WO2008086800A2 - Predisposition to, prognosis for and treatment of breast cancer relating to human chromosome 16 - Google Patents

Predisposition to, prognosis for and treatment of breast cancer relating to human chromosome 16 Download PDF

Info

Publication number
WO2008086800A2
WO2008086800A2 PCT/DK2008/000011 DK2008000011W WO2008086800A2 WO 2008086800 A2 WO2008086800 A2 WO 2008086800A2 DK 2008000011 W DK2008000011 W DK 2008000011W WO 2008086800 A2 WO2008086800 A2 WO 2008086800A2
Authority
WO
WIPO (PCT)
Prior art keywords
breast cancer
seq
mip
gene
free
Prior art date
Application number
PCT/DK2008/000011
Other languages
French (fr)
Other versions
WO2008086800A3 (en
Inventor
Lise Lotte Hansen
Jens Overgaard
Original Assignee
Aarhus Universitet
Region, Midtjylland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aarhus Universitet, Region, Midtjylland filed Critical Aarhus Universitet
Publication of WO2008086800A2 publication Critical patent/WO2008086800A2/en
Publication of WO2008086800A3 publication Critical patent/WO2008086800A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Definitions

  • the present invention relates to a method for the detection of predisposition to a period of metastasis-free, recurrence-free and/or disease-free survival of individuals suffering from breast cancer.
  • the invention also relates to a method for determining the treatment regime of an individual suffering from breast cancer.
  • the invention also pertains to a method for classification of at least one tumour from an individual suffering from breast cancer.
  • a method for determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer is disclosed.
  • the methods are based on the presence or absence of the c-mip gene present on the human chromosome 16.
  • the invention pertains to kits for use in the methods.
  • genes are commonly mutated or incorrectly regulated in sporadic breast cancers and have been implicated in the development and progression of the disease. These include genes encoding growth factors and receptors, intracellular signaling molecules, cell cycle regulators, apoptosis (cell death) regulators, and adhesion molecules.
  • BRCA1 and BRCA2 contribution from inherited cancer syndromes as Li-Fraumeni (p53), Ataxia-telangiectasia (ATM), Cowden disease (PTEN), Peutz-Jeghers syndrome (LKB1/STK11) and mutations in CHK2 counts for 20-30% of the familiar cases (1 ).
  • the genetics of cancer involves multiple dominant, positive regulators or promoting genes (oncogenes) of the transformed state of cells i.e. cancer, but also multiple recessive, negative regulators (tumour suppressor genes) of the transformed state.
  • Oncogenes often result from the mutation of genes involved in for example signalling pathways, one example being the human ras gene.
  • Tumour suppressor genes are typically identified through genetic studies of sporadic tumours and the tumour suppressor genes are shown to be lost or gained in such tumours as shown by studies of allelic imbalance). The number of genes that are identified as tumour suppressor genes or oncogenes is increasing. However, it is also evident that the growth control mechanism of a cell serving to maintain the integrity of normal tissue is complex.
  • hereditary breast cancer BRCA 1 and BRCA 2.
  • hereditary and sporadic breast cancer loss or gain of specific genes has been observed when comparing diseased tissue or cell lines to normal cells.
  • sporadic breast cancer which accounts for the majority of the breast cancer cases, a need exists for identifying predictive markers that can be used to predict the outcome or disease course of a disease once the breast cancer has been identified.
  • the present invention in general relates to the field of human genetics. Specifically, the present invention relates to methods and products to determine the presence or absence of a region of the human chromosome 16 comprising the c-mip gene which is used to characterise a breast cancer tumour of an individual with respect to the tumour's capacity to develop metastasis.
  • a predictive marker region positioned on chromosome 16 comprising the c-mip gene which provides a tool for predicting the disease course of sporadic breast cancer.
  • the predictive marker provides information on the predisposition to metastasis formation, recurrence and overall disease-free survival of breast cancer patients.
  • the predictive marker can thus be used to select for example which treatment a patient should be given, and/or classifying the tumour.
  • the present invention relates to a method for detecting a predisposition to a period of metastasis-free, recurrence-free and/or short disease-free survival in an individual suffering from breast cancer comprising, establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO:2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID NO:4) or part thereof in said breast cancer sample, and/or iii) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-iii) compared to a cut-off value is indicative of a period of metastas
  • the invention in a second aspect relates to a method for determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer comprising the steps of establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO:2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID NO:4) or part thereof in said breast cancer sample, and/or iii) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-iii) compared to a cut-off value is indicative of a period of met
  • a third aspect of the present invention concerns the possibility of selecting a treatment regime of an individual suffering from breast cancer.
  • the third aspect relates to a method for determining the treatment regime for an individual suffering from breast cancer comprising the steps of establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO-.
  • a fourth aspect relates to a method for classification of at least one tumour from an individual suffering from breast cancer comprising the steps of establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO.2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c- mip transcriptional product (SEQ ID NO.3 and/or SEQ ID NO:4) or part thereof in said breast cancer sample, or iii) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, iv) assessing the outcome of i), ii) or iii), wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-i
  • a fifth aspect of the invention relates to an antibody directed to an epitope of c-mip protein or part thereof.
  • a sixth aspect of the present invention pertains to a genetic marker of c-mip with the proviso that the genetic marker is not the genetic marker D16S511.
  • the present invention is also in another aspect directed to an oligonucleotide primer and/or probe for detecting a c-mip gene or a part thereof, wherein said at least one nucleotide primer and/or probe detects at least one genetic marker of c-mip or part thereof.
  • another aspect pertains to an oligonucleotide primer pair, wherein the at least 2 primers can amplify c-mip or part thereof. Uses of the various methods and products of the present invention is also within the scope of the present invention.
  • a further aspect relates to use of an antibody as defined herein for the determination of the predisposition of and/or prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer.
  • a further aspect concerns use of at least one detection member for a genetic marker of c-mip or for a second genetic marker in linkage with said genetic marker in a kit for the determination of the predisposition of and/or prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer.
  • the present invention relates to use of a method as defined herein for producing an assay for detecting a predisposition to and/or determining the prognosis to a period of metastasis-free and/or recurrence-free and/or disease-free survival of an individual suffering from breast cancer.
  • Other aspects cover the use of a method as defined herein for producing an assay for determining the treatment regime of an individual suffering from breast cancer, and use of a method as defined herein for producing an assay for classifying a tumour from an individual suffering from breast cancer.
  • the present invention also discloses a gene therapy vector comprising i) a DNA sequence identified as SEQ ID NO: 1 and/or SEQ ID NO:2, or a fragment thereof, or ii) a cDNA sequence of the sequence identified as SEQ ID NO: 1 or a fragment of said DNA sequence.
  • the present invention relates to a vector comprising a nucleic acid sequence selected from the nucleic acid sequences identified as SEQ ID NO: 1 and/or SEQ ID NO:2, or a fragment thereof, said sequence, or said fragment comprising a polymorphism associated with a predisposition to and/or prognosis of metastasis and/or recurrence according to any of the claims herein, said sequence being operably linked to a promoter sequence capable of directing the expression of a variant protein encoded by said sequence.
  • Another aspect of the present invention concerns use of a composition comprising the gene therapy vector and/or the vector described herein for the treatment of an individual suffering from breast cancer.
  • the present invention in other aspects also relates to pharmaceutical compositions for the treatment of metastasis and/or recurrence.
  • a pharmaceutical composition for the treatment of metastasis and/or recurrence in an individual suffering from breast cancer comprising a gene therapy vector or a vector as described herein and a pharmaceutically acceptable carrier or excipient is within the scope of the present invention.
  • a further aspect of the present invention is a pharmaceutical composition for the treatment of metastasis and/or recurrence in an individual suffering from breast cancer comprising the c-mip gene or fragment thereof, or a transcriptional or translational product or part thereof and a pharmaceutically acceptable carrier or excipient.
  • the present invention also discloses a vaccine for prophylaxis or treatment of metastasis and/or recurrence in an individual suffering from breast cancer comprising at least one expression product from gene with SEQ ID NO:1 and/or SEQ ID NO:2or a fragment thereof.
  • the present invention relates to a method of treatment of an individual suffering from breast cancer having the predisposition to and/or prognosis of metastasis and/or recurrence, said method comprising administering to said subject a therapeutically effective amount of a gene therapy vector or a pharmaceutical composition as defined herein.
  • the present invention relates to a kit for use in a method, comprising at least one detection member, such as a detection member selected from the group consisting of antibodies, primers, probes and primer pairs.
  • Figure 1 shows loss of heterozygosity data for the markers tested along chromosome 16.
  • the numbers refer to genetic markers as listed in Table 9.
  • Figure 2 shows a graphical representation of disease-specific survival as function of intragenic allelic imbalance affecting c-mip (as determined for the D16S511 marker) in 160 informative breast cancer patients.
  • FIG. 3 The copy number variation of CMIP.
  • the control population was used to establish the mean value and the specific cut-off values (based upon the peak height from the chromatography after capillary electrophoresis) for each exon. Graphs illustrating the calculated value of each control sample are shown.
  • the present invention in general relates to the field of human genetics. Specifically, the present invention relates to methods and products to determine the presence or absence of a region of the human chromosome 16 comprising the c-mip gene which is used to characterise a breast cancer tumour of an individual with respect to the tumour's capacity to develop metastasis.
  • the terms 'presence' and 'absence' of a region of the human chromosome 16, comprising the c-mip gene refer to copy number variation. It has previously been believed that genes are present in two copies in a genome. However, it is now found that )arge segments of DNA, ranging in size from thousands to millions of DNA bases can vary in copy number. Such copy number variations can encompass genes, which leads to dosage imbalances. Genes normally believed to be present in two copies per genome have now been found sometimes to be present in one, three or more than three copies.
  • the presence or absence of a genomic region of interest for breast cancer is used to establish whether an individual suffering from breast cancer has for example a predisposition to a period of metastasis-free, recurrence-free and/or short disease-free survival.
  • the term 'absence' of a genomic region in this context the c-mip gene or part thereof means that the genomic region is absent or that it may be deleted which may correspond to the fact that the genomic region is found to have an decreased copy number compared to control samples.
  • the term 'presence of a genomic region or part thereof means that the genomic region is present or for example amplified which may correspond to the fact that the genomic region is found to have a increased copy number compared to control samples.
  • the copy number variation can be assessed by determining quantitatively the amount of c-mip genomic DNA or part thereof, the transcriptional and/or translational product or part thereof.
  • the methods as described herein for detecting a predisposition to a period of metastasis-free, recurrence-free and/or short disease-free survival, for determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival, for determining the treatment regime for an individual suffering from breast cancer and/or for classification of at least one tumour from an individual suffering from breast cancer thus all relate to copy number variation in the form of presence or absence of a genomic region, namely the c-mip gene or part thereof.
  • the presence or absence, also in the present invention referred to as amplification or deletion, can thus be determined by determining the amount of genomic c-mip DNA or part thereof, transcriptional an ⁇ for translational products thereof in tumour samples, comparing said amounts to amounts in control samples, determining whether the tumour sample amounts are indicative of a deletion or amplification event based on cut-off values as described elsewhere herein,
  • the cut-off value way be determined from a non-diseased control sample of the patient suffering from breast cancer.
  • the cut-off value may be determined from a non-diseased control population, for example determined as an average value as described elsewhere herein.
  • the aspects of the present invention may be combined with the use of any other tool available that predict or are indicative of the future progression of a breast cancer disease.
  • prognostic factors such as staging, estrogen receptor analysis, and HER2/neu status. Staging is the single most important prognostic factor in breast cancer due to the fact that also lymph node status and metastasis status is observed when staging a tumour. The prognosis is better in node negative breast cancer patients, whereas a higher grade of the tumour is a worse prognosis, in breast cancer cells that are positive for HER2/neu the disease seems to progress more aggressively than compared to HER2/neu negative cells.
  • Another prognostic factor is the presence of estrogen or progesterone receptors in breast cancer cells which may also guide which treatment to offer to a patient.
  • Hormone receptor positive breast cancer is normally associated with much better prognosis compared to hormone negative breast cancer.
  • the present invention may be used in combination with any or all of the above mentioned prognostic factors.
  • the present invention relates to a method for detecting a predisposition to a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer comprising i) establishing a breast cancer sample, ii) determining the presence or absence of a c-mip gene (SEQ ID NO:1 and/or SEQ ID NO: 2) or part thereof in said breast cancer sample, or iii) determining the presence or absence of a c-mip transcriptional product or part thereof in said breast cancer sample, or iv) determining the presence or absence of a c-mip translational or part thereof in said breast cancer sample, or v) determining the expression level of a c- mip transcriptional product or part thereof, or vi) determining the expression level of a c-mip translational product or part thereof, wherein the absence of said gene, transcriptional product, translational product or part thereof determined in ii) - iv) is
  • the method for determining the predisposition to, the prognosis for, the treatment regime for and/or methods of treatment of an individual suffering from breast cancer relates to humans.
  • the present invention pertains to males or females.
  • the individual is a female.
  • the individual may suffer from unilateral breast cancer, bilateral breast cancer, secondary tumours for example in the lymph nodes in the axilla, or secondary tumours for example in liver or lung.
  • the term secondary tumour is used to describe tumours which are not the primary tumour but are tumours that have developed by metastasis from the primary tumour or a secondary tumour.
  • primary tumour is meant the original site where cancer occurs.
  • the present invention relates to for example females of the age ranging from 29 to 93 years.
  • the age of the female ranges from 29 to 49 years. In another embodiment the age of the females ranges from less than 40 years, 40-49, 50- 59, 60-69, or above 69 years. In a preferred embodiment of the present invention the age of the female ranges from 50-59 years.
  • Al is an abbreviation for allelic imbalance.
  • the individual of the present invention may have received treatment in the form of surgical removal of one or more tumours, chemotherapy, adjuvant radiotherapy or hormonal treatment.
  • the individual may have received any combination of the listed treatments for example surgical removal of one or more tumours and chemotherapy, or for example surgical removal of one or more tumours and chemotherapy followed by adjuvant radiotherapy.
  • the individual has received treatment in the form of lumpectomy and adjuvant radiotherapy.
  • the individual has received treatment in the form of radical mastectomy and adjuvant radiotherapy.
  • Another embodiment the individual suffering from breast cancer is a high risk patient, i. e. with positive axillary lymph nodes and/or high-grade, and/or large tumour, in combination with mastectomy or lumpectomy followed by adjuvant radiotherapy also receives treatment in the form of adjuvant systemic hormone and/or chemotherapy.
  • mastectomy or lumpectomy.
  • mastectomy the entire breast of a person suffering from breast cancer is removed by surgery.
  • Lumpectomy describes the removal by surgery of the tumour from the breast and optionally part of the surrounding breast tissue.
  • the individual may suffer from breast cancer of any type.
  • the breast cancer may be an adenoma, an adenocarcinoma, a carcinoma or carcinoma in situ.
  • tumor refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • An adenoma is a benign tumour arising in glandular epithelium.
  • the glandular epithelium is a type of epithelial tissue whose primary function is secretion, and is the prominent tissue forming endocrine and exocrine glands, for example in the breast.
  • An adenoma may progress or transform into a malignant tumour which is then characterised as an adenocarcinoma.
  • a carcinoma is defined as a malignant tumour that begins in the lining layer (epithelial cells) of organs.
  • Carcinoma have a tendency to infiltrate into adjacent tissue and spread (metastasize) to distant organs, such as bone, liver, lung, or the brain.
  • the present invention also relates to individuals suffering from breast cancer in the form of carcinoma in situ (CIS) which is an early form of carcinoma and is defined by the absence of invasion of surrounding tissues.
  • carcinoma in situ is the abnormal growth of cells that proliferate in their normal habitat, hence the name 'in situ'.
  • Carcinoma in situ is also equivalent to the term high grade dysplasia.
  • the breast cancer of the present invention may be invasive or non-invasive.
  • invasive cancer is meant cancer characterized by spreading from its point of origination into other tissues and organs.
  • invasive breast cancers develop in milk glands (lobules) or milk passages (ducts) and spread to the nearby fatty breast tissue.
  • Some invasive cancers spread to distant areas of the body (metastasize), but others do not.
  • Invasive cancer is also referred to as infiltrating cancer. By analogy, the noninvasive cancers do not invade surrounding tissue.
  • the breast cancer from which an individual according to the present invention suffers may thus be selected from the group consisting of a primary malignant tumour, a ductal carcinoma, a lobular carcinoma, a ductal carcinoma in situ, lobular carcinoma in situ, and a secondary tumour for example in the axil, lung or liver.
  • One embodiment of the present invention relates to individuals suffering from invasive ductal carcinoma, a cancer that starts in the milk passages (ducts) of the breast and then breaks through the duct wall, where it invades the fatty tissue of the breast. When the cancer reaches this point, it has the potential to spread (metastasize) elsewhere in the breast, as well as to other parts of the body through the bloodstream and lymphatic system.
  • Invasive ductal carcinoma is the most common type of breast cancer, accounting for about 80% of breast malignancies.
  • Ductal carcinoma in situ is characterized as proliferation of abnormal cells within the milk passages (ducts) but where no visible signs of invasion into the duct wall are evident. This is a highly curable form of breast cancer that is treated with surgery or surgery plus radiation therapy.
  • the present invention also relates to Lobular carcinoma which is a cancer that begins in the lobules (the glands that make milk) of the breast.
  • Lobular carcinoma in situ is a condition in which abnormal cells are found only in the lobules. When cancer has spread from the lobules to surrounding tissues, it is invasive lobular carcinoma.
  • the breast cancer according to the present invention may be a hereditary or nonhereditary sporadic breast cancer.
  • hereditary breast cancer is meant a cancer that is genetically transmitted from parent to child. The incidence of hereditary breast cancer is believed to range from between 5 to 10 percent of all breast cancers.
  • BRCA1 for BReast CAnceri
  • BRCA2 have been identified on chromosome 17 and chromosome 13, respectively which in a mutated from seems to be involved in the development of breast cancer in that individuals carrying a mutated form of either BRCA1 or BRCA2, have an increased risk of developing breast or ovarian cancer at some point in their lives. Consequently, children of parents with a BRCA1 or BRCA2 mutation have a 50 percent chance of inheriting the gene mutation.
  • Nonhereditary sporadic breast cancer is the most common breast cancer of the two types of breast cancers, and accounts for as much as 90% of the cases of breast cancer.
  • the BRCA1 or BRCA2 genes are not mutated.
  • the sporadic breast cancers are caused by gene damage acquired to breast cells during the woman's lifetime (' somatic' mutations).
  • a wide variety of genes is commonly mutated or incorrectly regulated in sporadic breast cancers and have been implicated in the development and progression of the disease.
  • One preferred embodiment of the present invention relates to sporadic ductal carcinomas, and in particular to invasive ductal carcinomas.
  • Breast cancer may be staged according to defined characteristics relating to size and metastasising properties.
  • One staging system commonly used to divide breast cancers into stages is that of the AJCC-TNM system (American Joint Committee on Cancer (AJCC) TNM system).
  • the cancers may according to the staging system be classified based on their T, N, and M stages, where T is an abbreviation for tumour (its size and how far it has spread within the breast and to nearby organs), N stands for spread to lymph nodes (bean-shaped collections of immune system cells that help fight infections and cancers) and M is for metastasis (spread to distant organs).
  • T an abbreviation for tumour (its size and how far it has spread within the breast and to nearby organs)
  • N stands for spread to lymph nodes (bean-shaped collections of immune system cells that help fight infections and cancers)
  • M is for metastasis (spread to distant organs).
  • the stage of a breast cancer can be based on results obtained by physical examination, imaging tests or by pathological inspection of tissue following surgery.
  • the present staging system is based on the pathologic conclusion drawn by a pathologist after examination of the breast tissue and lymph nodes removed by surgery.
  • T 0 to 4 describes the size of the tumour and spread to the skin or to the chest wall under the breast, where higher T numbers indicate a large tumour and/or wider spread to tissues near the breast.
  • N followed by a number from 0 to 3 is indicative of whether the cancer has spread to lymph nodes near the breast and, if so, how many lymph nodes are affected.
  • M denotes whether the cancer has spread to distant organs, where 0 is indicative for spreading to for example the lungs or bones, and 1 is indicative for spreading of the cancer to lymph nodes distant to the breast, for example above the collarbone.
  • stage of the breast cancer is determined by combining the above features. Stage is expressed as stage 0 and in Roman numerals from stage I (the least advanced stage) to stage IV (the most advanced stage).
  • Stage 0 Tis, NO, MO: Ductal carcinoma in situ (DCIS).
  • LCIS Ductal carcinoma in situ
  • Paget disease of the nipple is stage 0. In all cases the cancer has not spread to lymph nodes or distant sites.
  • Stage I T1, NO, MO: The tumour is 2 cm (about 3/4 of an inch) or less in diameter and has not spread to lymph nodes or distant sites.
  • Stage HA TO, N1 , MO / T1 , N1 , MO / T2, NO, MO: No tumour is found in the breast but it is in 1 to 3 axillary lymph nodes; or the tumour is less than 2 cm and has spread to 1 to 3 axillary lymph nodes; or cancer is found by sentinel node biopsy as microscopic disease in internal mammary nodes, but not on imaging studies or by clinical exam; or the tumour is larger than 2 cm in diameter and less than 5 cm, but hasn't spread to axillary nodes. In all cases the cancer has not spread to distant sites.
  • Stage HB T2, N1 , MO / T3, NO, MO:
  • the tumour is larger than 2 cm in diameter and less than 5 cm and has spread to 1 to 3 axillary lymph nodes; or cancer is found by sentinel node biopsy as microscopic disease in internal mammary nodes; or the tumour is larger than 5 cm and does not grow into the chest wall and has not spread to lymph nodes. In all cases, the cancer has not spread to distant sites.
  • Stage HIA TO-2, N2, MO / T3, N1-2, MO: The tumour is smaller than 5 cm in diameter and has spread to 4 to 9 axillary lymph nodes; or it is found through imaging studies or clinical examination to have spread to internal mammary nodes; or the tumour is larger than 5 cm and has spread to 1 to 9 axillary nodes, or to internal mammary nodes. In all cases, the cancer has not spread to distant sites.
  • Stage NIB T4, NO-2, MO: The tumour has grown into the chest wall or skin and may have spread to no lymph nodes or to as many as 9 axillary nodes. It may or may not have spread to internal mammary nodes. No spread to distant sites is observed.
  • Stage IHC TO-4, N3, MO: The tumour is any size, has spread to 10 or more nodes in the axilla; or to 1 or more lymph nodes under the clavicle (infraclavicular) or above the clavicle (supraclavicular); or to internal mammary lymph nodes, which are enlarged because of the cancer. All of these are on the same side as the breast cancer. No spread to distant sites is observed. Inflammatory breast cancer is classified as stage III, unless it has spread to distant organs or lymph nodes that are not near the breast, in which case it would be stage IV.
  • Stage IV TO-4, NO-3, M1 : The cancer, regardless of its size, has spread to distant organs such as bone, liver, or lung, or to lymph nodes far from the breast.
  • TX Primary tumour cannot be assessed
  • TO No evidence of primary tumour
  • Tis Pure carcinoma in situ; intraductal carcinoma, lobular carcinoma in situ, or Paget disease of the nipple with no associated tumour mass
  • T1 Tumour 2 cm (about % of an inch) or less in greatest dimension
  • T2 Tumour more than 2 cm but not more than 5 cm (2 inches) in greatest dimension
  • T3 Tumour more than 5 cm in greatest dimension
  • T4 Tumour of any size growing into the chest wall or skin
  • NX Regional lymph nodes cannot be assessed (for example, removed previously), NO-. Cancer not spread to regional lymph nodes
  • N1 Cancer spread to 1 to
  • N2 Cancer has spread to 4 to 9 lymph nodes under the arm
  • N3 Cancer has spread to 10 or more lymph nodes under the arm or also involves lymph nodes in other areas around the breast
  • MX Presence of distant spread (metastasis) cannot be assessed
  • MO No distant spread
  • M1 Spread to distant organs is present.
  • the breast cancer may also be characterised by a number of markers such as sex steroid hormone receptors.
  • markers such as sex steroid hormone receptors.
  • ER+ estrogen receptor positive
  • PR+ progesterone receptor positive
  • the receptor status influences the choice of treatment as, for instance, ER+ lesions are more sensitive to hormonal therapy.
  • the present invention pertains to breast cancer of any stage such as stage 0 (carcinoma in situ), I, HA, KB, IHA, IHB, IHC or IV.
  • the breast cancer sample used in the present invention may be any suitable cell sample capable of providing the genetic material for use in the method as a breast cancer sample.
  • the breast cancer sample may be tumour tissue removed during surgery in the process of mastectomy or lumpectomy.
  • the sample may also be a biopsy of tumour tissue.
  • control sample used in the present invention may be any suitable cell sample capable of providing the genetic material for use in the method as a control sample.
  • control sample is any tissue sample in non-diseased state.
  • the sample is a blood sample, a tissue sample from any tissue not affected by the breast cancer, a sample of secretion, semen, ovum, a washing of a body surface, a clipping of a body surface (hairs, or nails), buccal swab sample, or non-diseased breast tissue sample.
  • control sample is selected from the group consisting of blood sample, buccal swap sample, hair sample, sample of nail, breast sample and serum.
  • samples may be for example biopsies of diseased or non- diseased tissue.
  • the samples may be fresh or frozen.
  • samples may equally be a nucleic acid sequence corresponding to the sequence in the sample, that is to say that all or part of the region in the nucleic acid of the sample may firstly be amplified using any convenient technique, e.g. PCR, before use in the analysis of variation in the region.
  • any convenient technique e.g. PCR
  • the present invention relates to a method for determining the predisposition to a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer, wherein predisposition is a measure of an individual's susceptibility to a disease that can be triggered under certain conditions or an individual's tendency to develop a certain disease.
  • metastasis-free survival By a period of metastasis-free survival is meant the period of time from diagnosis of breast cancer in which no metastasis has occurred in the individual.
  • metastasis is meant the migration of cancer cells from the original tumour site through the blood and lymph vessels to produce cancers in other tissues.
  • Metastasis also is the term used for a secondary cancer growing at a distant site relative to the primary tumour. The tumour arising as a result of metastasis is termed a secondary tumour.
  • the present invention relates to metastasis to any tissue of the individual.
  • metastasis in particular refers to metastasis to liver, lung, or nodes of the axilla of the individual.
  • the period of metastasis-free survival is up to 25 years, 20, 19, 18, 17, 16, 15, 14, 13, 12 or 11 years from the date of primary surgery. In one embodiment the period of metastasis-free survival is up to 10 years from the date of primary surgery. In one embodiment the period of metastasis-free survival is up to 9 years, 8, 7, 6, 5, 4, 3 or 2 years. In other embodiments the period of metastasis-free survival is 15 years, 14, 13, 12, 11 , 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 years.
  • a period of recurrence-free survival is meant the period of time from date of primary surgery of breast cancer in which no recurrence has occurred in the individual.
  • the term 'recurrence' refers to a condition, wherein cancer comes back after treatment. Local recurrence is when the cancer comes back at the same place as the original cancer. Regional recurrence is when the cancer appears in the lymph nodes near the first site. Distant recurrence is when it appears in organs or tissues (such as the lungs, liver, bone marrow, or brain) farther from the original site than the regional lymph nodes.
  • Recurrence-free survival is thus defined as the period of time, wherein no return of cancer has appeared, at the same site as the original (primary) tumour or in another location, after disappearance of the tumour.
  • the present invention relates to recurrence of any type as described above.
  • the period of recurrence-free survival is up to 25 years, 20, 19, 18, 17, 16, 15, 14, 13, 12 or 11 years from the date of primary surgery. In one embodiment the period of recurrence -free survival is up to 10 years from the date of primary surgery. In one embodiment the period of recurrence -free survival is up to 9 years, 8, 7, 6, 5, 4, 3 or 2 years. In other embodiments the period of recurrence -free survival is 15 years, 14, 13, 12, 11 , 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 years.
  • a period of disease-free survival is meant the period of time from diagnosis of breast cancer in which no disease caused by the cancer has occurred in the individual.
  • Such a disease may be metastasis and/or one or more secondary tumours.
  • the period of disease-free survival is up to 25 years, 20, 19, 18, 17, 16, 15, 14, 13, 12 or 11 years from the date of primary surgery. In one embodiment the period of disease
  • the period of disease -free survival is up to 10 years from the date of primary surgery. In one embodiment the period of disease -free survival is up to 9 years, 8, 7, 6, 5, 4, 3 or 2 years. In other embodiments the period of disease -free survival is 15 years, 14, 13, 12, 11 , 10, 9, 8, 7,
  • An increased risk of recurrence, acquisition of metastasis and/or short disease-free survival is according to the present invention characterised by an increase in the amount of c-mip gene, transcriptional and/or translational product or part thereof as compared to a cut-off value as described elsewhere herein.
  • Long-term survival is used herein as the opposite of 'short term' survival.
  • Long-term survival refers to survival for 1-40 years, such as at least 1 year, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 year, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, or 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, or 35 years, 36 years, 37 years, 38 years, 39 years, or 40 years following the date of primary surgery.
  • a short-term survival is a period of time can be survival for 1-40 years, such as at most 1 year, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 year, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, or 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, or 35 years, 36 years, 37 years, 38 years, 39 years, or 40 years following the date of primary surgery
  • the present invention relates to a method for detecting a predisposition to a period of metastasis-free, recurrence-free and disease-free survival of an individual suffering from breast cancer.
  • the present invention also relates to each of the feature of metastasis-free, recurrence-free or disease-free survival separately.
  • the present invention covers a method for detecting a predisposition to a period of metastasis-free, recurrence-free or disease-free survival of an individual suffering from breast cancer.
  • the present invention also refers to a combination of features in the method for detecting a predisposition to a period of metastasis-free survival and recurrence-free survival, or metastasis-free survival and disease-free survival of an individual suffering from breast cancer.
  • Prognosis is the forecast of the course and probable outcome of a disease.
  • the prognosis is based on information about the disease course of patients suffering from disease and the presence of certain markers, for example genetic markers.
  • the knowledge about the correlation can be compared to provide a prognosis of an individual based on the presence or absence of said genetic markers.
  • the outcome of a disease according to the present invention refers to progression of breast cancer including recurrence and metastatic spread of a neoplastic disease and long or short term survival.
  • the present invention relates to a method for determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer comprising the steps of i) establishing a breast cancer sample, ii) determining the presence or absence (amount) of a c-mip gene (SEQ ID NO:1 and/or SEQ ID NO:2) or part thereof in said breast cancer sample, or iii) determining the (amount) or absence of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID NO:4)or part thereof in said breast cancer sample, or iv) determining the presence or absence (amount) of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, v) determining the expression level of a c-mip transcriptional product or part thereof, or vi) determining the expression level of a
  • the present invention also provides tools for classifying a tumour from an individual suffering from breast cancer with regard to the metastasizing potential of the tumour.
  • the present invention relates to a method for classification of at least one tumour from an individual suffering from breast cancer comprising the steps of i) establishing a breast cancer sample; ii) determining the presence or absence (amount) of a c-mip gene or part thereof in said breast cancer sample, or; iii) determining the presence or absence (amount) of a c-mip transcriptional product or part thereof in said breast cancer sample, or; iv) determining the presence or absence (amount) of a c-mip translational or part thereof in said breast cancer sample,; v) determining the expression level of a c-mip transcriptional product or part thereof, or; vi) determining the expression level of a c-mip translational product or part thereof, vii) assessing the outcome of f ii), ii), iv), v
  • tumours or parts thereof from an individual may be classified. Such classification of more than one tumour may be performed simultaneous or sequentially from the time of surgery.
  • the classification of the tumour may aid in the selection of which treatment to offer an individual suffering from breast cancer as described elsewhere herein.
  • St. Gallen criteria are determined at present every two years at a Conference on Primary Therapy of Early Breast Cancer.
  • the clinical criteria i.e. age, type of cancer, size and metastasis essentially divide the patients into three groups according to the 2005 International Consensus Panel, (http://www.breastcancersource.com).
  • Endocrine responsiveness As the main criterion for treatment choice is now supplemented by the introduction of endocrine responsiveness as the most important selection factor for adjuvant chemotherapy- and endocrine-treatments in both node-negative and node- positive disease.
  • Endocrine response uncertain some expression of hormone receptors either quantitatively low or qualitatively insufficient to indicate a substantial chance for response to endocrine therapies alone, thus suggesting the need for chemotherapy.
  • Endocrine non-responsive cells have no detectable expression of steroid hormone receptors.
  • Endocrine responsive and Endocrine response uncertain are undecided, and may well be different in different clinical settings (e.g. according to number of involved axillary lymph nodes or menopausal status).
  • risk categories Three risk categories are defined: low-, intermediate- and high-risk groups (see below). Nodal status remains the most important feature for defining risk category, however, the new risk groups do not adhere rigidly to the traditional node-positive/node-negative boundary.
  • the risk categories for patients with node-negative breast cancer are as follows:
  • ET endocrine therapy
  • CT chemotherapy CT chemotherapy
  • Nil no adjuvant systemic therapy
  • * indicates alternative treatment option in case of medical contraindications or preference of patient or physician.1 denotes that trial evidence suggests that CT and tamoxifen should be delivered sequentially. However, concurrent CT and some forms of ET (e.g. GnRHa) may be acceptable.
  • Adjuvant systemic treatment for patients with operable breast cancer is suggested as follows:
  • Tamoxifen ( v ⁇ OFS) / ( v ⁇ CT) / ,. . T..amox .if,en, or or
  • Taxane-containing regimens AC or A
  • Al aromatase inhibitor (anastrozole, exemestane, letrozole).
  • CT chemotherapy.
  • (A anthracycline: either adriamycin or epirubicin; epirubicin mentioned also as 1 E' in CEF and FEC regimens).
  • GnRHa gonadotrophin releasing hormone. Research was conducted using goserelin.
  • OFS ovarian function suppression or ablation. This table does not include information on the adjuvant treatment with trastuzumab of patients with over-expressed or amplified HER2/neu breast cancer.
  • the determination of which individuals should receive further treatment after surgery and which individuals should not receive further treatment depends on the individual's predisposition to the development of metastasis, recurrence and/or disease. With the present invention it is possible to supplement the already existing criteria laid down in the St. Gallen criteria. With the present invention it is not only possible to select the individuals which should receive further treatment but also to determine which individuals that are not likely to develop cancer again or to form metastasis. The latter individuals can thus avoid further supplementary treatment following surgery, and be relieved from side effects of the follow-up therapy.
  • the methods of the present invention can be used clinically to make treatment decisions by choosing the most appropriate treatment modalities for any particular patient.
  • individuals suffering from breast cancer wherein the presence has been determined of the c-mip gene, transcriptional or translational product thereof as described elsewhere herein may not need supplementary treatment.
  • individuals suffering from breast cancer wherein the presence has been determined of the c-mip gene, transcriptional or translational product thereof as described elsewhere herein need supplementary treatment such as anti-estrogen therapy, such as TAM treatment alone or in combination with chemotherapy and/or radiation therapy.
  • the present invention thus discloses a method for determining the treatment regime for an individual suffering from breast cancer comprising the steps of i) establishing a breast cancer sample, ii) determining the presence or absence (amount) of a c-mip gene or part thereof in said breast cancer sample, or, iii) determining the presence or absence (amount) of a c-mip transcriptional product or part thereof in said breast cancer sample, or iv) determining the presence or absence (amount) of a c-mip translational product or part thereof in said breast cancer sample, v) determining the expression level of a c-mip transcriptional product or part thereof, or vi) determining the expression level of a c-mip translational product or part thereof, vii) assessing the outcome of f ii), iii), iv), v), or vi); viii) determining the risk of developing metastasis and/or having a reduced overall survival; ix) deciding on the treatment
  • variants of c-mip and variants of fragments thereof are determined on the basis of their degree of identity or their homology with a predetermined amino acid sequence, said predetermined amino acid sequence being one of SEQ ID NO: 5 and/or SEQ ID NO: 6, or, when the variant is a fragment, a fragment of any of the aforementioned amino acid sequences, respectively.
  • variants preferably have at least 91 % sequence identity, for example at least 91% sequence identity, such as at least 92 % sequence identity, for example at least 93 % sequence identity, such as at least 94 % sequence identity, for example at least 95 % sequence identity, such as at least 96 % sequence identity, for example at least 97% sequence identity, such as at least 98 % sequence identity, for example 99% sequence identity with the predetermined sequence.
  • predetermined sequence is a defined sequence used as a basis for a sequence comparision; a predetermined sequence may be a subset of a larger sequence, for example, as a segment of a full-length DNA or gene sequence given in a sequence listing, such as a polynucleotide sequence of SEQ ID NO:1 and/or SEQ ID NO:2, or may comprise a complete DNA or gene sequence.
  • a predetermined sequence is at least 20 nucleotides in length, frequently at least 25 nucleotides in length, and often at least 50 nucleotides in length.
  • two polynucleotides may each (1 ) comprise a sequence (i.e., a portion of the complete polynucleotide sequence) that is similar between the two polynucleotides, and (2) may further comprise a sequence that is divergent between the two polynucleotides
  • sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two polynucleotides over a "comparison window" to identify and compare local regions of sequence similarity.
  • a “comparison window”, as used herein, refers to a conceptual segment of at least 20 contiguous nucleotide positions wherein a polynucleotide sequence may be compared to a predetermined sequence of at least 20 contiguous nucleotides and wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less as compared to the predetermined sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.
  • Optimal alignment of sequences for aligning a comparison window may be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2: 482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. MoI. Biol. 48: 443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci.
  • sequence identity means that two polynucleotide sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of comparison.
  • percentage of sequence identity is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.
  • substantially identical denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 85 percent sequence identity, preferably at least 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a predetermined sequence over a comparison window of at least 20 nucleotide positions, frequently over a window of at least 25-50 nucleotides, wherein the percentage of sequence identity is calculated by comparing the predetermined sequence to the polynucleotide sequence which may include deletions or additions which total 20 percent or less of the predetermined sequence over the window of comparison.
  • the predetermined sequence may be a subset of a larger sequence, for example, as a segment of the full- length SEQ ID NO:1 and/or SEQ ID NO:2 polynucleotide sequence illustrated herein.
  • the methods of the present invention may be detected on the nucleic acid level, determining the presence or absence of a c-mip gene (SEQ ID NO:1 and/or SEQ ID NO:2) or part thereof (genomic level), or transcriptional product or part thereof
  • telomere length is a region of DNA sequence that is located at the ends of the coding region of the c-mip gene.
  • regulatory sequence is meant sequences within SEQ ID NO:1 and/or SEQ ID NO:2 that regulate the transcriptional and translational process, for example, promoters, enhancers, sequences that affect polyadenylation, translational or transcriptional start, splicing of transcriptional products.
  • the promoters and enhancers that control the transcription of protein- encoding genes are composed of multiple genetic elements.
  • RNA transcript for example an unspliced RNA transcript, a mRNA transcript and said mRNA transcript splicing products
  • products of gene translation such as polypeptide(s) translated from any of the gene mRNA transcripts and various products of post-translational processing of said polypeptides, such as the products of post-translational proteolytic processing of the polypeptide(s) or products of various post-translational modifications of said polypeptide(s).
  • transcriptional product of the gene refers to a pre- messenger RNA molecule, pre-mRNA, that contains the same sequence information (albeit that U nucleotides replace T nucleotides) as the gene, or mature messenger RNA molecule, mRNA, which was produced due to splicing of the pre-mRNA, and is a template for translation of genetic information of the gene into a protein.
  • the term "translational product of the gene” refers to a protein, which is encoded by the c-mip gene (SEQ ID NO:1 and/or SEQ ID NO:2).
  • transcriptional product of the gene refers to a transcript which is encoded by the c-mip gene (SEQ ID NO:1).
  • lsoforms are versions of a protein with some small differences, usually a splice variant or the product of some posttranslational modification.
  • the present invention relates to any isoform of c-mip. The examples given herein are not meant to be limiting to the scope of the present invention.
  • the present invention relates to methods for determining the presence or absence of the transcriptional products of the c-mip gene corresponding to any transcriptional product of SEQ ID NO:1 or part thereof.
  • the invention relates to determining the presence or absence of the c-mip gene in the transcriptional products of the c-mip gene in
  • SEQ ID NO: 4 or fragments thereof, (ii) a nucleic acid sequence having at least 90% identity with SEQ ID NO: 3 and/or SEQ ID NO:4 or fragments thereof, (iii) a nucleic acid sequence complementary to any of the sequences of (i) or
  • the invention also relates to determining the presence or absence of the c-mip gene translational products of the c-mip gene in
  • said variant proteins, fragments thereof and said polypeptide sequences are comprising polymorphism corresponding to the polymorphism of the corresponding genomic sequences or transcriptional products of said genomic sequences.
  • Sequence identity is determined in one embodiment by utilising fragments of c-mip peptides comprising at least 25 contiguous amino acids and having an amino acid sequence which is at least 80%, such as 85%, for example 90%, such as 95%, for example 99% identical to the amino acid sequence of SEQ ID NO: 5 and/or SEQ ID NO:6, wherein the percent identity is determined with the algorithm GAP, BESTFIT, or FASTA in the Wisconsin Genetics Software Package Release 7.0, using default gap weights.
  • the methods of the present invention relates to the use of the c-mip gene (SEQ ID NO.:1 and/or SEQ ID NO.: 2) or part thereof, a c-mip transcriptional product or part thereof, or a c-mip translational product or part thereof.
  • c-mip comprises introns and exons.
  • the presence or absence (or levels of transcriptional or translational product can thus be determined in the exons selected from the group consisting of exon 1(SEQ ID NO.:15), exons 2 (SEQ ID NO.:1 ⁇ ), exon 3 (SEQ ID NO.:17), exon 4 (SEQ ID NO.:18), exon 5 (SEQ ID NO.:19), exons 6 (SEQ ID NO.:20), exon 7 (SEQ ID NO.:21) exon with SEQ ID NO.:22, exon 8 (SEQ ID NO.: 23), exon 9 (SEQ ID NO.:24), exons 10 (SEQ ID NO.:25), exon 11 (SEQ ID NO/.26), exon 12 (SEQ ID NO.:27), exon 13 (SEQ ID NO.: 28), exon 14 (SEQ ID NO.-.29), exon 15 (SEQ ID NO.:30), exon 16 (SEQ ID NO.
  • the presence or absence can be determined in the exons selected from the group consisting of exon 1 , exons 2, exon 3, exon 4, exon 5, exons 6, exon 7, exon 8, exon 9, exons 10, exon 11 , exon 15, exon 17 and exon 20 or parts thereof.
  • the presence or absence can be determined in the exons selected from the group consisting of exon 1 , exons 2, exon 3, exon 4, exon 5, exon 6, exon 7, exon 8, exon 9, exon 10 and exon 20 or parts thereof.
  • the presence or absence can be determined in the exons selected from the group consisting of exon 1 , exons 2, exon 3, exon 4, exon 5, exon 6, exon 7, exon 8, exon 9 and exon 20 or parts thereof.
  • the presence or absence can be determined in the exons selected from the group consisting of exon 1 , exons 2, exon 3, exon 4, exon 5, exons 6, exon 7, exon 8 and exon 9 or parts thereof; or selected from exon 3, exon 4, exon 5, exons 6, exon 7, exon 8, exon 9, exons 10 and exon 11 or parts thereof; or selected from exon 1 , exons 2, exon 3, exon 4, exon 5, exons 6, exon 7, exon 8, exon 9, exons 10 and exon 20 or parts thereof.
  • the presence or absence may be selected form exon 2, exon 8, exon 20, exon 21 , exon 22 and exon 23.
  • the presence or absence can be determined in the exons selected from the group consisting of exon 1 , exon 9, exons 10 and exon 11 or parts thereof.
  • the presence or absence can be determined in the exons selected individually from exon 1 , exons 2, exon 3, exon 4, exon 5, exon 6, exon 7, exon with SEQ ID NO.: 22, exon 8, exon 9, exon 10, exon 11 , exon 12, exon 13, exon 14, exon 15, exon 16, exon 17, exon 18, exon 19, exon 20, exon with SEQ ID NO.:36, exon 21 , exon with SEQ ID NO.:38, exon 22, exon 23, exon 24, exon 25, exon 26, exon 27, exon 28, exon 29 , exon 30 or exon 31.
  • the presence or absence is determined in exon 2 or part thereof. In another preferred embodiment the presence or absence (amount of c-mip gene, transcriptional or translational product thereof) is determined in exon 8 or part thereof. In one preferred embodiment the presence or absence is determined in exon 20
  • copy number variation of the c-mip gene i.e whether an amplification or deletion has occurred in the c-mip gene or part thereof.
  • Copy number variation can be detected on the genomic DNA level, transcriptional level and translational level as described herein which is known to the person skilled in the art.
  • a preferred method is the use of multiple ligation-dependent probe amplification (MLPA).
  • Another preferred method for detection of copy number variation of c-mip is the use of allelic imbalance/loss of heterozygosity (LOH) analysis.
  • LH allelic imbalance/loss of heterozygosity
  • a preferred method is the use of quantitative PCR.
  • the presence or absence (or levels of transcriptional or translational product can in one embodiment be determined in the introns of the c-mip gene.
  • the presence or absence of the c-mip gene may also be determined by using for example genetic markers present in all regions of the gene.
  • the genetic markers may be positioned in the promoter region of the gene, in introns and/or in exons.
  • the term promoter will be used here to refer to a group of transcriptional control modules that are clustered around the initiation site for RNA polymerase II. Promoters are composed of discrete functional modules, each consisting of approximately 7-20 bp of DNA, and containing one or more recognition sites for transcriptional activator proteins. At least one module in each promoter functions to position the start site for RNA synthesis. The best known example of this is the TATA box.
  • promoter elements regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have recently been shown to contain functional elements downstream of the start site as well. The spacing between elements is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another.
  • Enhancers were originally detected as genetic elements that increased transcription from a promoter located at a distant position on the same molecule of DNA.
  • the basic distinction between enhancers and promoters is operational. An enhancer region as a whole must be able to stimulate transcription at a distance; this need not be true of a promoter region or its component elements.
  • a promoter must have one or more elements that direct initiation of RNA synthesis at a particular site and in a particular orientation, whereas enhancers lack these specificities.
  • enhancers and promoters are very similar entities. They have the same general function of activating transcription in the cell. They are often overlapping and contiguous, often seeming to have a very similar modular organization.
  • the presence or absence of the c-mip gene may be determined by using for example genetic markers present in all regions of the gene.
  • the genetic markers are positioned in the exons of a gene. Exons are the protein-coding DNA sequences of the gene.
  • the presence or absence of the c-mip gene may be determined by using for example genetic markers positioned in introns.
  • An intron is a nucleotide sequence intervening between exons (coding regions) that is excised from a gene transcript during RNA processing.
  • the presence or absence of the c-mip gene is determined in i) a nucleotide sequence with SEQ ID NO: 1 and/or SEQ ID NO:2, ii) a nucleotide sequence having at least 90 % sequence identity with a sequence of (i), or with a fragment thereof, and/or iii) a nucleotide sequence complementary to any of the sequences of (i) or (ii).
  • nucleic acids may be liberated from the collected cells, into a crude extract followed by additional treatments to prepare the sample for subsequent operations, such as denaturation of contaminating (DNA binding) proteins, purification, filtration and desalting.
  • Liberation of nucleic acids from the sample cells, and denaturation of DNA binding proteins may generally be performed by physical or chemical methods.
  • chemical methods generally employ lysing agents to disrupt the cells and extract the nucleic acids from the cells, followed by treatment of the extract with chaotropic salts such as guanidinium isothiocyanate or urea to denature any contaminating and potentially interfering proteins.
  • nucleic acids and denature DNA binding proteins such as physical protrusions within microchannels or sharp edged particles piercing cell membranes and extract their contents. Combinations of such structures with piezoelectric elements for agitation can provide suitable shear forces for lysis.
  • cell extraction and denaturing of contaminating proteins may be carried out by applying an alternating electrical current to the sample. More specifically, the sample of cells is flowed through a microtubular array while an alternating electric current is applied across the fluid flow. Subjecting cells to ultrasonic agitation or forcing cells through microgeometry apertures, thereby subjecting the cells to high shear stress resulting in rupture are also possible extraction methods.
  • nucleic acids Following extraction, it will often be desirable to separate the nucleic acids from other elements of the crude extract, e.g. denatured proteins, cell membrane particles and salts. Removal of particulate matter is generally accomplished by filtration or flocculation. Further, where chemical denaturing methods are used, it may be desirable to desalt the sample prior to proceeding to the next step. Desalting of the sample and isolation of the nucleic acid may generally be carried out in a single step, e.g. by binding the nucleic acids to a solid phase and washing away the contaminating salts, or performing gel filtration chromatography on the sample passing salts through dialysis membranes. Suitable solid supports for nucleic acid binding include e.g. diatomaceous earth or silica (i.e., glass wool). Suitable gel exclusion media also well known in the art may be readily incorporated into the devices of the present invention and is commercially available from, e.g., Pharmacia and Sigma Chemical.
  • desalting methods may generally take advantage of the high electrophoretic mobility and negativity of DNA compared to other elements.
  • Electrophoretic methods may also be utilized in the purification of nucleic acids from other cell contaminants and debris. Upon application of an appropriate electric field, the nucleic acids present in the sample will migrate toward the positive electrode and become trapped on the capture membrane. Sample impurities remaining free of the membrane are then washed away by applying an appropriate fluid flow. Upon reversal of the voltage, the nucleic acids are released from the membrane in a substantially purer form. Further, coarse filters may also be overlaid on the barriers to avoid any fouling of the barriers by particulate matter, proteins or nucleic acids, thereby permitting repeated use.
  • the high electrophoretic mobility of nucleic acids with their negative charges may be utilized to separate nucleic acids from contaminants by utilizing a short column of a gel or other appropriate matrices or gels which will slow or retard the flow of other contaminants while allowing the faster nucleic acids to pass.
  • the term “genetic marker” refers to a variable nucleotide sequence (polymorphism) of the DNA on the human chromosome, in the present case to nucleotide sequences on the human chromosome 16.
  • polymorphism refers to the coexistence of more than one form of a gene or portion thereof. A portion of a gene of which there are at least two different forms, i. e., two different nucleotide sequences, is referred to as a "polymorphic region of a gene”.
  • a polymorphic region can be a single nucleotide, the identity of which differs in different alleles. Such polymorphism is referred herein as "single nucleotide polymorphism" or SNP.
  • a polymorphic region also can be several nucleotides in length.
  • a gene having at least one polymorphic region is referred to as a "polymorphic gene”.
  • variable nucleotide sequence can be identified by methods known to a person skilled in the art for example by using specific oligonucleotides in for example amplification methods and/or observation of a size difference. However, the variable nucleotide sequence may also be detected by sequencing or for example restriction fragment length polymorphism analysis.
  • the variable nucleotide sequence may be represented by a deletion, an insertion, repeats, and/or a point mutation.
  • One type of genetic marker is a microsatellite marker which refers to short sequences repeated after each other.
  • short sequences are for example one nucleotide, such as two nucleotides, for example three nucleotides, such as four nucleotides, for example five nucleotides, such as six nucleotides, for example seven nucleotides, such as eight nucleotides, for example nine nucleotides, such as ten nucleotides.
  • the at least one genetic marker is selected from the group of SNPs, simple tandem repeats, deletions, insertions, duplications and simple tandem repeats.
  • the at least one genetic marker is simple tandem repeats.
  • the presence or absence of the c-mip gene may be determined by determining the presence or absence of at least one genetic marker present in c-mip, wherein the at least one genetic marker is specific for the c-mip gene.
  • the markers of the present invention may thus be D16S511 and/or CMIPpyr.
  • the at least one genetic marker of at least part of the c-mip gene is selected from the group consisting of D16S511 and CMIPpyr.
  • the at least one genetic marker of at least part of the c-mip gene is the marker D16S511. In another preferred embodiment of the present invention the at least one genetic marker of at least part of the c-mip gene is the marker CMIPpyr.
  • the at least one genetic marker may be a combination of at least two or more genetic markers such that the accuracy may be increased, such as at least three genetic markers, for example four genetic markers, such as at least five genetic markers, for example six genetic markers, such as at least seven genetic markers, for example eight genetic markers, such as at least nine genetic markers, for example ten genetic markers.
  • the presence or absence of at least one genetic marker is detected in a target nucleic acid sequence isolated from a biological sample.
  • the method comprises amplification of the target nucleotide sequence.
  • the detection of the presence or the absence of the at least one polymorphism may be performed by amplification, wherein the target nucleotide sequence is a genomic DNA sequence, an RNA sequence, a mRNA sequence, or a cDNA sequence.
  • the presence or absence of at least one polymorphism may be detected in a test sample obtained from a subject can be amplified using any suitable amplification method known in the art, such as polymerase chain reaction (PCR), for example ligase chain reaction (LCR), such as reverse transcriptase PCR (RT-PCR), for example isothermal amplification, such as strand displacement amplification (SDA, for example repair chain reaction (RCR), such as cyclic probe reaction (CPR).
  • PCR polymerase chain reaction
  • LCR ligase chain reaction
  • RT-PCR reverse transcriptase PCR
  • SDA strand displacement amplification
  • RCR repair chain reaction
  • CPR cyclic probe reaction
  • the methods may be used in combination with a number of signal generation systems, a selection of which is also listed in Table 3.
  • One common method for detecting for example SNPs comprises the use of a probe bound to a detectable label. By carrying out hybridization under conditions of high stringency it is ensured that the probe only hybridises to a sequence which is 100% complementary to the probe.
  • this method comprises hybridising a probe to a target nucleic acid sequence comprising at least one of the STRs at the positions identified in Table 1 (see above).
  • similar probes can be designed by the skilled practitioner and used for hybridization to a target nucleic acid sequence. The design and optimisation of probes and hybridization conditions lies within the capabilities of the skilled practitioner.
  • the detection of genetic markers can according to one embodiment of the present invention be achieved by a number of techniques known to the skilled person, including typing of microsatellites or short tandem repeats (STR), restriction fragment length polymorphisms (RFLP), detection of deletions or insertions, random amplified polymorphic DNA (RAPIDs) or the typing of single nucleotide polymorphisms by methods such as restriction fragment length polymerase chain reaction, allele-specific oligomer hybridisation, oligomer-specific ligation assays, hybridisation with PNA or locked nucleic acids (LNA) probes.
  • STR microsatellites or short tandem repeats
  • RFLP restriction fragment length polymorphisms
  • RAPIDs random amplified polymorphic DNA
  • LNA locked nucleic acids
  • hybridization signifies hybridization under conventional hybridization conditions, preferably under stringent conditions, as described for example in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.).
  • stringent when used in conjunction with hybridization conditions is as defined in the art, i.e. 15-2O 0 C under the melting point T m , cf. Sambrook et al, 1989, pages 11.45-11.49.
  • the conditions are "highly stringent", i.e. 5-1O 0 C under the melting point T m .
  • LNA locked nucleic acid
  • LNA is a novel class of bicyclic nucleic acid analogues in which the furanose ring conformation is restricted in by a methylene linker that connects the 2'-0 position to the 4'-C position.
  • Common to all of these LNA variants is an affinity toward complementary nucleic acids, which is by far the highest affinity reported for a DNA analogue (0mm et al. (1999) Clinical Chemistry 45, 1898-1905; WO 99/14226 EXIQON).
  • LNA probes are commercially available from Proligo LLC, Boulder, Colorado, USA. Another high-affinity DNA analogue is the so-called protein nucleic acid (PNA).
  • the sugar backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone.
  • the nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone (Science (1991) 254: 1497-1500).
  • fluorescent reporter groups are preferred because they result in a high signal/noise ratio.
  • fluorescent group examples include fluorescein, Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, acridin, Hoechst 33258, Rhodamine, Rhodamine Green, Tetramethylrhodamine, Texas Red, Cascade Blue, Oregon Green, Alexa Fluor, europium and samarium.
  • Another type of labels is enzyme tags. After hybridization to the target nucleic acid sequence a substrate for the enzyme is added and the formation of a coloured product is measured.
  • enzyme tags include a beta-Galactosidase, a peroxidase, horseradish peroxidase, a urease, a glycosidase, alkaline phosphatase, chloramphenicol acetyltransferase and a luciferase.
  • a further group of labels include chemiluminescent group, such as hydrazides such as luminol and oxalate esters.
  • a still further possibility is to use a radioisotope and detect the hybrid using scintillation counting.
  • the radioisotope may be selected from the group consisting of 32 P, 33 P, 35 S, 125 1, 45 Ca, 14 C and 3 H.
  • One particularly preferred embodiment of the probe based detection comprises the use of a capture probe for capturing a target nucleic acid sequence.
  • the capture probe is bound to a solid surface such as a bead, a well or a stick.
  • the captured target nucleic acid sequence can then be contacted with the detection probe under conditions of high stringency and the allele can be detected.
  • TAQMAN® probe This is a method for measuring PCR product accumulation using a dual-labeled flourogenic oligonucleotide probe called a TAQMAN® probe.
  • This probe is composed of a short (ca. 20-25 bases) oligodeoxynucleotide that is labeled with two different fluorescent dyes. On the 5' terminus is a reporter dye and on the 3' terminus is a quenching dye.
  • This oligonucleotide probe sequence is homologous to an internal target sequence present in the PCR amplicon. When the probe is intact, energy transfer occurs between the two flourophors and emission from the reporter is quenched by the quencher.
  • the probe is cleaved by 5' nuclease activity of Taq polymerase thereby releasing the reporter from the oligonucleotide-quencher and producing an increase in reporter emission intensity.
  • Other suitable methods include using mass spectrometry, single base extension, determining the Tm profile of a hybrid between a probe and a target nucleic acid sequence, using single strand conformation polymorphism, using single strand conformation polymorphism heteroduplex, using RFLP or RAPD, using HPLC, using sequencing of a target nucleic acid sequence from said biological sample.
  • DHPLC Denaturing high-performance liquid chromatography
  • Amplification may be performed by any known method including methods selected from the group consisting of polymerase chain reaction (PCR), Ligase Chain Reaction (LCR), Nucleic Acid Sequence-Based Amplification (NASBA), strand displacement amplification, rolling circle amplification, and T7-polymerase amplification.
  • PCR polymerase chain reaction
  • LCR Ligase Chain Reaction
  • NASBA Nucleic Acid Sequence-Based Amplification
  • strand displacement amplification strand displacement amplification
  • rolling circle amplification rolling circle amplification
  • T7-polymerase amplification T7-polymerase amplification.
  • the polymorphisms as defined in the present invention are present in DNA sequences transcribed as mRNA transcripts these transcripts constitute a suitable target sequence for detection of the polymorphisms.
  • Commercial protocols are available for isolation of total mRNA.
  • the target mRNA can be amplified and the presence or absence of polymorphisms be detected with any of the techniques described above for detection of polymorphisms in a DNA sequence.
  • the present invention relates to an oligonucleotide primer and/or probe for detecting a c-mip gene or a part thereof, transcriptional product or part thereof, wherein said at least one nucleotide primer and/or probe detects at least one genetic marker of c-mip or part thereof.
  • An isolated oligonucleotide primer of the present invention is a nucleic acid molecule sufficiently complementary to the sequence on which it is based and of sufficiently length to selectively hybridise to the corresponding region of a nucleic acid molecule intended to be amplified. The primer is able to prime the synthesis of the corresponding region of the intended nucleic acid molecule in the methods described above.
  • an isolated oligonucleotide probe of the present invention is a molecule for example a nucleic acid molecule of sufficient length and sufficiently complementary to the nucleic acid sequence of interest which selectively binds to the nucleic acid sequence of interest under high or low stringency conditions.
  • the invention relates to an isolated oligonucleotide comprising at least 10 contiguous nucleotides being 100% identical to a subsequence of the c-mip gene or complementary sequence of the invention comprising or adjacent to a polymorphism or mutation being correlated to a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer, or being 100% identical to a subsequence of the human genome which is in linkage disequilibrium with the gene of the invention comprising or adjacent to a polymorphism or mutation being correlated to a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer.
  • probes may be used for detecting the presence of a polymorphism of interest and/or they may constitute part of a primer pair and/or they may form part of a gene therapy vector used for treating the diseases of the present invention.
  • the isolated oligonucleotide comprises at least 10 contiguous bases of a sequence identified as SEQ ID NOs: 7-8 or the corresponding complementary strand, or a strand sharing at least 90% sequence identity more preferably at least 95% sequence identity with SEQ ID NOs: 7-8 or a complementary strand thereof, said isolated oligonucleotide comprising a genetic marker of the invention.
  • isolated oligonucleotides may comprise at least 10 contiguous bases of any of the sequence identified as SEQ ID NOS: 1 or the corresponding complementary strand thereof, or a strand sharing at least 90% sequence identity more preferably at least 95% sequence identity with the SEQ ID NOS: 1 and/or SEQ ID NO:2 or a complementary strand thereof, said isolated oligonucleotide comprising a polymorphism of the invention.
  • These particular oligonucleotides may be used as probes for assessing the polymorphisms in the human C-MIP gene which are strongly correlated with metastasis formation, recurrence and diseases of the invention.
  • the length of the isolated oligonucleotide depends on the purpose.
  • the length of the primers When being used for amplification from a sample of genomic DNA, the length of the primers should be at least 15 and more preferably even longer to ensure specific amplification of the desired target nucleotide sequence. When being used for amplification from mRNA the length of the primers can be shorter while still ensuring specific amplification. In one particular embodiment one of the pair of primers may be an allele specific primer in which case amplification only occurs if the specific allele is present in the sample.
  • the length is preferably in the range of 10-15 nucleotides. This is enough to ensure specific hybridisation in a sample with an amplified target nucleic acid sequence.
  • nucleotides which bind stronger than DNA e.g. LNA and/or PNA
  • the length of the probe can be somewhat shorter, e.g. down to 7-8 bases.
  • the length may be at least 15 contiguous nucleotides, such as at least 20 nucleotides.
  • An upper limit preferably determines the maximum length of the isolated oligonucleotide.
  • the isolated oligonucleotide may be less than 1000 nucleotides, more preferably less than 500 nucleotides, more preferably less than 100 nucleotides, such as less than 75 nucleotides, for example less than 50 nucleotides, such as less than 40 nucleotides, for example less than 30 nucleotides, such as less than 20 nucleotides.
  • the isolated oligonucleotide may comprise from 10 to 50 nucleotides, such as from 10 to 15, from 15 to 20, from 20 to 25, or comprising from 20 to 30 nucleotides, or from 15 to 25 nucleotides.
  • the polymorphism may be located in the centre of the nucleic acid sequence, in the 5' end of the nucleic acid sequence, or in the 3' end of the nucleic acid sequence.
  • the sequence of the oligonucleotide is adjacent to the mutation/polymorphism, either in the 3' or 5' direction.
  • the isolated oligonucleotide sequence may be complementary to a sub-sequence of the coding strand of a target nucleotide sequence or to a sub-sequence to the non- coding strand of a target nucleotide sequence as the polymorphism may be assessed with similar efficiency in the coding and the non-coding strand.
  • the isolated oligonucleotide sequence may be made from RNA, DNA, LNA, PNA monomers or from chemically modified nucleotides capable of hybridising to a target nucleic acid sequence.
  • the oligonucleotides may also be made from mixtures of said monomers.
  • a general term for primers and probes of is the term 'oligonucleotide' which comprises oligonucleotides of both natural and/or non-natural nucleotides, including any combination thereof.
  • the natural and/or non-natural nucleotides may be linked by natural phosphodiester bonds or by non-natural bonds.
  • Oligonucleotide is used interchancably with polynucleotide.
  • the oligomer or polymer sequences of the present invention are formed from the chemical or enzymatic addition of monomer subunits.
  • oligonucleotide as used herein includes linear oligomers of natural or modified monomers or linkages, including deoxyribonucleotides, ribonucleotides, anomeric forms thereof, peptide nucleic acid monomers (PNAs), locked nucleotide acid monomers (LNA), and the like, capable of specifically binding to a single stranded polynucleotide tag by way of a regular pattern of monomer-to-monomer interactions, such as Watson-Crick type of base pairing, base stacking, Hoogsteen or reverse Hoogsteen types of base pairing, or the like.
  • PNAs peptide nucleic acid monomers
  • LNA locked nucleotide acid monomers
  • oligonucleotides ranging in size from a few monomeric units, e.g. 3-4, to several tens of monomeric units, e.g. 40-60.
  • ATGCCTG an oligonucleotide is represented by a sequence of letters, such as "ATGCCTG,” it will be understood that the nucleotides are in 5 1 ⁇ 3 1 order from left to right and the "A” denotes deoxyadenosine, "C” denotes deoxycytidine, “G” denotes deoxyguanosine, and "T” denotes thymidine, unless otherwise noted.
  • oligonucleotides of the invention comprise the four natural nucleotides; however, they may also comprise methylated or non-natural nucleotide analogs.
  • Suitable oligonucleotides may be prepared by the phosphoramidite method described by
  • oligonucleotides are referred to as "double-stranded," it is understood by those of skill in the art that a pair of oligonucleotides exist in a hydrogen-bonded, helical configuration typically associated with, for example, DNA.
  • double-stranded is also meant to refer to those forms which include such structural features as bulges and loops.
  • double-stranded is also meant to refer to those forms which include such structural features as bulges and loops.
  • oligonucleotides having natural or non-natural nucleotides may be employed, e.g. where processing by enzymes is called for, usually oligonucleotides consisting of natural nucleotides are required.
  • nucleotides are conjugated together in a string using synthetic procedures, they are always referred to as oligonucleotides.
  • Non-limiting examples of oligonucleotides that may be used as a primer, probe and/or primer pairs for determination of the presence or absence of the c-mip gene are shown in table 5.
  • Table 5 Non-limiting examples of oligonucleotides that may be used as a primer, probe and/or primer pairs for determination of the presence or absence of the c-mip gene are shown in table 5.
  • CMIP/PYR GCTGTGGCTTAACGATTCT(SEQ ID NO: 9) GGCGACAGAGTGAGACT (SEQ ID NO:10) D16S511 CCCCGGAGCAAGTTCA (SEQ ID NO:11) CAGCCCAAAGCCAGATTA (SEQ ID NO:12)
  • the oligonucleotide primer is a primer for the amplification of the genetic markers CMIP/PYR or D16S51 1.
  • the at least one oligonucleotide probe is a probe for the detection of the genetic markers CMIP/PYR and D16S511.
  • the at least one oligonucleotide probe is a probe for the detection of the genetic markers is CMIP/PYR .
  • the at least one oligonucleotide probe is a probe for the detection of the genetic markers D16S511.
  • oligonucleotide primer is as defined as SEQ ID NO: 9.
  • nucleotide primer is as defined in SEQ ID NO: 10
  • Another aspect of the invention relates to an oligonucleotide primer pair, wherein at least 2 primers are able to amplify the c-mip or part thereof.
  • the nucleotide primer pair are selected from the group consisting of at least one primer pair for amplification of CMIP/PYR and/or D16S511.Thus, the primer pair is and SEQ ID NO:9 and SEQ ID NO:9
  • the methods of the present invention comprises determining the expression level of a c-mip transcriptional and/or translational product or part thereof in a breast cancer sample, wherein a reduction in the expression level of the transcriptional product, translational product or part thereof compared to the expression level of a control sample is indicative an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival.
  • the reduction is at least 10%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%.
  • the reduction is in the range of 10% - 100%, such as 20%-100%, for example 30%-100%, such as 40%-100%, for example 50%-100%, such as 60%-100%, for example 70%-100%, such as 80%-100%, for example 90%-100%.
  • the reduction in the expression level is in the range of 20% - 30%, 30%-40%, 40%-50%, 50%-60%, 60%- 70%, 70%-80%, or 90%-100%.
  • the transcriptional and/or translational product or part thereof is any transcriptional and/or translational product of the c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO:2).
  • the transcriptional and/or translational product is be selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, and SEQ ID NO: 6.
  • the transcriptional and/or translational product is SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 6.
  • the term increase in percent is to be interpreted as the following example: in a breast cancer sample the expression level of c-mip has a value 15. In a control sample the expression level of c-mip has a value 10. This means that the increase of the expression level in the breast cancer sample compared to the control sample is 50%.
  • RNA expression patterns are determined by measuring any gene product of a particular gene, including mRNA and protein.
  • the nucleic acid may be isolated from the sample according to any of a number of methods well known to those of skill in the art.
  • genomic DNA is preferably isolated.
  • RNA RNA is isolated.
  • the total nucleic acid is isolated from a given sample using, for example, an acid guanidinium-phenol-chloroform extraction method and polyA.sup. and mRNA is isolated by oligo dT column chromatography or by using (dT)n magnetic beads (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual (2nd ed.), VoIs. 1-3, Cold Spring Harbor Laboratory, (1989), or Current Protocols in Molecular Biology, F. Ausubel et al., ed. Greene Publishing and Wiley-lnterscience, New York (1987)).
  • the sample may be from tissue and/or body fluids, as defined elsewhere herein.
  • sample preparation operations will include such manipulations as extraction of intracellular material, e.g., nucleic acids from whole cell samples, amplification of nucleic acids, fragmentation, transcription, labeling and/or extension reactions.
  • extraction of intracellular material e.g., nucleic acids from whole cell samples
  • amplification of nucleic acids e.g., fragmentation, transcription, labeling and/or extension reactions.
  • One or more of these various operations may be readily incorporated into the present invention.
  • Affinity columns are typically used either to isolate a single nucleic acid typically by providing a single species of affinity ligand.
  • affinity columns bearing a single affinity ligand e.g. oligo dt columns
  • affinity columns bearing a single affinity ligand have been used to isolate a multiplicity of nucleic acids where the nucleic acids all share a common sequence (e.g. a polyA).
  • affinity matrix used depends on the purpose of the analysis. For example, as in the present invention where it is desired to analyze mRNA expression levels of the C-MIP gene in a complex nucleic acid sample (e.g., total mRNA) it is often desirable to eliminate nucleic acids produced by genes that are constitutively overexpressed and thereby tend to mask gene products expressed at characteristically lower levels.
  • the affinity matrix can be used to remove a number of preselected gene products (e.g., actin, GAPDH, etc.). This is accomplished by providing an affinity matrix bearing nucleic acid affinity ligands complementary to the gene products (e.g., mRNAs or nucleic acids derived therefrom) or to subsequences thereof.
  • Hybridization of the nucleic acid sample to the affinity matrix will result in duplex formation between the affinity ligands and their target nucleic acids.
  • the matrix Upon elution of the sample from the affinity matrix, the matrix will retain the duplexes nucleic acids leaving a sample depleted of the overexpressed target nucleic acids.
  • the affinity matrix is packed into a columnar casing.
  • the sample is then applied to the affinity matrix (e.g. injected onto a column or applied to a column by a pump such as a sampling pump driven by an autosampler).
  • the affinity matrix (e.g. affinity column) bearing the sample is subjected to conditions under which the nucleic acid probes comprising the affinity matrix hybridize specifically with complementary target nucleic acids. Such conditions are accomplished by maintaining appropriate pH, salt and temperature conditions to facilitate hybridization as discussed above.
  • the nucleic acid sample may be probed using an array of oligonucleotide probes.
  • Oligonucleotide arrays generally include a substrate having a large number of positionally distinct oligonucleotide probes attached to the substrate. These arrays may be produced using mechanical or light directed synthesis methods which incorporate a combination of photolithographic methods and solid phase oligonucleotide synthesis methods.
  • One aspect of the present invention relates to an antibody directed to an epitope of c- mip protein or part thereof as described elsewhere herein.
  • the antibody may be used in methods of the present invention relating to methods for detecting the predisposition and/or determining the prognosis of an individual suffering from breast cancer to developing metastasis and recurrence.
  • epitope in this context covers any epitope capable of being recognised by an antibody or a binding fragment thereof.
  • the term "antibody” as used herein includes both polyclonal and monoclonal antibodies, as well as fragments thereof, such as, Fv 1 Fab and F(ab)2 fragments that are capable of binding antigen or hapten. It includes conventional murine monoclonal antibodies as well as human antibodies, and humanized forms of non-human antibodies, and it also includes 'antibodies' isolated from phage antibody libraries.
  • the antibodies of the present invention may be polyclonal or monoclonal and may be produced by in vivo or in vitro methods known in the art.
  • a monoclonal antibody is an antibody produced by a hybridoma cell.
  • Methods of making monoclonal antibody-synthesizing hybridoma cells are well known to those skilled in the art, e.g, by the fusion of an antibody producing B lymphocyte with an immortalized B-lymphocyte cell line.
  • a polyclonal antibody is a mixture of antibody molecules (specific for a given antigen) that has been purified from an immunized (to that given antigen) animal's blood.
  • Such antibodies are polyclonal in that they are the products of many different populations of antibody-producing cells.
  • the invention also pertains to mixtures of monoclonal and/or polyclonal antibodies. Also a mixture of at least two monoclonal antibodies is within the scope of the present invention. It is appreciated that the mixture may comprise 3, 4, 5, 6, 7, 8, 9, 10, or 15 monoclonal antibodies.
  • the invention also relates to a pharmaceutical composition for the treatment of metastasis and/or recurrence in an individual suffering from breast cancer, comprising a vector as described herein and a pharmaceutically acceptable carrier or excipient.
  • a pharmaceutical composition for the treatment of metastasis and/or recurrence in an individual suffering from breast cancer comprising an inhibitor of the c-mip gene or fragment thereof, or an inhibitor of a transcriptional or translational product or part thereof and a pharmaceutically acceptable carrier or excipient.
  • Such inhibitors act to disrupt the oncogenic potential of the c-mip gene or fragment thereof, a transcriptional or translational product or part thereof.
  • the inhibitor may be in the form of complementary oligonucleotides, RNAi or siRNA molecules directed against a c-mip transcriptional product.
  • An inhibitor may also be an inhibitor of c-mip transcriptional and/or translational expression.
  • An inhibitor may also be an antibody directed against an epitope of the c-mip translational product or part thereof as described elsewhere herein.
  • the pharmaceutical composition comprises one or more inhibitors of the peptides being expression products as defined above.
  • the peptides are bound to carriers.
  • the peptides may suitably be coupled to a polymer carrier, for example a protein carrier, such as BSA.
  • a polymer carrier for example a protein carrier, such as BSA.
  • BSA protein carrier
  • the peptides may be suppressor peptides normally lost or decreased in tumour tissue administered in order to stabilise tumours towards a less malignant stage.
  • the peptides are onco-peptides capable of eliciting an immune response towards the tumour cells.
  • the pharmaceutical composition comprises genetic material, either genetic material for substitution therapy, or for suppressing therapy.
  • the pharmaceutical composition comprises at least one antibody produced as described above.
  • the term pharmaceutical composition is used synonymously with the term medicament.
  • the medicament of the invention comprises an effective amount of one or more of the compounds as defined above, or a composition as defined above in combination with pharmaceutically acceptable additives.
  • Such medicament may suitably be formulated for oral, percutaneous, intramuscular, intravenous, intracranial, intrathecal, intracerebroventricular, intranasal or pulmonal administration. For most indications a localised or substantially localised application is preferred.
  • Injectables are usually prepared either as liquid solutions or suspensions, solid forms suitable for solution in, or suspension in, liquid prior to injection.
  • the preparation may also be emulsified.
  • the active ingredient is often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol or the like, and combinations thereof.
  • excipients are, for example, water, saline, dextrose, glycerol, ethanol or the like, and combinations thereof.
  • the preparation may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or which enhance the effectiveness or transportation of the preparation.
  • Formulations of the compounds of the invention can be prepared by techniques known to the person skilled in the art.
  • the formulations may contain pharmaceutically acceptable carriers and excipients including microspheres, liposomes, microcapsules and nanoparticles.
  • the preparation may suitably be administered by injection, optionally at the site, where the active ingredient is to exert its effect.
  • Additional formulations which are suitable for other modes of administration include suppositories, and in some cases, oral formulations.
  • suppositories traditional binders and carriers include polyalkylene glycols or triglycerides. Such suppositories may be formed from mixtures containing the active ingredient(s) in the range of from 0.5% to 10%, preferably 1-2%.
  • Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and generally contain 10-95% of the active ingredients ), preferably 25-70%.
  • the preparations are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective.
  • the quantity to be administered depends on the subject to be treated, including, e.g. the weight and age of the subject, the disease to be treated and the stage of disease. Suitable dosage ranges are of the order of several hundred ⁇ g active ingredient per administration with a preferred range of from about 0.1 ⁇ g to 1000 ⁇ g, such as in the range of from about 1 ⁇ g to 300 ⁇ g, and especially in the range of from about 10 ⁇ g to 50 ⁇ g. Administration may be performed once or may be followed by subsequent administrations. The dosage will also depend on the route of administration and will vary with the age and weight of the subject to be treated. A preferred dosis would be in the interval 30 mg to 70 mg per 70 kg body weight.
  • the preparation further comprises pharmaceutically acceptable additives and/or carriers.
  • additives and carriers will be known in the art.
  • Administration may be a continuous infusion, such as intraventricular infusion or administration in more doses such as more times a day, daily, more times a week, weekly, etc.
  • the present invention relates to a vaccine for the prophylaxis or treatment of metastasis and/or recurrence in an individual suffering from breast cancer comprising at least one expression product from gene with SEQ ID NO:1 and/or SEQ ID NO:2 or a fragment thereof.
  • vaccines is used with its normal meaning, i.e preparations of immunogenic material for administration to induce in the recipient an immunity to infection or intoxication by a given infecting agent.
  • Vaccines may be administered by intravenous injection or through oral, nasal and/or mucosal administration.
  • Vaccines may be either simple vaccines prepared from one species of expression products, such as proteins or peptides, or a variety of expression products, or they may be mixed vaccines containing two or more simple vaccines. They are prepared in such a manner as not to destroy the immunogenic material, although the methods of preparation vary, depending on the vaccine.
  • the enhanced immune response achieved according to the invention can be attributable to e.g. an enhanced increase in the level of immunoglobulins or in the level of T-cells including cytotoxic T-cells will result in immunisation of at least 50% of individuals exposed to said immunogenic composition or vaccine, such as at least
  • compositions according to the invention may also comprise any carrier and/or adjuvant known in the art including functional equivalents thereof.
  • Functionally equivalent carriers are capable of presenting the same immunogenic determinant in essentially the same steric conformation when used under similar conditions.
  • Functionally equivalent adjuvants are capable of providing similar increases in the efficacy of the composition when used under similar conditions.
  • the methods and compositions disclosed herein relates to a method of treatment of an individual suffering from breast cancer having the predisposition to and/or prognosis of metastasis and/or recurrence, said method comprising administering to said subject a therapeutically effective amount of a gene therapy vector as defined herein or a pharmaceutical composition as defined herein.
  • a diagnostic kit for detecting the predisposition to a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer.
  • a diagnostic kit is provided for determining the prognosis of an individual suffering from breast cancer in relation to metastasis formation, recurrence and disease.
  • the kit may also be directed to the determination of the treatment regime of an individual suffering from breast cancer.
  • the kit may be directed to the classification of a tumour from an individual suffering from breast cancer.
  • the present invention relates to a kit for use in a method, comprising at least one detection member, such as a detection member selected from the group consisting of antibodies, primer, probes and primer pairs as defined elsewhere herein.
  • the kit comprises at least one primer or probe comprising a nucleic acid sequence as described elsewhere herein.
  • at least two primers or probes are comprised in the diagnostic kit.
  • three, four, five, six, seven, eight, nine, ten, 15, 20 or more primers or probes may be comprised in the kit.
  • at least one set of primers may be comprised in the kit, for example two sets, three sets, four sets, five sets, six sets, seven sets, eight sets, nine sets, or ten sets of primers, as described elsewhere herein.
  • the primers or probes are linked to a detectable label.
  • the kit further comprises at least one nucleotide monomer labelled with a detectable label, a polymerase and suitable buffers and reagents.
  • the kit preferably also comprises set of primers for amplifying the c-mip gene and/or translational or transcriptional products of the c-mip gene, or the corresponding complementary strands.
  • the primers preferably are at least 15 bases long and may be coupled to an entity suitable for subsequent immobilisation.
  • a diagnostic kit of the invention may comprise an antibody as described above.
  • the kit is in the form of an array comprising oligonucleotides which recognise the transcript of SEQ ID NO:1 and/or 2.
  • the transcript sequence may be exemplified by SEQ ID NO:3 or SEQ ID NOA.
  • the present invention also pertains to an assay kit for use in the methods of the present invention, wherein said kit comprises reagents and instructions for the performance of the assay method and for the interpretation of results.
  • the present invention relates to methods and kits that find their use in the detection of a predisposition and/or determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival for an individual suffering from breast cancer. Similarly, the present invention relates to a method and kit which find their use in the determination of a treatment regime for an individual suffering from breast cancer.
  • one embodiment of the present invention is the use of an antibody as defined herein for the determination of the predisposition of and/or prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer.
  • the antibody directed to an epitope of c-mip protein or part thereof is used to detect the presence or absence of c-mip protein or part thereof, the outcome of which is indicative of the predetermination, prognosis and/or treatment regime in an individual suffering from breast cancer.
  • the present invention also relates to the use of at least one detection member for a genetic marker of c-mip or for a second genetic marker in genetic linkage with said marker in a kit for the determination of the predisposition to and/or the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer. Furthermore, the present invention also relates to the use of at least one detection member for a genetic marker of c-mip or for a second genetic marker in genetic linkage with said marker in a kit for the determination of a treatment regime for an individual suffering from breast cancer.
  • the at least one detection member is selected from the group consisting of at least one nucleotide primer, primer pair, probe, and an antibody as defined elsewhere herein.
  • the at least one detection member may be any combination of primer, primer pair, probe and/or antibody.
  • the at least one detection member is a primer, a primer pair, a probe, or an antibody.
  • At least one detection member is used, or two, three, four, five, six, seven, eight, nine, or ten detection members are used.
  • the present invention relates to the use of a method as described herein for producing an assay for detecting a predisposition to and/or determining the prognosis to a period of metastasis-free and/or recurrence-free and/or disease-free survival of an individual suffering from breast cancer. Furthermore, the present invention relates to the use of a method as described herein for producing an assay for determining the treatment regime of an individual suffering from breast cancer.
  • the invention relates to the use of a composition defined elsewhere herein for the treatment of an individual suffering from breast cancer.
  • a further aspect of the invention is the use of a polypeptide or part thereof as described herein for the preparation of a pharmaceutical composition for the treatment of metastasis, recurrence of an individual suffering from breast cancer.
  • the invention relates to the use of a gene or part thereof as described herein for the preparation of a pharmaceutical composition for the treatment of metastasis, recurrence of an individual suffering from breast cancer.
  • the genetic material discussed above is the described c-mip gene or functional parts thereof.
  • the constructs may be introduced as a single DNA molecule encoding all of the genes, or different DNA molecules having one or more genes.
  • the constructs may be introduced simultaneously or consecutively, each with the same or different markers.
  • the gene may be linked to the complex as such or protected by any suitable system normally used for transfection such as viral vectors or artificial viral envelope, liposomes or micellas, wherein the system is linked to the complex.
  • Vectors containing useful elements such as selectable and/or amplifiable markers, promoter/enhancer elements for expression in mammalian, particularly human, cells, and which may be used to prepare stocks of construct DNAs and for carrying out transfections are well known in the art. Many are commercially available.
  • adenovirus vectors for human gene therapy include the fact that recombination is rare, no human malignancies are known to be associated with such viruses, the adenovirus genome is double stranded DNA which can be manipulated to accept foreign genes of up to 7.5 kb in size, and live adenovirus is a safe human vaccine organisms.
  • vaccinia virus which can be rendered non-replicating (U.S. Pat. Nos. 5,225,336; 5,204,243; 5,155,020; 4,769,330).
  • AVE artificial viral envelopes
  • a viral membrane such as HIV-1 or RSV
  • AVE artificial viral envelopes
  • the envelope is preferably produced in a two-step dialysis procedure where the "naked" envelope is formed initially, followed by unidirectional insertion of the viral surface glycoprotein of interest. This process and the physical characteristics of the resulting AVE are described in detail by Chander et al., (supra).
  • AVE systems are (a) an AVE containing the HIV-1 surface glycoprotein gp160 (Chander et al., supra; Schreier et al., 1995, supra) or glycosyl phosphatidylinositol (GPI)-linked gp120 (Schreier et al., 1994, supra), respectively, and (b) an AVE containing the respiratory syncytial virus (RSV) attachment (G) and fusion (F) glycoproteins (Stecenko, A. A. et al., Pharm. Pharmacol. Lett. 1:127-129 (1992)).
  • RSV respiratory syncytial virus
  • G respiratory syncytial virus
  • F fusion glycoproteins
  • AVEs are used to deliver genes both by intravenous injection and by instillation in the lungs.
  • AVEs are manufactured to mimic RSV, exhibiting the RSV F surface glycoprotein which provides selective entry into epithelial cells.
  • F-AVE are loaded with a plasmid coding for the gene of interest, (or a reporter gene such as CAT not present in mammalian tissue).
  • the AVE system described herein in physically and chemically essentially identical to the natural virus yet is entirely "artificial", as it is constructed from phospholipids, cholesterol, and recombinant viral surface glycoproteins. Hence, there is no carry-over of viral genetic information and no danger of inadvertant viral infection. Construction of the AVEs in two independent steps allows for bulk production of the plain lipid envelopes which, in a separate second step, can then be marked with the desired viral glycoprotein, also allowing for the preparation of protein cocktail formulations if desired.
  • Another delivery vehicle for use in the present invention are based on the recent description of attenuated Shigella as a DNA delivery system (Sizemore, D. R. et al., Science 270:299-302 (1995), which reference is incorporated by reference in its entirety).
  • This approach exploits the ability of Shigellae to enter epithelial cells and escape the phagocytic vacuole as a method for delivering the gene construct into the cytoplasm of the target cell. Invasion with as few as one to five bacteria can result in expression of the foreign plasmid DNA delivered by these bacteria.
  • a preferred type of mediator of nonviral transfection in vitro and in vivo is cationic (ammonium derivatized) lipids. These positively charged lipids form complexes with negatively charged DNA, resulting in DNA charged neutralization and compaction. The complexes endocytosed upon association with the cell membrane, and the DNA somehow escapes the endosome, gaining access to the cytoplasm. Cationic lipid:DNA complexes appear highly stable under normal conditions. Studies of the cationic lipid DOTAP suggest the complex dissociates when the inner layer of the cell membrane is destabilized and anionic lipids from the inner layer displace DNA from the cationic lipid. Several cationic lipids are available commercially.
  • Tumour material and matching blood samples were collected from 199 patients with sporadic breast cancer whose tumour biopsies were submitted for estrogen receptor (ER) analysis. The material was collected between August 1992 and January 1994 from patients fulfilling the following criteria: (a) primary unilateral beast carcinoma with no evidence of disseminated disease; (b) complete clinical, histopathological, and biological information available; (c) no other malignancies; and (d) full history of follow- up.
  • ER estrogen receptor
  • Treatment was either lumpectomy or radical modified mastectomy with auxiliary node sampling. Patients with advanced disease after radical mastectomy and a ⁇ ) patients treated by lumpectomy were given adjuvant radiotherapy. Adjuvant systemic hormone therapy and/or chemotherapy were given to all patients at high risk i.e. those with positive axillary nodes. The patients were treated and followed-up according to the national Danish treatment policy according to the Danish Breast Cancer Cooperative Group (DBCG) protocols and principles (Overgaard, M.et al. N. Engl. J. Med., 337: 949- 955, 1997; Andersen, K. W. and Mouridsen, Acta Oncol, 27: 627-647, 1988.
  • DBCG Danish Breast Cancer Cooperative Group
  • tumour DNA was purified from the hormone receptor analysis leftover. Purification of genomic DNA from leucocytes and tumour tissue are as described as follows
  • tumours were examined by a pathologist immediately after surgery. Part of the tumour was stored at -80 0 C. and the rest of the tumour material was used for hormone receptor analysis.
  • the pellet containing nuclei was obtained immediately after the receptor measurement. Lysis buffer (750 p11100 mg tissue of 1O mM Tris-HC1 , 1 mM EDTA, 15O mM NaCI, 0.5% SDS, pH 10.5) and proteinase K (152 pg/100 mg tissue) were added and the pellet was incubated at 55°C for at least 90 rnin until it became soluble. 1/3 volume of 6 M NaCI was added, and the tubes were shaken cautiously and centrifuged for 15 min (3000 rpm) at 4 0 C. (if the supernatant was nontransparent, it was transferred to a new tube and centrifuged again).
  • Lysis buffer 750 p11100 mg tissue of 1O mM Tris-HC1 , 1 mM EDTA, 15O mM NaCI, 0.5% SDS, pH 10.5
  • proteinase K 152 pg/100 mg tissue
  • the supernatant was transferred to a new tube and 2 volumes of icecold ethanol were added.
  • the DNA was wound onto a glass rod and transferred to a tube with 300 ⁇ ) TE (modified from Miller et al. 1988).
  • the products were analysed by electrophoresis in a 1% agarose gel stained with ethidium bromide. Blood (10 ml) was obtained from each patient and DNA was purified according to the salting-out method (Miller etal. 1988).
  • LOH analysis has been employed in order to identify regions in the chromosome which are involved in the development of cancer.
  • the simple tandem repeats are amplified by the use of primers which can be labelled for example radioactively or by fluorescent means.
  • the resulting amplified fragments can be analyzed separately or using high throughput procedures now available.
