1990)].
En una forma preferida de realización, el cáncer es cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular cáncer de mama. En una forma preferida de realización, el cáncer de mama se selecciona del grupo formado por cáncer ER+ y cáncer ER-Her2-. En una forma preferida de realización la metástasis es metástasis en hueso. En una forma de realización aún más preferida, la metástasis en hueso es metástasis osteolítica.
Composiciones farmacéuticas v métodos de administración
Los agentes que inhiben la expresión de un gen cuya expresión aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, o cuya expresión disminuye en respuesta a una disminución en los niveles de expresión de c-MAF en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, los agentes que inhiben la actividad del producto de expresión de un gen cuya expresión aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en un en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, o cuya expresión disminuye en respuesta a una disminución en los niveles de expresión de c-MAF en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, los agentes que estimulan la expresión de un gen cuya expresión disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, o cuya expresión aumenta en respuesta a una disminución en los niveles de expresión de c-MAF en un en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, y/o los agentes que estimulan la actividad del producto de expresión de un gen cuya expresión disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de mama, o cuya expresión aumenta en respuesta a una disminución en los niveles de expresión de c-MAF se administran típicamente en combinación con un vehículo farmacéuticamente aceptable. El término "vehículo" se refiere a un diluyente o excipiente con el que se administra el principio activo. Tales vehículos farmacéuticos pueden ser líquidos estériles, tales como agua y aceites, incluyendo aquellos de origen del petróleo, animal, vegetal o sintético, tales como aceite de cacahuete, aceite de soja, aceite mineral, aceite de sésamo y similares. Se emplean preferiblemente como vehículos agua o disoluciones acuosas de solución salina y disoluciones acuosas de dextrosa y glicerol, particularmente para las disoluciones inyectables. Vehículos farmacéuticos adecuados se describen en "Remington's Pharmaceutical Sciences" por E.W. Martin, 1995. Preferiblemente, los vehículos de la invención están aprobados por la agencia reguladora de un gobierno de estado o el federal o están enumerados en la Farmacopea Estadounidense u otra farmacopea reconocida en general para su uso en animales, y más particularmente en seres humanos. Los vehículos y las sustancias auxiliares necesarios para fabricar la forma farmacéutica deseada de administración de la composición farmacéutica de la invención dependerán, entre otros factores, de la forma farmacéutica de administración elegida. Dichas formas farmacéuticas de administración de la composición farmacéutica se fabricarán según métodos convencionales conocidos por el experto en la técnica. Una revisión de diferentes métodos de administración de principios activos, excipientes que van a usarse y procedimientos para producirlos pueden encontrarse en "Tratado de Farmacia Galénica", C. Faulí i Trillo, Luzán 5, S.A. de Ediciones, 1993. Ejemplos de composiciones farmacéuticas incluyen cualquier composición sólida (comprimidos, pildoras, cápsulas, gránulos, etc.) o líquida (disoluciones, suspensiones o emulsiones) para la administración oral, tópica o parenteral. Además, la composición farmacéutica puede contener según sea necesario estabilizadores, suspensiones, conservantes, tensioactivos y similares.
Para uso en medicina, los agentes inhibidores/activadores de la presente invención pueden encontrarse en forma de prodroga, sal, solvato o clatrato, bien de forma aislada o bien en combinación con agentes activos adicionales y pueden ser formuladas conjuntamente con un excipiente que sea aceptable desde el punto de vista farmacéutico. Excipientes preferidos para su uso en la presente invención incluyen azúcares, almidones, celulosas, gomas y proteínas. En una realización particular, la composición farmacéutica de la invención se formulará en una forma farmacéutica de administración sólida (por ejemplo comprimidos, cápsulas, grageas, gránulos, supositorios, sólidos estériles cristalinos o amorfos que pueden reconstituirse para proporcionar formas líquidas etc.), líquida (por ejemplo soluciones, suspensiones, emulsiones, elixires, lociones, ungüentos etc.) o semisólida (geles, pomadas, cremas y similares). Las composiciones farmacéuticas de la invención pueden ser administradas por cualquier ruta, incluyendo, sin ser limitante, oral, intravenosa, intramuscular, intrarterial, intramedular, intratecal, intraventricular, transdérmica, subcutánea, intraperitoneal, intranasal, entérica, tópica, sublingual o rectal. Una revisión de las distintas formas de administración de principios activos, de los excipientes a utilizar y de sus procedimientos de fabricación puede encontrarse en el Tratado de Farmacia Galénica, C. Faulí i Trillo, Luzán 5, S.A. de Ediciones, 1993 y en Remington's Pharmaceutical Sciences (A.R. Gennaro, Ed.), 20a edición, Williams & Wilkins PA, USA (2000). Ejemplos de vehículos farmacéuticamente aceptables son conocidos en el estado de la técnica e incluyen soluciones salinas tamponadas con fosfato, agua, emulsiones, tales como emulsiones aceite/agua, diferentes tipos de agentes humectantes, soluciones estériles, etc. Las composiciones que comprenden dichos vehículos se pueden formular por procedimientos convencionales conocidos en el estado de la técnica. En el caso de que se administren ácidos nucleicos (ARNip, polinucleótidos que codifican ARNip o shARN o polinucleótidos que codifican dominantes negativos) la invención contempla composiciones farmacéuticas especialmente preparadas para la administración de dichos ácidos nucleicos. Las composiciones farmacéuticas pueden comprender dichos ácidos nucleicos en forma desnuda, es decir, en ausencia de compuestos que protejan a los ácidos nucleicos de su degradación por las nucleasas del organismo, lo que conlleva la ventaja de que se elimina la toxicidad asociada a los reactivos usados para la transfección. Rutas de administración adecuadas para los compuestos desnudos incluyen intravascular, intratumoral, intracraneal, intraperitoneal, intraesplénica, intramuscular, subretinal, subcutánea, mucosa, tópica y oral (Templeton, 2002, DNA Cell Biol., 21 :857-867). Alternativamente, los ácidos nucleicos pueden administrarse formando parte de liposomas, conjugados a colesterol o conjugados a compuestos capaces de promover la translocación a través de membranas celulares tales como el péptido Tat derivado de la proteína TAT de HIV-1 , la tercera hélice del homeodominio de la proteína Antennapedia de D. melanogaster, la proteína VP22 del virus del herpes simplex, oligómeros de arginina y péptidos tales como los descritos en WO07069090 (Lindgren, A. et al., 2000, Trends Pharmacol. Sci, 21 :99-103, Schwarze, S.R. et al. , 2000, Trends Pharmacol. Sci., 21 :45-48, Lundberg, M et al., 2003, Mol Therapy 8:143-150 y Snyder, E.L. y Dowdy, S.F., 2004, Pharm. Res. 21 :389-393). Alternativamente, el polinucléotido puede administrarse formando parte de un vector plasmídico o de un vector viral, preferiblemente vectores basados en adenovirus, en virus adenoasociados o en retrovirus, tales como virus basados en el virus de la leucemia murina (MLV) o en lentivirus (HIV, FIV, EIAV).
Los agentes inhibidores/activadores o las composiciones farmacéuticas que los contienen pueden ser administradas en dosis de menos de 10 mg por kilogramo de peso corporal, preferiblemente menos de 5, 2, 1 , 0,5, 0,1 , 0,05, 0,01 , 0,005, 0,001 , 0,0005, 0,0001 , 0,00005 ó 0,00001 mg por cada kg de peso corporal. La dosis unitaria se puede administrar por inyección, por inhalación o por administración tópica. La dosis depende de la severidad y respuesta de la condición a tratar y puede variar entre varios días y varios meses o hasta que se observe que la condición remite. La dosificación óptima se puede determinar realizando mediciones periódicas de las concentraciones de agente en el organismo del paciente. La dosis óptima se puede determinar a partir de los valores de EC50 obtenidos mediante ensayos previos in vitro o in vivo en modelos animales. La dosis unitaria se puede administrar una vez al día o menos de una vez al día, preferiblemente, menos de una vez cada 2, 4, 8 o 30 días. Alternativamente, es posible administrar una dosis inicial seguida de una o varias dosis de mantenimiento, generalmente de menos cantidad que la dosis inicial. El régimen de mantenimiento puede implicar tratar al paciente con dosis que oscilan entre 0,01 μg y 1 ,4 mg/kg de peso corporal por día, por ejemplo 10, 1 , 0, 1 , 0,01 , 0,001 , o 0,00001 mg por kg de peso corporal por día. Las dosis de mantenimiento se administran, preferiblemente, como mucho una vez cada 5, 10 ó 30 días. El tratamiento se debe continuar durante un tiempo que variará según el tipo de alteración que sufra el paciente, su severidad y el estado del paciente. Tras el tratamiento, se debe monitorizar la evolución del paciente para determinar si se debe incrementar la dosis en caso de que la enfermedad no responda al tratamiento o se disminuye la dosis si se observa una mejora de la enfermedad o si se observan efectos secundarios indeseados. Método para la identificación de genes marcadores de propensión a metástasis Los autores de la presente invención han desarrollado una metodología mediante la cual es posible identificar genes relacionados con la propensión de un sujeto que padece cáncer de mama a desarrollar metástasis. Esta metodología tiene base en la identificación de genes cuya expresión en tumores de mama se correlaciona con la expresión de c-MAF y cuya expresión en una línea celular de cáncer de mama se ve alterada en respuesta a un cambio en los niveles de expresión de c-MAF.
Así, en otro aspecto, la invención se relaciona con un método in vitro (en adelante método de identificación de genes de la invención) para la identificación de un gen marcador de propensión a metástasis en un sujeto que padece cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de cáncer de mama, que comprende
(i) determinar los niveles de expresión de un gen candidato y de c-MAF en una muestra de tumor primario de cáncer de mama y
(ii) determinar el cambio en los niveles de expresión de dicho gen candidato en una población de células de cáncer de mama en respuesta a una modulación de la expresión del gen c-MAF en donde si los niveles de expresión de dicho gen se correlacionan de forma estadísticamente significativa con la expresión de c-MAF en la muestra de tumor primario de cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de cáncer de mama, y el cambio en los niveles de expresión en respuesta a la modulación de la expresión del gen c-MAF se correlaciona de forma estadísticamente significativa con el cambio en los niveles de dicho gen es indicativo de que dicho gen es marcador de propensión a metástasis en un sujeto.
En una primera etapa, el método de identificación de genes de la invención comprende determinar los niveles de expresión de un gen candidato y de c-MAF en una muestra de tumor primario de cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de cáncer de mama.