  • each product according to the present invention was visualized as a peak the height of which was proportional to the amount of DNA inherent in it.
  • a histogram displaying the allele ratios of the samples analyzed are shown in Figure 1. A ratio of 20% was chosen as a cut-off value to distinguish allelic loss from retention.
  • the forward primer of each microsatellite was labeled with a fluorescent dye; 6-FAM, TET or HEX (PE Biosystems, Foster Ciy, CA).
  • Multiplex PCR amplification of 2-3 STR were performed using 20 ng DNA (control or tumour), 1 pmol of each primer, 250 ⁇ M dNTP, 1 x PCR buffer (supplied with the enzyme) and 0.18 U Taq polymerase (Roche) in a final volume of 6 ⁇ l.
  • PCR cycle conditions were: 1 cycle of 94°C for 4 min, 55°C for 30 s, 72 ° C for 36 s followed by 26 cycles of 94 ° C for 30 s, 55 "C for 30 s, 72 0 C for 36 s and finally an elongation step of 94 ° C for 30 s, 55 ° C for 30 s, 72 ° C for 6 min.
  • Elongation time for D16S511 were 55 seconds for all cycles.
  • STRs along chromosome 16 were analyzed in relation to predisposition to breast cancer, recurrence, metastasis formation and disease-free survival. The position of the STRs analyzed are listed in table 7 in relation to known genes and position on chromosome 16.
  • D16S3080 GGATGCCTGCTCTAAATACC CCCAGGGGTCAAACTTAAT
  • D16S266 AGCTTTACAGATGAGACCAG CAGCCAATTTCTTGAGTCCG
  • CDYL2 CCAGAACACACTCGCTTG GTAAACTGAGCCATGCAG
  • GANCMIP1 GATCTGAATTGTCTGCTTC CAGAAAGCAGCAGTCTAC
  • CMIPPLCG2 GCAGTAATGCATTTCACAG CATACCATTGCATTCCAGC
  • D16S422 CAGTGTAACCTGGGGGC CTTTCGATTAGTTTAGCAGAATGAG
  • the LOH data collected are shown in Tables 11 and 12 herein
  • the right hand column of Table 11 corresponds to the right hand column of Table 10.
  • the '0' denotes retention of both alleles
  • '9' denotes homozygosity for the marker
  • '1' denotes allelic loss — Z ⁇
  • the probability of treatment failure was calculated for the endpoint of loco-regional failure (chest wall, axilla, and supra-/infraclavicular area), freedom from distant metastasis, disease-free survival (any recurrence, tumour in the other breast, or death from a cause other than breast cancer) and overall survival by the Kaplan-Meier product-limit analysis, using the Mantel-Cox proportional test for comparison, and a test for trend with equal weighing was performed if more than two groups were compared. All time estimates were done using the date of primary surgery as initial value. A multivariate Cox proportional hazards analysis was used to evaluate prognostic parameters and treatments with respect to the risk of distant metastasis, death from disease, and overall death.
  • the manufacturing company MRC-Holland has developed the method but no pre-made kit was available for c-mip.
  • Leukocyte DNA from 44 healthy Danish female medical students were used as control individuals as described elsewhere herein.
  • Three exons and two control genes were analyzed using the MLPA methodology.
  • the control population was used to establish the mean value (based upon the peak height from the chromatography after capillary electrophoresis) for each exon.
  • Graphs illustrating the calculated value of each exon for the tumours are shown in Figure 3.
  • the values for each exon and each control sample is listed in table 14.
  • cut off limit for deciding whether a variation in copy number is due to an amplification event is for exon 2: 0.45023951; for exon 8: 0.83863744, and for exon 20: 0.775864241.
  • amplification of the respective exons or part thereof is indicative of an amplification reaction.
  • the cutt-off limit for deciding whether a variation in copy number is due to a deletion event is for exon 2: 0.31968468; for exon 8: 0.62449466, and for exon 20: 0.60436448.
  • amplification of the respective exons or part thereof is indicative of a deletion reaction.
  • the values for tumour samples are listed in table 16. Table 16
  • exons 2, 8, and 20 of CMIP were calculated for each tumour sample as the presence of amplification or increased copy number, or the presence of a deletion or decreased copy number in each of the exons.
  • the combined evaluation of the named exons was for amplification 10%, whereas for deletion the evaluation was 90% of the tumour samples analysed, where the evaluation is based upon all tumour and control samples.
  • the observed prolonged disease-specific survival as a function of allelic imbalance affecting CMIP is by MLPA determined to be due to a deletion or decreased copy number of CMIP.
  • CMIP c-Maf-inducing protein
  • CMIP c-Maf-inducing protein
  • Tc-mip transcript variant Tc-mip
  • mRNA transcript variant Tc-mip

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

The present invention relates to methods and kits based on the presence or absence of the c-mip gene located on the human chromosome 16, wherein reduced amounts of c-mip gene, transcriptional product, or translational product is indicative of a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer. The invention, thus, relates to methods for the detection of predisposition to and/or for determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival of individuals suffering from breast cancer. Furthermore, the present invention pertains to a method for determining the treatment regime of an individual suffering from breast cancer as well as methods for classification of at least one tumour from an individual suffering from breast cancer. In addition, the invention pertains to kits for use in the methods.

Description

Predisposition to, prognosis for and treatment of breast cancer relating to human chromosome 16
Field of invention The present invention relates to a method for the detection of predisposition to a period of metastasis-free, recurrence-free and/or disease-free survival of individuals suffering from breast cancer. The invention also relates to a method for determining the treatment regime of an individual suffering from breast cancer. The invention also pertains to a method for classification of at least one tumour from an individual suffering from breast cancer. Furthermore a method for determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer is disclosed. The methods are based on the presence or absence of the c-mip gene present on the human chromosome 16. In addition, the invention pertains to kits for use in the methods.
Background of invention
Breast cancer is the most prevalent disease and second leading cause of death among women in USA and Northern Europe. The disease is very heterogeneous and the identification of high-risk, individual genetic profiles and low penetrant, recessive cancer susceptibility genes are needed to provide strong prognostic and predictive markers directed towards a broad spectrum of patients.
Most cases of breast cancer are 'sporadic' not familial, and are caused by gene damage acquired to breast cells during the woman's lifetime ('somatic' mutations). A wide variety of genes are commonly mutated or incorrectly regulated in sporadic breast cancers and have been implicated in the development and progression of the disease. These include genes encoding growth factors and receptors, intracellular signaling molecules, cell cycle regulators, apoptosis (cell death) regulators, and adhesion molecules.
Less than 10% of the breast cancer incidents are of inherited origin. In addition to the high penetrant genes, BRCA1 and BRCA2, contribution from inherited cancer syndromes as Li-Fraumeni (p53), Ataxia-telangiectasia (ATM), Cowden disease (PTEN), Peutz-Jeghers syndrome (LKB1/STK11) and mutations in CHK2 counts for 20-30% of the familiar cases (1 ). The genetics of cancer involves multiple dominant, positive regulators or promoting genes (oncogenes) of the transformed state of cells i.e. cancer, but also multiple recessive, negative regulators (tumour suppressor genes) of the transformed state. Oncogenes often result from the mutation of genes involved in for example signalling pathways, one example being the human ras gene. Tumour suppressor genes are typically identified through genetic studies of sporadic tumours and the tumour suppressor genes are shown to be lost or gained in such tumours as shown by studies of allelic imbalance). The number of genes that are identified as tumour suppressor genes or oncogenes is increasing. However, it is also evident that the growth control mechanism of a cell serving to maintain the integrity of normal tissue is complex.
Genes have been identified which seems to be involved in the development of hereditary breast cancer (BRCA 1 and BRCA 2). In hereditary and sporadic breast cancer loss or gain of specific genes (or reduction or increase in expression levels) has been observed when comparing diseased tissue or cell lines to normal cells. However, in sporadic breast cancer which accounts for the majority of the breast cancer cases, a need exists for identifying predictive markers that can be used to predict the outcome or disease course of a disease once the breast cancer has been identified.
Tools for predicting or determining the predisposition to metastasis formation, recurrence and overall survival of breast cancer patients are needed. Similarly, methods for prognosing the disease outcome, determining the treatment regime for a breast cancer patient, and/or determining the tumour type in view of the predisposition to metastasis formation, recurrence and/or disease free survival would be beneficial to individuals suffering from breast cancer.
Summary
The present invention in general relates to the field of human genetics. Specifically, the present invention relates to methods and products to determine the presence or absence of a region of the human chromosome 16 comprising the c-mip gene which is used to characterise a breast cancer tumour of an individual with respect to the tumour's capacity to develop metastasis.
In the present invention a predictive marker region positioned on chromosome 16 comprising the c-mip gene is disclosed which provides a tool for predicting the disease course of sporadic breast cancer. The predictive marker provides information on the predisposition to metastasis formation, recurrence and overall disease-free survival of breast cancer patients. The predictive marker can thus be used to select for example which treatment a patient should be given, and/or classifying the tumour.
In one aspect the present invention relates to a method for detecting a predisposition to a period of metastasis-free, recurrence-free and/or short disease-free survival in an individual suffering from breast cancer comprising, establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO:2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID NO:4) or part thereof in said breast cancer sample, and/or iii) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-iii) compared to a cut-off value is indicative of a period of metastasis-free, recurrence-free and/or disease-free survival and/or wherein an increase in said amount of said gene, the expression level of said transcriptional product, translational product or part thereof determined in i) - iii) compared to a cut-off value indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival, with the proviso that a genetic marker is not the genetic marker D16S511
In a second aspect the invention relates to a method for determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer comprising the steps of establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO:2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID NO:4) or part thereof in said breast cancer sample, and/or iii) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-iii) compared to a cut-off value is indicative of a period of metastasis-free, recurrence-free and/or disease-free survival and/or wherein an increase in said amount of said gene, the expression level of said transcriptional product, translational product or part thereof determined in i) - iii) compared to a cut-off value indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival.
A third aspect of the present invention concerns the possibility of selecting a treatment regime of an individual suffering from breast cancer. Thus, the third aspect relates to a method for determining the treatment regime for an individual suffering from breast cancer comprising the steps of establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO-. 1 and/or SEQ (D NO:2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID HOA) or part thereof in said breast cancer sample, and/or iii) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, iv) assessing the outcome of i), ii) or iii); v) determining the risk of developing metastasis and/or having a reduced overall survival, vi) deciding on the treatment regime of said individual suffering from breast cancer based on the outcome of iv) and v), wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-iii) compared to a cut-off value is indicative of a period of metastasis-free, recurrence-free and/or disease-free survival and/or wherein an increase in said amount of said gene, the expression level of said transcriptional product, translational product or part thereof determined in i) - iii) compared to a cut-off value indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival.
The present invention also provides a method for classifying a breast tumour which is helpful in determining which treatment should be given to the patient. Thus, a fourth aspect relates to a method for classification of at least one tumour from an individual suffering from breast cancer comprising the steps of establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO.2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c- mip transcriptional product (SEQ ID NO.3 and/or SEQ ID NO:4) or part thereof in said breast cancer sample, or iii) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, iv) assessing the outcome of i), ii) or iii), wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-iii) compared to a cut-off value is indicative of a period of metastasis-free, recurrence-free and/or disease-free survival and/or wherein an increase in said amount of said gene, the expression level of said transcriptional product, translational product or part thereof determined in i) - iii) compared to a cut-off value indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival.
A fifth aspect of the invention relates to an antibody directed to an epitope of c-mip protein or part thereof.
A sixth aspect of the present invention pertains to a genetic marker of c-mip with the proviso that the genetic marker is not the genetic marker D16S511. The present invention is also in another aspect directed to an oligonucleotide primer and/or probe for detecting a c-mip gene or a part thereof, wherein said at least one nucleotide primer and/or probe detects at least one genetic marker of c-mip or part thereof. Similarly, another aspect pertains to an oligonucleotide primer pair, wherein the at least 2 primers can amplify c-mip or part thereof. Uses of the various methods and products of the present invention is also within the scope of the present invention. Thus, a further aspect relates to use of an antibody as defined herein for the determination of the predisposition of and/or prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer. Yet a further aspect concerns use of at least one detection member for a genetic marker of c-mip or for a second genetic marker in linkage with said genetic marker in a kit for the determination of the predisposition of and/or prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer. Furthermore, in yet another aspect the present invention relates to use of a method as defined herein for producing an assay for detecting a predisposition to and/or determining the prognosis to a period of metastasis-free and/or recurrence-free and/or disease-free survival of an individual suffering from breast cancer. Other aspects cover the use of a method as defined herein for producing an assay for determining the treatment regime of an individual suffering from breast cancer, and use of a method as defined herein for producing an assay for classifying a tumour from an individual suffering from breast cancer.
The present invention also discloses a gene therapy vector comprising i) a DNA sequence identified as SEQ ID NO: 1 and/or SEQ ID NO:2, or a fragment thereof, or ii) a cDNA sequence of the sequence identified as SEQ ID NO: 1 or a fragment of said DNA sequence. Likewise, in another aspect the present invention relates to a vector comprising a nucleic acid sequence selected from the nucleic acid sequences identified as SEQ ID NO: 1 and/or SEQ ID NO:2, or a fragment thereof, said sequence, or said fragment comprising a polymorphism associated with a predisposition to and/or prognosis of metastasis and/or recurrence according to any of the claims herein, said sequence being operably linked to a promoter sequence capable of directing the expression of a variant protein encoded by said sequence. Another aspect of the present invention concerns use of a composition comprising the gene therapy vector and/or the vector described herein for the treatment of an individual suffering from breast cancer.
It is appreciated that the present invention in other aspects also relates to pharmaceutical compositions for the treatment of metastasis and/or recurrence. Thus, a pharmaceutical composition for the treatment of metastasis and/or recurrence in an individual suffering from breast cancer, comprising a gene therapy vector or a vector as described herein and a pharmaceutically acceptable carrier or excipient is within the scope of the present invention. Similarly, a further aspect of the present invention is a pharmaceutical composition for the treatment of metastasis and/or recurrence in an individual suffering from breast cancer comprising the c-mip gene or fragment thereof, or a transcriptional or translational product or part thereof and a pharmaceutically acceptable carrier or excipient.
The present invention also discloses a vaccine for prophylaxis or treatment of metastasis and/or recurrence in an individual suffering from breast cancer comprising at least one expression product from gene with SEQ ID NO:1 and/or SEQ ID NO:2or a fragment thereof.
In yet a further aspect the present invention relates to a method of treatment of an individual suffering from breast cancer having the predisposition to and/or prognosis of metastasis and/or recurrence, said method comprising administering to said subject a therapeutically effective amount of a gene therapy vector or a pharmaceutical composition as defined herein.
In a final aspect the present invention relates to a kit for use in a method, comprising at least one detection member, such as a detection member selected from the group consisting of antibodies, primers, probes and primer pairs. Description of Drawings
Figure 1 shows loss of heterozygosity data for the markers tested along chromosome 16. The numbers refer to genetic markers as listed in Table 9.
Figure 2 shows a graphical representation of disease-specific survival as function of intragenic allelic imbalance affecting c-mip (as determined for the D16S511 marker) in 160 informative breast cancer patients.
Figure 3. The copy number variation of CMIP. The control population was used to establish the mean value and the specific cut-off values (based upon the peak height from the chromatography after capillary electrophoresis) for each exon. Graphs illustrating the calculated value of each control sample are shown.
Detailed description of the invention
The present invention in general relates to the field of human genetics. Specifically, the present invention relates to methods and products to determine the presence or absence of a region of the human chromosome 16 comprising the c-mip gene which is used to characterise a breast cancer tumour of an individual with respect to the tumour's capacity to develop metastasis.
In the present invention the terms 'presence' and 'absence' of a region of the human chromosome 16, comprising the c-mip gene refer to copy number variation. It has previously been believed that genes are present in two copies in a genome. However, it is now found that )arge segments of DNA, ranging in size from thousands to millions of DNA bases can vary in copy number. Such copy number variations can encompass genes, which leads to dosage imbalances. Genes normally believed to be present in two copies per genome have now been found sometimes to be present in one, three or more than three copies. In the present context the presence or absence of a genomic region of interest for breast cancer is used to establish whether an individual suffering from breast cancer has for example a predisposition to a period of metastasis-free, recurrence-free and/or short disease-free survival. It is thus understood that the term 'absence' of a genomic region in this context the c-mip gene or part thereof means that the genomic region is absent or that it may be deleted which may correspond to the fact that the genomic region is found to have an decreased copy number compared to control samples. Similarly, the term 'presence of a genomic region or part thereof means that the genomic region is present or for example amplified which may correspond to the fact that the genomic region is found to have a increased copy number compared to control samples.
It is therefore understood that the copy number variation can be assessed by determining quantitatively the amount of c-mip genomic DNA or part thereof, the transcriptional and/or translational product or part thereof. The methods as described herein for detecting a predisposition to a period of metastasis-free, recurrence-free and/or short disease-free survival, for determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival, for determining the treatment regime for an individual suffering from breast cancer and/or for classification of at least one tumour from an individual suffering from breast cancer thus all relate to copy number variation in the form of presence or absence of a genomic region, namely the c-mip gene or part thereof. The presence or absence, also in the present invention referred to as amplification or deletion, can thus be determined by determining the amount of genomic c-mip DNA or part thereof, transcriptional anάfor translational products thereof in tumour samples, comparing said amounts to amounts in control samples, determining whether the tumour sample amounts are indicative of a deletion or amplification event based on cut-off values as described elsewhere herein,
The cut-off value way be determined from a non-diseased control sample of the patient suffering from breast cancer. Alternatively the cut-off value may be determined from a non-diseased control population, for example determined as an average value as described elsewhere herein.
It is understood that the aspects of the present invention may be combined with the use of any other tool available that predict or are indicative of the future progression of a breast cancer disease. Several other prognostic factors are known such as staging, estrogen receptor analysis, and HER2/neu status. Staging is the single most important prognostic factor in breast cancer due to the fact that also lymph node status and metastasis status is observed when staging a tumour. The prognosis is better in node negative breast cancer patients, whereas a higher grade of the tumour is a worse prognosis, in breast cancer cells that are positive for HER2/neu the disease seems to progress more aggressively than compared to HER2/neu negative cells. Another prognostic factor is the presence of estrogen or progesterone receptors in breast cancer cells which may also guide which treatment to offer to a patient. Hormone receptor positive breast cancer is normally associated with much better prognosis compared to hormone negative breast cancer. The present invention may be used in combination with any or all of the above mentioned prognostic factors.
In one aspect the present invention relates to a method for detecting a predisposition to a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer comprising i) establishing a breast cancer sample, ii) determining the presence or absence of a c-mip gene (SEQ ID NO:1 and/or SEQ ID NO: 2) or part thereof in said breast cancer sample, or iii) determining the presence or absence of a c-mip transcriptional product or part thereof in said breast cancer sample, or iv) determining the presence or absence of a c-mip translational or part thereof in said breast cancer sample, or v) determining the expression level of a c- mip transcriptional product or part thereof, or vi) determining the expression level of a c-mip translational product or part thereof, wherein the absence of said gene, transcriptional product, translational product or part thereof determined in ii) - iv) is indicative of a period of metastasis-free, recurrence -free and/or disease-free survival and/or wherein an increase in the expression level of said transcriptional product, translational product or part thereof determined in v) - vi) compared to the expression level of a control sample is indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival.
Breast cancer types and staging of breast cancer According to the present invention the method for determining the predisposition to, the prognosis for, the treatment regime for and/or methods of treatment of an individual suffering from breast cancer relates to humans. The present invention pertains to males or females. In a particular embodiment the individual is a female. The individual may suffer from unilateral breast cancer, bilateral breast cancer, secondary tumours for example in the lymph nodes in the axilla, or secondary tumours for example in liver or lung. The term secondary tumour is used to describe tumours which are not the primary tumour but are tumours that have developed by metastasis from the primary tumour or a secondary tumour. By primary tumour is meant the original site where cancer occurs. The present invention relates to for example females of the age ranging from 29 to 93 years. In another embodiment the age of the female ranges from 29 to 49 years. In another embodiment the age of the females ranges from less than 40 years, 40-49, 50- 59, 60-69, or above 69 years. In a preferred embodiment of the present invention the age of the female ranges from 50-59 years.
The characteristics of patients and tumours in 160 breast cancer patients with informative genotype for the region of chromosome 16 is found in table 1.
Table 1
Patients and tumour characteristics in 160 patients with informative genotype
No Al Al
All 59 101
Premenopausal 11 34
Postmenopausal 48 67
Aαe
<50 8 30
50-59 31 30
60-69 14 20
>69 6 21
Tumour size
< 21 mm 32 47
21-50 26 47
> 50 1 8
Positive nodes none 33 56
1-3 13 26
> 3 13 19
Histooatholoαv (WHO)
Ductal 48 85
Other 11 16
Maliαnacv αrade (Ductal)
Grade I 6 30
Grade Il 22 36
Grade III 20 19
Estroαen receotor
Neαative 26 20
Positive 33 81 Her 2
Neαative 42 94
Positive 12 7
Al is an abbreviation for allelic imbalance.
The individual of the present invention may have received treatment in the form of surgical removal of one or more tumours, chemotherapy, adjuvant radiotherapy or hormonal treatment. The individual may have received any combination of the listed treatments for example surgical removal of one or more tumours and chemotherapy, or for example surgical removal of one or more tumours and chemotherapy followed by adjuvant radiotherapy. In one embodiment the individual has received treatment in the form of lumpectomy and adjuvant radiotherapy. In another embodiment the individual has received treatment in the form of radical mastectomy and adjuvant radiotherapy. Another embodiment the individual suffering from breast cancer is a high risk patient, i. e. with positive axillary lymph nodes and/or high-grade, and/or large tumour, in combination with mastectomy or lumpectomy followed by adjuvant radiotherapy also receives treatment in the form of adjuvant systemic hormone and/or chemotherapy.
The term surgical removal includes mastectomy, or lumpectomy. In mastectomy the entire breast of a person suffering from breast cancer is removed by surgery. Lumpectomy describes the removal by surgery of the tumour from the breast and optionally part of the surrounding breast tissue.
The individual may suffer from breast cancer of any type. The breast cancer may be an adenoma, an adenocarcinoma, a carcinoma or carcinoma in situ.
The term "tumour," as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
An adenoma is a benign tumour arising in glandular epithelium. The glandular epithelium is a type of epithelial tissue whose primary function is secretion, and is the prominent tissue forming endocrine and exocrine glands, for example in the breast. An adenoma may progress or transform into a malignant tumour which is then characterised as an adenocarcinoma. A carcinoma is defined as a malignant tumour that begins in the lining layer (epithelial cells) of organs. Carcinoma have a tendency to infiltrate into adjacent tissue and spread (metastasize) to distant organs, such as bone, liver, lung, or the brain. The present invention also relates to individuals suffering from breast cancer in the form of carcinoma in situ (CIS) which is an early form of carcinoma and is defined by the absence of invasion of surrounding tissues. In other words, carcinoma in situ is the abnormal growth of cells that proliferate in their normal habitat, hence the name 'in situ'. Carcinoma in situ is also equivalent to the term high grade dysplasia.
The breast cancer of the present invention may be invasive or non-invasive. By invasive cancer is meant cancer characterized by spreading from its point of origination into other tissues and organs. For example, invasive breast cancers develop in milk glands (lobules) or milk passages (ducts) and spread to the nearby fatty breast tissue. Some invasive cancers spread to distant areas of the body (metastasize), but others do not. Invasive cancer is also referred to as infiltrating cancer. By analogy, the noninvasive cancers do not invade surrounding tissue.
The breast cancer from which an individual according to the present invention suffers may thus be selected from the group consisting of a primary malignant tumour, a ductal carcinoma, a lobular carcinoma, a ductal carcinoma in situ, lobular carcinoma in situ, and a secondary tumour for example in the axil, lung or liver.
One embodiment of the present invention relates to individuals suffering from invasive ductal carcinoma, a cancer that starts in the milk passages (ducts) of the breast and then breaks through the duct wall, where it invades the fatty tissue of the breast. When the cancer reaches this point, it has the potential to spread (metastasize) elsewhere in the breast, as well as to other parts of the body through the bloodstream and lymphatic system. Invasive ductal carcinoma is the most common type of breast cancer, accounting for about 80% of breast malignancies.
Another embodiment of the present invention relates to individuals suffering from ductal carcinoma in situ. Ductal carcinoma in situ is characterized as proliferation of abnormal cells within the milk passages (ducts) but where no visible signs of invasion into the duct wall are evident. This is a highly curable form of breast cancer that is treated with surgery or surgery plus radiation therapy. The present invention also relates to Lobular carcinoma which is a cancer that begins in the lobules (the glands that make milk) of the breast. Lobular carcinoma in situ (LCIS) is a condition in which abnormal cells are found only in the lobules. When cancer has spread from the lobules to surrounding tissues, it is invasive lobular carcinoma. LCIS does not become invasive lobular carcinoma very often, but having LCIS in one breast increases the risk of developing invasive cancer in either breast. The breast cancer according to the present invention may be a hereditary or nonhereditary sporadic breast cancer. By hereditary breast cancer is meant a cancer that is genetically transmitted from parent to child. The incidence of hereditary breast cancer is believed to range from between 5 to 10 percent of all breast cancers.
Two genes have been identified BRCA1 (for BReast CAnceri ) and BRCA2 have been identified on chromosome 17 and chromosome 13, respectively which in a mutated from seems to be involved in the development of breast cancer in that individuals carrying a mutated form of either BRCA1 or BRCA2, have an increased risk of developing breast or ovarian cancer at some point in their lives. Consequently, children of parents with a BRCA1 or BRCA2 mutation have a 50 percent chance of inheriting the gene mutation.
Nonhereditary sporadic breast cancer is the most common breast cancer of the two types of breast cancers, and accounts for as much as 90% of the cases of breast cancer. In sporadic breast cancers the BRCA1 or BRCA2 genes are not mutated. The sporadic breast cancers are caused by gene damage acquired to breast cells during the woman's lifetime (' somatic' mutations). A wide variety of genes is commonly mutated or incorrectly regulated in sporadic breast cancers and have been implicated in the development and progression of the disease. One preferred embodiment of the present invention relates to sporadic ductal carcinomas, and in particular to invasive ductal carcinomas.
Breast cancer may be staged according to defined characteristics relating to size and metastasising properties. One staging system commonly used to divide breast cancers into stages is that of the AJCC-TNM system (American Joint Committee on Cancer (AJCC) TNM system). The cancers may according to the staging system be classified based on their T, N, and M stages, where T is an abbreviation for tumour (its size and how far it has spread within the breast and to nearby organs), N stands for spread to lymph nodes (bean-shaped collections of immune system cells that help fight infections and cancers) and M is for metastasis (spread to distant organs).
The stage of a breast cancer can be based on results obtained by physical examination, imaging tests or by pathological inspection of tissue following surgery.
The present staging system is based on the pathologic conclusion drawn by a pathologist after examination of the breast tissue and lymph nodes removed by surgery.
Additional letters or numbers may appear after T, N, and M to provide detailed information on the tumour, lymph nodes, and metastasis. T 0 to 4 describes the size of the tumour and spread to the skin or to the chest wall under the breast, where higher T numbers indicate a large tumour and/or wider spread to tissues near the breast.
Similarly, N followed by a number from 0 to 3 is indicative of whether the cancer has spread to lymph nodes near the breast and, if so, how many lymph nodes are affected. In analogy, M denotes whether the cancer has spread to distant organs, where 0 is indicative for spreading to for example the lungs or bones, and 1 is indicative for spreading of the cancer to lymph nodes distant to the breast, for example above the collarbone.
The disease stage of the breast cancer is determined by combining the above features. Stage is expressed as stage 0 and in Roman numerals from stage I (the least advanced stage) to stage IV (the most advanced stage).
Stage 0: Tis, NO, MO: Ductal carcinoma in situ (DCIS). Lobular carcinoma in situ (LC(S) may be classified as stage 0 breast cancer. Paget disease of the nipple is stage 0. In all cases the cancer has not spread to lymph nodes or distant sites.
Stage I: T1, NO, MO: The tumour is 2 cm (about 3/4 of an inch) or less in diameter and has not spread to lymph nodes or distant sites.
Stage HA: TO, N1 , MO / T1 , N1 , MO / T2, NO, MO: No tumour is found in the breast but it is in 1 to 3 axillary lymph nodes; or the tumour is less than 2 cm and has spread to 1 to 3 axillary lymph nodes; or cancer is found by sentinel node biopsy as microscopic disease in internal mammary nodes, but not on imaging studies or by clinical exam; or the tumour is larger than 2 cm in diameter and less than 5 cm, but hasn't spread to axillary nodes. In all cases the cancer has not spread to distant sites. Stage HB: T2, N1 , MO / T3, NO, MO: The tumour is larger than 2 cm in diameter and less than 5 cm and has spread to 1 to 3 axillary lymph nodes; or cancer is found by sentinel node biopsy as microscopic disease in internal mammary nodes; or the tumour is larger than 5 cm and does not grow into the chest wall and has not spread to lymph nodes. In all cases, the cancer has not spread to distant sites.
Stage HIA: TO-2, N2, MO / T3, N1-2, MO: The tumour is smaller than 5 cm in diameter and has spread to 4 to 9 axillary lymph nodes; or it is found through imaging studies or clinical examination to have spread to internal mammary nodes; or the tumour is larger than 5 cm and has spread to 1 to 9 axillary nodes, or to internal mammary nodes. In all cases, the cancer has not spread to distant sites.
Stage NIB: T4, NO-2, MO: The tumour has grown into the chest wall or skin and may have spread to no lymph nodes or to as many as 9 axillary nodes. It may or may not have spread to internal mammary nodes. No spread to distant sites is observed.
Stage IHC: TO-4, N3, MO: The tumour is any size, has spread to 10 or more nodes in the axilla; or to 1 or more lymph nodes under the clavicle (infraclavicular) or above the clavicle (supraclavicular); or to internal mammary lymph nodes, which are enlarged because of the cancer. All of these are on the same side as the breast cancer. No spread to distant sites is observed. Inflammatory breast cancer is classified as stage III, unless it has spread to distant organs or lymph nodes that are not near the breast, in which case it would be stage IV.
Stage IV: TO-4, NO-3, M1 : The cancer, regardless of its size, has spread to distant organs such as bone, liver, or lung, or to lymph nodes far from the breast.
The abbreviations used above are as follows: TX: Primary tumour cannot be assessed, TO: No evidence of primary tumour, Tis: Pure carcinoma in situ; intraductal carcinoma, lobular carcinoma in situ, or Paget disease of the nipple with no associated tumour mass, T1 : Tumour 2 cm (about % of an inch) or less in greatest dimension, T2: Tumour more than 2 cm but not more than 5 cm (2 inches) in greatest dimension, T3: Tumour more than 5 cm in greatest dimension, T4: Tumour of any size growing into the chest wall or skin, NX: Regional lymph nodes cannot be assessed (for example, removed previously), NO-. Cancer not spread to regional lymph nodes, N1 : Cancer spread to 1 to
3 lymph node(s) under the arm, N2: Cancer has spread to 4 to 9 lymph nodes under the arm, N3: Cancer has spread to 10 or more lymph nodes under the arm or also involves lymph nodes in other areas around the breast, MX: Presence of distant spread (metastasis) cannot be assessed, MO: No distant spread, M1 : Spread to distant organs is present.
In addition to the above stages the breast cancer may also be characterised by a number of markers such as sex steroid hormone receptors. About two thirds of postmenopausal breast cancers are estrogen receptor positive (ER+) and progesterone receptor positive (PR+). The receptor status influences the choice of treatment as, for instance, ER+ lesions are more sensitive to hormonal therapy.
It is appreciated that the present invention pertains to breast cancer of any stage such as stage 0 (carcinoma in situ), I, HA, KB, IHA, IHB, IHC or IV.
Breast cancer sample and control sample
The breast cancer sample used in the present invention may be any suitable cell sample capable of providing the genetic material for use in the method as a breast cancer sample. The breast cancer sample may be tumour tissue removed during surgery in the process of mastectomy or lumpectomy. However, the sample may also be a biopsy of tumour tissue.
The control sample used in the present invention may be any suitable cell sample capable of providing the genetic material for use in the method as a control sample. By suitable is meant that control sample is any tissue sample in non-diseased state. In a preferred embodiment, the sample is a blood sample, a tissue sample from any tissue not affected by the breast cancer, a sample of secretion, semen, ovum, a washing of a body surface, a clipping of a body surface (hairs, or nails), buccal swab sample, or non-diseased breast tissue sample.
In one embodiment the control sample is selected from the group consisting of blood sample, buccal swap sample, hair sample, sample of nail, breast sample and serum.
It is appreciated that the samples may be for example biopsies of diseased or non- diseased tissue. The samples may be fresh or frozen.
It will be appreciated that the above samples may equally be a nucleic acid sequence corresponding to the sequence in the sample, that is to say that all or part of the region in the nucleic acid of the sample may firstly be amplified using any convenient technique, e.g. PCR, before use in the analysis of variation in the region.
The present invention relates to a method for determining the predisposition to a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer, wherein predisposition is a measure of an individual's susceptibility to a disease that can be triggered under certain conditions or an individual's tendency to develop a certain disease.
By a period of metastasis-free survival is meant the period of time from diagnosis of breast cancer in which no metastasis has occurred in the individual. By metastasis is meant the migration of cancer cells from the original tumour site through the blood and lymph vessels to produce cancers in other tissues. Metastasis also is the term used for a secondary cancer growing at a distant site relative to the primary tumour. The tumour arising as a result of metastasis is termed a secondary tumour. The present invention relates to metastasis to any tissue of the individual. In one embodiment of the present invention metastasis in particular refers to metastasis to liver, lung, or nodes of the axilla of the individual.
The period of metastasis-free survival is up to 25 years, 20, 19, 18, 17, 16, 15, 14, 13, 12 or 11 years from the date of primary surgery. In one embodiment the period of metastasis-free survival is up to 10 years from the date of primary surgery. In one embodiment the period of metastasis-free survival is up to 9 years, 8, 7, 6, 5, 4, 3 or 2 years. In other embodiments the period of metastasis-free survival is 15 years, 14, 13, 12, 11 , 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 years.
By a period of recurrence-free survival is meant the period of time from date of primary surgery of breast cancer in which no recurrence has occurred in the individual. The term 'recurrence' refers to a condition, wherein cancer comes back after treatment. Local recurrence is when the cancer comes back at the same place as the original cancer. Regional recurrence is when the cancer appears in the lymph nodes near the first site. Distant recurrence is when it appears in organs or tissues (such as the lungs, liver, bone marrow, or brain) farther from the original site than the regional lymph nodes. Recurrence-free survival is thus defined as the period of time, wherein no return of cancer has appeared, at the same site as the original (primary) tumour or in another location, after disappearance of the tumour. The present invention relates to recurrence of any type as described above.
The period of recurrence-free survival is up to 25 years, 20, 19, 18, 17, 16, 15, 14, 13, 12 or 11 years from the date of primary surgery. In one embodiment the period of recurrence -free survival is up to 10 years from the date of primary surgery. In one embodiment the period of recurrence -free survival is up to 9 years, 8, 7, 6, 5, 4, 3 or 2 years. In other embodiments the period of recurrence -free survival is 15 years, 14, 13, 12, 11 , 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 years.
By a period of disease-free survival is meant the period of time from diagnosis of breast cancer in which no disease caused by the cancer has occurred in the individual. Such a disease may be metastasis and/or one or more secondary tumours.
The period of disease-free survival is up to 25 years, 20, 19, 18, 17, 16, 15, 14, 13, 12 or 11 years from the date of primary surgery. In one embodiment the period of disease
-free survival is up to 10 years from the date of primary surgery. In one embodiment the period of disease -free survival is up to 9 years, 8, 7, 6, 5, 4, 3 or 2 years. In other embodiments the period of disease -free survival is 15 years, 14, 13, 12, 11 , 10, 9, 8, 7,
6, 5, 4, 3, 2 or 1 years.
An increased risk of recurrence, acquisition of metastasis and/or short disease-free survival is according to the present invention characterised by an increase in the amount of c-mip gene, transcriptional and/or translational product or part thereof as compared to a cut-off value as described elsewhere herein.
Long-term survival is used herein as the opposite of 'short term' survival. Long-term survival refers to survival for 1-40 years, such as at least 1 year, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 year, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, or 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, or 35 years, 36 years, 37 years, 38 years, 39 years, or 40 years following the date of primary surgery. Thus, it is anticipated that a short-term survival is a period of time can be survival for 1-40 years, such as at most 1 year, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 year, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 21 years, 22 years, 23 years, 24 years, or 25 years, 26 years, 27 years, 28 years, 29 years, 30 years, 31 years, 32 years, 33 years, 34 years, or 35 years, 36 years, 37 years, 38 years, 39 years, or 40 years following the date of primary surgery
It is appreciated that the present invention relates to a method for detecting a predisposition to a period of metastasis-free, recurrence-free and disease-free survival of an individual suffering from breast cancer. However, the present invention also relates to each of the feature of metastasis-free, recurrence-free or disease-free survival separately. Thus, the present invention covers a method for detecting a predisposition to a period of metastasis-free, recurrence-free or disease-free survival of an individual suffering from breast cancer. The present invention also refers to a combination of features in the method for detecting a predisposition to a period of metastasis-free survival and recurrence-free survival, or metastasis-free survival and disease-free survival of an individual suffering from breast cancer.
Prognosis is the forecast of the course and probable outcome of a disease. The prognosis is based on information about the disease course of patients suffering from disease and the presence of certain markers, for example genetic markers. The knowledge about the correlation can be compared to provide a prognosis of an individual based on the presence or absence of said genetic markers. The outcome of a disease according to the present invention refers to progression of breast cancer including recurrence and metastatic spread of a neoplastic disease and long or short term survival. The present invention relates to a method for determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer comprising the steps of i) establishing a breast cancer sample, ii) determining the presence or absence (amount) of a c-mip gene (SEQ ID NO:1 and/or SEQ ID NO:2) or part thereof in said breast cancer sample, or iii) determining the (amount) or absence of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID NO:4)or part thereof in said breast cancer sample, or iv) determining the presence or absence (amount) of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, v) determining the expression level of a c-mip transcriptional product or part thereof, or vi) determining the expression level of a c-mip translational product or part thereof, wherein the absence of said gene, transcriptional product, translational product or part thereof determined in ii) - iv) is indicative of short period of metastasis-free and disease-free survival and/or wherein a reduction in the expression level of said transcriptional product, translational product or part thereof determined in v)-vi) compared to the expression level of a control sample is indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival and/or wherein the presence of said gene, transcriptional product, translational product or part thereof is indicative of metastasis-free, recurrence-free and/or disease-free survival.
Classification of tumour
The present invention also provides tools for classifying a tumour from an individual suffering from breast cancer with regard to the metastasizing potential of the tumour. Thus, the present invention relates to a method for classification of at least one tumour from an individual suffering from breast cancer comprising the steps of i) establishing a breast cancer sample; ii) determining the presence or absence (amount) of a c-mip gene or part thereof in said breast cancer sample, or; iii) determining the presence or absence (amount) of a c-mip transcriptional product or part thereof in said breast cancer sample, or; iv) determining the presence or absence (amount) of a c-mip translational or part thereof in said breast cancer sample,; v) determining the expression level of a c-mip transcriptional product or part thereof, or; vi) determining the expression level of a c-mip translational product or part thereof, vii) assessing the outcome of f ii), iii), iv), v), or vi) ; wherein the absence of said gene, transcriptional product, translational product or part thereof determined in ii) - iv) is indicative of a period of metastasis-free, recurrence-free and/or disease-free survival of the individual having said tumour and/or wherein an increase in the expression level of said transcriptional product, translational product or part thereof determined in v)-vi) compared to the expression level of a control sample is indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival of the individual having said tumour.
It is appreciated that at least one, two, three, four, five, six, seven, eight, nine, ten, 15, or 20 tumours or parts thereof from an individual may be classified. Such classification of more than one tumour may be performed simultaneous or sequentially from the time of surgery.
The classification of the tumour may aid in the selection of which treatment to offer an individual suffering from breast cancer as described elsewhere herein.
Determination of treatment regime
Once a breast tumour is localized the treatment of the tumour is surgery and if possible adjuvant hormone therapy such as tamoxin or an aromatase inhibitor, chemotherapy, and/or radiation therapy. Often surgery is followed by radiation therapy. The treatment which is recommended after surgery is laid down by the so-called St. Gallen criteria. The St. Gallen criteria are determined at present every two years at a Conference on Primary Therapy of Early Breast Cancer. The clinical criteria i.e. age, type of cancer, size and metastasis essentially divide the patients into three groups according to the 2005 International Consensus Panel, (http://www.breastcancersource.com).
Risk assessment as the main criterion for treatment choice is now supplemented by the introduction of endocrine responsiveness as the most important selection factor for adjuvant chemotherapy- and endocrine-treatments in both node-negative and node- positive disease. Three disease responsiveness categories were identified: Endocrine responsive: cells express steroid hormone receptors (diagnosed with proper immunohistological/biochemical methods) and it is probable that endocrine therapies are effective in improving disease-free and overall survival.
Endocrine response uncertain: some expression of hormone receptors either quantitatively low or qualitatively insufficient to indicate a substantial chance for response to endocrine therapies alone, thus suggesting the need for chemotherapy.
Endocrine non-responsive: cells have no detectable expression of steroid hormone receptors.
The exact boundary between Endocrine responsive and Endocrine response uncertain is undecided, and may well be different in different clinical settings (e.g. according to number of involved axillary lymph nodes or menopausal status).
Three risk categories are defined: low-, intermediate- and high-risk groups (see below). Nodal status remains the most important feature for defining risk category, however, the new risk groups do not adhere rigidly to the traditional node-positive/node-negative boundary.
Two new prognostic features are included; the first was over-expession or amplification of the HER2/neu gene, and the second was peritumoural vessel invasion, especially lymphovascular invasion.
The risk categories for patients with node-negative breast cancer are as follows:
Low risk: Node negative AND all of the following features: Pathologic tumour size <2cm, AND Grade 1 , AND Absence of peritumoural vascular invasion, AND HER2/neu gene neither over-expressed nor amplified, AND Age ≥35 years.
Intermediate risk: Node negative AND at least one of the following features: Pathologic tumour size >2cm, ORGrade 2-3, OR Presence of peritumoural vascular invasion, OR HER2/neu gene over-expressed or amplified, OR Age <35 years. Node positive (1-3 nodes involved) AND HER2/neu gene neither over-expressed nor amplified
High risk: Node positive (1-3 nodes involved) AND HER2/neu gene over-expressed or amplified; Node positive (4 or more involved nodes)
The guidelines recommended that patients be offered chemotherapy for endocrine non-responsive disease; endocrine therapy as the primary therapy for endocrine responsive disease, adding chemotherapy for some intermediate- and all high-risk groups in this category; and both chemotherapy and endocrine therapy for all patients in the uncertain endocrine response category except those in the low-risk group (see below regarding choice of treatment modalities).
The choice of treatment modalities is suggested as summarised below: Endocrine Endocrine response Endocrine non-
Risk category responsive uncertain response
Low risk ET or Nil* ET or Nil* Not applicable
ET alone, or CT
CT → ET
ET CT
Intermediate risk (CT + ET)
(CT + ET)1
CT → ET CT → ET
High risk CT
(CT + ET) (CT + ET)
ET, endocrine therapy; CT chemotherapy; Nil, no adjuvant systemic therapy
* indicates alternative treatment option in case of medical contraindications or preference of patient or physician.1 denotes that trial evidence suggests that CT and tamoxifen should be delivered sequentially. However, concurrent CT and some forms of ET (e.g. GnRHa) may be acceptable.
The 2005 recommendations and guidelines on post-operative adjuvant systemic therapies for early breast cancer are summarised below.
These guidelines are based on evidence from clinical trials demonstrating reductions in risk of relapse and increased survival, and include expert interpretation of the evidence.
However, patient preferences should also be considered and a thorough discussion of the benefits and risks of each therapeutic option is required for each individual.
Adjuvant systemic treatment for patients with operable breast cancer is suggested as follows:
a) Endocrine responsive
Risk category Premenopausal patients Postmenopausal patients
Tamoxifen or nil*
Low risk Tamoxifen or Al or nil* or GnRHa*
Tamoxifen ( v±OFS) / ( v±CT) /,. . T..amox .if,en, or or
CT → Tamoxifen (±OFS), Al, or
Intermediate CT → Tamoxifen, or or risk CT -→ AI
Tamoxifen alone, or
OFS
Indication for a switch to an Al after tamoxifen1
CT → Tamoxifen, or
CT → Tamoxifen, or
High risk CT →Tamoxifen (±OFS), or CT → Al
* ' Indication for a switch to an Al after tamoxifen1 b) Endocrine response uncertain
Risk category Premenopausal patients Postmenopausal patients
Tamoxifen or nil*
Low risk Tamoxifen or Al or nil* or GnRHa*
CT → Tamoxifen (±OFS), cτ → A| op
Intermediate
Tamoxifen ±OFS (±CT), or CT → Tamoxifen risk
CT → (Al + OFSY* 1
-.-.„ v ' Indication for a switch to an Al after tamoxifen
CT → Al, or
CT → Tamoxifen, or CT → Tamoxifen
High risk CT →Tamoxifen (±OFS), or
Tamoxifen (±OFS) Indication for a switch to an Al after tamoxifen1
c) Endocrine non-responsive
Risk category Premenopausal or postmenopausal patients
Low risk Not applicable
CT
Regimens: AC, CMF; AC or A → CMF;
I inntteerrmmeeddiiaattee r riιssκk F (T E a C xa (d ne a.yCo 1n etvaeinriyng 21 re dgaimyse)n; s: AC or A
→paciitaxel,
FEC100 → docetaxel, TAG)
CT
Regimens: AC or A → CMF; CEF or CAF
(days 1 & 8 every 28 days); FEC (day 1 every
21 days);
High risk
Taxane-containing regimens: AC or A
→paciitaxel,
FEC100 →docetaxel, TAC
(Dose dense regimen)
Where * indicates alternative treatment option in case of medical contraindications or preference of patient or physician.1 exemestane or anastrozole after 2-3 years, letrozole after 5 years. Parentheses ( ) indicate questions pending answers from ongoing clinical studies.Tam = tamoxifen
Al = aromatase inhibitor (anastrozole, exemestane, letrozole). CT = chemotherapy. (A = anthracycline: either adriamycin or epirubicin; epirubicin mentioned also as 1E' in CEF and FEC regimens). GnRHa = gonadotrophin releasing hormone. Research was conducted using goserelin. OFS= ovarian function suppression or ablation. This table does not include information on the adjuvant treatment with trastuzumab of patients with over-expressed or amplified HER2/neu breast cancer.
The determination of which individuals should receive further treatment after surgery and which individuals should not receive further treatment depends on the individual's predisposition to the development of metastasis, recurrence and/or disease. With the present invention it is possible to supplement the already existing criteria laid down in the St. Gallen criteria. With the present invention it is not only possible to select the individuals which should receive further treatment but also to determine which individuals that are not likely to develop cancer again or to form metastasis. The latter individuals can thus avoid further supplementary treatment following surgery, and be relieved from side effects of the follow-up therapy. The methods of the present invention can be used clinically to make treatment decisions by choosing the most appropriate treatment modalities for any particular patient. According to the present invention individuals suffering from breast cancer wherein the presence has been determined of the c-mip gene, transcriptional or translational product thereof as described elsewhere herein may not need supplementary treatment. In contrast, individuals suffering from breast cancer wherein the presence has been determined of the c-mip gene, transcriptional or translational product thereof as described elsewhere herein need supplementary treatment such as anti-estrogen therapy, such as TAM treatment alone or in combination with chemotherapy and/or radiation therapy.
The present invention thus discloses a method for determining the treatment regime for an individual suffering from breast cancer comprising the steps of i) establishing a breast cancer sample, ii) determining the presence or absence (amount) of a c-mip gene or part thereof in said breast cancer sample, or, iii) determining the presence or absence (amount) of a c-mip transcriptional product or part thereof in said breast cancer sample, or iv) determining the presence or absence (amount) of a c-mip translational product or part thereof in said breast cancer sample, v) determining the expression level of a c-mip transcriptional product or part thereof, or vi) determining the expression level of a c-mip translational product or part thereof, vii) assessing the outcome of f ii), iii), iv), v), or vi); viii) determining the risk of developing metastasis and/or having a reduced overall survival; ix) deciding on the treatment regime of said individual suffering from breast cancer based on the outcome of vii), wherein the absence of said gene, transcriptional product, translational product or part thereof is indicative of short metastasis-free and disease-free survival, and/or wherein a reduction in the expression level of said transcriptional product, translational product or part thereof determined in v) - vi) compared to the expression level of a control sample is indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival and/or wherein the absence of said gene, transcriptional product, translational product or part thereof is indicative of metastasis formation, recurrence and/or short survival.
Sequence identity
Functional equivalents and variants are used interchangeably herein. In one preferred embodiment of the invention there is also provided variants of c-mip and variants of fragments thereof. When being polypeptides, variants are determined on the basis of their degree of identity or their homology with a predetermined amino acid sequence, said predetermined amino acid sequence being one of SEQ ID NO: 5 and/or SEQ ID NO: 6, or, when the variant is a fragment, a fragment of any of the aforementioned amino acid sequences, respectively.
Accordingly, variants preferably have at least 91 % sequence identity, for example at least 91% sequence identity, such as at least 92 % sequence identity, for example at least 93 % sequence identity, such as at least 94 % sequence identity, for example at least 95 % sequence identity, such as at least 96 % sequence identity, for example at least 97% sequence identity, such as at least 98 % sequence identity, for example 99% sequence identity with the predetermined sequence.
The following terms are used to describe the sequence relationships between two or more polynucleotides: "predetermined sequence", "comparison window", "sequence identity", "percentage of sequence identity", and "substantial identity". A "predetermined sequence" is a defined sequence used as a basis for a sequence comparision; a predetermined sequence may be a subset of a larger sequence, for example, as a segment of a full-length DNA or gene sequence given in a sequence listing, such as a polynucleotide sequence of SEQ ID NO:1 and/or SEQ ID NO:2, or may comprise a complete DNA or gene sequence. Generally, a predetermined sequence is at least 20 nucleotides in length, frequently at least 25 nucleotides in length, and often at least 50 nucleotides in length.
Since two polynucleotides may each (1 ) comprise a sequence (i.e., a portion of the complete polynucleotide sequence) that is similar between the two polynucleotides, and (2) may further comprise a sequence that is divergent between the two polynucleotides, sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two polynucleotides over a "comparison window" to identify and compare local regions of sequence similarity. A "comparison window", as used herein, refers to a conceptual segment of at least 20 contiguous nucleotide positions wherein a polynucleotide sequence may be compared to a predetermined sequence of at least 20 contiguous nucleotides and wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less as compared to the predetermined sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.
Optimal alignment of sequences for aligning a comparison window may be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2: 482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. MoI. Biol. 48: 443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. (U.S.A.) 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by inspection, and the best alignment (i.e., resulting in the highest percentage of homology over the comparison window) generated by the various methods is selected.
The term "sequence identity" means that two polynucleotide sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The terms "substantial identity" as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 85 percent sequence identity, preferably at least 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a predetermined sequence over a comparison window of at least 20 nucleotide positions, frequently over a window of at least 25-50 nucleotides, wherein the percentage of sequence identity is calculated by comparing the predetermined sequence to the polynucleotide sequence which may include deletions or additions which total 20 percent or less of the predetermined sequence over the window of comparison. The predetermined sequence may be a subset of a larger sequence, for example, as a segment of the full- length SEQ ID NO:1 and/or SEQ ID NO:2 polynucleotide sequence illustrated herein.
The methods of the present invention may be detected on the nucleic acid level, determining the presence or absence of a c-mip gene (SEQ ID NO:1 and/or SEQ ID NO:2) or part thereof (genomic level), or transcriptional product or part thereof
(transcriptional level). It is appreciated that the methods of detecting the presence or absence of c-mip may be performed also on a complementary sequence. The absence or presence may be determined in for example at least one coding region of the c-mip gene, however, the absence or presence may also be determined in at least one regulatory sequence of the c-mip gene. By regulatory sequence is meant sequences within SEQ ID NO:1 and/or SEQ ID NO:2 that regulate the transcriptional and translational process, for example, promoters, enhancers, sequences that affect polyadenylation, translational or transcriptional start, splicing of transcriptional products. The promoters and enhancers that control the transcription of protein- encoding genes are composed of multiple genetic elements. The cellular machinery is able to gather and integrate the regulatory information conveyed by each element, allowing different genes to evolve distinct, often complex patterns of transcriptional regulation. By the term "transcriptional or translational products" is meant herein products of gene transcription, such as a RNA transcript, for example an unspliced RNA transcript, a mRNA transcript and said mRNA transcript splicing products, and products of gene translation, such as polypeptide(s) translated from any of the gene mRNA transcripts and various products of post-translational processing of said polypeptides, such as the products of post-translational proteolytic processing of the polypeptide(s) or products of various post-translational modifications of said polypeptide(s).
As used herein, the term "transcriptional product of the gene" refers to a pre- messenger RNA molecule, pre-mRNA, that contains the same sequence information (albeit that U nucleotides replace T nucleotides) as the gene, or mature messenger RNA molecule, mRNA, which was produced due to splicing of the pre-mRNA, and is a template for translation of genetic information of the gene into a protein.
As used herein, the term "translational product of the gene" refers to a protein, which is encoded by the c-mip gene (SEQ ID NO:1 and/or SEQ ID NO:2). As used herein, the term "transcriptional product of the gene" refers to a transcript which is encoded by the c-mip gene (SEQ ID NO:1). lsoforms are versions of a protein with some small differences, usually a splice variant or the product of some posttranslational modification. The present invention relates to any isoform of c-mip. The examples given herein are not meant to be limiting to the scope of the present invention.
Thus the present invention relates to methods for determining the presence or absence of the transcriptional products of the c-mip gene corresponding to any transcriptional product of SEQ ID NO:1 or part thereof.
In particular, the invention relates to determining the presence or absence of the c-mip gene in the transcriptional products of the c-mip gene in
(i) a nucleic acid sequence identified in the invention as SEQ ID NO: 3 and/or
SEQ ID NO: 4 or fragments thereof, (ii) a nucleic acid sequence having at least 90% identity with SEQ ID NO: 3 and/or SEQ ID NO:4 or fragments thereof, (iii) a nucleic acid sequence complementary to any of the sequences of (i) or
(ϋ). said nucleic acid sequence, fragments thereof comprising the genetic marker of the corresponding genomic sequence. The invention also relates to determining the presence or absence of the c-mip gene translational products of the c-mip gene in
(i) variant proteins corresponding to the protein identified as SEQ ID NO: 5 and/or SEQ ID NO:6 or variants, or fragments thereof, (ii) polypeptide sequences having at least 90% identity with the variant proteins, or fragments thereof, of (i),
said variant proteins, fragments thereof and said polypeptide sequences are comprising polymorphism corresponding to the polymorphism of the corresponding genomic sequences or transcriptional products of said genomic sequences.
Thus, it is an embodiment of the invention to use the above identified variant proteins for the purpose of determining i) the predisposition of an individual suffering from breast cancer to a period of metastasis-free, recurrence-free and/or disease-free survival and/or ii) the prognosis of an individual suffering from breast cancer to a period of metastasis-free, recurrence-free and/or disease-free survival and/or iii) the treatment regime of an individual suffering from breast cancer to a period of metastasis-free, recurrence-free and/or disease-free survival, and/or iv) local therapeutic treatment of disease.
Sequence identity is determined in one embodiment by utilising fragments of c-mip peptides comprising at least 25 contiguous amino acids and having an amino acid sequence which is at least 80%, such as 85%, for example 90%, such as 95%, for example 99% identical to the amino acid sequence of SEQ ID NO: 5 and/or SEQ ID NO:6, wherein the percent identity is determined with the algorithm GAP, BESTFIT, or FASTA in the Wisconsin Genetics Software Package Release 7.0, using default gap weights.
Conservative amino acid substitutions:
Substitutions within the groups of amino acids, shown below, are considered conservative amino acid substitutions. Substitutions between the different groups of amino acids are considered non-conservative amino acid substitutions. P, A, G, S, T (neutral, weakly hydrophobic) Q, N, E, D, B, Z (hydrophilic, acid amine)
H, K, R (hydrophilic, basic) F, Y, W (hydrophobic, aromatic) L, I, V, M (hydrophobic) C (cross-link forming)
The methods of the present invention relates to the use of the c-mip gene (SEQ ID NO.:1 and/or SEQ ID NO.: 2) or part thereof, a c-mip transcriptional product or part thereof, or a c-mip translational product or part thereof.
c-mip comprises introns and exons. The presence or absence (or levels of transcriptional or translational product can thus be determined in the exons selected from the group consisting of exon 1(SEQ ID NO.:15), exons 2 (SEQ ID NO.:1β), exon 3 (SEQ ID NO.:17), exon 4 (SEQ ID NO.:18), exon 5 (SEQ ID NO.:19), exons 6 (SEQ ID NO.:20), exon 7 (SEQ ID NO.:21) exon with SEQ ID NO.:22, exon 8 (SEQ ID NO.: 23), exon 9 (SEQ ID NO.:24), exons 10 (SEQ ID NO.:25), exon 11 (SEQ ID NO/.26), exon 12 (SEQ ID NO.:27), exon 13 (SEQ ID NO.: 28), exon 14 (SEQ ID NO.-.29), exon 15 (SEQ ID NO.:30), exon 16 (SEQ ID NO.:31), exon 17 (SEQ ID NO.:32), exon 18 with SEQ ID NO.:33, exon 19 with SEQ ID NO.:34, exon 20 with SEQ ID NO.:35, exon with SEQ ID NO.:36, exon 21 (SEQ ID NO.:37), exon with SEQ ID NO.:38, exon 22 (SEQ ID NO.:39), exon 23 (SEQ ID NO.:40), exon 24 with SEQ ID NO.:41 , exon 25 with SEQ ID NO.:42, exon 26 with SEQ ID NO.-.43, exon 27 (SEQ ID NO.:44), exon 28 (SEQ ID NO.:45), exon 29 (SEQ ID NO.-.46), exon 30 (SEQ ID NO.:47) and exon 18 with SEQ ID NO.:48 or parts thereof. In another embodiment the presence or absence (amount) can be determined in the exons selected from the group consisting of exon 1 , exons 2, exon 3, exon 4, exon 5, exons 6, exon 7, exon 8, exon 9, exons 10, exon 11 , exon 15, exon 17 and exon 20 or parts thereof. In another embodiment the presence or absence can be determined in the exons selected from the group consisting of exon 1 , exons 2, exon 3, exon 4, exon 5, exon 6, exon 7, exon 8, exon 9, exon 10 and exon 20 or parts thereof. In another embodiment the presence or absence can be determined in the exons selected from the group consisting of exon 1 , exons 2, exon 3, exon 4, exon 5, exon 6, exon 7, exon 8, exon 9 and exon 20 or parts thereof.
In another embodiment the presence or absence can be determined in the exons selected from the group consisting of exon 1 , exons 2, exon 3, exon 4, exon 5, exons 6, exon 7, exon 8 and exon 9 or parts thereof; or selected from exon 3, exon 4, exon 5, exons 6, exon 7, exon 8, exon 9, exons 10 and exon 11 or parts thereof; or selected from exon 1 , exons 2, exon 3, exon 4, exon 5, exons 6, exon 7, exon 8, exon 9, exons 10 and exon 20 or parts thereof. In another embodiment the presence or absence (amount of c-mip gene, transcriptional or translational product thereof) may be selected form exon 2, exon 8, exon 20, exon 21 , exon 22 and exon 23.In one embodiment the presence or absence can be determined in the exons selected from the group consisting of exon 1 , exon 9, exons 10 and exon 11 or parts thereof. The presence or absence (amount of c-mip gene, transcriptional or translational product thereof) can be determined in the exons selected individually from exon 1 , exons 2, exon 3, exon 4, exon 5, exon 6, exon 7, exon with SEQ ID NO.: 22, exon 8, exon 9, exon 10, exon 11 , exon 12, exon 13, exon 14, exon 15, exon 16, exon 17, exon 18, exon 19, exon 20, exon with SEQ ID NO.:36, exon 21 , exon with SEQ ID NO.:38, exon 22, exon 23, exon 24, exon 25, exon 26, exon 27, exon 28, exon 29 , exon 30 or exon 31.
In one preferred embodiment the presence or absence (amount of c-mip gene, transcriptional or translational product thereof) is determined in exon 2 or part thereof. In another preferred embodiment the presence or absence (amount of c-mip gene, transcriptional or translational product thereof) is determined in exon 8 or part thereof. In one preferred embodiment the presence or absence is determined in exon 20
The presence or absence of the c-mip gene or part thereof as used in the methods herein can be referred to as copy number variation of the c-mip gene i.e whether an amplification or deletion has occurred in the c-mip gene or part thereof. Copy number variation can be detected on the genomic DNA level, transcriptional level and translational level as described herein which is known to the person skilled in the art. For detection of copy number variation of c-mip gene or part thereof at the genomic level, a preferred method is the use of multiple ligation-dependent probe amplification (MLPA). Another preferred method for detection of copy number variation of c-mip is the use of allelic imbalance/loss of heterozygosity (LOH) analysis. For detection of copy number variation of the c-mip gene or part thereof at the transcriptional level, a preferred method is the use of quantitative PCR.
The presence or absence (or levels of transcriptional or translational product can in one embodiment be determined in the introns of the c-mip gene. In the present invention the presence or absence of the c-mip gene may also be determined by using for example genetic markers present in all regions of the gene. For example the genetic markers may be positioned in the promoter region of the gene, in introns and/or in exons. The term promoter will be used here to refer to a group of transcriptional control modules that are clustered around the initiation site for RNA polymerase II. Promoters are composed of discrete functional modules, each consisting of approximately 7-20 bp of DNA, and containing one or more recognition sites for transcriptional activator proteins. At least one module in each promoter functions to position the start site for RNA synthesis. The best known example of this is the TATA box.
Additional promoter elements regulate the frequency of transcriptional initiation. Typically, these are located in the region 30-110 bp upstream of the start site, although a number of promoters have recently been shown to contain functional elements downstream of the start site as well. The spacing between elements is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another.
The present invention also relates to enhancers. Enhancers were originally detected as genetic elements that increased transcription from a promoter located at a distant position on the same molecule of DNA. The basic distinction between enhancers and promoters is operational. An enhancer region as a whole must be able to stimulate transcription at a distance; this need not be true of a promoter region or its component elements. On the other hand, a promoter must have one or more elements that direct initiation of RNA synthesis at a particular site and in a particular orientation, whereas enhancers lack these specificities. Aside from this operational distinction, enhancers and promoters are very similar entities. They have the same general function of activating transcription in the cell. They are often overlapping and contiguous, often seeming to have a very similar modular organization.
The presence or absence of the c-mip gene may be determined by using for example genetic markers present in all regions of the gene. In one embodiment the genetic markers are positioned in the exons of a gene. Exons are the protein-coding DNA sequences of the gene. However, the presence or absence of the c-mip gene may be determined by using for example genetic markers positioned in introns. An intron is a nucleotide sequence intervening between exons (coding regions) that is excised from a gene transcript during RNA processing.
It is within the scope of the present invention that the presence or absence of the c-mip gene is determined in i) a nucleotide sequence with SEQ ID NO: 1 and/or SEQ ID NO:2, ii) a nucleotide sequence having at least 90 % sequence identity with a sequence of (i), or with a fragment thereof, and/or iii) a nucleotide sequence complementary to any of the sequences of (i) or (ii).
For those embodiments where whole cells, or other tissue samples are being analyzed, it will typically be necessary to extract the nucleic acids from the cells, prior to continuing with the various sample preparation operations. Accordingly, following sample collection, nucleic acids may be liberated from the collected cells, into a crude extract followed by additional treatments to prepare the sample for subsequent operations, such as denaturation of contaminating (DNA binding) proteins, purification, filtration and desalting.
Liberation of nucleic acids from the sample cells, and denaturation of DNA binding proteins may generally be performed by physical or chemical methods. For example, chemical methods generally employ lysing agents to disrupt the cells and extract the nucleic acids from the cells, followed by treatment of the extract with chaotropic salts such as guanidinium isothiocyanate or urea to denature any contaminating and potentially interfering proteins.
Alternatively, physical methods may be used to extract the nucleic acids and denature DNA binding proteins, such as physical protrusions within microchannels or sharp edged particles piercing cell membranes and extract their contents. Combinations of such structures with piezoelectric elements for agitation can provide suitable shear forces for lysis.
More traditional methods of cell extraction may also be used, e.g., employing a channel with restricted cross-sectional dimension which causes cell lysis when the sample is passed through the channel with sufficient flow pressure. Alternatively, cell extraction and denaturing of contaminating proteins may be carried out by applying an alternating electrical current to the sample. More specifically, the sample of cells is flowed through a microtubular array while an alternating electric current is applied across the fluid flow. Subjecting cells to ultrasonic agitation or forcing cells through microgeometry apertures, thereby subjecting the cells to high shear stress resulting in rupture are also possible extraction methods.
Following extraction, it will often be desirable to separate the nucleic acids from other elements of the crude extract, e.g. denatured proteins, cell membrane particles and salts. Removal of particulate matter is generally accomplished by filtration or flocculation. Further, where chemical denaturing methods are used, it may be desirable to desalt the sample prior to proceeding to the next step. Desalting of the sample and isolation of the nucleic acid may generally be carried out in a single step, e.g. by binding the nucleic acids to a solid phase and washing away the contaminating salts, or performing gel filtration chromatography on the sample passing salts through dialysis membranes. Suitable solid supports for nucleic acid binding include e.g. diatomaceous earth or silica (i.e., glass wool). Suitable gel exclusion media also well known in the art may be readily incorporated into the devices of the present invention and is commercially available from, e.g., Pharmacia and Sigma Chemical.
Alternatively, desalting methods may generally take advantage of the high electrophoretic mobility and negativity of DNA compared to other elements. Electrophoretic methods may also be utilized in the purification of nucleic acids from other cell contaminants and debris. Upon application of an appropriate electric field, the nucleic acids present in the sample will migrate toward the positive electrode and become trapped on the capture membrane. Sample impurities remaining free of the membrane are then washed away by applying an appropriate fluid flow. Upon reversal of the voltage, the nucleic acids are released from the membrane in a substantially purer form. Further, coarse filters may also be overlaid on the barriers to avoid any fouling of the barriers by particulate matter, proteins or nucleic acids, thereby permitting repeated use. In a similar aspect, the high electrophoretic mobility of nucleic acids with their negative charges, may be utilized to separate nucleic acids from contaminants by utilizing a short column of a gel or other appropriate matrices or gels which will slow or retard the flow of other contaminants while allowing the faster nucleic acids to pass.
The skilled person will appreciate that a number of methods for determining the presence or absence of a gene exist. The examples given in the following is not meant to be limiting.
Determination of presence or absence of the c-mip gene may be performed by the use of genetic markers. The term "genetic marker" refers to a variable nucleotide sequence (polymorphism) of the DNA on the human chromosome, in the present case to nucleotide sequences on the human chromosome 16. As used herein, the term "polymorphism" refers to the coexistence of more than one form of a gene or portion thereof. A portion of a gene of which there are at least two different forms, i. e., two different nucleotide sequences, is referred to as a "polymorphic region of a gene". A polymorphic region can be a single nucleotide, the identity of which differs in different alleles. Such polymorphism is referred herein as "single nucleotide polymorphism" or SNP. A polymorphic region also can be several nucleotides in length. A gene having at least one polymorphic region is referred to as a "polymorphic gene".
The variable nucleotide sequence can be identified by methods known to a person skilled in the art for example by using specific oligonucleotides in for example amplification methods and/or observation of a size difference. However, the variable nucleotide sequence may also be detected by sequencing or for example restriction fragment length polymorphism analysis. The variable nucleotide sequence may be represented by a deletion, an insertion, repeats, and/or a point mutation.
One type of genetic marker is a microsatellite marker which refers to short sequences repeated after each other. In short sequences are for example one nucleotide, such as two nucleotides, for example three nucleotides, such as four nucleotides, for example five nucleotides, such as six nucleotides, for example seven nucleotides, such as eight nucleotides, for example nine nucleotides, such as ten nucleotides. However, changes sometimes occur and the number of repeats may increase or decrease. It is within the scope of the present invention that the at least one genetic marker is selected from the group of SNPs, simple tandem repeats, deletions, insertions, duplications and simple tandem repeats. In one embodiment the at least one genetic marker is simple tandem repeats.
The presence or absence of the c-mip gene may be determined by determining the presence or absence of at least one genetic marker present in c-mip, wherein the at least one genetic marker is specific for the c-mip gene.
It is appreciated that a number of genetic markers is present in at least a part of the c- mip gene. Non-limiting examples of genetic markers to use in determining the absence or presence of said c-mip gene in at least a part of the c-mip gene is shown in table 2. Table 2
STR nameatiVe UT*"" Position in C-MIP SEQ ID
CMIPpyr 80091288- 80091325 7
D16S511 AFM312XD1 80258655- 80259024 8
In one embodiment the markers of the present invention may thus be D16S511 and/or CMIPpyr.
Thus in one embodiment the at least one genetic marker of at least part of the c-mip gene is selected from the group consisting of D16S511 and CMIPpyr.
In a preferred embodiment of the present invention the at least one genetic marker of at least part of the c-mip gene is the marker D16S511. In another preferred embodiment of the present invention the at least one genetic marker of at least part of the c-mip gene is the marker CMIPpyr.
It is appreciated that more than one genetic marker may be employed in the present invention. For example the at least one genetic marker may be a combination of at least two or more genetic markers such that the accuracy may be increased, such as at least three genetic markers, for example four genetic markers, such as at least five genetic markers, for example six genetic markers, such as at least seven genetic markers, for example eight genetic markers, such as at least nine genetic markers, for example ten genetic markers.
It will be apparent to the person skilled in the art that there are a large number of analytical procedures which may be used to detect'the presence or absence of variant nucleotides at one or more of positions mentioned herein in the specified region. Mutations or polymorphisms within or flanking the specified region can be detected by utilizing a number of techniques. Nucleic acid from any nucleated cell can be used as the starting point for such assay techniques, and may be isolated according to standard nucleic acid preparation procedures that are well known to those of skill in the art. In general, the detection of allelic variation requires a mutation discrimination technique, optionally an amplification reaction and a signal generation system.
In one embodiment of the methods for determining the predisposition, determining the prognosis, classifying a tumour from an individual suffering from breast cancer and/or determining the treatment regime according to the present invention the presence or absence of at least one genetic marker is detected in a target nucleic acid sequence isolated from a biological sample. For example the method comprises amplification of the target nucleotide sequence. The detection of the presence or the absence of the at least one polymorphism may be performed by amplification, wherein the target nucleotide sequence is a genomic DNA sequence, an RNA sequence, a mRNA sequence, or a cDNA sequence.
The presence or absence of at least one polymorphism may be detected in a test sample obtained from a subject can be amplified using any suitable amplification method known in the art, such as polymerase chain reaction (PCR), for example ligase chain reaction (LCR), such as reverse transcriptase PCR (RT-PCR), for example isothermal amplification, such as strand displacement amplification (SDA, for example repair chain reaction (RCR), such as cyclic probe reaction (CPR).
The methods may be used in combination with a number of signal generation systems, a selection of which is also listed in Table 3.
Many additional methods (see Table 3 below) are known in the prior art for determining the presence of particular nucleotide sequences or for determining particular proteins having particular amino acid sequences. All of these methods may be adapted for determining the polymorphisms according to the present invention.
Table 3
Figure imgf000040_0001
Figure imgf000041_0001
One common method for detecting for example SNPs comprises the use of a probe bound to a detectable label. By carrying out hybridization under conditions of high stringency it is ensured that the probe only hybridises to a sequence which is 100% complementary to the probe. According to the present invention this method comprises hybridising a probe to a target nucleic acid sequence comprising at least one of the STRs at the positions identified in Table 1 (see above). For other polymorphisms or mutations within the defined region, similar probes can be designed by the skilled practitioner and used for hybridization to a target nucleic acid sequence. The design and optimisation of probes and hybridization conditions lies within the capabilities of the skilled practitioner.
A number of amplification techniques are listed in Table 4. Many current methods for the detection of allelic variation are reviewed by Nollau et al., Clin. Chem. 43, 1114- 1120, 1997; and in standard textbooks, for example "Laboratory Protocols for Mutation Detection", Ed. by U. Landegren, Oxford University Press, 1996 and "PCR", 2nd Edition by Newton & Graham, BIOS Scientific Publishers Limited, 1997.
The detection of genetic markers can according to one embodiment of the present invention be achieved by a number of techniques known to the skilled person, including typing of microsatellites or short tandem repeats (STR), restriction fragment length polymorphisms (RFLP), detection of deletions or insertions, random amplified polymorphic DNA (RAPIDs) or the typing of single nucleotide polymorphisms by methods such as restriction fragment length polymerase chain reaction, allele-specific oligomer hybridisation, oligomer-specific ligation assays, hybridisation with PNA or locked nucleic acids (LNA) probes.
Figure imgf000042_0001
In the scope of the present invention the term "hybridization" signifies hybridization under conventional hybridization conditions, preferably under stringent conditions, as described for example in Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.). The term "stringent" when used in conjunction with hybridization conditions is as defined in the art, i.e. 15-2O0C under the melting point Tm, cf. Sambrook et al, 1989, pages 11.45-11.49. Preferably, the conditions are "highly stringent", i.e. 5-1O0C under the melting point Tm. Under highly stringent conditions hybridization only occurs if the identity between the oligonucleotide sequence and the locus of interest is 100 %, while no hybridization occurs if there is just one mismatch between oligonucleotide and DNA locus. Such optimised hybridization results are reached by adjusting the temperature and/or the ionic strength of the hybridization buffer as described in the art. However, equally high specificity may be obtained using high-affinity DNA analogues. One such high-affinity DNA analogue has been termed "locked nucleic acid" (LNA). LNA is a novel class of bicyclic nucleic acid analogues in which the furanose ring conformation is restricted in by a methylene linker that connects the 2'-0 position to the 4'-C position. Common to all of these LNA variants is an affinity toward complementary nucleic acids, which is by far the highest affinity reported for a DNA analogue (0mm et al. (1999) Clinical Chemistry 45, 1898-1905; WO 99/14226 EXIQON). LNA probes are commercially available from Proligo LLC, Boulder, Colorado, USA. Another high-affinity DNA analogue is the so-called protein nucleic acid (PNA). In PNA compounds, the sugar backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone (Science (1991) 254: 1497-1500).
Various different labels can be coupled to the probe. Among these fluorescent reporter groups are preferred because they result in a high signal/noise ratio.
Suitable examples of the fluorescent group include fluorescein, Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, acridin, Hoechst 33258, Rhodamine, Rhodamine Green, Tetramethylrhodamine, Texas Red, Cascade Blue, Oregon Green, Alexa Fluor, europium and samarium. Another type of labels is enzyme tags. After hybridization to the target nucleic acid sequence a substrate for the enzyme is added and the formation of a coloured product is measured. Examples of enzyme tags include a beta-Galactosidase, a peroxidase, horseradish peroxidase, a urease, a glycosidase, alkaline phosphatase, chloramphenicol acetyltransferase and a luciferase.
A further group of labels include chemiluminescent group, such as hydrazides such as luminol and oxalate esters.
A still further possibility is to use a radioisotope and detect the hybrid using scintillation counting. The radioisotope may be selected from the group consisting of 32P, 33P, 35S, 1251, 45Ca, 14C and 3H.
One particularly preferred embodiment of the probe based detection comprises the use of a capture probe for capturing a target nucleic acid sequence. The capture probe is bound to a solid surface such as a bead, a well or a stick. The captured target nucleic acid sequence can then be contacted with the detection probe under conditions of high stringency and the allele can be detected.
One embodiment of the probe based technique based on TAQMAN technique. This is a method for measuring PCR product accumulation using a dual-labeled flourogenic oligonucleotide probe called a TAQMAN® probe. This probe is composed of a short (ca. 20-25 bases) oligodeoxynucleotide that is labeled with two different fluorescent dyes. On the 5' terminus is a reporter dye and on the 3' terminus is a quenching dye. This oligonucleotide probe sequence is homologous to an internal target sequence present in the PCR amplicon. When the probe is intact, energy transfer occurs between the two flourophors and emission from the reporter is quenched by the quencher. During the extension phase of PCR, the probe is cleaved by 5' nuclease activity of Taq polymerase thereby releasing the reporter from the oligonucleotide-quencher and producing an increase in reporter emission intensity.
Other suitable methods include using mass spectrometry, single base extension, determining the Tm profile of a hybrid between a probe and a target nucleic acid sequence, using single strand conformation polymorphism, using single strand conformation polymorphism heteroduplex, using RFLP or RAPD, using HPLC, using sequencing of a target nucleic acid sequence from said biological sample.
Denaturing high-performance liquid chromatography (DHPLC) has been proven useful in human and animal genetic studies for detecting single nucleotide polymorphisms (SNPs). In contrary to most SNP detection methods that are currently in used, SNP detection by DHPLC is not based on a re-sequencing strategy that is expensive to implement, nor does it require gel-based genotyping procedures. Instead, SNP detection by DHPLC is based on resolving heteroduplex from homoduplex DNA fragments produced by PCR amplification using temperature-modulated heteroduplex analysis.
In connection with several of these methods there is a need for amplifying the amount of target nucleic acid in the biological sample isolated from the subject. Amplification may be performed by any known method including methods selected from the group consisting of polymerase chain reaction (PCR), Ligase Chain Reaction (LCR), Nucleic Acid Sequence-Based Amplification (NASBA), strand displacement amplification, rolling circle amplification, and T7-polymerase amplification.
To the extent that the polymorphisms as defined in the present invention are present in DNA sequences transcribed as mRNA transcripts these transcripts constitute a suitable target sequence for detection of the polymorphisms. Commercial protocols are available for isolation of total mRNA. Through the use of suitable primers and/or probes the target mRNA can be amplified and the presence or absence of polymorphisms be detected with any of the techniques described above for detection of polymorphisms in a DNA sequence.
Oligonucleotide primer and or probe
In one aspect the present invention relates to an oligonucleotide primer and/or probe for detecting a c-mip gene or a part thereof, transcriptional product or part thereof, wherein said at least one nucleotide primer and/or probe detects at least one genetic marker of c-mip or part thereof.
An isolated oligonucleotide primer of the present invention is a nucleic acid molecule sufficiently complementary to the sequence on which it is based and of sufficiently length to selectively hybridise to the corresponding region of a nucleic acid molecule intended to be amplified. The primer is able to prime the synthesis of the corresponding region of the intended nucleic acid molecule in the methods described above. Similarly, an isolated oligonucleotide probe of the present invention is a molecule for example a nucleic acid molecule of sufficient length and sufficiently complementary to the nucleic acid sequence of interest which selectively binds to the nucleic acid sequence of interest under high or low stringency conditions.
In one aspect the invention relates to an isolated oligonucleotide comprising at least 10 contiguous nucleotides being 100% identical to a subsequence of the c-mip gene or complementary sequence of the invention comprising or adjacent to a polymorphism or mutation being correlated to a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer, or being 100% identical to a subsequence of the human genome which is in linkage disequilibrium with the gene of the invention comprising or adjacent to a polymorphism or mutation being correlated to a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer. As explained elsewhere herein such probes may be used for detecting the presence of a polymorphism of interest and/or they may constitute part of a primer pair and/or they may form part of a gene therapy vector used for treating the diseases of the present invention.
Preferably the isolated oligonucleotide comprises at least 10 contiguous bases of a sequence identified as SEQ ID NOs: 7-8 or the corresponding complementary strand, or a strand sharing at least 90% sequence identity more preferably at least 95% sequence identity with SEQ ID NOs: 7-8 or a complementary strand thereof, said isolated oligonucleotide comprising a genetic marker of the invention.
Further preferred isolated oligonucleotides may comprise at least 10 contiguous bases of any of the sequence identified as SEQ ID NOS: 1 or the corresponding complementary strand thereof, or a strand sharing at least 90% sequence identity more preferably at least 95% sequence identity with the SEQ ID NOS: 1 and/or SEQ ID NO:2 or a complementary strand thereof, said isolated oligonucleotide comprising a polymorphism of the invention. These particular oligonucleotides may be used as probes for assessing the polymorphisms in the human C-MIP gene which are strongly correlated with metastasis formation, recurrence and diseases of the invention. The length of the isolated oligonucleotide depends on the purpose. When being used for amplification from a sample of genomic DNA, the length of the primers should be at least 15 and more preferably even longer to ensure specific amplification of the desired target nucleotide sequence. When being used for amplification from mRNA the length of the primers can be shorter while still ensuring specific amplification. In one particular embodiment one of the pair of primers may be an allele specific primer in which case amplification only occurs if the specific allele is present in the sample. When the isolated oligonucleotides are used as hybridisation probes for detection, the length is preferably in the range of 10-15 nucleotides. This is enough to ensure specific hybridisation in a sample with an amplified target nucleic acid sequence. When using nucleotides which bind stronger than DNA (e.g. LNA and/or PNA), the length of the probe can be somewhat shorter, e.g. down to 7-8 bases.
The length may be at least 15 contiguous nucleotides, such as at least 20 nucleotides. An upper limit preferably determines the maximum length of the isolated oligonucleotide. Accordingly, the isolated oligonucleotide may be less than 1000 nucleotides, more preferably less than 500 nucleotides, more preferably less than 100 nucleotides, such as less than 75 nucleotides, for example less than 50 nucleotides, such as less than 40 nucleotides, for example less than 30 nucleotides, such as less than 20 nucleotides.
The isolated oligonucleotide may comprise from 10 to 50 nucleotides, such as from 10 to 15, from 15 to 20, from 20 to 25, or comprising from 20 to 30 nucleotides, or from 15 to 25 nucleotides.
Depending on the use the polymorphism may be located in the centre of the nucleic acid sequence, in the 5' end of the nucleic acid sequence, or in the 3' end of the nucleic acid sequence. For detection based on single base extension the sequence of the oligonucleotide is adjacent to the mutation/polymorphism, either in the 3' or 5' direction.
The isolated oligonucleotide sequence may be complementary to a sub-sequence of the coding strand of a target nucleotide sequence or to a sub-sequence to the non- coding strand of a target nucleotide sequence as the polymorphism may be assessed with similar efficiency in the coding and the non-coding strand.
The isolated oligonucleotide sequence may be made from RNA, DNA, LNA, PNA monomers or from chemically modified nucleotides capable of hybridising to a target nucleic acid sequence. The oligonucleotides may also be made from mixtures of said monomers.
A general term for primers and probes of is the term 'oligonucleotide' which comprises oligonucleotides of both natural and/or non-natural nucleotides, including any combination thereof. The natural and/or non-natural nucleotides may be linked by natural phosphodiester bonds or by non-natural bonds. Oligonucleotide is used interchancably with polynucleotide. The oligomer or polymer sequences of the present invention are formed from the chemical or enzymatic addition of monomer subunits. The term "oligonucleotide" as used herein includes linear oligomers of natural or modified monomers or linkages, including deoxyribonucleotides, ribonucleotides, anomeric forms thereof, peptide nucleic acid monomers (PNAs), locked nucleotide acid monomers (LNA), and the like, capable of specifically binding to a single stranded polynucleotide tag by way of a regular pattern of monomer-to-monomer interactions, such as Watson-Crick type of base pairing, base stacking, Hoogsteen or reverse Hoogsteen types of base pairing, or the like. Usually monomers are linked by phosphodiester bonds or analogs thereof to form oligonucleotides ranging in size from a few monomeric units, e.g. 3-4, to several tens of monomeric units, e.g. 40-60. Whenever an oligonucleotide is represented by a sequence of letters, such as "ATGCCTG," it will be understood that the nucleotides are in 51 → 31 order from left to right and the "A" denotes deoxyadenosine, "C" denotes deoxycytidine, "G" denotes deoxyguanosine, and "T" denotes thymidine, unless otherwise noted. Usually oligonucleotides of the invention comprise the four natural nucleotides; however, they may also comprise methylated or non-natural nucleotide analogs. Suitable oligonucleotides may be prepared by the phosphoramidite method described by
Beaucage and Carruthers (Tetrahedron Lett., 22, 1859-1862, 1981), or by the triester method according to Matteucci, et al. (J. Am. Chem. Soα, 103, 3185, 1981), both incorporated herein by reference, or by other chemical methods using either a commercial automated oligonucleotide synthesizer or VLSIPS.TM. technology. When oligonucleotides are referred to as "double-stranded," it is understood by those of skill in the art that a pair of oligonucleotides exist in a hydrogen-bonded, helical configuration typically associated with, for example, DNA. In addition to the 100% complementary form of double-stranded oligonucleotides, the term "double-stranded" as used herein is also meant to refer to those forms which include such structural features as bulges and loops. For example as described in US 5.770.722 for a unimolecular double-stranded DNA. It is clear to those skilled in the art when oligonucleotides having natural or non-natural nucleotides may be employed, e.g. where processing by enzymes is called for, usually oligonucleotides consisting of natural nucleotides are required. When nucleotides are conjugated together in a string using synthetic procedures, they are always referred to as oligonucleotides.
Non-limiting examples of oligonucleotides that may be used as a primer, probe and/or primer pairs for determination of the presence or absence of the c-mip gene are shown in table 5. Table 5
STR Forward primer 5' - 3' Reverse Primer 5' - 3'
CMIP/PYR GCTGTGGCTTAACGATTCT(SEQ ID NO: 9) GGCGACAGAGTGAGACT (SEQ ID NO:10) D16S511 CCCCGGAGCAAGTTCA (SEQ ID NO:11) CAGCCCAAAGCCAGATTA (SEQ ID NO:12)
In one embodiment of the present invention the oligonucleotide primer is a primer for the amplification of the genetic markers CMIP/PYR or D16S51 1. In another embodiment the at least one oligonucleotide probe is a probe for the detection of the genetic markers CMIP/PYR and D16S511. In yet another embodiment the at least one oligonucleotide probe is a probe for the detection of the genetic markers is CMIP/PYR .
In yet a further embodiment the at least one oligonucleotide probe is a probe for the detection of the genetic markers D16S511.
In a preferred embodiment the oligonucleotide primer is as defined as SEQ ID NO: 9. In another preferred embodiment the nucleotide primer is as defined in SEQ ID NO: 10
In yet another preferred embodiment the nucleotide primer is as defined in SEQ ID NO:
11. In a further preferred embodiment the nucleotide primer is as defined in SEQ ID
NO: 12.
Another aspect of the invention relates to an oligonucleotide primer pair, wherein at least 2 primers are able to amplify the c-mip or part thereof. The nucleotide primer pair are selected from the group consisting of at least one primer pair for amplification of CMIP/PYR and/or D16S511.Thus, the primer pair is and SEQ ID NO:9 and SEQ ID
NO: 10 and/or SEQ ID NO: 11 and SEQ ID NO: 12.
The methods of the present invention comprises determining the expression level of a c-mip transcriptional and/or translational product or part thereof in a breast cancer sample, wherein a reduction in the expression level of the transcriptional product, translational product or part thereof compared to the expression level of a control sample is indicative an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival.. In one embodiment the reduction is at least 10%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%. The reduction is in the range of 10% - 100%, such as 20%-100%, for example 30%-100%, such as 40%-100%, for example 50%-100%, such as 60%-100%, for example 70%-100%, such as 80%-100%, for example 90%-100%. The reduction in the expression level is in the range of 20% - 30%, 30%-40%, 40%-50%, 50%-60%, 60%- 70%, 70%-80%, or 90%-100%. It is appreciated that the transcriptional and/or translational product or part thereof is any transcriptional and/or translational product of the c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO:2). In one embodiment the transcriptional and/or translational product is be selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, and SEQ ID NO: 6. The transcriptional and/or translational product is SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, or SEQ ID NO: 6.
The term increase in percent is to be interpreted as the following example: in a breast cancer sample the expression level of c-mip has a value 15. In a control sample the expression level of c-mip has a value 10. This means that the increase of the expression level in the breast cancer sample compared to the control sample is 50%.
It is within the general scope of the present invention to provide methods for the detection of mRNA. Such methods often involve sample extraction, PCR amplification, nucleic acid fragmentation and labeling, extension reactions, and transcription reactions. Other techniques are also contemplated. These include other techniques for assaying for specific mRNA species, including RT-PCR and Northern Blotting, as well as techniques for assaying for particular protein products, such as ELISA, Western blotting, and enzyme assays. Gene expression patterns according to the present invention are determined by measuring any gene product of a particular gene, including mRNA and protein.
The nucleic acid (either genomic DNA, RNA or mRNA) may be isolated from the sample according to any of a number of methods well known to those of skill in the art. One of skill will appreciate that where alterations in the copy number of a gene are to be detected genomic DNA is preferably isolated. Conversely, where an expression level of a gene such as the C-MIP gene is to be detected, preferably RNA (mRNA) is isolated.
Methods of isolating total mRNA are well known to those of skill in the art. In one embodiment, the total nucleic acid is isolated from a given sample using, for example, an acid guanidinium-phenol-chloroform extraction method and polyA.sup. and mRNA is isolated by oligo dT column chromatography or by using (dT)n magnetic beads (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual (2nd ed.), VoIs. 1-3, Cold Spring Harbor Laboratory, (1989), or Current Protocols in Molecular Biology, F. Ausubel et al., ed. Greene Publishing and Wiley-lnterscience, New York (1987)).
The sample may be from tissue and/or body fluids, as defined elsewhere herein. Before analyzing the sample, e.g., on an oligonucleotide array, it will often be desirable to perform one or more sample preparation operations upon the sample. Typically, these sample preparation operations will include such manipulations as extraction of intracellular material, e.g., nucleic acids from whole cell samples, amplification of nucleic acids, fragmentation, transcription, labeling and/or extension reactions. One or more of these various operations may be readily incorporated into the present invention.
Affinity columns (matrices) are typically used either to isolate a single nucleic acid typically by providing a single species of affinity ligand. Alternatively, affinity columns bearing a single affinity ligand (e.g. oligo dt columns) have been used to isolate a multiplicity of nucleic acids where the nucleic acids all share a common sequence (e.g. a polyA).
The type of affinity matrix used depends on the purpose of the analysis. For example, as in the present invention where it is desired to analyze mRNA expression levels of the C-MIP gene in a complex nucleic acid sample (e.g., total mRNA) it is often desirable to eliminate nucleic acids produced by genes that are constitutively overexpressed and thereby tend to mask gene products expressed at characteristically lower levels. Thus, in one embodiment, the affinity matrix can be used to remove a number of preselected gene products (e.g., actin, GAPDH, etc.). This is accomplished by providing an affinity matrix bearing nucleic acid affinity ligands complementary to the gene products (e.g., mRNAs or nucleic acids derived therefrom) or to subsequences thereof. Hybridization of the nucleic acid sample to the affinity matrix will result in duplex formation between the affinity ligands and their target nucleic acids. Upon elution of the sample from the affinity matrix, the matrix will retain the duplexes nucleic acids leaving a sample depleted of the overexpressed target nucleic acids.
In a preferred embodiment, the affinity matrix is packed into a columnar casing. The sample is then applied to the affinity matrix (e.g. injected onto a column or applied to a column by a pump such as a sampling pump driven by an autosampler). The affinity matrix (e.g. affinity column) bearing the sample is subjected to conditions under which the nucleic acid probes comprising the affinity matrix hybridize specifically with complementary target nucleic acids. Such conditions are accomplished by maintaining appropriate pH, salt and temperature conditions to facilitate hybridization as discussed above.
The nucleic acid sample may be probed using an array of oligonucleotide probes. Oligonucleotide arrays generally include a substrate having a large number of positionally distinct oligonucleotide probes attached to the substrate. These arrays may be produced using mechanical or light directed synthesis methods which incorporate a combination of photolithographic methods and solid phase oligonucleotide synthesis methods.
One aspect of the present invention relates to an antibody directed to an epitope of c- mip protein or part thereof as described elsewhere herein. The antibody may be used in methods of the present invention relating to methods for detecting the predisposition and/or determining the prognosis of an individual suffering from breast cancer to developing metastasis and recurrence. Thus, epitope in this context covers any epitope capable of being recognised by an antibody or a binding fragment thereof. The term "antibody" as used herein includes both polyclonal and monoclonal antibodies, as well as fragments thereof, such as, Fv1 Fab and F(ab)2 fragments that are capable of binding antigen or hapten. It includes conventional murine monoclonal antibodies as well as human antibodies, and humanized forms of non-human antibodies, and it also includes 'antibodies' isolated from phage antibody libraries.
The antibodies of the present invention may be polyclonal or monoclonal and may be produced by in vivo or in vitro methods known in the art.
A monoclonal antibody is an antibody produced by a hybridoma cell. Methods of making monoclonal antibody-synthesizing hybridoma cells are well known to those skilled in the art, e.g, by the fusion of an antibody producing B lymphocyte with an immortalized B-lymphocyte cell line.
A polyclonal antibody is a mixture of antibody molecules (specific for a given antigen) that has been purified from an immunized (to that given antigen) animal's blood. Such antibodies are polyclonal in that they are the products of many different populations of antibody-producing cells.
The invention also pertains to mixtures of monoclonal and/or polyclonal antibodies. Also a mixture of at least two monoclonal antibodies is within the scope of the present invention. It is appreciated that the mixture may comprise 3, 4, 5, 6, 7, 8, 9, 10, or 15 monoclonal antibodies.
The invention also relates to a pharmaceutical composition for the treatment of metastasis and/or recurrence in an individual suffering from breast cancer, comprising a vector as described herein and a pharmaceutically acceptable carrier or excipient.
Furthermore, within the scope of the present invention is a pharmaceutical composition for the treatment of metastasis and/or recurrence in an individual suffering from breast cancer, comprising an inhibitor of the c-mip gene or fragment thereof, or an inhibitor of a transcriptional or translational product or part thereof and a pharmaceutically acceptable carrier or excipient. Such inhibitors act to disrupt the oncogenic potential of the c-mip gene or fragment thereof, a transcriptional or translational product or part thereof. For example the inhibitor may be in the form of complementary oligonucleotides, RNAi or siRNA molecules directed against a c-mip transcriptional product. An inhibitor may also be an inhibitor of c-mip transcriptional and/or translational expression. An inhibitor may also be an antibody directed against an epitope of the c-mip translational product or part thereof as described elsewhere herein.
In one embodiment the pharmaceutical composition comprises one or more inhibitors of the peptides being expression products as defined above. In a preferred embodiment, the peptides are bound to carriers. The peptides may suitably be coupled to a polymer carrier, for example a protein carrier, such as BSA. Such formulations are well-known to the person skilled in the art.
The peptides may be suppressor peptides normally lost or decreased in tumour tissue administered in order to stabilise tumours towards a less malignant stage. In another embodiment the peptides are onco-peptides capable of eliciting an immune response towards the tumour cells.
In another embodiment the pharmaceutical composition comprises genetic material, either genetic material for substitution therapy, or for suppressing therapy.
In a third embodiment the pharmaceutical composition comprises at least one antibody produced as described above.
In the present context the term pharmaceutical composition is used synonymously with the term medicament. The medicament of the invention comprises an effective amount of one or more of the compounds as defined above, or a composition as defined above in combination with pharmaceutically acceptable additives. Such medicament may suitably be formulated for oral, percutaneous, intramuscular, intravenous, intracranial, intrathecal, intracerebroventricular, intranasal or pulmonal administration. For most indications a localised or substantially localised application is preferred.
Strategies in formulation development of medicaments and compositions based on the compounds of the present invention generally correspond to formulation strategies for any other protein-based drug product. Potential problems and the guidance required to overcome these problems are dealt with in several textbooks, e.g. "Therapeutic Peptides and Protein Formulation. Processing and Delivery Systems", Ed. A.K. Banga, Technomic Publishing AG, Basel, 1995.
Injectables are usually prepared either as liquid solutions or suspensions, solid forms suitable for solution in, or suspension in, liquid prior to injection. The preparation may also be emulsified. The active ingredient is often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol or the like, and combinations thereof. In addition, if desired, the preparation may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or which enhance the effectiveness or transportation of the preparation.
Formulations of the compounds of the invention can be prepared by techniques known to the person skilled in the art. The formulations may contain pharmaceutically acceptable carriers and excipients including microspheres, liposomes, microcapsules and nanoparticles.
The preparation may suitably be administered by injection, optionally at the site, where the active ingredient is to exert its effect. Additional formulations which are suitable for other modes of administration include suppositories, and in some cases, oral formulations. For suppositories, traditional binders and carriers include polyalkylene glycols or triglycerides. Such suppositories may be formed from mixtures containing the active ingredient(s) in the range of from 0.5% to 10%, preferably 1-2%. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and generally contain 10-95% of the active ingredients ), preferably 25-70%.
The preparations are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective. The quantity to be administered depends on the subject to be treated, including, e.g. the weight and age of the subject, the disease to be treated and the stage of disease. Suitable dosage ranges are of the order of several hundred μg active ingredient per administration with a preferred range of from about 0.1 μg to 1000 μg, such as in the range of from about 1 μg to 300 μg, and especially in the range of from about 10 μg to 50 μg. Administration may be performed once or may be followed by subsequent administrations. The dosage will also depend on the route of administration and will vary with the age and weight of the subject to be treated. A preferred dosis would be in the interval 30 mg to 70 mg per 70 kg body weight.
Some of the compounds of the present invention are sufficiently active, but for some of the others, the effect will be enhanced if the preparation further comprises pharmaceutically acceptable additives and/or carriers. Such additives and carriers will be known in the art. In some cases, it will be advantageous to include acompound, which promote delivery of the active substance to its target.
In many instances, it will be necessary to administrate the formulation multiple times. Administration may be a continuous infusion, such as intraventricular infusion or administration in more doses such as more times a day, daily, more times a week, weekly, etc.
In a further embodiment the present invention relates to a vaccine for the prophylaxis or treatment of metastasis and/or recurrence in an individual suffering from breast cancer comprising at least one expression product from gene with SEQ ID NO:1 and/or SEQ ID NO:2 or a fragment thereof.
The term vaccines is used with its normal meaning, i.e preparations of immunogenic material for administration to induce in the recipient an immunity to infection or intoxication by a given infecting agent. Vaccines may be administered by intravenous injection or through oral, nasal and/or mucosal administration. Vaccines may be either simple vaccines prepared from one species of expression products, such as proteins or peptides, or a variety of expression products, or they may be mixed vaccines containing two or more simple vaccines. They are prepared in such a manner as not to destroy the immunogenic material, although the methods of preparation vary, depending on the vaccine.
The enhanced immune response achieved according to the invention can be attributable to e.g. an enhanced increase in the level of immunoglobulins or in the level of T-cells including cytotoxic T-cells will result in immunisation of at least 50% of individuals exposed to said immunogenic composition or vaccine, such as at least
55%, for example at least 60%, such as at least 65%, for example at least 70%, for example at least 75%, such as at least 80%, for example at least 85%, such as at least 90%, for example at least 92%, such as at least 94%, for example at least 96%, such as at least 97%, for example at least 98%, such as at least 98.5%, for example at least 99%, for example at least 99.5% of the individuals exposed to said immunogenic composition or vaccine are immunised.
Compositions according to the invention may also comprise any carrier and/or adjuvant known in the art including functional equivalents thereof. Functionally equivalent carriers are capable of presenting the same immunogenic determinant in essentially the same steric conformation when used under similar conditions. Functionally equivalent adjuvants are capable of providing similar increases in the efficacy of the composition when used under similar conditions.
In another aspect of the invention the methods and compositions disclosed herein relates to a method of treatment of an individual suffering from breast cancer having the predisposition to and/or prognosis of metastasis and/or recurrence, said method comprising administering to said subject a therapeutically effective amount of a gene therapy vector as defined herein or a pharmaceutical composition as defined herein.
In one aspect there is provided a diagnostic kit for detecting the predisposition to a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer. Similarly, a diagnostic kit is provided for determining the prognosis of an individual suffering from breast cancer in relation to metastasis formation, recurrence and disease. The kit may also be directed to the determination of the treatment regime of an individual suffering from breast cancer. Furthermore, the kit may be directed to the classification of a tumour from an individual suffering from breast cancer. Thus, the present invention relates to a kit for use in a method, comprising at least one detection member, such as a detection member selected from the group consisting of antibodies, primer, probes and primer pairs as defined elsewhere herein.
The kit comprises at least one primer or probe comprising a nucleic acid sequence as described elsewhere herein. In one embodiment of the present invention at least two primers or probes are comprised in the diagnostic kit. However, three, four, five, six, seven, eight, nine, ten, 15, 20 or more primers or probes may be comprised in the kit. It is appreciated that also at least one set of primers may be comprised in the kit, for example two sets, three sets, four sets, five sets, six sets, seven sets, eight sets, nine sets, or ten sets of primers, as described elsewhere herein.
In one embodiment the primers or probes are linked to a detectable label. In another embodiment based on single nucleotide extension the kit further comprises at least one nucleotide monomer labelled with a detectable label, a polymerase and suitable buffers and reagents.
The kit preferably also comprises set of primers for amplifying the c-mip gene and/or translational or transcriptional products of the c-mip gene, or the corresponding complementary strands. The primers preferably are at least 15 bases long and may be coupled to an entity suitable for subsequent immobilisation.
In another embodiment a diagnostic kit of the invention may comprise an antibody as described above.
In yet another embodiment the kit is in the form of an array comprising oligonucleotides which recognise the transcript of SEQ ID NO:1 and/or 2. The transcript sequence may be exemplified by SEQ ID NO:3 or SEQ ID NOA.
The present invention also pertains to an assay kit for use in the methods of the present invention, wherein said kit comprises reagents and instructions for the performance of the assay method and for the interpretation of results.
The present invention relates to methods and kits that find their use in the detection of a predisposition and/or determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival for an individual suffering from breast cancer. Similarly, the present invention relates to a method and kit which find their use in the determination of a treatment regime for an individual suffering from breast cancer.
Thus, one embodiment of the present invention is the use of an antibody as defined herein for the determination of the predisposition of and/or prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer. The antibody directed to an epitope of c-mip protein or part thereof is used to detect the presence or absence of c-mip protein or part thereof, the outcome of which is indicative of the predetermination, prognosis and/or treatment regime in an individual suffering from breast cancer.
The present invention also relates to the use of at least one detection member for a genetic marker of c-mip or for a second genetic marker in genetic linkage with said marker in a kit for the determination of the predisposition to and/or the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer. Furthermore, the present invention also relates to the use of at least one detection member for a genetic marker of c-mip or for a second genetic marker in genetic linkage with said marker in a kit for the determination of a treatment regime for an individual suffering from breast cancer. The at least one detection member is selected from the group consisting of at least one nucleotide primer, primer pair, probe, and an antibody as defined elsewhere herein. The at least one detection member may be any combination of primer, primer pair, probe and/or antibody. In one embodiment the at least one detection member is a primer, a primer pair, a probe, or an antibody.
It is appreciated that at least one detection member is used, or two, three, four, five, six, seven, eight, nine, or ten detection members are used.
In another aspect the present invention relates to the use of a method as described herein for producing an assay for detecting a predisposition to and/or determining the prognosis to a period of metastasis-free and/or recurrence-free and/or disease-free survival of an individual suffering from breast cancer. Furthermore, the present invention relates to the use of a method as described herein for producing an assay for determining the treatment regime of an individual suffering from breast cancer.
In a further aspect the invention relates to the use of a composition defined elsewhere herein for the treatment of an individual suffering from breast cancer. Yet a further aspect of the invention is the use of a polypeptide or part thereof as described herein for the preparation of a pharmaceutical composition for the treatment of metastasis, recurrence of an individual suffering from breast cancer.
Furthermore, the invention relates to the use of a gene or part thereof as described herein for the preparation of a pharmaceutical composition for the treatment of metastasis, recurrence of an individual suffering from breast cancer.
The genetic material discussed above is the described c-mip gene or functional parts thereof. The constructs may be introduced as a single DNA molecule encoding all of the genes, or different DNA molecules having one or more genes. The constructs may be introduced simultaneously or consecutively, each with the same or different markers.
The gene may be linked to the complex as such or protected by any suitable system normally used for transfection such as viral vectors or artificial viral envelope, liposomes or micellas, wherein the system is linked to the complex.
Numerous techniques for introducing DNA into eukaryotic cells are known to the skilled artisan. Often this is done by means of vectors, and often in the form of nucleic acid encapsidated by a (frequently virus-like) proteinaceous coat. Gene delivery systems may be applied to a wide range of clinical as well as experimental applications.
Vectors containing useful elements such as selectable and/or amplifiable markers, promoter/enhancer elements for expression in mammalian, particularly human, cells, and which may be used to prepare stocks of construct DNAs and for carrying out transfections are well known in the art. Many are commercially available.
Various techniques have been developed for modification of target tissue and cells in vivo. A number of virus vectors, discussed below, are known which allow transfection and random integration of the virus into the host. See, for example, Dubensky et al. (1984) Proc. Natl. Acad. Sci. USA 81:7529-7533; Kaneda et al., (1989) Science 243:375-378; Hiebert et al. (1989) Proc. Natl. Acad. Sci. USA 86:3594-3598; Hatzoglu et al., (1990) J. Biol. Chem. 265:17285-17293; Ferry et al. (1991) Proc. Natl. Acad. Sci. USA 88:8377-8381. Routes and modes of administering the vector include injection, e.g intravascularly or intramuscularly, inhalation, or other parenteral administration.
Advantages of adenovirus vectors for human gene therapy include the fact that recombination is rare, no human malignancies are known to be associated with such viruses, the adenovirus genome is double stranded DNA which can be manipulated to accept foreign genes of up to 7.5 kb in size, and live adenovirus is a safe human vaccine organisms.
Another vector which can express the DNA molecule of the present invention, and is useful in gene therapy, particularly in humans, is vaccinia virus, which can be rendered non-replicating (U.S. Pat. Nos. 5,225,336; 5,204,243; 5,155,020; 4,769,330).
Based on the concept of viral mimicry, artificial viral envelopes (AVE) are designed based on the structure and composition of a viral membrane, such as HIV-1 or RSV and used to deliver genes into cells in vitro and in vivo. See, for example, U.S. Pat. No. 5,252,348, Schreier H. et al., J. MoI. Recognit, 1995, 8:59-62; Schreier H et al., J. Biol. Chem., 1994, 269:9090-9098; Schreier, H., Pharm. Acta HeIv. 1994, 68:145-159; Chander, R et al. Life ScL, 1992, 50:481-489, which references are hereby incorporated by reference in their entirety. The envelope is preferably produced in a two-step dialysis procedure where the "naked" envelope is formed initially, followed by unidirectional insertion of the viral surface glycoprotein of interest. This process and the physical characteristics of the resulting AVE are described in detail by Chander et al., (supra). Examples of AVE systems are (a) an AVE containing the HIV-1 surface glycoprotein gp160 (Chander et al., supra; Schreier et al., 1995, supra) or glycosyl phosphatidylinositol (GPI)-linked gp120 (Schreier et al., 1994, supra), respectively, and (b) an AVE containing the respiratory syncytial virus (RSV) attachment (G) and fusion (F) glycoproteins (Stecenko, A. A. et al., Pharm. Pharmacol. Lett. 1:127-129 (1992)). Thus, vesicles are constructed which mimic the natural membranes of enveloped viruses in their ability to bind to and deliver materials to cells bearing corresponding surface receptors.
AVEs are used to deliver genes both by intravenous injection and by instillation in the lungs. For example, AVEs are manufactured to mimic RSV, exhibiting the RSV F surface glycoprotein which provides selective entry into epithelial cells. F-AVE are loaded with a plasmid coding for the gene of interest, (or a reporter gene such as CAT not present in mammalian tissue).
The AVE system described herein in physically and chemically essentially identical to the natural virus yet is entirely "artificial", as it is constructed from phospholipids, cholesterol, and recombinant viral surface glycoproteins. Hence, there is no carry-over of viral genetic information and no danger of inadvertant viral infection. Construction of the AVEs in two independent steps allows for bulk production of the plain lipid envelopes which, in a separate second step, can then be marked with the desired viral glycoprotein, also allowing for the preparation of protein cocktail formulations if desired.
Another delivery vehicle for use in the present invention are based on the recent description of attenuated Shigella as a DNA delivery system (Sizemore, D. R. et al., Science 270:299-302 (1995), which reference is incorporated by reference in its entirety). This approach exploits the ability of Shigellae to enter epithelial cells and escape the phagocytic vacuole as a method for delivering the gene construct into the cytoplasm of the target cell. Invasion with as few as one to five bacteria can result in expression of the foreign plasmid DNA delivered by these bacteria.
A preferred type of mediator of nonviral transfection in vitro and in vivo is cationic (ammonium derivatized) lipids. These positively charged lipids form complexes with negatively charged DNA, resulting in DNA charged neutralization and compaction. The complexes endocytosed upon association with the cell membrane, and the DNA somehow escapes the endosome, gaining access to the cytoplasm. Cationic lipid:DNA complexes appear highly stable under normal conditions. Studies of the cationic lipid DOTAP suggest the complex dissociates when the inner layer of the cell membrane is destabilized and anionic lipids from the inner layer displace DNA from the cationic lipid. Several cationic lipids are available commercially. Two of these, DMRI and DC- cholesterol, have been used in human clinical trials. First generation cationic lipids are less efficient than viral vectors. For delivery to lung, any inflammatory responses accompanying the liposome administration are reduced by changing the delivery mode to aerosol administration which distributes the dose more evenly.
Examples Patient material and treatment Tumour material and matching blood samples were collected from 199 patients with sporadic breast cancer whose tumour biopsies were submitted for estrogen receptor (ER) analysis. The material was collected between August 1992 and January 1994 from patients fulfilling the following criteria: (a) primary unilateral beast carcinoma with no evidence of disseminated disease; (b) complete clinical, histopathological, and biological information available; (c) no other malignancies; and (d) full history of follow- up.
Treatment was either lumpectomy or radical modified mastectomy with auxiliary node sampling. Patients with advanced disease after radical mastectomy and a\) patients treated by lumpectomy were given adjuvant radiotherapy. Adjuvant systemic hormone therapy and/or chemotherapy were given to all patients at high risk i.e. those with positive axillary nodes. The patients were treated and followed-up according to the national Danish treatment policy according to the Danish Breast Cancer Cooperative Group (DBCG) protocols and principles (Overgaard, M.et al. N. Engl. J. Med., 337: 949- 955, 1997; Andersen, K. W. and Mouridsen, Acta Oncol, 27: 627-647, 1988.
160 patients were informative for the genetic markers that are specific for the c-mip gene. The characteristics of the patients and tumour are shown below.
Table 6
Patients and tumour characteristics in 160 patients with informative genotype.
No Al Al
All 59 101
Premenopausal 11 34 Postmenopausal 48 67
Aαe
<50 8 30
50-59 31 30
60-69 14 20
>69 6 21
Tumour size < 21 mm 32 47 21-50 26 47 > 50 1 8
Positive nodes none 33 56
1-3 13 26
> 3 13 19
Histooatholoαv (WHCΛ
Ductal 48 85
Other 11 16
Maliαnacv αrade (DuctaH
Grade I 6 30
Grade Il 22 36
Grade III 20 19
Estroαen recβDtor
Neαative 26 20
Positive 33 81
Her 2
Neαative 42 94
Positive 17 7
Where Al is an abbreviation for allelic imbalance
Isolation of Tumour and normal DNA
The tumour DNA was purified from the hormone receptor analysis leftover. Purification of genomic DNA from leucocytes and tumour tissue are as described as follows
(Hansen et al. 1998 Cancer Research Cancer Res, 58: 2166-2169) .
670 tumour samples received from the receptor laboratory between August 1992 and
December 1994. The receptor analysis was performed on 50 to 1500 mg tumour tissue and the yield ranged from a few pg to more than one mg DNA. In general, we isolated
400 pg DNA/ 100 mg tumour tissue.
The tumours were examined by a pathologist immediately after surgery. Part of the tumour was stored at -800C. and the rest of the tumour material was used for hormone receptor analysis.
The pellet containing nuclei was obtained immediately after the receptor measurement. Lysis buffer (750 p11100 mg tissue of 1O mM Tris-HC1 , 1 mM EDTA, 15O mM NaCI, 0.5% SDS, pH 10.5) and proteinase K (152 pg/100 mg tissue) were added and the pellet was incubated at 55°C for at least 90 rnin until it became soluble. 1/3 volume of 6 M NaCI was added, and the tubes were shaken cautiously and centrifuged for 15 min (3000 rpm) at 40C. (if the supernatant was nontransparent, it was transferred to a new tube and centrifuged again). The supernatant was transferred to a new tube and 2 volumes of icecold ethanol were added. The DNA was wound onto a glass rod and transferred to a tube with 300 μ) TE (modified from Miller et al. 1988). The products were analysed by electrophoresis in a 1% agarose gel stained with ethidium bromide. Blood (10 ml) was obtained from each patient and DNA was purified according to the salting-out method (Miller etal. 1988).
Example 1 Loss of heterozygosity analysis and analysis of allelic imbalance
In the present invention LOH analysis has been employed in order to identify regions in the chromosome which are involved in the development of cancer.
In LOH a comparison of the allele intensities between PCR-amp)ified simple tandem repeats from individual matched wild-type and tumour DNAs from a cohort of cancer patients with the same cancer type is performed.
The simple tandem repeats are amplified by the use of primers which can be labelled for example radioactively or by fluorescent means. The resulting amplified fragments can be analyzed separately or using high throughput procedures now available. After capillary electrophoresis, each product according to the present invention was visualized as a peak the height of which was proportional to the amount of DNA inherent in it. To calculate the percentage of allelic loss (AL) in each sample, the peak height ratios between the two peaks of a heterozygous normal DNA sample versus tumour DNA were compared. A histogram displaying the allele ratios of the samples analyzed are shown in Figure 1. A ratio of 20% was chosen as a cut-off value to distinguish allelic loss from retention.
Labelling
The forward primer of each microsatellite was labeled with a fluorescent dye; 6-FAM, TET or HEX (PE Biosystems, Foster Ciy, CA). Multiplex PCR amplification of 2-3 STR were performed using 20 ng DNA (control or tumour), 1 pmol of each primer, 250 μM dNTP, 1 x PCR buffer (supplied with the enzyme) and 0.18 U Taq polymerase (Roche) in a final volume of 6 μl. PCR cycle conditions were: 1 cycle of 94°C for 4 min, 55°C for 30 s, 72°C for 36 s followed by 26 cycles of 94°C for 30 s, 55 "C for 30 s, 720C for 36 s and finally an elongation step of 94°C for 30 s, 55°C for 30 s, 72° C for 6 min. Elongation time for D16S511 were 55 seconds for all cycles.
A maximum of 12 products were pooled and analyzed via capillary electrophoresis on an ABI Prism™ 310 Genetic Analyzer. Capillary polymer was POP-4™ (PE
Biosystems) and an internal size standard was added to each sample prior to electrophoresis.
Primers marked with an asterix in the tables below were labelled radioactively by end- labelling using [gamma-33P]-labelled ATP.
STRs
Simple tandem repeats along chromosome 16 were analyzed in relation to predisposition to breast cancer, recurrence, metastasis formation and disease-free survival. The position of the STRs analyzed are listed in table 7 in relation to known genes and position on chromosome 16.
Table 7
Alternative nri- Mutual Located in gene Chromosome o idl Ir P name distances: or between genes band
D16S2622 GATA73605 3649720 3650077 DNASE1 TRAP1 16p13.3
D16S404 AFM056YF6 9625613 9626037 5975536 16p13.2
D16S3114 AFMC010ZE1 11952773 11953125 2326736 TNFRSF17 RUNDC2a 16p13.13
D16S748 ATA3A07 12046849 12047161 93724 RUNDC2A 16p13.13
D16S2619 GATA62G05 13649948 13650250 1602787 16p13.12
D16S405 AFM070YA1 15790048 15790256 2139798 M YH 11 16p13.11
D16S499 AFM259XB9 18054389 18054753 2264133 16p12.3
D16S403 AFM049XD2 22945152 22945324 4890399 16p12.1
D16S769 GATA71H05 26066225 26066610 3120901 before HS3ST4 16p12.1
D16S753 GGAA3G05 31180950 31181293 5114340 ITGAM 16p11.2
CENTROMER CgNTROMER CENTROMER CENTROMER
D16S3080 AFMB068ZB9 48240851 48241255 17059558 ZNF423 16q12.1
D16S411 AFM186XA3 48294235 48294498 52980 ZNF423 16q12.1
D16S757 ATA20H10 50114256 50114577 1819758 0 16q12.1
D16S419 AFM225ZF2 51510863 51511206 1396286 16q12.2
GATA22 D16S3253 53344121 53344377 1832915 16q12.2
D16S408 AFM137XF8 54877982 54878271 3366776 GNAO1 16q13
D16S267 MFD65 61644101 61644308 6765830 16q21
D16S265 MFD23 62071033 62071214 426725 0 16q21
D16S503 AFM274YA5 62156289 62156636 85075 16q21
D16S260 MFD12 64429347 64429662 2272711 0 16q21
D16S301 65493442 65493585 1063780 PDP2 CDH 16 16q22.1
D16s2624 GATA81D12 70292457 70292817 4798872 PHLPPL 16q22.3
D16S515 AFM340YE5 75074529 75074903 4781712 CNTNAP 4 16q23.1 D16S266 75240920 75241016 166017 AK057218 16q23.1
D16S3138 AFMA062YD5 76161223 76161565 920207 0 16q23.1
MAF 78189789 78190180 2028224 MAF 16q23.1
CDYL2 79300932 79301044 1110752 CDYL2 16q23.2
ASCIZ 79637647 79637993 336603 ASCIZ 16q23.2
PKD1L2 79768459 79768715 130466 PKD1L2 16q23.2
GANCMIP1 80005889 80006032 237174 GAN CMIP 16q23.2
D16S511 AFM312XD1 80258655 80259024 252623 cmip 16q23.2
CMIPPLCG2 80316567 80316907 57543 CMIP PLCG2 16q23.2
PLCG2 80429800 80429966 112893 PLCG2 16q23.2
HSD17B2 80627295 80627690 197329 HSD17B2 16q23.3
D16S534 UT532 80943218 80943663 315528 0 16q23.3
D16S422 AFM249XC5 81468848 81469169 525185 CDH 13 16q23.3
D16S402 AFM031XA5 81850915 81851399 381746 CDH13 16q23.3
D16S520 AFMA135XG5 85073613 85073836 3222214 AK091834 16q24.1
D16S498 AFM218YB10 85311485 85311815 237649 O 16q24.2
D16S3048 AFMA240YE1 85862019 85862369 550204 AK125749 AK057367 16q24.2 Solute carrier
D16S413 AFM196XG1 86451337 86451673 588968 SLC7A5 family 7 16q24.3 CpG D16S3023 AFMA134XB5 87048828 87049114 597155 ZFPM1 islands 16q24.2
D16S303 88676499 88676604 1627385 0 16q24.3
The primers used for amplification of the simple tandem repeats of table 7 are shown in table 8. Table 8
STR Forward primer 5'-3' Reverse Primer 5'-3'
D16S2622 ACTGCATCCCTTTAMCACTT TAGCTTGGGTGAAGGAGTGA
D16S404 TTAAAGTATGTGGCAGTCCC CGAGGTAGAAGAAGGCAGTT
D16S3114 TGGCAGGCACTGGCAC TGGCCTACTCCAGGGGTTT
D16S748 GTCTGTAACCTAGGCAGGCA TGGCAGGCGCTTTTAATC
D16S2619 CAAGTCCAAGGGTAATTGGA CCTATCTCTATCCATGTACCACG
D16S405 AGTTCTCTGCTGCACCTGGC TGAAATGGGGACCATGAAGG
D16S499 GGTGGACCCTAATTGCATAGGATTG TCTCACAGTTCTGGAGGCTGGAAG
D16S403 GTTTTCTCCCTGGGACATTT TATTCATTTGTGTGGGCATG
D16S769 GAGCCTGAGCAGTAGTCAGC GACATTGTCAGTGTCAGCCA
D16S753 CAGGCTGAATGACAGAACAA ATTGAAAACAACTCCGTCCA CENTROMER ; CENTROMER CENTROMER
D16S3080 GGATGCCTGCTCTAAATACC CCCAGGGGTCAAACTTAAT
D16S411 TCATCTCCAAAGGAGTTTCT GTGCATGTGTTCGTATCAAC
D16S757 GTTCTGCACGTGTATCCCAG CCTAACCTCACAATGGCAGT
D16S419 ATTTTTAAGGAATGTAAAGNACACA GACGTTAGACCAGGAGTCAG
GATA22 GTTCAAGCATGGGTGGATAG TTGTGTGGGAATATAGTGATGC
D16S408 CACTCTTATCCCAGGAACCC TGTAACCTTGTGTGCATCCT
D16S267 GCAAACCACAATGGAATGCA CTTTACTTCCTTTGCCTCAG
D16S265 CCAGACATGGCAGTCTCTA AGTCCTCTGTGCACTTTGT
D16S503 AGTGCTCTGGAATGATGTG TTGCTAGGTAGTTGTCTCCC
D16S260 GGTTGAGATGCTGACATGC CAGGGTGGCTGTTATAATG D16S301 GATCCTAAGGACAAATGTAGATGCTCT AGCCACTTCCCAGAACTTGGCTTCC
D16S2624 TGAGGCAATTTGTTACAGAGC TAATGTACCTGGTACCAAAAACA
D16S515 CATTCTGAAATTAGACAGCGATAGG TGTGACCAGAGGCTTGC
D16S266 AGCTTTACAGATGAGACCAG CAGCCAATTTCTTGAGTCCG
D16S3138 ATGTTAGCCAGGACGG TCTGCATGTATGAGTGTGTG
MAF GAGTCTGACACGCGATTC CACATGAAGAACTCTGCTG
CDYL2 CCAGAACACACTCGCTTG GTAAACTGAGCCATGCAG
ASCIZ GGTAGGAGCATGATCAAG CCTACCTACTAGGTTGAGC
PKD1L2 GTCTCATCAATAGCTCTTC CTTCCTGAATAGCTCCAG
GANCMIP1 GATCTGAATTGTCTGCTTC CAGAAAGCAGCAGTCTAC
D16S511 CCCCGGAGCAAGTTCA CAGCCCAAAGCCAGATTA
CMIPPLCG2 GCAGTAATGCATTTCACAG CATACCATTGCATTCCAGC
PLCG2 GCAGCAAGCCACCATGG CTTGAGCCTTACATGCAC
HSD17B2 CTGCTGTCAAGAACCTTG CATGCCATTCTTGCCTTC
D16S534 CAACAAAGCAAGACCCTGTC CATCTGCGGTTCTTTCCTC
D16S422 CAGTGTAACCTGGGGGC CTTTCGATTAGTTTAGCAGAATGAG
D16S402 TTTTGTAACCATGTACCCCC ATTTATAGGGCCATGACCAG
D16S520 GCTTAGTCATACGAGCGG TCCACAGCCATGTAAACC
D16S498 CTGCATGGGTATCTGGGTA GGCACATCTTGTCTGCAAC
D16S3048 AGCAAGCCGTGACTGGGT CATGAGTAGTGTCCTGGGGG
D16S413 ACTCCAGCCCGAGTAA GGTCACAGGTGGGTTC
D16S3023 CTGCATTTCTCATCACAGTG GAGCGCCTATGTTCGG
D16S303 GATCAGTGCTCGTTTTTTTTGGTTTGG CAACAAGAGCGAAACTCGGTCTCAA
The result of analysis of loss of heterozygosity are shown below in table 9 and represented graphically in Figure 1. Table 9 Number STR sum Number % of heterozygoses
1 D16S2622 41 70 58.57
2 D16S404 2 2
3 D16S748 3 8 37.5
4 D16S3114 48 83 57.83
5 D16S2619 17 36 47.22
6 D16S 37 90 41.11
7 D16S499 44 61 72.13
8 D16S403 38 86 44.19
9 D16S769 72 89 8.9
10 D16S753 11 18 61.11
11 D16S3080 65 103 63.11
12 D16S411* 76 122 62.3
13 D16S41 1 20 29 68.97
14 D16S757 59 79 74.68
15 D16S419* 91 149 61.07
16 GATA 22 32 50 64
17 D16S408* 80 139 58.27
18 D16S3057 85 116 73.28
19 D16S267* 59 99 59.6
20 D16S503 99 134 73.88
21 D16S265* 85 152 55.92
22 D16S265 6 13 46.15
23 D16S260* 26 42 61.9 24 D16S301* 64 114 56.14
25 D16S2624 62 89 69.66
26 D16S515* 98 154 63.64
27 D16S3138 30 37 81.11
28 D16S266* 75 117 64.1
29 D16S511* 103 168 61.3
30 D16S511 57 91 62.64
31 Cmip pyrim 98 132 74.24
32 D16S422* 18 31 58.06
33 D16S422 76 103 73.79
34 D16S534 49 70 70
35 D16S402 88 123 71.54
36 D16S520* 98 154 63.64
37 D16S498* 75 118 63.56
38 D16S3048 no 66 92 71.74
39 D16S413* 91 143 63.64
40 D16S303* 49 85 57.65
41 D16S671 9 13 69.23
The results shown in table 9 are obtained by the data observed and shown below in nummre tables 10 and 11. Table 10
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
Figure imgf000072_0001
Figure imgf000073_0001
311 312 138 313 103 314 74,63768 where 0 denotes retention of both alleles and 1 denotes allelic loss
The LOH data collected are shown in Tables 11 and 12 herein The right hand column of Table 11 corresponds to the right hand column of Table 10. The '0' denotes retention of both alleles, '9' denotes homozygosity for the marker, and '1' denotes allelic loss — Z^
Figure imgf000074_0001
45 0 9 9 9 1 9 0 9 9 9 9 0 1 9 0 9 0 9 9 9 0
50 9 9 9 1 9 9 9 9 1 9 9 1 9 1 1 1 1 9 1 1 1
52 1 9 9 1 1 9 1 1 1 1 9 9 9 9 1 0 1 9 1 1 1
55 9 9 9 1 1 0 1 9 1 1 1 1 9 1 0 9 9 1 9 0 0
57 CJJ 1 9 9 9 9 1 1 9 1 9 9 1 9 1 9 0 9 9 0 1 1
58 0 9 9 9 9 0 1 9 1 0 9 0 9 9 9 1 1 1 9 1 9
59 0 9 9 0 9 9 9 9 0 9 0 0 9 1 9 9 9 0 0 0 9
61 9 9 9 9 9 9 0 0 0 9 0 9 9 0 1 9 0 9 9 0 0
62 1 9 9 en 9 9 9 1 9 1 9 9 1 9 1 1 9 1 1 1 1 1
64 0 9 9 9 0 9 0 9 0 9 1 1 9 1 1 0 1 1 9 1 1
66 0 9 9 0 9 0 9 9 1 9 1 1 9 1 1 1 1 1 9 1 9
67 9 9 9 0 9 0 0 0 0 9 0 0 9 1 1 9 1 9 9 1 9
70 0 9 9 1 9 9 9 9 0 9 0 9 9 9 9 0 0 0 9 9 9
72 9 9 9 9 0 1 1 9 1 1 1 1 9 1 1 0 0 1 9 1 9
73 1 9 9 0 9 9 9 0 1 9 9 9 9 9 9 9 1 1 9 1 9
74 1 9 9 1 1 1 0 1 1 0 1 1 9 9 1 9 1 1 9 1 1
75 1 9 9 1 9 1 9 9 1 9 1 1 9 9 1 1 1 1 1 9 1
76 9 9 9 9 9 9 1 1 1 1 1 1 9 1 1 1 9 1 9 1 1
77 1 9 9 1 9 1 9 1 1 9 1 1 9 9 1 9 1 1 1 1 1
78 1 9 9 9 1 1 9 9 1 9 9 1 9 9 1 9 1 9 1 1 1
79 0 9 9 9 9 9 9 1 1 9 1 1 9 9 9 9 1 1 9 1 0
80 1 9 9 1 0 9 9 1 0 9 1 1 9 9 1 9 1 1 9 1 1
81 1 9 9 9 1 9 9 9 0 9 9 0 9 9 0 9 0 0 1 9 1
82 0 9 9 9 9 0 9 9 9 9 0 0 9 9 0 9 1 9 9 9 0
83 0 9 9 9 0 0 9 9 0 9 9 9 9 9 0 9 0 1 0 1 0
84 9 9 9 9 9 9 1 1 1 9 0 0 9 9 0 9 0 0 0 0 9
85 9 9 9 9 9 0 9 9 1 9 1 1 9 9 1 σ> 0 1 1 1 1
86 1 9 9 9 9 1 9 9 9 9 9 1 9 9 9 9 0 1 1 1 1
87 1 9 9 1 1 1 9 1 0 9 1 1 9 0 1 9 1 1 9 1 1
88 1 9 9 9 9 1 9 9 1 9 0 9 9 9 9 9 0 0 9 1 1
89 0 9 9 1 9 9 1 0 1 0 9 0 9 1 1 9 1 9 9 9 0
90 1 9 9 9 1 1 1 1 1 1 1 1 9 1 9 1 9 1 9 1 1
91 9 9 9 1 0 9 1 9 1 1 0 0 9 9 0 0 0 0 0 0 0
92 1 9 9 1 1 9 1 1 0 1 9 9 9 9 9 1 1 1 1 1 1
93 0 9 9 9 9 9 9 0 1 1 1 1 9 0 0 1 0 1 9 0 0
94 0 9 9 0 9 9 0 0 0 0 1 1 9 9 1 1 9 1 9 1 1
95 9 9 9 0 9 0 1 0 1 0 9 9 9 0 0 9 9 0 0 0 0
96 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9
97 9 9 9 9 1 9 9 0 1 9 9 9 9 1 1 9 9 1 9 1 0
98 9 9 9 1 9 1 1 9 1 1 1 1 9 9 9 0 1 1 1 9 1
99 9 9 9 9 9 9 9 9 9 9 9 0 9 9 1 9 1 9 1 9 1
100 9 9 9 0 9 9 9 0 9 9 9 9 9 1 9 1 1 9 9 9 1
101 9 9 9 1 9 9 9 9 0 9 9 0 9 1 1 1 9 1 9 1 1
102 9 9 1 9 9 9 1 9 9 9 1 9 9 1 1 9 1 9 1 9
103 9 9 9 0 9 0 9 9 0 9 0 9 9 1 1 9 0 0 0 1 0
104 9 9 9 9 9 0 9 9 9 9 9 1 9 1 1 9 9 9 1 1 1
105 9 9 9 9 9 9 9 0 0 9 9 1 9 9 1 9 1 9 9 9 9
106 9 9 9 9 9 0 9 0 0 9 0 0 9 0 1 9 9 0 0 0 0
107 9 9 9 9 9 9 9 9 9 9 0 9 9 9 9 0 1 0 9 0
109 9 9 9 9 9 9 9 1 1 9 9 1 0 9 1 0 9 9 9 1 1
110 9 9 9 9 9 9 9 0 0 9 1 0 1 9 0 1 0 1 9 0 9
111 9 9 9 9 9 9 9 9 9 9 9 1 9 1 1 9 9 9 9 9 1 112 9 9 9 1 9 9 9 9 9 9 9 1 9 1 1 9 9 1 9 9 1
113 9 9 9 9 9 1 9 0 1 9 1 9 9 9 9 1 1 9 9 1 1
114 9 9 9 9 9 1 9 1 9 9 9 9 9 1 1 9 1 9 9 1 1
119 9 9 9 9 9 9 9 9 9 9 9 0 9 9 0 9 0 9 0 9 0
120 9 9 9 9 9 9 9 9 1 9 9 0 9 0 1 9 1 9 9 9 9
121 9 9 9 9 9 0 9 9 1 9 1 9 9 1 1 0 1 1 9 1 9
122 9 9 9 9 9 1 9 0 9 9 1 0 9 9 0 9 0 1 9 0 9
123 9 9 9 9 9 0 9 0 1 9 0 0 9 1 0 1 0 9 0 0 0
124 9 9 9 1 9 0 9 1 9 9 1 0 9 0 0 9 9 1 1 1 0
125 9 9 9 9 9 9 9 1 0 9 9 0 9 9 0 9 1 9 1 9 1
126 9 9 9 0 9 1 9 0 0 9 0 9 9 0 0 1 0 1 9 1 0
127 9 9 9 9 9 0 9 0 9 9 9 9 9 0 0 9 0 9 9 0 0
128 9 9 9 0 9 9 9 1 0 9 1 1 9 9 1 9 1 1 1 9 9
129 9 9 9 9 9 9 9 0 0 9 9 0 9 9 9 9 0 9 0 1 0
130 9 9 9 9 9 9 9 0 9 9 9 9 9 9 0 9 9 9 9 9 0
131 9 9 9 9 9 0 9 1 1 9 9 1 9 9 9 9 1 9 9 1 1
132 9 9 9 9 9 9 9 1 9 9 9 0 0 9 9 1 9 9 9 9 0
133 9 9 9 9 9 9 9 0 1 9 0 0 9 0 0 9 0 9 0 0 0
134 9 9 9 9 9 0 9 0 0 9 0 9 1 9 0 0 0 0 0 0 0
135 9 9 9 9 9 9 9 0 0 9 0 9 9 9 0 0 9 0 9 0 0
136 9 9 9 9 9 0 9 0 9 9 9 0 9 9 0 1 9 0 0 9 0
137 9 9 9 9 9 9 9 1 1 9 9 9 9 9 9 0 9 9 0 9 9
138 9 9 9 9 9 9 9 0 0 9 9 9 9 9 1 0 9 9 9 1 1
139 9 9 9 9 9 0 9 0 1 9 9 1 1 1 1 1 1 1 1 1 0
140 9 9 9 0 9 0 9 1 0 9 9 1 9 9 1 0 0 1 1 1 0
141 9 9 9 9 9 9 9 0 1 9 9 9 9 9 1 1 9 9 1 9 0
145 9 9 9 1 9 9 9 9 9 9 1 1 9 1 1 9 1 1 9 1 1
146 9 9 9 0 9 9 9 9 9 9 9 1 9 9 9 9 1 9 1 9 1
147 9 9 9 0 9 0 9 9 9 9 1 0 9 0 0 9 0 1 0 9 0 149 9 9 9 0 9 9 9 9 9 9 9 1 9 1 1 9 1 9 1 9 9
155 9 9 9 9 9 9 9 9 1 9 9 0 9 1 9 9 9 1 0 1 0
156 9 9 9 1 9 1 9 9 9 9 9 9 9 9 1 9 1 9 9 1 1
157 9 9 9 0 9 9 9 9 1 9 9 9 9 9 9 9 1 9 9 9 1
158 9 9 9 9 9 9 9 9 9 9 9 1 9 9 1 9 1 9 9 9 1
159 9 9 9 9 9 9 9 9 9 9 1 1 9 1 1 9 9 1 1 1 1
160 9 9 9 1 9 9 9 9 0 9 9 9 9 1 1 9 0 9 1 9 1
161 9 9 9 9 9 0 9 9 0 9 9 0 9 0 0 9 0 1 9 0 0
162 9 9 9 0 9 9 9 9 9 9 1 1 9 9 1 9 9 1 0 1 1
163 9 9 9 1 9 9 9 9 9 9 1 1 9 1 1 9 1 1 1 1 1
164 9 9 9 9 9 9 9 9 9 9 1 9 9 1 1 9 1 9 0 1 1
165 9 9 9 0 9 1 9 9 9 9 1 9 9 1 9 9 1 1 1 1 9
166 9 9 9 1 9 1 9 9 9 9 9 9 9 1 9 9 9 9 1 0 0
167 9 9 9 9 9 9 9 9 1 9 9 0 9 9 9 9 0 1 9 1 1
168 9 9 9 0 9 0 9 9 1 9 9 9 9 1 1 9 9 1 9 1 1
169 9 9 9 0 9 9 9 9 0 9 9 0 9 0 0 9 0 9 0 9 0
172 9 9 9 1 9 9 9 9 0 9 9 9 9 1 1 9 9 1 1 1 1
173 9 9 9 0 9 9 9 9 0 9 1 1 9 1 1 9 9 1 1 1 1
175 9 9 9 9 9 9 9 9 9 9 0 9 9 9 0 9 1 1 9 1 1
176 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
177 9 9 9 1 9 9 9 9 1 9 9 1 9 9 1 9 1 9 9 9 1
178 9 9 9 1 9 1 9 9 1 9 0 9 9 0 9 9 0 0 0 9 9
179 9 9 9 1 9 1 0 9 1 9 1 9 9 1 1 1 1 9 9 9 9 180 9 9 9 1 9 9 1 9 9 9 9 9 9 9 0 9 0 0 1 9 1
181 0 9 9 0 9 9 1 0 9 9 1 9 9 9 9 1 1 1 9 1 1
182 0 9 9 9 9 0 1 0 0 9 0 0 9 9 0 0 9 0 0 0 0
184 0 9 9 1 9 0 0 9 0 9 9 1 9 1 1 1 1 9 9 1 0
185 0 9 9 9 9 9 1 0 0 9 0 9 9 9 0 0 0 0 0 9 9
186 9 9 9 9 9 9 0 9 1 9 9 1 9 9 0 1 1 9 9 9 1
187 9 9 9 0 9 9 1 0 0 9 0 0 9 1 0 1 0 0 9 9 9
188 9 9 9 0 9 9 1 0 0 9 9 0 9 9 0 1 0 0 9 9 0
189 9 9 9 1 9 1 1 1 1 9 1 9 9 1 1 0 1 9 9 1 1
190 9 9 9 0 9 9 0 9 0 9 1 1 9 9 1 9 0 1 1 1 1
191 1 9 9 0 9 0 1 9 9 1 1 0 9 9 9 1 1 9 1 1 1
193 0 9 9 1 9 0 0 1 9 1 9 0 9 0 1 9 0 9 9 1 9
194 1 9 9 9 9 1 1 9 0 9 1 1 9 9 1 1 0 9 1 1 1
195 1 9 9 9 9 9 0 9 0 9 9 9 9 9 9 1 1 9 9 9 1
196 9 9 9 1 9 1 1 1 1 0 9 0 9 9 0 9 0 0 9 0 0
197 9 9 9 1 9 9 1 0 0 0 9 1 9 9 9 9 1 9 1 9 1
198 9 9 9 1 9 0 9 9 9 9 1 1 9 0 1 9 1 1 9 9 1
199 1 9 9 9 9 0 9 9 9 9 1 9 9 9 1 9 9 9 9 1 1
201 9 9 9 9 9 9 9 9 9 9 9 9 9 1 9 9 1 9 1 9 1
202 9 9 9 9 9 9 9 9 9 9 9 1 9 1 1 9 9 9 1 9 9
203 9 9 9 9 9 9 9 9 0 9 9 9 9 9 0 9 0 9 0 9 0
206 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 1
207 9 9 9 9 9 9 9 9 9 9 9 0 9 9 0 9 9 9 9 9 9
208 9 9 9 9 9 9 9 9 0 9 9 9 9 1 1 9 9 9 1 9 1
209 9 9 9 9 9 9 9 9 0 9 9 1 9 1 1 9 9 1 9 9 1
210 9 9 9 9 9 9 9 9 9 9 9 0 9 9 0 9 0 9 0 9 0 213 9 9 9 9 9 0 9 9 1 9 1 9 9 9 1 9 1 1 9 1 9
214 1 9 9 1 9 9 9 9 9 9 9 1 9 9 1 9 1 9 1 9 9
215 9 9 9 0 9 9 9 9 1 9 9 0 9 1 0 9 0 9 0 9 0 217 9 9 9 9 9 1 9 1 1 9 1 0 9 9 0 9 0 1 0 0 9 219 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 9 1 9 1 221 9 9 9 9 9 9 9 9 9 9 9 1 9 9 1 9 9 9 1 9 9
223 9 9 9 9 9 9 9 9 9 9 1 1 9 9 1 9 1 9 1 1 1
224 9 9 9 9 9 9 9 9 1 9 9 0 9 9 0 9 9 9 0 9 0
225 9 9 9 9 9 9 9 9 1 9 1 1 9 9 1 9 1 9 1 9 9
226 9 9 9 9 9 9 9 9 9 9 1 1 9 9 1 9 9 1 1 1 9
227 9 9 9 9 9 0 9 9 0 9 1 1 9 9 9 9 9 1 1 1 0
228 1 9 9 9 9 1 9 9 0 9 1 9 9 1 0 9 0 1 9 1 9
229 9 9 9 9 9 9 9 9 9 9 9 1 9 9 0 9 9 9 1 9 0
230 1 9 9 9 9 9 9 9 9 9 9 1 9 9 1 9 1 9 9 9 9
231 9 9 9 9 9 9 9 9 1 9 9 0 9 9 0 9 9 9 0 9 0
232 9 9 9 9 9 0 9 9 9 9 1 0 9 9 0 9 9 1 9 0 0
234 1 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 1 9 9 9 1
235 9 9 9 9 9 0 9 9 9 9 0 0 9 1 0 9 0 9 9 1 0
236 9 9 9 9 9 1 9 9 1 9 0 9 9 9 9 9 0 0 9 0 0
238 1 9 9 9 9 1 9 9 9 9 0 1 9 9 9 9 0 1 1 1 9
239 9 9 9 9 9 0 9 9 0 9 0 0 9 9 0 9 0 0 0 0 0
241 1 9 9 9 9 9 9 9 1 9 0 1 9 9 9 9 1 9 1 9 1
242 9 9 9 9 9 0 9 9 9 9 9 1 9 1 1 9 1 1 9 1 1
243 9 9 9 9 9 0 9 1 9 9 9 9 9 9 1 9 1 1 9 1 1 245 9 9 9 9 9 9 9 9 9 9 9 1 9 1 9 9 1 9 9 9 9
47 9 9 1 1 1 9 0 1 1 9 9 9 1 9 1 9 9 9 9 9 0
Figure imgf000078_0002
Figure imgf000078_0001
9 9 0 9 0 9 9 9 9 0 9 9 9 9 0 0 9 0 9 9 9
9 9 1 9 1 1 1 1 1 1 9 9 9 9 1 9 9 1 9 1 9
9 9 1 9 1 1 9 0 0 1 9 9 9 1 0 9 9 9 0 1 9
9 9 0 9 9 9 0 0 1 0 9 9 9 9 9 1 9 0 0 9 9
9 0 0 0 9 9 9 0 1 0 9 1 0 0 0 9 9 0 0 9 9
9 1 1 1 1 1 1 1 1 9 9 0 9 1 1 0 9 9 9 9 9
9 9 σ> 9 9 0 9 9 1 9 9 9 9 9 9 1 9 9 0 1 9 9
9 1 1 9 1 9 1 1 1 1 9 9 9 1 1 1 9 0 1 9 9
9 1 0 9 0 1 1 0 1 0 9 9 9 1 1 0 9 1 9 9 9
9 1 9 9 1 1 9 1 1 9 9 9 9 1 1 9 9 1 9 1 9
9 9 0 9 1 9 0 1 0 1 9 9 9 9 9 0 9 0 9 9 9
9 9 9 9 1 9 1 1 1 9 9 9 9 9 9 9 9 1 9 9 9
9 9 9 9 1 9 1 1 9 9 1 9 1 1 9 9 1 1 9 9
9 1 1 9 1 1 9 1 1 1 9 9 9 1 1 9 9 1 9 9 9
9 0 0 9 0 9 0 0 0 1 9 9 1 9 0 0 9 0 0 1 9
9 0 1 9 1 1 1 1 1 9 9 1 9 1 1 0 9 1 1 9 9
9 1 1 1 9 1 9 1 1 1 9 9 9 9 1 1 9 1 9 1 9
9 9 1 1 1 9 9 1 1 9 9 9 9 9 1 1 9 1 9 1 9
1 9 9 0 0 9 9 9 0 1 9 0 0 0 9 9 9 0 9 9 9
9 9 9 9 0 0 0 0 1 1 9 9 9 9 1 0 9 0 9 9 9
9 9 0 9 0 0 0 0 0 9 9 9 9 9 0 9 9 9 0 9 9
9 9 0 9 0 0 9 0 1 9 9 9 9 0 9 9 9 9 9 9 9
9 1 1 9 1 1 9 1 1 1 9 9 9 9 1 9 9 1 1 9 9
9 1 0 0 0 0 0 0 0 1 9 1 9 0 0 9 9 0 0 1 9
9 9 0 1 0 1 0 9 9 0 9 1 9 1 0 9 9 0 9 9 9
9 9 0 0 0 1 9 1 1 1 9 1 1 9 1 1 9 0 0 1 9
9 1 9 0 1 1 9 1 1 9 9 9 0 1 1 9 9 1 1 1 9
9 9 9 1 1 1 9 1 1 9 9 1 1 1 1 1 9 1 9 1 9
9 9 0 9 0 0 9 0 0 0 9 1 0 9 9 0 9 0 0 0 9
9 9 9 9 0 1 1 1 0 9 9 1 9 1 1 9 9 9 9 1 9
9 9 1 9 1 9 1 1 1 1 9 0 1 9 1 1 9 1 9 9 9
9 0 9 9 1 1 1 1 1 9 9 1 1 9 1 9 9 1 1 1 9
9 1 9 1 1 1 0 0 1 0 9 1 1 1 9 9 9 9 9 9 9
9 9 9 1 0 9 9 1 1 9 9 0 1 1 1 1 9 9 9 0 9
9 9 9 1 1 9 0 9 9 1 9 9 0 0 0 0 9 0 9 9 9
9 9 9 9 0 9 0 0 0 1 9 9 1 9 1 9 9 0 9 9 9
9 9 9 0 0 1 0 1 1 9 9 9 0 0 9 1 9 1 1 9 9
9 9 0 0 9 9 9 0 0 1 9 9 9 9 0 0 9 0 0 0 9
9 1 9 9 1 0 1 1 1 1 9 1 9 1 0 9 1 1 9 9 9
9 9 9 1 1 9 1 1 1 1 1 1 9 9 1 1 1 1 9 9 9
9 9 1 0 0 9 0 0 0 0 0 1 0 0 0 0 0 9 9 9 9
9 9 1 9 1 9 1 1 1 1 1 1 0 1 1 1 1 9 9 9 9
0 1 1 1 9 9 9 1 1 1 1 9 1 1 0 9 1 9 0 9 9
9 1 1 9 9 9 9 0 0 0 0 1 1 1 1 0 9 1 9 9 9
9 0 0 9 9 9 0 0 0 1 9 1 9 0 9 1 0 9 9 9 9
9 1 .9 9 1 1 9 1 1 9 1 0 1 1 1 1 1 1 9 1 9
9 1 9 1 9 9 1 1 1 1 1 1 1 1 1 1 1 9 1 9 9
9 9 1 1 1 9 1 9 9 1 1 1 9 9 1 1 1 1 9 9 9
9 1 0 9 1 9 1 0 0 1 1 1 1 1 1 9 1 1 1 9 9
9 O 0 0 0 0 9 1 0 0 0 1 9 0 0 0 0 0 0 1 9
0 9 9 1 0 9 9 1 1 1 1 1 1 1 1 1 1 9 9 9 9
9 9 0 1 1 0 1 1 1 1 9 1 9 0 9 1 9 9 1 1 9 74 9 1 1 1 1 9 9 9 0 9 9 1 1 1 1 9 1 1 1 9 9
75 0 9 1 1 9 9 9 1 1 9 1 1 9 1 1 9 1 1 1 9 9
76 0 9 0 9 1 9 0 0 1 1 1 1 1 1 1 0 0 0 9 9 9
77 9 1 1 9 1 9 1 1 1 1 0 9 9 1 9 9 1 1 9 9 9
78 9 1 1 9 1 1 1 1 1 1 1 9 1 9 9 9 9 1 1 1 9
79 9 1 1 1 9 1 1 1 1 1 0 1 9 9 9 1 9 1 1 1 9
80 9 1 9 9 1 9 9 1 1 1 0 1 9 1 1 9 1 1 9 9 9
81 9 1 9 9 1 1 9 1 1 1 1 1 9 1 1 9 9 1 1 1 9
82 9 0 0 9 0 0 0 1 1 9 0 9 9 0 0 0 9 0 0 0 9
83 9 9 0 9 9 9 0 1 1 9 0 9 9 1 0 9 9 0 0 9 9
84 9 0 9 0 0 9 0 0 0 0 0 1 9 1 0 0 9 0 9 9 9
85 9 9 1 9 1 9 1 1 1 1 1 1 9 1 1 9 9 1 1 9 9
86 9 9 9 9 1 9 1 1 1 1 1 1 9 1 0 9 9 9 1 9 9
87 9 1 1 9 9 9 0 9 1 1 0 1 1 1 1 0 9 1 1 9 9
88 9 0 9 9 0 1 9 0 0 0 0 1 9 1 0 9 0 0 0 1 9
89 9 0 0 9 9 9 1 1 1 1 1 0 1 1 1 1 0 1 0 9 9
90 1 1 1 9 1 9 9 1 1 1 9 1 1 1 9 9 1 1 9 9 9
91 0 0 0 0 1 9 9 0 0 0 9 0 0 9 0 0 1 0 9 9 9
92 9 1 9 1 1 9 1 9 1 1 1 1 9 1 1 1 1 1 9 9 9
93 9 9 0 0 0 0 9 0 0 0 0 0 0 0 0 9 0 9 0 0 9
94 9 9 9 1 1 9 9 9 1 1 9 0 1 9 0 1 1 9 9 9 9
95 9 0 9 0 9 9 9 0 0 9 9 0 0 0 9 9 0 9 0 9 9
96 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
97 9 0 0 9 1 9 9 9 9 1 0 9 9 9 1 1 1 9 1 9 9
98 9 1 0 1 1 9 9 1 1 1 1 0 9 1 0 1 9 9 1 9 9
99 9 9 1 9 1 9 1 1 9 9 9 9 9 9 1 9 9 1 9 9 9 100 9 9 1 1 9 9 9 1 1 1 9 9 9 1 1 9 1 9 1 1 9 101 9 9 1 1 1 1 9 1 1 1 9 9 9 1 1 1 1 1 9 9 9
102 9 9 9 1 1 9 9 1 1 1 9 9 9 9 0 1 9 1 1 1 9
103 9 9 9 9 1 9 1 0 0 1 9 9 0 0 1 0 9 1 9 1 9
104 9 9 1 9 1 9 1 1 1 9 9 9 9 1 1 9 1 1 1 9 9
105 9 9 9 0 0 9 1 1 1 1 9 9 9 9 0 0 9 1 9 9 9
106 9 9 9 0 9 9 0 0 0 1 9 9 9 0 0 0 0 0 9 9 9
107 9 9 1 9 1 1 1 1 1 1 9 9 9 9 1 1 9 1 1 9 9
109 9 9 9 9 9 1 9 1 1 1 9 9 1 9 1 1 9 1 9 9 9
110 9 9 9 0 0 1 9 0 0 1 9 9 0 9 0 9 9 0 9 9 9
111 9 9 1 9 1 9 9 9 9 1 9 9 9 1 1 9 1 1 9 9 9
112 9 9 9 9 1 1 1 1 1 1 9 9 9 9 1 1 1 9 9 9 9
113 9 9 1 9 9 1 9 1 1 9 9 9 9 9 1 1 1 9 9 9 9
114 9 9 1 9 1 1 9 1 1 1 9 9 9 1 9 1 1 1 9 9 9
119 9 9 0 9 0 1 1 0 0 1 9 9 9 1 0 0 0 0 9 9 9
120 9 9 9 9 1 9 0 1 1 9 9 9 9 1 1 9 1 1 9 9 9
121 9 9 1 1 1 1 1 0 1 1 9 9 9 1 9 9 1 1 9 1 9
122 9 9 1 9 1 1 9 9 1 1 9 9 9 9 1 9 9 1 1 9 9
123 9 9 0 9 0 1 0 0 0 9 9 9 0 1 9 9 0 0 9 0 9
124 9 9 0 0 9 1 0 9 9 9 9 9 9 0 0 0 0 9 9 9 9
125 9 9 1 1 9 1 0 1 1 1 9 9 1 9 1 1 9 1 9 9 9
126 9 9 9 0 1 1 0 1 1 1 9 9 1 1 0 9 9 1 0 0 9
127 9 9 0 9 0 9 9 0 1 0 9 9 9 0 0 9 0 0 0 9 9
128 9 9 1 9 1 1 1 0 1 9 9 9 1 1 1 1 1 1 9 9 9
129 1 9 9 9 1 9 1 0 0 1 9 9 9 9 0 9 9 9 9 9 9
130 9 9 9 9 0 9 0 0 1 9 9 9 9 9 9 0 9 0 9 9 9 131 9 9 1 9 1 1 9 9 0 1 9 9 1 9 1 0 1 0 1 9 9
132 1 9 1 1 9 9 9 9 0 1 9 9 1 9 1 1 9 1 9 9 9
133 9 9 0 0 0 0 9 0 0 0 9 9 0 9 0 0 9 0 0 9 9
134 9 9 0 0 9 9 9 0 0 0 9 9 0 9 0 0 0 0 9 9 9
135 9 9 0 9 0 1 9 0 0 0 9 9 9 9 9 0 9 0 0 0 9
136 9 9 0 0 1 1 1 9 9 1 9 9 9 1 9 9 1 1 1 9 9
137 9 9 9 0 0 9 9 0 0 0 9 9 1 9 0 0 9 0 9 9 9
138 9 9 9 1 1 1 9 0 9 1 9 9 1 9 9 1 9 0 9 9 9
139 9 9 1 1 1 0 1 1 1 1 9 9 1 1 1 1 1 1 9 9 9
140 9 9 1 1 9 1 1 0 0 1 9 9 1 1 9 1 1 0 1 1 9 141 9 9 1 1 9 9 9 9 9 1 9 9 1 9 9 9 9 9 9 9 9
145 9 9 9 1 1 9 1 1 1 1 9 0 9 9 0 1 9 1 1 9 9
146 9 9 9 1 1 9 1 1 1 1 9 0 9 9 1 1 1 1 9 9 9
147 9 9 1 9 0 9 0 1 1 1 9 0 9 1 0 0 1 9 0 9 9 149 9 9 9 9 1 9 1 1 1 1 9 9 9 9 1 1 1 9 9 9 9
155 9 9 0 9 0 1 9 0 0 1 9 9 9 1 1 9 1 9 0 0 9
156 9 9 1 1 1 9 9 1 1 1 9 1 9 9 1 9 1 9 1 9 9
157 9 9 9 9 1 9 1 1 1 1 9 1 9 9 1 1 9 1 9 9 9
158 9 9 9 1 1 9 9 1 1 9 9 1 9 9 1 9 9 1 9 9 9
159 9 9 1 1 9 9 0 1 1 1 9 1 9 0 9 1 9 9 0 9 9
160 9 9 1 9 9 9 9 1 1 1 9 1 9 9 1 9 9 1 9 9 9
161 9 9 0 0 0 9 0 0 1 0 9 1 9 0 0 0 0 9 9 9 9
162 9 9 1 1 9 9 1 1 1 1 9 1 1 1 9 9 1 1 1 9 9
163 9 9 9 1 1 9 1 1 1 1 9 9 9 1 1 9 9 1 9 9 9
164 9 9 9 9 1 9 9 9 9 9 9 9 9 1 9 1 9 1 9 9 9
165 9 9 1 9 1 9 9 1 1 1 9 1 9 1 1 1 9 1 1 9 9
166 9 9 0 9 0 9 1 1 1 1 9 9 9 1 0 0 1 9 9 9 9
167 9 9 1 1 1 9 1 9 9 9 9 1 9 1 1 1 1 1 0 9 9
168 9 9 1 1 1 9 1 9 1 9 9 0 9 1 1 9 1 1 1 9 9
169 9 9 9 9 0 9 0 1 1 0 9 0 9 0 0 0 0 0 1 9 9
172 9 9 1 1 1 9 1 1 1 1 9 1 9 1 9 1 9 0 9 9 9
173 9 9 9 9 0 1 9 1 1 1 9 9 9 9 1 1 1 9 9 9 9
175 9 9 9 9 1 9 9 1 1 1 9 0 9 1 1 1 1 0 1 9 9
176 9 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9
177 9 9 9 9 1 9 9 1 1 1 9 1 9 1 1 9 1 1 9 9 9
178 9 9 0 9 0 9 0 0 1 0 9 9 9 0 0 0 0 0 9 9 9
179 9 9 0 1 0 9 1 1 1 0 9 1 1 1 0 0 1 0 0 9 1
180 9 9 1 1 9 9 9 1 1 1 9 0 1 9 1 1 9 1 0 9 1
181 9 9 1 1 1 1 9 0 1 1 9 1 1 1 1 9 9 9 9 9 1
182 9 9 9 0 9 0 0 0 0 9 9 1 0 0 0 9 9 0 0 0 0
184 9 9 9 1 1 9 1 0 1 1 9 1 1 9 0 0 1 0 1 9 0
185 9 9 0 0 0 0 9 0 0 0 9 1 0 0 9 0 0 0 0 9 1
186 9 9 9 1 1 1 9 0 1 9 9 1 9 9 1 1 9 1 9 9 9
187 9 9 0 9 9 0 0 0 0 0 9 1 9 0 0 9 0 0 9 1 1
188 9 9 9 9 0 9 9 9 9 0 9 1 0 0 9 9 9 0 9 9 1
189 9 9 1 1 1 9 1 9 9 9 9 1 1 9 9 9 1 9 9 9 1
190 9 9 1 1 1 9 1 1 1 9 9 1 1 9 0 1 1 1 1 9 1
191 9 9 0 1 1 9 1 0 0 9 9 1 1 9 1 9 1 1 9 9 9
193 9 9 9 9 0 9 9 9 9 1 9 0 1 1 1 9 9 1 9 9 0
194 9 9 9 1 1 9 1 1 1 0 9 0 9 9 1 1 1 9 9 9 9
195 9 9 0 9 1 9 0 1 1 1 9 1 9 9 9 1 9 9 9 9 9
196 9 9 0 0 0 9 0 9 9 1 9 1 0 0 9 9 0 9 0 9 1 197 9 9 1 1 1 9 1 9 9 1 9 0 1 9 1 1 9 1 1 9 0
198 9 9 9 9 9 9 1 9 9 1 9 9 9 1 1 1 1 1 9 9 9
199 9 9 9 9 1 9 1 9 9 9 9 0 1 1 9 1 9 1 9 9 9
201 9 9 9 9 1 9 9 1 1 9 9 9 9 9 9 9 9 1 9 9 9
202 9 9 9 1 1 9 1 1 1 9 9 1 9 1 1 9 1 1 9 9 9
203 9 9 9 9 0 9 0 0 0 0 9 1 9 9 0 9 9 9 0 9 9
206 9 9 9 9 1 9 1 1 1 9 9 1 9 9 1 1 9 1 9 9 9
207 9 9 9 9 0 1 9 0 9 9 9 9 9 9 1 1 9 1 9 9 9
208 9 9 1 1 9 1 1 0 9 9 9 1 9 9 9 1 9 9 0 9 9
209 9 9 1 9 1 9 1 1 1 9 9 9 0 9 9 1 1 1 1 9 9
210 9 9 9 9 0 9 1 0 0 9 9 0 9 9 0 9 9 9 9 9 9
213 9 9 1 1 1 9 1 9 9 1 9 1 1 0 9 9 9 1 9 9 9
214 9 9 9 1 9 9 1 1 1 9 9 0 9 1 1 1 1 9 1 9 9
215 9 9 0 9 0 9 0 9 9 0 9 9 1 9 0 9 0 0 0 9 9 217 9 9 0 9 9 9 0 0 1 0 9 9 1 0 0 9 9 9 9 9 9 219 9 9 9 9 1 9 1 1 1 9 9 1 9 9 9 1 9 1 1 9 9 221 9 9 1 9 1 9 9 1 1 9 9 1 9 9 1 1 9 0 1 9 9
223 9 9 1 9 1 9 9 1 1 9 9 9 9 9 1 1 9 1 9 9 9
224 9 9 0 9 0 9 0 0 0 9 9 9 9 9 0 0 9 0 9 9 9
225 9 9 1 9 9 9 1 1 1 1 9 9 9 1 1 1 9 1 9 9 9
226 9 9 1 9 9 9 9 1 1 1 9 9 1 9 1 1 9 1 1 9 9
227 9 9 9 1 1 9 9 1 1 9 9 1 9 1 1 1 9 1 1 9 9
228 9 9 0 9 0 9 0 0 0 0 9 1 9 1 9 0 9 1 0 9 9
229 9 9 9 9 9 9 9 1 1 0 9 9 1 9 1 1 9 9 1 9 9
230 9 9 9 1 9 9 1 0 1 0 9 9 9 1 9 0 9 1 9 9 9
231 9 9 9 9 9 9 1 0 1 9 9 9 9 9 9 9 9 9 9 9 9
232 9 9 0 9 9 9 9 0 1 9 9 9 9 0 0 0 9 1 9 9 9
234 9 9 9 9 1 9 0 1 9 9 9 1 9 9 1 1 1 9 1 9 9
235 9 9 9 9 0 9 0 0 0 9 9 1 9 0 0 9 0 9 9 9 9
236 9 9 0 9 0 9 9 0 0 9 9 9 9 9 0 9 9 9 9 9 9
238 9 9 9 9 1 9 9 1 1 9 9 0 9 9 1 1 9 1 0 9 9
239 9 9 9 0 0 9 0 0 0 9 9 1 9 1 0 0 9 0 9 9 9
241 9 9 9 1 1 9 9 1 1 9 9 0 9 9 1 1 9 1 9 9 9
242 9 9 1 1 1 9 1 1 1 9 9 1 9 1 1 1 1 1 9 9 9
243 9 9 9 9 9 9 1 1 1 9 9 9 9 9 1 1 9 9 9 9 9 245 9 9 9 1 9 9 1 1 1 9 9 1 9 9 1 9 1 1 9 9 9
47 9 9 9 1 0 9 9 0 1 1 9 1 9 9 0 1 9 9 9 9 9
48 9 9 9 1 0 9 1 0 0 0 9 9 9 1 9 0 9 0 1 9 9 264 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
301 9 9 9 9 9 9 9 9 0 9 9 9 9 1 9 9 0 9 9 9 9
302 9 9 9 9 9 9 9 9 1 9 9 9 9 1 9 9 1 9 9 9 9
303 9 9 9 9 9 9 9 9 9 9 9 9 9 0 9 9 0 9 9 9 9
304 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
305 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9
307 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
308 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
309 9 9 9 9 9 9 9 9 0 9 9 9 0 0 9 9 0 9 9 9 9
310 9 9 9 9 9 9 9 9 1 9 9 9 1 9 9 9 1 9 9 9 9 311 9 9 9 9 9 9 9 9 0 9 9 9 1 0 9 9 9 9 9 9 9
312 9 9 9 9 9 9 9 9 1 9 9 9 1 1 9 9 9 9 9 9 9
313 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
314 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 315 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
316 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 0 9 9 9 9
317 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
318 9 9 9 9 9 9 9 9 0 9 9 9 9 1 9 9 9 9 9 9 9
319 9 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9
320 9 9 9 9 9 9 9 9 1 9 9 9 9 1 9 9 1 9 9 9 9
321 1 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 1 9 9 9 9
322 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
323 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
324 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 1 9 9 9 9
325 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
326 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
327 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
328 1 9 9 9 9 9 9 9 0 9 9 9 9 1 9 9 1 9 9 9 9
329 9 9 9 9 9 9 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9
330 9 9 9 9 9 9 9 9 1 9 9 9 1 0 9 9 9 9 9 9 9
331 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9 9
332 9 9 9 9 9 9 9 9 1 9 9 9 9 1 9 9 9 9 9 9 9
333 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 351 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 368 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 384 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 483 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Statistical methods for evaluation of the clinical outcome
The probability of treatment failure was calculated for the endpoint of loco-regional failure (chest wall, axilla, and supra-/infraclavicular area), freedom from distant metastasis, disease-free survival (any recurrence, tumour in the other breast, or death from a cause other than breast cancer) and overall survival by the Kaplan-Meier product-limit analysis, using the Mantel-Cox proportional test for comparison, and a test for trend with equal weighing was performed if more than two groups were compared. All time estimates were done using the date of primary surgery as initial value. A multivariate Cox proportional hazards analysis was used to evaluate prognostic parameters and treatments with respect to the risk of distant metastasis, death from disease, and overall death. Parameters were included in the model using forward selection, and statistical analysis performed by the WaId test. The level of statistical significance was set to five percent. The p-values estimated are those for a two-tailed test. The statistical analysis was performed using BMDP (1L, 2L, 4F) program package. The date for evaluation of outcome was July 1 , 2004, which gives a median potential observation time of 120 (range 75-117) months. In figure 2 a graphical representation is shown of disease-specific survival as function of intragenic allelic imbalance affecting c-mip (as determined for the D16S511 marker) in 160 informative breast cancer patients. Patients suffering from breast cancer that had an increased disease specific survival as defined by the parameters given above when allelic imbalance affecting c-mip was observed.
Example 2
Assessment of copy number variation of c-mip using the multiplex ligation probe amplification method
To assess the copy number variation of c-mip, the multiplex ligation probe amplification
(MLPA) methodology was applied.
The manufacturing company MRC-Holland has developed the method but no pre-made kit was available for c-mip.
We designed probes for Exon 2, 8 and 20 and included two control fragments ( derived from Aristaless related homeobox, ARX at Xp21.3 from MRC-Holland and actin filament associated protein 1-like 1, AFAP1L1 at 5q23.1. Primers are listed below in table 13.
Table 13
Figure imgf000084_0001
The protocol was followed according to the manufacturer's instructions. A description of the MLPA methodology is available at: http://www.mrc- holland.com/paqes/indexpaq.html.
Leukocyte DNA from 44 healthy Danish female medical students were used as control individuals as described elsewhere herein. Three exons and two control genes were analyzed using the MLPA methodology. The control population was used to establish the mean value (based upon the peak height from the chromatography after capillary electrophoresis) for each exon. Graphs illustrating the calculated value of each exon for the tumours are shown in Figure 3. The values for each exon and each control sample is listed in table 14.
Table 14 Control samples
Sample Name Exon 2 (e2) Exon 8 (e8) Exon 20 (e20) cO19 0,4187198 0,7733113 0,7221502 c020 0,3775137 0,761426 0,6718464 cO23 0,3131231 0,7453517 0,6893021 cO33 0,3158224 0,7126329 0,6610381 cO37 0,3686636 0,7447882 0,6693 cO38 0,4080193 0,7933915 0,7425283 cO45 0,3427079 0,7075131 0,638409 cO48 0,4917203 0,8589811 0,8028689 cO64 0,3612903 0,6745273 0,6278087 c128 0,439308 0,7806228 0,7150173 c129 0,4895477 0,7021411 0,7340682 c131 0,4410842 0,8308131 0,6938659 c132 0,4281087 0,7658076 0,6635685 c134 0,4087277 0,7304856 0,6235403 c135 0,3272787 0,6400264 0,6178996 c137 0,4318244 0,7484225 0,6414266 c139 0,3880632 0,7640953 0,6048596 c214 0,3828892 0,7177419 0,7198457 c215 0,4287367 0,7852461 0,7325537 c216 0,4113993 0,7650712 0,7548411 c217 0,3029472 0,70939 0,6141193 c218 0,3902176 0,7656896 0,6815321 c219 0,3896976 0,7902736 0,725004 c220 0,4190981 0,8825657 0,7791174 c221 0,3195003 0,7061763 0,5956974 c222 0,4023071 0,5782264 0,703677 c224 0,3951625 0,7736961 0,6902494 c225 0,4170616 0,8124924 0,7274274 c226 0,3527963 0,8236019 0,7124908
C227 0,4065202 0,7738793 0,7120565 c228 0,3801404 0,6593113 0,6345704
C230 0,4438928 0,9031778 0,7606753
C231 0,3152855 0,7354205 0,7415592
C258* 0,3403719 0,6274819 0,6240151
C259* 0,3666997 0,6078626 0,6593987
C260* 0,4012217 0,6741635 0,6858254
C261 0,4058924 0,6678754 0,6676487 c262* 0,4132915 0,6547962 0,660815 C263* 0,4353042 0,7523565 0,8170523
C285* 0,3170496 0,6703997 0,6483877
C286* 0,4061025 0,7474048 0,7209814
C287* 0,3776884 0,6940475 0,6879423 c288* 0,3385182 0,6508391 0,6524765 c289* 0,3690873 0,7135243 0,7165223 c298* 0,3324361 0,6271871 0,6621803
C299* 0,340678 0,6638418 0,7096045
C305* 0,3397013 0,7155262 0,7176103
The mean value and standard deviation (+/- 5%) for each exon 2, 8 and 20 is listed in Table 15. Table 15
CMIP Ex 2 CMIP EX 8 CMIP Ex 20
Mean value 0.38496209 0.73156605 0.69011436
Standard Dev. 0.04602931 0.07049309 0.051244163
% standard dev / mean value 11.9568427 9.63591597 7.425459551
5% mean value 0.0192481 0.0365783 0.034505718
Mean value + standard deviation 0.4309914 0.80205914 0.741358523
Mean value + std + 5% 0.45023951 0.83863744 0.775864241
Mean value - standard dev. 0.33893278 0.66107296 0.638870198 Mean value - std - 5% 0.31968468 0.62449466 0.60436448
Thus the cut off limit for deciding whether a variation in copy number is due to an amplification event is for exon 2: 0.45023951; for exon 8: 0.83863744, and for exon 20: 0.775864241. For tumour samples wherein value is above the listed values for the control sample, amplification of the respective exons or part thereof is indicative of an amplification reaction.
The cutt-off limit for deciding whether a variation in copy number is due to a deletion event is for exon 2: 0.31968468; for exon 8: 0.62449466, and for exon 20: 0.60436448. For tumour samples wherein value is below the listed values for the control sample, amplification of the respective exons or part thereof is indicative of a deletion reaction. The values for tumour samples are listed in table 16. Table 16
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000089_0001
Figure imgf000090_0001
Column A - tumour samples identification numbers
Column B - C and D - The actual values after normalization with the control fragment
Column E, F, G and H - The numbers refer to:
1 - amplification or increased copy number
2 - deletion or decreased copy number 0 - normal no variation
9 - no result obtained
The standard deviation calculated from each exon, as shown in figure 3 is used to estimate the cu off value
The combined evaluation of exons 2, 8, and 20 of CMIP was calculated for each tumour sample as the presence of amplification or increased copy number, or the presence of a deletion or decreased copy number in each of the exons. The combined evaluation of the named exons was for amplification 10%, whereas for deletion the evaluation was 90% of the tumour samples analysed, where the evaluation is based upon all tumour and control samples.
Thus, the observed prolonged disease-specific survival as a function of allelic imbalance affecting CMIP, is by MLPA determined to be due to a deletion or decreased copy number of CMIP.
NM_030629 4128 bp mRNA linear PRI 20-AUG-2006
DEFINITION Homo sapiens c-Maf-inducing protein (CMIP), transcript variant
Tc-mip, mRNA. ACCESSION NM_030629 VERSION NM_030629.1 Gl:29789254
Protein sequence:
MGQAAEPTGYMENSVSYSAIEDVQLLSWENAPKYCLQLTIPGGT
VLLQAANSYLRDQWFHSLQWKKKIYKYKKVLSNPSRWEVVLKEIRTLVDMALTSPLQD DSINQAPLEIVSKLLSENTNLTTQEHENIIVAIAPLLENNHPPPDLCEFFCKHCRERP
RSMVVIEVFTPVVQRILKHNMDFGKCPRLRLFTQEYILALNELNAGMEVVKKFIQSMH GPTGHCPHPRVLPNLVAVCLAAIYSCYEEFINSRDNSPSLKEIRNGCQQPCDRKPTLP LRLLHPSPDLVSQEATLSEARLKSVVVASSEIHVEVERTSTAKPALTASAGNDSEPNL IDCLMVSPACSTMSIELGPQADRTLGCYVEILKLLSDYDDWRPSLASLLQPIPFPKEA LAHEKFTKELKYVIQRFAEDPRQEVHSCLLSVRAGKDGWFQLYSPGGVACDDDGELFA
SMVHILMGSCYKTKKFLLSLAENKLGPCMLLALRGNQTMVEILCLMLEYNIIDNNDTQ LQIISTLESTDVGKRMYEQLCDRQRELKELQRKGGPTRLTLPSKSTDADLARLLSSGS FGNLENLSLAFTNVTSACAEHLIKLPSLKQLNLWSTQFGDAGLRLLSEHLTMLQVLNL CETPVTDAGLLALSSMKSLCSLNMNSTKLSADTYEDLKAKLPNLKEVDVRYTEAW" SIS 3529..3Θ89
/gene="CMIP" /standard_name="RH94128" /db xref="UniSTS:84704"
SEQ ID NO: 3
Homo sapiens c-Maf-inducing protein (CMIP), transcript variant Tc-mip, mRNA. mRNA:
1 ggcttcttgg atgggctggg cgtgcatggc ataaccgttt gagaacaaca aaccaagccg 61 gccgggctgc cgctctgttt cctgcgagga gggaagttac agatctccgc cctggcgtcc 121 ggggaaggat gggacaggct gctgagccaa ctgggtacat ggaaaactca gtctcctaca 181 gcgcaattga agacgttcag ctgctgtcct gggagaatgc cccgaagtac tgtttacagc
241 tcacgattcc tgggggaact gtcttactgc aggctgccaa tagctacctg cgagaccagt 301 ggttccattc tctgcaatgg aagaaaaaga tttacaaata taagaaagtg ctgagtaacc 361 caagccgctg ggaagttgtc ttgaaagaga tccggaccct ggtggacatg gccctgacat 421 cccccctgca ggatgactcc atcaaccagg ccccactgga aatcgtctcg aaactgctct 481 cagagaacac aaacttgacc acccaggagc atgaaaacat cattgtggca atcgctcctt
541 tgctggaaaa caaccaccca ccaccagatc tctgtgaatt cttttgcaag cactgcagag 601 agcggccccg gtccatggtg gtcatcgagg tgttcacccc cgtggtgcag cgaatcctca 661 agcataacat ggactttggg aagtgcccgc gactgaggct gtttactcag gagtacatcc 721 ttgccttgaa cgagctcaac gcggggatgg aagtggtgaa gaagttcatt cagagcatgc 781 acggccccac agggcactgc ccccaccccc gggtcctgcc caacctggtg gccgtgtgcc
841 tggctgccat ctactcctgc tatgaagagt tcatcaacag ccgcgacaat tccccaagcc 901 tgaaggaaat ccggaacggc tgccagcagc cgtgcgaccg gaagcccact ttacctctgc 961 gccttctgca ccccagcccg gacctggtgt ctcaggaagc cacgctgtct gaggcccggc 1021 tcaagtcggt ggtcgtggcc tccagtgaga tccacgtgga ggtggaacgc accagcactg 1081 ccaagccggc gctgacggcc agcgcaggca acgacagcga gcccaacctc atcgactgcc
1141 tcatggtcag ccccgcctgc agcaccatga gcatcgagct gggcccccag gccgaccgca 1201 cgctcggctg ctacgtggaa atcctcaagc tgctgtcaga ctatgatgac tggagaccgt 1261 ctctggccag tttgcttcaa cccattccat tccccaaaga agctctcgca catgagaagt 1321 tcaccaagga actgaagtac gtgattcaga ggttcgccga agaccccagg caagaggtcc 1381 actcatgcct gctgagcgtg cgggccggca aagatggctg gttccagctc tacagccccg
1441 gaggggtggc ctgcgacgat gacggggagc tgttcgccag catggtgcac atcctcatgg 1501 gctcctgtta caagaccaaa aaattcctgc tctccctggc agaaaacaag ctgggtccct 1561 gcatgctcct ggcactgagg gggaaccaga ccatggtgga gatcctgtgc ttgatgctgg 1621 aatacaacat catcgacaac aacgacaccc aactgcagat catctcaacc ctggagagca
1681 cagacgtggg gaagcgcatg tacgagcagc tgtgtgaccg gcagcgggag ctgaaggagc
1741 tgcaaaggaa aggcgggccc accaggctaa cactgccctc caagtccaca gacgctgact
1801 tggctcgttt gctgagctcc ggctccttcg gaaacctgga gaacctcagt ttggccttca 1861 ccaatgtaac cagtgcctgc gccgagcacc tcatcaaact gccttcgctc aagcagctga
1921 acctgtggtc cactcagttt ggagacgctg gccttcggct cctgtcggaa cacctcacca
1981 tgctccaggt gctgaacctg tgcgagaccc cggtcacaga cgctggcctg ctggccctga
2041 gctccatgaa gagtctctgc agtttaaaca tgaacagcac caagctctca gctgacacct
2101 acgaagatct gaaggccaag cttcccaatt tgaaggaagt ggacgtccgc tacaccgaag 2161 cctggtgaag ctcccagctc aaggcaggaa gacgtttgca accgcgacaa aataactctt
2221 gactaacagc cgcagagcag ccggtcctgg ggtcccaccc tggtgccctg gctgtgagat
2281 agatggggag tctttctggg ggcggagggg ggagggggtg gggagggggc ccacaagcac
2341 gcccagcccc cgccgaattc ttttagcttc gtaattggaa cctttgacct gatctaaagt
2401 ggactttgta gcaacaagag gagcatcagc gggtcgggga ggggtttggg ggtgggctgg 2461 ggggtggggg accctttgtg gattttcttt gcctttgtgt ttgatgccgt cgtgtgggaa
2521 aagtcaactc cgatgccacc attgcgggcc ggacgaagga tgctttcttc ctagaggctc
2581 cgagctgagc tgcgaactcg ccccccgccc ttgggacaag aagacccagt cacatcactg
2641 cacccgtcct gtgtcctcac cattgctatg caaagtgatt cttgttgtac ataagattta
2701 aataatgcac ctatttaaga catgttgaca aattgcgggt ctgggacccg cctcttattt 2761 atgaagtctt tgaccgtccc ccccgcccga ccccaccgcc ctcccgcccc cacctggcgt
2821 gtagtactgt ataaaccagt cagctgtcgg gttagtggta gtattattgt tattttttta
2881 aaggaaacaa acagacaaca aaaagaagaa aaaaaaaaag aacctccttg gaaaaattaa
2941 ttgctttttc gtaatggatt ctctatgcta atgctctctc gtctgtctgt ctgtctgccc
3001 actcccccac ccaccactgt gcgtttctga tttccaaatg tctccaactc cctcacgagg 3061 tggggctcag gctggaggag gagggattaa gatccccttg ctccactaag gcccaagctc
3121 tttctctcgg caccttttag acttgaatgg gaggctgcta acccgccctc tccagtccac
3181 cccggtaaaa gagctgttcc ccacccccag ggagctcctg tccctgtcag cctttgctgt
3241 cGcctgtccc caacggagac tctgtcaccc ctgggctccc cctgccatcg tgtgcttcac
3301 gtggccGcat gcatgcccgc ctctctgcat ggtctcttgg gaaaagagag atgtgtcgcc 3361 tccgccagtc cgactgccct ccccacccca cccccgccac cccccacatg tgaccactgc
3421 aacgaagaca ctccttctgt ccccacctgc tccgaagaca aaccaacctc cgtttctttt
3481 ataaacagtc ggctttttct taataagccc tcactgtaca gaacagcccg ttgatggttt
3541 atttggggtc cccctctccc cccagccctt ttttctgttg gtttagcaca aatacttccc
3601 tcctccggca cctccaaacc taccccacag tcagtgtact tgttttatat atatttaatc 3661 ttattcaatg gaaaccatgc ttttgtcgtt ttatactttg ctaggtagac tttattaccc
3721 cGccactatg ccctcatttt tttaaaaaag gaaaaaaaaa agaaactggg ttccagtctt
3781 aattcatttt ccgtgccagg ttttatttcg tgtgtgtgtg agtgtgttct gttttgtgtt
3841 ttgttttttg ttgttgtttt cagttgtttg gttttctttt ctttcccccc tccggtccca
3901 tacttcacag cactctggtg cgggaagaag cagaagcaaa aaaaataaaa ataaaaaaat 3961 aaataaaaat aaaaaaaata aaaaaggaaa aaaaaaaaga agaaacaaga catgccacct
4021 ttcccctcgc actgttgctt ttcctgatgg ttaatactac tgtcacgtag ctgtgtacaa 4081 agagatgtga aatactttca ggcaaaaata aactgtaagt gactcatc
SEQ ID NO: 1
Exons in capital letters, lntrons in small letters.