La determinación de los niveles de expresión de dicho gen candidato y de c-MAF en la muestra de tejido primario se puede llevar a cabo esencialmente tal y como se describe en el contexto del método in vitro para predecir la metástasis en un sujeto afectado de cáncer, en particular de cáncer de mama. En una forma preferida de realización, los niveles de expresión de dicho gen candidato y de c-MAF pueden realizarse a partir del ARN resultante de la transcripción de dicho gen (ARN mensajero o ARNm), a partir del ADN complementario (ADNc) de dicho gen o mediante la cuantificación de los niveles de expresión de la proteína codificada por dicho gen.
En una segunda etapa, el método de identificación de genes de la invención comprende determinar el cambio en los niveles de expresión de dicho gen candidato en una población de células de cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de cáncer de mama, en respuesta a una modulación de la expresión del gen c-MAF.
La determinación del cambio en los niveles de expresión del gen candidato requiere de determinar los niveles de expresión en las células tumorales en dos momentos distintos en el tiempo entre los cuales se ha inducido un cambio en los niveles de expresión de c-MAF. Dicho cambio en los niveles de expresión de c-MAF entre dicho primer momento y dicho segundo momento puede ser un aumento en la expresión de c-MAF o una disminución del nivel de expresión de c-MAF.
En una forma preferida de realización, la modulación en los niveles de c-MAF que se lleva a cabo en la etapa (ii) es un aumento en los niveles de c-MAF. Para ello, esta etapa requiere la introducción en la célula de un polinucleótido que codifique c-MAF o de c-MAF. Métodos adecuados para la introducción de un gen de interés en una célula y construcciones adecuadas para la expresión de un gen de interés en una célula se han descrito en el contexto de los métodos terapéuticos basados en la activación de genes cuya expresión se correlaciona de forma inversa con la expresión de c-MAF y se usan de la misma forma en el presente método.
Con el fin de inducir un aumento en los niveles de expresión de c-MAF en una población celular determinada, se puede modificar la célula mediante la introducción en la misma de un polinucleótido que codifique c-MAF estando éste operativamente acoplado a un promotor que permita la expresión en células de tumores, tales como tumores de mama, de colon, de pulmón, de riñon o de tiroides, preferiblemente tumores de mama. Dicho polinucleótido se aporta habitualmente formando parte de un vector que comprende, además de dicho polinucléotido, secuencias adicionales para garantizar su propagación en hospedadores procariotas (por ejemplo, un origen de replicación) así como marcadores de selección. De forma ilustrativa, se pueden usar los siguientes promotores que son adecuados para la expresión de un gen de interés en células tumorales de mama:
El promotor de estromelisina 3 (Basset et al., Nature 348: 699, 1990)
El promotor de la glicoproteína similar a mucina (DF3, MUCI) ((Abe et al.,
Proc. Nati. Acad. Sci. U. S. A. 90: 282, 1993)
Los promotores c-erbB-3, c-erbB-2 o c-erbB-4
El promotor del virus de tumor mamario de ratón (MMTV),
El promotor de la proteína acídica del suero
El promotor de la α-lactalbúmina humana
El promotor de la β-lactoglobulina ovina.
El polinucleótido que codifica c-MAF o el vector que contiene dicho polinucleótido se introduce en las células objeto de estudio usando cualquiera de los métodos de transfección conocidos para el experto en la materia (véase secciones 9.1 a 9.5 en Ausubel, F.M. et al., Current Protocols in Molecular Biology, John Wiley & Sons Inc, 2003). En particular, las células se pueden transfectar mediante co-precipitación de ADN con fosfato cálcico, DEAE-dextrano, polibreon, electroporación, microinyección, fusión mediada por liposomas, lipofección, infección por retrovirus y transfección biolística.
Alternativamente, se puede modificar la célula mediante la introducción en la misma de la proteína c-MAF. Para ello, la invención contempla el uso de variantes de c-MAF modificada con un péptido que sea capaz de promover la translocación de la proteína al interior celular, tales como el péptido Tat derivado de la proteína TAT de HIV-1 , la tercera hélice del homeodominio de la proteína Antennapedia de D.melanogaster, la proteína VP22 del virus del herpes simplex y oligómeros de arginina (Lindgren, A. et al., 2000, Trends Pharmacol. Sci, 21 :99-103, Schwarze, S.R. et al. , 2000, Trends Pharmacol. Sci., 21 :45-48, Lundberg, M et al., 2003, Mol. Therapy 8:143-150 y Snyder, E.L. y Dowdy, S.F., 2004, Pharm. Res. 21 :389-393).
En una realización más particular, el aumento de la expresión de c-MAF se lleva a cabo mediante la expresión en las células de cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de cáncer de mama, de la isoforma corta de c-MAF. En otra realización aún más particular, el aumento de la expresión de c-MAF se lleva a cabo mediante la expresión en las células de cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de cáncer de mama, de la isoforma larga de c-MAF. En una realización aún más particular, el aumento de la expresión de c-MAF se lleva a cabo mediante la co- expresión en las células de cáncer, en particular cáncer de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de cáncer de mama, de las isoforma larga y corta de c-MAF.
En el caso de que la modulación en los niveles de c-MAF que se lleve a cabo en la segunda etapa sea una reducción en los niveles de c-MAF, esta etapa requiere la introducción en la célula de un agente capaz de silenciar c-MAF. A modo ilustrativo y no limitativo de ejemplos de agentes adecuados para conseguir una reducción en los niveles de c-MAF incluyen oligonucleótidos antisentido específicos para dicho gen, ARNs de interferencia (ARNips) específicos para dicho gen, ARNs catalíticos o ribozimas específicos para dicho gen, agentes inhibidores de c-MAF y anticuerpos inhibidores.
ARNip específicos para c-MAF incluyen el ARNip descrito en WO2005046731 , una de cuyas cadenas es ACGGCUCGAGCAGCGACAA (SEQ ID NO: 1 ). Otras secuencias de ARNip específicas para c-MAF incluyen, sin limitación, CUUACCAGUGUGUUCACAA (SEQ ID NO: 2), UGGAAGACUACUACUGGAUG (SEQ ID NO: 3), AUUUGCAGUCAUGGAGAACC (SEQ ID NO: 4), CAAGGAGAAAUACGAGAAGU (SEQ ID NO: 5), ACAAGGAGAAAUACGAGAAG (SEQ ID NO: 6) y ACCUGGAAGACUACUACUGG (SEQ ID NO: 7).
Dominantes negativos de c-MAF que se pueden usar en el contexto de la presente invención incluyen mutantes capaces de dimerizar con c-MAF pero que carecen de la capacidad de activar la transcripción puesto que son incapaces de homodimerizar y heterodimerizar con otros miembros de la familia AP-1 , tales como Fos y Jun. Así, dominantes negativos de c-MAF pueden ser cualquiera de las proteinás maf pequeñas que existen en la célula y que carecen de los dos tercios del extremo amino terminal que contiene el dominio de transactivación (por ejemplo, mafK, mafF, mafg y pi 8) (Fujiwara et al (1993) Oncogene 8, 2371-2380; Igarashi et al. (1995) J. Biol.Chem. 270, 7615-7624; Andrews et al. (1993) Proc. Nati. Acad. Sci. USA 90, 1 1488-1 1492; Kataoka et al. (1995) Mol. Cell. Biol. 15, 2180-2190) (Kataoka et al. (1996) Oncogene 12, 53-62).
Alternativamente, dominantes negativos de c-MAF incluyen variantes de c-MAF que mantienen la capacidad de dimerización con otras proteínas pero que carecen de la capacidad de activar la transcripción. Estas variantes son, por ejemplo, aquellas que carecen del dominio de transactivación de c-MAF, localizado en el extremo N-terminal de la proteína. Así, variantes dominantes negativas de c-MAF incluyen, de forma ilustrativa, las variantes en las que se han eliminado al menos los aminoácidos 1 a 122 al menos los amino ácidos 1-187 o al menos los aminoácidos 1 a 257 (considerando la numeración de c-MAF humano tal y como se describe en US6274338).
En una realización particular del método de la invención, la muestra de tumor usada en la etapa (i) procede de un tumor de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de tumor de mama. En una realización más particular del método de la invención, la muestra de tumor, en particular de mama, usado en la etapa (i) procede de un tumor ER+ o de un tumor triple negativo. En una forma preferida de realización, las células de cáncer, en particular de mama, usadas en la etapa (ii) son ER+ o proceden de un tumor triple negativo. En una realización más particular, la metástasis es una metástasis ósea. Otros compuestos inhibidores de c-MAF adecuados para su uso en la presente invención incluyen:
Derivados del ácido endiándrico H tales como los descritos en WO2008014888 y que corresponden a la fórmula general
Figure imgf000065_0001
donde
Ri y R2 son, independientemente el uno del otro,
1.0 H 0
2.0 un grupo -O-alquilo CrC6, -O-alquenilo C2-C6, -O-alquinilo C2-C6 u -O-arilo
C6-Cio, en el cual alquilo, alquenilo y alquinilo son de cadena lineal o ramificados, y en el que los grupos alquilo, alquenilo y alquinilo están mono- o disustituidos con:
2.1 -OH,
2.2 =0,
2.3 -O-alquilo CrC6 , en el cual alquilo es de cadena lineal o ramificado,
2.4 -O-alquenilo C2-C6 , en el cual alquenilo es de cadena lineal o ramificado,
2.5 -arilo C6-Ci0,
2.6 -N H -alquilo Ci-C6 , en el cual alquilo es de cadena lineal o ramificado,
2.7 -N H-alquenilo C2-C6, en el cual alquenilo es de cadena lineal o ramificado,
2.8 -NH2 o
2.9 halógeno,
y en el que el grupo arilo, eventualmente está mono- o disustituido con el sustituyente 2.1 ó 2.3 a 2.9,
en el cual los sustituyentes 2.3, 2.4, 2.6 y 2.7 pueden estar sustituidos adicionalmente con funciones -CN, -amida u -oxima, y 2.5 puede estar sustituido adicionalmente con funciones -CN o amida, o Ri y R2 juntos forman un anillo, en donde Ri y R2 significan un grupo -0-[alquilen (d-C6)]-0-,
1.0 H o
2.0 un grupo -O-alquilo Ci-C6 , -O-alquenilo C2-C6, -O-alquinilo C2-C6 u -O-arilo
C6-CI0, en el cual alquilo, alquenilo y alquinilo son de cadena lineal o ramificados, y en el que los grupos alquilo, alquenilo y alquinilo están mono- o disustituidos con:
2.1 -OH,
2.2 =0,
2.3 -O-alquilo CrC6 , en el cual alquilo es de cadena lineal o ramificado,
2.4 -O-alquenilo C2-C6 , en el cual alquenilo es de cadena lineal o ramificado,
2.5 -arilo C6-C10,
2.6 -N H -alquilo C^Ce , en el cual alquilo es de cadena lineal o ramificado,
2.7 -N H-alquenilo C2-C6, en el cual alquenilo es de cadena lineal o ramificado, 2.8 -NH2 o
2.9 halógeno,
y en el que el grupo arilo, eventualmente está mono- o disustituido con el sustituyente 2.1 ó 2.3 a 2.9,
en el cual los sustituyentes 2.3, 2.4, 2.6 Y 2.7 pueden estar sustituidos adicionalmente con funciones -CN, -amida u -oxima, y 2.5 puede estar sustituido adicionalmente con funciones -CN o amida
R4 es C02R3, CO2NHR3, CHO, CH2OR3, CH2OSi(R3)3, CH2Br, CH2CN, en los cuales R3 es tal como se ha definido arriba
Y, en particular, los compuestos
Figure imgf000067_0001
Derivados de 8-hidroxiquimolinas tales como los descritos en WO2009146546 de fórmula general
R1
OH donde
R1 se selecciona del grupo de N02, NH2,NH(C1-6alquil) and N(C1- 6alquil)(C1-6alquil); R2 is selected from H, halogen, C1-6alquil, and C1 -6alquil sustutiudos con flúor,
o
R1 es Cl y R2 es Br o H
y, preferiblemente, los compuestos
Figure imgf000068_0001
Clioquinol (5-cloro-7-yodoquinolin-8-ol) tal y como se describe en WO09049410
Compuestos tales como los descritos en WO08098351 de fórmula general
IV
Donde
==-:-:-: is a single or double bond,
R1 se selecciona del grupo de H, C1-4alquilo, C(0)OC1 -4alquilo, C(0)C1 -
4alquilo y C(0)NHC1-4alquilo;
R2 se selecciona de H y C1-4alquilo;
R3 se selecciona de H y C1-4alquilo;
o R2 y R3 se encuentras unidos junta con el átomo de carbón y de nitrógeno al que se encuentran unidos para formar un anillo de piperidina,
R4 and R5 se seleccionan independientemente de H, halógeno, hidroxilo, C1-
4alquilo, C1-4alquilo sustutuido por flúor y C1-4alcoxi; y
X se selecciona de C y N. y compuestos preferidos tales como
Ciproheptadina (4-(5H-dibenzo[a,d]cicloheptan-S-ilideno)-1 -metilpiperidina) Amitryptilina (3-(10, 1 1-dihidro-5H-dibenzo[[a,d]]cycloheptene-5-ilideno)-N, N- dimetil-1-propanamina)
Loratadina (etil-4-(8-cloro-S,6-dihidro-1 1 H-benzo[5,6]ciclohepta[1 ,2-b]piridin- 1 1-ilidine)-1 -)piperidincarboxilato
Ciclobenzapina (3-(5H-dibenzo[a,d]cycloheptan-5-ilidleno)-N,N-dimetil-1- propanamina)
Nivalenol (12, 13-Epoxi-3,4,7, 15-tetrahidroxitrichotec-9-en-8-ona) tal y como se describe en WO0359249
Tabla 3: Pequeñas moléculas con capacidad de inhibir c-MAF Otros inhibidores de c-MAF se describen en la solicitud de patente WO2005063252, tal como se muestra en la tabla siguiente (Tabla 4).
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Tabla 4: inhibidores de c-MAF
En una realización aún más particular, la disminución de los niveles de expresión de c- MAF se lleva a cabo mediante el silenciamiento en las células de tumor de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de tumor de mama, de la isoforma corta de c-MAF. En otra realización particular, la disminución de los niveles de c-MAF se lleva a cabo mediante el silenciamiento en las células de tumor de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de tumor de mama, de la isoforma larga de c-MAF. En una realización aún más particular, la disminución de los niveles de c-MAF se lleva a cabo mediante el silenciamiento en las células de tumor de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de tumor de mama, de las isoforma larga y corta de c-MAF. La población de células de cáncer, en particular de mama, de colon, de pulmón, de riñon o de tiroides, más en particular dde mama, pueden ser obtenidas a partir de muestras de biopsias de pacientes que padecen tales tipos de cáncer, o bien pueden ser líneas celulares de tales tipos de cáncer, como líneas celulares de cáncer de mama que comprenden , sin limitarse a, las células de las líneas MCF-7, T47D y MDA-MB-231 , MDA-MB-435, MDA-MB-468, BT20, SkBr3, HCC-1937, BT-474 y ZR75.1 . En una forma preferidla de realización, la etapa (ii) se lleva a cabo usando células de la línea celular MCF7. Líneas celulares de cáncer de colon comprenden, sin limitarse a, HCA-7, KM12C, KM12SM, KM12l4a, SW480, SW620. Líneas celulares de cáncer de pulmón comprenden, sin limitarse a, NCI-H1781 , NCI-H1373, LC319, A549, PC14, SK-MES-1 , NCI-H2170, NCI-H 1703, NCI-H520, LU61 , LX1 , SBC-3, SBC-5, DMS273 y DMS1 14. Líneas celulares de cáncer de pulmón comprenden, sin limitarse a, 786-0, 769-P, A-498, SW-156, SW-839, A-704, ACHN, CaKi-1 y CaKi-2. Líneas celulares de cáncer de pulmón comprenden, sin limitarse a, BCPAP, KTC-1 , K1 , TCP1 , FTC133, ML1 , 8505C, SW1736, Cal-62, T235, T238, Uhth-104, Uhth-104, HTh74, KAT18, TTA1 , FR081-2, HTh7, C643, BHT101 y KTC-2.
Una vez que se ha determinado (i) los niveles de expresión de un gen candidato y de c-MAF en una muestra de tumor primario de cáncer, tal como de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de cáncer de mama, y (ii) el cambio en los niveles de expresión de dicho gen candidato en una población de células de cáncer, tal como de mama, de colon, de pulmón, de riñon o de tiroides, más en particular de cáncer de mama, en respuesta a una modulación de la expresión del gen c-MAF, el método in vitro para la identificación de genes marcadores de propensión a metástasis comprende
(i) la comparación de los niveles de expresión de dicho gen y de c-MAF en la muestra de tumor primario de cáncer y
(ii) la comparación del cambio en los niveles de expresión en respuesta a la modulación de la expresión del gen c-MAF con el cambio en los niveles de dicho gen
En una forma preferida de realización, si la expresión de dicho gen determinada en la etapa (i) se correlaciona de forma directa con los niveles de c-MAF en la muestra de tumor primario y si el cambio en los niveles de expresión en respuesta a la modulación de la expresión del gen c-MAF se correlaciona de forma directa con dicha modulación es indicativo de que niveles elevados de dicho gen son indicativos de propensión a metástasis. En otra forma preferida de realización, si la expresión de dicho gen determinada en la etapa (i) se correlaciona de forma inversa con los niveles de c-MAF en la muestra de tumor primario y si el cambio en los niveles de expresión en respuesta a la modulación de la expresión del gen c-MAF se correlaciona de forma inversa con dicha modulación es indicativo de que niveles reducidos de dicho gen son indicativos de propensión a metástasis. La correlación entre la expresión de un gen candidato y la expresión de c-MAF en la muestra de tumor primario se lleva a cabo mediante la comparación de los niveles de expresión de ambos genes con respecto a un valor de referencia, en donde se considera que existe correlación entre la expresión de ambos genes si ambos genes muestran en la misma muestra una variación de su expresión con respecto al valor de referencia. La correlación puede ser directa (el aumento de la expresión del gen candidato con respecto al valor de referencia se correlaciona con un aumento de la expresión de c-MAF con respecto al valor de referencia para dicho gen o la disminución de la expresión del gen candidato con respecto al valor de referencia se correlaciona con una disminución de la expresión de c-MAF con respecto al valor de referencia para dicho gen) o inversa (el aumento de la expresión del gen candidato con respecto al valor de referencia se correlaciona con una disminución aumento de la expresión de c-MAF con respecto al valor de referencia para dicho gen o la disminución de la expresión del gen candidato con respecto al valor de referencia se correlaciona con un aumento de la expresión de c-MAF con respecto al valor de referencia para dicho gen).
La correlación entre el cambio en los niveles de expresión del gen candidato en respuesta a la modulación de la expresión del gen c-MAF se lleva a cabo determinando el nivel de expresión de dicho gen antes de inducir la modulación de la expresión de c-MAF y el nivel de expresión de dicho gen en la misma muestra tras haberse producido la modulación en la expresión de c-MAF, considerándose que existe correlación si se ha producido una variación en la expresión del gen candidato de forma concomitante con el cambio en la expresión de c-MAF. La correlación puede ser directa (se produce un aumento de la expresión del gen candidato de forma concomitante con un aumento de la expresión de c-MAF o una disminución de la expresión del gen candidato con respecto de forma concomitante con una disminución de la expresión de c-MAF) o inversa (se produce un aumento de la expresión del gen candidato de forma concomitante con una disminución de la expresión de c-MAF o se produce una disminución de la expresión del gen candidato con respecto al valor de referencia de forma concomitante con un aumento de la expresión de c-MAF con respecto al valor de referencia para dicho gen). Se considera que existe un aumento en la expresión del gen candidato de forma concomitante con la variación en la expresión de c-MAF cuando se produce un aumento en los niveles de expresión de dicho gen de al menos un 5%, al menos un 10%, al menos un 15%, al menos un 20%, al menos un 25%, al menos un 30%, al menos un 35%, al menos un 40%, al menos un 45%, al menos un 50%, al menos un 55%, al menos un 60%, al menos un 65%, al menos un 70%, al menos un 75%, al menos un 80%: al menos un 85%, al menos un 90%, al menos un 95%, al menos un 100%, al menos un 1 10%, al menos un 120%, al menos un 130%, al menos un 140%, al menos un 150% o más con respecto a los niveles antes de inducirse el cambio en la expresión de c-MAF.
Se considera que existe una disminución en la expresión del gen candidato de forma concomitante con la variación en la expresión de c-MAF cuando se produce una disminución en los niveles de expresión de dicho gen de al menos un 5%, al menos un 10%, al menos un 15%, al menos un 20%, al menos un 25%, al menos un 30%, al menos un 35%, al menos un 40%, al menos un 45%, al menos un 50%, al menos un 55%, al menos un 60%, al menos un 65%, al menos un 70%, al menos un 75%, al menos un 80%: al menos un 85%, al menos un 90%, al menos un 95%, al menos un 100%, al menos un 1 10%, al menos un 120%, al menos un 130%, al menos un 140%, al menos un 150% o más con respecto a los niveles antes de inducirse el cambio en la expresión de c-MAF.
En una forma preferida de realización, la metástasis es una metástasis ósea. La invención se describe a continuación por medio de los siguientes ejemplos que tienen carácter meramente ilustrativo y no limitativo del alcance de la invención.
EJEMPLOS I. MATERIALES Y MÉTODOS
Modelos experimentales de estudio
Se han desarrollado nuevos modelos experimentales para el estudio de la metástasis en cáncer de mama ER+ y ER-PR-Her2-. Con este fin se ha utilizado una línea celular humana de cáncer de mama ER+, denominada MCF7, la cual se transfectó de forma estable con un vector que permite la expresión de la GFP/Luciferasa. Esta línea celular se inoculó en ratones inmunodeficientes (Balb-c/nude) por inyección vía intraventricular o en la vena caudal para poder seleccionar células con capacidad metastásica en distintos órganos. Los ratones llevaron implantes subcutáneos de estrógenos que garantizaron la presencia de esta hormona durante todo el experimento.
Selección de poblaciones metastásicas
Las poblaciones metastásicas en diferentes tejidos se seleccionaron mediante la identificación y aislamiento de las células de las lesiones metastásicas. Para ello, se usaron técnicas de imagen por bioluminiscencia utilizando la tecnología que permite detectar el establecimiento y crecimiento de células tumorales en órganos de interés a distintos tiempos y cuantificar el número de células tumorales presentes. Para la aplicación de esta técnica, las células han sido transducidas para expresar el gen de la luciferasa y la GFP y con ellos se permite su seguimiento in vivo en tiempo real métodos no invasivos. La captura de imagen de luminiscencia (actividad luciferasa) se realiza con el animal en condiciones de anestesia, utilizando un equipo tipo Xenogen IVIS y el software Livingimage como metodología preferida debido a su sensibilidad y velocidad. Para aislar las células metastásicas, se disecciona la lesión tumoral y, posteriormente, mediante técnicas de citometría por barrido con láser por fluorescencia (GFP) se aislan las células metastásicas de las propias del organismo huésped. Una vez aisladas estas células se repitió el proceso para enriquecer su tropismo por los distintos tejidos. Mediante estos procedimientos, se aislaron distintas poblaciones metastásicas con especificidad de tejido incluyendo metástasis en hueso y cerebro.
Una vez identificadas y aisladas las poblaciones metastásicas se realizó un análisis transcripcional de alto rendimiento. En conjunto, esta estrategia permitió identificar genes cuya transcripción se ve incrementada y algunos, que actúan como mediadores del proceso metastásico en células cancerosas con mala prognosis. La implicación de los genes cuya expresión se encuentra alterada en la colonización por parte de las células metastásicas en tejidos y órganos concretos fue confirmada mediante un procedimiento de selección in vivo no sesgado. La población seleccionada de células con alta capacidad para colonizar el hueso se llamó BoM2.