>hg18_refGene_NM_198390 range=chr16:80035395-80302866 5'pad=0 3'pad=0 revComp=FALSE strand=+ repeatMasking=none cccgctggacagcctggacagcggagggggcgtcaggggtcgagggttccagtccccgtccttccacccagcGCccggccctcgggtatccttcttt acccgtccgagtccggcccgggggcggcgggggtgggtgaggcgcgggcccccaggctccggcagcctggctgggctcccgcccgggcaccc gcgggggcgcggctggcgtgacgtcacgcgccccgcccGcgcgccccgccccGtccccacattccaggcggggcgggccgggaGcccgGggg gctcgcccgccccagccccctcccGaggggctgcccctcccgtcgggccgcgcctccccgtcgtgggccgcgaccccgcccggaccgcggactc cgcccgcgagaggccgaagccgccgcggccgccgccgttgccgccattgacgtcagaggggcgggcacatgaccctgcggggaccaatcgcg cgggcgccccgggctccgggagcccggcgcgcggcccgccccgcccgcggccactctcgcGcggacggccgcgcggacacacgctctgtaca cacgcgcgcggcggcgcggggccccgagacacgcccgcccccaccccgccgcccccaccccggcgcccgccctccgcgcctggccccggcc cgccctcggcctcccccgcccctccccgtcgcccgccgagcccggtcagccgccgcgagcatgcacccgacgagctaggaggaagcccggagc cccgcaggaagcgccgaggccggcccagcccgccgcacgcgccgccccccgcgggcagcgccccctcccctgcgggcgcccccagccccac acccccccaccttcccggggggtgggggggtgcgggccgccggatccgggggccccgGcgcccGagcagcccaggacagccccctctccccg cccccagccccctcccccggcgcggccatggatgtgaccagcagctcgggcggcggcggcgacccccggcagatCGAGGAGACCAAG CCGCTGCTGGGGGGCGACGTGTCGGCCCCCGAAGGCACGAAGATGGGCGCCGTGCCCTGCCGCC GGGCTCTTCTGCTTTGCAACGGGATGAGGTACAAACTGCTGCAGGAGGGCGACATTCAGGTCTGTGT CATCCGGCACCCGCGGACCTTTCTCAGCAAGATCCTCACCTCGAAATTCCTGAGGCGCTGGGAGCC GCACCACCTAACGCTGGCCGACAACAGCCTGGCGTCCGCCACGgtgagtggctctgcgcggctgcacccccgcctct cctcggggcccgagatgcgccctccctggctgcGCcctggcgctgcacctggagcccagggcctggggggcggtggggggtgccgggggaacg gggagaaccagggcgcctcgctcctggcctgctcgcggggctcgattttggagtctgaagcccaaaccagccgaccgggctcaggagagaccctt aaaatgctggagactcggcccaccgccaggctgggtgcctggggaccttctgcccccagctcttgtgtttctggtggctgggactcgaggatggaccc gacgctgggccctgatggtggtgggggttctctctggaagcccctggcccatctggatctgaggggtgggggaggggaaaacaaaataccacccct cagatttaaaaaaaaaaacaaacaacacaacaaaacctccaaacccccaaacccaaagaatttccagaagccagtttctctgtttggtttacccgtc ctttattctctttcctgccagggctggcaggcagaacggggtgcttccctttctgaaaatctcattGgcacattgagaggttggaagtggagggggaggg ggcagtggtcctggaatatctcaggacccagcggtggtcgagttctagcctagaagctgcttggtggagccctggtccggcattgtctgtagagtgtgtg tatacgtgtgtgttttgttgctggaggtttaattttgttattgtttttaaatacatgggtaggactgggtcagctggatgagtcggagaggaaaaaccattgatc tgtttctgaaatcagatctgcaaatggtggccttcttcgtacgtggagaaagacagctgtggtggggtcgaggggagagtgggggtggcgggtagga gcctgaacaggatgctttgtgttttgaaacaaggacagtttcaaataccggctgtggcttgggcctgaggcttgccgtgggggtcccatcctcattgggg gtgtagcttgtcttccccagaatgcacactcctccctggggccaccgtgatcctgtttactaagcgcagtgggagggggccgaatccactgcctgccca cacctgtgccaagaaaacccagccaggaaatagggtgtcgcttacatggcatgtcacaaacgtgtagcgtgtgtagacatttccctggcatccatgttc ccttggcggtgtgtcacaggccatgacacatgccGcaaggaatggggaggggggaaaagttagctgaagaatcctactctttgaaccagtccccca ccccccaccccagagcgttgcagccctcgaggacttttattcttaatttggggtccgacatgcttagagcacctattttctctttcctgtgggcacgttggtgc aatatctgcaaagactcctttttcagggaggattgctggtcgcggggaggcggcccagtccccggtcaggctggtgcatgttctcaagcccgtcccgc gccacaggccgcagcatttggctttccaatggatggaggcgggagagagcctccgaaaatttgccagtacggagtgtttctgatgtggggaggaact ggtgaccgcggtgccccctgcctggattctggagaccccagatctggcttcagaattttcacGtggctcagggggactttattgggctttttttttttttttcctct tacactccacaaaatgaagggttgttggtggtggggtaggaaaatggttagaaggaacagtgacctgccatgggaaggccaggaggagGcccttct ccctctgggagaagccaggagtgagtgtcccgctgctaccgtcctgtttccggaaagccagctctcgaggctaatgcGtccccacttacctccgattgc tcaggaggtatatctgagagaaagagggaaggaagaaagacctgaatagccagaggcccctcgctcaccttggccagcccaggtaggtggcac catcggtagtgtgggcctttccggaaagcacctgtctagtactggggactgaggcttatccatggagcaagattctcttggcagagccatgctctggtgtt aggaaatgtggcaagaggaactataaggaagtgtttgatggactggcataatcccctttccgctgcctttcgtcaccaagcactacaggcagggggtg tccttaagtcttacccttgccctctggtgggctccagggggccttgcctcagggcctgtgagcctggaggtggggctgtgagggctggcctggctggag cgctggcctcccgggtagaggtgaggttgggactgccaccagggctctcgtcccatcatgagacacctggttggtgtccaggctctGggggaagcag cggagcccctgtggggtttccctgaggcctggacattatgtaatctgtctgcgttttatagtgcggcccaagcactctattgagaaatatgagcccaaata aaacaaaggtgaatttgagtgcagttccctagaacaaaaaccctttgcagtcctgtggcttcgcagcagccgctggcccagccctgagctcccgatat tccaagtatgtttcctatagagtcatatccttacttgaaatatcagtcatccatattttaagccatctacacagcccaactcagaatcatctggtaattatctg gttaattgtatgggcttcaggaacaagacccagagtgattgatagggattcaaaccaataaacaagccaaatactcttttttgcccaaaccttttgcagtc tgtttccattgatccaattaaccgaatctgagagatttaagaccgtgcttccaggagcacatctgcatcaggctgggatgcaggcagactcgggctccc agtcccacctgctgggtgacaccggctaggtacaccttttagtctggggtccaagggacctgatagcGctccaggctgtcttaccggtggagccagca gcctcacccgcctggcctgcctgtaaactttgcctcctgtgggatcaggtcgcagcttgccctgccctggtctcctgggccagttactgattaaatccttgc agagccaacagcgtgcctaatgtggcttgtgacggccgccaggtctgatgcaccctgtgcttggagactttggatccgaaatgctcgtaaacaaagg aggaagcagataggcgacagctgacttgggaggggagatagggaggccagggccccctcccttggggacccaggactgcacctttgtggggaa gggcctgtctgcccaggctgtggcctgaatgtggtgccccattccctctttgtacccaaacttcccagttcctgggcctcactggctcttcatggctggtgat ggtcgtgttggttgtaaatgacagccagggcagccaggggttctgcataagcggccgggttcggcaggaccagaatccattttgctgctctcgtctgtg ggttgaatttgatcacctgctaggcatgtttgtccgtgggcagagggctttgtctgtaggctttgtttcttctgcaccacagaagtacaaataagctgcctac cttttatttcatcttacttttaagagaatgtggcacacggtatttcagaatggtggatccactcagaaagtcctttattcaggggtcggggcacaggtgaca gtagtgttctttattctcaagccataattcatcagtggcttgtttttaaattttcaccaGtctgctgtttgattgcaatgtttctgggcatcttgatatggatgggaaa ggagaagccaccttcattctcattggtttctttagtctggtgttttctgaacttggactttgtttagcacaggcttactgcatgcctactgtgtgtcacttgctgag ctaagagttacacatccacatggcttggtttctacctaagaattaaaatctatgtcctccagggtagtcacagatcccacgagaactcatctgtgcccac atgcacgcatgttaattgctttttcacttttgttacataccccccttccccccatgtgcctagcctgGctttaatttatttgatgtttttttgtggcagtaaacacaca gatttGccccccGCCctttccatgccatttgtcataggaggattttggagtgtatcaaaattgtttcctagacaacttgtctgattggaggtggtggagggga ggggctgagacagagaggagaaaaagtcaaaattctctgtaaattgcaaacgtggtctgcctttcccaggctgtaataagtaagtgcattttaaggaa ggagtaagttttgatgctcgcatttgcctggtgcaatctgagatgcctgttccggccacggcaacatcatgccagtccaggtggaaggaatttcactgca tgtggctgagctttcctgcaagtgggtgacagaggtggcagttgctgctggcttgggctgcttggcccacagattgactgatgtggcggccctgcctgct ccttagtgtctcatcgggcagtgagagggcatttctggggcactgtcctgggcagggctcagggggacctggtagaaggcaaagctgtcccagggta cctcaactgctgccagccaggactgactcgtcttgaaggtacccaattggtgttttgttggcatggacattgcagggggtcagcttacacctttgattaaa ggaatacatgagattaggtgaggcagcctgatatggggGatctcctctgtgggggagaacagatttgggttttgcgttctcatggcgctggatctggattt gaagggtgcagtttcctggctgtgtgacttttggtgctttgctttcccttgctgggccttgtttttcctccatccttagggagagcacctcatgtctagggttgctg taaggattggagaggatagataagcacctactagtatagtcagcatacagtgaccaggattccaattcctgttttgctaattgccctgaaagagcttcat gactttctgcacaaatggaagggattattgttacctaaaaatgggtggcctccagagagttccctgagatgaatagtgcattggggaaagctaggggt gtttagcaggtctcataggtaggaaggcaatgaaattcttgccagcagtttaagaaaaattccttgcggggcgtagtctagtttcttaaaataaattacaa aaattgaaatactcatgtatgcatcaggtagatttgattagtataacaaggtgtttaatgaaaaatgaagcttcccttactcgacgtccacacagccccta gtggccctccttggaggcaagcactgctgctcatttcttgtgtatctggacatgcatgcacacagctgtctaccgtggttcttcactggacagtatattttgga gaccctccatgcgtgtgcagctgccttgttctttttcattgctgcatagtgttctgttgtagaagtgtatcacagtaatgtaggtagaccctcccctgttgatgg gcattgaggttagtcccagcctctttgatatggtttggatgtgttcccacttaaatctcatcttgagttgtagctcccataattcccttgtgttgtgggagggacc cagtgggagataattgactcatggggcgctttcccccatactgttctcttggtagtgaataagtctcacgagatctgatggttttataaggggaaacccgtt tcgcctagctctttcattctcctcttgtctgccaccatgtaagacgtgcctttcaccttccaccatggttgtaagttccccccagccacgtggaactgtgagtc cattaaacctctgtcttttgtaaattgcccagtctcaggtatgtctttatcagcagcgtgggaacggactaataGactcttgttccttgaaagaaaacattttct atttttactgaatggagttgtctctattttgatgttcttttgcttaattctttgggatgggggagctgagcctccttttgaagagggaagggcagtgtttcctgggg ttattgctacctggagtcatgctttgttctggctgaaaggtcaccaaccagggatccccctcagagggtctggccacttggtcttccctgcagctgaagga acataggtgaccagggggctctgacaaggatgcgctgacttccacccacagaacaagggtctgtgcagctccacctgagggcattgctttttgttccct gacttcctgctttccccaggatggaagccaggccacccagccccatggtggaggaagagaggaagtgagagtttctcttccttgctcctggctctggtg atgaaccacccagtgtattcaacaggcaccgagggagactgtgcgcattttgaaaggaagcttcgcttacatcagcagagccctaaccgaagggtg atgagacgtgcgtgtgggggaggtgtttgctgtgtgtattgaggcaaaggagatggcagagaaaatatttctggtgctgaaattggttcctgacttcagta gccatttcgttacGcctcccatgtgcacagcgctcgtcctggcatttggggtgtgcagtgaggccacaggaagagaacacggcagacccagtggagt aggggagtgaggacctggactttgaaatcagacaggggagcttgaatcctgcctctgcagtgtcccaggtggtgaccttgggcaggtcccctagcct gtgtccttatctgtaaagcgaggatcagagaaacttcctcttagcattgatgtcagggtaaatgaggtgaggcctggcggtgctttGatgcctccattcag cagttaagtgtcaccgttctaggcactcggaagaaaacaggagcctgccctcgtggagcctgtgttggtgggagtggacaaacaactaagttaaga gcaagtaattataaaatccgatgacagggatcgtggagaaaagcaagcagggtggggcgagtggtgggctgctttgtacatagtggtcagggaag cgggtgataggacttccagggggaagagcgttccaggtagagggaacagcaattgcaaaggccctgagggaggagatcatctgtggaaatcacc cagtaaagtggcttgcacctggtacatgttctatgattgtcagtttccttcctcctgctctgtggagctgttattatctgtttaaaaaattaatgagtatgtagaat gtgcgaggtgatggacacacaggcagGtccttgccccgtaaagcttccattcttttgcttctgttgtgtgttttttcttttgttttttttttgttttgttttltlLLlLULLLLLlgc aaacctggctgcctcccaataaatagtgaagaatagccctggtagcagtgccttaagagattcttaaatgacaaagcccagcagaactttgaaaacg caactccctttgtccataactacactctaaggatcctaggatctagaacacactagtgctctgattcacctctggttttgccagcgaggaaggggtgagg ggaagtgtgtcggcaaagacccttgcagctggctcagcagGCGacctgggattcaaacccagactcctgccttcccatggcatcctttgttcgtggctct actgctttcaagctactgtGagaaatggtagggtggacggagcgactaaactgattgtgctgggcgaactctttttggagggaagcacgtggtctggat cgtctggtcGCtggtggatataggatttgagtgtatggaatcaaacagccatctgggtgcttGccttgggctgggctggctgcatccagctcaggtggggt catatggagaaggaagatcacaccgggactgctgctagcttctctgggtgtcctgggcGagtgccagtttccttagaggtccaggatatctgaaaattg gagcacacagtctgagcagacccaggcctggctctcctccctcgcatgttggctccctgtgtggactaggtgaccctgtttaccaacacacacaccgg tgcgaggctctgcagggaaggagagccacgggtatggaaggggctgtgtgttccccaggcaggctagctgccgtaacacgcagccctggcatctg ggtggcttcatgcagcccagttcttgcagtcctgcaggggtctcccgagggttctgccccctctttttcttgtgaaatgggtctgccctcccctaggtccttca ttgtcagggggatggggaaagagtgagcaccacagccaagccgtttgtagatctggccgcttggttggctagaactcagacacacggccacacgg agtgcaggggaagacttgggaacatggtttacatgtgcgtctgggaggaagaggagagcatggaagcgatgactactGCcaccccagcatccttg ggatgcagcagcagatcttgaggtctccagggtgccaagagcagagctgcttccctagaaaggaaattcacatgaccgtgatctcatctggttcctgg gtttgaggttgggggcatttcggccaagcttgcagtcttctctggtggggaataaagtagggtgagcaaatccgttgtaagagatggacctatatgttcct ggttgcaacgatatttatcgtatcGGtactgtgtgccgggcacagtgctcatttaattttcacaacaatcctgtggggtaggtgtttattcccattttacagatg ctctaatggagtctcagataaagagagctgggaggaagtagagtttagtgtcaaagccaggtctgaccccgtgtctgtgtgggtccatcaatgtatatg cacctggtagatgcacatgaaactatttcagcctcctgcagaaacatcttaggtagaaataagtgagcttttcagtttagtgtttgccaaggttggcggac attcctttgtgattttgteaaaaaagttaagggaaccgatgtgggaaattgaatgccagctattcgtaaagggtaagcattaggtgtataacttgaacacc atatattatttgtgcaaattgagtgttctggggcactgttcttgcatagtgagtgctctcaggcatggcacttggaaagtcagacatactcttccctcccaag ggactcatagttaaatgggggtattacaattatgatacaccattgaacaaagcacattgcttagagaggtttatgtcttgtcctgtgtttggacggaggaa gagacgccatcatgggggtggggagtttcaggaaggacttctttgtaggagacaggcatctggatggagaggtaggatggagaGtgatggagatga gggtggcaggtcggaggtgggaatgagcagagggaacagtgagcaaagggacaggccagagcggctgggcacattccgggagtctgtgcagtt tttatggggtggacaccgtaagacggcataggaattaaagatagaggtgggtttgcctcctagagcagagtctaccagtgtggggtgattaatgctgg gtaaacccatgcaccctggggcgggtggtgctttaGgatgcagagagactaaggactggccggccagccgggagcccgggatgtcacagattgg aaggcttaggagtgcagggatctccgagtcgccaggaccaggcagttagtcacagtagtgaccgtgcagcggccactcgtgtgattagtgtgtttcct cttgccaggggctatgctatgcaggttttatcagtgatccgtacaacccagttagatactgttactctctccattttaccgatggggacactgaggcactgc ccctcaacagacatagtttggatgaatgaacagcttgcctagttgggaggtccgtcctgttggaaggggagagggacccacggagagggaggcgc aagcccagatctctacGcctccacttccttgtaaccccacgggcctctggccGtctgcgtaagtgcgagttctaccactcccctgctgcagggctctgtcc gtactgaaagcaggggattgcgtacatggtgtctccaacacatggcccagctgtggtgcacacagcctttctcggtgtgcacacaggccctaggattc cgagcccacccctgtggcctgtgaagagtggtggtaatggcgtcaggctgctgggctcagcctggtgagctcctggtgggctttccactagagacccc tgctactccaaatcccaggcctgagctgtggctcacaggacccctttcttgaaccttcccttcagggaggcctggtgggaaggccctgcctaggcctgt gctgtctcgaaggtgatcccatcaggctggacctcagggccagggacacagttgggcaccttgtaggcgacgcaggagtggcactctgcctcttgtct gcagtgggggaagtgcagtggggtctcagctggcaggttacaggggcaggtctgcccattggaaaggggaatgatgacttgttgacatctgtttgtcg ccctggttggttcatgtttcacgaccctgtgactgaggcttgcttcagggtaggaaaatggaagagctcgaactgtcccagcaggctggtggcaactga gctcggggagtcccagcagggccagacagagcccagagccagatgatagtcatgtccaaggtgagtggaggggaccgcggggtaatcatgacc atttcctccagtcattctcagacctttaggGgtgtgcgcatttGgtcctctcatcagccccgtgaggcgttagcaggggaaatggagacctcaagagttca aggttacacagctggaacccaggcagcctaactccagagccagtggcctccagatgtcacgacgagtccctggtggggtgtgagcacaggaacc ctggcagcaagggccgaatcaccagcaaggcaacagtaaggatagtgagcacttacGcagaacctgttttatgccagacactactagagccctttgt gcagatgtacattcatctaatcctcacgatgcccctgcgaggtggtgctgtcattgtcccccttatacagatgagcaaactgaggcccggagaggaga ggtccctacttacccagcttgtaattgtggagcgaggatttgaccccaggctgtctggctccagagtatcactgcctgtggctggtaagcagagttttggg gctgcaaagcagaatgtcagaaaggcccacagtggccaggctggctgtgagctgagaggagggccttgtggaagggagagcgtgtggacagag cagaagggtctaccctgactgcactggggccccttccgggagcttcctgggccagcttcctgcagacccatctccggaggagccgtggcagaggat cgcttctcacctgccctcgttgaacctggggtggtcacctcagcctcctcgcctgagaccacctgaccctgcagagcgctctgtcacagccggtggtga ggactggatcacagtgagcacgaagttcaaagtctactgtggagcgagcgtCGcgccctgtctggcttctggcctcagcttccccatgcctctgaccttt ggcacacgcctcttctttctgcttggaacccctccgacccccccgccagtcagtggttttccagggctaccttccccagttggagccagggcttgctccGc tgtggcgcggcaccaGcccagctgggcagccaggtcgcctttgcctcttgccttctccactccacatttacctcccctctcttgtaaaagcaaaactgaa gccatcatacagggctgacgacaatcttacaaaatcaagaagaaaaaaatcctcccagaatcccaccacctggaaatcacGcgtattaaccatgtg gggtggagccatctaccctttctcctaaatgagtgcgtgtggcataggtacacagggagcaggaggagcttttattctaggttggcctccacctgccag gtgctggcccactgctccccacagttgtaacaacccgtgatacgtaacaagcaggctctgccacatgtccccggggggccacattacccctggttga gaactgctgtgttcattcatttaatcatcacacctacctcgtgaggtcccattttctggagcaggcaggggctgcccgggctggcatgtgacagagctgg gaactcctgcaccgtcccacagtcacctcgtctcttcagaactggcccacaggaggtctgaaaaacaatgtgggggccttaggagccctgtccccat gtctggcatggtgtggggccaagagccggtgggccacggcaccccaggcccccagaaggaaatcccagctggcGtgggcgttggcaagctcccc cctacctttgatccctcccgactgacctcccGctcgctgtccctgccttcgccctgatgactcaggacttcagagatctgggttgttgaaaaggggaatta catcatgccaataagagagagggggagaaattagcattagaaagttttggcgtaaggaaaaatgacttcaaaacctgcttcttgtgccctgtctgaatt gaagcaggtttttgggggagatgaggaagtggggaggagaggggatagggaccctggcttctcacctcttctaaagaggccttcatctgtttgacccc agacccatccacggctgggcagtgggtccctctcctttttatagctgaaccccatcacctggaaggctattaaaaagcaaggttctggagttggcatgc aggttctacccgcaggcttggtgaaggggggtaggggtcagggagcactgcaaagacgaacagtctggggttcttctgttgcccccagtggtaagca gggcaccctctctgggccagcacagccctggctgggggcatgactagaggaggggatcccggctgatctcagtcccactggcctccactgggtgct cctgcgtagggccctccctgctcagccattctgggaagctttgcttgaaggggatcaggaaggaggaaaccccctgcctccactttgaaacccgcac actgtttccccattacgtGttgcagggaggtggaggcgttaaatcccctgcctgcccaggtcagtccttccctaaaacaggacagtgatcgggcaggtt gattaggagggctggccaggctttttgatccagacatttGatatgaggccatttaaccagtggtgtgatccagctctcagtttcctcatctgaaagctgggg atataagagtagccactccctaggataaaggggagaatacatggaattctgagaataaaggagagaatacatggaaagtacttagtagagtgtgg acacgtggcatgtgctcaacagatgtttgctacGatcatcatcatcatcatgacccctaccattactgtcatctccgctgtcaccatcactgtcaccatcac cgtcaccgtcaccatcactgtcaccatcaccatcaccatcaccatcaccatcactgtcaccgtcaccgtcaccatGactgtcattactgtggctaccgctt ctcttgtgttgggtttgccacctgtataccttcctgcttcctgcaggactgtgagcttgaaggcagggtttgggtccgtttttccaggaatacccgatgtcaat aaaggcGtttgtctgttgcatggtgggggaccttggcatccaggctgtgaagggacaggaaagtctcacagttttcttggaaaccttGtggtgaccttgg agtcaagggaagGtcttcttgggtgtgcccgtggccGtgtgctgtgaccctgcgctgtgaccccgtgccgtgacGctgctccgtgacctcgctccgtgac ctcaggcaccattatttggaatgggctctcagcccctgtcctaaccccagccaccaagctcccaacccaagcaagatggaaacccgccgttgggag gattaagatattattggtggttttcacctcagctttcagcagcagtgcttgggaaataagattttgatctcggaaaatatgatttaaaaacagaattgaaagt cgcttttattttctaaacgatattgcccctgacgcatgcactgcctctgactggtggcctccggtctgagcacacccgtggggtaaactgcgtagcaattcc aggggtgtgctctctggattttatagacttccaccccaagcaggccctgcctttgatcccccactcgggtctgcagtgacagagcacctgctttagacca agcccaggaggctgctgcttctttggggaattgtcttagGctttcccactcttaggaggtggccttgtcagatgccagctgaaggggtcttcttcctccgag ccctgctgggctcacctttgaatgccacaaaccaaacccatggaccaaggggactttggccacatcccagtgtcGcctccagtggggaagggaagtt cctttccttcctgttgtgtgagggctaggggcactgagtccGcacaaggcctcaccatggaggctctgagaggtgaggtttggctccGctggccacccc agagtcaacacagggcctgtgtgtttttctttgcctctgggcccatgttctattctttccagcctttgccttggaaaccGcaccctccattcttttctgctcccctg ccttctgggtgggtctggccagtggagagcctgggggagatggaggatgggaggagggtgagtgggctatttattccctcctcccttttccttcgggttgc cagcggttgccatgggtgggtggcgtccctcagccactcctgcagtcatgtcactccctctacccaggtttttctgtaactgctGcttcccctgcagtgtcag gcGcagggatagaaatacatgggggagaaatgaagtgactgctgtcctggtttgcccaggactgtcccaggtttttgcagtgaaagtcctgtggccca ggaagcccctcagtcctgggcacacttggacggctggtcaccctaggtagaaaaaccatcttttgtgcttcccctgtacgctgcccatgGcttaatatatt gtccttttgtgaaaatttcctctgccatctgtttcctcccaggaccctggctgatgcaccaggagcttgaggagatggagtggtgttcagagcctcttcccttt agagttcagagcaaccaaatgggcatcatgctgaacgtgggagaaacaaaagaatctcttgcacttggactcttttctgaaaatttgccccctgcaaa gcaaaatggtggtggtgatgatgacggtgatgatggtagtggccatttctttgcctacccactgtggccttgttgtgaagaactttgatgccctgttgtatgtg atGgttatgacaatcctgtgaagtttttcaatgatgaaggaaactgaggcttagagagttggagtaatctgtgaaggctcaggatgggcaagaggtccc gcccaggtttgagcccagatgcgaggttaccacgcttcctggtgaggtgttttacaactaaggccaagccaggcaaaacccattgttctgcagcttctg gcttggattgggtgtcttgttgagtatgtgggcagtggatctgatgttttccacttcctcccatgtggcagggctgtgtgcatggagcatgaggggctggctg ggcagacagccttgatttgactgaattcagccatggcccatgttggaaaatgttagcctatttttccttctccatttgccccttccccctttttttgtttttataatta gaatcagagccagccatagttggaagagaacttgaagttcatctagttctgggatggcaaataagtgacacatgtgctgccactcctcattgccttgac cgtggtagacattgGtaatcaaccctagcgtaattagtcttcccagtgagctcagagacagccactaataatcaattgttgttggcatgcaacggggac cctatttgccattcttgatgtagcGcagcttctttcactgcatagattaggaacttaaggGCcagagtcgttaaatgaccctGaagggagccagtgggattt ttttgaagccttctccacaccagggtgttcgctcttaagagatgattttgggttaaacaaagtgtggtatagaggaaagcacctgggtttgcaaagcagtg cctggatctgggttcacatcccagcaatgcctcttgttgcttgtaactctgggtagatcacatgagttctctgaccctcatcttggaaactgaaattGccatc cctacatcccaggattgtgagagtaaatgacatggtatatttatccaacattcagcagtatgtgctgggcaccgttctaggcattgcgtgttgcggtgagct gcataggcagttctcatggagctggctgccctcataaagatgaggctagttttcttcctctttccttctcggaaacccatggaactgtgttgtcatcattatcttt tacttctcttctgtcatatccacttaaattttggtccatttctgcatcccatgacttgctttgggaagtgatttattttttctttcattcctggtctcatttccattcttgtgtc tgggtggatggtcagtgagtcctttgtcacagtcaccaaaaatcaaaatgacagactattccctgctgaatggatgttctggggtactgggtctagatttg ggaatgacatactccctttgaaaatgtgctgaaagctatggatccttgggctggcaaaatggtaagacagagcagggcttataaaacttagcaactat gtgttttttagcatccataatataggcattcttagggattcatggacacctccctctctagggcaataaaccaggctagggggtcagtgacgcttccccag caggaaatggagctttgcacagaaataaacatgtaagtgataaaaaaaaaaatgtttcattaagtagaaagatcaaggtttttattcagagttttgctcct ttggccaggtaagtgtggggctggtCGctgcagcgttttctgtacttgcttgagctgtgtttagtcttcttggttatggtgaaatattttttcttttatcccagtctgg agtttcaaggttggcacttcttgcccctaaaatgtttgttttaagatttagagcagttcttcactctctgataaggtgtagtgcatcactggagctgcgttgtgat tgagtccgagggctgttctgctggaatcaggcagatggtggctcactgctcagctttgccctggctctcagtgtgaccttgggctgcctcacctccctgac ctgtaaagcagagggacagagtgaccacaaacccttgatgaccaacgattaaagaatactaagcatgagaaaatatgccGagggagtatccaca gaggcaaaggcagtcttggcatttgaacgcctggaatttgggaagtatggatcctttactgagtctctatcatggaggctacctggcaaattcagctgat gtgaatggagcagtggacgatgagtgcaggtctaatgggctccttccttctggataccaaggacttcaccttcagcaatggtaagcaagcaccactaa gagaagctgagggttttccttggttgttaacattttaaggaccccaataaacaagtttcctcattgtctttgtttctccccaggttggctggcccGgatctttag ccacaccctagagcaaaacgtcacttaaatgactagagagggacagagttccttggggccatttcagatttagacatggaatttttctgggataattcctt tgccactgaattttgcatttgcatgttctaaagccaaaaaaaggagttgaactttcccttttgtttgcttcattactcccactacgtttggcgggacggcggttg tggtttttattctcagatttgtttttatgagcgtgctgtgcgcatggagtcctctctcctccctgaggattttgtaggacgattcaagccggctctctgcccagctg ggtaccgattgccagggctggaccgggtgaaataatggaacctgccatttctcaggcacctatgatgtgccaggcacttattcagccccctgggtggg cagtgtccccgtgttacaagagaggggacaggtaccccaggcccttggcctccagggtcacatggctgtgggttgtggagctgcgatgcaaaccca ggtcaggccgactcgagctcgtgtgtcttttcctaggctccactgcttttcctgagacctcaggggacttcccaggtgtcctttatgtgcccactcttgtatggt tccaGctaaggaaaaatgaagtaggtgttggttggacaacaaggcaggccttggagagttctccttcatttctcctgcccctcagcctccttgccaagctt gagtgcagccaggattttcctagtcccttgagttacctggccggggtggctttttccaggcagccagctcagggaagaagctagggctccatccacctc acctttgtgatcttctgagggagccgcagccagtgtgtaagggaagcaggggtagagacagtagctttgtcattagtctccgcatttcacaggtgagaa aaggagtctcccaggggaagtggcgtgggcacagtgagaggtggctggGtaagccagagctcttcctagtgccagcaccttGctagaattagctgtg agactgaagagaggaaagatgacatctggtcacaggctccacatctggtccgatggggcagatgccttgatttcacagttggcgaaactgaggccc aggtagagagactgcGccagtcgctgtccctaccccggtacagGatgctgttttctcactttgtctatttgatgatgcaaccaggaaaatcttgatcaggg aagagtgaaggtctcattcattcattcattcattcattcattcattcgttttggcagctgaagttctgaggttttaaaaaaatttttttattgtggtaaaatatgcat aacacaatacttatcattttatccatttgtaagtgtacaattcagtggcattaaatacattcacagtcaccactgtctacacccagaactttttcatcatGGcc agcacaaactctgtacccattctctcctcgtcccagcccctggtcactgctgttctacttgctgtctctatgagtttgcctattgaagtacctgagctaagtgg aatcatacggtatttgtccttctgtgtctggcttatgtcacttagtgtgaggtttttacgttccccccatgtttagcacatgccagaatttccttcctttttaaggcca aataatgttccattgactggatagaccacatttgatttatccattcttcggtcgacagacacttgagttgttcccttgttggctgttgtgggtaacgctcctgtga acattggtgGaagtatttattatcgcccctgcttttggttcttttggatatacatctacgagcggacatttattttttaaagatgttcaccccccttacccattacat aaagaactcgggtttgttgtagcacagttagataacgcaaataaacagaagaaaaccaaatccacctagaatgccgacagccagagatgataatt aacatttttgtagggtgttcatttgcatgtgccgttttttccatccatacttgatgatgctgtacctggacagtctttggtgttgtgggctggatcttcatttagaaa catatataaaccaggcctgaggccctgctgtggagggaggggatgccagctggactttGactaccaccaggttgcgtccttgataggggcaggatgc accccgtgtctgacgctgtgtcctgctgtgcttgcttccttttcctgttctGtgtccccagactggaccccgtacgtttgttacGagtcGctaacactcactgtcc caagaaggctgcctcgcacaatgcctggttgtggttagtgctcaataagtatttgttgaatgagctaataagaaatgatcgattgaatgaacgaatgag agaaattccccagcgagctgaccttgggcctggctcagctgaaccgtgagagggcctctctggctcgaccatttcgcctgtggtggtgactgggcaga gtgacccagcacggtgagctgtccttgctgtcacctgtgggaaaggcaggggttgtgcctgtggccctggctcagacagcagggcGctgtgagttcGC tcgctccagaccttcgctcagggtcttctgggtgtcaggtgcccggctgagggctgggctgtggggtgaaccaaacacagccccactagaacacGttc gttccagtcggggagacaacccttgcagagaagaagctggtaatttcaggtggcaagaagtGgatgatgaaaaatacatccttgtcGtttcctttttctttt cttctGtGttgttttcatttgttttttttttactttttattttgtGttatttttttgaggtagggtctcgccctgtcacctaggctagagttcagtggcacaatcacagcttgct gcagcctcagcttcctgggctcaagtgatcctGccacctGagcctctcgagtagctgggcctgcgggtgtgtgccaccacatccagctaatttttaaatttt ttgtagagatggggttttgccatcttgtccaggctggtGttgaactcctgcgatcaagtgatcctcctgccttggcctcccaaagtgttgggattacaggcat gagcGactaggcctggcctctttccctttttaaaaaaattacttcatttggctgtttcttggttgattggaggccagggatgtgcagttgctgtgtttgaatctta gctctgcGacttactagtgatgatcttggcaatggttttgagcttggcgagcctcagtttccttgtctgtgtaacgaaagatgggggtgtgtctacatcacag ggttatcatgaggcataactgagacattgctcaggaagcacttcttattggtattacttaGgaacgggccatgattgcataatgaatctgatggctacatg cttttgaaattacaaaaccaatgccatccaattgattggtgatctgcctgggataggagcaagttaatgcattgaccatggggggcttagcacagcgcc gtttccctgggagacttgggctgaaccgaatttgttcagccaaagattctgcctcctccctgggaactaggaacaaaagggccttgcttgaaagaggGt gttgttccttcaccaagtttagaaagccaaagttcagtttctgcaaccagttccaggagttatgtggcagggctagactttttccttttttcttgtgGctaattttg ggccagttcttctggttagatgattgaggtgaccagaacatacaggaaaataaacagaaacccccaaactgccctttgaagctgtccatcctcgctgg gcaggaacaaggatcttGttgggctctagaagttttttttagttgagcgagtttccatcccaccaggcaaggggcttaggcgaggttgtgtgatgtgggcc cacgcccttgggctggacgtggacccatgtttgtcaccggtccctaacactcactctgggacctgggcacatcccgcaaccagtctgagtgccccagc ctggtgttccGatcccagatgaggcgcttgacaaccttctgccccgttgggaaggtgggacaaagcGtgcctagtgaggcaggggGttaacatagag cagcctctatagcagtgcccccagcagcggtgcctctccccctctgtgaggctcccctcagtttctctttaccccgtaaaggcctcctgtgagaagatga gaggatttgaatgcgccaccctcaaaaatggcatttataccccaggtttggtctggaaaaaagaggaatttagtgtttttacttttcctggcctcttctcttttg ctcctttatttttttctttttcttctttatttttttttttttgagatggagtctcgttctgtcacccaggctggagtgcagtggcatgatcttggctcactacaacctccgcc ttccaggttcaagcgattctGttgcctctacctctcgagtagctgggattacaggcatgtgccaGcatgcctggctactttttaaatttttattagcaatggggt ttcgccatcttgcccaggctggttttgaactcctggactcaagcaattcacctgcctcggcctcccaaagtcctgggattataggtgtgagccaccgtgcc tggcGttctttttttttttttttttltttgaggcagagtattgctgtatttcccaggctggagtacggtgatgaaatcacggcttactgcattctcaacctcGcagact caagcgatcctcccatcccagcctccccagtagctgggatcacaggagtgcaccaccatgcccggcccttgctcctttgtttctaatgtggggctcctgt ggtcctctagtccaggtgaacaagtctttgaaatgcacgatcaggggcaaccttttgggtagctttttggagccGaagataatgagcgggctttcctggg caggggccagagggctggggaggcagaaggccatggttctctatgttcatctcaggctcccaagcctgtcttcaagataaactgtaaagtgtgctcac tctcccactgcccactcagaccGccaggtgatgtgtGcgttttctggaagtagagcgcaaactcagagagaggccggggctggaattccagctctgc ggccccatctgcatgagtgtccctctccttgcgggtaaattgagggcaaggatggaaccttccgcaccttgtagggtgagaacgaagtgagaagtga gcagatatgccccaggcctctcgcaggggcctgcgcgtgccgtgccctctgtgctttcagagtgttctctcattcagcagttaggcatcgtgcctgaagc atgcccttatggggcacctcctgggtaccaggcattgtgctaagggttgggagtgtggagacaacagcatgggagaagagagttatggaGaatcggt tccagtgcccgcaaacgagggtgactcagggtgggcactcgtgggaagcagcagggtccctggagagaaggctgctgatccaagaatgggtccg ctcaggccaggaggagaaagcagggaggagctttctgggcagaacacagcattgggaaagtccgaggggcctggtgaggcctggcacacgctc cataggcctcaggtgtattgagtgggctgggggctggtggaattgtggagggcggacgcagtgagctgcctgcatgctggccttgggactttggacttc aacatggaagccgaattacaggaaggccccatgaacgtcttgttctttcctactccgctttgagaggacctaattctttgccccgatttggatcaaccttag gcccaagaacctggcaatggctgagctgatcaggagtgtggggcccagttcgttgccaacagggaaatgtcctctgtccctcaacctttgacgttggtg gggaaacccaaaggggctggcagcccttggggtcattctggactagaagcatctagacccaagataatgcaaagaattgtcacgtataggaaaac tgggatcagcccaggcGagtaatcaaaacagcatgttggaagttctaccttgggctctgccacttgcctgctgtgtgaccttggtcaagtaacttcacctc tctgagcttttgtttttcatcagtacaatggggcagatagcggtaccaactccatgggcttGtgtgaaggattcagtgagataatgcacatctggtgttagc cttgtgtctgacacagagaaagtatacaggaaaaacagagggctcttattactgccgttaccactgtcattgctactgttaccaagattacagaggagg ggacctgactacacccaaggtctgaggggccagagagggcttcccagggcaggtgacgtcaggctttggagtcagaccttcttaagttcaggctttg cctgaactgtggattcacagttcttcagagaactcactatgtgtgacattgggcaagttagttattgaaattaagttgagcatgttatttacattctgattacgtt agttaaactctacctggaaaatgggataataacacccgacagccaggctgccgtgggagtatcagagccaccaggccagttctgtttgaacatttccc tgaatgtcttggaggatgggatggggagggatgaggagggccttctttggggtcctcctgtctgctgcacccttgaccttgtctggtgtctgacagcagca gcaggtaaagagcaggcctcagtgatctcctgcatttcctctggccctcactgggagctcttgccttgcctgacagttcaccaagtactgtgtactatcttg tgcagaaatcatgagcaggaggaagaacaaaccacttcctctacaaccttcagatttatcagacacaacttttgacagtttcagtttaaagagaatttca aaagaagatgttgaaagcaatagggaaataaagcggcccctggcctcagctctctgctgcttccacatttgagacaaaggcgccgcagggatgctg ggagagagccccagcggttcaagaggtgccccatccaggcgccccgtccaggcagcttgggtccagagccttctttgcacgtgcagcctgctggct gtggtggctggggttctgggcatctgcagggtgcttttcatgtcctgggagtagtggcgtttgcacagaggccgggtcacagagacagatgtttcagaa gtttgacctcaaaacagctttcttttcccttgggttgtctggagaaagtgctaaaaataaggctggatctgagcaggcgctgGtgacaggccacctggag gttcgagtcGaccacgaaggtggagtcttggggttatactggctggagccataggaaattgagatttaaaaaagctattaaaaagattataaatgagat cttgctgtgtttcGcaggctggtcttgagctcttgagctcaagggatcctcccaccttggtctcccatactgctgggattacgagcatgagccactgtgccc agccaaaattgggattttgtaagtagaaaatgattaaatattggttccatatagtttgtaagtaaacacaattcttgacttcctcatgtgatctcttcgctgtag ccctgaaactcctgagatcagtacaaaaagaaatcctttcttgggaaagaaaagggagtgttatgattggtgtacatacacataggcacacacatatg catacacacatgcacacaggcacaaacgtgcatacacacatgcacacaggcacacatgtgcgcacaaacatgtgcatacacacatgcacacag gcacaatgcgtgcatacaaatatacccacatgcacacacacgtacacataaatgcatgtagacatacttgtgcatatacacatatacatgcatacata tgtacatatacacgtatacacataggcacaatacatgcatataaatatactcacatgGgcacacacatacatgtacacatacatgcacacatagaaat acatatacacataccatatatacttgcttgtacacacaggcacaatatatgcatataaatgtacccacacgcacacatatgcacacataaatatgtata ggtgcacacatatgtatacatgtatgtgtatacatgtgcatatgcatatacacgtacaaatgcatacacacatacatgtacatgcacataGatttgtacat gcatatgtacacatacacatgtatgcagacatgcacacagatacataggcatacatatacacatgtgcagacatgtaatacacataccagtgtacac atacacacatgtgcacacacacatgcatacacaaatacacacacacacacagttatacagtagtccactctcatccttgggggatatgtgtcaagatt cccagtagatgcctgaaatggtggagagtactgaacGctacatagaGtctgtttcatcctacgcgtacatactggtgataaagtttaatttatacataaaa taagggtgacttgaacacaagcaccatgataccatggcagtggaattgagtacagagagggctgctgagtgactcacaggcagctaggacatgca gtgtggacaaactggacagagggaggactcacgtcctggacaagatgcagcaggacagtgtgggattgaagactaaagaattgtctggaattttcc acctaatctttttagactgcggttgactatgggtcactgacactgcagaaagtgaaacctcagctcagggggcactgctgcaggtgcacacacagatt cacggacatgtacatgcatatgcactcaatgtatatgccgtgtacacacacactcacgcacatgcacatgtgctctcagtatacacatgtatgcacgtg cacacaggtacatcctcacccgccatctttgaaatctcacttattgcatttgtgtttctgatgtatatgtaactttgggcaagttgtgtgacgtctctgcctcagtt tcctcgtctataagatgagattagcagcagtgtttatgacctggaattgtggtcaggattccatgagaggatgtatgaaccaacttgagagcaaggGtca gaaccccagaagtgcttcgtgaagatgagctgttcgtatttccagtgtccttcatggtggctcatctggccgcccgttctggtatcctgtgtgtggcgtgccc catgcgtggaggagtggcccatctcccGaggggtcccctgggtGttgtaggcactgatcacagccactcacttgacaccgttgagtgtcagGtacatgc catgccctgtcGtagggtgccccaacatgggccctgctctcaggaacctgagcattcactgggggtggcacccgcaaatgtgtcagccaatcaccag agccccttcagaggtggcaggtgctaggacagtagaggggcagggtgaaggggtggagagatgggaggcccctcaggaggtggcctggaggc aggagctgatcctgtgcagatgtggagaggccgttgggatggtgagtgcagaggccctggggtggctgaggtgcacagtggggtgtggaggctgg agggacatccaggggcacatcgtggcatctgtggtgatctgcagcctgcgcccagtactttgtcctgttcctttcggggcttggccacaccgcagctgcc cagtgagtgtgtgaggggctggtctgtttaactgcttgccctgaaggtgcgaggagagcctgttcgccttgcatccagtgggccaagcttacatagatcc catctcctctgcataccctcagcatcctgatctataaaatgggagtgaatatagcaccttcagccacaccaccagcctgcctgcggcccctgcctcctg cccggcctcctctgaggtcagtgccttcagctcctgctgcactggtggccaccgcctgcaagtgcttatgtcggcctctgtctctgcaggacgacgtgaa caggctgcggctgtcactgacgtgtcttccttcgtgtttgccgtggggggcatataattgcattcctcatgagggaatgacacagaaagggcagggggt gtcagcaggggccgctctgtaatttccatgtctgggacggatttcaggactgagctgttttcctctttgacccggcagaggctgttgcccaagtcaacagt ggtgcgtttttgaatttgtctttgttggttttctttttccctttcttcttctttttaaaataggtctttttttttttttttccatcctatgaaataaaact^ gggtaagaattagcagttcctgtccttttggtgtgggagttgggcgggggttgacttaaatatttatttcccattaagggattcatgggcttggacgcttgtgtt ggaatggggtgatctGaaatctcactcatgattttcgacccctgtaggacttgggcctgcctttgggggacgcggggacgcagggacgcattgagGag aagctgcaagcggatgacGcatgggccaagtcaagtctgctgacgtgttttacttggcccacacagtggttttttttttttttttttttcttaaagcttcagtaagtt gtctgcctttaaagttgggagcattcccctaaaaagttccggatatccattttctaataataacaacagaagcaaacatttctatgtgacttaccacaggc ctggctcagctctagacgactcccatccctttgctcctgggatccccagacagttccgaggtggtgcttcctgtgatcatccccattctacagctaaagaa gcagaggcaggcctttaaccgggcactcctggctgtgcccatgttcctgtgtggccaccccttcaggctgggcaGggcctctccactccccGagcctcc tagcccactgtactcaggttcccccctgctcagagcttgtgggcgtggactttgtaccccccgggcttggagagggcaaggtgactgtgggagtccag ctgctgctccttaagttgagttgtctgtcactgacttaccctccctccctctctcGctactgtctccattcttctctttccGGCttctttctcctgcaccctctttttccatt cctcccttcccccttcctttctccgctctctctttccttcactcccttcctcccattcatctggtgcttaccgggggccaccaggtaggcacgtcgcacactactt ctgcttcatgtgaggggttcatggtggcttctccctaccttcagaccacacctctggtgggaggtgctgcgtgaggatcccaggggtgaactgagtcag gtcagaggagcagggagccccagcccctggtgtcttcttactgtgtggtctcttccgtgtcaccgcaGttctgtggaaggggaatgatgggggaagtgg aggaaccactgtccgcctgcggaggggcctcagtgttggccgtgctcatggcgccctcctcctggggctccctctcctctggtcctgcctctcctgcacg cccttcctgcctccttggtgccaggggagccagcccaggacagtctctgtgcctaggccctgccagcctggctgccctgcctccagccatggggggc gggcggggagggagtcgaccagtgcttgtctttgcagaactgctggtggactgaatgtggttctgggggtggccaggcctgagggtaactcattttgga aggtttgggatgtcacttcacttaaggagccttcagcaacatggagtttaagtggccctcttcaccgtggccttgtggcttcatgaatggagctgctgtggt cagcatggctggccctctggagaggagggtgggccatgaggagaagatgctgtgtctggaggccttaaccctttcctcccttctctccctccctccctcc tgtctctttctctctctgtctctttctctctaggtgcataaaaaaaattgctttcagataaagttgacatgcaataaactgcatattctccctttgcttttaaaatgat gatctgtttcagccatgcaaagcagggtataaaataatatttcagtgtaaccactcagcggaagaaataaaccattccagttgcaatacctgatgtacc gttctctgatttcaaacccttccttttctctgccccgactttgatgtttattGttgtgcatatttttgtacttgtacaactaGatactcttatagaacactccataatgttt GctagattttttttttgttattatatagcttttatttcacaatcataaaGttaactGaactctgcaatccagctaggcatggaagggaacaaaacatggaaccc aaaggaaactgcagtgagagcacaaagattctaggatactgtgagcaaatggggcagaggggtgctctcctgagctacagaaggaacggtctgat ggttaagataaaacacaagttgctgggtgtggtggctcactgccgtaatcccagcactttgggaggttgaggcaggtggatcatgaggtcaggagatc aggaccatcctggctaacacggtgaaatcctgtctctactaaaaatacaaacaaaattagctgggtgtggtggggggcgcctgtagtctcagctacttg ggaggctgaggcaggagaatggcatgaacGcgggaggcagagcttgcagtgagctgagattgctccactgcgctccagcgtgggtgacagagtg agactccttctcaaaaaaaaaaaaaaaagataaaacataagtcaaactttattcaagttgtccacagttagcaatagtgatcttcttgctggtcttgccat tcctggacccaaagtgctccatggcGtccacagtcttcacgtcttctttcaccttgccggagaccacgtgcttgcgttcaaccactcagtcttggcagtgcg tgtggaaaactgggaaccgtttgtgttgggtccagcatttgccatggacaagatgccgggacctgtatgctttaggatgaagttctcatcttcaaatttctcc ccatagatggacttgccaccagtgccattacggcgtgtgaagtcaccaccctgatacataaaccctggaatgttcctgtgaaagcaggaacccttata accaactcctttctctccagtgctcagagcgtgaaagttttctgctgtctttggaaacttgtttgcaaacagctcgaaggagatgcggcccaagggctcgc cgttgacagcgatgtcagagaacacagtggggttgaccatggctgatagaacaggtttcccgacggcgccggtgtctgcagagtggccatgtttccta gattgtaaagtttcatataaatagtatcattacttgggccttcttgtgcaacttgcctttttagtttgcttactttctgtatatgagatccattgtatgaagaagccgt ggcatatttatttatgcattctgttgatggtcttctagattgcttctagatttttgctgctgtaaacaatgccacagtgaacatcttcatagataatctccatttaca ggaatccaagagtttctcccatttcctgtttcttctccctcccaccccttctttccttttgtccttaGttcccgacgtcagccaagttcagcttctcaggctccctaa ggatctttaggagacggtgaagatgaatgaaaagaccccagccccagcgtggaggtGagggctcctgggtttcagcctcaacttggtggacctctttg ggcttcatctatagtaggaccatttttatctcgtggggctaattcatgccgcgttgagctgagcacctgggcatatggttgatgcttgaaaaatggcagctg gttgtgtctatcttctgattttgaagatacacatcgggcttggaaatgtcggccctgaactctttttttttgaaatggaatcttgctgtgttgcccaggctggagt gcagtggtgtggtctcggctcactgcaacctcagcctcctgggttcaagtaatttcctgtcccagcttcctgagtagcggggattacaagcttacaccacc acacccacgcctggctaatttttatatttttagtagagacagggtttcaccatgttggccaggctcgtctcgaactcctggcctcagttgatctgcctgccttg gcctcccaaagtgctgggattacaggcgtgagccaccgcacctagcctgaattcttaaggggtagatacagggcagggtatggactgtgcatccag gtcccctcctttcccactgaaggcaatggctgccctccctgtgtgaaggcggctggactgtcgtcatcagcactcagaactccttgctcctgcatgtaag actccgggatcatataatatttaaaaatgcagcagcttaaacacagcagaagcttgtttgttttctctcgtataaaggaaatctagggtctaagtcgtgtga gggttgccgtggctggcctgtggctttgagggcctagggcccctccatgtggctgctGctccgttcttagcaccatgggccaagagaggctcaagttcct gccattttgcctgccttccagttagtgggaaatgggatcttaccatttcgtttgcattccagttagcagaaagtgggagtggcaggggagtggaaaagga cttctgccctgttaaggtgacttctgctttcaccttactggccagaccatcatgtggcatccccggctgcaagagcatctgggaaatgtaagtgggagcc atgaatcccaccccacagcaggatttttattattgagaagggagaggaggccagaatagggtgttggcatgggccacgctagccatctctgccactg cccttcccccccaccccagaaagtatcccagggccagtctccacttcactcttgggaaggcgaaggctggtcagggagacacattgcgtgggcattc cctcaagcttccggaacaggccatcctttgaaagccactcacatgtagcacagtggaaggaagcaaggcttttacaggggcagagggagtggtaa ggtatcagcaagccgtagagtagaacagggagccgacagttctgGatggcgccagcagctcGtgggaaggggttgtagggccgagattttggcgtc ctgtatggagaggagcagcctgccggagaagatagtgagctccctgagaaagcaggtgtgcaagcaaaggtcagatggacatgtgtcagtcagg gaggccaccgagtgcgttctagatccagaaagcacattcatggaattccattgaggaattatggaagggatctcatgcagggatggtgaatgcacag accatgtgtggtcccctccaccctccagcccttgttggtcctcctggtgccctgcagagccgcagccaccccagagcctcccggtgggaagaagttgg caGctgagataaacccatttgcttttcccacttgaattcagttctcttgttcctataggtgtggacgttgagggccagcctggaagcgccatatccagaggc actcagggaggggagcaggagacccagggctctgggattcaggtCGctctgtcacaccctgcccttcttctgggtctttcttccccacctcccagccag aaattgcctcctggagccagcccagcctcgtcttgttcattggagctcagttggagacccgtcctcacccgaagcagggtgagaggacagGacctgc caGctttaagtctgggctttgctggacgcctaggagaagccgggtcctcaggcactcgagtgggaagtgaaagtgtgcaccagctctttagttctgctat tgaccggacagggtttttcctggggggagggggaaggagctgctgtgttttctttgcttaatctggccttgccGcacagagaaaacacatgcgtagcctc Gatcctgtttgtaaagagggcggtcagctactcgaagttgctcgcctggaaaaactgggaagatgtcatctcctatggtaaggaggtgggggctacag gtagctgaggtgggcaatgaatgtcttgagggactgtcagcatgtgacctttttttaaatggtgataaaatacacgtaacataaaatgggccattttaacc agttttaagtgtgcagttcattgagtacgttcacattgttgcacaaccatcacccccatccatctccagaactttctcatGttctcaaactgaaactgtcccca ttaaatgttaactcctagtcccGctccccGagcccctggcagccaccattctctcttcattttctatgactttgactcctttagggaccacatatgaatgggtta atataggatttgtctttttcgtgtctgggttatgattattattattttgctttttttgttgaggtgagatttacataacataaaatcaaccattttaaagtgaagaattc agtgatatttagccactaccacctctgtctagttccaaaacatcgtcaccccagaaggaaatcctgtacccgttaacagtcactcctctttccccctaccc ccggctcttgaaaaGGaacatatgactttaaatttgatttgcatttgcatatattaggccctctacaaatgtatgctgaatgaatgaaagaaaatcctggcc agctgagaaataatgatgaaagcttggatttcttgagtgcctactttgtgccaggtccacataagcatgtgtggttctcagccctggccgcacaatgggat cacctggggatcttcgtaacccccaaaacccaggccccaccccagagacgctgatggctttggtctgggggaggtctgggccatagccttttccgag cgattctaacatgagagtgagtggtaggcagtatttccttgggtcatagcagtcctttggggtaggtaatattatctccattttgtggatagggaaacaggtt atagaggtcaggtaacttacccaagctctctcagcttcaaatctccatctgaggccaggcgtggtggctcacgcctgtaatcccagcactttgggaggG cgaggtgggcagatcacctgaggtcaggagtttgagaccagcctggctagcgtggtgaaaccccatctctactaaaaatataaaaattagccaggc gtggtgacacacacctgtaatcctagctactcaggaggctgaggcatgagaatcgcttgaacccgagaggcagaggctgcagtgagccaagatcg tgccactgcacttcagcctgggcgacagagtgagactgtatcaaaaaataataataaaatctccacctgagtccaaagccctgacccattctgctgct ccagcctccctctgttgttttgcaggtgattttggaaggggcacctgttgctacttatgtgtttgctatggggtaaaataattaaaaactatctaattgggattta tggggtgccagctgtatgccaggcactgattcacgttctctcattttacctttacagccaccttgtgcaaggggactgttatgatgacatcagtttccccaac attgttgggaaaggacgggggtggtttgcctcacttatcatggagggagtctccccttggccctcctggtggggacctcagctgaagcagagtgggaa agaagcctgtgtgtgatgtcagggtggggtCGaaagttgaggctgaatgcagtgttttcacgggatggctttgacatcggtgagagctgctctgcccagt ttgaactagtggtgggccattgaatggagctggagaagctgtgcacacctcagggctttggcccggctgtctccctcagctgcacatggtttgtccctcct atttgcgtttgagatttttgatggctgtgggactcatgatttattcaacaaatattgttgagacctgatagctgggcgccgtctggggctcttaggaatatgcg gtgatgagacaggcacagtctccattatcctcatggtctggcaggtggtacggattgttgtgtcaccctcatctgggtgtgccgggccctgtctctgcatga gctccctcattccagcctcatggcaggtgtacaggtgagggccttgagcgactgtgtgtaacagatgaggacagggccgctcaggaaggctgagaa gctttcccaacgttacacagcttgtgagaagcggagactgaaattgaatgtgagctgatggcttcagagcttgactaagtaacactgacagataattat gaaagaggaagtccagggagcatctgcgtgggatggggccatgccagggccagagcggctcccagagggtgctgtttcaactgaggtcttgggg ggatgggtacactagtttcctgtggctgctatgacaaatgaccacaggctttgtggcttaaagcaacacaaagttattatcttacagttctggaggtcaga agtccacagtgagtctcgtaggggctaaagttgaggtgttgtctttctggaagcctaagggaagggtctgttgccttttccattatctagaggctgctcgca ttccttccctcgtggcagcatcactccaaGctctgcttcagtcttcacatctcctctggctctggccctcccgcctccctcttttttttttttttttgagagggggtctc actctgtcacccaggctggagtgcagtggcgcaatGttggctcactgcaacctctgcctcccgggttcaggtgattcttgtgcctcagcctcctgagtagc tgggattataggtgtgcgccaccacacctagctaatttttgtatttttagcagagacagcgtttcaccatgttggccagggtggtttcgaactactgaccgc aagtgatccaccctccttggcctcccaaagtgctgggattataggcatgagctaccgggcctgtccctgccgcctcttataaggaccctgtggttacact gggctcaccagatcattcaggggcaccttccgtctcaagatcctcagcttaagcaactctaagggtccctttgccatgtcaggccacatagtcacaggtt gaagggagtaggatgattagggccattattgtgcctatcatagcaggggagagtgaggctggtgggcaggcaatctaaggcctggaggtgagtggg tgcttggctttggaggggtgctgggcgcctaagtacctggaggaggagctcctggaggggagggtgagacagcagagggccttttaagtcatgggg cagactgggagttggtcacctgctaagtagcttctggagagaggacctctgttcccacttgagcctggtggacatgcgtgtcccaggaggacggtgtgt gttggggaagcccctgcccctcccccacctaggagcttccctttcacagtgacaggaagagggagagctaggagcataatgtgctttgggcaggaa atgcaggctgcatcttcccattgctggagaaggtgacaaacccgggcttcggagtcactggggctgggtttgaatccaaactccaccacatcctaagc tgagcccgttcccaactgtaaaatgggggtgagatagggcctgactcacagggtcagccctggggtcagcgaggcaggtcatgggacgctgttggt gcacaggcatgcctgcttgctcgtccgttcagcagatggcggtggcgcgtccactgtgcaccaggcaccattgcaggcacggagcaaagcaggca tcatcctggcctacttggagcccccattctactggaggagaggaaaatgaacacggaaatatagaatcttgtctgctgccactaagtgctgtggagga aaccatcagacgagggaggacagaagtattggtatgaatggggagggtgtggcgtctgtgtgtggtggcctttggaatagggtgaccaaagaaaat ctggatgagaggtgacacttgagcaggtttggaaaaggtaagggaggaagctgtgcatgtgcaaaggccatggggcagcggctaaaggaggtaa aggagccatccacagcatgtgcaaaggccctggggcagcaatttacctggttttttttctaggaatgcaaggaggtaaatgtggatggagGagaatgt gccttgaggagggtggcaggaggtgagctctgtgagtcactagtggggtcagatggtgtagggccttgtaagaactttggccgttaactctgagggag aggagagagctgtgtctgctctaatacattcaggaaagtggcagctctgaagaccgaagtgcctcctggcttgcctctctccctcccgcagcctcttcct cttcctcttcctcttcctcttcctcttcctctccctctccctgaccctcccccagctgcccactgttttgtggggattgattgggcccattgaggcctgctgcctgg agtagcagccttgcccacagtccagtctggggacctttctcggccatcccctcctccagctatcctcagtgttggtcacttatggcttttgctatttatatagc acagtggtttataaactctgcttctagaatttcgcaacccgtcctgcagcatgttatctgtccaggcagatagtggcgatctttatccaaatcaaaggactg aaattaaggggatggaattgtctgcattttatgttttccacccaacatattttgtcataaactgggaacttgtgtaaggtggcatccagtttagttcaatcctgt atgtaatcatttcaagcttaataaattagttaatatttgttaaaGacctactgtgtcttggggtttctgcgagatgtgagattcattggcggacaaaccagata gcgtttttgccaagtcacGgagatagtttcaggtccttggccatcatctttttccaccaactccaggtcagctcaggggcccaccaggtggaagtcgccct tccctggcggacctcgcccgttcccattccttctggcaaagtcagatttggtgaaaaggccacagcagctgggtggagttccacttgccagctcgagg aagagttctgggaggcacgggaagccaaaaccgcctgtgaaggaggcctggtgcagctcagaaagccctggctctggccgaggtttgggatgtgt ggctgccatggcaacccgtctccccgacgaagggtagacgggttgggcgccgaacgcagggtgttgcaggttgggctccattttgactctggtggag aacgatcacctggctgcaaaaccaacctccccgcccagtacaagcatctcctcttccGccttgggccacgagggtgggggacttgaggcaggagtg ggtttttgtagtggggtcattgggtaatcatctccggctctctgctgcagttggtgcgcacagacccggctagtttaaggccattgatgggactcctgtaga cgctaagcgatggaaacattgtgcgcatccagtactcggcgtgctctggatggggctggaagatgccaggtgggcttctgaaacgagtgtggggttc actctacctttgatctttgcctgcccgggtgtcctcattcatttaactcttggcttccttattcctctgtccttatccccttGctaggagtggggtctgctcagatata ccctcttccctgcctctttGCctccctcccctcctgccttcctcctcctaGccctgaaaacctctttttttttctgtccaaggctttcttgggcgagtttagagcagc agtttccaacttgagctgcgcattggaattacttgaggagcttaaaaaatgtcctgatgcctgactccacccccagaggttgagattcatttgctgtgtatg gggctcagaGgtcttattttttattccgacatcatttgcttgaatagctgtggagtattctattgcgtatgtataccagaatgtattaagctactttGCtgttgatgg acatttaagttgttcctaaattttcctagtataatatgttctccatccatctccttgtgagctcatatctgtcaagaaatactgcgaacgactttgaaatgggtgg agaaagattcctgggtgtgttgtctagctcactcatccgagctatttctaccttttgttttctttgagGtattttacaactctaattgtggaaagctgataatactgc aagtggttctggttcatgaaaatgcaaaccagctgtgcctgtggactgctggacgtcccagcttgtagacaGtccccaggtgattctacagtgtggcctg ggtggagaattcccattcggaagactggaggtaatttcttaccacagcccttctgatgtccctcccgactcagtgggaactgatggcctatttatttagctg tatgtttacgcagcccgtggaaataacagtaagagctaacattaactgagcacttataatatgccagatccttttttgagaattttaggtgttatttagttatgt gagtacaatttttcatagacagggaacaacctggtgaaataggtagtcttattcGcaaatgcagaaggggaagctgaggcgaaagagcttgctgga ggtggtattgctaatgaatgatagagctggggtggcaccacgtggcctgcttggaccaccatactgtagaggtgggagtacccagctctcccctggatt ctgccacttccccgaatgagtcactcaggcgctgtgagtgtgtcatgggaccgatgatcctaagctcccagacctactgcggagggttgaggggttgg gcgtgagagcctggcacccggcctgacaggcagagaggggctcccaaaggccacacgcaaggccatcactctgttcttggcgtgttggtttgcacg ttcattgcctgctggccagagcgagctggtgtgtcagactcacatgaacgggcttaggggaagaaagggaggcttttccatcacagccaggctttctc agagatattcaggttcccaagaagtggctgtgagatctggagttgatggacttaattcagagacaaacatgcgcactctgtgttcagggccttgcatctg tttcgtccatGcactaggcctcagagcagccctgggaggtagatatgatcgcgcccatttgacagatgtggaaaccaaggatcatccatttgttcttggg tttcttttctaattcacctcatacgtcctaggccctgagacgcagtggcaactaggaaattgcacttcgggtcctcgctggagttcattcaggaggggtgcc cagggccgggccactttgcacttgagtgcacacagtgactctccaagcagaccgccgagtccctccagtcccgcagagtttccgggtgtcctcagcc acaggaggtgaggctggagtgggccggcccattgcccggtccccagagagagccagactccccaggaactaatttcttaagagaccttgaaggct cttaactccctaagcgaatccagctgtgcctggtggccggcactgttgcagatgtcctggccaaagccagcttggtttggaagcccggccccaacagc cgccaagtctggaaatgaagtaaatgagtgagttgttcttggccattttcGCctcatctcaacccagctcaaatcaaactggagctctgacctcaggcat cgcacattccatactcGccggcctcctggggttcaaaggcgcacggcaggcgataaccgcactgggcgttgagcgccgtgagggaagcttctgga gggagcgtgggactggggtgggggcagctggcgcagcttcgtttctctggacaccaggcctcggagaaacagaaggggacgcctgctgggctgtg cttggcctctggtcatggggggccctgagaaccagaacaggccctgcaggggtgaggcttctagtgaaccggggggggtgtgggggctactttggg gtgccccctccccaccctcccttgcctcctgagcctcactgctctacctgggagccccagcgtgacttcttgagaaatggtggcctGtgctaagcaagg ctgtcccgggcggtcacggcgagctggcacctggattcctgaggtcctgaggaacccgcttcaaacctgggtggtcagggccgagtggggctctga ctgctccactcccgaggccccagaccaaaccacacagGCcttgagggtgaatcactttgaagtgaggggttctgagcctgtggcctgccaagcggg ccggcttggcgggaatgggcaggctgggcagcatggcccgcgtggcttccaggcagcaactcctctcccaaggcgaaggaagccagagccaga gcgcaaggctctgggctttgtggtcagagagcggctgagttcagatatcatttcctagGtctgtgacactgggcaagtcacttaaccactctgagcctca gcttgctttatgtgcaaactgtggcttccttgcaccactctcacagggtctgtgtgaggattaaaggaaaaaacGcatgcaaagtgtttggttggtgcctgg cacggagtaaaggctGaagagctgtggtgccagagagGagcttcagggggcttagcccagcagcatctcagagcaatcGGctatcaacaaacaa aaaggatgttccggctctgcaaacacggttactagacgatcttcgaatgcctcttcttgcatggaatgactgctctcggcttctgctctttgcaacctggag gtgccattgggatgcGctggcagcctcgcatcttactttaattattattttattttatttttatttattgttgttttattgtttattattgttggcaagacgccgtttgcatag taaactgagactgctgcatgacttttattttattggctgcatgaccttagcatactaaagatgagtacattgttattattgttatggttctgattagctccgtgacc gtagcacaccgaagctgagagagtgcgaccgtagggggttaagggctcatattccagagccagtctgcatgggttttaaattcctcttcctccacttcct ccacttcctagtgggtgaccttgggtcacccgctgagagtccctgtgcctcagtttccctgtctctaaactgggGataatagtgtctacctcactgggttgca gggaggattaaatgagtaatacgtatgaagtgcttagaactgggcccgatgcacggagggagtgtgctgttagccatcattgtagtcatccactcattc cacctgcaggttttgattgttggcctcctctgtgtctggttctccccgaaacagtggatatatgcgtctcctgggactgctataagggtgacatgcctgttcctt cccccatcccctctctgtgtgccccttctccttggtggcactcctgggcagtcatcagcttccttgctttaccgcagcaccagggaggGtcctgtgactttca ggagagccttgggagggcacagaacctctgtactcctcttcgggaactctccccacagctcctggctcttcgctgttctgcaggcccagtgtgatctgga agacggggagagaataatctctggcagagcgatgtagttgccactgtagaatcagatgtgagccactgtcattgatgctggactttgcttcctgtctctg gcaggcactggaagagatggccfficagaccttcctgtgagtttcattcatgcttcattctttcattcattttttttttcattcagtctcttcccattctttctgctttcatt cattctattcgttcattcttttgttattcattcatttttcagtttgattgtctgctttgtcctggccatactctcaggcacaggagatgcacccatgaaggcccagct ggtccaaggccttggggagctcacatccctagctggtggcatgaggaaaggcgggcaaggaggggtacgatgtgcccatacagatgctgatggtg cactcagaggctgacttgaggggtgagggagggctttctggaggaggtgacttctatgtgcacaggagaggaggagctggagttggtgggtgaaga ggggaggtagtgcttgttccccacagagggggactttacttgcagaggctccaggccctgaggaaaggagtaccacaatacactggtacttttttGtcc tcggtagtcagagcgtattattcaggtacatcacttgggtgcaggggcttgggtgagagaccagcaggagaggtctcctttgtgagtccctctttccaaa agtgccgctgtacccggaggtctggaagactttacaagtgtgtgactttcagagtgcaggaacccagcacaccctgtcaccaaacagacccacgag gccaccattctcccaggacccagctgtgggatggccttggctcctgcttctggttttatggagcccccctcccttctctgtgaaacggcactgcccaggct cgttcagggagggggagagagctgatgtgcgatgtgtgcgtagtgccGagcgaagggcccttcacgctgggagcttttggcaaatgccaactctggG aggaggaggcacaggggaaggagagtctcgggaacttccccagctctccagtgctaggaatttgaccttttctaggggttcagaatccagtgatgtcc tgaaatctgcagtttctgctgcagaaagacagttttttatgtgtttccggccaccgggattcttgatatcttctcagtaccagcctttggactggtgctctttggg tccctggggagtgagaggggaagtgagagagggcaagagacctgtggacacgcctgcacgcctgtgccagaggcctgtagtgtcccaaggagc ctgacatcGctcaggggctgtaagaggttaggtgtagctaaaggttcctgttcctctctgacagagtcatcactaccagttagtagttaattcattggttttct gtgctcctactgtgtgcaaggaatatagcatcacagtgaatgatgtttctgttctcgtggtcaggagagcGcagtgcagaggcctgatgctattgtaaca aaccagcataGaaatgcttagcatggatcgggcgtggtggctcatgcctgtaatcccagcactttgagaggccaagttgggGaaattgcttgagctca ggagttcgagaccagcctggccaacatggtgaaagcctgtctccactaaaaatacaaaaattagctgagtgtggcggtgtgtgcctggaatcccagc tactcgggcggctgaggcaggagaattgcttgaacccgagaggtggaggttgcagtgagccgggattacgccatcgcactctagcctgggcgaca gagggagactgtctcaaaaacgaaaaaccaaatgcctagcatggcgggggaataagggccctgaagaagacaagacccacacagggcaaa gggagcaggtgtttgtggcgtggccagtcctctaccaggctaacacttgatgtgaaactttaaggagggtgaaggagggagccaccctggggtgtct gggtagaacattccagacaaggagagcaaatgcacaggccccaaggaggacacggaggcatagggagcacttgagatggggcaggcatcga actgggtgcagaatacacactttctccttttatctagtgatcctaagagtttcccctgtgtaatgccagtttttctcctggctgtgtggaggctccaaggggtcc agcctgcacacagtggaggggtcgagatttgaactggtgactgcttgactgcatagccttggctctcgttgggctgcgcgggctgagctgagagactg gggtaggggttttgtggtgggttcctgttcctgacccatgtggggtctggcGattacccttgcaggcattatcctcgtgagggctcaggaacggtgtcacc catcacagggcgacagctccagagatgtctagggggctggagtgccggtgtctggggttggccttacaagagcctggtgaggacagggctgggcc agcccttgGcttttgagtcccgtctctgtcaccgcatggctgtgtgagactctgggcaagtcacaccctttctgagtcctcgttttcttggtaaaaacggggtt agtaaaactccctgccctgcttccttacagagcttttgtgaggctcagggaagattatgtgtgggaaagccctctgtgggctccaaagccctggacacg agaattctgattttcctttatttaattgcaaaaacagtatcagtggaacatggaagataatttaaaagaagacgaaaaaaacctcttcatacaattGaccc aagtatggaaatcctaccctacccaagtatacaccagctgaatgggtttggatgtattttcagataaattcctcacttggcgaactcttgccgcttgacgtc cccaactccacaatcacgtggatctggatcatttggcacccttccctgtctgaactcgggagctggatggatttggctactgaggattgcttgtatcgatttt ccacttattcctcttggtcttggcccatctgtacacatacttttatgtcattacaggcacagtgaacatgctggtttctttccattttctcctctaccgtcatcagcg gagatgacgttttacctagtcttcgccgtgatggaagctttttagtggccaGgtggtcatcttttgtgtcacaGcatttttcatgaaaccatctccctttggttag ataGtaaggccgtttcctgcttttcttcctcaatagagtgtgcGacagtgaatatGtgcgtgcGtgtagcgtttttatcctttccttttgatgatgaaagatcatttg gaaaaattcccaggagggagattagtcggccacaggggtatgaacattttgatggctttggatatcgatgaggctctcttgGtttcGcgcagagtggag cccatctgtaatgccatGcacagggtgcaagcgtccttattttaacactgccatgtcctctGcgggtgtcattgtttttcatttttttcttaaattaacttcacgtgtt gaaaatggtgcagtgttcagtgttattagtcaacagGtggctttgagacacatgcctgagtgccttcagctcctggctgagtcctctgtccctctgtccgtgg ccactcagccatgagcacttctgttagcgatgaagatgaaaaagtgtcccttctgccGaggctctGccttcctcctctggctgcagagcagggaggggt ttcagtggcatcgcggtggccgggagcgagtgtgctggccggctgggccttgctagcagggccgggccttgctggccaggccaggctatgcaggcc ctcgagagggcctggggacaaaggcgccttgggaggaggaggcaaaacaggggagggaagggagggccctggagaaaaaggggggaag agaaacaaagacaaaggctggcaaaaatagaccacggaaacggcaggcagccgggataaggaggacaagaggcaggatgtggaagagg aggggaggcggaagttgtcgtggggggtcggggagaaatggggagtaaagggagagtgggttacggggagctgtgtggggtgggggtacgtgg gagagagagacccagaaagacagacacacagagagaagggagcggccgaagaggagggcccgtgagcgagaagatgcagatgccccttt agtaggagggcattgctccGtgcgcccctggaagggactctgggctggaaaggaccagaatgcagggaggagccgctggcgggggtcactgga agcttgattcgggggaagctgtaggttggagctgggagacGcgagttcctgcccctccagggtcttgtacgtGGtcacagaggacctagggccttgatc ctggtcccggcacacagacacttcaggggtgatggagccaccacaccgaattctcctctagggccctcccccagcatcagagtgcagtctgagggc agcagtgggagGtggactggggccatctgtgcaaggggttattgtgGccaggtgcacaggccggagctctggggtGactcaccctccgGgttacctgt cgttacctgtcgttacctgtcgttacctgttgtctggaccataaaatgcagatgggaatgtcgcccaGttcctcaagtctttgtgaggattaaacgaagtac gaaatataaagcacttggagtggggcacatagtgtgtaccgtgtgactcaaggggctgtcctctttatggtgacgatgacaagggcatcaggacagc agccagcatggcgcaagcGacccgggcGcagccttgttgaatcttccggcagtgtggcgagttaggtctgctcgttcccactctccgcatgggaaaac tgagcttcacagttaatataaacaccaacagtaataacaatggcagcaacaaactgccgaatatgagggcctaacatacacgaagcaacacgca cgtcgcagaacccacagctgaggagaccagagctcaaaggggcgagtcacctgctggctcacacagcagcGgggaccgggattgcaggtgac ccacgtggcttcagggcccaggcctgccctgtgactcacgcggcctgtcacccgccgtttcatgtttcaggcctcgcctgtacactggtgcttctcagga agtcttagggaagatgacttatttattagccgtttttttaaaatctcttaattaaaaaaacaaccagtgtgagtatgtggaaatgtgattcaccatgtgatcgg ggaggtcagagccagagtccctggctcaaaggtaacacccctgtccacctggatgaagaatgttccagaagcttccctccaggcacggtccttgcct gctgagcagtcaccgggggaatcgggggcagttaccggggcctcagactgtgggagctgcctcttcctgggtctccagccgtgatttcagactcgtctt tcatccttcccctGtGggttgccagcccagtgctggagggacgcagggcagagcccagccagGtgcaggtgtttccaggcatgtgctgggaatggag cagatgcggggctgaagctttccccagaactggcctttattgacgcagagggtgggaaagaaggcacgtggctgtgctgggagagggtgggtctcc ctatagcctggacctgggaagggccttctctagagctctccagggacggccagacagctccccttccaccttggggtgtaagcggaacaggacaca ctcccctcaggaagcacggtatcaaagagggtcaggaggagccGcagccggctcccgttctgaggaggcacctgtgggcatgggggacccccg gggccgcGccGcgatgcctccgctgatgcttaaggtcacacagcaggacatggtagctgggttcaaactcaggtcaggccaactgcaaagcctgtg ctctttcgactCGtggatggacactgcccaggtgcccctgggtaaGtgatacccttgtccccaaacaactctgaatctcttttcatcatgaatattattaata acaataaatactaataactgccatttatcaagagcccctacttgccaggtgctttctcattcagcctgccaaggaagcccgtgagttgggcaccagtatc gcactttacagatgaagtcattgaggtacagagcagctatgtaactagccatggatcatagagctagtgtcggagatggcacccacacacaattctga tgacaaaaccttacacttggggactgtaaggctttgggcacattaggtgacctctctgagcttcagttttgtcttctgtaaaatggacctcatatgctgtccgt ggcataggtttgcatatgtgaattaatgactgtggagtacctggcactcagtgttagctctcaccatcatcatcatcattactgtagcatagggtttctcagtg aaacagacactgatggtcagagtggacctctcagcctgggggaagcagaggatgaaccctctggggcggggccctgggcaggctggttcagtgat aagcaggagccaggcgacccacaggcttcttggatgggctgggcgtgcatggcataaccgtttgagaacaacaaaccaagccggccgggctgcc gctctgtttcctgcgaggagggaagttacagatctccgccctggcgtGcggggaaggatgggacaggctgctgaggtacagtcccatgtggggaac gactctgtccagcttgatgtctgtgcctaaaacctcgcctgctgctgctggccacaggccagtgaaattcacagacccacttctcagagggtgggcag gtgtgtctgctaatctgagagaccccaggccccttctctttttatgtttgtgggaggaatggctgagaccccaaagctgtgggctgctgctctttggaggac ttgagacattgtgagagctgtcacctcctcctggaagcccctgcctgctgtggtcagccatggccactcactctcctggggcatctgctggcctcccttag tgacttggctgttggctgtcattttctttccacctcattcccccaactagacaggaagctgtcagtcctcagcctccttatctgtaaaatgcagtttgcgagat aatccccagctcccccagctcccccagctccgagacttgcaggagcagagaaagaggccatgaagctggcaggggcgcaaaggaagcaggg cgttgttccagggaagggagagcaagtgagccagggaccgagggtggggctttgaagatgctgtgaatccagggtagcaagtgtagtggtgccttt gttttttcatctgtagaatggggataatgggactggtctccaagggtggatatgagtgctgggtgagttaacacacatcacatgtgtaaacagggcctgg accatagtaggtgctatggttactattaaaattgctacatttagttaattaaaataaatattaaatcaatatttgtcgtgcctgttgtgtgctcagaatacagca gtgaacaaaacagacccccttcatgggggcgatcctacttgggggcgatggatgggaaacaaggaagtaagtgaaacctatttagaatttgtacgat ggaggggagttaattgcttctcaaccctgacaagtgaaaagaaaagtgagaaggactttgaaggacaaagaccaattaaaatttcagcctttcagca aggatcaaatcagatttatggttgtttcatccagtgataaaaccctttgaatggatgacgatgtctcaaagtagcaaagtggggtgcgggagagctcag ttttaaatttggtgagcttttgtgcacgtgcttccagggatttggtatcacagctgtctcctccaacagcaagaagagaaggttcataaaggcacaccatc ccagtagaggcgggggtcagccccctgcggaccctggacccctgggaacacagtttgaaacctggtgctccatctcttgggcttcttcccaattaaaat gagcagagtcttacattctgtgaaactgaatgggagccaaggggtcaaaggacaagttcaagagggagaagccagtgccgcttggcgggcagtg cccgggacacccacccacagcctggcagctgggccatttgcttactgctggctggctggggggttcaacagttggaagaggccataaaagtggattg cacagatgccctgatgctgggcctcgtaaggggtgtccgggctgtggggatgtctaggcggagagggaggtgtagaccctgggcctcccaggcac agtgatggggcagctggagctggtggtgcccatgcaacagtccaccctcctccaacccctgcctgacagccttgcatagcccgggggactcagtag cttggggctcccctctgctcaggcagaGctagggctctgatggctcccatttatgagaacagctgtcacttggaaggacctgctaGctgtcctccgagat gtgtttttcataccttgtattggtcctctccaccaataacccctcatggatgagtgattgttactgtgtaggaagaacttggggctcagtgaggttgagccact tttGcaagaggccacttagagctggagctcataataagtaggggtctctaggaactgtttctaaacaacccccgaacccagctggtggctcccagaag ggtctctggaagcaaggcgactgtctcattgtttcattagtttgagccctacggggccttaggacacagccagcttggagaagtcactctaataacccat cttgccggtgatgcccaggcctcggcagactggctctccgagggtgtctgggcctgggcagccgaggtcttgttaaccccaaatcccacaggactcg catagagtgcagaatcccggttttctgaattggtgctaaaggctcagtggcctggccctgctgtgaagccacagggcttgtgctctgggagccttggcc gacacaggtgccccgccgGCtcctctgctgctgcagGctcaagggctacaaagaaagctccttctgcGcgtgcagcgtgggctcctgggtcccGtgc aggccaccatggctgctgctcGagctgtggtccccccagaggcttctccaggcagtgcctgccgactctccggtgcttcccttattttattcctcttccggg cactaagtttcggtttccttttcattgttctttgttggtGtgttcattcattcatgcatgcatgtgttggttcattcattcattctcagagtaccatggtggctctgagga cagaggtcagacccagctgggttggaacctgctgctccctagcagtgggcctctgggcagatgttttaaccatagaactcggcttccttgtctgaaaac gtggctcGttctaggacagtcaagaaggttcaatgaaatgatggatgtggagccccaggacgtgacctgaggatggtgcttgtcatgttggggtctgtgt ccctcccttgggcacattctctccttccttcctttccagcttcctgaggacggtccagtgccgggggctgggcacaggcctgagtgagatgcggcccttgt GCcccggcctttttggtctgggtcctcacGtGtgcaccgagtcccGctggggctgctGggcagctctgagggggccactctgcctctgcccagtggtcGt gctttctcacgggggttatcaggcctctgctcctcgGgcctcaGtctgagagggtccttccacctgactcatggctcccatccctccatgcccctgcccag gtgcccacacatgtgtgccccagaacatggctgcacacacttgcataccccacgagcacacacgtgtgtgcatgcatacaccccatggtccttgagc acacatgtcctgggccctggcatgcaGtcccccaggcgtcatgtatacacacagtccacacgtttgcaaacgggcagacacacctccctcttgcacat ccgtgcacaccGagcccatatcttcGtgcccctgcgtgtgGacacagtGccagttagtttacaccgtgcacacctctccatacatacaggttccGagctg tgcgaccactcacccacacgtatgcatttattttttaacacacacatgcataccatttagtaggaccccatgtacaagcatctgagtgctttacaaattcaa atgtatttaatccccctatcaacactaggaggtagtttctgttattagcgccattttacaaatgaggaaactgaggtgtagagcagttagatcggtgtagag aagctagatcgtgtgctGaaggcttcagtccaggctcttggccctgacacgatgctgtttgcctgttgaagatgtgtgtgcatgcatgcaccattcacactg tgaacgtgtcccagcatggccacacccGCtcaccgtatacacatatggccatgagcactcaatctcaaggtcatggatgcacatgcctcacacctatg catggaaggacactcggcacacatacttgtctctgcacacacacaccacttgcacacccatgtacacatgtgccccaagcctcgccccaatGtccag ctccctttcagagtcccttctaggatattctctgatttctcccaagtgcccagttcgggagggaagtgactgcacagatctggacctggcgatgacctctg agtgggaggcagccctggctgagctgtctGctcaccttagcatccgcctgtcccggcgcGcatgtagcttccttgtcatccatcttctgggctggcccagg acacgtgcccccatcccagcctccaagaatctgggaatgtccttagcagactgggctggcatgtggcctctgcccggggagcagaggtggctcccc aaaggcttcctgagaagtggtggaggagactcagcttccccgtccagtcctttacccctcctttacccagcagcgccctctgaatctgaaacagttttgg gggcggcagctccggtcctgcccagcaactcgcagttgttgcctgtggcattcagattcaagtctgggcttgtcagcccgggcgagactctcctattttg gccctatgggaggcatccaaactcctctgGCcttgccttccggggcgccccacgcactctgggcttcacctggctcctctgctttgcttgggctgctgactt ctggaggagGCctttcttccttctctctcctgatgcagaacatacccagtctccctggggcaatcggccttcttcagccactccttggtctctgctcctctttcc ctccctcactctgtgtcctgccagccccagcctctggcgacttttagagctggtgcgcagtcctgcctgagcatcggtgaacatgacgccatgggctgtg gcttaacgattcttttggtgaattttgattctttatcaaaatttccttccttccttccgtccttccttcGttccgtccttccttccttccttccttccttccttcctgcctccct ccctccctgcctccctctgtcGCtccctcGctccctctctcctttcctcccttcctctctcctttcctcccttcctccttctctctctccttctctccctcctGCctcccct ccctccctctctctctctcccttcctccctccctccctccttctttcctcccGCttttctttctttctttclLLllUUULgagatggagtctcactctgtcgccaggGtgga gtgcagtggtgcgatctccgctcactgcaacctctgcctcccgggttgaagtgattctcctgcctcagcctcctgagtagctgggactacaggcgcgtgc caccacatccagctaatttttgtatttttagtagagactgggtttcaccatattggccaggctgatcttgaactcctgacctcaaatgatccacccaccttgg cctcccaaagtgttggcattacaggcatgagccactgtgccctccccggcccactgtttcctttccctccctctctgtccttcccttcctccctcccttccttcttt ctttccttccttctttgcatgtgccaagccaagccttgtgcatctgcgtctttgaagtcctcacgagttgaactaacaagagaagaaaaacccaggatatg agaaatGattggattgcgcaggtgccctctgccaattggttagcaagtttttacgagcaaatctggtggttatcctttggaaaataagcaaaggGaaacc acttcctgccacttccaggagctgctcaagtgccggagctttctaagacctactgagaatctgaaacttcaggGcagcgtcctccgttttcctggagaac gcagtaatttgtgttggtgaaattccactgggcctgatggggttggagattgcatttcagtcttgtcttgctaaggaatttctgagatGgagtaatttggcaag aagagaaaaggagaacaactttgggttgtgacgcacgggcagcaaatgcccgtcctattttgggactggtgcctcctgctttgcgtgtgccacacagc ctcaggggacctgaagccGCtctttggccccagggggagctctggcagtgccctgtgccacgcattgtatcgggctccttgcactccttcttacttgactt ataaggttacgctattaaatagcgtcatctgcagaacagccctaaattcttgaatggggagagaaaatgcggtagctgggggtggagtggggtcggg