Identificación del grupo de genes cuya expresión está correlacionada con la expresión de c-MAF
Mediante comparación de los perfiles transcripcionales genómicos de 349 tumores primarios de mama, se identificaron genes cuya expresión correlaciona bien de modo positivo (directo) o bien de modo negativo (inverso) con la expresión de c-MAF. La validación de los genes así obtenidos se llevó a cabo mediante el análisis de su expresión en relación con la expresión de c-MAF en modelos celulares definidos. Las células MCF7 de cáncer de mama ER+ se modificaron para que expresasen bien la isoforma larga o bien la isoforma corta de c-MAF y se determinaron los perfiles de expresión de RNAm mediante Affymetrix U133A2Plus. Mediante técnicas rutinarias se obtuvieron derivados de células MCF-7 de metástasis ósea en los que se deplecionó c-MAF. Se determinaron los perfiles de expresión génica en las poblaciones celulares anteriores y se seleccionaron aquellos genes cuya expresión se modificó significativamente en función de la expresión de c-MAF. Estos resultados permitieron obtener el programa metastásico en hueso de c-MAF, que incluía 99 genes (76 de ellos sobreexpresados, Tabla 1 , y 33 reprimidos, Tabla 2) cuya expresión está significativamente correlacionada con el nivel de expresión de c-MAF en tumores primarios de cáncer de mama, y que varía en función de c-MAF en al menos una de las condiciones celulares empleadas. El programa metastásico de c-MAF en hueso incluye citoquinas, moléculas de adhesión celular, proteasas ancladas a membrana, mediadores de señalización y factores de transcripción.
Este grupo de genes, en los que se observaron cambios en los niveles de expresión en células de cáncer de mama ER+, se sometió a validación. Para ello, se compararon los niveles de expresión de los genes candidatos con los perfiles de expresión génica obtenidos a partir de dos tumores primarios de mama y cohortes de metástasis, que incluyeron 560 tumores primarios de cáncer de mama y 46 metástasis de pacientes con cáncer de mama.
Bioinformática y biología computacional Para obtener los grupos de genes enriquecidos en metástasis y verificar su correlación clínica se usaron paquetes estadísticos R y Bioconductor. Las funciones y estructuras específicas para el tratamiento de los datos fueron importadas y son de acceso público abierto a través de www.bioconductor.org.
EJEMPLO 1
Selección de genes relevantes Se llevó a cabo un análisis para seleccionar genes que se expresan de forma diferencial en células derivadas de una línea celular de cáncer de mama ER+ en respuesta a cambios en los niveles de expresión de c-MAF (Tabla 1 , Figura 1 B). Los genes y funciones determinantes del programa de metástasis en hueso mediado por c- MAF fueron seleccionados siguiendo los siguientes criterios:
i) Genes que en tumores primarios su expresión correlaciona significativamente con la expresión de c-MAF.
ii) Genes cuya expresión se modifica con la expresión de c-MAF, bien cuando se sobreexpresa c-MAF (isoforma larga o corta) en células MCF7 o se reduce la expresión de c-MAF en células altamente metastásicas a hueso derivadas de MCF7 que expresan c-MAF, y
iii) Genes que correlacionen con la expresión de MAF en tumores primarios y en alguna de las condiciones celulares mencionadas en ii) son considerados miembros del programa de metástasis a hueso mediado por c-MAF. Basándose en estos criterios, se identificaron genes cuyo nivel de expresión está correlacionado con el nivel de expresión de c-MAF y se comprobó cómo sus variaciones en los niveles de expresión se relacionan con la expresión de c-MAF en tumores primarios de cáncer de mama ER+ (Tabla 1 ). EJEMPLO 2
Valor terapéutico y valor pronóstico de los genes enriquecidos para metástasis en hueso Los genes enriquecidos en las metástasis en hueso mediante el sistema experimental de selección de poblaciones celulares metastásicas aquí desarrollado se evaluaron frente a dos bases de datos distintas que contenían los perfiles de expresión y las anotaciones clínicas de 560 tumores primarios de cáncer de mama y 58 metástasis de pacientes con cáncer de mama. Estos tumores son representativos de todos los subtipos de cáncer de mama y localización de metástasis. Ambas bases de datos y sus anotaciones clínicas son accesibles públicamente (GSE 2603, 2034, 12276 y 14020). La expresión génica en tumores primarios ER+ de los genes de metástasis en hueso correlacionó de manera significativa con recurrencia en hueso y su expresión también se encontró correlacionada con metástasis a hueso (Figura 1A) y no con metástasis a otros tejidos (Figuras 1 B). EJEMPLO 3
Validación funcional in vivo de los miembros del programa de metástasis en hueso mediado por c-MAF: gen PTHLH El gen metastásico PTHLH, positivo en el análisis previo y directamente correlacionado con la expresión de c-MAF (Tabla 1 y Figura 3), fue validado funcionalmente en un ensayo de colonización metastásica a hueso en un modelo experimental xenoinjerto de metástasis de cáncer de mama en ratones. Las aproximaciones estándar para validar el gen candidato a dirigir el proceso de metástasis fueron los ensayos de pérdida de función de PTHLH en células poco metastásicas que expressan c-MAF. La expresión del gen c-MAF fue inducida en células moderadamente metastásicas a hueso in vivo, MCF7, que presentan bajos niveles de expresión del gen c-MAF. La sobreexpresión de c-MAF fue responsable del aumento de los niveles endógenos del gen PTHLH ((Figura 3). En este contexto se procedió a bloquear la actividad de la citoquina PTHLH mediante un péptido antagonista (Figura 3).
En el proceso de transducción del gen se utilizaron sistemas lentivirales para infectar e introducir la expresión del gen candidato en las células tumorales. Las funciones facilitadoras de metástasis del gen c-MAF y su effector PTHLH fueron determinadas mediante técnicas de seguimiento por bioluminiscencia de las células metastásicas inoculadas en el ratón por vía intra-cardíaca. En todos los casos, se inyectaron las correspondientes células control infectadas con vectores lentivirales vacíos en una cohorte paralela de ratones inmunodeficientes para su comparación. (Figura 3). Se evaluó la capacidad de formación de lesiones osteolíticas, diferenciación de osteoclastos en las lesiones metastásicas in vivo y la función causal de PTHLH en este proceso (Figura 3).
Los experimentos de ganancia de función así como los datos de correlación clínica permitieron validar funcionalmente el papel de PTHLH como marcador pronóstico y un gen diana causal en procesos de metástasis a hueso en cáncer de mama ER+ y como parte del programa de metástasis a hueso mediado por c-MAF.
EJEMPLO 4 Validación funcional in vivo de los miembros del programa de metástasis en hueso mediado por c-MAF: gen RERG
El gen supresor de metástasis RERG está implicado en proliferación. El análisis previo mostró que la expresión del gen RERG está inversamente correlacionada con la expresión de c-MAF (Tabla 2 y Figura 2). Se validó funcionalmente el gen RERG en un ensayo de colonización metastásica en hueso en un modelo experimental xenógrafo de metástasis de cáncer de mama en ratones.
Se validó la implicación del gen RERG en metástasis mediante ensayo de ganancia de función en células altamente metastásicas. Se indujo la expresión de RERG en células altamente metastásicas en hueso seleccionadas in vivo, BoM2, las cuales presentan elevados niveles de expresión del gen c-MAF, responsable de la supresión de los niveles endógenos de RERG (Figure 2). En el proceso de transducción del gen se utilizaron sistemas lentivirales para infectar e introducir la expresión del gen candidato en las células tumorales. Las funciones facilitadoras de metástasis de la supresión de RERG fueron determinadas mediante técnicas de seguimiento por bioluminiscencia de las células metastásicas inoculadas en el ratón por vía intra-cardíaca. En todos los casos, se inyectaron las correspondientes células control infectadas con vectores lentivirales vacíos en una cohorte paralela de ratones inmunodeficientes para su comparación. (Figura 2). La perdida de c-MAF está asociada a una mayor expresión de RERG y a una disminución de la proliferación de las células metastáticas (Figura 2). La sobreexpresión de RERG en células altamente metastáticas a hueso (BoM2), que expresan altos niveles de c- MAF, causó una reducción en la capacidad de dichas células de colonizar el hueso (Figura 2). Esta reducción estuvo acompañada por una reducción en los índices de proliferación medidos con el marcador Ki-67 (Figura 2)
Los experimentos de ganancia de función en el contexto de la sobreexpresión de c- MAF así como los datos de correlación clínica permitieron validar funcionalmente el papel de RERG como marcador pronóstico y un gen diana causal en procesos de metástasis en hueso en cáncer de mama ER+ y como parte del programa de metástasis a hueso mediado por c-MAF. EJEMPLO 5
Validación funcional in vivo de los miembros del programa de metástasis en hueso mediado por c-MAF: gen PODXL El gen metastásico PODXL, positivo en el análisis previo y directamente correlacionado con la expresión de c-MAF (Tabla 1 y Figura 4), fue validado funcionalmente en un ensayo de adhesión a células derivadas de médula ósea en un modelo experimental a partir de células purificadas de médula ósea de ratón. Este proceso de adhesión es específico para células de hueso ya que si se repite usando células endoteliales o proteínas de matriz extracelular de pulmón, propias de la vasculatura, no se observa una mayor adhesión en presencia de PODXL o altos niveles de c-MAF, al contrario (Figura 4). Las aproximaciones estándar para validar el gen candidato a dirigir el proceso de metástasis fueron los ensayos de pérdida de función en células muy metastásicas a hueso o endoteliales. La expresión del gen PODXL fue reducida en células muy metastásicas a hueso in vivo, MCF7, que presentan altos niveles de expresión del gen c-MAF responsable del aumento de los niveles endógenos del gen PODXL.
En el proceso de transducción de los RNA de interferencia se utilizaron sistemas lentivirales para infectar e introducir la expresión del RNAi candidato en las células tumorales. Las funciones facilitadoras de metástasis del gen PODXL fueron determinadas mediante técnicas de fluorescencia de las células metastásicas sobre una capa de células derivadas de médula ósea o endoteliales. En todos los casos, se utilizaron las correspondientes células control infectadas con vectores lentivirales vacíos para su comparación. (Figura 4). Se evaluó si este proceso está asociado a la actividad integrina utilizando dos péptidos, RGES y RGDS, el primer no se une a las integrinas mientras que el segundo compite con ellas y previene la adhesión celular. En conclusión, se validó la función causal de PODXL en este proceso potencialmente a través de la interacción vía integrinas (Figura 4).
Los experimentos de pérdida de función así como los datos de correlación clínica permitieron validar funcionalmente el papel de PODXL como marcador pronóstico y un gen diana causal en procesos de metástasis a hueso en cáncer de mama ER+ y como parte del programa de metástasis a hueso mediado por c-MAF.
Los términos "Sequence listing" y "Artificial sequence" del listado de secuencias se traducen, respectivamente, como "Listado de secuencias" y "Secuencia artificial".

Claims

REIVINDICACIONES
1. Método in vitro para predecir la metástasis de un cáncer de mama en un sujeto que comprende determinar el nivel de expresión en una muestra de tejido tumoral de dicho sujeto de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF en dicho tumor en donde niveles de expresión alterados de dicho uno o más genes con respecto a un valor de referencia son indicativos de alto riesgo de desarrollo de metástasis.
2. Método según la reivindicación 1 en donde dicho uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF se selecciona del grupo formado por los genes comprendidos en la Tabla 1 y los genes comprendidos en la Tabla 2 y en donde la modulación en los niveles de expresión de dicho uno o más genes es un aumento de expresión de uno o más genes comprendidos en la Tabla 1 y/o una disminución de expresión de uno o más genes comprendidos en la Tabla 2.
3. Método según la reivindicación 2 en donde dicho gen cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF se selecciona del grupo de PTHLH, PODXL y RERG.
4. Método in vitro para diseñar una terapia personalizada para un sujeto afectado de cáncer de mama que comprende determinar el nivel de expresión en una muestra de tejido tumoral de dicho sujeto de uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF en donde niveles de expresión alterados de dicho uno o más genes con respecto a un valor de referencia son indicativos de que dicho sujeto es susceptible de recibir una terapia dirigida a prevenir la metástasis.
5. Método según la reivindicación 4 en donde dichos uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF se selecciona del grupo formado por uno o más de los genes comprendidos en la Tabla 1 y/o uno o más de los genes comprendidos en la Tabla 2 y en donde la modulación de los niveles de expresión de uno o más de los genes de la Tabla 1 es un aumento de expresión y/o donde la modulación de los niveles de expresión de uno o más de los genes de la Tabla 2 es una disminución de la expresión.
6. Método según la reivindicación 5 en donde dicho gen cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF se selecciona del grupo de PTHLH, PODXL y RERG.
7. Método según las reivindicaciones 1 a 6, en donde el cáncer de mama se selecciona del grupo consistente en un cáncer ER+ y un cáncer triple negativo.
8. Método según cualquiera de las reivindicaciones 1 a 7 en donde la metástasis es metástasis en hueso.
9. Método según la reivindicación 9, en donde la metástasis en hueso es metástasis osteolítica.
10. Método según cualquiera de las reivindicaciones 1 a 9 en donde la determinación de los niveles de expresión de dicho uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF se lleva a cabo mediante la determinación de los niveles de expresión del ARNm de dicho gen.
1 1. Método según cualquiera de las reivindicaciones 1 a 9 en donde la determinación de los niveles de expresión de dicho uno o más genes cuya expresión se modula en respuesta a un aumento en los niveles de expresión de c-MAF se lleva a cabo mediante la determinación de los niveles de expresión del polipéptido codificado por dicho gen.
12. Uso de un agente que inhibe la expresión de un gen o la actividad del producto de expresión de dicho gen para la preparación de un medicamento para el tratamiento y/o la prevención de la metástasis del cáncer de mama en donde dicho gen se caracteriza porque su expresión en células de tumor de mama aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en dichas células o disminuye en respuesta a una disminución en los niveles de expresión de c-MAF en dichas células.
13. Uso según la reivindicación 12, en donde el agente que inhibe la expresión de un gen se selecciona de un ARNip específico para dicho gen, un oligonucleótido antisentido específico para dicho gen, una ribozima específica para dicho gen o en donde el agente que inhibe la actividad del producto de expresión de dicho gen se selecciona del grupo formado por un anticuerpo inhibidor específico para dicho producto de expresión, una variante dominante negativa de dicho producto de expresión y un péptido inhibidor de dicho producto de expresión.
14. Uso según las reivindicaciones 12 o 13 en donde el gen cuya expresión aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor de mama o cuya expresión disminuye en respuesta a una disminución en los niveles de expresión de c-MAF en un tumor de mama se selecciona de los genes descritos en la Tabla 1.
15. Uso según la reivindicación 14 en donde el gen cuya expresión aumenta en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor de mama es el gen PHTLH o el gen PODXL.
16. Uso de un agente que estimula la expresión de un gen o la actividad del producto de expresión de dicho gen para la preparación de un medicamento para el tratamiento y/o la prevención de la metástasis del cáncer de mama, en donde dicho gen se caracteriza porque su expresión en células de tumor de mama disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en dichas células o porque su expresión aumenta en respuesta a una disminución en los niveles de expresión de c-MAF en dichas células. 17. Uso según la reivindicación 16, en donde el agente que estimula la expresión de dicho gen es un polinucleótido que contiene la secuencia codificante de dicho gen o en donde el agente que estimula la actividad del producto de expresión de dicho gen es un polipéptido codificado por dicho gen. 18. Uso según la reivindicación 17 en donde el gen cuya expresión disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor de mama o cuya expresión aumenta en respuesta a una disminución en los niveles de expresión de c-MAF en un tumor de mama se selecciona de los genes descritos en la Tabla 2. Uso según la reivindicación 18 en donde el gen cuya expresión disminuye en respuesta a un aumento en los niveles de expresión de c-MAF en un tumor de mama es el gen RERG.
Uso según cualquiera de las reivindicaciones 12 a 19, en donde el cáncer de mama se selecciona del grupo formado por cáncer ER+ y cáncer triple negativo.
Uso según las reivindicaciones 12 a 20, en donde la metástasis es metástasis en hueso.
Uso según la reivindicación 21 , en donde la metástasis en hueso es metástasis osteolítica.
Método in vitro para la identificación de un gen marcador de propensión a metástasis en un sujeto que padece cáncer de mama que comprende
(i) determinar los niveles de expresión de un gen candidato y de c-MAF en una muestra de tumor primario de cáncer de mama y
(ii) determinar el cambio en los niveles de expresión de dicho gen candidato en una población de células de cáncer de mama en respuesta a una modulación de la expresión del gen c-MAF
en donde si los niveles de expresión de dicho gen se correlacionan de forma estadísticamente significativa con la expresión de c-MAF en la muestra de tumor primario de cáncer de mama y el cambio en los niveles de expresión en respuesta a la modulación de la expresión del gen c-MAF se correlaciona de forma estadísticamente significativa con el cambio en los niveles de dicho gen es indicativo de que dicho gen es marcador de propensión a metástasis en un sujeto.
Método según la reivindicación 23 en donde la expresión de dicho gen determinada en la etapa (i) se correlaciona de forma directa con los niveles de c-MAF en la muestra de tumor primario y si el cambio en los niveles de expresión en respuesta a la modulación de la expresión del gen c-MAF se correlaciona de forma directa con dicha modulación es indicativo de que niveles elevados de dicho gen son indicativos de propensión a metástasis.
25. Método según la reivindicación 23 en donde la expresión de dicho gen determinada en la etapa (i) se correlaciona de forma inversa con los niveles de c-MAF en la muestra de tumor primario y si el cambio en los niveles de expresión en respuesta a la modulación de la expresión del gen c-MAF se correlaciona de forma inversa con dicha modulación es indicativo de que niveles reducidos de dicho gen son indicativos de propensión a metástasis.
26. Método según cualquiera de las reivindicaciones 23 a 25 en donde la modulación de la expresión de c-MAF es un aumento de la expresión.
27. Método según la reivindicación 26 en donde el aumento de la expresión se lleva a cabo mediante la expresión en la población celular de la isoforma corta y/o de la isoforma larga de c-MAF.
28. Método según cualquiera de las reivindicaciones 23 a 25 en donde la modulación de los niveles de expresión de c-MAF es una disminución de la expresión.
29. Método según la reivindicación 28 en donde se disminuye la expresión de la isoforma corta de c-MAF y/o de la isoforma larga de c-MAF.
30. Método según cualquiera de las reivindicaciones 23 a 29 en donde las células de cáncer de mama y/o la muestra de tumor primario son ER+ o triple negativas.
31. Método según cualquiera de las reivindicaciones 23 a 30 en donde la metástasis es una metástasis ósea.
32. Método según cualquiera de las reivindicaciones 23 a 31 en donde las células de cáncer de mama son células de una línea celular establecida.
33. Método según la reivindicación 32 la línea celular establecida es la línea MCF7.
PCT/IB2014/001128 2013-03-15 2014-03-14 Metodo para el diagnostico, pronostico y tratamiento de la metastasis de un cancer WO2014140896A2 (es)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BR112015023510A BR112015023510A2 (pt) 2013-03-15 2014-03-14 método para o diagnóstico, prognóstico e tratamento de câncer metastático
US14/776,453 US20160040247A1 (en) 2013-03-15 2014-03-14 Method for the diagnosis, prognosis, and tratment of cancer metastasis
KR1020157027318A KR20150122786A (ko) 2013-03-15 2014-03-14 암 전이의 진단, 예후 및 치료를 위한 방법
JP2015562396A JP2016518815A (ja) 2013-03-15 2014-03-14 転移性がんの診断、予後、および処置の方法
AU2014229563A AU2014229563B2 (en) 2013-03-15 2014-03-14 Method for the diagnosis, prognosis and treatment of cancer metastasis
EP17181286.0A EP3272880B1 (en) 2013-03-15 2014-03-14 Method for the diagnosis, prognosis and treatment of metastatic cancer
CA2903306A CA2903306A1 (en) 2013-03-15 2014-03-14 Method for the diagnosis, prognosis and treatment of metastatic cancer
MX2015011373A MX368575B (es) 2013-03-15 2014-03-14 Métodos in vitro para el pronóstico, diagnóstico y diseño de una terapia personalizada de metástasis de cáncer de mama.
CN201480015519.5A CN105431548A (zh) 2013-03-15 2014-03-14 用于癌转移的诊断、预后和治疗的方法
EP14752365.8A EP2975138A2 (en) 2013-03-15 2014-03-14 Method for the diagnosis, prognosis and treatment of cancer metastasis
US15/944,499 US11591599B2 (en) 2013-03-15 2018-04-03 Method for the diagnosis, prognosis and treatment of cancer metastasis
US18/154,295 US20230323356A1 (en) 2013-03-15 2023-01-13 Method for the diagnosis, prognosis and treatment of cancer metastasis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201330384 2013-03-15
ESP201330384 2013-03-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/776,453 A-371-Of-International US20160040247A1 (en) 2013-03-15 2014-03-14 Method for the diagnosis, prognosis, and tratment of cancer metastasis
US15/944,499 Continuation US11591599B2 (en) 2013-03-15 2018-04-03 Method for the diagnosis, prognosis and treatment of cancer metastasis