ggcaggatctGaggatgggtgtggcatgggcattgatgcttaggtttgactctggttctttttttttttttttttttctgagacggtgtctcgctctgtcgcccaggct ggagtgcagtgtcgtgatctcagctcactgcaacttctgcttcccaggttctcgcaattctcctgcctcagcctcccgagtagctggaattacaggtgcatg ccaccataGccagctaatttttgtatttttagtagagtcgggatttGaccctgttggccaagctggtctcgaactcctgacctcaagtgatccgGccacctcg gcctcccaaagtgctggggttacaggcgtgagccattctgctactaaccggcaagtgacttaagtccttgtgccttccttgcctgatttatgaaatggcaa caatcctggggatgatgggaggacttttttattcagtcaacacatgagtggtgcctactatatgctaggccctattctaagtgttgcaactattaaatagagt agtctgcagagcagccctaaggggcagctactgcctagctccgatgaggaaactgaggcccagagaggttaagtaacgtacccagctgctagga ggcagggctgggcttcagaccatggagtctggacccgggacctgggctgacagttgcagcataacaaggattaggtgagatgctacatcagtgag gtgaccacttgtcctgttttgcctggacagtGCcagtttaGacttgtagtcctagtaaagtgatcagtgacgcttcatttcattcatagattacatggtcaactt atgtattgagtattcaggacaatcctggggacatggtggcactgcctccatgtgagcaatggagggggaggtgacatggccacagagcacccagcc tggctcgcctgggggtgcctgggttacccgcagaacggagatgtcctcgttcattaactcattcgctcagcgatccatgggcctgtcacgtgcgccagg catttgggcgtcatgctgatggctgggcgaggatggggaggactcagacaaaagaagacagccagcaggctctgggaaatgaagtcacatccaa gacctgcGcttgtgagaaatgtcaagtgttaccgttatcatcatattcccattgctttgtttggcaaattatgacaatatggctgttaactaagcagattctgat tacctattgtttgaatgcaaaaaacaaaacaaaaaaagaagcaagaaaaagccttctggctatgtgacGagtatttagaaatttccattcctgaacag gcctcagggcagagccagtccccaggGtgtgcggagccactgctgtccctgcaatgccgggtaatcactttgtctttgctgctgcatccatcacgccct gtctctctgtccttagatatgtttgcgtgatgtcgtgggatgtggctttcGcaggcagtctgttaagcagccagagatctactctggcctcctcgttgatgtttc attaaagagctgGCctagttcagcacaacctaaatattacagctaaagaacacaggccccggagtacggtgaccagtttgttctgatttgcccaatact gtcccaattatactgaaagtcttgaattccaggagatccctcagtcccagggaaaccgggatacatggttacGctgctctggagtgaacacagccctg ggtcatcatctgtggctctgctgtgtgacagccgggtgcttgatggtgaagagtttccccctggtatgagcagtcagtgttatccctggtctcagtggatca ctgggtcgcctgcctagtGccagatacctctgatccctttattttaatttttattttttgaggcagggtctctgtgcacccaggctggagtgcagtggcaacaat tatggcttactgcagccttgaccccccaggctcaagccatcctcccacctcagcctcccgagtaggtgggaccatagatacatgccactgcacctggc taatttttaaatttttttgtacagacaggtctctctgtgttgctgaggttgttcttgaactcttgagctcaagcgatcctcctgccctggcctcccaaggtgctgg gattataggcGtgagccaccgcgcctggccttctgcccGattgaggtgccagtctggtcaccttatctcactgtggatgtctagaagtgaattctgaatctc aacccactgccttgttctgaggttgcctgaaccccatggcacccctccagatcGCtgagGggatcaccaggcctgtcagtgacagacgtcatcacctg ggaacagggcaggatgtggctgagtagctgacatgtaatgagggcgtgttcacacctggccctgtgctccatggactttatatttaaatcctcacatgcc aactgtcattttataaatggagaggtgaggcttgggaaggttcagttatttcaccagtgttagaaaaaggtcagtggggttgggcgccgtggcttacacc tgtaattccagcacttgggaaggcGgagggaggcagatcacttggggtcagaagtttgagaccagcctggcccacatggtgaaaccccctctctact aaaaatacaaaaattagcctggcgtggtcgtgggcgccagtaatcccaagtacttgggaggctgaggcaggagaatcgcttgaacccgggaggc agaggttgcagtgggctgagatcatgccactgcacttcagccttggtgatagagtgagactgtctcaaaaaaaggaaaaaagaaaatagaaaatg gccagcggggctgggcaccatggctcatgcctgtaatcttagcaGtttgggaggccaaggcaggtggatcacttgaggtcaaaagtttgagactacc ctggccaacatggtgaaactctgtctctactaaaaatacaaaaattagccgggtgtagtagtgggtgccagtaatcccagctactcgggaggctgagg caggagaatcgcttgaacccaggagatggaggttgcagtgagccaggattgtgccatcgcactccagcctcggcgacagagtgagactcgtctca aaaaaaaaaaaaaaaaaaaaaaaagaaaagaaaagaaaaaatggccggtgggcctgcagcccacctgtgctgtgtgtgctccacggtctgtgc cattccacgagtggtcccagtctgtgcctatGtgcagagcttgttaccagGctGtagggagagaaatgaggagagcaagagtgagggtgtggaaccc ttttagcattttgacattccaatgaaattttcattatagttttcaaaaatattggtttaGagtggattggaaagaaaataaaaatgggtcttttcccacagacag tttggaaagtgctgctttagaccctgctcttttgaccccttgaatcagccagtgaggctgggctgtgcaacggtaacgggcagcgcagctgGtGaacac acctgaggtttatttctccttcatgctaaatgtccagggcacatcagtcgggagccttgctcatctgatcgtgcagtgacccagccgatggagggcccgt ctcaacatgtgcttctgctgtcctggaggcaggacgggggtgtggccacttgtacaggacacacatcactgctcatggttcattggccagcacaagtca cgtagccacacctataatttataggggtgggtgaagagggaagggaagtggaatccctcatgtgttctgaaaaaggagagaactgggcctgtgtgg aggccatgttgttgtttcgcttctgcctgttcttgcttccatgtgggcctggtcctccagaccccacgcctggagagctgctgatcttgtgcgttttgtccatttgc accctggttttcaaaggcagcggggtctgtgagccccagagcctcagctgggacctgctgggccgagtttctggtCGCtcttggagctttagtgctttctta gtttgggaactgaaagccttgtctgtttccccagactgtgaagaaagttatgagtagtgtcagggagctctgcacagaaactttggccaagatcatttccG tcttgtaagctgggtctctctttgagtctctcctcagtgaaagagtggctggtttaaatcaggaacaggctgggcacggtggctcatgcctgtaatcccag cactttgggaggccaaggcaggtggatcacctgaggtcaggagtttgagaccagcctgaccaacatggcaaaaccctgtctctactaaatacaaaa caaaaaatcagccgggcgtggtggcacatgcctgtaatcccagctattcgggaggctgaggcaggagaatcacttgaacccgggaggtggaggtt gcggtgagcctagattgtgccattgcactccagcctgggcgacaagagcaaaactccatctcaaaataaaataaaataaatcaggaacagtaaga actgccgttcattgagtgcttattacatgctgtcacattgctgagcagtttacacacgttgtctctattcatcctcctgcaaccctaacaggtgggacccctctt agcctcattttattgatgaggaaaccaaggctcggagaggttaaggaacttcctgcagctcacgtagttagaaactggcgaagctgattggatctagg cctgtgtgatcctgagcctacactcaggaccgttctgatcctgaccagtacttactgatttggggtctgagaagacagtaatgagcaagggcccccaga gaagttttctgaccttcacaaagccctgctgagatcttgacctctgttcttaagaggtggatcttgcctcagttatgctcagccatttcattacacaggaaga Gctcattcttccttacattgcaatttattgttttttaaagaaactggccttgtattgtggaaataacattggaaaatggagattaaaatgggtaatggaaataa caatcagtaatggcttaagaacagaagcttgattggggaaaagtcttccgaatagaaagatgatcaagtgggaagaaaataaagtggaactttgag tttgaaatggctcactcatgcctgtaatcccagcactctgggaggccaaggcgggcggatcacgaggtcaggagttcgagaccagcctggccacac tagtgaaaccccgtctctactaaaaattagctgtgtgtggtggtgtgcgcctatagccccagctatttgggaggctgaggcaggagaatcacttgaacc caggaggcggaggtggcagtgagctgagatcacgccactccactccagcctggatgacagagcgagactccgtctcaaaaaaaaaaaaaaaa agaaatggctcaaagccttgttcctgaatgtcctctaaagaaagatcatcggccgggcacagtggctcacgcctgtaatcctaacactttgggaggcc gaggtaggtggatcacgaggtcaggagatcgagaccatcctggctaacatggtgaaacctcatctgtactaaaaaaaatacaaaaaaattagctgg gcgtggtggcgggcgcctgtagtcccagctactcaggaggctgaggcaggagaatggcgtgaacccaggaggcggagcttgcagtgagccgatt gtgccactgcactccagcctgggtgacagagctagactctgtcttaaaaaagaaaggaagatcatctgcccagccttggctttctgggggtcttgggta ccctccctctgcagctgctaaagataagGCtaaaactacgtttctcaaactgggatatgtgcagcctgtgagggtgtcaggagtttgagaaaccatagg ctaaattgggtgtgtcctctatgtgtgtccacttgacttgtggattcagagggaaaagattaagtaatttaactaatatataatttagaacatggctcatcttct tggaatgagcattttccttgaggggtggaaaggttaagtcgtttaattggtgcgtaatgtaaaacatggctcccctttgtgggaacatccactttagacaatt tggtgaagggagaaaaggtgaaaccatttaattcaggagtcattggagatattattttgctgttaaagtgtgcacagatgtggagtggaatgcaaattca caaggctcattaagattaaccaggagacctgagtggaatctcctggttggggtggccgcagatcactttgcgtttgccctgctttatatttggggttcttggg ggaacaagaggactgggttctggggaagggctgtgagggtagcactcagtagtactggggtgtgagtcccattgctgcctgggacactggcccagc ctgctggagctggactgatccggtgatttttgcctttcttggtttatttcccatttggttttcccaggcttttagtagagcccacttgggcaatgccaacctatcca cccatgcttaacggaggaatcagagatgattgaacagagaggaacaaagcaggagcattcctcccccaaccttgttctagagacaaagtgagtgct acatcctctactttatattattttgaaatattaaatgtgtgcatttatttttgaatagataggactttcatatgatgcacagctcaggaaatctataaggaaatgt ggtgaaaagtccctcttgccctgtggcccggctggcttatctCGtcccGagaggccacagGatccctggtttctgatcatctcctttgtggacataattaggt acatagacgcaaatacgtacaaatttggtttgtttaaacgaatgatagaatcctgtgcacattttcctgtaatattttctcactaaacaatagtgaggaatgg ttgcatatcaggacagcttccctgttctctttttgtggttacagagcattctactccatagctctatttggtcattttcttactgatggctgtttttgcagccttttactct ttcaagcaatgccatgtgattatccatgtatatatatctttgagacaaatgcaaaaatgtctctgggaaaaattcctagaaatgaaatgtctgagtcaaag gttatgcacctctggaatattgataggtatttacagactgcattgggagtttcagcactctccatcagtctgagagggtgctccgtgagacagatctcagg acagctcctgcaggcctgggatggtgtgcagaatgatctgatcatgcctgagggacccacgtaggccccaggatggggatcctcatggtgtctcagg gccccttctgatgtatgcttttgtcaactgtgcactggggttgggaagtacttaggagagcaagtgtcatgtctggagtggttctcccttggccttgcctgcc attcctttgctcagcgtggagtctcccctactccaggaatgaactcttgaatacaattcaggttccctttcccttagccttaagagcagcagcttttatgatgg gaagggaatcattcattttatttttttGaaataaagatctactcttGagagagaaaaagtgccagcaggtcctcatgaagaacagattcattcaggtgtctg caggtgtcaccaacaccgtgtgctccccgtgtggcagacctcctgtgtcctcagctgtcattgccccacagggctctctttagctccatcctatagatgcg caagcaggtgcagagagatgtggcatgggcaggaccacccagctggagagcccaccggaatgatgctgatgtgccctcagcctgcacagttccct gcctgtgtgtgtgtctgggggcttgcttcctgtcacctagctcggcataacacattggtgggagtttggctttggagataggcacttgggtttgacattgggg ctgcctccttcctgcgtgcactgcctctggcacctctctgagcttctggttttttagctctaaaaatgggaatgactttcatgttggtgcctgatgtgcaggtact cgggggtcatagtctggctgtctttcccttccgcccactctgtccgcctccctctggtcatcctgagcaggtcgagccagggcggccctaagcagagcc ctaccctagggttggggtcagggctccaaccctggtttcaggaatgctgcctggataacccaagggcatggtctgaacagatgtctcttgaggcctacc tgccccagctgcacatccttggggctgggtcttaactgggacccagacccctcagcttgctgtcttcctgtctcccttaaccagggaggagagaacagg tgagtttcctggtgggcaggagcatggaagtgtgatggatctgatgcagtgattggctgggggcccctttgtcaggagctccggacatcctgccctcac ggagaagtcctgccccaaaggaagtatgcctgaatcagacctggctggcaaattgaacctcattttctgatcaatttccatcaggattttagatgaggat gcttttcctgtatctttaatggggcgtttggcaaaagctctgctcactttggctgtgactttgtctcttgggcctctatcaaggtattgacgacagtgacgtcag catcctgctgcggggctgccaccctctttgtgttatagttctcaaggtctgatcggggacgagggggtgctcgctcctcacagGtgcccaggagctccac ggagcaggtgtcagggcccttgtttccctgggtgtgagtcgcccaagtgggaccatgatggccgccctcatcacttcatcactgatgtttttgctaataata atgatgacaatgtcaataatggtagtgttattaccacctaacattattatgtgctctcagctaagcacttggtttggattagtttaatcctttgacagtcttctga ggaaacactattgttagtagccctgtttaggaggtgagtaaactgaggtttagcaagcaaagggacatgcacaaagtcacacaaccagccaggca caaagccaggatttaagtcctggaggtgcgattccaggtcttttcaaaattacacttcactaccacctttctcagatactgtgatggaccagtccaagacc aatgtttttttttccttcattaaaacaaaaaaaatcacaaatcacaaacctttattttgttttgttttgtttttttggtgagatagagtcttgttctgtcgcccaggctg gagtgcagtggtgagatctcagctcactgcaacctccacctcccaggttcaagcaattctcctgccttagcctcctgagtagctgggactacaggtgcat gccaccttgcccacctaacttttatatttttagtagagatggggtttcaccatattggtcagtctggtGttgaactcctgacctcaggtgatccacctgattcgg cctcccatagtgctgggattacaggcttgggccacagctgccagcctaactttgggaaattttaaaacatatactgagagcatgggggagtaaaatga acccccatgtactcatcatctgcttcaacagttcccagcttatgatgagtcttggggtgtagctgcctctgtatgcttccctctctcccagccactgtttagatg caaatccctgacatgctgttagttcatcagaaatgacttaaataggaatctctaaaaaataaagtatcttttaacaaatagatataaatgtaataccatcct catgcctaagaaactaacaataattccttgatatcaaatgtccaatgttcacatttccctagttatttcattcatgatttttactattggtttgctcatttaagattcc ggacgtggtctacaccctgtatttgGttactgaaggttttaGaatctGtttaagttagtcatctgccctgtagaattttccatattctgagttttgctgattgcttcct catggtgtcatttaacacattcctctgttccctgtatttcctgtagatttcctgcataccttgtgaattcctagtttgtttttacacaaggtctcactctgttgctcagg ctggagtacagttgcatgatcgtggctcactgcagcttcaacttcccaggctcagatgatcctcGcacctcagccttcctggtagctgggactacaggtgt gcaccaccacgcGtgcGtaattttttgtatgttttgtagagatggcgtttcaccatgttgcccaggctggtctcgaactcctgggctcaagtgatctgcccac ctctacctctcaaagtgctaggattacacgtgtgagccactgcacctggcctctagttagttttagacctgtgctgtccaataccacggccaccagccac acatggtcgctgagcacttgaaatgaggtcctGattgagatgtgctctaagtgtaaaacgcacactggattttgaagacttagtatgaaaaaaaatatac agtatctcactactcattttttgtattgattatatgttgaagtgataatatatttgatatattgggttaaaatatattattaacattgatttcacctgttttacttttttaaa atgtggctactagaatatttagttttaaaGatgtggcttgcattgtatttctattggagagcactgatctagagatttggttgatttggattaaaattttcggcatg attcctctctaggtaggtgtttctgtgcacttccagttgcctcactccagggtccctcatgccttggtgggggtctttcttgctgtggttgatgggcaggttctggt gctggctgcctgatctatccatcaccacccccatcacctttcctgctcatgttccagtgggcaccagcaatcactgctcaggtgcattatttcattagagatt gcaaagggcaggtgttttagctctacctttccttcctcatttgtcagatgggatcatccgaagaagggcttcacttcatcagctacatggttgttgcaatgttt agtgtgtacaggaaaggcagcagaaatgcttcactcttcccctttgtatcaagtttagagtaataaactgattttgtagcatcttccaaaggtttttttttaaat atcaacatgaattcatggatttaaatttatatttgatgaatttcttttttattaataaaattaattggccacaaaataattataattaaaataataattttttttgaga cagagtcttactctgtcacccaggctggagtgcagtggcatgatctcagctcactgcaacctctgcttcctgggttcaagcaattctcctgcctcagcctc ccaagtagctgggattacaggcacgcaccaccacacccagctaatttttgcatttttagtagaaatggggtttctccatgttgccGaagctggtctcaaac tcttggtctcaagcaatccgccctcctcagcgtcccaaagtgctgggattacaggcgtgagccaccatgtGcggcttatttgatgaatttcaattccttgca gttactattcttttggatgctccggttggGccatttttggctggtgggagcttttgagttttgattttgatcccttgccctctggtaaacctctgagttctttcctcttctt ggtaggttggaagattctccccctagatcgagttttcgtagagcggggcctgcctgcatccgttgctgctcaccagacccagagtgtggggcttcctgGc agcaggctattcagaggagccgcctttctcttgggcctggttgccaaggtcccagcaagaggctggagttgaggagacagccagcgcggctggcct gggccccacgcatagtaggtgttccggaaacggctgttgagtgaatgacaggactgcaagctgatctgccataccacctggctggagtgggctccttt ccaccccgggattctccaggaggccagtttgcaaatagagctggcctttgtttctGtgccgtgtcggggacaccttcctggggctgagccggcgtggag ctgggattgtacctccagcttgtgctgagggtgctgacttgggaaccccccggtccgttctggcctggctgctgtgcagacccgtgggtctaggcaatgg ggcaagggtcagatgggtcaattcccagagtggagctgcctcctgtttccaggccaagccgttttgcaagggacacaggcatggccctagctggGtc cagacttagtgccattacttcctggtgtgaatatttaagattccagctctcggatcctctgggctggctttcattccactgacttgcaacctttgccctgttgtctt tgGGcaaaccatatttgctgcgcttGGctGagcctaggtggggcattcttgcccccactgcGGagtgcaatcctggggctagaggaaggctttgtgttttg accccaaaacagaccatggggtttccgttgtggttgctgctgctagtttaaaagaaaaacaacaaaaacaaaacaaaacaaaaacgccgccagct ttgttgatgtccagtgaatcttcatccctaaaataatgcatttgtttatggagactgacttcatgtatttactatagaagagactagaatcGggtgacacttcc agtctatttgaggaatggatttgcatctggttttgtggtgaagagggtaggtgtcccagcccatgcagttggaggggtggggcaggcagggaggagga gggtggctgagaaagcttcccctttgtgggggcgtgtggccacctccagaggatcagggtgagggaagcttccagaagtggcatgaggagggagg aagaggcagcGcagtttgaccttaggaacgaggctaacttggggtgcagtggtcaggagtgtgacgagaccatccaggttccaacccagctggcta ctcattagtccatgaccttagacaagtggtttgcgctcactgagcctccattcttcatctgcaaaatgggtgtactgtgagaattagatgggacagcctatt aattaagactttagcgtggctctcagcaccgcatgggcacccctggtagatctagtgttgcggtcaatcgcggtggctctggagcctgagagcccagg agaaggtcatggcttcaccccttataacctgggtccccgtgggtttgtttccagacttGtctgtgcctcagtctccttatctgtaaagtggaggaaacagtatt tcctgcttcccagggtggttgtgaagattaagtgacttaatacacaatccttaggctgctgcctggcctgtgtgtgtgccgtgccagtgtgcgccatggtgg ctctagctgttgctcatactaacatctttcagaggagctaccaGagaccaagtggggcgctggggtccagtaacagaaaatgcgatgaacactcccct gagcatcgttgttcgagggcctgctgtgtgccaggcccaacagccctggaggaaggtcatatccttcccattttccagagctggagactgaggccagg aggtgacccatggccacgtggcctgtcctggcaggagtgccctgtcccaaagctctcagccttttccctgtgccagaccgtcttctcccagttaaactag aagcatgactccagcagagagaaacctactgggggctgtgctttattctgggctctagggctgaaggattgaccgggcaggtgaggctgaaccctct cacctgtcagcgaggcctcaaaatgactcacagctgaaaggaacaccttggccttctgattctcatccttgaagcgttgtggtccctcacgcttctagat ggaaaaacacaaggtctgtgttggagggcactgacgtgtgtggcgatgtaaggagaggcacagctgatcttggctttgaaggctgggtgggcgggc accactgggcttctgtttcagagaacgcactattgatttactattgagtgctttgggagcacagggccagggctggggataatgggaggcgtgtttcgtc agcccaagagcatcgttaagtggccatcaggaaatcacagggctggaggggctctcaaatgaagcatcaccggctttattcttttagcaaatgtgtatc ctgcaccaggcgctattctaaggaccggaggttggtagctgtgccagtctgggcctgtttgcccttggggtccgttccttgtccttgctctgatctgctgggt gtggtcgggagccaatctctgtaggttcttgtgtcccaggctcccgtgtcactggattcaacccgtgggaggagctgctaggaggttggaaggcaaga ggaatggagaagccagtgtttctacctccctcagtctccagaggccactctgatggcacctgcaactcctccgtggctccagctcGcactggacggac cctatggcctgtcctctgtcggcgcttccagcccctgggcctcagtcctgccacctcccctgtgtctctctggcctgcgggtgggggcagcttcctgctgtt gctaatctctgggttgctccattgcccccgtttgggttctgggatctccttccttgtgtacccagtgccctgcgttggagtctctcagttccagtgcccaagtgg cttGcatctcctggttggactctgactgatctagcaatgaaggtgacatggccccagctttggggtggtttctagtccagtcacttgacttcagcagcccatt ttctcactcttgattcctccggggattttctaaaatacacatggaatGgcgcttctctcccgttttaaaGgttcttctagctcccccgggtcccctcgtccaccc gagtaggactgcaatcatattgagctgctttcttttcctaaaggagctGtacttcggttcagcccttggtttctgcagatacgtgcGgtgttccaggcttggaa gccctccccactcccttccctggacactctccctggacactctcatgctcttgctcttggccagccagctctgccttcaggactcagctcatcgccgtcaga ggaagccttccctgccctcccagcctggatgcatctcgtcagtgcgcgggcacttgtgcgtcactgctggggattggcttgctctgggctgatagctttag ttgtctgcagccaaactgtgggctccctgggggctgggaccagggctggctagtgtaccactgtgtctgggatgcctggcaatagatatcgaagcatct aggcatctgtcctcaggaaattctctcatgtttgcatagacacatacccaagtatgtgtcaggtagcatagtgaaaaaccagatggcctccaaggtcttc agtgaaaaaccacacggccttcaaggtcatcggtgaaaaaccagacggcctccaaggtcatcagtgaaaaaccagatggcctccaaggtcttcag tgaaaaaccagaaggcctccaaggtcatcagtgaaacccagacggcctccaaggtcatcagtgaaaaatcaggcaggtttcaaggtcatcactga aaagccagacagccttcaaggtGatcagtggaaaaccagacggcctccaaggtcttcagcgaaaaaccagacggcctccaaggtcatcggtgaa acccagacggcctccaaggtcatcagtgaaaaatcagacagctttcaaggtcatcagtgaaaagccagacagcctccaaggtcgtcagtgaaaa accagacggcctccaaggtcatcagtgaaaaatcagacagcttccaaggtcatcagtgaaagaataggtcagtatgtcttagtacattgattctgtgg aatatgatgcagcaatgaaaaagaatgaagtgaatctaaaatgcatgactgtggaaagatatccaagacatgttattgtctaagactcatcacacaa atgcataacacaaaggtattttttaatatgtatatgattgcatagaaaaatgagaccaaggaaacaccctcctctggcaagagagtgggcttgaattca ggtaaaggggattttgttgcttttcacacttctcatttctatattattcaaattgtaatgacagccctgtattcacatattagctgtgaaattgcaaagtatgtaat aggGcattatgagaaagaaaaagccccacattttagccagtgtgtccttggagtctcccccgacaatgccagggaagtgggaaacattttttcctgaa gaaatgtggagcagaggcgattctctgggtgtgtttaggaaatgatcccatccttcgggaatgccgtttttggagttcgacgttctctggaggcttgggag atgcagccagggcgGagagttggcagtggctgcagacatctcttttcaatgtggacctcctgccacagccacgagattcaaggattttctaggaaaat gaacgccagtggatgtgtggaattttttcacaaagtaagtgacgggggtccctttgcacttctcatgcccccatggttaattgtgtgtgtgtgctggaagtg gaggagggcggtgggtggtgcagctgtttgaggactcacccttcttcggaaggctggggtcaatggggtgctgtttcGccgagtcagttgaaacgcGG atggctaaagcctgtggatcatctcaccGctgcatttcctatttggctctcactttggtcgaaagacagcggagcgcagaaaatctgtcataattgtgaaa gtaggacctgtcatcctctaagggtcattcttcctggcccaccgggcttgttgacacctggagttgggtagcagagagagggatgtcgggaccgtgaat taacagtggccaccacttcatggtgaatggcatccagacaacaccttcacctgtctggggaagaacataggctaggcctgggagaggctgtctactg aagtccctgcaggggtccaggctggactatacccctccagcttggcgagagagccaaggaccagcaagggaagtgatgtacgctgagaaccgtc cgggcgcccagcacgggtcagggcctttggcttacaggctgtgtttatttctgagcagcGctatgcagttggcattagcatcctaccgttcccaGtagcca gctgggactcaaaccgattaagtaactgtctacctgcttcctgtgttctgtgtctgttggtgttgattaaaaaatataaaaggccaggttcatgcctgtaatcc cagcactttgggtggccgaggcaggaagatcacttgagcccaggagttcaagaccagcctggggcaacatagcgagacctgcatctctattttttttttt ttttttttgagacagagtctcactctgttgcccaggctggagtgcagtggtgcgatctcaactgactgcaacctccgcctcccaggttcaagcaattatctg cctcagcctcctgagtagctgggattacaggcgcccgcgccacgcctggctaatttttgtatttttattagagacggggtttcaccgtgttggccaggctgg tcttgtactcctgaccttgtgatccacctgccttggcctcccaaattgctgggattccaggcatgagccactgtacccggcctcaaaatattttttaacagaa gtagcagggtgtggtgatgcctgtagttgcagctactcaggaggctgaggtgggaggatcacttgagactgggaggttgaggGtacagtgagctgtg atcgcgctactgcactccagcctggatgacagagtgagaccctgtctcaaagcaaacacacacacaaaaagtaaaatccctgtgattatatttttgcta gtacttgctaagctgtagctgGttcaatttgagagcagagcctgggctgcccaaagaaagtcctgaccccttaactcagaactccgtcagcagaggaa ttgggttctctgggctgttctctactcaggcacacccttgctgggcctcccatgccccagggcagtccaggaaatagtgtgtgcatggtggaggggaag gaccttgactgagaccagacagggttggaatcttgggtctcctacttcctgtctGtgtgaccttggccaaccatttaacctcacttgaggaaattgagcctc agtttcctcatctgtaaagtggggttgttatgacgataagacaggataaaacacatgaaacagccagcattttaccacttttaacctacagaacggcag tttgacatggctcactcaagtatgtccatcatggagatgcctcagtgaggtgctgggacatggtagactcagtaatgttcccttcctctcctccagccctca gtgttgaaggctttgtcatcctgaatggcgacgaatgggaagtgagctctgaaactgaaaccaccatttggggacaaaagctggcattgtagttgtggc tctctgggaaggtctcatctgtcttctcggggctgttccctaaagctgtcattacgctggctttgcggcaggggtgcagcagcagtgggtggtgatgcggc tgctcttgagtggcctggtggggtcatttcagtttcaaggccttggagagtgtgcttagcaggtggggcctaagatttgcatttcagctgcccaggtagtca agaagcggtatagcaaagcggctgtgagcccattctctggagtcctgctggctgggtttgaaccccaggtctgcctcttgcctgctggtgcactcagcc aagttaGttcatctgtctgGctcgatttcttcatctGtagtggtttctacctcagagactctgggagccacaaacaggatcccacttcttgaacaatgcctag aacaaataagcaatttctatgctgtagagagtgtttgcttacttaaaataatgcttattaaaaattggcgggtgcagtggctcatacctttaatcccagcact ttgggaagccaaggtaggaggatcatttgagcccaggagttcaagaccagcttgggcaagatagtgagaccccatctctcagagagagagagag ggagggagggaggaagggggagagagagagagagagagagagagagagagagaagatagaaagaaagaaaaagaaagaaaatcaag atgagctgtgattaataagtagggcctgattattggaacttggcattggatataattaagttgatcagaatttctcatgactggagagtcagacagtctgcc cattgtgctgtgtgaccttgggcaaataacttaacttctctgagcctcattcctgtgtaaaatgggtgtaggaagtgaggaattaggtttataagaagggtt gtgaggaggaagtcagaggctgcttctgggagggcctaatcctggtgcctgggtctcccgtaggagctgctgtcgtgagtgtgtggctaaattgtgggg agctccctgggtttcgcatcctctttaaattagcggtggcatgtgtcagaaaaaggaccccccgGCCGctgggctcttcactgatgcattttgccctggag ctttttgcagGGtgggaaGaggaatgtgctttatacaagatttaattttgggataaattcttgaggaacaggaggagggcttttataccaaaaaatggattg ttctggaaggcttttctttgtcactgcccggtcgccgtgactgtggaccatgggaccctttcagccccgaggcGtttcggcaagccttcctgagtggcctct gcatcattgcttgctgagcggatggtactgcacggttgccatggtagcagcaggatgtggttcctatggtgatggtcggcagtggcaggaagacagca gaggttttagttatctggtggcttcgcatttgccacccccccccgaatagcaaacacgagctgcccccgctgtcgttctgctctgtagaaccaccggtga ccgccaaggtcggctgcctccctgaaatgccactgcaggttcttggaaggactgggttgcaacaatagcatttctgcttccagaagaggagggggct gagtgtctctaagggtgcgtcacctgaggggagggtgcttatattcacactctgaacctagcaggtcgagtctgtgcggagcttcttcaaaaagcccct cGctggagtgaattttcttttccttctaagtcttgtgtatttgtagacagatgtgggatgatgagctaacaggagaaaccaattggcttttgaagctcctatgat aGcttgtagatttcaaaatggccagtttagggggtcagttgggttttcaaacataagatacttttctacaattgggagttggccgagattagggaaaggag aaaggtatcctgagtgttcccttgtctttttggtatcctatatcttacagatagaatttctccaagaaaggccagtgtctgatacagtgaaatgcagggtaca gaatattgtttcctttttatccaggaaggcgagaagaaaagcgtataagcaggatttcagaggtgctgttacaatttaagagtaaatctgatatttaggag ccaagtgcagacggatgaggtttctgcttgtcGattcacacttgataaggctgccactgcctaagacaagggaaatgtGagacatctttgcttctagctg gaatcctatcaacccagtgtggcaacaccgattcgcGcacgatgatcaggagctcccattggcgatcgatgatgtcactgggtttcctggagtgtgattg gtgggttgggccctgtcatcagagccctaagccaggtggccacacctggattgacacaggagggacacagcttcagtgctgctccatccactgaag cacacccagagctccctgagggtctatgcagtgcccagtagagttctccttctcacttgaagtagccagaggccagaggggtgtcttctggcatagcc atggggtgcctgggcctggatttttgttagaagggtgccatttagtgagcactgcatactgtgatagacttttcttctttttgaattttgaaaagtaaaaagaat aaacacacaatttagcatacccaatcagtaggacatgtggcttcacGacctactgatgtcaagatgccttccaggttggttaacaaataaacaagcaa acaggaagcaaaagccacaaagattagtatcataaaatcgcatttctacGgccccgactagagGattgttagtatgttgtcctctttgctttgcctttttttta agtgaaagaaataaaacattactggaaaaggtataattacttgacattcacctctaatttactacccacctccaggtacccccttattgtaagtcccttgtg catcttcacatttaaaatatttttacacacacacacacataatcataaacaatatataacatttctttgtatatggtttttttttctttttttgagacagtgtctcattct gtcacccaggccggagtgcagtggtttgatcacagctcaccgcagctttgacctctgaggctcaagtgatcctcccacctcagccccccaagtagctg ggactacaggcacgcatcaccacatctggctaattttttggtagagacaggacttcgctatgttgcccagactggcctcgaattcctgggctcaagtgat cctcctgccttggcctcccaaagtgctgggattccaggtgtgagctaccgcgctttgctttgtgtatgtttttaaagttcccttgcagcttgcctttttccacccta tccgacgatgctcatgtgttggagatctctccgttgattcctgaatatctagttcatttcttttgattactgtggagtcactcGctgtttgccatcttgttccatctga gtgcgaggcctgaatgggggacagactcaccccctgtcacacagaaggacgtggggcccacagtcacacggccgcaaggtgggtctggtaccct cccagcacattttggttggactccagaagcagggcttccctcacgatacctcaagcttacctgggccccggccaagcaactgactcatccagtctgac aaatccaaattctcgagtcactcagcccaaccgtggttgGctcatttagatcccagccaaacccccttcccgcgaaaagccatggtggcctagaacg aagtctggaaaagaaccaagaggacagcatcttttgtctggagagcaccgtgcctgttctccaaccacctcgtagGCGctggtggagcctccctcctc ccccaggaagaaggtgagctgagtcaccaccaggtaaccctgaacctcgctcagacacagcttcctttagctaggagcctggatgtaacacccagc tcatcccttggctccctccaaacgtcaaggcgtcttgaactaaaagccagcgcctgcacaccggcagaactttgcagctcctggctcctgagttgtagg tgtttttgccaggtgtgcctgtacgtgtgtatgtgtgcccatgggtggacagtgtttctgtgctccttggagtaggcttatttttctgtctcttaaactggctcccttg gcGtctgcctctttcacgggttccatgcggaaccctctgacctgtgaggtgctaggcttgtcacagcatctattaggagacctgaaagacaggaccctgt aatgccacgatccattgcttataaaggaagccagtattggggtcagacagagctggattctctcaattgctcagcaagtgtttattgagcacctcctctgt agtgggctctgggggtaacatggcacatgaaacagagatggtgtctgtcccactggagcttagaggggcagagactgtctacaagtgacagagag atacagagagaattataagtctgagttcttcagccagtctggctctgctatgtcctagacaggtgaccttgggtgagttaactaagtcatctgtaacgtgtt agccacaacctactaagctcgtggggttatctggaagtcttggtgagacagtgtctgcaaaatgcttatcgccaagccaggcacgtcatcattgcccaa ggtatggcagctgcagccatcacggGcctcattttgcagatgccgaaattgaggtcagagaggtgaagtaacttgcccaGggtggcacagctcatta gtgggtttggcggcacaggccctgctcagagGcacccagcgactcagctgtcagtcacaagtgaggctgttcctattGttgacagtaactgcgccttcc catgttctgcagggagcatttttatttcttttctttcLlLlLlLlllLlllgagatggagtctGattcctctgcccaggctggagtgcagtgttgctatcttggctcactgc aaGctccacctcccaggttcaagtgatcctcctgcGtcagcctcctGttagtagctaggactacaggcacatgacatcatgcctggctgataattgtattttt agtagagatggggttaGaccatgttggacaggctgttctcaaactcctaacctcaagtgatccgcccacctcggcctcccaaagtactgggattacag gcatgagccaccatgcctggcccctatttttatttctttaaattattcatttattttttatt^ gctggagtgcagtggcacaatctcggctccccacaaccaccatctcccaggttgaagcgattctcatgtctcagcctcccaagtagctggggttacag gcacccgcGattatgcctggctaatttttgtgtttcagtagagacagggtttcaccatgttggcGaggctggtcttaaactcctgacctcaggtgatccgtgc atctcggcctcccaaagtgctgggattacaagcatgagccactgcctctggcccctatttttatttccttaattttttttttattatggtcaaatacatataacgta aggtttaccattttaaatcttaaaaaacattttttttaagagacagagtatggctatgttgcccaggaactcctgggctcaaatggttctcctccgtcagcctc tcaagtagctgggagtacagatgtgtgccactggcctagccaatcatttttaaatgttaaagttcgttgagtacattcatattgtcatgcgaccatccaccat catccatctccagaacactgtcatcttctcaaactgaaactccgtcctcattaaatgatagctccacattctgcctactcccgacccctggcaatcacttttc tgctttctgtgtgtatgcatttgactGCtctaggaacctcgtatgagtggaatGagaagatttgtctttttgtgactggcttattttacttagcgtaatgctctcaag gttcacccatattgtagcatgtatcagaatccttttttttgtttaaaggttgactaataatacgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtctgtgtgtgtgtgtgtgt tcgtccattcagtttgtccgtttgcatttcagttgcttctgcgttttggctttgagaatagtgctgctgtgaacattggtatataagtatctttttgcatccctgctttca gtttgtttgggtctatacctaggtgcagagagcattttctcgtcaggagtaaaacaaaagggacaaaagaaagctcctgacttccaggaattctcaacc ttgggtccttggatagaattcaagtgatctgtgaacttggatgtggcattttaaaaaagacatctttatggtcaGcaacctgtaactgaaatttagGatttgttt ccatgacggctgtaggcagtaccaatcacagtggtgttagcagtgcctgtgacttagtcatcaatagaaatcgcgggtgtttgcatatttcattcctgttgtt gtggatatcttggaatatcattacattcatcagtaccccaaagttacagtagttatcaggcccacagctaggtcttgttatacgatggattaataaagagg ggatctgttactccattggaaattttaagggatattttgatagctgtttttcattatgatcagcttcctttcctttgcagtttcctatttattttatacttttaagaagatta ctctaagaaggggcccagaggcttcaccagactaccaaggggtccaaggcacaaaaaagcttaggaagcccactcttgccttgcagaggtgccc ccgggaggggtcacagtgaaggccccagcccgccagaggagcaggtttgcgtttggtttctgggcagctctgtggaaggcaacccaacttcctttgg aagggccctgagcctctctctacccactccaatataagaagagaaattttgctttataatgagcaggaatcttctctcagttccttggatggctttggacat gttttgagtttgtttggattcccaggagtgagcacacagggcgtgagctttgcagtttggggcctggtttctgaagaagttgcaaacagggtgatggtgca gttcagacaacacgcgcgggccaggcaggcctggacctgaaaggaatgtgttttcttggtttttgtctgctacagaatttctcagctctccagctcgttggc tcaaagtgtgtcaggaaagggggtgctgggtaacaagacgatggtggagagtgaggtttgcagacacaccctggcttggGcgggagcccacggtg ggggaggttggctgagtgtgtaagagcctttgggttcacagcctgcatgccagaaatatcatttatcgtcagtaataatgataatgcctgatggacgggt aaaggaatagctagataccagaaaaaaacaccaacagggacatgttcattgtagaatctaggtggtgggtgtaagggtattcatccattcttttcttcttc tttctttttattgaagtattacttactttcaaaagtacacaaccaaatgaacagctccatgaattatcccatctcatggacctaccaccaggctatcagttgg attttgtttctaccatggaagcatcctcagacttttcccagagaccacccttcatcctcctcccccgcgataactctcctgaccacagtgtctgtgtttatttag tttttttagaagcttcaactttacagaaagcaaatcaatgcgtgttcttttatgtctggcctctttggctccacatgtgtttgtgagcttcatctacattctgtttaga gctgaaggttatttatttttgttgctggatcacattttatcctaaaaatatcccattctactgacggtgggGattcacgttgttgccttcttaggcttttatgaataat actgctaggaagtctcttgcgtatgcctttttgggaatgtgtgcatgaaattctgttggcttatagttaggcatgagttgccattcgctggtattgcataggttca ccttttgtagagaaaaccaacctgttttccaaagtggttgtaccagtttacattcccaggagcagtatgggtgatttctggttgcttcatatctatgccaacttg ttattgtcagtcttttaaattttagccattttggtgggtatataacagtattcaacttttctttaagtctgaaatttttcataataaaatgttggagaaaaatatGcttc acattcatgacaacttcatagaaaaatagtatttttaaggagatggttgaaattggcgcttgtctggtcttggagtgaagacttttttttttcattctaaacaatg ccaaggctggcccttcctcctatgaccctgtggctccGcagtccaccattggtctcatgctgaatgctggatacatttttaaaagctgggtgtagccagag acaggggcccggagtgaggttgggagtacGttgaagctgtgctcatgcattgaattgatatgaccagaggtggagcgtggagctggttcctggcctgg tagaagttcttacactttttgctggtcGcagagagatgtacttttgagtcagcctgggaaattaaaatagttcattgagttttggctaattctggtaactattcct agaatcctcctggtcattggtttgaggtcacagctacctgcttgctggggcttccctctctgacttagcacaaatgatgcccaagtcttgagcttcttcctcat gttgttaactgctcagctgagttatttcaatggcatgaaagaaacatagaattaaggtcatagagcatggtcctaattcatgcctgctcgccctgGtttactg GcatcatcatctatctccttgctttcactcaacaaatatttggtgagcgcgatttttttgttaggcactcacccatgctccctcccttcctttGtcctctccttcagttt gtttgcctaccagtccatgcacccacccgtccatccacccacccatccctccatctatccgcccatccctttatcccttcatccatcacttactgatggcttta cccattgtaaatcaggccttggctagatacagatgaatgagctgtggtccttgcctttgaagtattcccccatactgtgacaaatgattaaatagttattcat aatgcagcatgacacggatataaggggggaagaagagagaggtctctagggcaggttgggaggatgaagaaaagctttctggaggtcacaatgc tattgctgcatcttgagaatatcttgggatgggcccgtgagggagggtaaagagagagattgggggcacatggtttctcagatggtacatgatacaga gggtagccatgcttgggacactcagtgagccccgagtcaccgagtgtgggtgggcagagtgtgaggggctgggtgacatagatggctctggatctgt cagcagtttggttggggcttgttggtcttGgaggagatgggctgtgaaactgtggggcagtgagatctgtgtggtggacagactcatgggccctcaaag atgcccatgtcctactccccagaaatggaatatgctgcctgcaggatgaagaggattccgcagaggagactgggttgaggagcttgggatggggag gttaccctggattatccaggggggccagtgtcatGacaggggtccctaccagggacagagggaggtgggagagtctgagtctgaggaggagatgt gcggaggcagagagcagccttgcaattcccggctttaagatggaggaaggagccaccagccaaggaatgcaggcagccttggagaacgggca aggatactccttctcctctggaggctccagaaggagccagccctgcccacaccttgattttagccttgtgaggccgtgttgggctctgacctcaagaact gtaagagaagaagccattgcgtgtgtggccatttgagcagccataggaaccttatacatgggcaggtgcagggacatctgaaaacctttgtacgagg gtccgcattaacagtgagaggatagggtttttggctggggacagtaagaccatcatcactgcgtgaaaaccttctcaaagagtccatctttcagtcagg ccgctataaatttatctctatagatcattcgttgttaaaattaagcccagggggaaaatcagactcattGaggatcaaggaaagtcacagaatctgatcc attcctaccagggtcccacgtcttatgaggctccagccttcttactagaggattctgatactttattaccccaggcgaatgtgatttgagtagagtcctgctttt gggggaaataaaatcccagtaaaggtggatccggatccctcagggacctaggtgcagttcctgttcctcccgtctcgcctctgttgcgctgcaaggtgg ggtgtgtagtgagtatcactgtaacctgtacttttctaaagtcaaacagatttctcttggtgggaggacgtgtcttttgtgggatcggtgtagcccgtctgagt cagtgactcacctggcacccctggcagctgactttcctggcagttcactcgagtctcttgcctctgctcacaaaagcctgcgcctttattcagctttcctcac cgcttcccaaggcagagcagagcctctcccgcccgcctcccacatctctcccttagctgggtgcccgcgtggctgctacctccgaggcttctgtgtcac cgggtagtggaaatgtcaccgagtgtcagagcttcgagcctcctccagatccatccaaggtggcatcactaagtggcatttgtgtgctaggcacgtacc ctcttttacatacattatcttGgatcagttcagcttcttctgcataaaaaagaaatttctctaccgtcccagggagaataattggaaaagGgagcGctgagt actcagcccacccgcccttctcctgctgaactgtGgaacgtagccaccagctagcctgagcttgttctgatgtcttctgggatcgtcattgttatgggttgaa ctgtagccttcaaaaggcacgtttacgctgtagtctctgtacctgtgagcatgaccttctttggaaatagggactttgcagatgcgaGcaagttaagatcat gctggaggtcatgcgggaggtcatgGtggaggagagtgggcccaaatcGagtgactgtgtccgtaaaagatgagggaaacttagacacagagag acacacagggacgagcaccgtgtgacagcagagacagattcagctgctagccaaggaatgccaaggattttggcagccccagaagcccGagaa gctgagagaggtgtggagcagatcctgcctcagagcctccggaggaaatcaaccctgttgacatcttgacttaggactctcagcctccagaactttaa gaaagcacattgctgatatgcaggccacctggtttatggtctgttgttcaggaggcccttgggacatcaatgccctcagtccagtctcgattctacgacGc tacccgtgttttgtttttcacaccaggccgtctctacccgcatggttagtgctgaccaagtaggaagttgggacacttgaggcatctctgtgacgtgctcac atggcttgaggaggctcgggccacacctcgaggggcaagcctgggcctgccgcccgacctttgcttggagaactgggttcactgggtttaagaatcat tccttttccttccaagttaactgctttcaagaggtcaacccgtgtgtcatggcttttcccagactggctgattcaaaccatgtcaccaccaggaaggggga aacagaagatgattgactaagaaacattcatttctgttgcaaattactagttggggctagttgttgattatctcacctccattgctatttgtatttagaaatggct cataaatttgcttacatgggtttggtttgtcttctaaatgaaatgattgcactgcacatacttctaaaactgtcctgcgatttgatagcttccatttcatggcgctt cttctggatgtcaggcactaagtcgggcgctttattctgtagttctcctagcaatctggtgagctccactctacagataaggaaatcgaggccaaggaca gctaaagaagcgaggtgcgcaaggtgccGaggtccgaagtgtttccgctgctttcagactgcagtcccagggctcaggagtccatgctttctgcgtatc ttcacgctggccacggatcacctcatcattagatgtcgaagttgaacaagtggtgttcacattcggacgtgtgttaggtagaagtgtgtgtgcacctgcgt gtgcgtgtatgttccacacgctgatgcaggaggtatacgcacagatataattgtcttttagaagattgactatcactaattttgaaaaatttcctgaatgacc tttcctgccaggccaatacattgagcccaacagataaatccctgaacttattcgcagtctctaagtacctt tagaatcccgggggtcgccctgagcctccccagggactagcgctgttgGcctcgctcagtctcgccaccacaggaggcctcggcttgcccagcagct gagtcgggagaacctttcccaggtcccgaggcagcgggaggcgaagccaggagacccacctggtgccagggaagagctgtcacctgggcctttc ctccaggagcGtccaaggaaggtggaggtgtgacatcagagtgttgggatgtggaggggtgtgactccctgggatgcagctctgtgccctgactcca gtgtgccatgcttggctgatctctcaatgattaactgtgtgaccttggacacaccgtgttgcctcctgcgcctctctgcccagacagcatggcaagtgaaa gcctccctcccttactgatggtgtgatctgggctgcctccttggacacgccaagcctgctgtgcctcgaggcctttgccctgactgcttcctctgcctgggat gcctgttgtctaaacacccacaccacacgctccctcgcttccctcctgtctcctgtcagaagtcacctccttgggctgtGCttgatcattccatccatccaaa aagttggcacccactcccacaattttttatttctcgttccctgacttacgtttttttctcctgagcatatgttatcatctgacagaccacgGgtttcttacttattttgtt tattattccatcccactagaaaggcaggggtttgcctgttttttccccatgactgtatccccagcatttagaacagggcctggcacctgctagatgctcagt acatagttttgagtgagtgaacgaatgaatgaatcatcagtcagtcaaactttgcagcactcactttgtGcattggaataaagtttgcctgttaagtacatg gtagccactcagtacatggtagctaaggttatgtgcatgattttttatattattgtcattatgtgctttattgtttttatttttatttttatttttttgagacggagtctcttttt gtcacccaggctggcattcagtggtgtgatcttggctcactgcagcctccgtctcccgggttcaagcagttctcctgtctcagcctccagagtagctggga ctatatgcacgtgccgccatgcccagctaattttttgtattttagtagagacagggtttcaccgtgttgcccaggctggtcacaaactcctgagctcaggca gtccacctgcctctgcctccctaagtgctgggattacaggcatgagccaccgcgcctggcctatgtgctttatttttacaatcagagggctgcactagcag atctgagagcatgaccggggtggagtccatgcagggccgcagggaacactagtcagaaggaggcagtgaacctctcctgccctttccttccatctcc atcaccttgagcatcttctgggcagctgaggtgaccgcagatgggaaggaagggcgcagagatgagcattttcttctctccaccatctggttccaggc agggcaggagagggccccgtgagagctactgctcacggctaccacggctgcctgtgggtcagagcatctccacgctggagctgggccacactggt tcctgcacccgggcagcctgtggccaggGtgcgtttcaaagccaggactttcaggaatgcacccttttgaccacacagcaaggccacacataccca atagcagtggactctgagctctttaaaattgtgaatgttgcccagtggccctcagtcaggatttgttccattaaacctcattcactgccctcattttatgggttt gttgactgtttgcatttgctccgcaagttgtttatattctttgtgtgttttattttcaattatggcatgtgtctttaaaaaaagattgtaagggtttcttttgaaatataga aaactgttcatcctttttcaaatcatttatgtagcagttattactctccaactttttttgtttttctagtctcttgattttgtttgaggtatttattgatatatagaagttatat atttttctgtggtcagagttgagtgtcttaattagtgacttcttaattagtgtcttcgtggcttagagagttcttccaaattttaagattgagcaaacattccccata aaaaaaaaaacaaaactatagaactgtaaaattaacctagaactaagcacctacacccaggataaatttttggtataaggtgtgaggcagggaata atgctattccttccctccaaatagttaatggattgtctgttatcattcactcaatagtgtgcccttttcccattgctttaaaatattgctattatcagatactaaatttt tcaaatatgtgctaagtttccttttaggctttctgttagttaccactgatatactgtccttgctctgccactgtgctgttttattccagcttcatagtgttttgtttgtttgtt ttttgagacggagtcttgctctgtctcccaggctggagtgcagaggcgtgatctcggctcactctaagctctgcctcccgggttcatgccattctcctgcctc agcctGctgagtagctgggactccaggcacctgccaccatgcccagctaattttttgtacttttagtagagacggggtttcactgtgttagccaggatggtc tcgatctcctgacGtagtgatctgcctgcctcaacctcccaaagtgctggcattacaggtgtgagccaccacgtggcccataatttttttaaaattgagcGC tctccttttaaagatgaaggaactgaggcaccagagaggtcaagcaacctgcccaaggtcacacagccaaatgctgtGtgagaatctcacatgcat aaaattccagtgtatttaaccttctcgtgggctgtgtctcatgatgcttccctgtgcttctttcctgtcacttctgctcatggtatagcactggaatgcttttttttttttt ttttttaaacagctgttgtacgttctttctctaagtggagctagtcagaaaaagctgcatgaagctactagcaagaatgagatcagacacgtgaattttgta gtactgtgcctggcatagaaaaagcccttaatctattagtaataatacaattattattatttccattgatgttgactttttgtaaggtacgtcctcatttgaagcat cagtcagtttggtgatcagttgcccttgagtgttcagacactcgtttacagatgttggaccctgttacccaccttcccctcccaccataaattaccgaggtca ccccagactctgaactggctgacaagctgttacagtgatagaaagttttgcacttgagGattcccacaagctcctaggactccaggtcagtttacatgttc caggtttttgagaaaattgtccacgctgacttcaaggcgagagcatcttggatctcctcccagagagagtcgtgtcacctgagggcccagggaacctc ggtgacaagggacctcttgtctgctgtgtgctgtgggctgatgtgatccctgtttgcagtgtaaactcataagcagggacccgaagcatcccccgaccc ctggctttgcagagcagccataaccagccagtatgaagattaatttccctgtaaaacctttgaaatcaggtaagtgttaattattaaaatttcacgaggag aggcttgtttggtgtgaaggcttccagcttgctgagggtgacctggaacttgttgtgaggatgaccaaaggtacttgggagtgctccttgccttgctgtggc aattggaagtcttcatcttaccttgcgccatgcagggagggtgtgccGtggatggacccagtgtggcctgtgtgcttgctattcggtacctctctcacctgtc attaactcgggggcattataaattgatcgtcaggataagaatattctcttatagttcatctttttaaaaaaatggtgataagatacacagaacataatgccc tgtcctaaccatttttaagtgtgcagatcaatagtgttaagtatattGacattgtagcacaacccgtctccggaaccttctttctataaatgcagaattagggtt ggctacctcaggtggacacctggttcatgacctttgatgaagtgggtagaacttatttagagcaggaggccgagggacaacagcaccagcctttgtgg taggtgttaatacctctcatttttcagatgaggaaactgaggcactgcttgtcttttttttttccagtaaaatgttgttatagaaacatacgtgcgtcacatacat ccggaagcatgcacacgtacagctcagtgaatttttgccaactcagcacgcacgtgtaaccagcgcccaaatcaagagacaacatactgagcagt accccacGCCctgccctgGacGtcccgccagccgttgctctccGcaggggtaactgctctcctggcttgtatcagtgtctaatggttttgcccgcttgtgaa ctccacatctgtgcagttgtttggcatgtatgattttgtctggcatttttcccatgacatattagtgtgactttaagagtaagttgctggaaacttcaggaccagt catggcagaactgggctacagactcagagcagggtccccGctgctcaccgtcctggccgtcacaatgttcacgtgtgagcctgccttggcctggagtg tcggggcatcctgagaaataaagttggatagaaacgccccatataggctgggggcggtggctcacacctgtaatgccggcactttgggaggccgag gtgggcggatcacttgaggccaggagttcaagaccaggctggccaacatggtaaaaccctgtctctactaaaaatacaaaaattagccaggcatgg tggcacgcacctgtagttgcagGcacttgggaggctgagacaggagaattgcttgaacctgggaggcagaggtcgctctgagccaagattgcacca ccgtactccagcttgggtgacagagagagactccgtctccaaaaaaaagacaaaaaaaaaaaaaaaaaaaaaaaaagacccaaatagaggc tgggcacggtggctcactcctgtaaccccagcactttgagaagctgagatgggaggatcgcttaaggccaggagttcgagacGagcctggtccatat agtgagacgcccatctctgttgaaagaaaagaaaagaaaagaaatgccccaaatgggagtttggtgaaagttcagtggaggattagccatgagga tttcaggagcctcccgctttgagcagggaaacaccctgtggtatgaagtggcagcaagagattggggtggtgggggctgcatgcgtggggtgcagg gcaagggtcagctgaaggtgtcggggaactcacagagggtggagagagccctgggtgcagagtcttggccgtcaggccgaggcgggtgggaag agacccggcattccggacagaacaataacaatcatcgtttcGactcaccaggggcttgccctgcagaagacattgtgcGtggtccattacacacaca ccacagtctcgttgcatccccctgtaaccctgtgaggtagctgctatcattgtacccattcttagatgggggaactgaggctcaggcaagtaaaatgactt gctccagattagggaagtggtagggagtcaagaggggctaaggcctgagtccgtctcattctcagagcgacacccataagcatgggctgcctgccc atggaaactcataaagtagagacacttaagacataggcggccGccggcggtggctcctgcctgcagtggcccagttgcataaacactgagagaag gctgccgaatttcactctaaggggttgttggaacaaagttgaaatgtggtccaaaacagcttcatcatcattagtgaatgtgctgtgggttagctttttattttc tcaggggatttgtttggggccagcctgtgtctccatgttcttacttcgcgagctgagtaagttgatatctgcaatttaagaagagcctggttttgataggaagt tgatttgattaccattttataagattttcttggtctggtcttgatcctgtggatctcttggtttcagtaattttggggtggtgatctatcctctgccatttaagccaagt cacactgatgttgagtccaccctgaagaatgtgtcaggatattctcattccaaggaaatagaaaaaggcattaagttcaaaatagcacgtgatattcca aaccaagactttgttatgatcttctGgggcaataatatgattatcaggtttttttttcacaggcaagttgattctaaggtcattaattttatctgtatccagtggaa attgtgttcattttaaattaaaataaaatgaacggtgtccatGtgtttgtggaaacctgatctactaaggttgatataatcaggctatttacaagttcactgtgg gtcagacaacagtatttatattcatgcacacagaaaattcgattagatagtgccgaggaagagcacacaGcgatgggccgattaccctgaattcagg cagctGagattctccattcgcttgaatgtcatattagctggggatatcccttttgtgacgcagaatcttgcagcgaaacagttgggtgtagcctcctgtgag aaagaaatgcttgcagcagggattttccaggccggcatctcaattgcacagaaaaacattttgggaatgtttccatcagcccggcagtctgaaggtttg agcggaatggtgagaaggttctaaccaggcgtccttgggggtggaggatgatgggccagggcagctgcacaatgtctggctgttcagggggtcttga aaccaatgtctgcaggccctgcggggatggatgcacacaagggccgtttgaagcacagatctgctcaatcattgttttctgctgggagtgagagaagg gcactccacatctctgctcaagaatccttGatgcttcgctgttgcttttaggaaacactccttgttctgatcaggactacagggctaggtatgtttctgtctggc cctgcctctcccactcttactgcacctcggagctccttaactgctcctaGGCtgcgtcctgtttccttttctcagctggagcctcctccctaccacctgaggcc cgcagttcctgctaagagcaagaGtaagcttGCctcctgccttcactcactcattcctaattccGtGcgcctcatcttcagtgccacctccactggaccttcc atgaccattccGGcaccacaggacagtcattctctttatgaatgcacagttcatagcatgtgattcatagcacaatttacatgaaataataaGcaactgtc cattggttgctttatgtctctctaGgtgctccgtgtgtacaactctgcccccagccctgagcactgggcctggatgtagcagggaccaccatgttattggtg aatgagtgacagaaacaaacgatggcagtgaacgaagccgaaagtagttctctaatttgcacagtaatctcagccaccttgaaaggtcgtttttagtgt caGttcattgtgaatttgtcagacgtggagcacatccatcGaaacggaaagacgaagcaagggccgaaagtacttgctcaccagggcagGttagtg accagcatcgctggcctttttgtgtctcgtGagagcaGaGtgatttgatgagtccccggctttccttagtcttgcctgttggagagctccatcctgtgccgcct Gtgatccgtgagatgggcttgctcaccctggctgagtctcactttgttgcccaggctggagtacacgggcacaatcacggctcactgcagccttgacctc ccaggctcaagtgattctcctgcctcagcctcccgagtagctgagactacaggcacaaaccacctcgcccagctaatttttgtattttttgtagagatggg tttttgccattgcccaggcagggcttgaactcctgggctcaagtgatcctctcctgcctcggcctcccaaagtgttgggattacaggcgtgagccactgca cctggcctggcctcttctttgaagccagttaaatgtgtcttgttttgagtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtttgtttttgttatgagacaga gtctcggtctgttgcccaagctggagtgcagtggcgcgatctcggcttactgcagcctccgcctcccaggttcaagcgatgctcctgcctcagcctcccg agtagctgggacttcaggcttgtgccaccacgcctggctaattttttgtatttttagtagagacagggtttcaccgtgttagccaggatggtcttgatctcctg acctcatgatccacccacgtctgcttcccaaagtgctgggattacaggtgtgagccactgcacccggcGttttttttttttttaagttgcatacttatcagtccg tgggcttatttgttttgggtgctgaacccctctgttaagtcttgatgactaaataaacacaattcaattatgtactatatatataagtatattattcttgtgaaaag cagtgccttaacagaaaagtctgaagttccccttcctccacccccgaccctgttcctaccccatatcccatccttctagggttttttcctttatatttacattcaa acagatggttctatagaaagtatatggtataattttatgtgagtttctttatttaaacataaaaggaatcctgtcatatagatctttctgcagtttacttcttcactc agtgagtctttttggagatgtgttttggagatgtgcacggtggagccgtgtaacctgtaactttcagtggcagagggctgtgatttcataggcccagccagt ctaaccactccagcccctgatcggtgccccaggctggtaggatgctcttgggaccctcacacgcttcttccatgagttgagctgtttgtttaccaaacctg gttacgctggtgagaggtgttactggatttacacagtttatttgaagattacataaacttatgaaatatgagcgtgaagagagaacggctgtctttatgaaa gctgaatggaatgcttaagaaagtctcagtggagtggagtgtccctacaaaacaaccgatgttgtgggtgagagaactgtaaaagaacaggaaaa agctgtaatgatcagacagccttgagggggtcttcagagaaacagaagctgcagcttgtcaatcaggcatcaggcatgcgtttatgtgaaaacgacG cagaggccgtctgcaaagggaaagcctcatctctactacaaaagatggagaacatatacacctttacatacttttagcaaaaacgaaatgtctatttca tgttttaattttctcctttaatggactcctttgggttcaccactcagtcactggttctaataaccaaagactgaccttattctgttcagctgccacatcacattcca taaaatggtcgtgccccaccctgggtcgatggatgtgaaggccctttctcgcttttcactcttaaacacagcccaggaacaagctgtcttacctgggact ctcagtagatgctgagaggcagacttgGtgggtgtggcattccaaattttaaaagcagcaggagttggttgattttgaagttgaagactcctaggcggg gagctctgtgaaaatgggagccaagtcttttacctgtgaatgagaattaaaatgggggccaactattaaatgctcggacaccccaccagtgcttagatc tgtttgtcacgcaggcatttcttgagtcccagttgtatgctctgtgaggcaccgagggtgggagatttgtagcatggcgtaggttgggagattggtagcatg gcgtgcgtgatcttgagaggcaggtgaaactggcctgcatctgggaatagggtctgcaggagtgtgtttttctggaccttcatctgagggtcgtattctcc atctgtgttagattgggctgccataacaaaacaccatagactgggtggcttaaaccacaggcatttattgtttcagagttccaggtcaaggtgctggcctg gctgggtttgggtgagggccctcttcctggcttgcagacagccaccttctcactgtgtcctcacatggtagagaaagagagcactctggcctctcttcttat gaggacatttatcctgtcatgggggccccaacttcatgacctGctcaaaccctaatcacctcccaaaggccccacctccacataccatcacattgcag ggtcgggggttcaacagaggaatttccgggaggcacaaacatacaatccatagcaccgtccctagcacggaagaacagagagaaggaacggttt acattgcagcagtatgtagcttgacttgtggcttcactctctgggggattgtgaattctgccccaggcctagcgagaggccgcttgggagccagtccgttc cacggggtgctggtctgagccctgcccgctggagcccatgaggtggcaagggcccaggcctggctggtggcactgtgtgtcactgcttttctgctgatg gcttgctgtgtggccttgaagttgcttcgctccaggtgagcgcatctgagaggtgggctgggtctgactttgggaatctgaagactgtgtggttctgagatg gcaaagtgacacctgtgggccagcttcctggctggaagacaccctctcctcccttccctaatcatgtccagtgctacacggcagccggagagcgctct ttgttggtcccgtgagaacattcagaaacaatcatacccacccctgtagctggctgcttattgccaaggcgttgcgttggctagtgtccccacattgaagtt cagggccgcccagggctccctgctgcgtcctgggccagcctgtgacctcccttttccagcagagcagcaggactgagggcgctgaaaggaagggg ggtcagggtcgtgggggtaagatctgacccttggagccagacagcctgtgttcaattcctggcttttatctatgaccatgggctagtcacttccccccgttc ctcagtttccccacctagagctaaggtgaggataaaacaagctactatcttagaacagtgcctggcttctatatcaggcctaacaaaggatggggattt aattttctgaaacaaagagaaatttttatttggctcaggcagtctttccttccaaggagataactaagtttgagtcattgtttaaaaaatcaacttccactagt Gcagctatgacccctgaaatgccttccatttcaccttctactttctgtctaaagaagagggtttactgagctaattgcaggtctgaatcgtattatcgggaaa aggtttatcttacttgggagaacacagctattttaaggagctttagcacatttttattgcatccacctggcatgagaaatctccattgtgagcctccttggggt acccattcccattagaaaacagttcatcagcccagaagaggggaaaggagagagagaaggaagggcaaacgctggacacgcaggggtcccc ccgccccaattatccatcatttgtggggttccacatgcacctagtgcacagtgagtgtgaactcacggagaGagactcaagtcatgtgcacgcatccct tttcaatgtgggtgctgggcagaggggtggcttcagctctGaaatgagacGgaggctggagggtcatgcaagtgaaaaatactcaattttttaattgcaa agtctctttggtgctatgtgtgtggcgtgaacacgtgagggcattattttgaaagaattactgataggactctgtctcatcctcagggggtaagtgtgtgtgt gtgtgtgcgcgcacacaggaaacctcttgtttttaaatatttccttctccaaacagcctgccgctgaccttcccggcctctgtgtggctctcaggccacctcc ttattgctatatcttggagcctaaggacttctatttctgctctgggtccagtgcagggtgcGaggaccaccacaggggtgcatgtgtgcatgtgtgtgtgcct gtgtgtgtgtgtgtatgtttgaatatgtgtggtgtatgggtatttgtatgtgtgtatatgtttgtggaatgttgtgtgtatatgtgcatgtgtgtgtgtgcgtgtatttgtg tatgtgtggagtgttgcgtgtgtgcacgtgtgtgtggagagggtgtatgtgtgagatgtgtgtatgccatgtgtgtgcgtgcatggagggctctgcttccggtt tctggggttgagtaactttatgagtggtacttaaaacccttctgttgtccacaggacaaagttcaacccctcatttttttggcagagaaggctgccaaattgg ggccagactcaatcttttcattttcatGtcctgccagttccttaccagacaccGtgtgctccagccacaaacgaccttttgctgttgcccaaaagagcccat gatcttgtaaactcctagactcctagaagatgccaggcccacagccagggttcccctttccgctttccctgctcagctcatactggtgcgaaactctccca ggcctgccctcctccctgcagggtgccttagcttcttccatcctttgagacaggctgaccacaggtactgtggtgtttgatttaatgcattcgttatctcagga tttgctgcgcttctagagaagtcctgcagacgaacccgtccttgtatcaccagcgcctagcatggtgcctggaagagggtgggtgcttgatgcttctcgc agtgaaggagcagaagcttaggttctgtactaagatgatgcttatattgtgtagctaaaagggaccgtgcacacaacagtgacaacatcagtaataac gtttactgagcgtctcctgtgtgaagagtccctgtgctcagtgctctatgaatggcatttaatccacacagcttatgtggcgagctccagcatcctcctccat ctacagatggaagcatgaggctggagagaagtgacttggtccagaccacacagcacggggcggacGtgcgatgctcacggtaaaactagggca agttactacttgactgatctgcttctgttctagaatccgaaccctcctcagcattgtttccaaatgatggtggttttcaagctccaaacgccGagcttacctgg gcatagaagccttcctgccggccctcccgtgggccccagggtctttgcacaggattttccacacacagtacaagtctgggtctcggGtgaatgagcga gcacgggattcccacatgcctgtaagagaattgctaaatttgcttcaagcggtgtcaccccctcactgcaggtagatctagtgaactcagggagaatcc accgtgacctacatcagaaggaagtgggacggggcggtgggtggggaaaacgcaaatggGgctcgctgtgaatagcagtgttggagaacatcac agccagcagtcgaggatgaaaggcatttgatttataatagactctcaaattcaccctggttcttacgagttatcgtgtctcctgaaacctcgtgggggcat cctgctgctggggccaggaggcagggaatggcagcccagggaaatgaggaatcccgatccttctctctgagtcaagagaagacagacttgcccta cttctcccatggtgtcctgggagagcaggaagaaggcatggagaaggatgccttgttcgccggcggcagaagctccctctcaatgccaggcaggac agagccagcatgtagggcggcggtccctttagcaagaggatgaactgggctggaggtgcactcagaaatccacccagagggagttttccttttcatg acagttttcctgaggcttggtggggaaggagaagaggctctcagttgcaggcggttGattcattcacccattaattcatctaactaatagttactgagggt ctgtgtcccaggaaccgaagaaagcacaggttacagcaatgagcgaacacagttgtgtgtctcctgcctgcaggtagGtgcggcctcgtggagaaa attgaagtcagatgattatcgtgcggggtgagaaaggagggtgagaaccaagtgctgttcactcatcattcattcattctcttgttcagggggtgtggagc actggatgggagctagacatcGctctagacctgtgctggctggaagagtagccgctgccatgtatggctatttacattgaattaaaattagaccaaagt aaaaattcagcttgtgaggcacgtagccacacttcagtgctccgtagccacgcgtggcgaaGagctcttgtactggagagtgccgatgtagaacattc cctgcatcgcgagagctccctggatggtgctgggctgcaaaggccactcccccgggagtgcacagccttgcggtattaaagaccggcacatattctg tgacagtacagggcagtctgggctgggatgtgggcacacagatgtgggatggccgagccatgcctgggctcccggaggcagggaggtttcaatgg tgtttaagtcaagtgaggaggatctggggcagaggaggagagggatagcatatctggtagagggaagcacatatgtcaaggcctggcctccagaa agagagacggaaggggttcagcgcggctgggtcgtagaccatgtcatgtttatgtggccgagggcatggggtgtgtgcagcgagggtgactctgga gggggacacagaccagctcctgcagatgctctgccatctctgcagaaagacccccgctccaggctccctgctggcccttccagtcagatagagggt ctttgcaggccatctcttgctgtgggcacgctgagcagagggtcccaaagccagtgacaaccagttcagaggagggcctggtttgcggggtcaggg ctggacaccttgctcagaggggtagctgggccttggagacaaacttaccgtttcaggcaaaagcgagggtttgcaggtggagggtgggaagcggg ggaggaggaggaggaggaggaggaaggaagggatctcctcagaagcctgcagggtccagattgagtgtccgttagttcagtgtacccaagaaa acacttcaggaaatggcccctcttccctttggggaagtgcaagatgaagaagaattggagaggctggctcacagttgtggggcagtgagggggaatt tggcagacaccgaaattggacactgggacccttggcctgggaccagcttgtgccccagggccaggtgctgtggcaacaaaggaatgcccaggga gccaggcaggcctcttcagctctgctcttcctgtcacccgagcaactcgcagcctctgatcccagcctcctctgcagcacgccggcaatcatgtcatgct gtaaagctgttggaacaatttccagatcattacagcggctggcatttatctagggcttaccttgacccaagcattgtagtatatacatcatgatttttcagcct cagctctactgacatctaaggatggatcactttttttttttttttttttttgagacagggtctccctctgtccctcaggctagagtgcagtggtacaatcatggcgc actgcagcctcgacttcctgggctcaagcgattctcctccctcagcctcctaagtagctaggactacaggcacaggccaccactcctggctaatttttaa agtttttgtagagatggggtctcgttttgttgttcaggctgttctcgaactcctgagctgaagcggtcctcttgtctcacctgcctcccaaagtgctgggattac agtgtgaggcaccagccagctggatcagtctttattgcgggcactgtcctgggcatggtaggacatttggcaccatccctggcctccactcactagatg cccacagcacccttccaccccagttgtgacaaccaaaaatgtctccaggccacgtgtggtggcatgcacctgtaattcGagttccttgggaggctgag gtgggaggatcacttgaagctaggagttggagaccagcctcagcaacatagggagaccatgcctctacaaaaaaaaaaagaaaaaaaaaagc caggcatggtggtgtgtgcctgtagtcttagctacgtgggaggctgaggcaggaggattgcttgaggccatgagttcaaggctgcagtgagctacgat catgctgctgcactccagcctgggtgacagagcaagattctgtctctgaaaaaaacaaaaaggaaaaaggaagctgtgtctggaGattgccaaatg ccccccgttgggaaccactgctttacacattgactccttcattctGatagcaacccatttGacacacgaggattgacttggcaccacagctggaccattg gtgctgaggtttgaacccaggtctgtctgcatgggcctgtactcagttcctggatctattttactgcaggcttaggtggaaagggcgtggcccaaagcca gatgtgtagtaggtagtcagggaaaggggcttttctgatgatttgtcactggcttattcagtcaacaaaccagaccctaagtgcaggttgcaggatgagg agggagccggtcaacctgcaggagcacctgggtgaccagcctgagggttgatggagccatttgtatttcttaggcaatgattaacctggttgagctggt aaatcattcgatagaaccttaccctggaaaatgGcgggcttgcaaatggggggccgttggtttcaGatctgctgtttcttcattggactttgtcacccatga ggtcaggagccagcagccgagggccgttgggaaattctccttgggcagatagctgccacttttccttgctagccctggagtgctgtacgtgccccagg aaactgtcccatgtaggggattttcatggctgggctctgtgtgtgttgggggcggggggcggaggatattgaagaagcggccctgagtgaaatgGcag tggtcctgagaggcggggctgagacctcctctttatttatttgtctttggaaattgtacGattcatgatgaaatcgcccctaaaggacacaggcagcaagg actggcctttgctagacctggtaagctgggcagaccgagcccagagcagggcctgggtgccccagcagggcacagggtgctggctggttcctctga aggcaactgcgcgttctcttcccatgtggagaaaccaggcaaatgtgtgtgtgcatgcgcgcgtgcatatgccagtgtgtatgtttgtacatgtgtatttga atgtgtgtgtgcagtgtgctgtgtgtacatgcttgtgcatttgtgtgtgtgtgtatgtgcacacaagcctgtgccgtccaagtgcccatgtgcatatttaaatgc gctcaccGgtgtgcgtgggcaaatgtgtgcacatctaGatgtgtgtcagaattattgtgcgtgtgcctatgtgatgtgatttcaccccacccctatggctgta ggacgaaggcagtacacactgagcaccctgcccatgccctcggtagcactccttctttccttactgttccacagtggatacagagagacctgaatttaa tacccagctttgccagttactcattgcatgatctgaggctggtcatgcaagctctctgagcctcagtcttctcatccgtgaaatgggagaataaggaaca gcactggtgtggagtggcattgaaggtcatgggtGataggtgtgtgtgtggctggggcctgccttaggtggcagtcagtgatggcatgccctcccagctt tgggaaggtctggccctgtccatggaggtgGaggagggtcgcagggctttagttgcttctttctgctcatgcccccctcccactcttggctgggaaaGCtt ggcagcactgggcaggatggtgttgacaggtcttatcccgtcaaagaatgtctatgtggcttccaccctctgtgctctaggtgtggcctggggtcacatg gctgctattgctaggatagaccaggaggacccagtggagctgtttgtgcttctggaatctacctgatcaattagaaactactagaaggctgaagtcagg ggctttggtgaccttggcttttgcccactggtgaccacagcactgtcattctgaagtgatgcctggttacagcacatagattctccttacacccaggagag gatgaagaaagtcGtaacGccattctgtgccGtccccagttccatcacacacacccGagttccatGacacacaccccagttcGatcacacacacccc agttccgtcacatgcaccccagttccgtcacatatatcccagttccgtcacacacaccccagtcccgtcacacgcaccccagtcccgtcacacgcacc GcagtcccgtcacacgcaccccagttcatcacacgcaccccagtcccgtGacacgcaccccagtcccgtcacacgcacccGagtcccgtcacacg cacccGagttccatcacatatatcccagttccatcacacgcaccccagttccatcacacacaccccagttccatcacatatgtcccagttctatcacacg tacGccagttccatcacacgcaccccagttccatcacacacaccccagtttcatcacacaccccagttccatcacacacacccagagggttctgagta accatgggcaaccaaaagccaggaaaatggggggatttcctctgcctcccaactgttttctgattagtcacttctagctaattagcaagtgacaaatgg gacaataaagctgaaaatatccattggcttcctggaatcccagccacagacatggcacatgggacctggctgagaagcagaaaaatgaaaaaac atttggggtcctgaggaaggaagcacagaggaccacgtcgggccagccatgtcagtgtgtggctgtaggtggctgcagtgtgtgGctcaaagacac actggggccgtgtgcagtatgtgggagctgtgggaacctgctctgtcttccgttttctctccacactgtctggaagaagtgatttcatctcacagtcatttggt gactaaggcaaacttcccccatccaaggtggaaattgtcacagggccctggggaGatcataggggtctgtgtccaaggtggcctctgcttccagaggt ggctgaggcccctgttgtggacagttcccctggatgcatgtgggtgacagctcctgctcccatagacagttccccatgcatcctcagatgggtgaggct ctgctgctgtgacaaagactccccggtccagggacttgaaacaactttgttcttgctcagtcaccatggacgctgttccccaccggcagtgtgcagggg ggccctggctggtggggtccttccacctggtgactctgcagcctcggcggcaggggcagggaggactggggagcccagcgctggcagctgcatcc tttggctttaggagggacttgtgtgacatcctctgacatctgactgtccaggcccagttgtgtagcggtggcctggctgcaagggggcagggagttgga atcctccccatacgtggcagtggaaggaagccagaactctgtgctcattggtagttgtctgcctgtctctgacgtcggctcacttgggctgataagggctg gctggtggttcccgagggtatcGtgtgtgtagtggggatgttcttttcctgtggcctctgtgacatgttGCttcaaacccagtggctgaaaaccacacagat caatcatcttacagtcctggaggtcagaaatccaaaacagatccccctgggctatgttaggtgggctatgttaggatgttttctccagaggttctagggga cagaatctcttcccatgcctttttcagcttctagaggccacctgcattccttggcttcttggccGcttcctccatcttcagagccacctgtgtaccatctcccag cctctctctgaccctttgccttcctctttcattgggaccaactcgacaatctgggagaatctcccatctcaaggtcGttaatggaaccacatctgcaacgtct cttctgccatgtcagatggcacattcccaggttctggggatcagggcgaagacatagacatctttggagctgctcttgtgcctaccaccaggggccatc cttagtgggagaagccaggctacctgccttcctccctccctctctctttctctggctttgttccttcattgctgtggctggggacagagtgcacaagaggaat gagggccctgtcctcatggagctgccagtcctttccaaggggaagactgaccttcagcagagacttccagtgcagggggtttgggagtcccctccctg ggggacaggaaagtctcctctaaagacgtgacttgtcagctgctgtctggggattgaggaggagttagggaggtgaggtggggataaatgttgtgaa gaccagttgcttagccacgtgggtcccagcacccagggcctgagtctctgcttgtttcagtcccactgtttctcagtcttccctcgttttcttccaccctgactg tggcctgctccgtttcgcagattgctcatccccattcccgcccactgcttttctggaagatgaaggggctggcttcctgcgtcctggcctgggcactggag caggccatgcccccaggaggcaggcgggacctggctgcagggatgtgggaaataggacccaggaccgtatttgcaaaagcaacaaagttgaaa gcaggactgggcaggctgggtcgctgtttgcactgggggaagcgctggcctcagaggtgccttcctcctGtcgggccagaaagggtgattgtttcaga gtcgtctgatgaagagcatatattccaaacagagcccactgcctgtcccggcgccagcttcgaacaggggaggcaactgtgacgccctgtggctcct ttcacccggcagtggggagggtgctcaggccaaggggagagagagagacctctaaacacagcctggagaggaaggctgggcgtgctccgcca gcttcacacgcacctctcttggccctgccagatgccatttgtgttttctctttcccgtgccctcgccccttgccaaaagctataggcagcatggccaagattc ctctgtggggcaggaaaaagcaaagaaggaggcatgagcttctaattagcaaagatagacaaattgctggtggagggaccaccttcagctttgtgtg cagacacgtggcccccctggcccttttatattacgtgtccacattctttggtggtctaacaccctcctaggcactggagccaccatgcaagcgtttccagt gggctgtgaacagaaaagtaattttccacatcagaatcaaatactcaacaggaaggcgaggctgccctgtggtgggcgggacttggccctctgtactt tccatttaaggcatttagaacaacaataattattaaataatcattaagttaattgtcttccttgccaaactcattgagggcggatacccaataatacaatca gtgcctgataaatgtatgttgaggggagtctacctttccatgagaactgagttttatctctgaattaacaaatgccagatgtgcaattagcattcagagaaa atgGtctcctcttcaaaaggcactttaacctgttattctctatctgagctcatttaatgcaaggagaagctaaggagcagaaagattcagagaaatatcct gcttcagagagttgggcaggagattcctgtagcatccgttctgctacttctcagaactgtgtgccctggcagacatcaataatcaatcaccactctttcctg ttgagcccagaggcagctgcagaaccgttcacaacacacctccaggaggccactaccaggtgcttgagaagtttgGagaatcccagactggcaaa tatgggtgtataatcgaattcatgtttacctccagatttctactttctggctcagagctgtcctttcactttctcattttcttcattcaccgctgtcagcaggtgccttt tttcctgcagccacttctctggctgtgtgaccctgggcaggcaactttattcttctctgggcctcagttctttgtctgtagaatggagataatcgttatatctggt aagactctgtgggacccaacgaaagcatagagtgcttagcatcgtgtctgctaggaactaacaggccctgaagagatgatggcaactttaaaatata tttgttttGactttaatcttcagcaaattgaagccctggccgcaggtgtcattgggctggaagctcctagggatgcGGCccagaagggggggtttttccttg gtccctggtaagtctgcctcgacacacccctacagtgggaggggcaccagctgtcaccttggtgcctcctctgtgccatcagtcttcccagccacaggg aactttcccacacacgcaaggcctcatctcgggtctgcagaatccaacaaagagcaggagggcaaagaaagcctgtcatctcctctcttgcagaaa tccacaagcagcatttccgatgttgtcattgttataataagcagcaggcctcatccagggaggggaaacgtgatggtgtggtgctgagatagatacctc cagttgcttttcccctgagtgggtcaccatagctctggggaaatcaagaaccccccctagactgtgggagtccccaagtgacatcaggcacagcaga aagccagagaggaatccggacccatgggcaaaacagacagaagaattcatgctctcagcagggaatggggacagtgaaagcacacctgccca ggtaacacaccctacaggatgcacacagactcagtgtgcacaacaaaagggtctaaggcctcattcccagctcagcacatacactgtccgctccct gtccaagagggccttgccatttgggcatttggggcccggagagatctgagatgaccccatttccctaggcggcctggGagtgatgtgaccaagtctgt gaagtcaccatcttcatgggtccccaccagggtatactgtgctccccaaagctaaatcaggaaggagaaacgtccccacctaagcctggggagatc tccagcatagatgaaacccctccgggctggttattgccattggagtgtgtctggtctgccGtggttgggggagactgattcctgccaagtgatttttctccct gaacctcagtgtcctcatctctaaaatggatccataataatacccacccctgggagagctgtgagcatgagagctaggggtaaaccttggtatacagg aagtgtgcaattaataggagctccattgtgactgttacttttcttagaatttgagtccagtcctggGcaaacagaatcaccgtcttctctgtctgaagccatttt ttccctggaaaatgcagacccagcggtgagctatttgttctctcagagtttGtgagtcctgggaactgaggccagagatctcaggagtagaacagtcca cttacctggctgcacgtcatctcattttgctgttacggaacctgttctagcccgggtggggtggaaggcagatgttggactggttattatgggggaatgcctt ctgctgcagaaggaggtggcggcgggcactaggttgcttccaccttttggctacttagagtaatgcttctctgaacacgggtgcgctggtgtcccttttaa aagtccctatttttaattcttctgcatatatagctaggagtaaaattgatggatcacatagtaacttggctgcacccttttatattcgcgccaacaatgcgtga aggttgtgatttctccaGaatgtgccaacgattactattttccgttgttttatcagtggcGctcctaatgggcatgaggcagtgtctccagagacagaaggtg gaatcctggtaaccacaggtagaaggaaggggagccgggagttggtgttcgatggggacagagtttgagtttgggaagatgagaaagctctggag gcGgacagtggcgatggttgcacagcagtgtggatggaccaaatgccactgaaccgtacacttaaatggttaaaatggctaaattggacatcacttat acacacaattgtacatcacgtgtacacacacaaaagcaggtgtcacataggagacacccagtttaagggacattctgtacggtgcctgaatggcgct cctgaaaactgtgcaggtcctcaaggctgaggaaagcgtaaactgtcccagaccagggaggccaaggaggcgcgatgactcaatgtcatgtggtg ccctggatgggatccagggacgggaaaaggacacttgggaaaaactggtgaagttcacgcaaagtgtccgggttagttcagcatcagagaccaat gatggtttcttgcttgtgacgaaaatgttccatggtctgaaaggtgtcaacaccaagggaagctgggtgagagggctaccagaatcctctctactgtcttt tcagcttttcggtaaatccaaaagtactttcaaatgaaaagtttaatttaaaaatgagaagccacctcccccacgagatcatgaagctccatgaaggcG aaggccatgtcaatgccaaatgcatgttggttgaattcactcgtgttggttgaatttactgatgttggttgaatttactgatgttggttgaatttactgatgttggtt gaattcactcatgttggttgaattcacttattactgtgtacttaccatcttgttggcagcctcttcgttctttttttctaattgacaaacaatagttgtatgtattacat atttatggagtataatgtgataatttaatatatgtttataatgtggaataattgattaaatcatgctaacaaatccaaaaataaaataaaaataaataaaaa tgggaggactaggcagcacagtgagacctcgtttctacagaaaaaatgtttttaattagccaggcatggtggtgcacatctgtggtccccgctactcag gaggccaaggtgggaggatcgcctagttcaaggctacaatgagctatgatgttgctactGcactccagcctggttgaGagatcaagaacctgtctcaa aaaacaagacaattgtggtgaaatacacataacatcaaattcaccaaatcggaggtgtttttaacatacagttcggtggcattaagtacattcccattgt gcaaccatcactaccctccatcttcagaactcttttcatcttatcagacagagactctgtccctgttaaacactaactcGCGattcccctccccgagcccct gacacctaccattctatgctctgtctctacgaatttgactgctctaagtacttcttgtaaatgcagtcacgcaatatttatcctttgtggttggcttatttcactag gcgtcatgttcttaagattctttcatattgtagcatgtgtcagaatttGtttctcttttatggcaatattccattgtctgtgtatgctgcaccatgcttctccatccgtcc gtccatcagaggacacgaggttgcttccacctctcggccgttagagatagtgctgcggtgaatgcaggccgtgcttctccatccctccatcagcagaca cgaggctgcttccgcctctcggccgttacagatagtgctgcagtgaacgtaggtttacaggtatcacacacagaccaagcttcccattcttttgggtctgt acctggaaatggaacgtctggatgatacagctcttctccggttaagtttttggggacctgccagattattttccatagtggctgccacattttacatttccact aacagcatgtagagaccagggatactgctcagtgcGctgccacacacaggacaccgcagagatgacctagccccaaatgtcaacagtgcccag gtggagacagcctggcttggagtgagcaaggggcagaaggaaagacaggaggcgtggggaggaggcaggccagccaggcaggctgctggg aaagttgtcctgagcacatcttggaatgaacacagctgcggcagctgtgagtatttgctgcttggcaccccaggaagcttttcttggattgtctcatttcagt ccccaatgccaggagcttggcataaaatgtgttgagagtggctgcgcacagtaggcccactgttcctcccgcctgcagccatcctgactttgttcccttc agcgtcacctccccaaccccgccaccaggtactttgtcctttgaaagcaaggtgcaaacactggcaggcgagcccagtagataagatgtctgagta