Publications (3)

Publication Number Publication Date
WO2014140896A2 true WO2014140896A2 (es) 2014-09-18
WO2014140896A3 WO2014140896A3 (es) 2015-05-21
WO2014140896A9 WO2014140896A9 (es) 2019-01-03

Family

ID=51355559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/001128 WO2014140896A2 (es) 2013-03-15 2014-03-14 Metodo para el diagnostico, pronostico y tratamiento de la metastasis de un cancer

Country Status (10)

Country Link
US (5) US20160040247A1 (es)
EP (2) EP2975138A2 (es)
JP (1) JP2016518815A (es)
KR (1) KR20150122786A (es)
CN (1) CN105431548A (es)
AU (1) AU2014229563B2 (es)
BR (1) BR112015023510A2 (es)
CA (1) CA2903306A1 (es)
MX (1) MX368575B (es)
WO (1) WO2014140896A2 (es)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702878B2 (en) 2012-04-09 2017-07-11 Fundació Institut de Recera Biomèdica (IRB Barcelona) Method for the prognosis and treatment of cancer metastasis
US10006091B2 (en) 2012-06-06 2018-06-26 Fundació Institut De Recerca Biomèdica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of lung cancer metastasis
US10047398B2 (en) 2010-10-06 2018-08-14 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of breast cancer metastasis
US10114022B2 (en) 2012-10-12 2018-10-30 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
US10119171B2 (en) 2012-10-12 2018-11-06 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
US10793642B2 (en) 2014-12-11 2020-10-06 Inbiomotion S.L. Binding members for human c-MAF
US11591599B2 (en) 2013-03-15 2023-02-28 Fundació Institut De Recerca Biomèdica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of cancer metastasis
US11596642B2 (en) 2016-05-25 2023-03-07 Inbiomotion S.L. Therapeutic treatment of breast cancer based on c-MAF status
US11654153B2 (en) 2017-11-22 2023-05-23 Inbiomotion S.L. Therapeutic treatment of breast cancer based on c-MAF status

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105779600A (zh) * 2016-04-06 2016-07-20 浙江大学 一种akr1c1蛋白的应用
RU2665133C1 (ru) * 2017-04-12 2018-08-28 Федеральное государственное бюджетное научное учреждение "Томский национальный исследовательский медицинский центр" Российской академии наук ("Томский НИМЦ") Способ персонализированного комбинированного лечения немелкоклеточного рака легкого 1В-111 стадии на основе оценки уровней экспрессии генов монорезистентности
CN113462776B (zh) * 2021-06-25 2023-03-28 复旦大学附属肿瘤医院 m6A修饰相关联合基因组在预测肾透明细胞癌患者免疫治疗疗效中的应用
CN114164273B (zh) * 2021-12-15 2023-05-23 中国人民解放军军事科学院军事医学研究院 一种鳞癌的预后标志物、预后风险评估模型的建立方法及其应用

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004920A1 (en) 1985-02-13 1986-08-28 Biotechnology Research Partners, Limited Human metallothionein-ii promoter in mammalian expression system
WO1988009810A1 (en) 1987-06-11 1988-12-15 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
WO1989010134A1 (en) 1988-04-25 1989-11-02 The Regents Of The University Of California Chimeric peptides for neuropeptide delivery through the blood-brain barrier
US5093246A (en) 1986-12-03 1992-03-03 University Patents, Inc. Rna ribozyme polymerases, dephosphorylases, restriction endoribo-nucleases and methods
US5176996A (en) 1988-12-20 1993-01-05 Baylor College Of Medicine Method for making synthetic oligonucleotides which bind specifically to target sites on duplex DNA molecules, by forming a colinear triplex, the synthetic oligonucleotides and methods of use
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US5527772A (en) 1987-10-20 1996-06-18 Holick; Michael F. Regulation of cell proliferation and differentiation using peptides
WO1997038117A1 (en) 1996-04-05 1997-10-16 The Salk Institute For Biological Studies Hormone-mediated methods for modulating expression of exogenous genes in mammalian systems, and products related thereto
US6274338B1 (en) 1998-02-24 2001-08-14 President And Fellows Of Harvard College Human c-Maf compositions and methods of use thereof
US6287813B1 (en) 1999-04-23 2001-09-11 Cistronics Cell Technology Gmbh Antibiotic-based gene regulation system
US6362163B1 (en) 1996-07-31 2002-03-26 The General Hospital Corporation Parathyroid hormone-related peptide analogs
US20040132086A1 (en) 2000-06-28 2004-07-08 The Regents Of The University Of Colorado Progesterone receptor-regulated gene expression and methods related thereto
WO2004060386A1 (en) 2002-11-01 2004-07-22 Amgen, Inc. Modulators of receptors for parathyrois hormone and parathyroid hormone-related protein
WO2004103273A2 (en) 2003-05-01 2004-12-02 Wsmr Biosciences Inverse agonist and agonist peptides that stimulate/inhibit hair growth
WO2005026322A2 (en) 2003-09-11 2005-03-24 Clontech Laboratories, Inc. siRNA ENCODING CONSTRUCTS AND METHODS FOR USING THE SAME
WO2005046731A1 (en) 2003-10-17 2005-05-26 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Interference with c-maf function in multiple myeloma
US20050181375A1 (en) 2003-01-10 2005-08-18 Natasha Aziz Novel methods of diagnosis of metastatic cancer, compositions and methods of screening for modulators of metastatic cancer
WO2006012221A2 (en) 2004-06-25 2006-02-02 The Regents Of The University Of California Target cell-specific short interfering rna and methods of use thereof
WO2006135436A2 (en) 2004-10-22 2006-12-21 University Of Florida Research Foundation, Inc. Inhibition of gene expression and therapeutic uses thereof
WO2007069090A2 (en) 2005-12-06 2007-06-21 Centre National De La Recherche Scientifique Cell penetrating peptides for intracellular delivery of molecules
US20070203071A1 (en) 2003-07-17 2007-08-30 Gardella Thomas J Conformationally Constrained Parthyroid Hormone (Pth) Analogs
WO2008098351A1 (en) 2007-02-14 2008-08-21 University Health Network Treatment of d-cyclin mediated proliferative diseases and hemotological malignancies
EP1961825A1 (en) 2007-02-26 2008-08-27 INSERM (Institut National de la Santé et de la Recherche Medicale) Method for predicting the occurrence of metastasis in breast cancer patients
US20090048117A1 (en) 2003-12-18 2009-02-19 President And Fellows Of Harvard College Modulation of immune system function by modulation of polypeptide arginine methyltransferases
WO2010000907A1 (es) 2008-07-02 2010-01-07 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) Huella genómica de cáncer de mama
WO2011003935A1 (en) 2009-07-08 2011-01-13 Complix Nv Parathyroid hormone related protein antagonists