aacacccagccctctccttgtgggatccgcattaccccgtgtttgtgaatgatcggggttacctggcaaccaggcctgggcgcccctcctgccgcccag agccaccaggacttccttcttctgtgtgcggcttccagcttgttggcctccacaggccgggcatgctgggcagaagaagagggtggcgctttttgtttttatt taaaagggaacaccaagcctggctgagcaaaccagacagtttgatatcagaccccgaacatggcctaggtgggcttggggtaagagtgaccccc aagagtggggtgaaggtgaacatttattatgacaccagcatcagtggtcacttatttcatgctgggccagcctcatgattcttttgtgcctctttattgaaag cctcttgtgtttctggagctgttctaggtgcaggagatagagcaacgaccacagtagttaaaatctgttttcatattcctaagttcaggtaaggacagaga agataaacatgtaaacagataacagccatgcactgcatagtgacgtggtcggtgtgtgatggtggtcccataagatcataatggagctgaaaaattcc tgtGacctactcatgccatagctgtagagatgtcatagtgcaatgcattgctcaggtgttggtggtggtgctggtgtaaacctctcgcactgccagtcgtgc aaaagcacagcacctacagtatgcacagtgcataagacttgatggtaaacaactaagttactggcttgtgcattcgctctactgtacattttattgttatttt gtggtatactccttctagttataaaaaaatgagccataaaacagcctcaggcaagtctttcaagaggtatacagagaaaggcattgtggggctgggcg tggtggctcatgcctgtaatcccagcactttgggaggctgaggcaggtagatcatctgaggtcaggagttcgagaccagcccggccaacgtgttgaat cgccatgtctaccaaaaatacaaaaattagcggggcatagtggtgtgcacctgtaatcccagctactcaggagcctgaggaaggagaatcgcttca actggggaggcagaggttgcaggggccctgtctgcgtcactgcactccagcctgggcgacagagcgagactctgtcttaaaaaaaaaaaaaaag ggcgcaatctcggctcgctgcaagctccgcctcccgggttcacgccattctcctgcctcagcctccccagtagctgggactacaggctcccgccactat tcctggctcattttttgtatttttcatagagatggggtttcaccgtgttagccaggatggtcttgatctcctgacctcgtgatccgcccgcctcggcGtcccaaa gtgctgggattacaggcgtgagccactgcgcccagccagaaaaacaattttttacaaatgtagtgtagcctaagtgtacagtgtttatgaagtctgcagt agtgtacggcaatgtctcaggccttcacattcactcaccgctcactcactcacccacGcagaacagcttccagtcctgtaagctccattcatggtaaatg ctctgtacaggtaaatcgtttttatcatttatgccatattttcactgtaccttttctgtgtttaaatatgtttaggtacacaaatatttaccactgtgctacagctacct acagtattcaggacaataacattctgtacaggtttgtagcccagccataggtgtgtagtaggccgtataccatgtaggtttgtgtaaatacactctatgatg ttcacacaatggcataatcgctgaaaatgcaatttctcagaacctatccGcattgttaagagatgcatgacttttttttctttttggagacagtctccgtcaccc aggctggagtgccgtggtgcaatcttgcttcactgGaatcttcacctcctgggttcaagcaattctcatgcctcagcctGGtaagtagctgggattacagg cacatgccaccacgcttggctactttttgtagtttttatagagacagggtttcaccatgttgaccaggctggtcttgaactcctgacctcaagtgattcactcg ccttggcttcccaaagtgctgggattgcaggcgtgagtcagtgtgcctggccatgactatagatcacctaatattttaggtgatcatagatgctttagaga aagagggcagagggatctgaggtgcaaaggacttagggtgtcctttcctgggttcagggacaacattgaacagagctgtgaatcaagggacccag ctatgcagacacttagcagatgtgtggtggagggaagggtagggtggaggtaggcacagtatgtgcagagggccctgcagcaggagtgaggctg gtcaggtttaagaactaccaggaagccagtgggggctactatagagtgagggggaagagggtggcaggggctggggtatgaaaggtaggacca gcaattacagagggcctcgcagacaattgccccggccttgagttttctgcggagtggagagctttggaaggttttgagcagagggaggataaaatctg actctggctttaaaaagcatccctcagctgctgtatggacagtattctaaacctccagtctagtagccactgggcatgtgtagccattggaatttaaattaa ttgaagcaataaagttgaaaattcagttcctcagtttcagtaggtacatttcagatgctcagtagccagcccagatacagaacatttccaccatcccaga cttcttcttggatgatgtggtctaaatccaggcaagtatgggagttgggatacctgctgggggctgttgtagtaatccagttgagagagaaggctgataa atacctcgggcagaggacatgacagtggtcggactcaggatctatctgctggtaaagagggcaggacacactcgtgggttagatgtaaatgtgcaa ggaagggaagtgagggttccatggttgttggacagagccattggaaggccagaaaggtcatttatgagatgaggatgcagccaaccgttgtaagtta cattgagtgagctgtggtctgtgccaagtactgagccaaactcggatctcctgggaccctcagcccccattgtgcagcagaacacactgaggctccgc agaggtccatgcctgcccaggcttacccagctcatggtccaaggagccaggattcaaatctgggtcttcttagtcctgacaagggggccctgtttacaa ggaatgcctcatcagcattctctcatcccagaaaccactggcaaggtgctggacccttctgccctcaagcaaatccatttggggctaacttgcagtgctg gcagtgttggcagatgcccagctgcgggcctcttggaccagggtgatgatccctgggctggggcccatgagagtaggacatgtggcaaaggatggc tgccagggtgtcctGtcctttgcttcctagccacgcccacgcccatgcctggcggatggccccagatgggtgcattacacatttctcctggggaccttctc catcccatgctgggtggttcactcatctgtccagtgccagatggcacagagccagcaccgaagggctccaagttGatatcacatacccatccagtgag ggacgtaaatattttttttcatttttcaaatgtggaaactgaagctcagaagggtacacttacttgctcaaagtcacacagcagccaagtaggagaggca ggatttgaactcagggcttttggaatccaaagcGGttgcccttgtctgctgggatctgccgcgtcctcgagctgagtaggatgcagaactgctgagcag agctttctgccgagggttacacagttttgattttagacctcatcatggtgtggggtccagtgggcaggaatctcacgtgccctggcaaggcgctgacccg ccagaggaaaaaccatcttgttttgGaGaaagcctcccccagctggctggccatggctgctatcatctgccaagagggggctttgtcttccagttcttga aaaggtgtctacaggcgagccacaacctggctggcacctgatggcagacacagaggaacagtgagaatacagcaaagcctcaagcttgccttga gagggtcatcttggcttggggatcatgggctcataGcttggagccagaagtcGtgagttcaaatcccagctctgcctctttctgttttgtggactccaggca agtcacaaactctgcgcgctgctgcggtttccttcctggtaaaatgggaatgatgataatagcaatacttctttccatccaaggtgcggtctatggaccag cagcgtcagcctcaGctgggagtttgttagagatgcagcatctggggccacactgacacgtaccgcattatagtctgcatgtttacaaaacccccagg cgatacatgtgcacattaaagctgagacactggtgtggactgagcaaggtggttcgggttccatattgagcatgatgctgttgcatggcaatcggtacg cttcttgcttggcgtgttctcttattatcatgagctgtgcaatcttgggccgtctctcctagactcttagctattattatggggcttcatggtgcagaggtgccctg ggagacagatcaatgtctagaaaagcttctgccttttagccctgattctgctgagggagggtcagcactgtcggggccattaatggcaccttggaagag ccgccttccattgcagaccacaagctggacacccaaccccatgctgcagcctagctgtctccagcagctggtgcctgggtctggctttcagggcccgt cttcctgggctagaaagagctgcagagcctgagcccagggccagtaggccagccattctcccatttcgtcctctccttctacGtagcagttttaggacag attgatatatgtggtctgaaaaagccactggggcaggtaggacagaagcaggtggtgacatcacagtggagcGcagattttagttggtcaaatacac ctgccaggggagaaaagaatgccgccctcacacaggcaaggaagctgggcacccgggggtggggtgctgagaatagacatttttgcattggggc cttGctccatatcacccctacttccaaccccacttaaggtgcctttcttggaggagtctccgatgtctaaaatgtgcccatgctgagctccagggacttgatt taaaagtacatatgtgtctttacgagtgtgtgttatacatgtaatggtctcagagcagaaataaaaccacaaagctattacagaggaatctagtcttccat gtaatgtggctctgagctcctccctggaatcccctagagttgatgtggggggaagaaggaaaataagagaatgagaagaagcaaagctggcctctg ccagcagccgggagccaggagttctcaagctcgaggctgcgccgcagtgccagggagcctgttccaagagtgtgctcttgagacaatggggcagt gggtcgggctgctctggattttaaacaagcaagcctgggtgattctgatgctgatgaccctgcagattgcacttctagaaattggggactaggggaaga gtcagcaagtcgggcacacaataggtgttcgatgaatatttgatgagtggaggcatgtacgtgggaatgaataaaacatgctcaagctaatggatga gcacacagagaatgaattcgcagaggagaacatgcggggaagaaggcatccttggaatgagtgcatgtgtgcccgggcgactgtatgcaggtgg gaggcatgaacctgtggggggtgggcattgcagggcaggaggggatggagcaggggtctccagagggggtttcatgaagaggtagtgctcgggg gtgcctggtgaagggctaagacccttcaagcggggccttaagacattttagctgatggcaggctcagtttagggagtgggggaatggcatggtaacc atggcattacagaaagccctccttcggccaagggatgccccagccccaaagacagggcagtatgtgaacttcagcccaagatctgggcccagatg gataggaggcttgtaccatggcccaccttccaaaggaagatttgccccactgggtggcagtgggctttctccaagaagaggagcctctctccctgttcc agatgcagatcccagcagcccaactccaggagttgttggcaagcaggtgggcaggggccagagcctgcggcaccttcatccctgGtcctGtctgca ctccatcctcctgctcccctcctggtaacacagggccgccagcttcccctggtgcagactgcagctcagcattgccagggagaccatctgcccttctca ctccagtcttcacatcccccagaaggaacccatatcggtgggctcaggcagatgctgacttctggactggtcaactgtggctgccaggtggggtccta gtacacacatggcagcctcctgtggtaaccgtggcatcctcatggcagcggggcaggggagattcagaggggcagggagtgacacaaagacag cggctgtctgccacctgccccctacccaggaggggtttgactcattcgtgctgtcattcaacacacactgattggctttcctgtctgcctccttctggggcac ggcgccgcctccttcaggatgtgccgactctcaGGcagcttttcccagccctgtgttgggctggcgcttggggagcgggcacagatgtcacgggggga catgcccctgcgcGCtccttcacctttcaggaccagagccagagagtttcGcgaacactcatagccagcccggagactccaggcgagaaactcggg aggccgaggcaaatagttggttctttgaggctgaaattgggcagcgggggacctgggagacgttgactgtcgtgtgtttggacaagcgaggcttctgc cactctgtctcggacagtccaggggagacagaggtgcttcagattggaggctgccctctcctcaagaaggagggtgcgccggtgtggctggatgagt tgtggcttccagataaaattatgtgcttggggtttagtggacttaggccttattcatgcttctgtgtttgctcagcctaccaggccccgtacctggtctcccagc ctcctggggacacatcgggttccttgctgttctttcagacagtgaaggagccttcctccctcactgctgctgttccttccttcctgtctgctctttctcaggcag gtcctgctcatggtgcccacccatgctacactgggtgaggaggtcatggagctggagccacgcacaactggattttggtaccacagctttgctgtgtga ctctgggtatattactagatctctgtttcttcatattcaaggaggccttcctaggttgcctgcttaccaggtcttggcaggggtctaatgcattcattcctgcttct cctaggacccaatgattctactcccaattctgttcccaagagaactgagtgcttctgtGtactaacagacataaacaagaatattcagagcagccttagt catagtagcctccaactagaaacaacccaagtatccatcaacagtggaacagataaaccaattgtggcatagttatacaatggagtactacacagc aatgaaaaataaacaccatggatgaatctcacagatattatgttgaacaaaataaagtaaaatgagtacatagtgtattattccagttataggaagttca aggtcagacaaaactaccctgtagtgatagaggttggaatgatggttacttcttgagggaattgccaagaagggacatgagagagccttctagggtg ctgggtggtggtcacatgagtgtgagcatttgtcaggctgtatgcttgccatcagtatgtatgagcgacttctcgtacctcctgcacccagagacaagcat ccttcagccatacagtttctgtggatgctcactgggtcttcggagccatgtgtccggctgggaggaattcccacatGgaagtccgaggctttgccgcctg gcggaaaccccgcaccacgggagcttgtgctgctctcagggcagctgcagacttccctgaagggacttgcttgtcctagaagcatgtcatgcagtga gacaccgctgctacagggcggaatccacttctttccattcttggatgtggcatccgtggcaggtgttgggagggtggcctggccacatcctcaccttccc cgggcccaggagctccaagtcaggcagtatttgggcctcaggaaaacagtgtggcctggagggaggcagactcactttgggaattcccttgctgca caactttgggtaagggatgccacgtctctgggcctcagtttccacttcacaccttcagggatggtgtgaggatcacccaagagaccaGatgggaagtg tcggccGcttgcgtggctagaagctaggctgaaagtccctttccctctcacagtatgccacgccgccctcaggaccctcctgctctgcGtctccatgcgct gctcctctgctgtgtcgtctgcacagaactgaccaccttctaaagggcatttgccttatttcgtccccgcttcttgtcacctccccgaagcgcagagattctt gtttattctgttcactgctgtatatctgcagcGCtgggcacgtagtaggtgcttgataaatagttgttgacttgacttgttagcagctggtagaagcttccccta atgtttcattctccaggctttattttgagtgaagttgaggccagaaggcctcagtatcctcttccagggatgctgggaactgtagactggatgaccgtgagc gaccagggccttgccttctagggcacctttgatgggagaatccgtaggcttgatgttgaggtccttcggtttgtctttctgccttttcattgcaactccagggg gagagggaccctctggcGtcacccttggctctgacGtcagtgcggtcagtaaagtctgcctttccctctaactttcaGctctttctccccactgcctacgtgc ctgccctctgcccactgaaagtgggagcatcagaagggagctgtgcccccaacccGcatgtgagggacagatcagcaaaagcctcaaagtccgt gggccgtgtgtctcccatctcattgtggctggggccccgggcaagggcaccgtgcctcgggagtgagtcactctctctctgtgccaggcaggagctcc agggactaggggtgacccaagagtgaaggcctgatggggaggaggacccggcatgacagcGcttggcttgctgggggaggagagtggaaacttt tacatttgtttctcgctttcaacccagtaagtaggaatcagcctaacagatcagcaagagcctcaaaccttggctcgttctgttcaagaagacagaaacc acaaaggcaaggagagctggagttggctccataacaaagtgacccttgagcgtggaaaagcagaccagcaaccagcctcgccataaaccagtc tgaaaggcgagtgggtgacctgggaaaacgcacttgtggcccagttgacaattgaagggttaaatgaccttaataagccgaagtagctgtgaatcag tgagaaactgtgactgcctcaaggggaaaaggtgcaaagaacaaaagagaaatacagtgaaaaactgtcagcttctcaaaaatcaaagagatgt aaattagaacagggggtgcagtttttcacctggagaactcgcagaggtttaaataagatGgtacattttacgaagaaggcatctgtagcacccttatga atgctttcccttctgggtgcataatcgccctcctctaaattggatgctcttggggtgacctcacctggttctctctccccatcaccctgtatcccttgagaatat ctgtagtgacagctcctgagcacctgttgtgtatcatgcattctatacatactgtctcattctgggggttccattgttccacttcgGagaggcaaaaactgag gcgcagaatgatgaaatgacttcggcgaggtaccccagtaggtaatggagctggcatctgaacctagggtaaccagcctcaagcccgtgctctccttt tttgcttattttccaccactgtttggtccctggctctcccagagggacatggcactggctgggcctcaggggatcctggcttctcttgaattcagtgttaGcttc cagctgccgagacctgcaggaactgattccacaggacagtcctgccaaggaggcaagcgggccagagagaggcggcagcaactttctgacagg tgccggggaagtcccgatttgcaatgcttgcccgtttctactgtgtaaataGttacactatggccaaagtgagatgcttaaatgcagagtttggaaaagat gggcacagttggcttctgggagctggaaagagctggcttagccatagcttcaccactgcccaggtgggtgactttgaGctggtgtcaacGtctctgaga ctcggttttctcatctgtaaaatgggagcagtatttgctgcatagggtggttgattgtgaggattaaatgagtgaatgtgtgtctagcgcctgtactgtggtag gtgctgtctaagcgttcgttatgagtgcacttaactttcattcattcattcattcattcattcattcagctttcactaacttcttcagccctccagcatctgtctgtca aagccaactgtccaccaggcctgtgctagaatcttccttttccctctctcGcttggagtatcaatgggggaagggggatggcctcaccccttctgcagac gggcttgtctggatccttgtttgctgtgatttgagccaaggacagctgtagtttttttgtgttttttagaaatttccacttgtgtggctgcctcccttggtgtagccac agagggggtggagaaggcgcatcctctgggggtcgtggaccttccaaaagccaatcctagcaccccgtgttgtcagtttagaggcagtggcctggg aactggcagtagacttccgggatggctgtcgtggggccagtgctgtgcgggggaagcacactggcggtgaacctggcttggctgcttctcagtggact gccttgggcaaaccactgctccgttctgagcctcggtgtatttttttagtctataaaatgtgctaacaatggcctcctggcaggtggtgggaccgctagtttt gaagaagccgaggtggaaacgccagggagccccaccctacccctgtgggacattgagagtctccagactgatccccttcttcctggaggccccag caggtccctgggaggagaaccagggatggcctgaggaaaggctctccctggcaaaaacgcggtcctgtttgaacttggttctctgttaacatgtgctg aaaggagacgGcggtgctctgtctctagcgatccctggttccaggtccccattctgttcccaatccaagcctttgggtcgttagtcctcGaccaaggcca Gcagtgatcaggacctctgtttccagagccctcctgtgtcccaggtgcgtgactgggacaagtctgagaaatgatcacagcccagaggagcctgcgg acacgtgatgatgaaatgtcccatggggtcgtgaaacagaaaagggacattagagaaaaaaactgaggaactctgaatcaactgtggactttagc aataaaatgttttaatattatttcattagttgtaacaaattcaccacactaatgtcagatgtaaatagtcggaaaatgaggtgtgggtatgcgtatgggaact ctaggtactaactcagcagtttttctgtaaatctgaagctattctcaaaaataaaatctgttaaagaaaaaaagacaggcgggtgcagtgactcatgcct acaatcccagcatttgggaggctcaggtgggaggattgcttgaggccaggagtttgagaccagcttgggcaacatagtgagaccctgtctctagcaa aactaaaaaattagctagatgcagtggtgtgtgcctatagttccagttactcaggaggctgaggtgagagatcttttgagcccaggaatttgaggctgca gcgagcagggatcacgtcactgcattGcagcctggataatagagtgagaccctatgtcatttaggaaagagcccagcgcagtggctcacatctgtaa tctcagGattttgggaggcccagatgggagcGcaggagtttgagaccagtttgggcaacatagtgagatctcatctctaccaaaaaaaaaaaaaaa aaaaaaaaattaagaaaagaaaagaaaaaaaaggccttccaaagagttgcaggctcacaggggatcttggtacagacgagcaagcggtccctt ccttggtgtgtgtaggacatggcttagtgagcacgtcgtgcaccttgcgtgtgtcccattcagcaccatggctgctcataGcctgcctcgaccgtgcgcgg gagccctgcttccctggctggaagcctctcccttgatgcccaggagaaatagcctcttgcactaacaagggtggatctgtgcttaaattacctcttacctg gttcatcccaactctcttccagccctttcctctgcccccacccagctgccctcagccttcagcctcactggaggaagggtgtctcggaagagttgcatcat gagacccttggtggagtcgctcaccaggacggccttggccGcgaccctggcaccagcccagggtgactttgatgtcgtgttctggcgcgtccttgggc ccatttcGctcctgtctcGcgggggctcttttgcatgttcttcccaaggcttcagagaccttcagctccgcgtctgaagcagccatctctttcttggatctcaag agtggtgatttctggcaactgcctcagactccatttctcatctctgtctacaaaactagcctggagttgggctgtcgggttggcctggacatcctctgagca gcgattggcccttgccctgtttctgtgaatgaacgcggtcgctcttggaaagagcccccaccaccttgcagatgtgctggggtagggtgggggcgtgcg aggttggattacatgagactttgggttctttcctgcagtcattcctaagcggtacttctctgcatctggcctttaacagtgagtggacggggccagtgttcttg gagcacctactgtgtgcttgctctgttagttctttgtttccttccctgacgggagttaggccttgccacccttatgttacagacggggagactggggctctgag aagcgacttccccagggtgcccggcccgcacatggtcgagcgggggtctcaaatcGGgttgagtcttacttcaagtccaggctccttgatcgctggcc ctgcttgccctggtggcccacagtcccagagtcagtggcgccaaggtccctcaggctggttgtgaaatcagtttgagtgcagaatgacggcggttcac atcgagcttggtgcccaccctgctagcctgcctgggacttccccagcattagcaccagcatcagtcctgcctcccaggaaccccctccgtctcagaca cacctccatgattggtccctgcctcacatcccagtttcttcaaatatcagcaagtttcacactgagagagaaatgtagataaccaataataaaatgaaat gacctctggtccctattgtcagagccataatagtgacattacaaaaatgcacctttagaccaggtgcagtagctcatgcctgtaatcccagcacttcggg aggccgaggcaggtggaacacttgagatcaggagttggagaccaggctggccaacacggtgaaaccccgtctctactaaaaatacaaacgttag ccgggcgtggtggcgggcacctgtaataccaactgttcgggagggtgagtcaagagaattgcttgaacctgggaggtggaggttgcagtgagccga gatcgcgtcactgcactGcagcctggacaacagagctagactccatGtcaaaaaataaaaaaaaaaaaaaggcatgttttccctaataggagctgt cagaatgtgaagtgaagcagtagtgtgggaacccttttaataaggaaaggtataccctgctattcctcatttaaggttttggaaagaagtggagaggaa ttccacctttggcctgggatgcaggagactgaggacatcgaagctcatatttgatggttaaaaagtgggtgtttgtgttgttttaaaaataagtacaatatat ctgttacttgttgaaaatcgctttgtgggttcggggccctagggttgggggagggggaggtctagccagcaggacatcacccatagcatcagggtgttg ctgagagaagggttttttaaacctcagtctcctcatctgtaaaatgggccttgttgtcattcctacctccctgggtggcagtgtaatgtgtaacgtgtatttgtg ccagttaagtgagttaatgtgcttaacgcatgcgtggcccagaggcagttgttcaagaatgtgagctgtcagtgtcctgactcctcttgagcagtgagtgt gtGtcagaaataagacatgcttcgtttcacctaccctccattttctaccaacttttgggggcgccatttaacacccaagcctaggcttgacccctggagcct ttacctggactgcaatctagtatagtagtcactagccacgtgtgGctgttctatgctaaattaaacttaagaattcagatccttggtcacactagccacattg tgagtgctcagtagccacctgtggccagtgcagatacagaacatttccatcatcgtagtacgttctgttgggccgcgctagtctggagggatgcctggct gagggcccagggagcccacctgccctacttccctcacctgcaggctgtgaatctgataaccccacggcGccctcctccaactgcttggccaccctgc cacctctcagcccttctggggctgcctgtagcctggcaccaacaacttcacagccccaggagtcctgctggctggcaggaggacatggcaggggtg ccaggcttggcaagtggcactgttttctcagcaggaccgggcgaagcccgagttctcagctgggtacagccgtgccGcaggttcagggcataatcctt cagggaaaggtggagatttggcaaaagctggaaggctgttggaggGtttactaatggacaaattggaaaattcagtcactaaaaacagtgacggaa aggttgtaggtgattctgtaagaaagagccttcgagtatggcctgaaatacagttcctcacccttgctcagttttttcttccacttctgagtaggtttgatgtcc cggatgctgggctggtgctggggatacagtggtggcctctgtggacaggtcaccatccctgttctcgggaggctcacaggccagtaggggaaacag gcacatgaagatgcagctcacacttGagctgactgtcagagcagaccacaGtgGaagatcacgtgggcaaggacaggattgtccGctgcgtatcct aagcccctccacagtagctgctcacgaaatggttgctggaagagcatttgcatagggcattctcttgttctgagctcttgctcattcctaGctcatttcatcct gtaatggggatggatactcattgctcccatttaaggacacaggtgtgcGctgctgcttcctgaacctgctcaaggagagttgcctcgtaatataataactg agtaactgagcacttaacttcatgccagccatatgctaaatgcattacccagattatctcattcaaccttcacaacaaatgtacaaaagacctattattatc cccagtttatggaggaggaaactgaggcacaggagaagttaggcacttgggcctgagtcatgcagtgttggaatggggatgcgtcgggcctcctctg ggctttaccaggctcagaacattcctagaagtggacgtggactgaattggccccttcctctctctccccacaccatcagtggagacgactacaaagctg tcactggccGtGcttttctagcaggctcagagcaggggtgacacatggctacagggagcagaaaacattgtcccgagtcgagtccgtagatcatctag agcagtgatccaggccccagtaagggaggtcccatacagaggctgacttcatccattagtgcagagtaaacacaagggccctggaggctggagc caacacccccaggacaactccctgctcccttttgtattgtGacctccttggttcctGtggggatgctccagttactgccaacgggacagcagtgacattgt agcccaagacaccagcatgtaaacgttgcgtgtttgggaggtgtgtgctgggccctgaagagctctgagttcaggtcctgcctctggtccttcctggcca cgtgagtctgatgatgtgtgtgagtaggggtcagtgatggtctgtaagggcagagaactttttctgacacaggttctggctctaagtgtggctattttaattc cttgacaaacacttggatacatttagtagactggctaaactgtaagacttttcaaaataagagtagttcttataaatgcttacttagtgcctggttgcgctaa gcagtcactaggtattatctcatctaattcctgtaacaaccctctagggtagatactagcatttatcaccagatctgagatatcttgtaagatactccattttct tgcatacGtctaagcaagaaaagaatgcgtctaggcgcagtggctcactcctgtaaacccagcactttgggaggctgaggcgggtggatcacctga ggtcaggagttcgagactaccctggccaacatggtgaaaccccgtctctactaaaaatacaaaaattatccaggtgtgatggtgcacacctgtaatcc tagctactcgggaggctgatggaggagaatcgcttgaacccgggaggcaggggttgcagtgagctgagatcacgtcactgaactccagtctgggtg acagagcaagactctgtctcaaaaaacggggaaaaacaaacaaacaaacaaaaaacagaaaagaaaagaatgtgcccagagacttattatca catcagttttaagggaggttcagttgtacgtctctgaattaatgaaacgcagtattatgtccattttacaatgaggagatcaaggcacagagaggtccagt aggttgctcagggatacgtagccaatgagaggcagagccaggacttgaatgtcagcaccccgttactagagcgtggtgtattacccactgctgtgtac ttgctgcagaatgatgtctcctaagcctagtgcagaacagtgctgaagaacacagggtctagagttaggcagatccaggtgtgagtcccactcccatg actttctagctgtgtagctttgagatgtcccagtacctctctaagccttggtgttctcatctgtaaaatggaagtgtcagagcaggtattaaatttggtgaagc ttgagaagtacttggtcgtagtggaggctgctctgatcacatcatcaccaccaccacaatcaacagcagcatcactgtcactgtcatcatcaccaccac tattagcatcaccaccaacatccccattaccactacattattatcactatcaccatcaccatcatcaccatcataaccatcacctttatcaccaccatcatc cccattaccactacattattatcactatcaccatcaccaccatcataactatcaccttcatcaccaccatcatccccattaccactacattattatcactatca Gcatcaccatcatcaccatcataaccatcacctttatcaccaccatcatccccattaccactacattattatcactatcaccatcaccaccatcatcaccat caccttcatcaccaccatcatccccattaccactacattattatcactatcaccatcaccatcatcaccatcaccaccatcataaccatcaccttcatcacc accatcatccccattaccactacattattatcactatcaccatcaccatcataaccatcaccttcatcaccaccatcatccccattaccactatattattatca ctatcaccatcatcaccatcaccttcatcaccaccatcatccGcattacaactatattattatcactatcaccatcatcaccatcaccttGatcaccaccatc atccccattaccactacattattatcactatcaccatcaccaccatcatcaccatcaccttcatcaccaccatcatccGcattaccactacattattatcact atcaccatcaccatcatcaccatcaccttcatcatcaccgtcatccccattaccactacgctattatcactatcaccatcaccatcatcaccatcaccttca tcatcaccgtcatccccattaccactacgctattatcactgtcaccatcaccatcatcaccatcaccttcatcatcaccatcatccccattaccactacgct attatcactgtcaccatcaccatcatcacGatcaccttcatcaccaccatcatGGccattaccactacattattatcactatcaccatcaccatcatcaccat caccttcatcaccaccatcatccccattaccactactttattatcactatcaccatcaccatcatcaccatcaccttcatcaccaccatcatcccaattacca Gtacattattatcactatcaccatcaccatcatcaccatcaccaccatcataaccatcatccccattaccactacattattatcactgtcaccatcaccatc atcaccaccatcataaGGatcaccttcatcaccaccatcatcttcgtcaccactgttacagcatcaccactatcaccatcgtcatcatttaactaaaagtg agagacactgcatataaggtctctttcctgctcttcctggggtctttgtcataaagagtacagagtcccttaatctctccctggtcaatggcagtcccagcc ctgagctatgtgagtgctgggtcttgttactttgaattgtatacctgagcaaggggaagaacacagagagagttctccagatgttttgtgtctccctctctcct tccttctccaaaaacgatctcatctcggagctcacattggagagagctgtccttgtgaatttccccaccccttcctctggtcGcttcagtccataaagtatga aatctccatgccatgggctggtgtgtaggatgttcttcccagccagttggataaagacattttggttttttgcacgtgggagacatcacaaaagactgtgc atacatcctctgtgtccctctctggggaccatggcctggaagcagccaacacctgctcccttcctgcactggcgtcggaaaagttccatggcagataag cccgtgccattgcagggaagccttcactccaaagccacttgctgccccggagacctggcctgcgaggtccaaggttgtgccatctgaccccagatgc ttcttctcctttctgtgctggccagtgggagacagcagagggaacactggactaagagtcaggagacacagttccagatctagctcagcttcttcagctc cagaaagcaatttgcctctcctgagtctgtttttcttccatagaatctcggattcagataagaattccagttgacctagggcaagcaccctcgcctctctgtg cctcagtttcccctgcagggacatggggatggcacccccctgcctcctagggctattgcagggatgataaggggttacttcttaacaatgaggaggaa gatgaaggtgaagggtggtggcggtccttgcaagacagaggccagcagctggtcctcctggggcctccatggggGagctctcaggtgtggaaggc attcacctttgtccctctgactggtactctttggccctagctctgctctcttgagccaccacaaatccagccccttcctctgtgccccaaaacagccctccag acctcggaagccagtttctaactggacagcaatcctgccccttagtgtcatgttcaccttgagcctccttcttgaaggaaaccagcagaaccctgccag gccctttcttggttgtctcactgggaagagggaaaatgtggacttggagagattgtccctgaaccatagcaggtgtggaagaggtagagggggcatg gcccagccctgctcccccctgaaggcaacacctcccgctgagtgtcacctgccttctgttttaagggactctgggcaaagatttcatgtaaaaaaagag ttctgccacttaaaaaaaaatggatcacgaggtcaggagatcgagaccatcctggctaacatggtgaaaccccgtctctactgaaaaatacaaaaa aattagctgggcgtggtggcggacgcctgtagtcccagttactcgggaggctgaggccggagaatggcgtgaacccgggaggcggagcttgcagt gagccgagatcgcaccactgcactccagcccgcctgggcgacagtgcgagactccgtctcaaaaaaagaaattaaaaaaaaaatgatatgaca ggtttaaaaagtttgaagctaggataactgtggctcaacttgtctttctgaagaacggatatttccagtagaatggaaccagtgtcttggggctcccaaga gttcattctccccttaagatggaggcaggggtttcctaacctgcttagctgccttgacaccctccctcagctcccattcctaatctccagctttacagcagct gtgatgtagggccttgagggcagggccgtgatcagacccctttaggggacagacaagaatcagagaagcgaggtgccctatgtctcccggctctgg agcctgtttgtgacatggtgagctacacgctgggcactaagctaaggtatttttgtctttctaattgagataaattcacctcatatgaaattgcccacttaattt afflgggWgttttctttctcttttctttctttffltaatttttttatttttgaaatggagtctcactctgtcacccaggctggagtg caacctctgcatcctgggttcaagcaattcttgtgcctcagcctcccaagtagctgggactatatagatgcctgccaccacacccagctaatttttgcatttt tagtagagacagggttttgccatgttggccaggctggtctcgaactcctgacctcaagtgatccacccgtcttcgcctcccaaactgctgggattacagg cgtgagccactgctcctggttgcagtgagccgaaatcatgccactgcactccagcctgggcaacagagcgagactctgtctcaaaaacaaacaaa caagagcatagttcagcggcctttagcaaattcgcgatgttgtgtaactgccacttctatctaattccgaaaGctcttctccaccccagcacgaaatctcgt gcccattagcagtcattccccattcccctctcttccagccccctgacagccatcaatttctgtctttttgggctttcctcttctggacttttcatagcagtacaatc acacagtacatggtctttttccactggcttctttccctcagcgtcatgttgtcagggttcttccgtgttgcagcatgtgtcagcactgccttGcttttgatggcag aatgatactccattgtctgtatgtatcatttttctttcttatccattGatctgttgatggacgtttgtgttgttttcacctttttggctgtcgtgaataagcggGcgtgag cattcttgtacaagtgtagtcatgcattgtttcacgatggggatacgttccgggaagcgGgtagttaggtgatttagtcactgagcgaacatcctggagtgt gctcacagaagcctcgatggtgtagcctgcctcacacctgggctgtgaggtgcggcttattgttcctaggccacaaacctgtacaacaggttactctact gaatactggtggcagttgtaacatagtggtaagtatttgtgtgtctaagcatatctaaacatagaaaaggcacagtaaaaatatggaatcataatcttatg gaaccgcagtcataaatgtggtccatcgtgaccagaacgttgttatgcagtgcttggctgtatttgtttgagtccatgttttcagttctttggggtattcaccta gaaggggaatagccgagcttggcattttaggaatagtgctatccttattcctcaccataacaccctgaggttgctacagagggaaaaccgaggcaca gggcaagggaaccacttcctcacgcagacagctctggggtggcagagctggggttgggacccagggagcctgatccccagaaccctttagtccct gctcttttccttctctgcagaggggccttgtattaatcagttcttaccttgctctaaagaaatacctgagactgggtaattttaagaaaggaggtttaatgggc tcacggttctgcaggctgtgcagaaagcatggcagcatcagcttctggggaggcctcaggtggaaggcaaaggaggagccagcacatcacatgg cttgagcaggacgaagagagctggcggggagaggtgccacacactttaaaccaccagatctcatgagaactcactatcacgccaacaataccaa gagggatggtattaaatcctgagaaactgcccccatgatccaatcacctcccacaggcccGttctccaacattggggattataattgaacatgagtctg gggtggggacacagacccaaaccatgtcaagcctcttccccaaatgttcagcccagtgcctccaggaacccctccttggaatattttttttgccaacttg ccagggtgtccccagtctccttgagcgtgacagggccaaggcagtgcttctgaaagccacttatcagactgagcttgagaagggatgtgtggggact gggaagggtcctcaaaggcctcccctaaagggtagcaagtggtttttcattgctccctggagtccagtgggctgggttttcagttgtaaggacctGtgag ctttgagtcatctgtgcaccttgttgatggtaaacggaggaacaccctgcttattcagagaccactttccagcaaacactccgaacccagcccagaatc caggtagagaagtgtaccaaagtcacggtggctgccacactctaactctttggttgcattcccagcagggcctcgctcccatgcagggcacagtcctg actagtgtattgcttgggtttccaagaccatgaaactaaaagcagcaaatcaggatgaagcaagagggaacgctttcatgaacggcgagcggaatg cccaacagcacaaagtcggcgggggtaaaacgaaaatgacagaaagaaaatgaagataaagagtgcacggcagttgggggacaccattcgg gggccagcagctctccactgcttcaggagctcctgacggtggcagtgtggggtagcagatgctccaagggacaattgcatGagcaagaaagggca aaggctactccctgccatctgcttaaagcgaggaaagaaggagtgtttctatctaaaattatttaaatttctctaaagggccttggcactcagagggtaa gctctggctggcattgcGtctgaccttggccgtctgatcaggcagtgaaagaaggaattgttcctggggttgcaagggagttgctgccaacatctggcct gcctggcccctttgtctccctattgacggcgacagcattgggcaagtcctgggcGtcatgtctgtgcgaatgtccccacGctgtcaccggcacttccccc cggggtcggggctccgggcctctcatacagctgtgggcctgatggtagaaaaggaggctctgttctttaaccctgaatgggatcggccactgatctatt cttgtcacttgttgagcaactgttctaggctaaatctgaattctttctcagttagtgcccgaatttgctttttaaaaataagtcattgggaatacttgaccctggg cagagagcgggaGcagcactcaatgaaacttgtcaatagagtttctcacggccgggtcacagacgtggagggagtgactgagtcccaagagaag acccactgtctcactgtgtttcctctcactgtcagccccaaccgaggcttattgggggtactttgtttctcctttggacctaaagtcctctgtctgtcgttgcaga ggcacttctagatacccctttcccaagtggtttctgggaaagacgagagcatctgaaagccttatggaggctactgaatacaaggccaagggggctg gatttttctctgtaggcaaatcagggatattcaaagtcactgagcagaggaacaacacatttgagttgtgttttgggaagaaaactctggcgacagtgttt tgggtagagagggaatcgttggaagcaggaaataaagattggaagcctttggaatattccagaagaaaaataagaggaggcagaggtaggatag agggcaagggaaggtgtggaggaattgaagggcaagaagcagctggctctgaccctggtgactcactagattcaagggctgggagcgccgaatc caagggagaagtggagttggagtgtggccgagcagtaggcgtggttgccacaagccaggcctgggaagacggcccctagcgcccaccagcacc aggtggtgggttcagcttgcattgccatcactggagtgtaagccccctactagaaggaaaactccttggaggcaaggagctGtttctgttttgttgaacaa tgtgtccgtaacacctagaacatgctggaagtacttcgatgtcctccagcaagcactccgtaaatatttgatgaatgaataaactgtgagtctgaagcgt aggaaggagactcttaatccagtttttaggttgtttgtttcaagctgagtgtaaggccatgtttgtatatgtgttttatgtgtgtatatatgtatgtaagtgtaaaat catccttctttttgtcagaatgaccctgtttttacctcgagtggtcagagtagtGtgtgagaatggctgaaaccattggtctgttaagagtgtgcccgtgtaga tcagctgcagtcccacataatgacaggagccttggttcatcGaactaggaagactgaagctcatggaaataaacatcaaactagcccggcgccgtc catcatccgaattatcaacacatcgtgagatgccaggaaatgactttctgttcttgaattggcctctggaggaatcccctgagacGctagtacttcattctc cctctgtccagtaaaggaacgcttctgcaaggaaggggttcatgtggctgtggatgaagcctgctgggcctggatgcctccatgagtcaactccccca actgttcagacccctgtgaagggagagcagaggctttgaaatggccattttaatatcacccgtaagtttggaaaattcttagaattcattgcattcgtgtgg aaGttctttttcattgaggtgaaattcacataatgtaaaaaccacatgtaaatgtacagttcggccaggcatggtggctcacgcctgtaatcccagcacttt gggaggctgaggtgggcagatcacttgagttcaggtgtttgagaccagcctggccaatatggcaaaaccctgtctctactagaaatacaaaaattag ccaggcatggtggtgggcacctgtaatcccagctactcaggaggctgaggcaggagaattgtttgaactcaggagttgaggttgcagtgagccgag attgtgccattgtactccagcctgggcaaaagagtaagactctgtctcaaaaaataataataataaatgtaccatttggtggcatttagtacatttataatgt gcaatcactaccacttctatctagttccacaatattctcatcacctcaaaaggaaacccgtgcccatcagcagtcagccctgctcccctcctgccaggc catgacagccgtctgatttctgtcctgtggatttgcctattctggacatttcatatacgtggatcaattccattctgaaaccctttgtatcaggcttctttgatttag gatcacattttcaaggttcatccatgtcgtagcgtgtgtcagtacaaatttaacggGagacaccgcatggcacagtaccttttggccagtccacttccctg gaccttagaaattGctttgcatctgctggaggattgggctggagaagaaccccacctgtcctgaccctgcagccccaaatgcccttccatgtccGtggc ccagcaaaatcctcctcacttctcaagattcggctgtgagcagagttagtggctgtcttcctctttactgctctgtaagagttgctgcccctgtcgtagcacct gtctcaccagcactgatcacctcccccattctccatgagctcctggagcatggtgcccagggcgctgccggggaaggcctgttagtgaacgtgtggtc cagggaacaaacgcatggcattctcacagccggactccattgctccctctagcttcagggattggtcatgttgtcatctgtttgtgctCGtatcttttttttttcc agaaaggatttggggtgggggtgggtctaaacagctacttgtagagacagccccgccccacacctaccttctgtcatcaggaccccacttaccaggc tctttcagagatgggattttgggccctattgatgggatagtgaaatggacaaagcaactttactactattttgataacacagtttactgtagtagaggcgtg atgcatctcttcttgcattggaggtggtaatttgtgggtgctattatcatcgaaacagcgatagtagaaagagatagtcgttcactgcctacttgtttgtagac agtagcaacagtgatccttgggggcccaagagtccctcttcacaaggcctgttcacatacatttacctagtgtctcccgtactaggagaattaaatccca gtaagcGCtcacattcctcagtgatccggtgtaactccaagcactgtagcctgccacgcaaggctctctgtaatcgagatttaatcagtttttatgactcac ctccttcaacttctctctctctgcccaataaactcctattcatccttcaaagcccaactcaaacatcgcatactctctgaagtattcgtcccactttccctcggg GtcctctgcctGcacacctgcacacatacacatggaattctactaatgtgtagacatctgactcGccactcaactgtggagtccttaaggaaggggttctg gactatgtcacacagatgttagacaaatgaaccgagggggcatttgcatgggtgcttaaagtgaggtaaaggagagaagaaagtagagaactcaa agaggagagctcgctggattcaaatctggggtgttccggaattctaggtattcacctaagtctgttgggacccatgagctgttttcccaatttagaaaagt aaagaacaggctacatgagatgaaatctgtgtggttggtttttgtttttgatgcagtgtgtgcagtgtgattccctaatagcagttaactggtattgatttgaaa cagaaatgcagaagggcagggagtcagaggtgtttatacaggagaaagggaacctgcatgactcattaGcacggggcagggtctaggggagcg cactggacactggagccagctttacagctggggtccactctgatggggccgcccattcctgggctgtaccagcgattaaacatttgaaacaccacctct gctcattatatgatgagtatgtttggtaggcagaattttgaaaggtggagtgctgtgggtggaatcgatgaggcggtcagtctgtgtctgtgccatatgtact cgggggcctgtgacccagtggggggccggtttcacctctgttcagccagagccaccacaaagtccttgcttccccagctgctgcacagattgcgcag atcatcatccGcatcacggtaaagctttgaggtgggtgttcttctcattcccattttaccaatgaaaaaaccaaaggtgctagagatgaagtggccgcca aaggccacccaatgggtgagctacagcgctggagtgggaatctcagccgtctctgctccatGttccagaactttcctctactgctcctgacttcctgaagt gaccaaacctgtGtctccctcctcccctgaGttcagggagcagatttttcatggtgattttagagagcacacgttgatcGcctcctgagggtgagagcctc agatgttttgggcctgactgtccagcctcctggagaaaggtggccaggtccgtgtgtggacagccagtgtgcgggtgGatgagtcaagctcccttgtca catatcctggaaaccctccatggaagcctgcagcccccaggccagcgctgaggcaggaacggtcagggatttcccacttgaaacacacGgtctaa ggctgccggctcttgcttccccaggaactactgcatttgtcttgatattataccctgcctgcctccaagaggaccgaggcttttcagagctgagacactgt gtggaaggaggcaattaggatcaaacagaacgagaccctccggatccccagggctgggccgatcaccccaagctttgtttggccgtctcggagctc tctgttgaggtagcagaaagggaaagacggcttgcatagtttttgttttttggccagaaaaagtacccaagtctgtctttcaaagtagatgcctttcttctctc tctctttttcGGcagtcccagattaaacctctttttaagagatttgggggagacttgtcccttccagttgattctctgaaggcagaagttttctctttaaatctgga gccacgcttgtcaggtgtggtcccggtgtgccaccgtccattgacctcgtttacgggcagggtgctgtaccttgggaggcgctgagcagtagccccagt gcttctccagcattgtcggtgtgacaattacatcattacctacttcttctgaaatgacatggccatggcttcagtaattgccaaaacccaacatcctcgttct ctgttatctgcttggtttgcttttcacctacgcttatcatcacttaacatcctgtgtatttcacttatttgtcttttctgtctgtctcGcccagcatgcaggagacGctgt gaaagccggtgtgctgtttagtcgtggggcacagcaggcGCtctgtgGtgtacacgctgacattcattgagcacttaccatgagccagacgtgggcctc ccgtcgtcttcctgtggccctgtctcctggcctctatcactcccatttcaGagatgaggagaccgaggttcataaagcccaactggctctctagctgggag tctcacagcctgtaagaggcagagctgagatataaagtcaggttttctgttctcaaagctgtgttctttaccattacaacttgagaaaaatgtatgaaagg ccataaacatattccggtgctcagaatattgtattgctttttttttttccttttctttctttgtttttcttttctttttgaggcagtgtgtcaccctgtggtccaggctgctgc agtgcagtggcgtgatctcggctcactgcaaccactgcctccttgattcaagcgattctcctgcgtcagcttcccaagtagctgggactacaggcgtgca ccaccacacccgggtaatttttctgtttttagtagagacggggtttctccatgttaccctggctggtctcgaactcctggggtcaagtgatccatccttctttgc ctcccaaaatgatgggattacaggcatgagccaccacacctggccttgtcttgcttttcaacaaatttatattcatgacaatagtaactacctatattagaa gcacagtagaaacatatatgcagacttgtgttttttttttttttttccaccctatggcgagtgGttatgggcagggcGaggtctcgcaccccatggcagccag cctggcccatgccgggcactctggtctctctgtgggacgatgcaggcatgcatggcaagaaaaatcccaaagcagtcccctgagcccctgccatggt ctgtgtccatagatgcataaccatcgattcagcgcaatgtagtattttcgaagaaaagtttttgttgaaGcagataaaatgcatacagagaagcacacat actcaggcttcataaaaagtagccttctctctgtcccttcctccctctctcaacttgtcatggacatagcgggtaaacttaaggcgctgaatgaatctgttta gtgaaaaatataagtaaaacgacaaagtgtacctcaatggcgtgtgtaatgataggccggcgtcagccctgggtccctcaagatctcagagaagac attctgagtcctgtgggggatggattgatggggcagggggtgacagcaggtgtccggaggctggaggcccagggattgactgcaggggctgccctc agggcaGagagcttGtgaagctcactagggcctcaggatagaccagcaggactcctgagaggaggaagagaggcagccctgtctgccagcctg gacacttggcggggaaccctgggaatgaccacgGGCctctgagcctccgtttccctctgctcgtcggacaaaaacatccctcccattcttttcctccctcc cattccttccctacctcccattccttcgtctcaacctcttttcctggtattctcttgaaggctgtgttgctggaaggcactgtccccagctttcttgacactgtcag agggtgtccaaaggaggcttctgtcacactggctcattcccatgatttcgggaacaagagagagatgtgggtcacGttgtccggggtcctggcagctc acttctggatcatgtccagcagcctcgcttccccaagtggatgtgggtgtccctgggagagaaaacccatgtcgcccggcttctgggccatctgctttcttt tagggatgggcccaaggaatttttcggcaaatttgtcctctgggaaatttctgcagaacttgtctgatgcttccatagaacttagggattgggttaaggcca gttcctaggagagacattgcagaaatgagggccttaggatgtctcagtaggacccagtcctggcgtaaacaacaaataacaaactaaacctctcac ctacacacccactgaaacatcttttggttctctgtgcaaagaaagcaaggagagaaaacatattctcactttctctcatGcatccatccatccatccatcc atGcatcGatccatccatCGatcacatttctatttcctcttgaatggtttagatcagggttggacccactacttgtctttgtaaataaagttttattggaacacaa ccatgatcatttgtgtattgtctgtggctgctttcacaccacaacagcactgctgacagttgtgagacagggcatatggcccacaaagcctgaagaatttt ctctctggccctttacagaaaatgtttgctaagctctgatttagagttatagcagattcaaatcctggcttcattaataactagcagcatcacttaagaaaag ttatttctcttctgtgggcctcagttttctcatctataaaatgggatcataatggtacccctggcatgggtcattcgtggggagatgtctttgagcagttgaccc agtatctggcacacatgaggtctttaatcaagtcacattactctggacaccagctaaggtgccagatagagatgtaaggtgctattttaaggaactcac aacacaaacagctggagacagtgcacagaaggtactggggttgaggcgtgtcccgggcttgtgagaacccagaggcagagtgcccttctttccata ctggcatctgggggaggagcactacttagcgattcaaagacaaatgagctgcaggtgcacacagccacatggatgaagctctcagacatcatactg gccaaaacaagccagacacaaatgtgcatctgctgtgtgattgcatttataacatgttgaggaacaggcagagctaatctgtagagatggaggtcaa cactccggaccttctgggctgggaaggggagcaggggagcccccagggcatggagatgctccccatcttggcctggctggcaggtgcacaggggt gtgcattgtcagaatgaacccactgaagatttctgcccttctgcttgttatgcagtttactggttttctttctttctttctttcttttttttttttgagacagggtctcgtgct gtcaGctaggctagagtgtagtgacgtgatcttggctcactgcaccctccacctcccaggctcaagtatcctcctgcctcagcctcccaggtagctggg attacaggcgcctgccaccacacatggctagtttttgtgtttttagtagagaGagggttttgctatgttgcGctggctggtctcaaactcctgggctcaagtg atcctcctgccttggcctcccaaagtgccgggattacaggcatgagccactgcgcctggctgcagtttactgtttatattttacttttttatgcaccttactgttt acatcttaattttttataaaagaaaggaatggaaagagagaaagaataagagagaggattcagaaatgggagaagcttgggcagtcgagggctat ctcctggtctgtgtcctgtctcaggcccctgcctgagacatccttgtacccaagcctcctctgacaacttctcattccagaccagggtcgcacaaactctg gctccttgtgctgtttccttggcggagaatgcctggcgctcccctccttaccttgacagccggctcaaaggccacctctgggcagccctccccgtgttcca gggtgcccctccctcctgtccttgccctttgtaccggaccctcctccttcctcctgcggtgcctttggcactgtggtgttgttactttgcactccccattactttgc accctccgctcaccctgctcatcctggggctcccaggccagtgtctggtagaagcaaggcaggactcaaaacaacagtcctggcttccatgtggccg ttccactgagcggctgtgaccgaggcccactgcttgatggacccgaacctccttttctcctccatggaactggggagtcttagcagtgcccctttcccag gatccttgggaagtatccatgagatgaagatggtccctggaggctgctttggtgaggacctggcatgtggcatgtgcGcagtccaggctggctgctgtg ggccttccaaatgcatgtgacttggcagttggaaatgatgctgactttagggcatctttgtgtccatcacctgttccaatggcaaaggtgcccagtggcac agatgccaagggctgcaccctggggacccagattttcatccctcttctcatgcccacgaagatgactggggctggaggggtttgaatgtggaaatatc agtcgtttgctctattattaaaccttgagccatgtggccataaaagggggtggctgccatagctggtttcgtgattaatgagcccacgtcctgcctcttgac cgtctccacagagccccaggcaccagctctgccctcccagcccagctgcaggctgtgctgctgaggtctgggcagcagagaagggtgcctggagg gtctttctgtcgtcttgatgaacccatgacccctcctgggtccccaaggagagttgggtattgtaggcttggttgagattggcgagaggtggtgttgtgccta gcctggggggttggagggcggggggagtttctgctctgcagccctgtgatgcgcaggtgccatcgggtctctgaccccaggccatcaagagctgtgc gacctgcttgccatccatcatgtggagctggtcggtcaccccatgcaccaggccgactccaagccggagctttcGtctccgctcttttcggagtaatccgt ggatgatggaggagcttggcaagcatttcagcaaagctcttttttcttgttgaggcttgaaagtaatcgcctGcgtgtattgagtgcccgGcgaccacctg gcgcgtctgggcattgagctcattggccgctggcacaaatggatcctcgcctcacccggtgcctgcctgtagcctctcccatctgctttctGacagctaca ctGcctccctagcaccctGttgaggagtctgggggagggggcagcataatcatagttacctgtatcagatgGtcacctgtgctgagcacgccacatgGC Gtggcccattcaggtgctctctgcaaacacccttaaggcaggtacagtattccttcccttccctcttccctctacccttaccttccccctaccatacctttcctc ctcctgctcctcctccccctcctccccctctttcctcGtcttcGtcccccccttctcctcctcctccccctccttctcctGctcctcttccccctccGCctcttccGcc gctcctcctcctcttcctccccctcctccccattctccGccctGctGccttttttgagacaagatctggctctgttgcatgggctggagcgcactggtgcaatat cggctcagtgcaacctccaactcctgggttcaagtgatcctcccacctcagcctcccaagtagctgggactacaggcacccaccaccatgcctggGt aattgttgtatttttttgtagagacggagtttcgccatgttgtcGaggctggtcttgaacttaagagctcagagccatcGaccagcctcagcctcccaaagt gctgggctgacaggtgtgagccaccgcgcctggccagcattacctttttcttagttgtaatctaattcaaagtgtacagttgggttgatttcaGcgtacagc agtcccccctttCGcatgggggatatgttccaaggccGCcagtggatgcctgagacGtcgaatagtactaaatcctatatacactgtgttttttcctaaaca tatatatacctatgataaagtttttgtttttgtttttgtttttgagacggagtctcgctctgttccGcaggctggagtgcagtgatgcgatctcggctcactgcaag GtctgcctcccgggttcatgccattctcctgGctcagcctcccaagtagttgggactacaggcgcctgtcaGcacgcccagctaatttttttttttttttttttttttg tattttgagtagagacggggttttagcatgttagcGagaatggtctcaatctcctgacctcatgatGcgcccgcctcggcctcccaaagtgctggggatta caggtgtgagccaccgcgcccggccatacctatgataaagtttaatttatgaattagataccataagagattaacagcagcaatttaaaaaatagaac aatatactacaataaaggtaatatcatgtggtctctctctctctctctctctctctctcaagacagcttaatattttcagaccatagttgaccactggtaactga aacctctgaaagtgaaatctcagattagggaggactgctggattcaccaggttgtacaacaatcactactaattctagaacattttcatcccccaaaatg aaaccccatacGcattagtatcatacGccatttccccgtccctgccctggaaaccatgaacccactgtctgtctctatggatttgcctattctggacatctta ccaggctgtagtgcagtgacacaatctgagctcactgcagcttctgcctgccctgttcaagcagttctcccacctcagcctcttgagtagctgggactac aggtggatgccaccatgcctggcttatttttgtgtttttagtggaggcacggtttcaccatgttggccaggctggtctcaaactcctgacctcaagtgatctg cccacctcggcttcccaaagtgccaggattacaggcatgagccaccacgcctagcccgcataatactttcaaggttcatccatgtggtaatgtctttttttt atcgctgcataatactccattgaatggatagacaacattttgtttatccatcatctgttgatggatactgtttccatgttttggttcttatgagtcattttgctttgaat acttgtgtgcatgtttttgtgtgaacctatgttttcacaactcttagatgtatatctaggagtggaattactgggtcatacttaacttttcgaagaactaccaaac tattttacaaaaagctgcctgcatcattttacattcacactagtggtgtaagcaggtttcactttctccacctctccctcaacactttttttttgtctacgttcttttatt tatttggtttttctctatccatcctagtgggtatgagtataatctcacttttaccagggagaaagtggaggctcagagataccaagcgacttgcctaaggcc aagttgtggagtttggattcagctctagaaaatctgatttatttttttaaaaaatctttcggccaggcatggtggctcacgcctgtaatcGcagcactttggga agccaaggtgggcagatcacttgaggtcaggagttcaagaccagcctggccaaGatgatgaaaccccatctctactaaaagtacagaaattagctg tctgtggtggggcacgcctatagtccctgctactcgggaggctgagggaagagaatcgcttgaagcGaaggaggcagaggttgcagtgagccagg atcgtgccattgcattccagcctgggcaacagagaaaggcGctgtctcaaaaaaaaaaaaaaaaaaaaatttcaattggaacattgcatacacaca aaagagtacacacattgtatactgcttgatgaactttaacaaagtgaacaccctgtatcaccaacagccagaatccagacctagaatgctgccagcc ctcGccagaagctcctatttgcctttttccagcgccatccctccatggggtaaccagtaggatcaacaccatgtcctggttttcccaggattttcccaatag agtagtgaccattcaacatcccaagaaaccctttagtcctaggcataccagacaattggtcaccccaataaccagtaccctgacttcccacagcaca gactcaggtgcacctctttctgaagtttgtatgggtggaagcacatggtgatgtacattgatgacatgcttctgtccagttgcttttgctccatgctcagtttgtg taggtcatctatgtgttgtgcatagttgtagaccatacattctcatcatttaggcttctgctgagtggatataccaggatttctttattcattcttctcttgatggtca tttgggtagtttctagtttgggctacctaatgctcagggaacacttgtgcaaacatctttgggagcacaaatatgggcctttctgtggaggaaggggattgc tgggttctaggggactcatgttcagcttcagcagagctgtcacaaggtggattcacagtttaactccctccagcaatttaggattctgtttgcactgtgtctgt gccaacacttatcatttttcatcttttccatttgagccagtctgctggtatgatggtctcatactctggtaaGccctctggtctttaacttactagttgcctgtagac aaaggccagggcgtgaagtGcaaaggtcttggttttcttcccagctctctcctgaatagctgtgtgcggttggtcaagttgtgcacctgctcagagtgttca tttctggtctgtcatgagagtgatgcaataccttcctcttgcaggattgtgggattaagggcttgtggaggtgggaagagccctggagatgtgggaggtg agcgaggggagcgggggggggggagtctcccagcctggaaggtcctgggactagagcagggggcgggacacctgcacccaggccctccacc aactccgtggggctccagcaggggcttgggccagttcccccattcagcttccttttggggttcctctgagtcttgttggacactcaactgtcaaagatgccc agtggcacatatgaaaagtgccacaGtcaaggacacagatttctgttcctctcaccagccatcttcagggatcatctgtctcccccccagcttgatggct ctgtgatggcagagccgtgtccctctccatcactggcctatccccaggtctgggcatagggttgcacctaggaggcctctgcttgttgaatgacttcatga attcagtccttaggtgacagctcttatccagggaggggactggaggatcaggacataactgttcccctgtagttctgagtctcggtttcctcatctgtgtggt ttttaaaagtactaatcctgaccacaaggctggctgggaggatgaatgtgctcgggaagaaggtgttttggaaactggcacacgctagagaagtgga gggtatcgcctacaacagagctgaccaacaggagggtatcgcctacaacagagctgaccaacgggggtatcgtctacaacagagctgaccaaca ggagggtatcgcctacaacagagctgaccaacagggcggcgcctggccacatctggGtctttacagtcaaattaacaaaaattaaacaaaatgtgt aatttggttcctccaccacactggccatatttcaggtgctcagtggcccacaggtggctacagcattggccagtgcagatacggagcgtttgcatcatca cagacgatcctgtagggcagtgccagtatcaactcatttaggctacaaagaactttagagctatcaccaagaaagtaagateaaataaaacacaag agggatgtatttttctcccatgagattttcttgctcaaagcctcattacttttactttacacatggttctaacagactgcatgccctggtttcacaggccacaac agaagagcagtaacgttcggctgggcatggtggctcacacctgtaatcccagcactttgagagactgatgcatgcggatcacctgaggtcaggcgttt gagaccagcctggccaacatggtgaaaccccatgtctactaaaaaataacaaaaattatctgggcgtggtgttgtgtgcctataatcccagctacttgg gaggctgaggcaggagaatcgcttgaagccgggaggcgggggttgcagtgggccaagatcatgccagtgtactccagcctgagtgacagagca agactctgtctcaaaaaaaaaaaaaaaaaaaaaagagtagtaaccttttgagggcctggcatgggggaaggtgcagtgtcaagtgtcagcaaaa agaactggtcagtcggcgtctggagaatggttggagaaaccatacaaaatagacacagtcaGcccaactctgcagccattgagaaaggtgcaggc agctcccctgtgcccacaacaccaagggcacagctgggttgcagcccagctcaccagtggatcacagtaataataacaacagccccggggcaag gagaggtcatattacctgagggaaaccaggggagggagagtgtgaacggcatttgagatttcttctgggaccaaggcccaaaccggcccttctagg atcatatcgttacctgccactttgcgtttgctgtatgaGtttccgtttgtgagattaaaaagaacatgaaatattttgacgggGcttccccaaatgagcatGca tgggtttctgccttggaggccaagctgatctataggtgtctgaggaGctgctgcgtggggtagcaacagaagggtggacctgaggcccctgccatgct ggttccagctgtggctttggctgtggtcccagctcctttctcataatatgtacttgaggtgtgtgagcacaaaggtacacaaattggagtttgcctctggcca gaggaatttggcataacagagggatggaagttgctgtcttggggggttacgaaattgaatcctgggcctgtcttataagagcaggaggcctgtgtgag acatcccctgctctgtgcctcagtttcttcctctgtagcatgtggataacagggataaaaacagcctccccgccttagcattgttgtcaagttaaatgaggg attatatataaagctcttagcatggtgctggccacatggtaactgcttgatgaatgttaaccacgggcacctgtgaatgtccatatgggtggggtgtagtg aggctagcgtctgcatagcaggtgtccttccttGtgtcatcattaaaaaaagatatatggcagcagtggtggctcaGgcctgtaatGCGagcactttggg aggcagaggtgggtggatcacaaggtcaggagttcaagagcatcctgaccaacatggtgaaaccctgtctctactaaaattacaaaaattagccag gagtggtggtgggtgactgtaatcccagctactcaggaggctgaggcaggagaatcacttgacgggaggcggaggttgcagtgagccaagatcgc accactgcactccagcctaggcgacagagtgagactccatctgaaaaaaaaaaaaaaaaaaaaagatatataaagctggctcttcactatagtca aaagatagagacaatccatgtgtccatcagcagatgaatgtataaacatgtggcctgcccatacaatggaatgtcagtcagccatgaaaggaatgc ggttccgactcatgccatagcacagataaacctcaaaaacagtaagtgaaaggagccaggcacaaacagccacaaagtatgtgatgtcatttatgt gacatgtccagaacaggcaagtcccattgatagataccaggctagtggctgcctggcgcctggggatggggtagcagggagtgacgacttaatggt atggggcttcctttgggagtaaaaacatctcagaactcgatagagatgatggtgacacagcatcaggaatggactcaatgcccgtgaattgtacatctt aagtgattaatggttagttttacgttctgtgaattttactttgaattttagaaatgcagccaggggaggtggggactgaagcccattctcccagcgcaagcc actttgagcaccactgcgtatgacactgtgatggcagcctcatcattagtgttgttggtgttgttgctgttgactgtctaagcagggctgccatccaacttctc gtttctcctttggggccccagggtgtgtgtgcaggtccagcaaatccttccttacagtggggtggtgccacgtggaacccgactgtgcagcatgggtgtc
GGctgtgtgataattcaagccgcttccacgtagggagagaggggacttgactGcagGCGagcacatccaGccagctgtcagggccacacatgcccc atgacaaacagctgctgttttcaaccccatcccGgactgggcaaggtttctctggcctcgggaataagctcatgggaggattttccagactggcttcttttg gggtccgggagctcctcccttccctggcacatgtttlgagtcagcctggacgtcatgattcgtattcactttgagaggaatccccatggaaaccagcagg caggtttgggcaggagggagctggctcaccacaaaggcaagggaaggcgaaggctaggtgtcttctgccagcatcgggggcccaatgggggctc tttctgggggggtcagctcaccccattccccacccactctggaagcaggtctgaggccatatctggtttggaatgccagttctgaagatctctgggggttc acatgggaccctcatgaggtccttctaggccctattttttccagcccagatccagcattgtgtgccactggacagggggctcacctggaaacaggcag aggtgaagtatctcttcGtggtctggcaaatgcaggatcccccaaaactagctccatatctgtccccgagagcaaaaagacaaaggcagagttcacc gacccattctccagctcccatggaaggcagcgtcccccggggccagaaccccagcttgtgggctgccgcatctccaataccctctgggcaccgtca ccttgcgggcactcagttagcgagcggtcccaccaaacctacctgggttcgctccttgcttctcacatggcGctgtcaagctggtggcccaggacaaa agccccttagccttggccagggctctccggttccctttaatatccatttaatgagagcaatttggcaacaacgtaaaacgtgctcttgccctttgtcccagt aattccatttctgggaatctggcctaaggaaataatcctaaatatagggtagaaaaacatgtttcacaaggatgttcactgcggagttgtgcatggcagc ataaaatgaaacagtggcactgtccctgagggagggggtgagagcagggatgaaattgatggtggcggaatattttatagctgctacagtgagagtt ctggagcttgccattcagagcagggacatctatgtgcgataatgtggggaaaaaaaaggcgttacaaaattctttgtactgtatgatttcggctttataaa aaattatatattaaaataatcaggaaagtcacacaccagagtgctaatgagtggtcttgattggatttttatgggaaagattttattcgtcatcttccaaatta ccttgtcttcacgcattgcctttttcagtcaggtttgcgttgtaatttacatacagtaagagtcacgcttttagcgtgcagatctgtgagttGtgaGaaatgtata cagccaagtgacatcgcccccacagtcaatacagagaatattcccatcacccccaagagtccccctgcccctcgcccgccccagcggctggcaac catgggtgtgatttcagcccctgtagttttgtttatttcaggatgtcatataaatggaatcatacagtatgccttacactgctcttaacgtttaggaaaaaaattt ttcgtctgcttattgttctcttagctgtacatcttagagcaggattccctaccatccctcaatggaggagaattttaatgttctttcttatccaattcagcctcctac cccagacaggaatctcctcccctggagctGcggtcgtcatgttcagcttaccagggaattatcagttatctgtaaaataatcccagcgataggaaagta cccagaacggcagaggtgcctgggcagtgttagctcatatctgagcccaaggaacagcagcgttcagaggctttccatcccaatccagcccatgtcc cctgcaagcctcccgtgttcctgcccagtgatagcactacagcagGagcagttttttttgtttggttttgttttgtttttgagaaggagtcttgctctgttgcccag gctacagtgcagtggcgGgatctcggctcactgcaagcttcacctcccgggttcacgccattctccttcctcagcctctcgagtagctgggactacaggc acccgccaccacgcctggctcgtttttttagtatttttagtagagacggggtttcaccatgttagccaggatggtctcgatcaaggtgacgtcatgatccgc ccaccttggcctcccaaagtgctgggattacaggcgtgagccaccgcgcccggccttgtttttgtttttaaataaacattttcttttaggacagtttgagatgt ataggaaagcgacgaggataccccagagttctcacacatccgcagtctgcttccccagctgctagtatcttagtctgtgggctgcgtttgtcacaacttgt gaacGaatattgatacatgattgccgaagtccacattttattaggtttctttaggttttcGgtgatgtcctttttctgtcccgggatccGatccaggatccccaGa gtacctgtagtcacgtctcccaaaacttcccttggctgggatagctgctcaggctttcctcatgtttaatgagcactggtcaggagttttgaggaaagtccct cagttatggtttgtctgatatttttctgatggttagacttgggttatgggtttggggaggaagaccccagaggcaaagattggtctttctcaaaatagttcgttt gattgcgttctttagtttgttccaggtactgtgctgagtccttgataaactggatGtctggtaatgctcccaggaattctacctattaaataaattctcatcttaac cagtagaggaaatgaactcagagagggggagtaacttgcctaaggacacacagtaagcggcccaaacacaagtctccttggtcctaaaaagtctg cttttggccaaatgctgcttcaggcagtaggcatgcagcttgtctgctttttaaaaacagtatgggttgggtgtggtggctcacgcctgtaatcGcagcactt tgggaggccgaggcaggaggatcacctgaggtcaggagttcgagaccagcctggccaacatggtgaaaccccatctctactaaaaatactgaaa aattagctgggcgtggtggcgcacgcctgtaatcccagctactcaggaggctgaggcaggagaatcgcttgaacccgagtggcggaagttgcagtg agctgagaatgcaccattgtactccagtcggggtgacaagagcaaaactctgtctcaaaaaaaaaaaaaaaaaaaaggaccggctgcggtggct tatgcctgtaatcccagcactttgggagaccgaagcaggtggatcacaaggtcaggagttcaagaccagcctggccaagatggtgaaaccccatct ctactaaaaatacaaaaaaaattagccaggcatggtggcaggcgcctgtaatctcagcttctcgggaggctgaggcagagaattgcttgaacacgg gaggcagaagttgcagtgagccgagatcgcgccactgcagtccagcctgggcgacagagcaagactccgtctcaaacaaaacaaaacaaaaa aacagtatgtatttatttatacccaacctttccctaaaaagccttggttgcaacttcagatcaaagccacgttaagacagctaaggcagggcatgtgaaa ggtagactcagaaagcctctgtccagtgtgttgtgggtggtgcttacagttaaaacacggatgaaagttgcctttatttttgtaagatagtcattaatttgtca ggaaattagtaatcacctcctaaatgtcagacgccatttaggcatatgaaacagcaggtgaaccctcctgttcccacagtatataaacagtagcaggg gacacagacaatcagtgaccaacacaataaatatttgaatatgggtgaggaaaagaagtacagaaccaaccaccaagccctggcttctccggca gtgctcaggacaagacatactgttagggctgagtcatttactgcagaatagggagaacagaacagtgcacgggatgctggaacaggccagaaca gtgaagggcaggcccacgagtgtgactttgaggcacgctgcataaagagaaccttcttgggtgacacatggcagccgccgggattgggggccagg gggtcctctgaggggtgagcgatgcagtggtggaaaggacaggatgaacgcagctgcctcctcccctagattgtggggtccaggcagccttgtcgct cacctggacctgtgcagcagcctgcaggctgtccccctgccaccactgtctcctttcaagtctgttttctatgcagcaatccctgtgaaccttggctaaagc tcctgcaaacccctgggaggaatccctgagcccctaggtggacctaccagcctctccaggagtgacccacccttctctccaacgcatcgcttaccca gccctccctccgtttcaccttctgctcctccttgaacactcccagctgttcccacctctgagcctttgcactggccgtggggtctgtgacactctttactcctgc tctcggcGacGtgtcatgaGaccccattgtgattctttatgGggcGcttgccactGtccaatagtttatttatttagatattttgtttgttgtctgtttgcGcactaag ctcctgtcttattcactgctgaatctccagcacctagcatggcgcctgcagcataacggaagttcagtaaatgtctgtcagatgaatgaaggaatgaatg aaaaatgaattgatcaatcttttgtactttttgagcctagcaattgatcacatcagggaaattgaggcagcttcagccatcaaccctctctacctccacccc catcaccataactctcgtttggcagacagatactgaaattaacaaacctaacagaagtcctccatctttatggtagaattaacctgttgggccttagacttt gaattgcctttgcctctttcttggaacacaggatagaggtcaggcttctgattccggagtcagatggccgagttGagtcttggccatgccactcctagctag atgaccttgggcaaatcacgtgacctcctgagcctcagcttccttgtctatatgatgggatgaccttgatacctgttccacaagacctgtgtgaggattaa atgattgccatgtgcccagggtgcatgggagagGcagggaggtgttcgctgttattcttctcagctgtgctgcactcacctgattctcctgaagtctggcttc ctggagccaaagtgacaaggacacccgctttggctcctggtggccattgtatccctcggtcacctggtgccttctcgggacagcaagactcactcaga gagtggtgggtggctgtggatttatcttgccccgcccctactcccaacaatgaccaatactaatagcgtttctcattcttttcaacacatgctattgagcactt gccatgagccaggcactggggaaagagtgggaaccaagacagacctaggccctgacttcatggagctagcagcctggccaggaggcagacat ccaacagataatgacacagaataaagccacaaataaatagggtgtggtgagcaccggaaaaggagggcacagggaagggtgcaagcaggtt gggtcatgagtctagagggtgggagttccccgaaaagtgcagttgagatgagacctggagagtagaagcgcagatgccaggggtggggctgtgct ctttctgggacaaggagccggctgagtttgaggcactgttatcagggcagtgtgaggagtgtggaaagggagagatgccgccgagaggcgggact gggcgcatagggagagcagaccccgctgggtctgtcgattgtggatgggagtgtggattttgtggccgggccattgggagccattgaagaatgttgag gaggagggtggggctatggagttttccatcttggaacgtggctctggaggccgagtggaggatgcatatccgtggggagagggagaagagaaatc ggtgctttctgggcaggagaaggtggtggcttattgGtggtgagggatggcgggcttccagccactCGctgcgctggccccgcggataGcaagagca gcagtccctcagttcttgGGctccagctgctcccactctgttcctaactctgcacctccaaacgtgtgggtggagttttacagtgaacccccttgcagctgg atatggccagccagaaacagggaggcttgctttggtcaccagaggtgctgagctcGtgcaccagctGcatttgcctgtcgccagaggggcgatgtttc caaaaccgtctgagatgcggacgtcatgcctgctactgtaaccaatgcatatctcttctttttctttttttgctgcagCCAACTGGGTACATGGAA AACTCAGTCTCCTACAGCGCAATTGAAGACGTTCAGCTGCTGTCCTGGGAGAATGCCCCGAAGTACT GTTTACAGCTCACGATTCCTGGGGGMCTGTCTTACTGCAGgtaggagaaataaacatgaacaagcagtttcttctCGct catcttcatgGacttgtgcccctcgtttcccttggagggagccagcagctatcaagaggaaaggttgtttaactttgggtgattttattccccaagtataaga aagctgtaaaccaggtctgactggagaaaacgaaaaggactgtgcatggcctgagcgtctcctgcacacctgctgcagtctaggaacttttcaggttg ctcatttagtttcccttaataaacctgataaataagttttatgatccccattttacagatgaggaaactgaggcacacaggtgagttgttaggcccaagaa ggccgtgaaaagcagatgagGaatagatactgactttttgcattactttgagtgagggagtttctgatatcttgttgatctaagtcttttgaggctgatagaa gtataagctatctttttgggaaaaaaagtgcattctgtatgtactggtcaggacgtttggttggaaatggcacaaacattattccaactagtgagacaaaa agagagtttaatgctgttaactattaaattaactattaaagtaactgggaagccttagaggggacttcaggcattgctggatccgggggtcagatgacat cattaatattgggcatctctctctccatctcctggctgtgcttctgtgtgctggcttcattggcagaatctcaccatgtggtaggaaagatgacccacctgca gcccaaagccacatccttagaggctgtaatccttaagagtgagcgccctttttctttccagtaccttttacaaaatctcatggaagatcctgattggctctgc cgtgttccGattcagcccccaggaattcactcccccggattacccgcGcacccttgacctcaggcaaggcccaggtctcggattggtagccccaccag gaccacacagaggcggtgaggtgcgtccaGcaagaatggagaagtgactgacaaaaaccacgaccacggtcacacatacataagacatgttac atcatgtcaggggagccagccaattttcagaaggaaccGcgagtctgaaacccctcatctagagaaaatttactctcttatcagtgggaagaagacct gccttgctttttcttttgggatcattttattcctaacttgtttttccagggaaaccttctcttagcccaaagagatgctttctaaaaacctattttagatctagcagc cactggattgtgtaacagcattgggctgagagtcacccagtctgggctccaaggaatgctgagctcagtagcggagcgtaacaacttagcattgttag aaatgtcctgtttcttactgtcatctctcagaggactctggaaaccacgcctgccccagtctgctttcttcttagtgaatctctcacactctgccctctacgcttt tcttttaaccGtgtccccacacccccacactgtccctccccccctccccaccacagccagcaaagccttcctcttctttctttctctcctctcatctttatgatag aggtcagtgtcaccctcctgccagacacttctgccagctcctctgcctcttcactcgctccttcttgcccatccgatggctgcagcacagagtccatgaag ggggtggtcagtgccagcccccctcggcgggggagatggggcgggcaatcacagggttcagtggccaacggagaggtagggtagccagagatt gtGctaccccaatgactttgctgtagtcacagagctttgaggcagcctctcccctgtgctcggggaggccccatgcgtgaagagcccctcagcccctg gggagacagagccataaacaaatgattacggaaataatggctaaattagaggcaaccgtggaggactgggagcccagagaaggaggaacttat ttggcGtggggggccaaagcaggctccccagacagggggcatttgaactgggtgtagagggatgagtagaagtgtgccagaatggtggggtggg ggcacactccccgggcagaggggatgtgtgtgcaaagcctgaatatgggggacctgggtacttgctgcagctggaggagatggagagatggagttt ggggctgtggatatgtctagatctgttgggcgatggccagatcacccaggccttgccagccaagtgaagaagcctcagaccctcttccaaaggcaat aggcagccactgaaagctctgaaggggtagagggacactagaggaatcagtgtggtggcagggcagaggggcctagatctgtgcatgacagag aggcaggagggagccccttgaaacattccagttggaggagaggaggccctgagcctccactttcctgctccaccagcaaaggggcctcattccttct ggggctggaggggcagccctggcctccaaaggaggccagagcatcactcgccacagggatggaggggcagtgaggctgaaaagcagagaag cagtgcctggaatgtccctttaacccggctgtggccgcgggcccagctgtgatgactcgcctggccgccgtgtctggcagggcttcaggacagagctg ccgccgtggtgctgaggagccgagcgggcggggagcctctagctgctccagcatcccacttgctcactgccccctgatcccgtggacagcgcagtc agaggcaggagcaggagaggaggaagcagaggaaaaggaggaggaggaggcggcttgcaactcctcagatccagagccggactccgagct aatgagggagcagcagacacggcctcccaacccttcccccaaggggaacccaggtgggtgcagcccctgcccctggcggctgtggttctctccctg gctgccatttccgtcaggggaggtagacctggatcggcttctcccttgcttccctctcatcctcacccccacactctgcccaccgtgatgcatgggtggtat gtagctggctcattctataaacagggctagcgagtctgtgtggttctagggaggctggggcggggtgcacttggcccctggtgtggtactcagggctttct tcagtcctggttgtattcacgtgccttttgtgacgggtggcaggaccctctgctttgagaggctgtactttgtcttgattcacatacaacatactgtattagatc ccagagccgtggtgtcacagagaacaacccctttggccctggggacagatcttccctgctccagggtgggagaggggaccaagaaacagccagg tgcccatctgaacggcattaccttagtgctcctagtcagcagatgagtgaaagtgccttaaatggtgccgcccggcacagccaccagcagccacgca tggcagcccacagatggatttaatttactcatcaaattaataacacagttcctcagteccgttagctacacctccagtggccaggggccacacatggcc aaaggctgctgtgttggacagcgcacataaagaacatttccattgacacacgaagttctgtggagcagtgctgacctcgaggccttttcattttgacctc atactgcaggcacctgagcccctcctggggcgaatcacgtcagatcacagggggctcttcgatcttgcagtctggctgtgctgtaatgcagtctgcacc ctgctgcattacagcacagccattctctctacagacaaggggaatggcggggcccaaagagggctagtgGcccttccGtaGCGcagcctgGctgatc tctctccatctctgtctGtttcaggttctttgcatccatgtgtgtctgttttcctctctctcatgccttttctccatctctctcccctGcttccccttctgtcccctcctgcct ctcctctttctctctctttagtccttgctgtggctcactctgggcttctcttgcaggtccttcctccaggcctctcaGcacctctgagcctgtcccccagtcctctct gtgtgtctctcccctcttctcttcctcctcctccgctctctctgtcttctaaggagctctttgtaaaactcttactttgttagaatttgaatcaatgcctcttgcagacc tcggggagctgacctgatccttcaaggaaggcagagaggacattcaggcccatgcccctcatccccagctcagagacagagcaatctaccagca ggttgagttggcagacagaggcgcccagccttccagcgtgggtccagttggtgtgttttggatgctttgtgttttcagcgtgagctccctcactgccatgtta ttagaatccctcgttgcagaaagggcctgtttatcccatttcctccattgatgcGctttctgctagcatttcattgtggggaggccaagcatgtaagtacata gacagtgtcatgaaaacgtcctgaaggtgctgtcactggcccctgggatggggtagcaggcattaaagagcagcgcggcgcagatcatcttctggg ggattctgcctaaaaattgagtggctgcGcatcagcaaaaattagacagagccgctgctccacaaacaaggcttcaggcaagataagagcaggga gaccctcctcccaagagtgtctgcttctttcggggatgggttccgggactcggctcttctcaccaatgttctggaaagtcctgcaggaggcggggcaact gtttaccccaaacattggcagcagggcagggacggggtgggttcctttcttactggaaggtagcaagcaggacttttccggtctggaaagcaccaga aaggtctcactctctagcttccagtaagaaaggaagctccttttccctaagaaactgggccggggaaggggagcttggaaaaggtcgctcacagcg caccctgggctgtttttGtGacctctcaagacaatgcaacaatgagaaagaacttggcaagtttgggagaggaaattgggcagcgtttgcctggaacc aggccctttGagcattccaaagatttaacaccagaagtcggaagcctggaaGcagctgcccgcaggcttcGgggggacttggggtGtggGtgggga cctctcccatgtctgaatggattctcctctgagtgaccctcagggttgggctgggggacctttcccaggtctgaatggattctcctcagagtgaccctcgg ggttccagccatgccttatgttcccactgggctgagttctcttggctcagcGaccagcaggacagtatggggactctgcacagaagcgtgacccttccc ccagctggaacgcagcctggtcagctttccctttgcttggaagccccttagagatgcctgtgctgggactcaagacattgcctagcagcgtatgtcctcct tcaaaagtagacaagccaaaggaacgagcagtttacagtccggccttgtcccaacctttttggctccatcagcctccacctgctctcctagaggcaagt tctggcgcttcccttagtttcaaggtgaggtGtcctgcgtgccacatccttcctcctcctgcttcatcagtagggcagctaccatggagaaataatgctcac ggatgtGccaaGccaagtcGtgggaatccagaggagGtcagatgcattgcttcatgttccagggctggattgcagggagggaagactgtggggtcag acagacctgagttcctgcccaacttccctgggcactagctctggatccttagactctaactagccatggaaccctaggttttaccacattctagctgtgga acGctaaacagcaggaagaacctctctggggctcatttaatttatctgtgaaacgcactctaatacttgtctccttgcatattgtgaggctcgtagatattac atgtaaaatacttagcactgtgcctggtacttagtaggtgttcaagaaaacactgccatgatcatttttagagtcttagtcaaatacagtttggggaagag agggaatcagagctgaagagttcttttgaaggtctgttgtgtgtggactttcttcgctgagcagaatgggtatatgaatgcGCcattcatccatccatctatc cgcccacccatccatttatccatcagactgtccatctgtcttatctgtttttccatccatccatgtctccatctatccaattcattcattcattcaacacttcaacc aatGtttcacttaacaaacatttctccgggtttGatggacacagtggtgcctaagtcagacgtggttcctgacctcccagagcccatagcctgcagaaga aggacaactagacaggcgattccaggacagtgtgatgcgttaggcgaggcattctggcctggtttggttggggatggggaggggaaggcaccatca agacagtcattctggagaagtggcatttcaggagggacctgaagtgtaagtaggagtccagcgggcagcggagagaagggggtgacagcagaa tgttcctggtgggggagtacacgctgcatggaagccagtctgagagcagggcaggccaggtgctgccacagtcaccagcgaccacgcattctaggt ggctggaagcggcacggcattgtttctaacttgtgctgtgtgtccaccatgggccagtgggggaagggagtgtgccaagcggtgcacgggttctcagg ggctcccacgcgcgggccacgggtcacttcagcatgacatcagctcgttgcattggcctgtgtgcttgccaggagcccggagggaagagacctgga aatgacacaaatgatgaccccagcaagtctgggtgtgtgtgtggtatatgcattggtttccccagtggaaatgtggcagtggaggaaaggttgggttag acctgggtccttaagccgtggtccatggtagattccaaaactacctgcacagtcctgcgtgtgggactgtggtgtgtgtgtatgtatgtctgtatggtttatgt gtgtgtgtgtgtgtatggtatgtctgcatgtgtgtgcgtacacatgtgtgtctctgtgagtgtgtatgtgtctatgtctgtggtgtgtgtggtatgtgtgcatgtgtgt gcctgatatgtgtgtttatatgtggtatgtatatgtgtatacggtgtgtatgcacatgtatctctgtgtgtgcatgtgtgtgtggtatgtgcatgtgtgtgtgtcctgt gtctatatgtggtgtgcatagtgtgtatctctgtgtgtggtgtgtgcatgtgtgtggtgtgttgtgtgatatgtgacgtgtgtgtgtggtgtatgtgtctatatgtgat gtctctgtgtgtatatggtgtacgtgcatgtgtatctgtgtgtctgtgtgaggtgtgtgtctgtgtggtatgtctttgtgtgtatgaggtgtgtatggtatgtgtctgtg gtgtgtgtgtatgtatgtctgtgtgatgtgtgtgcatgtgtgtgtggtgtatgtggtacgtgtatgtgtggtgtgtgtgcatgtgtaactatggtgtgtatgtgtgtat ggtgtatgtgtgtctgtgtgtgtggtgtatgtgtctacgtggtatgtggctgtgtggtgtgtgtgcatgtgtaactggtgtgtgtgtatggtgtgtgtggtgtatgtgt ctttgtgtgtgtggtatgtgtgcatgtgtaactgtatggtgtgtgtatggtgtgtgtgtggtgtatggtgtgtgtgtgtgtgcgtggtgtgtgtacatttgtaactgtat ggtgtgtgtgtggtgtatgtgtatttgtgtgtgtggtgtgtgtgtgtggtgtgtgtgtctgtgtgcaggtgtatgtgtttttgtgtgtggtatgtgtgcatgtgtaactgt atggtgcgtgtgtgtatagtgtgtgtgtctgtgtgtgtggtgtatgtgtctttgtgtggtgtgtgtgtatgtgtaactgtatggtgtgtgtatgtgtgtggtgtgtatgt gtctgtgtgtgtggtgtatgtgtccttgtgtgtcgtgtgtgtgcatgtgtaactggtgtgtgtgtgtatggtgtgtgtgtggtgtatgtgtctttgtgtgtgtgcataaa tgttgacattacatgggtgtgagtccatagcttgttttaggttctcaaaggggtccataaacccccctgaatcaggtgatctttaaactccctttggcttctgat ggaaagatgGtcattgttacGgtggacaaacatggctgaagcctctgccttcttccaaagtgcagccagGctaaacgggggtggggaggggaccaG ggccagctttccttctcgtcgcactggggcagaaggagccgggcgcggtgggtgggagatcttggctgtctctgcctccctggaaggaggcgcagga gagttccgcatcgagactgtcctcagcccggcatctctgtgccttgccttacatgtcattaattcattcagctgtatttttttttttttttttttaacaccaggctcact ggagcagtcgcagttaatcctacgtggatcctgcctcctctcccaatcctgtgggtgggacataaatacccagccagcctcagggtgtgggccgagg gcttgaagaagtggccgccagaagcttcaggagagcggaggagggatggggtGCtggccgaggtgtggggagggcaggggcaggcgccgga gtgtgcagaggcaccccactgcctgctccgagcctcagcttcctcatctgtaagatgggtgcgttgaggaggagaggaggtgtgtgtgagcatttctcg tggtgcctggtaccgagtaagcacccgtggtctgtggttggtagtgacatgcgtcatcgcacttagttcgccagcctgtgtcatacctgtttagctgggatc tgcaaactaaacctgccttcttgaaccgaaacctgccttcttcctggactgccacaccgacctccaagagttgagaggatcccagagtggaacagaa gtggccagaaagccaagtgtggctggggaagggggtcacaccctcctatgggaggaaaggcttggaaacccagatggctctgcctggaaggatg gggctgagaagagactgatgtgtagcagtgtctgtggtcagtggctctgaagaaatccgtcGcaggcctttagacatcaagtgctgctgtgagaggca ggctacgaggacccagctaagactggaggctcctgcagctcagcaggaagtcacagggggcgtggccaggccaggcagctggggcccaggag gagagatctgtcagccatccctgccaacaactcagcagtgggccggacccagtctggcagggccagaaccatctggatgtgagctcggggcaga ggagacgccaggagcaccaacggtgtgaccaggagaagccacagttgtggaaatgctggttccttctgtaaaaatgcctacggggcaaacacatc agaatgtccactttgaaaaggaagaaggggGcaagagccagtaggccctgcaggtccctcagggctctcatgtgccggcagccgaaatgggatct ggccatcccaagcaggaaaggaatgtactagaagaacggtggcagcctggagaatggcctggagctggggtcggggcatgcaggtggtagtcc catcaccaccagtgcaggaaggtgcagggcaggacccagctcctcccaggtgaattctccctgccccatctccatagcacttgcccaagatccaga gtcctgggcaagaacctctgcctggccaagccagaggactggctcacacactgttgaggagggctggaaggccccctaagactcatgagccagg gagaccccagatgggaagggctgggctagccatcgtggaggacggtctgtgttgggtttcgctacagaggctggggaagggagtctcctctggtcat tctctaccaGctgtgacacctgggtcactttcctctttcttcctttgtttctgtgttcattcgttccagtgtaaccagctctggcccagccaggcactgctcaccta gctgtggaatcagaaataagacGCtgccctcaaggaactcctagtccattcattcctttgttcattcattcagaaaacacctgttggtctcctggtgctcca ggccacaggatacagtggtaggtagagGatgcgtggccccttccctcttagggtcacacatatatacagggcactttggcggggccagtggacaca gaagagggagggatgtggttgtcctcctccaccttctttttgtctttgcttggccgttccgtccagccggtggcagcttacaggcactgcctgggtccactgt ggaccctcagagccagtggaacaactcacatccgcgttataccaacctggttgtacctcctgcttttatttcctattgctgctgtgactgcttgcccctaactt tgtggttaaaagaacacagatttagtctcttatggttctggaggtccgaagtccaacacaggtcccatggggctaaaacgaaggtgtcaggactatgtt ccttctggaggctctcggggagaattcgtttccagcttctaaaggctgtccgcattccttggctcatggccacatcactctgacctctgctttagtctgactct gccctcctgcGtccctGttgtgagtacccttgtgatttcattgggctacctagatcatccccatctcaagaccttgaacttggtcacatccagagtcccgttgc cacgcaggataacttaatcacaagggatttaggatggaacatgtttagggggctttattttccttaccacctccttctctctctggcccGcttggtgtgtgag gaagcacaggaatggatgtggaccaggcatgccctggagccagctcatcccagcttgcacctgcccaccagagctgatcgtgcccgtctctcccca gctctggcccaggggcatccGcttgaaggtgtggaatcagccaaaatgggattgttcacaacacagaaatGcgcacacgccgggatcagggcttgtt gttccagagagcctgatgttaagcatttatcagcacagacctggccgtggctgctgacgctgctggcccctgtttgtggagtgtttgcacgtgccaggca ccgtgctgaggaagcacttttcatggattagctcattgtttgggatcttcgcacagctctccGcgagcagggtgtattttgtcatcctaatgaataggaattgt cacaagaccagtagagcttgggcagtgctgatgggagggagctcagcaacagtctctccagggggctgtttctcctccttggcctccgcaactctggg cagggggcacaggcttgggtcgtcaagcaacttgGtgcagtcacaccactagacacgacagagccgagacttgaacctgcacctgtaagaggctc agcccttgtcggagttcctgtgtcacacggagggcttgcctcctgcctgctttgcacttgggtagactcaagctccaccagcatcagggtggctggtgtg gattcgtgcagtccagggttcaaaactctgagtccctgagctcactcaccagagcctgagtcctcaccacacttgctactggaatggatcatttatgcaa ggccagagattgctccagaccctgacctcggagagcagctgatgtttcgtagatgacttggggagcgggaggtggtcacctgtagcgtgatccggat ctGctcgaacaagggtgaaacaaagcggttacatgcttgagtgtgtgtgtgcgcgtttgtgtgGGtcgaggcagaaggtggatgttcgtgcttggagag agactctagccttcgtcagaccccctgaaccgtcagaggcagggtcactttggagagagggttgtgggttctggtggggaacgcacgctgcacttcg gcccagcctggggtggaggggtagccaatggggaactcagaatggtccggtgttgtggtttacagcaggggtcagattacctgggttGaattcctggc GccgcacGacatgtctgtgaacactcaggaaagtttttaacttccaaagtctcagtttcctcatttgtaccatgagatgacagtaccgacttGacagggct gtcttgtaaggactgaatgagccagtccacacacaggactcagagctgtgtctggcgtccatgaaacaccatagcattaGtgttctgttagcagaccg agaaaggaggtgagagccgcagtgatactcatgagggatgggagggctgccttgggctgcattttattggaaaggactggatgatggcaatggtaat gataacaataataataacgatggctgcatttctgaccacctgccatgtgccaagcctggttctagatgctctacaagaataatttctggtctttaaaacatc cctggaaaatcagggttattgtcGccattttacagatgggaaaattgaggctgagatgtccaaagactcacagctagtgtggggtggagctgagaagg ttttgtttcacccgctgtgatgtttagcctaggtctgctgggtgccgtttaccatgatcttctgccattggcaggagaaggtcatggttaaatgcccagacttg gaagccaggctaccctgggtctgaatgcacttcattgtgagatctcagggtctcgatttttccctctgtgaaatgggcataatgataggtgccacctcata gggctgctgtgaggaccaaggagagactacgtggataacaaaagccaagttcctagaacagtcctcatacacaggcccccagccagcccccacc atcctGactcccaggcctccaaccagttcatcGcattccGtcccatgcGCctaagtccagctgtgtgtgcagttaaagctctcaagtcagcagtgtctgaa gtcactcatatacagcaaaggaagcacacggtgctagtgatgtcttgtttttaggaaatcctccctgaccagcccttctgttttggttttgcacacaacagg ctcagcttagcatatctttcagcaggGttgttagggtcacagggcagacgctgtctacagagcaggcttgggggctcacatgctggccttgaaatgccct gagatgccgcaagctgatgaccggaccttgctgtcctgttcttgtcgttacagGCTGCCAATAGCTACCTGCGAGACCAGTGGTT CCATTCTCTGCAATGGAAGgtaagtactgactcggttgcttgtttaaagcgactcaggcagtggtgcgatggcttaaagccaatctgtcac ccagaggcatgaaagtggagaactcatgccttccagatggctcagctgaggaactttgttcccctacctaagagcccctggcccttcgtcctctgctgtt caattcctgtcccctgcagtgctgaaatagcattctcgccctggtgttctcaaaccctatagctgttttcctgcttcaaaaggatcatagaactgcttgctctc agagtgagggcgaccctgaggggagtccagccggggaggctggacttcaggggctcaagatgcttagttgaaagtaacttccaaaggctgtgcca agtgtaaacttaacagagattcaaaatcctgagccctatttctgtagtcttcactgattttcagttgtcggattctgtggcctaattttctgattctggctctacat aggatggttcagagctttctggcacataaagggaacttcatcttcttggagacccaggggcagatcttctaagaggggtcccccagccacGcgagga gcctgagttgtgccccatggctcaggcgatggaaaccttgacgtcaggaccagggcgtgaagcacgtacagtcagcttctcattcctgccctgcctcc ctgtctctccttgtcttctgatcttctggtttagaacaagctttgacaggcccctggccccacagcgggtatggctggaatgaccagtgtgtcataagctgtc atccttacagtaagctggggagccacaggggatgaacagctggccccatgcagagctgggtgccatgtcacgtgttgggaggacccagggaaca ctcaggattcctctcatggctGcagaggggctcccccaacggccagggttgggggcagaaaggcaaccccagataattactttcctggtcccagag agggccactcccctcctttcctctgtcagctactggtcctcttgctttgtgctgtggggccaagtctcagaagctgagctgagtctccacgttgggttgcaaa ggggaagagaactagtgtttactgagcttctactgtgtgccaggactggcgtgttttgagctcctactgtgtgccaggagctctgctagtctcatcatgtcc atttcaccctcaccacaaccgcataaggttgatgattatcgttgttgccattttccatacgggaaagatgaggctcagactggagtccaagctcccatcgt taggaaggggctgaggcagggctcagctcgacctttccagtacctgtatgtactggaaatttctgaatgtagtagagtgggaaggcatagatgtcagc caagcaggtaaggtggtgcacacctgctcgtgtgatcagcaggtgctactgagagctctgtatccactgggagaacatctctgatgcctgggtctctctt tgtgcccgggtacgagtgtgtctgaagacaggcgggacattGgtcagcacctactggggaccgtctgggggtcagatgccaaagcagttgagaggg aggactgagcggtgttggtcacgggggtaccacctcttcccttccccatggtgttttacttgtggggcctcagaaagtgacagccttgcattttctcttagct caggacacggcagaatgtacttggagacacactgcctacccgacaggttgggggaaaaatgccttatttaaaaggaggccaagatgagtatcaat gaaggctgtcaggtgcggtatcccacaaggctctgttttctgcctttccctggtccacattttcaacagtgacttacacgtgcacctggaaggcagcatttg tgaaatctgtgagtattgcacagctgcaaggggcaaccaacatgatgggcatagaaatggacttcaggaggctttggctagaaagatgatttaaaag ctcggccttgaaacattcaaatgtcaaggattggccaggtgtggtggctcatgcctgtaatcccaacactttgggaggccaaagcaggcgggtagtct aactcaggagttcaagaccagcctgggcagcatggcaaaatgccatctgtaccaaaaatacaaaaaattagccgggcgtagtggtgcgcccatgt ggtcccagctacttgggaggctgaggtgggaggatcacttgagcccaggagatggaggttgtagtgagccaagattggtccactgcactccaacctg agtgatagagtgagacccGcatgccccaccccaaaaatgttaaggtttgcatgtgggattcagacagttgattgagcaagtccagaactgggatcact gtgtttctagcagctGtcatgaagacctggatgtttgcattcaattatggtggcatccggtttatttatggttgctaaatttaatcaagcagtttaaaaaattttca gaaaacctaaatcaggatgtcaaggaactggcagatgcctgggtgtgtgctggcccacttgccaggtgatcaatggtagtctttgctctcagggtgtaa gctttggctgtgtGtacagcatgcttcagacacagtgtttctccttggacaattgccccccaataatttaggtatgctgccaccaggtggcagtgatatttca gtgttggcaacttgatctcaattcctgtggctctttgtacccagttttggtgatatttgagaaggcatgctctccttccttttaaaatggcaaagaaacgtaag gtgttttggaggtaccgccagctagccaaattagctgggaaacgtgaatttggatcctggttctgtgggcagattccagaaagtgttcacctaatacaga tgcagttactgagtacatgtgagatgccagggctggctaggtcatttctggttcattgtcgttaagcaggtaatagaaccaaggctcagagagatcaagt gacttgcctaGagttgcccagcagatttcaatccagatctgtggggctgtcctacctcctccttgatcacaccgtgcttttctetgagattgggactccacag ccctcccaggacataacccctctgcttctgctgatacagccactctGtctcccctctttatttacaaccacctatttgaggtttttctttttcttttccttccttgtttGtt ttctcttttGtctgtctttaactgaaaaaaaaaaaaaatcagtggaacatcaaaattgaggacctttagaaattccaccacctcagcttgaattttttaactct cttttgtttttattattatactttaagttttagggtacgtgtgcacaacgtgcaggtttgttacatatgtatatatgtgccatgttggtgtgctgcacccattaacttgt catttaacgttaggtatatctcctaatgctatcttgtttttgtGattttctctcctacaccaatatacatttgtctcctgtggctgcggtgcacatactgtcagaatac gttctcctgtatgtaaagaatgccacttccagcctgggcgaaagtgcgagactccgtctcaaaaaaaaaaaaaaaaaatgccacctcctaaatactg tgtccccattgcttagttttgatcaagttggacttgcatctctaggccattcccaacaggggcagcatcacccctaatgggaccaaaattggttccttgaca cttaaacaaatcttaatgattacaatagtctgtggccctccaaagctcgaccctattcaatgaaatcttattcttgagtatttcttccaaagggaggacagat gagggagacactagggttccttatggggacagtcatgataacagggtcgattgacaaccgctgctatggaattgacctcaaattgttttgtggaagaag gcaaatatccaggtcatcttggtcacgcttttccgtctgggtaacagtgttgtttttgtggcatcagctcagaactttgagctgttcacacacggttgtagctc ccatgttggaggagtttgctcggcaatggacactgcattttgtgaattacttcctctcactgaataggttctgttcttatcaacatttgcagatggggaaacct gagtgtagagaggataagtcagtcgcacaaggttccaaggccaccaagaaggcaagcgggattagaccctgaacatctttgcctctttctctgagca gctctgctcttcctcccagccctcGcggcctggcctctgccatgttggtctgggagatctgaggaggcctggagcctgcaggaggagggccaggatct cccagcccatggctgctccacctcccagcattcgctagagcagaagctgcagtcctgagggccGctggggaggccagccctgtttggtttgggtggtt cagcccttgaggctaattcccaggggtgtggaagcattaaatagttattctgggttaatgaggcttcatttctgactcagatgtacctcctggctcatgccct ggccctcagaggccaagccctgtggtgacaggcctgtctgcacatgaggctgtgagggcacaggcctgtgtgcacacgaggccatgaaggccca gtctgtggggcaaggccaagagcgtgttcaggctgtgaggggaccgtgtgtgtttacaaagcattgagaagattggcctgtttctgtgtccagggtttca aggtgagagacccaggtatgcacagctgtgagggacaagtctgtccatgtgaacaggcccaggtgacaggtccaggctactgggctgtgaggag acacacacGaggctGctagaggagccGGgagaagccaggatgcacctgctatgggagctggagctcctggtgcctctccaccttctcgcttcctgag aggggttcctcaggccgaggcacactagtcctggaaaccaagatggtttttccccaggggaagtgaggtcactcagaacagccccaggggccaag ccccagagccggggaccaatgagcagactgtgtgtcacaagaagctggcctgtattcctgtcccagggctgccagggccagaggagtgcccttgg ctctgggaaaatCGcagcccagctttggatcctttctggctgGctgccctggccacgctgccttcttcttgctgggcaggtttcccagccccctagggtggc cacagcccctcgatcaccgcatccaggcccaggcctctgtGcctcctctgtggagaaaggtggaaaagaatgtggggtgtgtgagtgtgagagtga gtgtgtgtgcgcgtgagaatgtgtgtaagagtgaatgtgtgagtgtgtgtgagagcgagagtgactgagtgtgactgtgtgttgtgtggggtgactattttat gagtgtggtgaggtgactggtgtgtctgtgtgtggtgtgtgaggtgactgttttgagtatgtgtggtgactattttatgagtgtgtgtggcgtgtggggtgactat gagtgtgtgtggggtgtgggatgactatcttatgagtgtgtgtgtgtatgtgtggcatgtggggtgacttttatgaatgtgtggggtgactgagcatgtgtgtgt gtggtgtgtggggtgactatgggtgtgcatgtgtgtgtggtgtgtgggtggcttatgagtgtgtgagtggtgtgtggggtgacggtgtgcgtgtgtgtgtggt gtgtgggtggcttatgagtgtgtgtgtgtggtgtgtggggtgactatttgtgtgtatatgtggcatgtggggtcatttgtatgagggtgtgtggtgtggggagat tattttatgacagtgggtgtgggtgtgtgtgtggtgtgtggagtgacagagagagagagagtgtgtgtgtgtgtgtgtgtgtgtgtgtggggtgcatatggg gtgactattttatgagtgtgtgtgtgtgtcctgtggggtaactattttatgtgtgtgtgtgtggcctgtggggtgactattttatgtgtgtgtttgtgtatgtgtggtgtg tgggggtgactgagtgtgtgtgtggcatatggggcgactattttatgaatgtgtgtgtgtgtggGctgtagggtgactgttttatgagtatgtgtgcatggcat gtgaggtgactgttttatgtgtgtgtttgtgtatgtgtggtgtgtgggggtgactgtgagagtgtgtgtgtggtgtgtgtgtggcatatgggccaactattttatga atgtgtgtgtgtgtggcctgtagggtgactattttatgagtgtgtgtgtgtggcatgtgggatgactgttttatgtgtgtgtgagtgtgtgtgtggcctgtggggat actatgagtatgctggtttggagtgtgtttctttgggcctcagttttctcctctgtggaatggggatgatcatggcgtctcgtcactgggccgtgtgaggatcg aaggctgtgttgtttgtgcagcaggcagaagggatcctggtaggagcccacgcgtgggagcctctcatgcgccatcatcagtgtctccaagtgggtcc gacatggtgggagcagctggctcggcctgtctccctggcagccccttccagcctccacaggtggtcccggctgactcatggcctgggagggctaggg tgggtgggaagcccgccctcgagactgtctctgcccggctctggccacggagtgtcccctgtgtccagcactatgtgcccctgtgctcctgagtccgga aacagttctgtggggtccacatccctcccccatctcatagcagaggggactgagcgtccaagtggataaaggatgaggataaaggaccgtgccaa agccagatgcctcccagcgagggtcacaatctcgcttccacctcatgagtggctgcggGgcctcgggaatgagtctgttccatgttctgtgttgggagct ggcgctgggggaccacaaccctcaaagtccccagcaccaaggcaaagtgcctggggctcagagaggggaagcccacctgacgggaagctga gggcagggcctgggtcatgtccccactggctgcaccctcaggagggcgggatccatcaccctcatccccatgcaggggaaaggcccaggggacc aggtcagaatgacacagagcccttgagctgatgcctcccctgacccctcactgagggccatgctagaaggggggatccctacaaaaggggaaatc ctgaggctctggaccgggcctccagtaggggctgtcacccctggctctgaccttgctCGcggagcccacctcccctgggtcgcctcctggtcatggga gcctccctggggaagagccactcctagtgtcctagagatgtggccccaggcgctttctccaccaggctgcaaatcccttcccaagctcacatcGccca agtcgtcatccagcccaagccgagcccccagttgcaccccaaggccttagcacaaggctgcagctggtcctcgagccatgatggacacttaactcct gtcccatgcatgtgccagtgcctcacttactcaccttggtgaatccttacagccctgaggaggtgcctgttcctcctcttctccctttttactgatgtggaaact gaggctgaggttaaatcactcactcaaggtcacacagctgttcaatggcttagatgggatttgaacagaagtctgagtgagtccagaacctgggactt cagccaccgggagtgtggctcccaactgtacatgcatgcatgtacacagacacacgctacccagacacttctcacacctgatgtgcacttgggagca gtgccccggctcccacctgttctcgtggcacatctgggtagagcctgggtgttgctggtgcctgaggcttgcgtgagagctttccacttttccctaagtctcc catcaccactagggttatgtgaattggctgcgcgtgatggctcatacctgtaatcccagcactttcggaggccgaggcgggaggatcaGttgaggtca ggagttcgagaccagcctggccaacatggggaaaccctgtctctactaaaaatacaaaaattagctgggcgtggtggctcaggcctatagtcccag ctactcaggaggctgaagcatgagaatcgcttgaacccgggaggGggaggttgcagtgagccgagatggtgccactatactccagcctgggtgac agagtgaaactgtgcttaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagataatgtgaattgacgtctgactaggcaggcccctgtttctcacg cagaagggctgattgcctcatcctgtcttgcacgtcatcagcacagccgctgtcagaccacctctcccaggcccggtgtcacactcaggactgaGccg cttccacatcttccccaaacacactggtcgctgtgtcGcctgactttaaacttgaggtttggaagcccagatctggccttgcacctgactccctcactctata cagtgaccctccgaggtggctcctggctgggcctgtcccctctagcccagctcatcccttggtcttgagggaagacgttgcccttgaaccGcaccccac ctccgtttgcccgtctaaccccgtcttggccaccttcctccctctctgtctccttttcgacctttttacgatcacttcaaggtcagcacccccagctcctgccagt tatgaccttgcagttctcctccgaggctgcgtccatcttcacgcagccattttagcagctgtggccaggcacatggacagtcctgtgagcctcgccaagg catggcagctcagacatCGcagtgccgtgccacagcgcccaagggaggcttcctaatggctgcagaatcgtccgtgaagaggctggggccatttac caaaggcctctgctgtggttgcccttcgggtcgttcGcagctttcctcagttatagataacgcagccatgaccgtcgtgtatctcagctttcgctttatttgagt tacttgtttagggcagatttctagaagtggttactgggccagagaggaggggtatttttaggtggctctcaccacctattacctatttgctcccaaaataata ctttctgcagcgcttcagggccagactgcccaggttccaaccctgatccacttcctgctggctgtgtgaccctggaccagttgctttcgtctctgggcctctt gagtcaaatgaaaccaagctcaccagtttcttacggggattaaatgggttcacagctgttGagtatttagaatagcacctgccatgtggtacccactcag aacattcattcttcttctctgatctacaaggacacagaggaaaacaggctcttggtgtcggaggatgctaggagacggggctgcagaagacggagg cacatgtgtggcacgcaggccaccgactcatgagcccagggcgggcatcacccatcagccaccgcatgctttgccctgaggcagagctcttctcaa catagcccctgcctggccacccagttgacagaggcagtgacagtgtcccccgtcctgcttgagtgaccgcccaggcctatggggcgagtgctcctgg aggccgggtcagtgccactggctctggctgtgcctccgtggggttttctcacagaagcttctgtggaacttccaggcaggcaccgtgggtccattcttgg agggtcctaccctccgagaaggaaggcagaatggtggggaggcaaggatgggcgggagtcggccttgatccccttccaggcccagccacctgcc tgcttcatccaggttgaaaaggcaggaattctatccagattaatttctggcactcagtcaaagagggctttgtgacctcttaagaggggatcaaagggat tcagtggagaactgtgaaaggaggggctttccccagaggcagggggcccagcccactccaagactgcaggaggggccctcagtgggaggtgca gctggtgagtGcagcGtggGagcctctttgtgcacgtgttcaatccaaatgggaaaccttttggggccaggctgccagtcccccgcgagggccacagt ctccagcatctcccagccacagcccaagccccacagtgggtcatcagggaccccataactagtaaccagggctgcttcagggattgaaactaaca agtggcagagggccgggagcattgggaaagagagctcatgtctcgcaggctttcgttacagtagagggagagaaaaacaattactaggcacctac tagggtcgggagctctgctggggacttctcaaaatttggttaggcctgtcttgaagcaggagctgaggaagcagagaggcaGgtGcaggatcacaG agctagagacaggcagggctgtgaattgaacccaggggacaggaggaggatgggccttttggcctcttccgttggagcccacagagctgccacttt gcccagctggagctatctttggaagagacacaggacgttttcgaaataaacttctcattgaaggataaaatacatctagaaaagggtacaaatcaaa aagagttaccattcacctgggcccctcctGCCcaccatgggcagccactgctatcctgacttctagcagcacaggtgagctttgcatatacttgaacttta tctaaatggactcagacaGcctgaactcttttgagactggcttcttatgatttgtctgtgttgtgtgtagcagcagtttgtctattGactttgctgggtggtgttctg ttgtctggttagactctgttaacttgttcattctgtggataggtctttccagtttggggctgttacgaatagaccattgtaaacactctagtgtacatcttttggtga atgtgtgtccacagtcctgttgcgtatatgcctgggagctgaattatcattcgttgatgctgccctgcagttttgcaaagtggttgcaccagtgtatacttgca ccagcagtgtgcaagagccctaagacacagagcatttaaaaactggcacttacgaagctttttaaaataccgaaaaggacaaagagaactaaga aaattcccactatccctaaatctctcttaacttcttttaaattgtaaaaaaatcaagctattacctacatgtgacaaaatgtgcatgccctaactgttgagtgt gagggagttctgactgctgtactcacctgagtaaccaccacctggatctccgtcacccagaagatctcctcgcgccGctttccagccagttGcttgtcctg ccagatatcccctgcgaacatttaacaaaaataaaatgcacgtacataggtggtagtcctaaaaagtatagaaaggtataaaatgaaaagttggcct ctactccttcaagtccattttcccctaggcagtcactgttagcagctgcacggggcttctcagaaagtgcttatgaatattcctttgtaaacaccacgcaga ctttatcatccacgcggttccgttccatgctGcttaatatatgtcgcagcagtgtctgcagtagcacacaaatccacaccattttcttttctagtttcatagtcttc ccttcaggcagagtttaaggtggatggaactttagatcctttaggaaaatgctgtcatccacatagggagactgagtttctgacaggaaggagaggttt attgagcatctactatccacaggccagaggcagtacaaggcggtttgctgcccaggcctcgcagccccccaacacggaagcctgtaagcacaGtc cagggaccagggtggagtgagctgcccctggctacagagctgggaggtggaggtcctaggtttgcaccatgtgcctgggtcaccgagccttcGcttg cactcccctgtccctggccagggcttcctGaactctacataagggccagccttgggctttgggacattcaagacacccccacccccaccttctgggtaa aggtctttcctgagcctcagaaatgacgcattacagtggcttcccaaactgcgaaggaagaagtggcgtttgtgggttgtcatcgtttctttgggcaagg aaggggggaGCGgagcgttcgtgtgtcatGGagcgcaggctttgatgaggctgatgagtcatggagGcatacaaggaagtttttcatgtaaacggtttg tgggtgaacttgttttttgccctttaaggcagaattttgtttttctttttctcgccctttaaagacaagtttttaaaacgtaaatgagaggcagcgtcttgatgagc aagatcttttgttctgcaggcgtctgcagtgtgtctctttcacagccagtggtgggcagtggaggcccctgagctgggttgctgatctgcacttggggcac accttggccaggtgtccagcctggaagagggaggtggGctgccattcttttgttggcctccagggctcccacctgctggcctgttggctcggagatgag gccaaacagagactttaaaaagagcagtgcttgtcccGacagaggaattaggcccttgcttcaccgagggatcatcagaaaatacccagcgggac agccggctaactctggaagggaaggtgtttgggagagaggataattgaccgggagatgatgcagaaGgactagggccctgagggctgttgcccac attctgctcgccggagcaccctggtgcactttcagaaccaacagactgttttgcagaaagccttgagagggacagagaccccctttcagagaaactg aggccactcctaatggagcttgctggcacgtggcagcagaaggccagggtggtttgtttccagcgggggctggcacatgcttggaccattccctttgg aaaactgggctgaacctgacctctgtccaggagtacaaggaccttagaaagcacaccccagaggtcggggccagcctgacaccggctggaggG aggaacagactGaggcagaccattcatcatgtctgttgacttttgagacttttgttaaagtctgcaaccaatcttccatccaagagggtccttatcatccca ggcctcctggcactgcagacccagggattttgaaccggtagctcagtggttttcagagtgaagtcccaagactagcagtatctgcatcacctgggaact ctctagaaatgccagtcttcagtttcacaaactctgaggtggcaggatgagagcagcaaactattttaacatacGctccgggtgactgtgatgcacccc agcgtttgagaaccactgcagtagtgtgaagaaaggggaaagaacaataaacatctattgagtgcctactgttttccatctactttattttcattattttcttta ggctgcacagtgtccctgggttttatatctccattgtatgaacacgagtctgactctcagattaaccttctcatgcatccaagctggaattcaaacccagag tctgctgcctccttctgtaaccatttcaccttcttactgggtttctcatagcctgagatcaagcatggatgactaaacgtgtccatagctttcgggttactctgc cagaatcccctctgtttgtgcaggtcacttagaattcactgtggtgaacaccattgaactcactcctaggacgctgagcttctctgggtgagtagagtctgc cgcacgagtgtctgaggagccgcctccccagggagggcaggagtgcgccttctcctatattcaagcatgacagcattacctggcttgaaactcacatt agagacttactgaacattaatttattaaagaacaggatccttctccaggattctcataagttaaagccctttgtagtaggcgGcggtgactcccacccag aggatgcagctgggaaggatggaggcttGcaaacaaagccatgaacagatcagatgtcctttgaagtgctgcaagcactagataaagttcttagtga aataaacaacagaggcccctgttgagatgctaccgtcttgaggcctggcaagggaaatccttatttgggatagagagagttccctttatcaggcccaa aggaaacagagcctgtggtgtccctcactgtatttcggaagggctaggaaactcgcctggggctgcccgcctcccacaccacagaggaagagcag gctctggtacagtatttgcatttttttatttatttggtgggttgcaattaagcagcgttgtttcctgaaatgccctgaaaatgccaccttatattaatgattaataag aggtgttccccacccccaccccgtagtctttaatgttgagtgcaaattgctttttcgctctgggtggccttggtcaagaggggagggccaattactgaggtt cagaaggccaagctggtggccctgtcagaaagaccctcaggagggttggcacacaggacagagtcagggggaaggatttggtcggcttcatttta attttttaaaggtatatcctacctctgcttaatgacGcttgaagtggcttagaaaagcacacagactgggaaaatcgatacgaattgatctggagtgaca cccaccaggtgttaggagggaaaagccagatgcagacataagtattatgcagtgccatttgtgtaaaatgaaatgaggaccccacaaaacctgtct gtatcgtgttggtgcaaaagtaattgcagtttttgccgttgaaagtctgctgccagacaaatatatatttgtatttgattatccgtgaccatggagaaagaga tgaaatgatagacgtcaagcgtctgcaaacgatctggcccagcacctgtttttataaataaggagttttcagggtggcggggacagctctgcccatttgg gggagggggggacagctctgcccattcctgctgtggcattaagctggtgacaacagaggtggcatgacccacaaagcctggactattattatttggct cttaggaaaatggtttgtggacGccgatatataaGatagtctcaaattttcggggtttacatggtgagcatggagttagGatggattcagggggtggcgg gagggagggccgtggtaaggttaaaaagaagaaagccagcatgtatgatgcagctgaaacttaggtgcagttttaaattgggctggttgtgtgtttgtg tgtgtgagtgtgtgtgtaactgggttgtgggtgtgtgtgtgcaccatgataGaggtgtgcgggccatgagccttccatgctggagttcttgtcctctgtatgaa tttttcaaagaacatgcacttgaaaaatcggattatccatctactagaccactgaaaagtcaaaagtagtaagatctcagatgccttccagttctctttaag aatatgggattctggcccggtgtggtggctcgtgcctgtaatcccagcactttgggaggctgaggcaggtggctcacctgaggtcaggagttcaagac cagcctggtcaatgtggtgaagccccatctctactaataatacaaattagctaggcgtggtggcaggcgcccgtaatcccagctactagggaggctg aggcatgagaatcgcttgaacccagggggcagaggttgcagtgagccaagattgcgccactgcattccagcctgggttacagagtgaaacttcgtct caaaaaaaaaaaaaaaaaaaaagtatggcattctgactaatttaagaatoctggggaaagatacaatatcaccgtcatgattccaatttctgaaatct ttggagagttttttcctttatttctctttaattaaatgcacaatgcatgaacggcttcctgcaataatttgaaacattgcagataaagctgagccctacccgttg gtcctcccccgagccacttccgtctccaaagaagacagctgtcaccagccggacttggtccGcaccccccaccccctgaagccGcgtgaattagatc atatatatgtgtatgtcaacatagattatgcatgtatttgctactgtacttaacagcatgttgtgcaggtggaatccacggcagatcttgtaaccctccttcctt ctttttaactgctgtttgctgttgcactgtgggggccacagtgtaagcacttctctattgatggacatttagggggtttctggtcaccttttttattttttttgagaca gagtttcgGtGttgttgcccatgctggagtgcagtggGacaatcttggctGactgcaacctctgcctcctgggttcaagGatttctcctgccccagcctccca agtagctgggattacaggtgGgtgccaccatgcccagctaatttttttgtatttttagtagagacggggtttcatcatgttggccaggctggtcttgaactgct gacctcaggtgatacacctgcctcggccacctgaagtgctgggattacaggtgtgagccacggtgcccagctggtcacctttattttttctaagacattaa ctgtctttagtGagtgtcctactgaactcaataggtgtcatttatcaagcctgaaatgtgacatttaattctcccaatagctccaggatgcaaatgctactatt atccccattttacagatgaggaaactaaggttcagagaggtgatgtagtttgcctaaggctgcacagctcataagaagcggaaaagaaattcaagtgt agatctgcccgactctccgtttgtgatgatgcacacatctgcgagcaaaaacatggcttgcttgagcctctgagctcccaggagtgtgcaggGtggtgg gggaggcagctggcccataggtcgtagagtgagcaaagagtgatgagggtagtaagttggcatgctgagcatggggctgggacctgccagcctcc ctggcgcaacagaaattcatttctcatggttctagaggccaggaagtccaccatcaaggtagattggtgagggctcgctccctgcgtcacagagggtg ccttctcgctgtgtctcacatgggaaggggtgagggagctcccccaagcctcttttctaagggcactgatcccattggtgagggctccaccctcatgaac taatcacccccacgaggccccacctcctaacaccccccccactggggattaggtttcaataatgaattttttgaagatacaaacattcagagcttagca cttggcttgtggccccctcactccggtgtctgcctccatggtcacatggcctgcgcctcctctgtctctcctttgtatacttCGtggggatactcgtcactggatt caggacccaccagataatccagcgtgatctccccatctcaagatcccaaacgtgggatgttgcattcacagatggcaggggttgatgtggacatacct tctttggggccaccagtcacctcatgacccaggcaggagtttgcctctcttagtgaatgtgtctccgggcacagccctccccccagagcatcttgacac aggaatgagcagaagaaaatcccacagctcttggcccacccccacctgcacgggactctctgaggggatggtgcctgggatttgattaaggaaccc tgagaaactggtcgtatccttatcaaggccagagcataacacgcccgaggcgacgctccttattgtcccttctgtcacctctcatccctccccttgtcccttt cctctcccccctctcccttctccttggagaagaacccggcagcttctgcctgcacctgagaatgttttcccctctttccctctttctatagcctgttcaaaatctt aaGttaaaaGctgctgaactgggtgttGctgcGccagttGagcctcctgtgggaatgagggaggtgcGtcctgtccgcacagGctctggtcagcctgag agcagggaatccaggaggacaggaggggcgggcaggctgtgttgagttttagaattctgaaagaggggcgcctgttctagtccatgaggaaatgc acttctccaggGccaccccacacccggcGcacccgtgcaggGtgtttttccactgcactcagttttGCtggagaaacagcccccgccgggattaggac cgtgtgaagatcagagagcctttccagaatgccgagggagagtccaggattgttcctgtgtgtgtggctcagtcccttcaaggaccggagctcaggac cagggggtgaccctgagccagaatcctggttcctacagggccggctgtgacctggagtgggttaccttttcctctgtgtgttgtggtcttcaagtctgtaga atgggggtcgcacctgttaaccccggctgcaccacattcagatcacctggagatcttaaatattctcttgtttagttcggtgaaatatgcatgaggcatcat ttgaaccaggtttaggtggcagttcagtggttcattcacgttgccgtgctgctgtcaccaccatccgtctccagaactttctcctcttcccaaatggaaactct gtccGcattaccccctccccGagGccctggGatccacGattGtgctttcggtctctaagaatttgtctactctagggacctcatatgcgtggaatcacacaa gatttggccttttgtggctgccttatctcagcctaatgtccccaaggttcattcatagtgtggcctgcgtcaggatttccttcctttttaagacagaataatgctg cagtgaatgggtagaccacaccttatgtctctctttatccattggtggacctgggttgcttctgccttttggctgttacgaatgacgctgctgtgaacatgggt gtgcaaatgcacttttaaatataccggcgctcaaaaaagtcctgatgcataggttctgcctgcccccaacaccagtctgatgggattgtcctgaggttgg actccgttattggaattGtaagccccttgggtggttttaatgtgtagccagggtcaagaaccctgcctgatagagtcatttggggcacacctcagcacag ggcccagtacataggaagcccggggatgttagctggtgtgatggtggctgctggtgtcggctgatgtacagctttgtgtgagaggacagcttggggcc ggaatcctcccccatggctcctctttgccagggaccctgtgcgagccccatgctgacgtccctacccgaattctcctggaagttcctcctgtagcctcctg ggtccccaggtggctccctctgacctcactgatgatgcaggtgcccaggtgtgccgtttctgacgcagggcagggccagggcttatgcaatcgggtaa tgggctggaggcgggccttagggtggaagtcagtgtttctgtcccctgctgcagcaagagcaggataggacatcaggGCCccccccccccaattccc cagggaaagaaaacccaaccaattccaaacccagctcccactttctGaaccacagttgcagagggGCctgctgccttctgtgaaatgatggggctg gacggGtcagctcgagtcaGcgcagtaagatggcagactgactgggaccaggcgtcctggggtcagtccttgcttgctccttacagctgtctgggcttc caacagctgctatgacaaatttccgtaaactgtgttgcttaaaacaacagaaatttgttctcacacaattctggggccagatgtccaaaatcaaggtgtc agcagggccacattgcttctgagactctaggggagggccttttccttgcctcacccagcttctgatggtgtccggctatccttgatgcgccttggcatccag gctctgcctccatacgtggaggtctctctggagcatgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtctctctctctctccacatggcctttttataacgacgcca gtcactggatttagggccaactctaatccagtatgacctcatcttaattatatctgcgaagaccccatttccaaagaaggtcatagtcacagataccggg cttaggacttggacatatgttttgggcagaGacagtccaacccacaacaccagctgtgtgacctgggcaaggtgtgagcGcctcctctcctctgcagca cgtccaccatgaaatgaggcttgtgggtgagaaccttgcttcttagagggctcaggaacatctgtgtcacctggaagctgcttaatgcagattcccagg cctcgcccagctctgctgagctggaatctgcatggtaaccagacccccaggcaattcctgtgcacacgaatgagagttgcagggtaggtgaaaggat ttggtgcagggcctggcctaaagcagcacctaacgcatgttagccttcagtgccattttcattctccccactgcctgttctacctgcaacaaacaccgag agGaccttccctgggtggctgcagtcaccatccaacacatcggaggaacagatgagatgtcatccctgctcccaagcagctcctagctcagcgagg aaaacagctacatacaattttttttttaatgtgctcaaacagcatctgcgtgatgattggattttgcccacggtgcagctggcctgaagagccaggtagga tgtggtactcagctgggagcctgacaccaaggccagcttatctccttgccagccaggcacgtggttaGctaggcaaccagccgatgccgcagagac agtggagcaggacacccgcctgagttcccgctgtttccctggaagcggcattgagcacaggaggccaccaccggtgggcatttaggcgttttcccctc ttgcaaacaaattgcccatctccccaggagctggcttttcaggcaggtgtccactgggcacccagctgcaccagcctgcaactgcctttgggaaaccg aggaggcgaggctcaactctccgatttgaaggcagcagaatcattgatcaaggcatagaggtgctcaggtttgcctctcggagtggcatgatggtca ggtgctcaggatccagagctagacctggatcccaattctgcctagctcttagtagctgcatgacttacctcactcagcctcgatgttctcatctgtaaaatg ggacttacattataccactcacctcatttagtggatgggatgatttaaaatgtatttatacaaagtgcttcgcacaggacctggcctatggagtgcccttca gaagcgatggcttttGGgctgtcttgtcaGtcgtcattcatcagaacccagtgtgGgtgcttgctgttcttggaaaatgtcagcccttgatatgtagtagccat tatgactgtaatgagtagtttggttagaatgttctgtgccctgtctcacccttcagccagactgggagtgtgcaggggctggtttgtctcatctctgtatcatttc ccccactccctgcccctccatagagacagtgccccactcagagtaggcgtccGtccacccaccttgaaaacatgagtcctgaagggtaagcattgatt aattcatcaatgaattagttggaccagcaggtaacagagttcagtaattgtgtggggtaaattggggtcccctaaaagaccccttacaccctgtgctgtc ctgtggcaaaatttaaactgattcagtgcagttgaggcacggggacagggcaaaaagcaacaatatatgtgcatagcagcactattcatgatagcct acggtggagacaacccaagagttcatcagcggattaacaaagaaattgcagtgtatctgccgggcgcggtggctctcctgaggtcaggagttcgag accagcctggtcaacatggcgaaaccctgtctctactaaaaatataaaacttagccaggcgtggtggcgggcgcctgtagtcccagctactcgggag gcggaggcaggagaatcgcttgaacGcgggaggcggagtttgcaatgagttgagatcgcaccactgcactccagcctgggtaacagagtgagact ccatctcgcaaaaaaaagaaagaaagaaattgcagcgtatccatgcagtggactgttagtcatggaagggggtgaagcaaagctgccacagccg gatgaaccttgaggacggtatgctaagtggacagaaggccacattgtgtatgatttatatgcagtggaagacacatgttaacccacaacagttttggca gacacagttccacccacaacacaagctatgtgacctgcgcaaggtatgaacctctcctctcctctgtaacacgtccacctcgtggaggagaggaagt gaggcatgtgggtgagaaccttgctgcttagagggctcaaggacatctgtctcacctggaagctgctgaatgcagattcccaggcctcactgtggtca caaaaggacacatagtgtatgattccatttatatgcaatgttcagaataggggaatccaggaacagaaagtggattggtagttgcccaggggctggg ggagagtacaataggaagtaacagcttaaaagggtttccttggaagtgatggagaagtgttggaaatagtggtggtggttacacaacactgtgctaa acgccgctgaagtgttcactgtaaatgggtacatggtggccgggcgcagtggctcacacctgtaatcctagcactttaggaggccaaggcgggcag atcatctgaggtcaggagttcgagaccagcctggccaacatggtgtgaaaccccatctctactaaaaatacaaaaattagccgggtgtggtggtggg cgcctataatcccagctgctgggaaggctgaggcaggagaatcacttgaacccagaaggcaaaggttgcagtgagccgaggtcatgccactgcct gggtgacagagcgagactctgtGtcaataagtaagtaaataaataaataaataaggttaatggttaattttatggtgtgtggattttacctcaatgaagta aatctatatgtatgtgtatatagtgatggcagccccctggtgcctcagacagcctagtttctcaggccagagtgatgggctgtgactggtaaagcccctgt gtgattcccggaggcactagggttgtGcctaccaagcctggggcaagaaaggaatcccagtcagagagaaaaaaaatagtgttcagtctaatccca gaagcaccgttgaccctatagccctgacctgtaatgaaaacgaacgaaacatgcatttacaatatttctttaaaaatgagattttgggggtctcactttcta gttaagttgagtgtcttctcgttattttatactccacaattagatcacagatgccctccagtcatggtggtgctggtgcccatgtatttcactggaaatgtgcac agataatcgggacagtgttgcctccttccctggaaaattgtagccaaagcaccgaggctgattttgtgacatggattgtgtgggctagcaggcatgggg aataaggccagggggctgtgtttgacccagggtgtctctgtggggagtgcaccagcagggagctgagaggttatgagcgggttttaggttgatgttga agacttggcggccaaaagggcagtttgggggtaacacccatgggacagttatgaggcctgcattatatatgaaggtaatgtgacagtctctgatgctc accggattgaagggaagctattctggaggactcaagaaggccaaaaatgctgcctcccaagtgtccagtcctcccggaagccatggcttgctggag atagcaaattatttcctacacacttagcatctgcagccatagtgagtcttgaatcagggaagccagggaagataaccagccagccattgtccccgggt gtgcaaggcacaagtggggacattgcaccttggtagaccttttaagaaaattccaaggcagggtcccagtgagatgggggcttggagaggggggtc tcccatgggaggaggtaggcaagggccctttcctcgggccgaacgcagtgccacacacatactagacctcagcatcgatgggtagaggcaaacat gcatgctcctgggcccgtggggacgtgatgacagggacaccaagactttcggatagcactgcccgacggagcattctgcgatgatgaaaatgttctc tgtctgcaccactatagtcaccactagacacagctggctaccgagtaactgtaatgttacgatgtgatcaagatgctggatttgtagttgtatttGattttaat gaagttcagtgtgcgtagccacctggggctggtagcttctggactaggcagctccgctgtaggacctgcactggaaaaagttttcaaagccgggctgg gtcctccctggctcatatttccctgtggggtcctcctccactctgcagtgccatgggcgcgcGcgtgcagcgtGCtctcttcacgacaggtggtggggagc atgcgtgcttgggtgtgtacgcgcgcgagccccagaggctgcggcagcagcagagcagcagagcagcagcccctgcctggcgcgacgtgcttcc agtgcattctgagtcaGtcctctcctggcaaggggcacattcctgctgacgacttgtctcccgtggaggagcaacaggctctgctttccctggcctgaga accctggcatatgtgcttgcctctgctgacagttgccagagcgatggcaagtgttgcccaggtaacgtcccttccttgacaagcagagagggtgagga cagcgctggagtggctgactctgccagacgggaagcaggaggctGtgcctgctgtctctgcttgccgctggctggtggggcttgggctcggatgtggg gagccctcctgagttctacctccctggactactcctttacagaacttggtaggtgaaaacaatcagagctgctgtttagccaggaactgagctaagtgttt tatatattatctcatgaaatagtcacagcaagcctttgacagtagttattcttatcctgatttgcagacaaggaaactggtgcaagtaatagactgtaagttt catgagcaccggggcttgtctgctttgttcaccatggttatccttagtacttaacatagtgcttggcacgtcatagtagatcttcatgggatgattggatgga agggtgaatagatcgatgagtgagtgatggaagtatggatggtagatgggtgatgaatggatgatgaggtgggtgaaggatggatgggtgggtgggt ggatagttgggtgggtggatagttgagagggtaggtgaatggttggatggataagtagatggatgaatgaatgagtggatggattaatggatggatgg gtgggcgggtgggtggatggatggatggatggatggatggatgggtgggtggttgggcagatggatggatgtgtgggtgaatggtaggtgggtgagt agatgatggatgggtggatggatgaagtagagcttagatttgatctggagtctgctcgtgaagcctatacgcttcgccactgagccatactacctttggttt tgtctgatgactacctccctaggatagcatttttaaaaaatagcattattgaaatggaatccacataccataaaattcacccactgtgagtacacaattca gtgatcttagtaaatttataaagttgtacagtcatcaccacaattcagttttagagcatttGcaccatcttgaaagatgccctcatgcttgtttgcagtctcattc ctgttctgtgccccaggcaatgaatgttccactttctgtctctgtgaaattgcctttctagacatttcacataagagaaatcatacactatgtctttcttatctggc ttctttccGttagtgtagtggttatgagttgcatGcgtcttgtagcatgtgggtaattcaatcctttttattgccaaatactgtttggttgaatggctataccacatct tgtttatccattcatcagttgatgaatttaagttgtttctgtgaagaatgGtgctatggacattcttgggcatgtctttggagtttgtttctctttctcttgggtagatttc taggaacagaattgctgggtcatatgataaatttatgtataatgttttaagaaactttcaaacaattttccaaggtggctgtaccagtttaccttcccaccag caacacacaagattcccagtttctccacacctttgccaacacttggcgttgtctgtcattttctattacagccatcctcgtaggacgaagtcgtatctctttatg gttttagcttgcgttttcccgagggctaatgacgttgagcatcttctttgcatgcttactcctaggctggaatttgacttttaaagccagaccttggcaaactgtt ttctacaaagggccagatagcaaatatttggggctttgtgggccacattggatttctgttgcatattctgtgtttattttccgtcacaactcctacagtttgtgag accattcttggtctcatcgaacaaaaacaggcagggggctgggtttcaccgcatgctatagttcaccaaccctgctctaagtcagcccctttctgtgaaa acaccaggtcgtgtgcccagccacagaacagttccaaggcccctgtgtactccccacttcagaagaatocagtggcctgtggggtccatgctagaca aaccaccaggccacccaccccacctggcaaagcgcactcagcaggaagaccatattgcaaagctgagggccagcctccagggagcctggagc agggattccggaggcgtccctatcccagctccaccatgattcatcacctgatgagctcatcagagttcctgggatgaggcatgctaatttgtcacctagg gaggagggacagggccctgttgatcctggacaggcctccctcatccctgtggccaccctgacctggggctcagagcctcttctgggaacaggggcct gcctgcagcccgcacccacaacgccgtagcccaccctccccccgcacccgcagagccgtagcccaccctccccccgcacccgcagagccgtag cccaccctocccccacacccgcagagccgtagcccaccctccccccgcacccgcagagccgtagcccaccctccccctgctgcttccaccgGcttc tggttacctggcctccactctcagagccttgtggatcttgtttctggatcttgtccttgtgtcaccaagcattcttgacacttcttcaggatctcttggcaaatctg atatCGtcttcacccgaccatcgtggccctcactgatgtgatggaaagagctttgcagtggccagagccagttttcattcctgaattgtccctttctagctgc ttgactctgggcaagtctcttgacctctcggggccatgataggcttctgtgcacagagaacaccaacaatcctctggcagaagctgcagctggccacG ccctcagcatcgcgtgagggctgccagctgtgcaccatgaacacctgtgaccctgcagagcgcatgcttttttctggctgtgggatcactttggcctggg cacacggcagtcagaagccctgaagagttggccaggcgcagtggctgccgcctgtaatcccagcactttgggaggcGgaggcgggtggatcacgt gagatcaggagttcaagaccagcctggccaacatggtgaagcccatctctactaaaaatacaaaaattagctgggcatggtggtgcacacctgtaat cccagcttcttgggaggctgaggcaggagaatcacttgaacctgggaggtggagattatagtgagctgagatctcaccactacactccagcttgagtg acagagcaagactctgtctcagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagccctgaagagtttagggagctaatggacaaat ggccagctccctcactctttaggaacgtcaactctgagtgtgatctgcactgtcccctagagcccccagcaggagtgagccctcattgcctatatcatgt gcttgacagtgccctgtttattgactgtcttctcttgcccgtctcacttccccactctccccaccagtatttcctgctgttccctctGagatcagtaagcGatttgc actcagtcccttgtctcagggtcctccctatgacaagcccccaactcatgggatactgtgaggattgagtgggataaagctcataagagctagcactgt gctggcacatggtatgtcctcatgaaattttagcccttggtacaagccctgggatcttctggctctgaatacagcctctgcagactctcccatggatgcctg tgaggcaagggcttgggccctcccgggaaagctgttgtcctccccgctccaaggaggggagctgtggatgagctgaggctgggtgtaccgaccccg agggctcgtgtctgaaactgcgttggtgccagcgttgcccactgggcGctgctatgcctcagactggttgcctctgcatcttgagtggcatctgtgtgtgga gaacaggagattgtactcatggccacccacctcagggctggttgtattttgcaagtttaaatgagaGttcgctggaatgatgttcaccaaatattaatggt ggctatttctgggttgtgggatttttgaggGGttttaaaacttatcctcttctttgtgcttttcagtacagtttagattttttgcaatgagcatgcatGatctttcgcaa aagaatgaagtcattaatctttcaaaagtaaataatgtgcagctgatcagaagagtccacttagagcccagactccatgcaaatgtaagacacgggt gtggatcgctgtggtttgctttggggcttgatatagggtggattttgtgagatcatttcatggtcttttaaaaattaaacaattctctgggtacaaactaaaacc acagactctgaggctcaaaggagcattcatcctctggagcgggtagggttcttgcttcagacatgttgggttttgcacagatatttcatcgtgctattcagg cagcgtgtcctgctcacagcactaggacagggcggctttggttgacagtaactaggaaggaggctggttatggttccagagacgcctcagtggaGtg ggtgcgtctcatcgttaatgaagttcagccagtagtcactgtcaccatcgtcaacatcaactgcatgtttactcttcactgtacactcacccccgacaactt gtcacgcgtttcttcctgtcctcgtagggtctccaatggctggcaagtgaatgttcctggtctttcccctcccgctccctggggaatgctgggctgccctggc ctcctctgctctgctgggcGtatgagaagagGtgatctctttctaattcttgatgtgcaatgggtgaatgggcaaagaatagtaagaccaggtgctggaa ggaggaaagaaaggtgggcaggtgggtagatgaaagaactagagagaaggagaaagaaggagcagagagaggagaagggagagatgac gggaaagacttggggtgatgggcggggggaatgaaaaccgtGtttggtgtgagttcatgggggcgacaccagtggcaatgagtatatcagaggcc ccagaaaatcatggggtgcgggaaaataatggagaggaggaagatgggatgccgtattggcctaggttttacgtttcatctccttcagtttttcaagag acagattcagtctcagcgttcctttttgtgactcttggctgatttatctggacttgacttttgaatgcggctccatagagtggaccacatgggtccaggatggg tcagggttacagattgaaagaggtgccggtattttccatcctgacttacagaacaggaccctaaggctcagaaggtgaaagttttctaggaagaacca gatctttccgactcaggtccacctcccgtcccaccagtgtgcctcaccgacagaagtaaccgttccacttggcatggaatgtgtccctcagatacttGctt gatagcggtgggtcccttgacGacttgataattcctagctcagaaactcagcggtcagggaggctGtggcagcttctaagtttctgtttgagccttagcag ttcagcaagggaccctcctctcccccctcctctttctgactttggctcagagattgtgacatgtcacGccagctggctgctggcatggtaacactaaaatta ggctctccctaaggagcagagcacttaatgaaggagttcatGcagttagaaagtctGtcaagcaggccgggtgcatggggcaggcagGtgcaaag gcgggagcccgggcgggggtggagggagtgcttggcccagacctccgccttccgagggcctccgtttGcatgatgtcagagaggcggaactaact ctgcGtcaaatGGagggaggcagcagcccctgtcccaaccgctctctggcttcgacaGagcgcccaagcaaaggtgagagcactcttgtGttcctca ccaggtggatgcggagggcagcgctggatttcccgggggagcattccaggtttagtccctacctggccggagtctaattcctggccttaatcctgtctgt catgttccctagctgactacctgtcttcaagcgacctcttgggattgacataggcggaaacagtgccttcaactcagagaaagcccGtttgtggactgac cattcccactcttactgcgcttgaatccttgggaagtgagtttggcagaagatacgatctaaaagagaagtctcccccttttctttttgaagtcattggaaac tgtgtggagacagtatagtatggtggtgagggcactggcttgagagcccgagcacatgtttctgtctcagctctgccaactctagagccctgggcagatt ttctaacctcttgtgtacctcggtttcttcatccttttagcaaaaacaaaaacaaaaaaacaggaaaaaagaaaaaggtaatctatcaaggattatcatc agggtgaagtgagcctgtgtgggaaatgagtctagtgtcaggaggcctggctgcaaatgcaccccgtgactttggatgagacccttcctctctcggggt gtcagtttccttataaacggggaGtgggccaagttgtcagtttctcagggccctttacaccctaaGccatctgattctttgattgtcttccatcttctgccttcctt acgtgagtaacatgttgctgtctctttatctctttcaaccagAAAAAGATTT ACAAAT AT AAGAAAGTGCTGAGTAACCCAAGC CGCTGGGAAGTTGTCTTGAAAGAGATCCGGACCCTGGTGGACATGGCCCTGACATCCCCCCTGCAG GATGACTCCATCAACCAGGCCCCACTGGAAATCGTCTCGAAACTGCTCTCAGAGgtaaaacccctcccctgga cccctttacattgtttgcctttccctccaccgatcaccggctccatgccaagcagcaggcgcaggcagagctccgtgtgggctgtgttgttgccctgctgc cgaaggaggtgagcagttgcccacccagccgtgtgtgggagttgggagagggaggcttgccccagctgcttgcagctgtgctgtctggggattgtag gcaccgaagaggaggtgttgccccgtgcagtgagagccagtagtcccatccccatctctgtcttcccctagcagtggcccacatgagctccaggggt ccagggggattcagctttctgccctcgtcaccccacaaagcctgtagatgtgctctgtttaatttaaacaccattttaaaaatcaggagatttcacagtaca gtgggaatttccaggttctctttaaaaacaatcagaaaatccagccgcggtttgcagctggtgctacctgatgccacccgtcggctgggcctcctgtgcc atctgctttgctggcctcctcgcatattgaatgtgtgctttgtgccaggcaccatctgggaattcaagcaaagacaagccGcctacccccctggagcttgt gtcccggcaggggagacaggcagtgaacaatgaaactcatcagcgagtctgtcccgctgttggttaggcagaaggcgcttcggaaatgtgcttctttc tgttttctgtttcaggtgctattctaggcgctttacaaatattaatactgctctcgtttatttgGtcacctggGcctctgggaacactggagttgatgactcctgatt taaactgtgcacagccaccagactgatgcttctgtccccctcccctgacagtgatacccccggtcctgagtctcccccgtcaagctcccatgcaagtgc ctggctgcctggagccctcccctttctctgcaggcccacactggccgctgcGcgtgggacggggcctggcaccggccctccgtgtctgtggagtagag aaggtccctcactccaggaggaggcgaggtgggaggtagaaagtaggtggcagtgacagtctcaggcagagggacagaggtcagaggtgttgtc ctcagttgggagaccagcatcgttccaagaggagtaaaaacccaggctgggaaatgaatcacagagtggctggaattctgagcctgggtgctggat gtccagctccaggtgcagacttctcatctggagaaggggtccctgctcacctgtagtaagccaggcaggtgccaggtgccacccaatctggagtgca gtggcgtgacggctcactgcaacctccgcctcctgggttcaagccgttctcctgccacagcctcccaagtagctgagattacaggcgtgcgccaccat gcGcagctaatttttgtatttttagtagagaGaaggtttcaccgtgttggccaggctggtcttgaactGGtgaGttGaaatggtcGatctgccttggGctccca aagtgagacagcctctcttttaaaactcacattctctctgaaagatgggcctttctgtcttcacttcacagatgaggaaattgaggcGcagtgatactgagt gacctgcGcaactcaGgtggcaagtttgtaatggagctagaagttccacGttagagttgccaagcgcttttgagaccaacttggccaccacttcagcgc caccaggctcaaccaccaccaGacccttattaaatcagggcagtgctgagggcagcagacgtgccccattgccggGctcgggcaagattttttttccc ctctGagatgtgcttcaggtgaccgcatgaGtgttggccttcacatccctccttgggctttattattattattattattattaacaatggggtctcactgtgttgccc aggttggtctcaaactcctgggctcaagtgatcctcccaccttggcctcccaaagtgctgggattataggcatgagccaccacacctaggaccagaca cctggctgagggtgcttcttgggctttaaagtaaaaatctcaaaggcagctgacccttaagtgctaggatggaggaataaagatatttaaagtaggaa aatggaagaagtttccatgtgctttgaagctactgtgtcaggcaaggagtcagcattactcaccctactttactgaagagagctgacatttagggacag agctgggactccagcccaggctgcctgacccggcatccactcatgcatgctctgcagtggtcagtttgatggcccttagacctccccagtttctcccaag gaccctgcaaggtaagtattaaaatgtatagaggagtaaccaggggtgctgagaggttaagtagcttacacagggccagtcagattaagtgttgggc caggaccctcgcccgggtctgcccagtgatgaagcttatgcccctgcacatagatgtgagataaacccgggttggtagagactttctggcaagtatgt aactatggagatgaagagtgagaaaccgtgttgtagggtcggaaggaccttgtcctgccctcagtagctgggtggccttggacaagttgctaggccttt ctgtgcccagttgttttctgtaaattgggtctgagacgagtacctatttcacagaattgaagatgcgatcctctcatatgcataaagtgcttggcactgtgcct aacttgcaagggcctttgatacatggccacattttcattgtcataggagatgtctgtggtctgaaccccgtaagcaccttcagccaggggtctggagcta gtagctggaaaaacaaacatctgccttGgacctccgtgccctgttttggggctgggttgtttctctgttctgtttgcccaagttgtttgcaaggcctcctctgga gaggttccaggcatcaccagaccaaccagaaggtggaaggatctggagggagcaggcagaggggcatcgtggagggagctgctaaggacgc aaaacagttccgagaaagaactgtccgtccaccagcaaagcaaagctggctgtccccaccctcccaggcctttgttgagttgcgtgtaaagtggccg cttagctcgagagtcaggtgttccctctaatgcagtggctattggtggacatgctctaccaggggtggaaaatggccctgggggagagaaggctccct gtagaatgcatgggctgtcctgtgactgggacaaaggaaatgatgtccgtggtcgccaaagccttcctggaaaggtgcgtgggtggcggcgaggga tggatgtgtcgagctgcccttggcagcccaaaataaggaactgcttcttggatgggtggtggagcactgtagctcagtggcaggaaatatagactttag agtaaggacagacgggttcatatcctcactgcagcccctattaccctgcgcctgctagtcactgcatcccgtcagtcttaggcagctgatcagtcaatgg gatagtagagaacctgtcataatcaaaagaaattggtggcatgagcaaaacaaagctcttacacagtgcctgaggcatagagagctcagcagtcat aaggagagaccaaggccaggcttctccccgaagctgaaaaatgactgatagttaataatctaccataaacaggctgctcaaactccactcatatcca ctaaagaaaaaaagcgtgttcagatccaaaaaacatcctttcacatgcctgcattctaggtatcttgggtccaacctcacctaggtcaggacgtctcatg gggaccggtagagactcatgttgttcattcagatgctgacctggcttcacggcctcccgcagccctcgggagccagcttattgggcaaaagcaaattc atagctcgcaagcttttcttttgccttggcttctgtaaacacattagatacccccatatgccttaagcctgtccaggtggtgggagccatggggctctgtcta gaaccagaacaatcgatcttgccaacactgttcaaatgagaggtctctttacaagcagccaatgtggctcttttaggaaatacgaattggcaccactgt gtgtccaccaaaacagacaagcaaagcagaacacaccacgaaactagcaagaaagaagggcgggcacttctgagttttcctgtgattccttgtttat ggcacagccgtctctttccttgttcaagtactcacagatggcggcacaggtcgagcatctctaatcgtgaaacctgaaatgctccaaagtccaaaacttt cttttttagagacagtctcgctctgtcgcccaggGtggagtgtggtggcacaatctcagctcactgcagcctccgccttttggattcaaatgcttctCGtgcct cagcctcccgagtagcgagtaccatgcccagataatttttgtattttttgtagagacggggtttcaccatgttggccaggctgatcttgaacccctggcctc aagcaatccacactcctcagcctcccaaagtgctgggattacaggcatgggagccaccatgcctggccaaaagtccgaaactttctgagcatcaac atgacactcaaaggaaacgttcattggagagtttcaggttttgcattctcagactaggttgctcaactggttaagtataatgcagatattccaaaatttaaa aaaaaaaaatggaaatccaaaacacatgttcccaagcattttcagtaagggatgttcaacctgtaacagttaccaattatttaagaaaagtccagattg ggaaggaaacaggacccctaaaatttcagcaaatgtaatccattcaacctaattatgtttttgcaagtcagttgctagaatttgaattcagctaaaacatc tcgggcccactcacggaacttcatgttccttgggaacttagtttgagaagcactgaaatcatatacgtgttactcctaaaaggctgcctggcacagatta ggactcttgaaaggtctgtttctttacatacttattatgaacctgccttctggcttGtaagcagtttcactttgacgagggccagatcctctcccaatagcctatt gaggttactggaagccctgttgaccgaagcaggaactgagtctcccGtagactcgactcactcaaggtcacataactGaagccccgaaacaggga caagaactcagttctccctgGCccaaaaccataGcttctcccccttcccgaccttgcccctgagggtgttctgatctgtttaattaagaaaaaatgacagt gacagttggtctgtgacgctgaagatgtttcaaaactgtggatcttgaaatccaaatgctcgttttcttaattttcttttgttttgttttcctcctgctgtctccattca atcctttagAACACAAACTTGACCACCCAGGAGCATGAAAACATCATTGTGgtaagttcctctcgaacacgctccctGcac ccacctccgcctcctggagcctacaacccttttcctggtttggggtaattctggcgGctgcgtaatccaccagcatctggccttgctccgttttgtcttttctag caagccggacgcacctccctctgcctttgcatatttcagagccccagttgataggagcgggagtgtaattgtctgtctttgaggtttgtagcaaatgtatca taatcgcctcctccttcctgcgtctctgcctagggagttgaaggcaggagatggcagagcccgtataatttattcagaggcatcaccccattagctgaaa ggtaaacgttctctttcttgccccaggacatgtctcccaattaatccacaaatagaacttggatttaattccctgtgatacataaagtgagatgctattttctg ggactctaccatgatgtaagcatttttggggtaaaatatcttcctgaatgacttttagctacgaaacctaactctcacttgagagaagaaagaaatgaaat tgcacctgctagatggtaagcaccatgctatgtatttgaattcacagataacctagtccctaaggagttcatcatctattgtaggaagaGaaaagtgatc accgcaaaaaatagagacattgagtgcagagagtaagtagagtgataaactcccctgggaaaggagccagaaagcttcctagaggtagtgctatG tgagctgggttttgaaggatcaataggagttttccaggtggcaaaacgggataaaagcatcccagagagaagaaacaaaatgtgcaagagcaca aagatttaaagcaacgtagtgtgttctggaagcttcagcattgctggagcataaagcataaggaaatgagaagcaggcggatgggagatgaaatag aagcaagaggcagagccttttgtgcccaggaggggaccttggaactaacctgcctgggatgtctcctggctgcaaggtacagaacaagagcagca tcagtcactaggccGctcacgctGctctagGcgaatcagggccttgggggacccactcagtcggccctggcaagcctagctgggtactgtatgcaca aaatgaggtgagccccaggcctttgattgtggagagtcaaggcagcagcttctgcctttgctgtcagctccagtgtctggcacgtagtgggctctcagtg ggtglttgctaacgctaacagtatagaggttttctccatgctttcacccggactgtccattgccttctcttgccagaacaggaggacaagtcaacctgggc acccGGaatGactcacGaccaGGtttttctggGatagtattaattGatcaattGatttaacgaactttgctgagcatgtgagtctgactatgtgcGagacaca gatagagagctggacaagacttgaggcctgccattgaggactgaatgtgtgctgagagaacctggcagatcaacagataatacaaaaataacatg gccaagggctgaggtttgttctgggtgttagagggggtgcagaggataggtacttaacctctgtcagggagggtcctgggaggatgatgatggagga cttccaggaggaggtgaccaaggtgaatcttaaaggatagataggagaatgtcaggtaaacggagcaagctggggaaggcagttcaggcaggg ggacttacatgtgcaaaggcaaagtggtaagacgggctgctgcagaaccaggagcaagcatgagagctggaaggaggtactgccttcctctccct gccagcaacacctgtgggtcccactgagtgcctggaagccctggatggaggacaagggcttgcattcaggacaagcctgggaaagaaattttgatc tgagaaatccaggctgcatttatccagctaatgtggctgaactgaacccttaattgggtcaggttgagcttcccggctcagcaggaatgcctgagaaca ggaaagaatttgatctgagggtctgaccctcacccctgcattttacagcctccccttccagcattcttttattactattgctgttgtcattattatgatgccttctg gagcctcctttcattccaacagttacatcctcttatttgccctattggcaattagtcttctttggacatgcttggtagttttttatgcgctaatttttctaccatagcttg agttggttttattcattccattggccaggcagtagtaaccgttgttggtcatggacGaggagtccaaaccccagctgtggtccggctcactatggaaggc gctcaccatggtggtgaagaacatgagctgaatctaggttcaagttcagaatGgagttcagacccagaccccagccatactagctgtgacagaacttt taaMacttaaaatctcattttgGaagtatttcttttttcttttttcttttttttttttaaggcagagtctcactctgtcacccaggctagagtgcagtggcaggaactc ggctcactgcaactcGgcctcctaagttcaagtgattctcctgcctcagcctcccgagtagctgggattacaggggcgcacaccaccacacccagtta atttttgtatttttggtagagacggagtttccctatgttggccaggctggtctccaactcctgacctcaagtgatctacctgccttggcctcccaaagtgctgg gattacaggcatgagccaGtgcgcccagccaattttgcaagtatttcatgagtatgagtatgttttcatcaggaaaagagtatttcatcccatcccagtgc cctctttagaaacaccttgttttcaggtggtgacaaacccacacagacagataGggttgtggatttttgggggattttttcttttctttttttttctgcttttaatatga atgatgtgatgcaggatgtgttgctctgcatttatttttttcacttcacaatatggcctggagattgttcgaagtctttccgtggctatctaccccacggttcctga tgcttgtttgttgtgtttcagGCAATCGCTCCTTTGCTGGAAAACAACCACCCACCACCAGATCTCTGTGAATTCTT TTGCAAGgtacgggattgctgagctggggctgtggctgcaggaagtaacctccctctgtgcgcataccagggattgggtttgcacagaaaggcc aaaaacctgggccccaccgtcttgggtcacggtcccagacacaggcggagagggcatgcccggcacccattcttagggctacacccacgtctctg ccagacaggtgacaaagagtcacaaggggaacatcttgcttttccttggaatcacttcccggctgtcttaggagacaggttgctgcagatttcctgggct catgacgtcagagctgggttattattagccaaggttcctctgcgcagtggctggcccacggtggggtgcggctgtggggctttccctgaacacgggag gcagcacggtgctccaggttagcttagaggagGtgtggagcagggcatccgctgccgggcaccGggcgccagccttgcagtgggattcacatagg acatgtccagggcacatctttgtggctcaggccgaaccatcacacaaacctgttttgttctttgctgtgtggtttttttagtgtaataattttatgtccttggagag acatgttctcagcactcccctgtcatacccctgctgccccgctcagctggtcctcatccctccccgctcccattacctgcctcctgccacggtcacccgctg tcctttggagaggcgtgggctgtgtccagcagtgggaccagcctgtggggtggaacagcaggcccctgggaggaaagggggctgtggtgcgcttg atttcccttgccgccccttcccggccccccacccctcaccccagggagtcctctgtgtatgtgtcaggggacgggagctttgaaagggagacaagatt cagttgtcctcctggagtctgcctccctatcaggattccttttctaccaatccacacaccttctggtctgagtgcccagggtacctgtcagggcctggaatg acccccaccGccatccttaatgtgggcatgtgcaatgtgtgccccctggcccagggagtgaacacccgtgagtgtgtgtgtgtgtatacaggtgtggat acacacaggccccgggctcctcaggacacacaagggccttgtctgcctccgggactcatgggtatcatgcccccagaagagtggaattaaataacc cagtatcctgagagaacggccagctgctcctctgcctgtcacaacagatcacGtcctccatctcctgtccaatttaacccaaacctgcGccatgcttgcc tctcaagcttaggatttcacccagatctcatgattctcaaagtctggttctagaacactggatatttgttgtagaacaagatacacttgcctcactgtgtttcct acctgaggcttcacttgcctcactgtgtttcttacctcagcgttcctagtagcacagtttggaaagggatgaggtagaaaaaggtaccctttttggcattcttt gctgtaatcctgtgtgggtgtttcaaagagggcGgtctgccttttggagggaggggggtcccagccatgtgggatgcttctltggctattttgcctctggga gttggagccGagagaggagagcttgaggggaccaaagcctGccgGgctgcgtccgctctgccaaactcctgcGaaattGcaagatGtgaggaaag tttattcatcttgctttctcaggggagccctgatttctcttatcccaggtctagcatcctcatctgggggccgggtgggtgatacatgtgtgcaggacacgag ggaggggctgggccttgtcctcacagcctgtgaagggcttcctttccagtatgaaaaacaaaacaccgcgctggtgatgaattgggtctgcagactgc cacccgagtgctaaagccaccagttgaagagtcacagaattttcaacaccctggtggtcaaatgccaaagccctcgtactatcatacccaatttccaa ggtctttcagaccaaacatgcagaatcttagctttacagaagtctcattatatattaaataaggaccctgtcagaacgcctatgtgtaccatctgaaatagt ctcaagctttaaggtcaaaaccaaacaaaaagcaaacaaaagctctcatctcgtctacttttttaactccaaaaaaaaaaaaaaaattttaaggctat ggcactcgtaggtatttccccaaatgagttcaacacacctgtccacacaaacatctacatgccgacgttacagcagctgtattcatgactaccagaac gtggaagcacccaaaatgccttccagtgggtgaatggataaataaactgtgtaacaatgcagtgttattcagcactaaaaaaaaaaacgagctagc agaccacgaagagaaagggggagctttaaatgcatattagtaagtgagaggagccGatctgaaaaggctgcacactgcacgattccaactacag gacattGtgaaaaaagcaaaactatggagaaagtaaaatgatcggtggttgccaggggttggggagagggagggacgaattggctgagcacaga ggatttttagggcgtgaaacgacttcctatgatattacattggtggctccaggacattagacatttgtctaaacacccagagGgcacagcaccaagagt gaaccctaaagtcaactgtggactctgggtaacaatgatgtgtcagtgtggggttctccattgtaacaaatatcccacagggtatacgtgctacatttgtt acaccgcacggtcctttggggaggcaagggctgtgtccaccaatgagaccagcttgtggggtagaaatgcaggcacctgggaggaaaggggacc gtggtgcactttaccccctgcccagggagtcctctgtgtgtgcatcaggggacaggaaagggaaacaagattgtgttgtcctcttgggccctgtctctcc accaggattccttttccagtgccccacatgcctgctggcctgcgtgcccagggtacatttcagggccgcctggaacgcccccaccccatccttaaaag gagGatgtgcagtgatcgttggggaggctgtgcgtgccgggggcagggggtatctgggaaaggtctctaccttcctctccgttctgctctgaacctaga actggcccccctccaaaataaactcatttttagaaagcagtgcagccgtgttcatcaagggaacccaggcacccacagctgggctgactgtccccag
GGctgctagcagccacgggctgtgttcagaacattGttagggccgcagtaactgtaccccactctgtccccagCACTGCAGAGAGGGGCC CCGGTCCATGGTGGTCATCGAGGTGTTCACCCCCGTGGTGCAGCGAATCCTCAAGCATAACATGgtga gtcaccctgccccaacacccagaccccagcgcccagaacatgaggccccgcgcgcctccctggccttttgcgttggcacagatttggggaatgtggt tggcccagcgtgacagccaggaactggggttgagattctggttaaggacttttgggggttttgtacagcttgtcctccattacggcaacaggaagaatct ttttgcagttcctaagaattacaaaaataccgcagctggaggagaagaggaaagcctcccgggaagaataggcccaaataatgtctgtagatgccc tgccctcaaggacccagagcgcgactttgcactcctttagtgtgtgctgcgcacagcgaggtccttccagagagcactgtatggaagggggcaggag tagGcttgcagtggagaaaccagacacactcagcctcagccaggtgatcaaggtcaacatcgacaacaacaagccagttagacagaatattGcctt cataggacgtataaaaacgacacttgacctctatggtcttcctcccagtaacccatcaccccattccaatcatgagaaaaacatcagacaaatcccaa caaggggacagtctacaaagtacctggccagtactccccacggtcaaggtcatcaaaaacaaggagattctaagaaactgtGacagctcagagg agtctacgggggcgtaacgactaaatgtcatttggggctctccatgggatcccagaacagaaaagggacatgaagggaaaactgaggaaatctga ataaagcttggcctttaatttttttttttaaatacaaaagcaggatttaattgcacacttagagcgggtggggcgGttgtaatotgtgtggcccGttggtgttcc ctcatcattccagggacagcagcaaatgccattatttgcGctgtatgtcacgaggaaactgaggcttagctaggtccactaagtggccacagggacca caggtaggaataagaataacatctttttgcagatgcttattgaacactttcttggagtcaagagtgtggtgctctttgagtgtattgtgttattaaccctcatgc cattcccatgacacctgtgcataggaggaatctgggacccagagaggtgggacgggataggcagggtctgatgagcagctgtgggtggtcctggtg ggagctaaggagcaggcagcctgaggccagggcccattcccaatcacatgttgtactgagccagccaccacgttagattttagagtctcctggagca cgtgaaaacaactgaaaaagggtaaccacacatcatttcacttgtgatgtagcttgcctgtctccacaccatgcccctgaagaatagtatatcacctac agccccttccccagtcaggaatggaagtgcatgacacatgtgctcctctaccccttccatgctcatggcagacatcattaatcaattatagcactctttctg tagagccagagacagcatcacactctttcccctcctgcattccaggccaccactaccaactgaaatcgtgttagtaccataatgaatgctatgtaccatt ctctaccctaagGgattgcaaactgtaaatgaattgttgctgatttctgagcccctcctagatttggggtaaattcatttcttgttttcagaacaGaggggata gggacaccctgtgcagttctttctccaggacaaggagactccccactgggggatggggcggggtttctgccttaatttgggcgctcatagtttcaagga ggagctctttctggctttggccagctagaaggaaaggtgccctgtttgttaactttaaaatcactacgggtgtagtgtatggagtgggctgtgccatgctgg agttcagagcaaaggttcttcaggttttcttgcgaaggaccttaacttgtcaatggcagagccacacccccgggacatacttggcagaggaatgcctct tcaggcacataaacatttttgcatactccatgttagtcaataaacGgtttcataagggttctttgaggacatctgacttcaaagggaaaaaattcataattc agacaggctctcggggcttcaGcatacaacgcctttGttgtatttggttagttttatgggcGtggagtgttgaccatgtattaattttctctataaaaatcagaa ccgctctgggcagacccagaatttatagtatctgtggcagtctggcagagagtagggaGcctcagccatgagtcctcgcctcacttgtaacgagtacc ccctaagtgatcccaggtgtctggggatgctttaacgcacccagatcccaccttgctcttggcgcctcctaattacacaccatgagcggcggcggcag aggagaactgctgggaggaccgaggaggatccgcctctcgtgtagaagaacagactgtattaaacagtgattatggccatgccaggcacaggaa gacctgacctcatggaatcctaacaacacaggcggtgggcgagagagagctttgacatttactcactgaatgcgccctgatgcttaatgagtggcac gggtcagcagcaccgttgtggagctggggctctGagctggtgtggggggggggtcatgtctctggctaaggagcgtacctagcctgcctaagccatg agcctgttggggtggcatgaacagtgactgctcttcaccccaaatgcagtgtttctccttaaggaggcactcagacatttaggaaacggggggaacgt agccacggtgctgttctgggatttgggggctGccccattctgggtgcatctcttgcaaatatgttatgtgctccctttcacggatgagcaaactgaagctttg agagtctcaaagaatgttctttactagactgaaataaaaactagaaacaaaaggaagcggttctttagtatgttcctctggagattcagtccaaataattc gccaaactgcgttctgaagaatgaccatgtatGtctgtgcccccacgccactcggagtgttcttgtggcaaaggaggcgagaagacacggctgtggtc cccagtggaccgtGaagtaacctaacctccagttttccaaggggagcgtatttttcagaggctgctggatccctctgtaaatgtttatttccatggaaatga ccttgattattcaaaaatctaatagctaagatgacagttaccttaagtctctgttgaagcagtttacaaaatcataaaaccctcgtggtggaagggggcta gagatcacttGtgtggaccctcattccatagtggggtcagtgaggcccagagacagacgtggcagcccaaagccagattaaatacttgtgaggcag aggcctcattttctaacccaggagggagggagggagggagagaaagagagagagagagagagagagagagagagagagtgtgtgtgtgtgtg tgtgtgtgtgtgtgtgtgtgtgtgtgtttgtgctcatgccagtgcgtgcatttttctgaacttgctccgggggctctgcctccctctttatgtagcaggacagtcct agcaggcagacgagtgaaagctccccctgcactgtctctcacaaaggacccctttgactccacatgaagaagcccccagcggctctagaaactctc tcctgggagcctgcgggagggagtggtaggaacgggttccactcagagctttcatgccagcttcggggtcagttagacctgaggggggtctctatttct gttctacagcttgaagtcctgatgcaggctgctctccttaaaaaatgggttccactgagatgggtacggagggacaggtctggagactccaggctccc ctccgtggtcagccacatcacgtttatggagggtcgggggcaggacggtgccgctcctgggtggcGagacacagcccgaggggctggcagtccca gcacctccgcagccctggccacgaccctgggaatgaatgcggcggccagattcacaggcccctgtccggcccgtgcctctctcctgcacctctgttct gctcctggcaagccccaagccccccactgggctgggcgccgacttcctgcctcctggcagagctctctgtgccgtggcccctgtcttcctgacacctgg aagaggccgagcacggcagccaccacatatggccctcagccggcacaggcagtgtccctgtgtccttgacctggccccttgacagagccccgcag tggacactttagttccgggggcctggtgcaggcgctgctttccctagcgtggcacagatggggcctccaaccagggtggtgtccctgtcccctcatcata gtgacacgtgccagtgcctcccctgccactaatgcctggtgcccaactcctcattgcacatgtatgcctctgtccacagcagcctgtcacaaacacaca tccattcacacccacctcacactcactgccttccacacccacctcacactcactgccttccacacccacctcacactcattgccttccgtacccacctca caccttccacacccacctcacactcacggccttccacacccacctcacaccttccacacccacctcacactccttccacacccacctcacactctcctc cttccacacccacctcacactcctccttccacacccaccacactctcctccttccacacccacctctcacactcacctccttccacatccacctcacacct ccacacccacctctcacactcacctccttccacacccacttcatacctccttccacacccctctcacctccttccacacccacctctcaccttccacaccc atctctcacactcaccttccacatccacctcacacctccacacccacctctcacactcacctccttccacatccacctcacacctccacacccacctctc acactcacctccttccacacccacttcatacctccttccacacccctctcacctccttccacacccacctcaccttccacacccacctctcacactcacct ccttccacacccacttcatacctccttccacacccctctcacctccttccacatccacctctcaccttccacacccacctctctcacctccttccacatccac ctcacacctccacacccacctctcacactcacctccttccacacccacttcatacttccttccacacccacctctcacctccttcGacacccacctctcac ctccttccgcaccaacctctcacctccttccacacccacctcacaccttccacacccacctcacactcacctGcttccacacccacctcacattcacctc ctcccatacccacctcacactcacctccttccacacccacctctcttctccttccacacccacctctcacacacctccttccacactccacattcccctcgg aagcaccGtctcttgtccccccagcGtttctggctctcttttctctttctcgtctcatttgtctcacaagtgccttttgagggtggctttctctacagccagaagca cctgctcatcagatggtccttcagagtggaagcgcgggtgtcgcagtgctattctttgaagtagacgccacctgtgctttccagagggttggtgtctcccc attgccttccacatcaacagctccaggcagagctcggtcccgcccttctttctggtgtcctggctgccctgggctcctgccctgGctagcaccgtcccgac tcctgtcctctgctgtctccacagGACTTTGGGAAGTGCCCGCGACTGAGGCTGTTTACTCAGGAGTACATCCTTG GCTTGAACGAGCTCAACGCGGGGATGGAAGTGGTGAAGAAGTTCATTCAGAGgtgggtctccggcgcgacgtc cctctgtggcGtaggagccaGtttcctctGggatcctgtttactcagatatccacggggggctgtcgtgtaattaaatgaagactccctctatgaggaagc ccctagcctactgcacggtgcccgataggaactcggacacactggacctcagcaacactgctgtttcctcaggtcccacgacccctcaggctgtaggt gccacatgtttaggactctgtcccacccctggtggtcccagagcgtcatcgtcgggtgcttgaacaatcaccccataaacataaccaagaggaagcc aaatgttcttgctcttactcacttttggttcttggggttggtgttttgggtttt^ ctccagtttcctcatctgtcacacaagaaccatagtatccctcgcccagttagtgtgatgctccagtgagtaggagacacaacacatggagaatgctgc ggaagtctcgtgtcaggccgaggtgtcatcattcttgttcttctcatctcttttgtttgtttgtttgttttgagatggagtctcgctctgtcacccaggctggagtgc agtggctcagtctcggcttactgcaacctccggctcccgggttcaagcaattctcctgcctcagcctcccaagtagctgggattacaggcacacgttac gactcctggctaatttttgtatttttagtagagatggggtttcaacatgttggccaggctagtcttgaactcctgacctcaggtgatccacctgcttcggGctcc caaagtgctgggattataggcgtgaaGtgctgcccccagactcttctcatgttttaagaaaatcacagtaacccatttaaacaagttctgaagctacgtat ttcctaaatatgcccacttggaactcacgaagtcgtttgaggttggctttgtgacatgccctcatgccagaaccgtggtgacaccacccagttgtggtttgc aaaatcttgtcaggttagggcattGttagtgacagcagcctcgatgacagcttcccagaaatggtacaggtgttatcctcaggaccaccaaaatagcc aagacaagtaataattagtggcacttattgaggacttagtaactatgttggtgactctatgctaagccaaaatgaccctcatcatttttcttccaaagcagg atatgtttgaaagtaaaatgaggtgttaggaataattaattattcctgaaccaccaggtgtgagcatgactgtcccaggacgtatggccaccatttgctag gtctctctgtgaattagaaaatttggtcctaactgtaccccaactgaggagggggctgctatcctcattttatcgctgcagaaacagggtggagagtttag gaggtttccaaggccactcaggggtttgaacccgggaaccctggatccggagtccacagccaggagctttgccttctgctgcctgcacgtggcacag ccggggcccaaatcctggtgccaccaattgcacagtgaaggctctcagagccccccaagtggcgctggcagagcgggcagccccgtgcctgagc aacgccctccctttccccccttaccctgtccatgggccccactcctgcaggcttctcaccccagccctctgcttttttccagCATGCACGGCCCCA