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE208772T1 (de) 1993-10-01 2001-11-15 Novartis Erfind Verwalt Gmbh Pharmacologisch wirksame pyridinderivate und verfahren zu deren herstellung
GB9509957D0 (en) * 1995-05-17 1995-07-12 Khalil Nasreen Post-translational activation of tgf-›1 involving the tsp-1 receptor cd36
US5958671A (en) * 1996-04-23 1999-09-28 Presidents And Fellows Of Harvard College Methods and compositions for regulating T cell subsets by modulating transcription factor activity
ES2281416T3 (es) * 2000-04-03 2007-10-01 Corixa Corporation Metodos, composiciones y sistemas para la deteccion y monitorizacion del cancer de mama.
US7700359B2 (en) * 2000-06-02 2010-04-20 Novartis Vaccines And Diagnostics, Inc. Gene products differentially expressed in cancerous cells
TW201041580A (en) 2001-09-27 2010-12-01 Alcon Inc Inhibitors of glycogen synthase kinase-3 (GSK-3) for treating glaucoma
KR100485271B1 (ko) 2002-01-16 2005-04-27 메타볼랩(주) 전사인자 c-maf의 전사 활성 억제제로서의 니발레놀및 그를 포함하는 약제학적 조성물
TW200526224A (en) 2003-12-22 2005-08-16 Alcon Inc Short form c-Maf transcription factor antagonists for treatment of glaucoma
KR20070016092A (ko) 2005-08-02 2007-02-07 베리덱스, 엘엘씨 유방암의 뼈 재발을 예측하는 방법
EP1777523A1 (en) * 2005-10-19 2007-04-25 INSERM (Institut National de la Santé et de la Recherche Médicale) An in vitro method for the prognosis of progression of a cancer and of the outcome in a patient and means for performing said method
DE102006036023A1 (de) 2006-08-02 2008-02-07 Sanofi-Aventis Imino-imidazo-pyridinderivate mit antithrombotischer Aktivität
WO2008086800A2 (en) * 2007-01-15 2008-07-24 Aarhus Universitet Predisposition to, prognosis for and treatment of breast cancer relating to human chromosome 16
SG178795A1 (en) * 2007-02-16 2012-03-29 Pacific Arrow Ltd Blocking the migration or metastasis of cancer cells by affecting adhesion proteins and the uses of new compounds thereof
WO2009049410A1 (en) 2007-10-18 2009-04-23 University Health Network Clioquinol for the treatment of hematological malignancies
CA2726537A1 (en) 2008-06-06 2009-12-10 University Health Network 8-hydroxyquinoline derivatives for the treatment of hematological malignancies
WO2010003773A1 (en) * 2008-06-16 2010-01-14 Siemens Medical Solutions Diagnostics Gmbh Algorithms for outcome prediction in patients with node-positive chemotherapy-treated breast cancer
EP2412825B8 (en) * 2009-03-24 2018-01-10 Riken Leukemia stem cell markers
EP2283870A1 (en) * 2009-07-31 2011-02-16 Centre National de la Recherche Scientifique Oligonucleotides inhibiting cellular migration
WO2011039734A2 (en) * 2009-10-02 2011-04-07 Enzo Medico Use of genes involved in anchorage independence for the optimization of diagnosis and treatment of human cancer
US10047398B2 (en) 2010-10-06 2018-08-14 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of breast cancer metastasis
WO2012106718A2 (en) 2011-02-04 2012-08-09 Bioarray Therapeutics, Inc. Methods of using gene expression signatures to select a method of treatment, predict prognosis, survival, and/or predict response to treatment
EP2650682A1 (en) 2012-04-09 2013-10-16 Fundació Privada Institut de Recerca Biomèdica Method for the prognosis and treatment of cancer metastasis
JP6386450B2 (ja) 2012-06-06 2018-09-05 フンダシオ、インスティトゥト、デ、レセルカ、ビオメディカ(イエレベ、バルセロナ)Fundacio Institut De Recerca Biomedica (Irb Barcelona) 肺がん転移の診断、予後診断および処置のための方法
US20140105918A1 (en) 2012-10-12 2014-04-17 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
US10119171B2 (en) 2012-10-12 2018-11-06 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
US20160032399A1 (en) 2013-03-15 2016-02-04 Inbiomotion S.L. Method for the Prognosis and Treatment of Renal Cell Carcinoma Metastasis
BR112015023510A2 (pt) 2013-03-15 2017-10-10 Fundacio Inst De Recerca Biomedica Irb Barcelona método para o diagnóstico, prognóstico e tratamento de câncer metastático
CA2906394A1 (en) 2013-03-15 2014-09-18 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Method for the prognosis and treatment of cancer metastasis
CA2926894A1 (en) 2013-10-09 2015-04-16 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Method for the prognosis and treatment of metastasizing cancer of the bone originating from breast cancer
AU2015275798B2 (en) 2014-06-17 2021-03-25 Asherman Therapy, S.L. Stem cell therapy in endometrial pathologies
RS65136B1 (sr) 2014-07-17 2024-02-29 Novo Nordisk As Mutageza usmerena na lokaciju trem-1 antitela za smanjenje viskoziteta
US10793642B2 (en) 2014-12-11 2020-10-06 Inbiomotion S.L. Binding members for human c-MAF
PT3458610T (pt) 2016-05-25 2021-06-29 Inbiomotion Sl Tratamento terapêutico de cancro da mama baseado no estado de c-maf
CN111565725A (zh) 2017-11-22 2020-08-21 生物运动有限公司 基于c-maf状态的乳腺癌的治疗性处理

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986004920A1 (en) 1985-02-13 1986-08-28 Biotechnology Research Partners, Limited Human metallothionein-ii promoter in mammalian expression system
US5093246A (en) 1986-12-03 1992-03-03 University Patents, Inc. Rna ribozyme polymerases, dephosphorylases, restriction endoribo-nucleases and methods
WO1988009810A1 (en) 1987-06-11 1988-12-15 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
US5527772A (en) 1987-10-20 1996-06-18 Holick; Michael F. Regulation of cell proliferation and differentiation using peptides
WO1989010134A1 (en) 1988-04-25 1989-11-02 The Regents Of The University Of California Chimeric peptides for neuropeptide delivery through the blood-brain barrier
US5176996A (en) 1988-12-20 1993-01-05 Baylor College Of Medicine Method for making synthetic oligonucleotides which bind specifically to target sites on duplex DNA molecules, by forming a colinear triplex, the synthetic oligonucleotides and methods of use
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
WO1997038117A1 (en) 1996-04-05 1997-10-16 The Salk Institute For Biological Studies Hormone-mediated methods for modulating expression of exogenous genes in mammalian systems, and products related thereto
US6362163B1 (en) 1996-07-31 2002-03-26 The General Hospital Corporation Parathyroid hormone-related peptide analogs
US6274338B1 (en) 1998-02-24 2001-08-14 President And Fellows Of Harvard College Human c-Maf compositions and methods of use thereof
US6287813B1 (en) 1999-04-23 2001-09-11 Cistronics Cell Technology Gmbh Antibiotic-based gene regulation system
US20040132086A1 (en) 2000-06-28 2004-07-08 The Regents Of The University Of Colorado Progesterone receptor-regulated gene expression and methods related thereto
WO2004060386A1 (en) 2002-11-01 2004-07-22 Amgen, Inc. Modulators of receptors for parathyrois hormone and parathyroid hormone-related protein
US20050181375A1 (en) 2003-01-10 2005-08-18 Natasha Aziz Novel methods of diagnosis of metastatic cancer, compositions and methods of screening for modulators of metastatic cancer
WO2004103273A2 (en) 2003-05-01 2004-12-02 Wsmr Biosciences Inverse agonist and agonist peptides that stimulate/inhibit hair growth
US20070203071A1 (en) 2003-07-17 2007-08-30 Gardella Thomas J Conformationally Constrained Parthyroid Hormone (Pth) Analogs
WO2005026322A2 (en) 2003-09-11 2005-03-24 Clontech Laboratories, Inc. siRNA ENCODING CONSTRUCTS AND METHODS FOR USING THE SAME
WO2005046731A1 (en) 2003-10-17 2005-05-26 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Interference with c-maf function in multiple myeloma
US20090048117A1 (en) 2003-12-18 2009-02-19 President And Fellows Of Harvard College Modulation of immune system function by modulation of polypeptide arginine methyltransferases
WO2006012221A2 (en) 2004-06-25 2006-02-02 The Regents Of The University Of California Target cell-specific short interfering rna and methods of use thereof
WO2006135436A2 (en) 2004-10-22 2006-12-21 University Of Florida Research Foundation, Inc. Inhibition of gene expression and therapeutic uses thereof
WO2007069090A2 (en) 2005-12-06 2007-06-21 Centre National De La Recherche Scientifique Cell penetrating peptides for intracellular delivery of molecules
WO2008098351A1 (en) 2007-02-14 2008-08-21 University Health Network Treatment of d-cyclin mediated proliferative diseases and hemotological malignancies
EP1961825A1 (en) 2007-02-26 2008-08-27 INSERM (Institut National de la Santé et de la Recherche Medicale) Method for predicting the occurrence of metastasis in breast cancer patients
WO2010000907A1 (es) 2008-07-02 2010-01-07 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) Huella genómica de cáncer de mama
WO2011003935A1 (en) 2009-07-08 2011-01-13 Complix Nv Parathyroid hormone related protein antagonists

Non-Patent Citations (59)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 2000, WILLIAMS & WILKINS
ABE ET AL., PROC. NATL. ACAD. SCI. U. S. A., vol. 90, 1993, pages 282
ALTSCHUL SF ET AL., BASIC LOCAL ALIGNMENT SEARCH TOOL. J MOL BIOL., vol. 215, no. 3, 5 October 1990 (1990-10-05), pages 403 - 10
ALTSCHUL, S. ET AL.: "BLAST Manual", NCBI NLM NIH BETHESDA
ALTSCHUL, S., J. MOL. BIOL., vol. 215, 1990, pages 403 - 410
ANDREWS ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 11488 - 11492
AUSUBEL, F.M. ET AL.: "Current Protocols in Molecular Biology", 2003, JOHN WILEY & SONS INC
BASSET ET AL., NATURE, vol. 348, 1990, pages 699
BOS, P.D. ET AL., NATURE, vol. 459, 2009, pages 1005 - 1009
C. FAULI I TRILLO: "Tratado de Farmacia Gaienica", 1993
CHRISTOPHERSON ET AL., PROC.NATI.ACAD.SCI.USA, vol. 89, 1992, pages 6314 - 6318
DOPPELT ET AL., PROC. NATL. ACAD. SCI. USA, vol. 83, 1986, pages 7557 - 7560
DOWDY; WEARDEN: "Statistics for Research", 1983, JOHN WILEY & SONS
DOWDY; WEARDEN: "Statistics for Research", 1983, WILEY, JOHN & SONS
EGLOM ET AL., NATURE, vol. 365, 1993, pages 566
ELIZABETH H ET AL., JOURNAL OF CLINICAL ONCOLOGY, vol. 28, 2010, pages 2784 - 2795
EW MARTIN, REMINGTON'S PHARMACEUTICAL SCIENCES, 1995
FUJIWARA ET AL., ONCOGENE, vol. 8, 1993, pages 2371 - 2380
GOSSEN, M. ET AL., SCIENCE, vol. 268, 1995, pages 1766 - 1769
GOSSEN, M.; H. BUJARD, PROC.NATI.ACAD.SCI.USA, vol. 89, 1992, pages 5547 - 5551
HELENE, ANTICANCER DRUG DES., vol. 6, no. 6, 1991, pages 569 - 84
HOARE ET AL., PEPTIDES, vol. 23, 2002, pages 989 - 998
IGARASHI ET AL., J. BIOL.CHEM., vol. 270, 1995, pages 7615 - 7624
KATAOKA ET AL., MOL. CELL. BIOL., vol. 15, 1995, pages 2180 - 2190
KATAOKA ET AL., ONCOGENE, vol. 12, 1996, pages 53 - 62
KAYKAS, A.; MOON, R., BMC CELL BIOL., vol. 5, 2004, pages 16
KOHLER; MILSTEIN, NATURE, vol. 256, 1975, pages 495
LEE, N.S. ET AL., NAT.BIOTECHNOL., vol. 20, 2002, pages 500 - 505
LEMAITRE ET AL., PROC. NATL. ACAD. SCI., vol. 84, 1987, pages 648 - 652
LETSINGER ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 86, 1989, pages 6553 - 6556
LINDGREN, A. ET AL., TRENDS PHARMACOL. SCI, vol. 21, 2000, pages 99 - 103
LUNDBERG, M ET AL., MOL THERAPY, vol. 8, 2003, pages 143 - 150
LUNDBERG, M ET AL., MOL. THERAPY, vol. 8, 2003, pages 143 - 150
NO ET AL., PROC.NATLACAD.SCI.USA, vol. 93, 1996, pages 3346 - 3351
NUTT ET AL., ENDOCRINOLOGY, vol. 127, 1990, pages 491 - 3
NUTT ET AL., ENDOCRINOLOGY, vol. 127, 1990, pages 491 - 493
OLSTAD ET AL., PEPTIDES, vol. 16, 1995, pages 1031 - 1037
PERRY-O'KEEFE ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 93, 1996, pages 14670
RIVERA ET AL., NAT.MED., vol. 2, 1996, pages 1028 - 32
ROSSI, CURRENT BIOLOGY, vol. 4, 1994, pages 469 - 471
ROSSI, F.M.V.; H.M. BLAU, CURR. OPIN. BIOTECHNOL., vol. 9, 1998, pages 451 - 456
ROUBINI ET AL., BIOCHEMISTRY, vol. 31, 1992, pages 4026 - 4033
SAMBROOCK, J. ET AL.: "Molecular cloning: a Laboratory Manual", vol. 1-3, COLD SPRING HARBOR LABORATORY PRESS
SCHWARZE, S.R. ET AL., TRENDS PHARMACOL. SCI., vol. 21, 2000, pages 45 - 48
SNYDER, E.L.; DOWDY, S.F., PHARM. RES., vol. 21, 2004, pages 389 - 393
STEIN ET AL., CANCER RES, vol. 48, 1988, pages 2659 - 2668
STEIN; COHEN, CANCER RES., vol. 48, 1988, pages 2659
SUHR ET AL., PROC.NATLACAD.SCI.USA, vol. 95, 1998, pages 7999 - 8004
TEMPLETON, DNA CELL BIOL, vol. 21, 2002, pages 857 - 867
TRAN, N. ET AL., BMC BIOTECHNOL., vol. 3, 2003, pages 21
VAN DER KROL ET AL., BIOTECHNIQUES, vol. 6, 1988, pages 958
VAN DER KROL ET AL., BIOTECHNIQUES, vol. 6, 1988, pages 958 - 976
WAGNER, NATURE, vol. 372, 1994, pages 333
WANG, J. ET AL., PROC.NATI.ACAD.SCI.USA, vol. 100, 2003, pages 5103 - 5106
WOLFF AC ET AL., ARCHIVES OF PATHOLOGY LABORATORY MEDICINE, vol. 131, 2007, pages 18 - 43
WOLFF AC ET AL., J CLIN ONCOL., vol. 25, 2007, pages 118 - 145
ZAUG ET AL., SCIENCE, vol. 224, 1984, pages 574 - 578
ZHENG, L. ET AL., PROC.NATLACAD.SCI.USA, 2004, pages 135 - 140
ZON, PHARM. RES., vol. 5, 1988, pages 539 - 549

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047398B2 (en) 2010-10-06 2018-08-14 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of breast cancer metastasis
US11072831B2 (en) 2010-10-06 2021-07-27 Fundació Institut De Recerca Biomèdica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of breast cancer metastasis
US10866241B2 (en) 2012-04-09 2020-12-15 Institucio Catalana De Recerca I Estudis Avancats Method for the prognosis and treatment of cancer metastasis
US9702878B2 (en) 2012-04-09 2017-07-11 Fundació Institut de Recera Biomèdica (IRB Barcelona) Method for the prognosis and treatment of cancer metastasis
US10006091B2 (en) 2012-06-06 2018-06-26 Fundació Institut De Recerca Biomèdica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of lung cancer metastasis
US11352673B2 (en) 2012-06-06 2022-06-07 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of lung cancer metastasis
US11041213B2 (en) 2012-10-12 2021-06-22 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
US11041861B2 (en) 2012-10-12 2021-06-22 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
US10119171B2 (en) 2012-10-12 2018-11-06 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
US10114022B2 (en) 2012-10-12 2018-10-30 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
US11840740B2 (en) 2012-10-12 2023-12-12 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
US11892453B2 (en) 2012-10-12 2024-02-06 Inbiomotion S.L. Method for the diagnosis, prognosis and treatment of prostate cancer metastasis
US11591599B2 (en) 2013-03-15 2023-02-28 Fundació Institut De Recerca Biomèdica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of cancer metastasis
US10793642B2 (en) 2014-12-11 2020-10-06 Inbiomotion S.L. Binding members for human c-MAF
US11596642B2 (en) 2016-05-25 2023-03-07 Inbiomotion S.L. Therapeutic treatment of breast cancer based on c-MAF status
US11654153B2 (en) 2017-11-22 2023-05-23 Inbiomotion S.L. Therapeutic treatment of breast cancer based on c-MAF status

Also Published As

Publication number Publication date
AU2014229563B2 (en) 2020-04-09
AU2014229563A1 (en) 2015-10-01
KR20150122786A (ko) 2015-11-02
US20170002357A1 (en) 2017-01-05
CN105431548A (zh) 2016-03-23
US20230323356A1 (en) 2023-10-12
US20160040247A1 (en) 2016-02-11
EP3272880A2 (en) 2018-01-24
US20190309299A1 (en) 2019-10-10
EP2975138A2 (en) 2016-01-20
US20140314792A1 (en) 2014-10-23
EP3272880B1 (en) 2020-11-25
MX2015011373A (es) 2016-06-10
MX368575B (es) 2019-10-08
US11591599B2 (en) 2023-02-28
JP2016518815A (ja) 2016-06-30
CA2903306A1 (en) 2014-09-18
WO2014140896A9 (es) 2019-01-03
BR112015023510A2 (pt) 2017-10-10
WO2014140896A3 (es) 2015-05-21
EP3272880A3 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
US20230323356A1 (en) Method for the diagnosis, prognosis and treatment of cancer metastasis
AU2021203599B2 (en) Method for the diagnosis, prognosis and treatment of breast cancer metastasis
ES2705237T3 (es) Método para el diagnóstico y el pronóstico de metástasis del cáncer de pulmón
EP2650682A1 (en) Method for the prognosis and treatment of cancer metastasis
EP3055429B1 (en) Method for the prognosis and treatment of metastasizing cancer of the bone originating from breast cancer
ES2379918B1 (es) Método para el diagnóstico, pronóstico y tratamiento de la metástasis de cáncer de mama.
US20090270479A1 (en) Genetic and Epigenetic Alterations In the Diagnosis and Treatment of Cancer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480015519.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2903306

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/011373

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2014752365

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015562396

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14776453

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014229563

Country of ref document: AU

Date of ref document: 20140314

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157027318

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752365

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015023510

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015023510

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150915