CAGGGCACTGCCCCCACCCCCGGGTCCTGCCCAACCTGGTGGCCGTGTGCCTGGCTGCCATCTACT CCTGCT ATGAAGAGTTCATCAACAGgtcagttgctgaaccaccgccacccagagggcttgggaggggcaaactgccacccccatc atgggcaaagtcaccaagaactgaccaggccagagaggtggagtggctgtttactgggcagacctcatggtgtgtttgccagttcccctgggcacatt gattcatgggcccagaagccagggatgctgctgaaaaagcaagcactgaatcagcaccgcaactgcaaggctgttagagctgcttggctttaggga cagatgttttatgctgaagatttctcaccactggagaggtatgacacactggtgtgtgtgtgtgaatgtgtgcacatgggtatgcaaatgcatgtgtgcact gtacacatacatgtgactgtgtgtacgtgtgtgcacatggaggtgtgaatatgtgcccgtgtgttggggacaagggttgacagtaaggtttatcctgtcta gtcttggctttgagaacacaggcttttgcccatgatttgcatggttttattttatttttttgagacagggtctcaccctgtcacttaggttgtgcggcaatacagtg gtgcagtcatagctcactgcagcctcaaactcctgggctcaagccgtcctccGacctGagcctcccgagtagctaggaccacaggcacatgccacc actcatggctaatatttaaaatttttttgtaaagacaggatGttgctgtgttacGcaggctagtctcaaactcctgggcttaagcagtcttcccatttggacGtc ccagaatgGtgaggttacaggcatgagGcattgcatctgtttttcttgagcgcctgctgtgtgcttgacacaatttcagtgctggagagcgagcaagatca caaattccctgctctcttggggcttccattctaccaggaagagatcatgtacaagtaaatgtgcaagatcatgtcagagggtaagaaaaaccgtgaga gcaataaaaccgagtggtggggtagcaagtgaccggaagaggtggcagggcagggccacgacctggctttggagcctccaaaaggaaactcca agaccaggatttgggtggaagtggcttcctaggaaggtggtcccaggaaacactgggggacagggaagggaggacatcagtgaagtatgaatta ataagcaggtgaggctgggcgcagtagGtcacacctgtaatcccagcagtttggaaggccaaggcgggcagatcacttgaggttaggagttggag accagcctggccaacatagtgaaaccccgtctctactaaaaaaatataaaaattagccgggcatggtggtacatgactgtactcagctactcaggag gctgaggcgggagaatagcttgaacctgggaggcagaggttgcagtgagccaagatcacaccactgcactccagcctgtgcaacagagtgagac tccttctcaaaaataaataaataaataaataagaaagcaagcaagcaggtgaccacttcaggcagctggcatgcactcccactgtgccccaggag gccgtgcgtaacacactgagagttgctctgctgagagttgctccgccgaggctggcggtgctgggatagtcactcaccagctcccatccctcgctggct gagaactgctcccgggatgcagactaatgcagatgccattagtttatggggaactttctgcagtgacctctggtgtcattggagaggatgtgacatgca gaacacagtggtctctgctgcagccacGcagttgttcaggtggtacactacacaactccaaggagaccaacatgagtccagaccccaccagagctg gggatacagcaggagggtatttcagtcttttctcaaaatgaaggcagtagagcattctgagtcgctgaaaacctgtacaggggggatttctcaaacaa atgccgtactgctgagttcttGggaggggGaggaaaaggcatttgataaatcaggggctgttttcttgcagcagggcatgagagagggtgactcttttaa tgccctcagcctcaggtcccgatgttcaaaggggatcatgtcccaccttgaatcacttccctgatcagaaggaagtgcagggactccaggggccaga atgtggagatgggaggctgctcattcccaagggcatgttctggagctgacagcacggtgaggcaaaaagaggagaaaacggaagccagagggt agtatcaggcctgcccttttgtatttttagtagaaatggggtttcaccatgttagccaggatggtcttgatctcctgacctcgtgatccacccaccttggcctc ccaaagtgctgggattacaggcgtgagccaccgcgcctggcttacagtatttaagttatacccagagtgtgcaggagccagctcacacgttacatttg ggaacacatcccttcccagttctgtaatgatatcatattgatagcttgaagtagctgtggtgagtatttacaccaaagaaattggtaaacactgcagatca gggcttcttttttttttgagacagcttagctgttgtcgcccaggctggagtgcagtggcacaatcttggctcactacagcctccacctcctgggttcaagcga ttctcctgcctcagcttcctgagtagctgagattataggtgtgggccaccacacctggctaatctttgtatttttagtagagatggggttttactttgttggccag gctggtctcgaactcctgacctcaggtgatctgcccgcctcggcttcccaaagtactgggattacaggcgtgagccaccacatccagccagatcagg gcttctttctttggagagttggttgttagacatttaccagcgtactttgggttatatgtcaatttaaaaaaagaaagaaagaaagaaagaaagaaaaggg tgcccaggaccctcccagtgccattctgatttaattaggatggccctggcatctgtttttggaaggagcgttggggaggtgatatttacgttaatacctcctg gctgttctccaggcaagaagcaggaagagggtgacccagggagagaaccacatggaaaggcctggcagtgatgggtgaaggtgccattcgtca cagtgtttttgtttttggtttttgggtttttttggaaacagtctcactctgtcacccaagctggagtgcggtggcgcaatGtctgctcactgcaacctctgcctcct gtcttcaagcaattctcatgcctcagccaccGaagtagctgggattacaggtgtgcactgccacacctggctaattttttttttttttttttttgtatttttagtagag atggggtttcgccatgttggccaggctggtctcaaactcctggcctcaagtgaaatgccccccttagcctccagaagtgctgggattacaggggtgagc caccatgcccgtgtaGaatgtttttgtatctacgggtccttgaaccactacttcagaatcacctggactgctttaaaatagattcctggctgcaacatttctgg ggtatggcGcaggagtctgcattctaaacaaactccacaagtcattctgctgcacactgaatatggaggtccctgcaggggaagagctgaaggaaat ccagtgtgactagagcagagagaggaaagggaagcaaaagatggagttggagaggagagagtgctgggccatgaatagccagcttctcaaac ctcctggtgcctgggactctctagggttggagttaaaatgcagatttggattcagcaggtctggggcggggcctgagactctgcttgtctaacaagctcc caggcgaagctgcaggctggggatcactctgtaagtagcagggttgtcctgggtttcagtggcagaacttttatcctgggaacattggagagtccaca gtgggttgtaagtggagaagggacgtgatgggatttcagttccattGGcctGtggctgctgGtgtgaggaggatggagtagggggcaggcgtgaccct ggggaacggttaggtggctgtggcaaggagatgccaggttggaggcgtggcgagggtgagatggtgcctgctgcctcgtgccagccctggctcagc tgtgttgagccccctcggagcGcacagtagcctgggttccagctgatgccatacatttcctggatatcacGcagagaagcacgatgctgccaacaGgtt tcgtgggctcaggtccatgacgcccccctcagccagtcccttcaagataaagtccgtcatgtcctccaggccgtccccagtgctctcggtgggcaaatg tacacaatgtactcacactgaaaagaacagacaacttgacccaggttagcgtggctctcttgaaaatcaccaatctgagccaaacagccttgaaaat ccacttttaaaacccagcaacggcaaacaaagagaaatgcagtgttgagtacttggggagcaaatcagatctggaccagagaatttaggtctccGc ccatcacagaccacacacaagttgttatcaacgatagaattctcggactttagccgatggattgtttatttcccccagcaaagctgaaagtgtatttattaa acacccttggtgggctcagctcaggcctggttcctggcatgtgctggatacattcagacccttgctgtgcatggggttcaagttctgcacacagcccttgg aggggctattcacgtgccccctcccaccccttcccccagctgcaacaattccccaaacacaatgccagctgtgtggccctgtcctcaagcctgggagc ccctttagaggcacaggacccatgGatgtgacacatgtggggaaggactagacaagcagctgttttcaatcgtgccgttgtgctcgaagtcttggatta gtggatctcaaccttgaccacacacgaggagccttaaaaattactcatgtccaggtcgcatcctggagattcctgtctaactgggctttgggatgtttgga agtgtacccaggggatcctggtgtcccgccaggggtggagagctttggtttaggaggagttcgagggtaggaagggcaagagtagcaggaagaa atcaaggaagacttcctggaggaggggacctgcacagctcttaggggaccttggaagccaacctagttaggaggatcctgggctttggggtccagg agatctggGttcaaatcccatctccgtcgaGtcatgggctgtttaattaggggtagatcatttaacttctgagaccgtctttcctcacctgtggcacagagac ggtcggaatcactgttcagtgatgtgtttgagcatctgtgtgactgcacttagcaccttgccggcccatgggcaccagcagaggaacccgttgatggta ctactgtcccttataatgcacctcccaggcaactgggcacgttgggaagcagtcagaggaggggctttaaccaggtcaaggctctgacaagtcctgc cattaagaggcctaatttcatcttgtttgcccagtgtttgcctaacaaatgtgagattaataatgccatagagcccctttctgggttaacatgtgttaacacctt gtgcaggcttctgttcctctgggcagttaaagatgctgtgcctggagggttacccaggaggagtgggggttccgcagacagaagggcagatactgag cttgctcacttggctgggtttgggggcaggagagcagagtcctggaggacattgtggcatgaggtcagggattggagggcagttagactgcaggaa gctactaaaagcaaaacagtagatcccattggcttatcaagaaagtggccagtggcattttggtggaggagaatgccaagagccttatggctgtcac gtgaagatcagcatccactcagtcggtcagcaaatattttttgagcacctgttatgtgctggggtgatagcatgggctgtagagacaggcaacctgggtt gggctgccatccccacctcttcctgtctagaccttgggcaagccgtgcacccaggctgagcctcagtttcctcatttgtagcacaggaatgatgatagtat tacattttggcctGatcctgggattcagggaggGGtttagtctgatgggtGatggtgcatcatgaacggtgcctgtactcatgtgccctctcccgcctcttccc ccagCCGCGACAATTCCCCAAGCCTGAAGGAAATCCGGAACGGCTGCCAGCAGCCGTGCGACCGGAA GCCCACTTTACCTCTGCGCCTTCTGCACCCCAGCCCGGACCTGGTGTCTCAGGAAGCCACGCTGTCT GAGGCCCGGCTCAAGTCGGTGGTCGTGGCCTCCAGTGAGATCCACGTGGAGGTGGAACGCACCAG CACTGCCAAGCCGGCGCTGACGGCCAGCGCAGGCAACGACAGCGAGCCCAACCTCATCGACTGCCT CATGGTCAGCCCCGCCTGCAGCACCATGAGCATCGAGCTGGGCCCCCAGGCCGACCGCACGCTCG
GCTGCTACGTGGAAATCCTCAAGCTGCTgtgagtgccccccccgcgtgcccgcccccggggccggtgggaggagactgggcttt gctgctgggtgcggctgtgtttgttggttcgagctacgcagggccgggcatggtagagtggcttgtgtgtgagtgcacacgagctggtgtgtgcaagagt gtgcataagcacaagtgtggctgtgagtacaggcatacagggtgcatatgtacaagtgggtgaggcacatgtggctctggttgtgtatctgtgagcata tggtgtgtgtatatacacacgtggggtgcatgcatggctttgtacGtgtatgcttgagtgcctgggGacatgtgcaaggtgcatgcccaagcatacatgtg tacatatgtctacatgagtttgtgtgtgtgtgtgaggatctggatacatctgccagggtgtgcaggagcacaggggtgcccaagtgtgtctttgagtgtgtg gacatctctactgtgttgggtgtgtgggatccttagagcttgtgagtgtctttgtgtgcctgaacggccatgggtggatgtgggtgcgacagcacacgtggt ctgccgagtgtgtgtgtttataggagagatgggtgtgggcatgcctgtggatttctctgtagggatgtgtgtgtgtgtgtgtgtgtgtgttaaatgcacagcag tgggtgtgtctaggcacttgggctagttttgtgcactagtggctgtggctgcatgcatgtgggtgtaaccatttgtgctgtagggttagagagcatgtgtgttt ctctgtatgtttgcaggtatgtgcatgagGccatgtatgtgtgtgttgtgtgagccatgcatgccgtgtgtctttggggtgtgagtatctgtgcatatgcatgtgt ctgagtgagtgacgggtcatgtgcaggagtgtgtgagtctgtcttgggtatgtggctgtgcgtatttgtgccgtgtgcctgggtgtctatgtgtgcacattggt gttgtgtgtgcctgggtgtgggtgtaggagacccgtggacccggggctgctctgggtggtgtggcttctgagctggctccttctgtgcctgtccctccccgt ccctgaacctcaactctgtgactctagggtggaggggagtacagttcttaatccttgacccctaagggtctctccagccttgccatccacacgctccacc tgacacatctcaaacccgtgagcacctggttctgggagcccGagtttgagggatctcattgaGtgttcccttGtgccGcccacagagcGatgtggttcca cagaccagctcaggtctgcagacactcagcagacacctccccctttctcgctccacaaactccttccttcggaacaagctctgccccactctcaggagt tttgaatccagagacaggcattttcagatgcagctgcatgtggttgctggacctttcggaggggttcggggtatggctgtgttgtcatatttaaccaatgcat ggtgcctgtctagagccagggctcccggggccctcagcctgcagggaggccactcggaagcccggtgcctggggtgttgtctgtgtgggtgggtggg gtttccctgagcccctgtgtcgtcacgcgctgggcagcgtttggtcattctgtcatgtatgtgttgtgttgctcctggagcctgctcagggtttcgagggacag agggcagcttctgagggcctggtgagctggagaaatggctgggaggcaccctggggtgccccctgtgctctgctagcaaggcctgtggtgtctgtga aggtgaacatgcgcacacacgttcacaaggtggctgctgctggtttgaaggagatcgtggaggcagcgtccccacatagcctcctctgccctggcttt ggccccggagaggaaagggtggggtgtgcccaggggttcaggaccagccccgcctcgtggtcccagcagcagaggtcaggtgagggcataacc acattcagtgaccgccacccccagccaagcggaattccagatcccactaagagagccactccaagaatacgtcacagccctgagtgtcttcaagg cagagaagggtgccagctctcccagcggcagccgggttagggcgcctccctggattttggagggggctccctgctctgatggaggtagaagcctcc aggccagagagtggccccgctgtccactccaactccccagttccagctggtttttgcaaacaccgtgagctcctgggccttctggtatttggggcctgac tcctatttctcattaagcactaagggtttgagtttcagcacgcagttgacacacattttttccttcttcataaacatgctcatgaatgggggctctgttctccccc atctgcgtccagaccccctgcctgcccgcatcacccagctgccagggtgcaggtgggggtcagggccatcgccaagggcccaggacagtcaggg caagccaggacgggttcccgatggggctacgcagaggagcaggtcacgcctatccccaagccctccacaaaatgggattatgctcctggcagcct cttccatcttcggggagctcaacacaatttgggcctgataactgtattttcccaacaactttcctccccacacccagcaggctgcttaagttgctggctcatt ggaggcttcaaactggttggacccaaacaaccccagccgctcaaagggctccaaagtgagatacgtcaggaaaggcacagactcagagtcaga ccatgctaggttcaagtctcacccgtgccacatactagtlgtgaccttggacggttggtcatcctctGtgagcctccggtcccaggctgggaggtggcgc aagtatggctgcatctggcattggcaaagagatgggaggggccagccctgagtgcctggcgcagagcagacacctctgcgaggtgaacacctgg ccaatgggagtagccgccgtttatgatgcagccatgttcccgccgcttgaccatactattgagggcgagatgcgtcattgattcagtaagagtgctttga gagagaaaagccacatggcatttattgcacacctggattgcaggaaacttgcctcctagcattgaggaaatgcagccgtgggcctgagctgctgtgg aactgtggccagtgttcttggctcctctgggcctcagttttcttgtctgtaaaatgcatgtcttctcggaggactgcatgagaattcagggatgttggagatttt tggtgctggcctagcctctggttcttgataagagtaaactgctgttgtcagcctggtgcggtggctcacgcctgtaatcccagcactttaggaggccgag gcgggggaattacttgaggcctcaagaccagcctggccaaGgtgacgaaatcctgtttctactaaaaatacaaatattagcGgggtgtggtggcggg cgcctgtagtcccagctactcgggaggctgaagcacgagaatcatttgaaccccggggggcggaggttgcagtgatccacgattgcactgctgcact ccaagctgggtgacagagcaagactccatctcaataataaaagcgtgaactgcagttatcagtattgaagtgctgcccaaatgggagttacacataa agaaaaaaagaagcagccaggctcggtggctcacacctgtaatcccagcactttgggaggccaaggcatgcggatcacctgaggtcgggagttc gagacGagccttaccaacatggagaaacctcgtctctactaaaaatacaaaaattagGctggcgtggtggcacatgcccataatcGGagctacttgg gaggctgaggcaggagaatcacttgaacccgggaggcggaggttgcagtgagctgagatcacgccattgcgttccatcctgggcaacaagagcg agactcccatctccaaaaaaaaaaaaaagatgactttatgtggaattgaagggtcttaaagaggacgttgccaggcggggctcaggaaggcacgc ttagagcgaaccacatccatcggagagggcagtgcaggtcgcagggtgcacaggtcagtgtttcccgctccactgccagggagcaggggtagtgg ggcgcaggccctgatcagttgctgcgtgttcccataggaaggcccctgcatcattagaatttgacacttttgaaaagtaacctaagttgcaaaaatttcct ggaggtccttgaaaaggaaaactattccaaatgcgggtcgaggttgatggtgaaaaaaatcaccgcatgaggcgcaggaggggtgaggtgatga aaagaacgtggattcgggaggcgaagaagagctttgggatttgtagtcatttggagtccagctcttttcctgctgggcacctatgtatgattcacaccttc atttatccacctgttgattcattctttcatocagcttttgttgtatacctacgccaggccagactctatgccaaatgccatactggtccctgtactcagtccctct gaacctgagtattgccaagtgctaagagcagtgacatcaagcgctcagtgcggctgctgtaaagctcagatggggagagtgtggaagccgtggccc actggggccacaggggtaggacgcgGttctgattggctccGgtcgaccgcttgggactctttgcaaacattagattttaagaggccttggtgggctgca gctcagctggaagaggcccctccctcggggaacttcagggaaatgcagatgaatttggggttgtcctaatgactgggaggcagggccaggggacat cctgtattacctgcagtagttccgctcactgcaacctctgcGccccaggttcaagccattctcctgcctcagcctccccagtagctaggattacaggcgc ctgccaccaagtctggctaatttttgtatttttagtagagacgggtttttgccatgttggccaggctggtctcgaactcctgacctcaagtgatctgcccacct cagcctcccaaagattacaggcatgagccactgtgcccagcctgttttgtaatttttaaaaagtctttgattcttctaggtagttctttcttatatgtgtttattttttc tttttcttttttiMttttttttttttgcgatggagtcacgctctctcacccaggctgcagtgcagtgacgcgatctcagctcactgcaacctctgcctcgcgggttc aagccattctcctgcctcagcctccccagtagctgggatacaggcatctaccgcctagcccggctaatttttgtatttttagtagagatggggtttcgccat gttgaccaggctggtGtcgaactcttgacctcaagtgatctgcGcacctcagcctcccaaagtgctaggattacaggcgtgagccaccacgcccagc ctgtttggaaactttaaactgctcattcctggagcacatgataactctagaaactcaaaggtGcctggagcatttaaggccagcagatgtgctgtggggc ctgggaaggtccctgatgggatgaccgcacaggtggagagaaagggaattttcctgaggtcctccggcctcgcgggtaacagccactgtttctcagc ctgggttcaaatccccgagctagctggtttgcctttcaagggagcagatgtttctggatgttgcatagcaggagcaaagtggtctgaatgtgcccccaca ggggccttctcatgcGccgtgccttcccaagcatcaggccaccgtgaggccgccacgttctgcccgtgacttgcaggagattctgtgagtcagggaaa gcagcgaggctggcaggaagcgtcctgtccacagggcagcacagggctctggttgaggtggcatcttctgaactgggttaaaatcccagctgagct gcgtgaggtgggagacccgggctttgcactcacaaagccttgttcagtcccaacatgtcccccattagctctgtgacctttgacaagtgtctgaacctctc tggacctccgtttctcatctgtgaaatgggggttctaaggccctcttcatgggagggttaaatgtgcaggtgcctaatgcctgaggcatgttggggtcagc aggatgcatcaggcacctgcctgcttgtccgtcccctccgtccaagctgggaagggcccagccttcttttctccttcctaggtgggcagtcaggtcgctc acaccctgcctggtgcctgtcctcccaccccaggccagccttggccaaatgggagactgccccagtggccagaggcatcccatcctaggataacag gcccgcccagagccagggcagtcccgaggcggggactctgctggccactgggtcctgtgccgaggcccgtcacagagaggcccatgcacaaga gggttcctcattcccttGttGgtgggcctgccagtctggggacacGcagcctcacctcccccacaacctctgtccagcgccccGcattcatccaccaacc tggtccgactggggtcacagacttccaagctggtctgggccgaggcaaggaagtccacttgccctctccctccttcccatgcacccctctcggtcttgtg ggagctgccaggaagcggagccGcaggctgggagaccgagaggaggaggcttGtgtccagacccGgGCtcagacaggccacagtGtcccactg gactgagcacctgggagtacaggccacgctcacggttcacagaacaggctcaggagtaacaagtgaccatgggcctgctgctggggctcatagtc ccccgtggggaccctgattcctctgattgtgggtgatttcaaatctccttagagttctgcatttcatgacatttctgcatggaatatgctttatttttaaagtaaaa aaaaacctaagtgctcccctccctttcattttttgagatactctgtcaccgaggctggagtatagtgccgcagttacaggtcactgcagcctcgaactgcc aggctcaaagaatcctcccacctcagactcccaagtagctgggactacaggtgcacaccacctgcctggcttactttttttttttttttttaactttttttttcttttt agagatgggatctctttatgttgcccaagccagtctcgaactcctggGctcaagcaatcctcccgcGtcagcctccGaaagtgGtgggattacaggcgt gagccaccatgtgcccaGcagtgtccttgtgatatagggagatcgtcttccttctcaggtgtgagccgggccaccctccttgtgagacatggttattgaga gggtggagcacagacactggggccaggctcacaggttcagatcccagctctcaccagctgtgtggcctggggccagggcagcccatcactgtgtct ccattttcctgcctataaaatgggggtgccaagagcacccgcccagccaagttgctgggagagttgcatgggctgacgcatgggagcccttggaga gcacctggcacgcagcaggcgctgcagacgaggtttgctgtcaactgcatttccattttctggaaaccatgagtcagggacaggtgggaggaaagg aggaaggtgattcttctggagggaagacaagctagctgcaaaaacagatgacccctcagaagggagcatgtgaatacgggggcataaaggggtc tccatgtcctgacatgcacacgacaggcctcaggctcctgcagctctgagaaccccaggctgcacctgggccttccgcactcaagcactgcagtcca gaggacctgctgtcagtcctGatctgcctcccaggcgtggagttcagcttGctcaccggcaccctctgccctcacataccgctctggagattaagtgagc aagtcgggtaggcagtgagtaagcggtcgctggcatcactgtcaggacttatctcaggcaacaggctttcctggtcattcttttctccgcgtctggcatcg gagcctttcctcagaagcttccagggtatgattggggttctgaaggctgccactctatcgtgggcttatttggaggaaggtggggcaggaaaagccctc actcaggggttatctaaaccgcctgttgtcgatgggagtgaacatttgtacttggtgaaaaaaacatctcctcccgtttctatgtaaggcacagttagaca cacagcacgcaaaccgatacacagtgtatctgtggtgagtcgtatgtgggtaggggtcccgggaccacccctctgcccagcccgggtctgagcacc ccctggcctctcccgtgggtggtgcccaggtgtcagcggggcatctctctgcagcgcctccccaacacagaccactggacaagggttcagatcGGac ctcctgccccagtgcaagccaggatcgaagtcagcatcccactcgatcttggcacctggtggcacttgctagtcccccagatggagactcaacatccG ttctgctctgaagccggtcacaggccccaggctctgtcattggcccggtcccagtgtgcactgggccttgtgttcagcagtcccctcccaagcaccagc catccacccagcccggggcccagcatgggggatgcagagatgagacctgggccGctcctggggtggtccgaggcaagatggtcagaagGtggg gaacaccagggacagctctgtgattcggatggggactgctccagtggccacccctcactttatgtgtcacggttttaagctctgggccctcagaggtgc ccaggcctggcttaggcgagaactgactacctctgggtttgtttttccgcggagtccctatagccagagagatccggaacccaggtgggggaactggt tataaacacagtgcaggtgctggggccgagaggacgggtcatggtctttgaagcacctgaggtcagatctcagccacttgctggtgacttgtgggaa atcacaaacagctctgagcctcattttcctcgtctgtaaaatgggggttgtcatgactgcagtctctgggggccgtgtgtgagtgctctgctgtgtgataca agcccatctgtactcagactgagacgccggcgagttctctggacgctcccagcttttgggggcaagagttggccaaaaaactccctctttatgaagctg tgctggtaggtggtcgggaagcagcctgttgggcctcaggaaactcGcgaagctattgcttccctgctgtggcctggctgtatcacagccctgtggtcac ggtcagtgaattgccatactgctccttgtccgtaatttggactcagcacacagggtcctctgggtagatcccatgagcgaacacaagcagtgcccttact tcaagccccggtgcgcaggcagcgcagagcgaattgcatctgcgttatcagcagtgctaatactgttcggttgtgggacagtggtcttcccagggtcg gatgggggtgacaccctggtgcctggcttcaccacaGaccatggtgtgatagagcGtgaaatacctggttctgagtccagctttaccccttcctaggctg tgtagatgactcggagtgggtaactgacctctcccgctgtctctgcacacaggaaggaggctctttcatgaaagggttaagtgaagtcaggtgaacag cacggtgcttcccgcagctgctctcactgaggtttagccctccttccttacccaggcaggcgttggcttttgctaagatcacagccgtggcctttcagggct ggtgagagccaaggctctgctgtcacagaagcctggatttgactcctcatatgccacagctgtgtgaccttaaacctctgagcctccagttcgtcatctgt taagtggggttagtcacactgactttattgtgctcttgtaaagagtaaatgaactaaggtatagcccttagcatcctgcagtgtgtgtggaaagtctccgtg acatcggagctgctgttgttattgtcattgttattaccgtcattagcatcaactctgtttttttttaatatactttaagttctagggtacatgtgcacaatgtgcaggt ttgttacatatgtatacatgtaccatgttgatgtgctgcacccattaactcatcatttacattagatatatctcctaatgctatccctcGctcctcccccaacccc acaacaggccccggtgtgtgatgttccccaccccgtggccaagtgttctcatttttcagttcccacctatgagtgagaacatgcggtgttcgttttctgtcctt gcgatagtttgctcagaatgatggtttccagcttcatcGatgtccctacagaggacatgaactcatccttttttatggctgcatagtattccatggtgtatatgt gccacatcttcttaatGcagtctgtcattgatggacattttggttggttccaagtctttgctattgtgaatagtgctgcaatcaatatacatgtgcatgtgtctttat agcagcgtgatttataatcctttgggtatatacccagtaatgggatggctgggtcaaatggtatttctagttctagatcctcaaggcatctccacactgtcttc cacaatggttgaactagtttacagtcccaccaacagtgtaaaagtgttcctatttctccacatcctctccagcacctgttgtttcctgactttttaatgatcgcc attctaactggtgtgagatggtatctcattgtggttttcatttgcatttctctgatggccagtgatgatgagcattttttcatgtgtctgttggctgcataaatgtcttc ttttgagaagtgtctgttcatatccttGgGccactttttgatggggttgattttttcttgtaaatttgtttaagttGtttgtagattctggatattagGCctttgtcagatgg gtagattgtaaaaattttctcccattctgtaggtttccttttcactctgatggtggtttcttttgctgtgcagaagctctttagtttaattagatcccatttgtcaattttg gcttttgttgccattgcttttggtattttagtcatgaagtccttgcccatgtttatgtcctgaaaggtattgcctaggttttcttctagggctattatggttttaggtcta acatttaagtctttaatccatcttgaattaatttttgcataaggtgtaaggaagggatccagtttcagctttctacatatggctagccagttttcccagcaccatt tatcaaatagggaatcctttccccatttcttgtttttatGaggtttgtcaaagatcaggtggttgtagatgtgtggtattatttctgagggccctgttctgttccattg gtctgtatctctgttttggtaccagtaccatgctgttttggttactgtagccttgtagtagagtttgaagtcaggtagcgtgatgcctctagctttgttcttttggctt aggattgtcttggcaatgtgggctcttttttggttccatatgaactttaaagtagttttttccaattctgtgaagaaagtcattggtaggttgatggggatggcatt gaatctataaattaccttgggcagtatggccattttcacgatattgattcttcctatccatgagcatggaatgttcttccatttctttgtgtcctcttttatttcattga gcagtggtttgtagttctccttgaagaggtccttcacttcccttgtaagttggattcctgggtatttagcatcaactcttagaaaagaagaaaagctgttgtct gaaagcaaaaatagaagtatccaccaaggccaggGatggtgcctGacacctgtaatcctagcactttgagttatttatttttttgagtctgagtctcgctct gttgtccaggctagagtgcagtggggtgatctcagctcactgcggcctccgcctcccaggttctagcaattatcctgcctcagcctcctgagcagctggg attacaggcgtgagccaccacacctggcctatcccagcactttgggaggctgaggcaggcagatcacctgaggccaggagttcaagaccagcatg gccaacatggcaaaaccccatccctactagaaatacaaaaaattagctgggcatagtggcgcacgcctataatcccagctgctcggaaggctgag gcacgagaatcacttgaacccaggaggtggaggttgcagtgagctgagatcgtgccattgcactccagcctgggcaacagagtaggactgtgtctc aaataataataataaattttagaaaaagaaaaaaaagggatccaacaaatcaggaggtttgacccaaaGtacaaacaaacagcttagaatgtttgtt gtttatgattctgtctatagaattttccctcagttctgatcacagaaaggtgagaatggccccagggtcccagcctaagccccctacattagtttgctagga ctgctataaagtaccatcaacctcatagcttactcaacaaacatgtatttctctcagttcgggaaggcacaaccctgaaatcaaggtgtgggcagggct ggtttctctggaggcctctctcctggcttgcagatggctgccttctcgctgagtcctggctggtctttgctctgcgtgtccgtgtttcctcttcttctaaggacatc cgtGtacagcctcattgtaacctaatcacctctttaaaggttgtgtctcccagtacagtcacattctgaagtactggggtgcagagcttcagtatatgaatg gggggcaaagttcagcctaaaacaccccctaatggtcccaaagagggcatgaacaatgatcacgtagccttggttcaaagggcattgtgaagtctg gggaatagacagctcaccccctcgggtgccatgaggaagtctctgcacaggcccagttgtgagtccttgaggccacgctgagaacattgacttgctc atcctggaggtggaagtgggtggagaagtcagtgccactgactacctgccaggctctcaccccatcttttggcccatctgggaccaaaaacagtgcc ataaaGcttccttgtcccaaccaaagctgactgtcaccctctctcattctagGTCAGACT ATGATGACTGGAGACCGTCTCTGGG CAGTTTGCTTCAACCCATTCCATTCCCCAAAGAgtaagtcccgtgtgcatCGccggagccGtcccacctgtgagacaaacctca gttgtccaccaaggccttagtggggggccagtcatgttatggggaagcgaagtcacagcgggaagaGcctggagacgtcggtaccagctcagcGa cgtcctcagctgtgggacccctggggaggcacatcttccctcagaaaaatggggaactcaggagaacagggacattgtaggagctgcttgactgca ttgtcacaaggattcatgagctaagaatgcaaacagagccctccGcatggctcctggcaggccgtgcagttatcgtcttttattatgcaccagatggga accgtaatacctgccgctcctcttccgagggcgatagtaagaatcaaaagataatgcgcgtagcattgctcgctgtgccgtactgagatgGtggaagc gctctaattacgcccggtacaacgctcagctcaggctctgcagcaaacctggccagaaacagaccctctgcctctctcttgccggcccctagcaccat attgaattgatcactggaaactagagagaacgctgtctggtggataatggcctgaagagaaggctttgtcaaaataaccaggccctgaaatgcctcc aggtctctttcaagaggttggaaggagcaagcctcgggaggcagctggggctctcgaaggagccgattaccaagcgtgtttaggaaatgctgcctct gtaagggcacattacacgcagtaattgccccatgtgctggcctggccagtGCccgagggtccccagtacttgaggccggagaaatccacctcctaag aggcgctcagtctcagcagagtcgtgacgtcattggcctcagtccccgtccccataggcctgggcgctcttggctgtggcaactgtcttagaagaatgg tccGCcatggccgctgatgtgtgcagtaatgagtgccgcccgccttaatcgtggaacaattaatgaacacacctgggtctccggagGccacatgcacc cacacatgctcaggcagcagcttagcccctcttattcacaggtgtgggcacagggaactttcgggaatggggggcccagtgtgttcatgttgctctgatc tgccgcctcctcaaagaaggcctttgttttggagctttgagtggggacaaaatgttggcatttcactGacattcctcttcattctttgaatcagacataaagtc tagacgtccccagaggttaatcttgggaacattgtgctgtttccgacgcttctgttaaccgccgtgttttcccctgtttttgttgcagAGCTCTCGCACA TGAGAAGTTCACCAAgtgagtgtctgggcaccgccctcattccattctggcacgcacggcctctgtcctgaggtcttccctccgtggcccatgc attctgggaggcagtggtggctcctcttggcagttctcttgagacacgtgtccctgatccaccgccttgcccagctccctggcccgttcttccttgacaccat cccctccccttcccacacctcccactcagttccagaccccggcagtaactccggccgcctcgtctcttccagGGAACTGAAGTACGTGATT CAGAGGTTCGCCGAAGACCCCAGGCAAGAGgtgaggcctttgtttctgcatctcaggccggctgtctggggatggcaggatgcac gagggccccttagaggccttctgaagcttgtcaccaacaggcattcagaacagctttcagagacccattgcctgtgtataaacacatccccgcctggt gcagagcccagcctgtgatgtcagtgttttactgtaaacgGcggctcaccgggggtggttttccactggctggtggtttctgcccgcagccgaggccttg atttcgggctgggctggcatggcagctctcaaccagctctgaggcagcaltttgatcctgtctggttctgctattatgtgaatcactgggcagagcaagga atctgagctgggattcagagctgggtttttatttcccggtcatggtggccaagggtttccctgaagggctgctgtgtccctcaccaaagctgggcttccag ggagagggcagccttccaccttctgcccctgagcctgtgcacatgggcagggacctaggcaggcaaggaagccagcctgtagccctgggcccgc atcatctgatagtaacagcaccagcagctgtcttttaggaggtgctgtgccccgggtcacacacattccttttctcatgcctcacagcatccctgtgagtgt cttctatagtattcccagtgttgcgcggctggtccacgactgaggcaagattcgagcctggtgctgataaccatctcactgcactgtgtgctgtgctctgag atgctcacagcctgcttctctgtgtgcatgagttctgggtgtggtagcgccctaactcccagttgaggacagacctagactcgtgctcccggcagaaca gggggaaggatgagGagaggacagggggagttcctctccatagagccatccccaggaggcttcctggagaaggtggtactgaactggGtggactt agctaaatgggtcaaactggaccttagtctggagggtggagcatggtgtttgagaaggaatctgaggacacatggacaccaaggtcttgccatgtcc aaccatggcaggtctctctgactcagaacccacagtttatGaggctgtaattccagaagttctagagtacttgttctcaaactatattacctgaggagcttg ttcaaaaggcagacccccctgccgccgcatcccttcccggttccagctcacggggcctgggtggagccaagcatatgcgttttgatgcgttttgaacaa gcatcccaagtggttctgaggggctggtctccaggccacactgaaaaaccgagttctggagggatcttgaagactctagttccaaaaGaccgcaattc taaacaccgatttccctaagtgttcctcaggcatggagggaaaaaggagaaacggtggatatggtgcttttaaatgtcagggaccagtgagtgtctcc atttttcttaaacttaagtctttccttgccacctgtgaagacagcgtctcagaattctcctgggaaGtgagccttaattcaaacccagGCtttgacgctggga gaacaaaagtggcatcagctgcttctcagagtagagaggcagggccagctgctgggagggtaattctcaaaccagggaaatgtgcatgaggcccG gagtgacctgccggtctggaaggagccagctcccctggccaaggtcccacacccaggccGttgttctcctgtttgcctctttcttttctctgctgattctctct cccttttcctcctcactcttctttctcccttcccttctaccttctccttcctaaatgaagccaaagttgtttcGtttaaaattatttgctatatttgttgaatagcatctca acactcctaagtccttattgctttgaagtcgataagggaacccttgatattcttccagctcagagggaaaaataaaagccactgcctttgttttctgtgtgct cgtgtgtgggttgtgatcagtttaatatctgtgggtaacagattcttggcagccaatcgtcctttcctaaaggaaatgatgaggaacttctGtcagctttcttc ggaggacaggaggaggtggggaaaagtcctttgtgtttcctgcacgcccttgctctcatgctctgtctctctccctcactctccccgctctccatcctctccG tccttccctctctctctgtgtaatcacagcaggggccagagtggatgtggaattcctcccatacacacacacacgtgtgctcacatgcacaaacaggcc catccacacagacacacagctctgggaaggaatgtgagagctgtgcttttggcactgaaattgcccccagccacggacagatccttcagtggaggg ggacaaagactcagggaaggaagtggggatgagacctaacaagagagggtggcagagtcccaaagagggggagagagagagagagaga gagattagcagggcagatacctggaggggaggatggtgcctgcacaagtcaagaaagggagggcagaaggcacacacccaagagggagagt cagtgctgggggcagcagaaccccagagaggcagcagggagaggtttctagagaaagagggcagagagcacgggagaggagttagaaaca cagagagaggaggacagagaaccaaacagagaacggagacccaggagatggccccacccagaggaaggcatagcagaaggagaaagg gggcaggagaaagggaaaaggggctgattgtgggcggttgctctgggcatctctacctgctgcagccacaggcccgcttcattcagatcagccaat caagccggggcctgccctccctcctgtgcagctgacagccagtagccagagtcccctggggtgtgggggccacggtatttcccgaaagacctttcat ggcatttggtggaaggctgggggttgctggaggaaacaaagttaagcgggtttcttgactgcaggacttgcctgagcctttcccattcatgtgtgcagat catggtcgcccttgtcaccggggctgcatgcagctcacacttgtgtcttcccttgtctggcagGTCCACTCATGCCTGCTGAGCGTGCG GGCCGGCAAAGATGGCTGGTTCCAGCTCTACAGCCCCGGAGGGGTGGCCTGCGACGATGACGGGG
AGCTGTTCGCCAGCATGgtacgcagtgggaccccagtggggtgacttccaggggtccctgggcttgccatgcctgactagtaaaacagc cgtcccccatcccctggggccagccccggagtttcccggctaacacagtgctgatcatgaaggtggtggtggtggtggtggtgatggtgaGcgtgact gtcacttactcatttcttatctgaggctccaagccaagcacttggctttcccagttgcactcagctctcacagcacagtgagaagacgacacatgtcattg ccccattttatacccaaggcagctaaagcctgggccgttactgcctaaggtcacacagttcattgccatggttatgttcctacaagaaattgagtgccca acgggaccagggattctggaaggcactgcaggtccaccagcttgtttaatccttacaaggaggtgtcgcggtcagggggattgttcccactatcatga ggggtctgaggtcaccaaaccaatagctgcatccatgataactttctttgtgcccggcactgtatccggcacttcatatgcactatccttttttatctgtaGtg catccttgttgctgaattacacctctgttgaaacagaggcccacagaggttcggtggcgtgcctggggtcccacaggccttctgtttccaagcccttccttg gccaggcacacatggcttcttccaggagtaaagggccacagactcttcctcccccagggcagatgctgcaccctagtggccagcagcctcgccgac tGcacttgctgagaaaaccagctcGatttactggtcactggtgctcccacactcaaactgggcttccagtcgcagGtctgctgggagctagcttgttgacG ttgggctggtaacttgcctctgccagcttcagcccctcgtccgggagcctcgcattggcctctcgaggttaccgcagcgatcgcatgcaacagtagatg cacggcgcccggcgggccggcacagtcgctgctcggaaatgacgccggtggtgattctcctctctgctgggtggctggtttggctgtccacactgaact cagcagagatgtttgtgcagcgatgacaaattgaggcgctgcccctgggagcttcttgaaaagggcttatttttaggccctttgcctcatgcactccctcg ccactcctcgGcggccaGGccaggcctctcagggccctgcgcatctaggaacatgcctgcccctgccagcctgcaccacctctctcgcgctctcggtc acGtctcgggttctcGtctgatgtcacagcttcaccatagGaacgctcagctgGgcGGCcccgcccccgccccGaccctacaatgtgaggattcggtgc aagaaagcgcagggagctggcggcttcccagcccgagagattgcatttgtatgccagagctgttcatgatggagcggaaaaaatatacacaagga aggaagcaggcagccgctggatggaagtgtgttgttgccatggagatgcatggcttggaagccggccccttgatgaggctgctttctccaccgccaa gggcatttgccattgtgtgaagttggaggaaagccaatggggtgtcgaggcctccccGGagccGcggtgacGggggacccctgcccttgggccccc atcgcccatgcaccagaacaaaagaccgcccaacacataacccaagaggaagGaggatttgccaattcttggattcctggggcgcaggcagtctc ccaaaacacccttccgagctcacagcgggcttggcagaggtggctgggcttcgtcacgtcccctaccGcatacatgtgcgaaggctgcctagaagttt ctacgtggttccagcggtgccaggaattcaaaggatcaactgtcagcagactcccgaggggagcaggggagggggcttttttgtttttggcagtaaaa tacacatcatataaaagtgtgcatctgtaagcacaccgttcagtcacactgaagacattcatgttgtaacacaaccatcaccaccgttcatctccagaa cgttcttatcttccgaaactgaaactcagcatccattacacactgactcccccttcctcccggcctcagtccctggcagccacttttcctttctgtctctgaattt ccctatccaggtacctcatgtaagtggagtcagagtctccttctgcttaaaacttcaacgtaataagtgtttcaaacatcagaacttttataatggcaggag attacatatttagagattctattacagattcttgaaaaaactagcaagggccgggcacagtggctcacgcctgtaatcccagcactgtgggaagccga gttgggtggaccacttgagttcaggaattcaagaccagcctggccaacatggtgaaccccatetctactaaaaatagaaataaattagccaggtatgg tggtgcatgcctgtaatcctagcttactagggaggctgaggtgggaggattgcttgaacccaagcggcagaggttgcagtgagccaagatcgcacca ctacacactccagcctggacaatagagcgagactccatctcaaaaaaaataaaaatagcaagggctacatttgtttaaatcaagagaccttaaattg cattctagtcagcttttattgcatttagtattatagatttatacaaaagatacccttgctgagctggggcttatagttaaatcaggtactactaaaaggcaaaa gacagaatgaaaagagggatcatgaacgtgactttcgcgactggcttattccactcaacatagtgtcctcagggttcatctgggttagatcgtgtgccag ggaggggtttcttgcatcGccctggggcctggtgatcctagaacacctggctgtctggacagcgtgtaggcaggtctgttcaacggctcttgggctcactt cctgccagcacgctggaggctggcactgggtgtctctgtcccttcacctgggccttcttgcctcacagGTGCACATCCTCATGGGCTCCT GTTACAAGACCAAAAAATTCCTGCTCTCCCTGGCAGAAAACAAGCTGGGTCCCTGCATGCTCCTGGC ACTGAGGGGGAACCAGACCATGGTGGAGgtaaggagctggtcggggtccctggtggggtggctggctccccgtcGcttgtccgtg ccgatagagcatctgctgggagccaggagctgctgcaggcacggggggcagtgggtgaggcgtgcagtcccagccgtcctgagcttagtgggag cctcgagccttcatcatgcagtgtatttgtttctgttgtgatccagctgatccattgatcagtggggttggggacgcttctgttctgctcatttattgctgtgtaac aaaccacctctaagtgagggctttaaaacaagatcgttcatttcttttgcacatgggcattggggtacctgggcgcagctacgcacttctcacGtggggc ctcatcagtcagatggggccaggttgggttagccccaaggcttctcgcattggcctaagaggcctcagacaatgagggctttggcggctggggctccc cagccgcacccttcaGctcgtggcctccaggtagcctgtccacctgccaagaacacacacacccagccccacaggtcacccctGacctgctgctgct cctctctctccctgcacgctccaaagtccccagaagcctgagactcccagagcaactgtcccaaagtccccagaagcctgagactcGcagagcaa ctgtcccaagggaaccaaggcagaagccatgtcactttttaacttagcctcccttggaaggcaggcggcatcacttctgccacatcctcctgctggcag tgagtcaccgcggccggccctcagtcaaagccgtgggagctagacttcacccctcagtgggaagagcatcgaagagttggcaggcgcagcaaag ccatgggagctcccgtggaaatgagagttcgggcagatgtgagccctggggaagaggcagcgggaaggtgggagctgagcaggctgtggggac atcccgggcggaggcttgctggaggccagggtggctggaacacagggagccaaggggcaagaggtctgggatgtggctggatgggcatgaaga gccttctgggtacctagaggtgctgggaaggagtttggatttaatcttggctgtcctgtgacagggattcggaggccatgggggagggctgagcaggg agacaggagacaggcaagaggcgctgtgagaagcgtgggctgagtgacctgctccttggtgagtgagaagttctagaactgagcaccatggcatg cacctgtagttccagcaacttgggatgctgaggtaggaggatGacttgagcccaggaggttgaaactagcctgggcaacatagcaagacctcatctc aaaaaaaaaaaaaatcgtcattggaaagggaatgtcagaggcagggctgtcaggcgtgttgacccccaggccgaagagccacatgtgcagtcat gaggccctctaggaagctgtgtggtagatgggcccagggctctgagccattccgtgagtttgagcacctacttcatgaGagcGactggggaaggaac tggggagagagaggtgtcttaacttctggcctttGcaccagtgctcaggggcctgcaaacatcccccgggggcctgccccatgtccagacaccgcac ggtaagGagatgcctgggagactcccatgtccattgacatttgaacctggagaacctcagtgcgtggtcactggtgctaccattgtacaagcaggaag ttgggcaggtgatttgcccaggcttacacagccggggctgcagaaaggggatagtggggttgctggttttcaaaacaaggcccttggggtgcacaga gtgtgctgagctagggtggcaggccgggtccgtaatgcacccctgcggttctggacagATCCTGTGCTTGATGCTGGAATACAAC ATCATCGACAACAACGACACCCAACTGCAGATCATCTCAACCCTGGAGAGCACAGACGTGGGGAAGC GCATGTACGAGCAGCTGTGTGACCGGCAGCGGGAGCTGAAGGAGCTGgtgagtccGGggctgctccggaccactc ccctgcccagcaggccagggggggccagggcgggatgcggggcagctagtacttggacctgagtggacctcaatctcgttgaattctcctccaaac cccagaaattggtattaccacctgccacttttcaggtaatcaaagagaagcaaagcaatccccagagtcacacagctcattggggcctggccagga Gattgcccaccctccctcctccatgtcccttagacccttccatttcagtacatgggggacccaacttccaaatgccagcacccacacctctttgctgaagg actttgtatgtccacatgcatatactcacacatgtgtacacagaaggacggaaggggcaggaaattcatgccttctgatctcctggagcagccctcaac cagtcccttctggggagagtgtgtagaaatacGccagctccctcaccccttcagtgagatatgtttgagacatggcttctccaccatttcttagagtccccc ggtgggatttggtgccagtacccacccagtgatagctggattgataacaGcccttccattataggtagccacagtgtcacttccccactctcccactggtg tttcttgggatcaccctccagtaaaccacctgtgctcaaacctcatctccgggtttgcccctgagaccaagaccaccgtgttgccttgtaccacGaagaa aataacgatggctccatgagtgttgttaacagaggtggaagtctagaatggaaacttggggaaaagaatggttgtaaccagcctggtttctgttgcag CAAAGGAAAGGCGGGCCCACCAGGCTAACACTGCCCTCCAAGTCCACAgtgagttggtttggttctctttggggctgg atggagaaggtgggttggtcctctctgttggggaacggcaggtggtgtctgctgctgagatgggaggtgatggagggcggggcacaaggaccccct agtacttaacaGgccagctcttccaggaggtagctgggttacaggaagagaaatgaaaaccaaaaaggaagttaaaatatgatacagattgttggt gataatagtgttgatatctagttattaatagtacttggaataatagcagatataccttgagcatttgtgtgtcagatgctcttctattagtttgttttatcctcacag caacccttggaagcttgtgtatcttaccattcgGatttcacaaggtctttaagggtcttatttccttctattctgatgcccGcattatatttgacacatggcttctac ttcctggaccaaaagggctgctcaggctccagacctcttgtctccattccagccagcaggaaggagaaGgtgccccttcctcttaagaaacttcctgga agttctacttgacatgtctacttacatcccattttGcagatttagtgtgtggggccacacactaaatcagccttcattccgggcagccacagggccgctga cactcaaggatggaggggagtgtggaggttgtcttaggaacctcccagtccggtgctcaggcatgcgctggtgtcttcaggcattagagttgagtgtgg cctcagtgttggcatgagctgctgcccaggagtgaggcagccagtcacacaccctgatgcacagacacagacacacagagacacaccaacaca cacacacacaaatatacacagacgtgcacagacacacacatgtacagacacatgcatacacaaacgtgcacacagacacacacagatataca cacatacaggcacacacacacagacacacacacacacagacgcctgtgggaggatcgtggccttggaacaccccgctggtgcctcagggtgtga gtcacagcactggaggctttctcctccgcctggcagctgtcgtccatgggatgcgtggcagcccctccctctctggccacccccttggcccatcccacc gagctgtgcccccatctcagctcctgggatttaccgccccccaggaacagctctctgtagggcgaggggagaggaggaggataggggataggag ggctcagggtctcgggaactcccagcagcaccctcaggcctctcccccgtctgcccgcagGACGCTGACTTGGCTCGTTTGCTGA GCTCCGGCTCCTTCGGAAACCTGGAGAACCTCAGTTTGGCCTTCACCAATGTAACCAGTGCCTGCGC CGAGCACCTCATCAAACTGCCTTCGCTCAAGCAGCTGAACCTGTGGTCCACTCAGgtacgtcctcccgccctg ctgcagtcccccacaccctcctGcttcacctctgcactctcctccctattcccccgtaccatcttcctttcccctcagcctcctccctgccccctccccctcctt cctgcccGctccccctcctccctgccccccttactctcctccctgccccttcaccctcctccctgctcccctcaccctcctccctgccccctcaccctcctccc tgtcccccttactctcctccctgccccctcaccctcctccctgcccGCcttactctcctccctgccccttcaccctcctccctgctcccctcaccctcttccctgc cccctccccctcctccctgccccctccccctcccctacccacttaccctcctocctgccccctcaccctcctccctgccccctcaccctGCtctctttGccctc accctcctcGctgcccactcaccctcctccGtgccccctcacccccccaccGactGacGGtcctccctgccGcctcaccctcctccctgtcccccttactct cctccctgtcccctcaccctcctccctaactcgttcaccctcctGcctaccccttcatcctcctccctgcccccgtcaccctcctccctgccccctcaccctcc tccctgcccctcacccgcttccctgcctacaGcccaggcattgcttaccacacgacccttccctcaagctcagcacccactccctgaggctagaggag gttgaggacctcatgaagccctgcagcccatttcccatttggaaataatgtgcccagttccgagtcctgaggttctgagaggtagagctgagacgtgag ccaggcttcgctggcctgcggggggctgcgcaggaggcttctgggtctttttgttatagtaacaccagtggctgctgagtcccagctcagtgtgaactgG actgctcagtactctgcacagggcagatgaaggggccttcactgcacacctgtgaagtgcaggttctaccctcaccctaattttccagaggagaaact ggggacagtccctgcagcctgcccccggcccagccctgtccttccactgtccacccagcaggagaaagccacctaggcagcatctcgaagctagg gagagacaagttcaaagccctccttcatggaggcaaaactgactccaagggggccctggcctggctccactcccaacagcagaagctggattcta acccggttcagagaggcgtgggattgtttaggggacgtgaacgcagcccagaccccagggcttggtgggccatgggcctcagagccaggctctgtc cccatccctttcctccacctctgccccagcctcagagtcacttccccaggagtggccgggagagggctgagagtttctgtgctctacagTTTGGAG ACGCTGGCCTTCGGCTCCTGTCGGAACACCTCACCATGCTCCAGGTGCTGAACCTGTGCGAGACCC CGGTCACAGACGCTGGCCTGCTGGCCCTGAGCTgtgagtgcctccggggcagctggggggtgaggggccgcttgattcattc cttccttgcttcagccaaactggccaagcactgactttgcaccatgcacagatagagaaattcgttcattcacaaacgtgttcactgcacacctgctgtg gaccaggcaccattccatgtgccaggaacaacacagggaaaaatatccctaacctcagagagcttatattctagaggcaatagaaaaaatgagta aggccagcccatagcctcttgacactcacagtecactgaggggtcgagttcaaggacggggctgtagtacattgccactgtggtcccctgaccagtg gtggcagcgtcttGtgggggctggtcagaaatgtacattcccaagcccactccagacctcctgactcagacaccgtacggtaagcagatgcctggga ggctcccgtgcccgttgacatttgagaagccctgtcataatagaaggaggcacagaattctcaaggaacctagaaaggccagttcctgtgtgccaaa ccGcaggtgactgaactagcctcagggatattgagcccgggattctgtatttgaccagctttcccttttccaggcccactgctttagacgggaagacccg tggctcagtgggaagagtcagaaaaggcttcccggggaggtgctgttgagtctgggtgtgaagacagatttgtgggagttggccaagggggaggca ccctgagcaggggccatgactcctaccgggccgctggcaaatgctgggtggcttgggaggaggtgggagcaggtgactgggtcagtggaggcag agcggcagcgctcggccagtttggGtgcaaatgcagatgcgctgcttccactggagtcccccgggggggcgcggtcctcatcaacagcacagattc ctggtccctgctgcggccctgctcagcgtctctgggagtgggtggaggggtctgccccccgtgcgactccaacacaaaccagaggttgaggcttgcttt caagaagcagcaccgagtcaatgacgacggggggaccatccggggttcccttagtggggaggcctcgggcctgatctggggtgtggcaggcaag ctctggggacatcaggtccaggcagtgggggcacacgacagagggaccagaagggagggaggctcagagggtgggaagaaaacgaaggct ctgttcagaccagcacgtgcctgaaatagactttcggtgtctagtgggccacctaccctggctgtgtGtacgaaacctccctcGccagccccatctcGta acagggggcctggcacctgcattgagctcctccagcttggccatcccataccttcatacctttggggcctcgctctcctaacaactgtatctgtctcttgtgc agCCATGAAGAGTCTCTGCAGTTTAAACATGAACAGCACCAAGCTCTCAGCTGACACCTACGAAGATC TGAAGgtaattccctccttcctccccactctcctcccctccttcttctagccagcatctggatgctggtgcatctcctgcacagagctcgttctccagtaaa ggatgatgacatctacagatcaatacataaaataatggcagatcaaaaagagtgacaaagaggaagcagcagggaagtaattggaaataggaa ggcctgtgtggcctggggtgatcagggatggtgcctttgatgaagaggccgcaggagctgagacccaaaacataagaagccagaaataccaagg gcgagaggaaaagcaagtgccaaggtcctgagacagaagagatgggcgaggcctggctttgcagcaaatgtaaccaggaactgagagaggga atgggctggggccggatggaaaaagccctcacaggtcacagcagagcagcgagtcatgGttttcaaagcatgctctggGtgttaggaaataaatatt ttgagagggagcaggagtagaagcagggagggttgagcagggctggtgcGtcaccactgagggctgcgctgcaccggcactaggccagcaagt gaaatccgggaaagaaaaaggatcggagggtggaaggcaggggcgttttaagaaacacacgtgcacatcttgggaaggttggaggagccagg ccctcagtcgcctcctgtcaccccgtcctcctgggcctgtaccagctgccccagaaggagcgggcgggactggcagagggccagcatcctgggag agaagggctgggctcaaaggtgagaaggcacagatggcacccgtgagccacgctggcaccttcgtgctctggaagctacttagagggaatccccc ggcagcccttggccggggcccacctcctacagccaggcctcctgccgccagggGgtgctcactggggcatcctccagatgcttctggagcctctgct gtgtacGaggGCcatgtcagggacagggacaccgaggtgtggctgcGaGagtcccGttGcgggggatagtccctcctggcaggcacaggcaagct cagcaaaccaaggcgggcagagggcctggtggggccaggagggacagtcggtagagagcgaggtccaagagaggacgtatgggacacaga aggtggcaggggcacagccagcagatcacccatcccagcgtttagacctcagccctcagggtggcgtctgcagaccagcaccctcggcaccactc gggggccaacagaaatgcaggatccaggccaccccaggtaaccccaGcctgggggatttctgggcacactcgtgtttgagaaatgctgcctggatt atcttgagttcaaagtgctgaaagtcagatgctactgtgagaccaagctggaaagagaacatggggagtgcaggaaaggccccttgggaagaaa aatcactttcagtcgatttttttattttcacacatttgagagagacatggtgccaacttaatgctgccagcctgtgaccggcctccctgtggaggggactGg agcaaacagcagctgcctgtcctttggaggaggggcctctgctcagtgccaggcaggccacgccccactgttcactgcccagtctggccagaccttc ccatttttcaagagaaccttgaaatctagattcgtctgtgaagtctcctaattttgaaaggctggcttagtatgctttatagcactgcaggtggctgcaggtcc ccacctgtaacctctgcctgggcagtggggagccattgagggttgttgagcacaggagagcagcagcgaggaattgcatgtgcatgtgtgtatgtgtg tgtgttcatgcatacatacgtgtacatgtatccaaaaagtgtgctggccagtgtacaggaaagttgggagggaggatgtaaaggcatgaggccagtta ggaggcagctacctctctgtatagtggaggcttgttaagaaaaaaagccaactgttcataaagaaaagtggaagtctgggtagcagaaacagaaa gcagaaaacaatggagagacatagcaggtggaatcacagagtcgagtaatgcatccagcctagggggagcctcaagtgggaagaatctaagcc aaaccctgggtacctgggatttcctgggatccacgtcactcaccctgtccattctctgataacgatgagaatatcactaacagtaaaaatgagaacaat ttcctttGatagggcatatacggtgccctgggctttctacatttggtatttaacccctagcaccatcctttgagccagggactagagtcagatgggcccaca gaggaagaaactgaggcccctagaggctgggttatctgcccacggtcacgcagGagcaagtggcagggcctggattcaaaccccagtgcttccac ctgcgaagacagagaccaaaggccatctgaggcgggggcatgggaaccccgctgcctggtttctccggggccagggcacatcccacctgctctgtt ctctgcctaaggccacccacccctccaagagccGaggtagcccacagcaccaaggtggggagagggtggcagagaccGccagccggcaatgc gggtggagGcaggcactggcagGttctgcaagggaatggcctacacgtgacaaggactcttattgccacccccagGCCAAGCTTCCCAA TTTGAAGGAAGTGGACGTCCGCTACACCGAAGCCTGGTGAAGCTCCCAGCTCAAGGCAGGAAGACG
TTTGCAACCGCGACAAAATAACTCTTGACTAACAGCCGCAGAGCAGCCGGTCCTGGGGTCCCACCCT GGTGCCCTGGCTGTGAGATAGATGGGGAGTCTTTCTGGGGGCGGAGGGGGGAGGGGGTGGGGAG GGGGCCCACAAGCACGCCCAGCCCCCGCCGAATTCTTTTAGCTTCGTAATTGGAACCTTTGACCTGA TCTAAAGTGGACTTTGTAGCAACAAGAGGAGCATCAGCGGGTCGGGGAGGGGTTTGGGGGTGGGCT GGGGGGTGGGGGACCCTTTGTGGATTTTCTTTGCCTTTGTGTTTGATGCCGTCGTGTGGGAAAAGTC
AACTCCGATGCCACCATTGCGGGCCGGACGAAGGATGCTTTCTTCCTAGAGGCTCCGAGCTGAGCTG CGAACTCGCCCCCCGCCCTTGGGACAAGAAGACCCAGTCACATCACTGCACCCGTCCTGTGTCCTCA CCATTGCTATGCAAAGTGATTCTTGTTGTACATAAGATTTAAATAATGCACCTATTTAAGACATGTTGAC AAATTGCGGGTCTGGGACCCGCCTCTTATTTATGAAGTCTTTGACCGTCCCCCCCGCCCGACCCCAC CGCCCTCCCGCCCCCACCTGGCGTGTAGTACTGTATAAACCAGTCAGCTGTCGGGTTAGTGGTAGTA
TTATTGTTATTTTTTTAMGGAAACAMCAGACAACAAAAAGAAGAAAAAAAAAAAGAACCTCCTTGGAA AMTTAATTGCTTTTTCGTAATGGATTCTCTATGCTAATGCTCTCTCGTCTGTCTGTCTGTCTGCCCACT CCCCCACCCACCACTGTGCGTTTCTGATTTCCAAATGTCTCCAACTCCCTCACGAGGTGGGGCTCAG GCTGGAGGAGGAGGGATTMGATCCCCTTGCTCCACTMGGCCCMGCTCTTTCTCTCGGCACCTTT TAGACTTGMTGGGAGGCTGCTAACCCGCCCTCTCCAGTCCACCCCGGTAAAAGAGCTGTTCCCCAC
CCCCAGGGAGCTCCTGTCCCTGTCAGCCTTTGCTGTCCCCTGTCCCCAACGGAGACTCTGTCACCCC TGGGCTCCCCCTGCCATCGTGTGCTTCACGTGGCCCCATGCATGCCCGCCTCTCTGCATGGTCTCTT GGGAAAAGAGAGATGTGTCGCCTCCGCCAGTCCGACTGCCCTCCCCACCCCACCCCCGCCACCCCC CACATGTGACCACTGCAACGMGACACTCCTTCTGTCCCCACCTGCTCCGAAGACAAACCMCCTCC GTTTCTTTTATAMCAGTCGGCTTTTTCTTMTMGCCCTCACTGTACAGAACAGCCCGTTGATGGTTT
ATTTGGGGTCCCCCTCTCCCCCCAGCCCTTTTTTCTGTTGGTTTAGCACAAATACTTCCCTCCTCCGG CACCTCCAMCCTACCCCACAGTCAGTGTACTTGTTTTATATATATTTAATCTTATTCAATGGAAACCAT GCTTTTGTCGTTTTATACTTTGCTAGGTAGACTTTATTACCCCCCCACTATGCCCTCATTTTTTTAAAAA AGGAAAAAAAAAAGAAACTGGGTTCCAGTCTTMTTCATTTTCCGTGCCAGGTTTTATTTCGTGTGTGT GTGAGTGTGTTCTGTTTTGTGTTTTGTTTTTTGTTGTTGTTTTTAGTTGTTTGGTTTTCTTTTCTTTCCCC
CCTCCGGTCCCATACTTCACAGCACTCTGGTGCGGGMGMGCAGMGCMAAAAAATAAAAATAAM MATAAATAAAAATAAAAAAAATAAAAMGGMAAAAMAAMGAAGAAACAAGACATGCCACCTTTCC CCTCGCACTGTTGCTTTTCCTGATGGTTAATACTACTGTCACGTAGCTGTGTACAMGAGATGTGAAAT ACTTTCAGGCAAAAATAMCTGTAAGTGACTCATC Form II.
SEQ ID NO: 6 MGA VPCRRALLLCNGMRYKLLQEGDIQVCVIRHPRTFLSKILTS
KFLRRWEPHHLTLADNSLASATPTGYMENSVSYSAIEDVQLLSWENAPKYCLQITSPG GTVLLQAANSYLRDQWFHSLQWKKK)YKYKKVLSNPSRWEVVLKEIRTLVDMALTSPL
QDDSINQAPLEIVSKLLSENTNLTTQEHENIIVAIAPLLENNHPPPDLCEFFCKHCRE RPRSMWIEVFTPVVQRLLKHNMDFGKCPRLRLFTQEYILALNELNAGMEWKKFLQS MHGPTGHCPHPRVLPNLVAVCLAAIYSCYEEFINSRDNSPSLKEIRNGCQQPCDRKPT
LPLRLLHPSPDLVSQEATLSEARLKSVVVASSEIHVEVERTSTAKPALTASAGNDSEP
NL[DCLMVSPACSTMSIELGPQADRTLGCYVEILKLLSDYDDWRPSLASLLQPIPFPK EALAHEKFTKELKYVIQRFAEDPRQEVHSCLLSVRAGKDGWFQLYSPGGVACDDDGEL FASMVHILMGSCYKTKKFLLSLAENKLGPCMLLALRGNQTMVEILCLMLEYNIIDNND TQLQIISTLESTDVGKRMYEQLCDRQRELKELQRKGGPTRLTLPSKSTDADLARLLSS
GSFGNLENLSLAFTNVTSACAEHLiKLPSLKQLNLWSTQFGDAGLRLLSEHLTMLQVL NLCETPVTDAGLLALSSMKSLCSLNMNSTKLSADTYEDLKAKLPNLKEVDVRYTEAW"
LOCUS NM_198390 4235 bp mRNA linear PRI 20-AUG-2006 DEFINITION Homo sapiens c-Maf-inducing protein (CM)P), transcript variant
C-mip, mRNA. ACCESSION NM_198390 VERSION NM_198390.1 Gl:38229312 SEQ ID NO: 4
STS 3636..3796
/gene="CM!P"
/standard_name="RH94128" /db xref="UniSTS-.847O4" mRNA sequence: ORIGIN
1 cgaggagacc aagccgctgc tggggggcga cgtgtcggcc cccgaaggca cgaagatggg 61 cgccgtgccc tgccgccggg ctettctgct ttgcaacggg atgaggtaca aactgctgca 121 ggagggcgac attcaggtct gtgtcatccg gcacccgcgg acctttctca gcaagatcct
181 cacctcgaaa ttcctgaggc gctgggagcc gcaccaccta acgctggccg acaacagcct 241 ggcgtccgcc acgccaactg ggtacatgga aaactcagtc tcctacagcg caattgaaga 301 cgfteagctg ctgtcctggg agaatgcccc gaagtactgt ttacagctca cgattcctgg 361 gggaactgtc ttactgcagg ctgccaatag ctacctgcga gaccagtggt tccattctct 421 gcaatggaag aaaaagattt acaaatataa gaaagtgctg agtaacccaa gccgctggga
481 agttgtcttg aaagagatcc ggaccctggt ggacatggcc ctgacatccc ccctgcagga 541 tgactecatc aaccaggccc cactggaaat cgtctcgaaa ctgctctcag agaacacaaa 601 cttgaccacc caggagcatg aaaacatcat tgtggcaate gctcctttgc tggaaaacaa 661 ccacccacca ccagatctct gtgaattctt ttgcaagcac tgcagagagc ggccccggtc 721 catggtggtc atcgaggtgt tcacccccgt ggtgcagcga atcctcaagc ataacatgga
781 ctttgggaag tgcccgcgac tgaggctgtt tactcaggag tacatccttg ccttgaacga 841 gctcaacgcg gggatggaag tggtgaagaa gticattcag agcatgcacg gccccacagg 901 gcactgcccc cacccccggg tcctgcccaa cctggtggcc gtgtgcctgg ctgccatcta 961 ctcctgctat gaagagttca tcaacagccg cgacaattcc ccaagcctga aggaaatccg 1021 gaacggctgc cagcagccgt gcgaccggaa gcccacttta ccfctgcgcc ttctgcaccc
1081 cagcccggac ctggtgtctc aggaagccac gctgtctgag gcccggctca agtcggtggt 1141 cgtggcctcc agtgagatcc acgtggaggt ggaacgcacc agcactgcca agccggcgct 1201 gacggccagc gcaggcaacg acagcgagcc caacctcatc gactgcctca tggtcagccc 1261 cgcctgcagc accatgagca tcgagctggg cccccaggcc gaccgcacgc tcggctgcta 1321 cgtggaaatc ctcaagctgc tgtcagacta tgatgactgg agaccgtctc tggccagttt
1381 gcttcaaccc attccattcc ccaaagaagc tctcgcacat gagaagttca ccaaggaact 1441 gaagtacgtg attcagaggt tegccgaaga ccccaggcaa gaggtccact catgcctgct 1501 gagcgtgcgg gccggcaaag atggctggtt ccagctctac agccccggag gggtggcctg 1561 cgacgatgac ggggagctgt tcgccagcat ggtgcacatc ctcatgggct cctgttacaa 1621 gaccaaaaaa ttcctgctct ccctggcaga aaacaagctg ggtccctgca tgctcctggc
1681 actgaggggg aaccagacca tggtggagat cctgtgcttg atgctggaat acaacatcat 1741 cgacaacaac gacacccaac tgcagatcat ctcaaccctg gagagcacag acgtggggaa 1801 gcgcatgtac gagcagctgt gtgaccggca gcgggagctg aaggagctgc aaaggaaagg 1861 cgggcccacc aggctaacac tgccctccaa gtccacagac gctgacttgg ctcgtttgct 1921 gagctccggc tccttcggaa acctggagaa cctcagtttg gccttcacca atgtaaccag
1981 tgcctgcgcc gagcacctca tcaaactgcc ttcgctcaag cagctgaacc tgtggtccac
2041 tcagtttgga gacgctggcc ttcggctcct gtcggaacac ctcaccatgc tccaggtgct
2101 gaacctgtgc gagaccccgg tcacagacgc tggcctgctg gccctgagct ccatgaagag 2161 tctetgcagt ttaaacatga acagcaccaa gctctcagct gacacctacg aagatctgaa
2221 ggccaagctt cccaatttga aggaagtgga cgtccgctac accgaagcct ggtgaagctc
2281 ccagctcaag gcaggaagac gtttgcaacc gcgacaaaat aactcttgac taacagccgc
2341 agagcagccg gtcctggggt cccaccctgg tgccctggct gtgagataga tggggagtct
2401 ttctgggggc ggagggggga gggggtgggg agggggccca caagcacgcc cagcccccgc 2461 cgaattcttt tagcttcgta attggaacct ttgacctgat ctaaagtgga ctttgtagca
2521 acaagaggag catcagcggg tcggggaggg gtttgggggt gggctggggg gtgggggacc
2581 ctttgtggat tttctttgcc tttgtgtttg atgccgtcgt gtgggaaaag tcaactccga
2641 tgccaccatt gcgggccgga cgaaggatgc tttcttccta gaggctccga gctgagctgc
2701 gaactcgccc cccgcccttg ggacaagaag acccagtcac atcactgcac ccgtcctgtg 2761 tcctcaccat tgctatgcaa agtgattctt gttgtacata agatttaaat aatgcaccta
2821 tttaagacat gttgacaaat tgcgggtctg ggacccgcct cttatttatg aagtctttga
2881 ccgtcccccc cgcccgaccc caccgccctc ccgcccccac ctggcgtgta gtactgtata
2941 aaccagtcag ctgtcgggtt agtggtagta ttattgttat ttttttaaag gaaacaaaca
3001 gacaacaaaa agaagaaaaa aaaaaagaac ctccttggaa aaattaattg ctttttcgta 3061 atggattctc tatgctaatg ctctctcgtc tgtctgtctg tctgcccact cccccaccca
3121 ccactgtgcg tttctgattt ccaaatgtot ccaactccct cacgaggtgg ggctcaggct
3181 ggaggaggag ggattaagat ccccttgctc cactaaggcc caagctcttt ctctcggcac
3241 cttttagact tgaatgggag gctgctaacc cgccctctcc agtccacccc ggtaaaagag
3301 ctgttcccca cccccaggga gctcctgtcc ctgtcagcct ttgctgtccc ctgtccccaa 3361 cggagactct gtcacccctg ggctccccct gccatcgtgt gcttcacgtg gccccatgca
3421 tgcccgcctc tctgcatggt ctcttgggaa aagagagatg tgtcgcctcc gccagtccga
3481 ctgccctccc caccccaccc ccgccacccc ccacatgtga ccactgcaac gaagacactc
3541 cttctgfccc cacctgctcc gaagacaaac caacctccgt ttcttttata aacagtcggc
3601 tttttcttaa taagccctca ctgtacagaa cagcccgttg atggtttatt tggggtcccc 3661 ctctcccccc agcccttttt ictgttggtt tagcacaaat acttccctcc tccggcacct
3721 ccaaacctac cccacagtca gtgtacttgt ttlatatata tttaatctta ttcaatggaa
3781 accatgcttt tgtcgtttta tactttgcta ggtagacttt attacccccc cactatgccc
3841 tcattttttt aaaaaaggaa aaaaaaaaga aactgggttc cagtcttaat tcattttccg
3901 tgccaggttt tatttcgtgt gtgtgtgagt gtgttctgtt ttgtgttttg ttttttgttg 3961 ttgttttcag ttgtttggtt ttcttttctt tcccccctcc ggtcccatac ttcacagcac
4021 tctggtgcgg gaagaagcag aagcaaaaaa aataaaaata aaaaaataaa taaaaataaa
4081 aaaaataaaa aaggaaaaaa aaaaagaaga aacaagacat gccacctttc ccctcgcact
4141 gttgctfttc ctgatggtta atactactgt cacgtagctg tgtacaaaga gatgtgaaat
4201 actttcaggc aaaaatøaac tgtaagtgac tcatc
SEQ ID NO: 2
Genomisk sekvens NM030629:
Exons in capital letters, introns in small letters, promoter region included //
>hg18_refGene_NM_030629 range=chr16:80085455-80302866 5'pad=0 3'pad=0 revComp=FALSE strand=+ repeatMasking=none gggctgaagctttccccagaactggcctttattgacgcagagggtgggaaagaaggcacgtggctgtgctgggagagggtgggtctccctatagcct ggacctgggaagggccttctetagagctctccagggacggccagacagctccccttccaccttggggtgtaagcggaacaggacacactcccctca ggaagcacggtatcaaagagggtcaggaggagccccagccggctcccgttctgaggaggcacctgtgggcatgggggacccccggggccgcc ccccgatgcctccgctgatgcttaaggtcacacagcaggacatggtagctgggttcaaactcaggtcaggccaactgcaaagcctgtgctctttcgac tcctggatggacactgcccaggtgcccctgggtaactgatacccttgtccccaaacaactctgaatctcttttcatcatgaatattattaataacaataaat actaataactgccatttatcaagagcccctacttgccaggtgctttctcattcagcctgccaaggaagcccgtgagttgggcaccagtatcgcactttac agatgaagtcattgaggtacagagcagctatgtaactagccatggatcatagagctagtgtcggagatggcacccacacacaattctgatgacaaa accttacacttggggactgtaaggctttgggcacattaggtgacctctctgagcttcagttttgtottctgtaaaatggacctcatatgctgtcGgtggcatag gtttgcatatgtgaattaatgactgtggagtacctggcaGtcagtgttagctctcaccatcatcatcatcattactgtagcatagggtttctcagtgaaacag acactgatggtcagagtggacctctcagcctgggggaagcagaggatgaaccctctggggcggggccctgggcaggctggttcagtgataagcag gagccaggcgacccacaGGCTTCTTGGATGGGCTGGGCGTGCATGGCAT AACCGTTTGAGAACAACAAACC AAGCCGGCCGGGCTGCCGCTCTGTTTCCTGCGAGGAGGGAAGTTACAGATCTCCGCCCTGGCGTCC
GGGGAAGGATGGGACAGGCTGCTGAGgtacagtcccatgtggggaacgactctgtccagcttgatgtctgtgcctaaaacctcgcc tgctgctgctggccacaggccagtgaaattcacagacGcaGttctcagagggtgggcaggtgtgtctgctaatctgagagaccccaggccccttctctt tttatgtttgtgggaggaatggctgagaccccaaagctgtgggctgctgctctttggaggacttgagacattgtgagagctgtoacctcctectggaagcc cctgcctgctgtggtcagGcatggccactoactotcctggggcatctgctggcctcccttagtgacttggctgttggctgtcattttctttccaGcfcattccGG caactagacaggaagctgtcagtcctcagcctccttatctgtaaaatgcagtttgcgagataatccccagctcccccagctcGCCcagctccgagactt gcaggagcagagaaagaggccatgaagctggcaggggcgcaaaggaagcagggcgttgttccagggaagggagagcaagtgagccaggg accgagggtggggctttgaagatgctgtgaatccagggtagcaagtgtagtggtgcctttgttttttcatctgtagaatggggataatgggactggtctcc aagggtggatatgagtgctgggtgagttaacacacatcacatgtgtaaacagggcctggaccatagtaggtgctatggttactattaaaattgctacatt tagttaattaaaataaatattaaatcaatatttgtcgtgcctgttgtgtgctcagaatacagcagtgaacaaaacagacccccttcatgggggcgatccta cttgggggcgatggatgggaaacaaggaagtaagtgaaacctatttagaatttgtacgatggaggggagttaattgcttctcaaccctgacaagtgaa aagaaaagtgagaaggactttgaaggacaaagaccaattaaaatttcagcctttcagcaaggatcaaatcagatttatggttgtttcatccagtgataa aaccctttgaatggatgacgatgtctcaaagtagcaaagtggggtgcgggagagctcagttttaaatttggtgagcttttgtgcacgtgcttccagggattt ggtatcacagctgtctcctccaacagcaagaagagaaggttcataaaggcacaccatcccagtagaggcgggggtcagccccctgcggaccctg gacccctgggaacacagtttgaaacctggtgctccatctcttgggcttcttcccaattaaaatgagcagagtcttacattctgtgaaactgaatgggagc caaggggtcaaaggacaagttcaagagggagaagccagtgccgcttggcgggcagtgcccgggacacGcacccacagcctggcagctgggcc atttgcttactgctggctggctggggggttcaacagttggaagaggccataaaagtggattgGacagatgGcctgatgctgggcctcgtaaggggtgtc cgggctgtggggatgtctaggcggagagggaggtgtagaccctgggcctccGaggcacagtgatggggcagctggagctggtggtgcccatgcaa cagtccaccctcctccaacccGtgcctgacagccttgcatagccGgggggactcagtagcttggggctcccctctgctcaggcagacctagggctctg atggctcccatttatgagaaGagctgtcaGttggaaggacctgctacctgtcctccgagatgtgtttttcataccttgtattggtcctctccaccaataacccc tcatggatgagtgattgttactgtgtaggaagaacttggggctcagtgaggttgagccacttttccaagaggccacttagagctggagctcataataagt aggggtctctaggaactgtttctaaacaacccccgaacccagctggtggctcccagaagggtctctggaagcaaggcgactgtctcattgtttcattagt ttgagccctacggggccttaggacacagGcagcttggagaagtcactctaataacccatcttgccggtgatgcGcaggcctcggcagactggctctcc gagggtgtctgggcctgggcagccgaggtcttgttaaccccaaatcccacaggactcgcatagagtgcagaatcccggttttctgaattggtgctaaa ggctcagtggcctggccctgctgtgaagccacagggcttgtgctctgggagccttggccgacacaggtgccccgGcgcctcctctgctgctgcagcct caagggctacaaagaaagGtccttctgcccgtgGagGgtgggctcctgggtcccctgcaggccaGcatggctgctgGtccagctgtggtccccccag aggcttctccaggcagtgcctgccgactctcGggtgcttcccttattttattcctcttccgggcactaagtttcggtttccttttcattgttctttgttggtctgttcatt cattcatgcatgcatgtgttggttcattcattcattctcagagtaccatggtggctctgaggacagaggtcagacccagctgggttggaacctgctgctccc tagcagtgggcctctgggcagatgttttaaccatagaactGggcttccttgtctgaaaacgtggctccttctaggacagtcaagaaggttcaatgaaatg atggatgtggagccccaggacgtgacctgaggatggtgcttgtcatgttggggtctgtgtccctcccttgggcacattctctccttccttcctttccagcttcct gaggacggtccagtgccgggggctgggcacaggcctgagtgagatgcggcccttgtcccccggcctttttggtctgggtcctcacctctgcaccgagt ccccctggggctgctcggcagctctgagggggccactctgcctctgcccagtggtcctgctttctcacgggggttatcaggcctctgctcctcgcgcctc actctgagagggtccttccacctgactcatggctcccatccctccatgcccctgcccaggtgcccacacatgtgtgccccagaacatggctgcacaca cttgcataccccacgagcacacacgtgtgtgcatgcatacaccccatggtccttgagcacacatgtcctgggccctggcatgcactcccccaggcgtc atgtatacacacagtccacacgtttgcaaacgggcagacacacctccctcttgcacatccgtgcacacccagcccatatcttcctgcccctgcgtgtgc acacagtcccagttagtttacaccgtgcacacctctccatacatacaggttcccagctgtgcgaccactcacccacacgtatgcatttattttttaaGaca cacatgcataccatttagtaggaccccatgtacaagcatctgagtgctttacaaattcaaatgtatttaatcccGctatcaacactaggaggtagtttctgtt attagcgccattttacaaatgaggaaactgaggtgtagagcagttagatcggtgtagagaagctagatcgtgtgctcaaggcttcagtcGaggctcttg gccctgacacgatgctgtttgcctgttgaagatgtgtgtgcatgcatgcaccattcacactgtgaacgtgtcccagcatggccacaccccctcaccgtat acacatatggccatgagcactcaatctcaaggtcatggatgcacatgcctcacacctatgcatggaaggacactcggcacacatacttgtctctgcac acacacaccacttgcacacccatgtacacatgtgccccaagcctcgccccaatctccagctccctttcagagtcccttctaggatattctctgatttctccc aagtgcccagttcgggagggaagtgactgcacagatctggacctggcgatgacctctgagtgggaggcagccctggctgagctgtctcctcacctta gcatccgcctgtcccggcgcccatgtagcttccttgtcatccatcttctgggctggcccaggacacgtgcccccatcccagcctccaagaatctgggaa tgtccttagcagactgggctggcatgtggcctctgcccggggagcagaggtggctccccaaaggcttcctgagaagtggtggaggagactcagcttc cccgtccagtcctttacccctcctttacccagcagcgccctctgaatctgaaacagttttgggggcggcagctccggtcctgcccagcaactcgcagttg ttgcctgtggcattcagattcaagtctgggcttgtcagcccgggcgagactctcctattttggccctatgggaggcatccaaactcctctgcccttgccttcc ggggcgccccacgcactctgggcttcacctggctcctctgctttgcttgggctgctgacttctggaggagccctttcttccttctctctcctgatgcagaacat acccagtctccctggggcaatcggccttcttcagccactccttggtctGtgctcctctttccctccctcactctgtgtcctgccagccccagcctctggcgact tttagagctggtgcgcagtcctgcctgagcatcggtgaacatgacgccatgggctgtggcttaacgattcttttggtgaattttgattctttatcaaaatttcctt ccttccttccgtccttccttccttccgtccttccttccttccttccttccttGcttcctgcctccctccctccctgcctccctctgtccctccctocctccctctctcctttc ctGccttcctctctcctttcctcccttcctccttctctctctccttctctccctcctccctcccctccctccctctctctctctcccttcctccctccctccctccttctttcc tcccccttttctttctttctttcttttttttttttgagatggagtctcactctgtcgccaggctggagtgcagtggtgcgatctocgctcactgcaacctctgcctccc gggttgaagtgattctcctgcctcagcctcctgagtagctgggactacaggcgcgtgccaccacatccagctaatttttgtatttttagtagagactgggttt caccatattggccaggctgatcttgaactcctgacctcaaatgatccacccaccttggcctcccaaagtgttggcattacaggcatgagccactgtgcc ctccccggcccactgtttcctttccctccctctctgtccttcccttcctccctcccttccttctttctttccttccttctttgcatgtgccaagccaagccttgtgcatct gcgtctttgaagtcctcacgagttgaactaacaagagaagaaaaacccaggatatgagaaatcattggattgcgcaggtgccctctgccaattggtta gcaagtttttacgagcaaatctggtggttatcctttggaaaataagcaaaggcaaaccacttcctgccacttccaggagctgctcaagtgccggagcttt ctaagacctactgagaatctgaaacttcaggccagcgtcctccgttttcctggagaacgcagtaatttgtgttggtgaaattccactgggcctgatggggt tggagattgcatttcagtcttgtcttgctaaggaatttctgagatcgagtaatttggcaagaagagaaaaggagaacaactttgggttgtgacgcacggg cagcaaatgcccgtcctattttgggactggtgcctcctgctttgcgtgtgccacacagcctcaggggacctgaagcccctctttggccccagggggagc tctggcagtgccctgtgccacgcattgtatcgggctccttgcactccttcttacttgacttataaggttacgctattaaatagcgtcatctgcagaacagccc taaattcttgaatggggagagaaaatgcggtagctgggggtggagtggggtcgggggcaggatctcaggatgggtgtggcatgggcattgatgctta ggtttgactctggttctttttttttttttttttttctgagacggtgtctcgctctgtcgcccaggctggagtgcagtgtcgtgatctcagctcactgcaacttctgcttcc caggttctcgcaattctGctgcctcagcctcccgagtagctggaattacaggtgcatgccaccatacccagctaatttttgtatttttagtagagtcgggattt caccctgttggccaagctggtctcgaactcctgacctcaagtgatccgcccacctcggcctcccaaagtgctggggttacaggcgtgagccattctgct actaaccggcaagtgacttaagtccttgtgccttccttgcctgatttatgaaatggcaacaatcctggggatgatgggaggacttttttattcagtcaacac atgagtggtgcctactatatgctaggccctattctaagtgttgcaactattaaatagagtagtctgcagagcagccctaaggggcagctactgcctagct ccgatgaggaaactgaggcccagagaggttaagtaacgtacccagctgctaggaggcagggctgggcttcagaccatggagtctggacccggga cctgggctgacagttgcagcataacaaggaltaggtgagatgctacatcagtgaggtgaccacttgtcctgttttgcctggacagtcccagtttacacttg tagtcctagtaaagtgatcagtgacgcttcatttcattcatagattacatggtcaacttatgtattgagtattcaggacaatcctggggacatggtggcactg cctccatgtgagcaatggagggggaggtgacatggccacagagcacccagcctggctcgcctgggggtgcctgggttacccgcagaacggagat gtcctGgttcattaactcattcgctcagcgatccatgggcctgtcacgtgcgccaggcatttgggcgtcatgctgatggctgggcgaggatggggagga ctcagacaaaagaagacagccagcaggctctgggaaatgaagtcacatccaagacctgcccttgtgagaaatgtcaagtgttaccgttatcatcata ttcccattgctttgtttggcaaattatgacaatatggctgttaactaagcagattctgattacctattgtttgaatgcaaaaaacaaaacaaaaaaagaagc aagaaaaagccttctggctatgtgacGagtatttagaaatttccattcctgaacaggcctcagggcagagccagtccccaggctgtgcggagccactg ctgtGcctgGaatgccgggtaatcaGtttgtctttgctgctgcatGGatcacgcGCtgtctctctgtccttagatatgtttgcgtgatgtcgtgggatgtggctttc ccaggcagtctgttaagcagcGagagatctaGtctggcctcctcgttgatgtttcattaaagagGtgccctagttcagcacaacctaaatattacagctaa agaacacaggccccggagtacggtgaccagtttgttctgatttgcccaatactgtcccaattatactgaaagtGttgaattccaggagatccctGagtcc cagggaaaccgggatacatggttaGCctgctctggagtgaacacagccGtgggtcatcatctgtggctctgctgtgtgacagccgggtgcttgatggtg aagagtttccccctggtatgagcagtcagtgttatccctggtctcagtggatcactgggtcgcctgcGtagtcccagatacctctgatcGCtttattttaattttt attttttgaggcagggtctctgtgcacccaggctggagtgcagtggcaacaattatggcttactgcagccttgaccccccaggctcaagccatcctGcca cctcagcctcccgagtaggtgggaccatagatacatgccactgcacctggctaatttttaaatttttttgtacagacaggtctctctgtgttgctgaggttgtt cttgaactcttgagctcaagcgatcctcctgccctggcctcccaaggtgctgggattataggcctgagccaccgcgGctggccttctgccccattgaggt gccagtctggtcaccttatctcactgtggatgtctagaagtgaattctgaatctcaacccactgccttgttctgaggttgcctgaaccccatggcacccctc cagatecctgagcggatcaccaggcctgtcagtgacagacgtcatcacctgggaacagggcaggatgtggctgagtagctgacatgtaatgaggg cgtgttcacacctggccctgtgctGcatggactttatatttaaatcctcacatgccaactgtcattttataaatggagaggtgaggcttgggaaggttcagtt atttcaccagtgttagaaaaaggtcagtggggttgggcgccgtggGttacacctgtaattccagcacttgggaaggccgagggaggcagatcacttg gggtcagaagtttgagaccagcctggcccacatggtgaaaccccctctctactaaaaatacaaaaattagcctggcgtggtcgtgggcgccagtaat cccaagtacttgggaggctgaggcaggagaatcgcttgaacccgggaggcagaggttgcagtgggctgagatcatgccactgcacttcagccttgg tgatagagtgagactgtctcaaaaaaaggaaaaaagaaaatagaaaatggccagcggggctgggcaccatggctcatgcctgtaatcttagcactt tgggaggccaaggcaggtggatcacttgaggtcaaaagtttgagactaccctggccaacatggtgaaactctgtctctactaaaaatacaaaaatta gccgggtgtagtagtgggtgccagtaatcccagctactcgggaggctgaggcaggagaatcgcttgaacccaggagatggaggttgcagtgagcc aggattgtgccatGgcactccagcctcggcgacagagtgagactcgtctcaaaaaaaaaaaaaaaaaaaaaaaaagaaaagaaaagaaaaa atggccggtgggcctgcagcccacctgtgctgtgtgtgctccacggtctgtgccattccacgagtggtcccagtctgtgcctatctgcagagcttgttacc agcctctagggagagaaatgaggagagcaagagtgagggtgtggaacccttttagcattttgacattccaatgaaattttcattatagttttcaaaaatat tggtttacagtggattggaaagaaaataaaaatgggtcttttcccacagacagtttggaaagtgctgctttagaccctgctcttttgaccccttgaatcagc cagtgaggctgggGtgtgcaacggtaacgggcagcgcagctgctcaacacacctgaggtttatttctccttcatgctaaatgtccagggcacatcagtc gggagccttgctcatctgatcgtgcagtgacccagccgatggagggcccgtctcaacatgtgcttctgctgtcctggaggcaggacgggggtgtggcc acttgtacaggacacacatcactgctcatggttcattggccagcacaagtcacgtagccacacctataatttataggggtgggtgaagagggaaggg aagtggaatccctcatgtgttctgaaaaaggagagaactgggcctgtgtggaggccatgttgttgtttcgcttctgcctgttcttgcttccatgtgggcctggt cctccagaccccacgcctggagagctgctgatcttgtgcgttttgtccatttgcaccctggttttcaaaggcagcggggtctgtgagccccagagcctca gctgggacctgctgggccgagtttctggtccctcttggagctttagtgctttcttagtttgggaactgaaagccttgtctgtttccccagactgtgaagaaagt tatgagtagtgtcagggagctctgcacagaaactttggccaagatcatttccctcttgtaagctgggtctctctttgagtctctcctcagtgaaagagtggct ggtttaaatcaggaacaggctgggcacggtggGtcatgcctgtaatGCGagcactttgggaggccaaggcaggtggatcacctgaggtcaggagttt gagaccagcctgaccaacatggcaaaaccctgtctctactaaatacaaaacaaaaaatcagccgggcgtggtggcacatgcctgtaatcccagct attcgggaggctgaggcaggagaatcacttgaaccGgggaggtggaggttgcggtgagcctagattgtgccattgcactccagcctgggcgacaag agcaaaactccatctcaaaataaaataaaataaatcaggaacagtaagaactgccgttcattgagtgcttattacatgctgtcacattgctgagcagttt acacacgttgtctctattcatcctcctgcaaccctaacaggtgggacccctcttagcctcattttattgatgaggaaaccaaggctcggagaggttaagg aacttcctgcagctcacgtagttagaaactggcgaagctgattggatctaggcctgtgtgatcctgagcctacaGtcaggaccgttctgatcGtgaccag tacttactgatttggggtctgagaagacagtaatgagcaagggcccccagagaagttttctgaccttcacaaagccctgctgagatcttgacctctgttct taagaggtggatcttgcctcagttatgctcagccatttcattacacaggaagacctcattcttccttacattgcaatttattgttttttaaagaaactggccttgt attgtggaaataacattggaaaatggagattaaaatgggtaatggaaataacaatcagtaatggcttaagaacagaagcttgattggggaaaagtctt ccgaatagaaagatgatcaagtgggaagaaaataaagtggaactttgagtttgaaatggctcactcatgcctgtaatcccagcactctgggaggcca aggcgggcggatcacgaggtcaggagttcgagaccagcctggccacactagtgaaaccccgtctctactaaaaattagctgtgtgtggtggtgtgcg cctatagccccagctatttgggaggctgaggcaggagaatcacttgaacccaggaggcggaggtggcagtgagctgagatcacgccactccactc cagcctggatgacagagcgagactccgtctcaaaaaaaaaaaaaaaaagaaatggctcaaagccttgttcctgaatgtcctctaaagaaagatca tcggccgggcacagtggctcacgcctgtaatcctaacactttgggaggccgaggtaggtggatcacgaggtcaggagatcgagaccatcctggcta acatggtgaaacctcatctgtactaaaaaaaatacaaaaaaattagctgggcgtggtggcgggcgcctgtagtcccagctactcaggaggctgagg caggagaatggcgtgaacccaggaggcggagcttgcagtgagccgattgtgccactgcactccagcctgggtgacagagctagactctgtcttaaa aaagaaaggaagatcatctgcccagccttggctttctgggggtcttgggtaccctccctctgcagctgctaaagataagcctaaaactacgtttctcaaa ctgggatatgtgcagcctgtgagggtgtcaggagtttgagaaaccataggctaaattgggtgtgtcctctatgtgtgtccacttgacttgtggattcagagg gaaaagattaagtaatttaactaatatataatttagaacatggctcatcttcttggaatgagcattttccttgaggggtggaaaggttaagtcgtttaattggt gcgtaatgtaaaacatggctcccctttgtgggaacatccactttagacaatttggtgaagggagaaaaggtgaaaccatttaattcaggagtcattgga gatattattttgctgttaaagtgtgcacagatgtggagtggaatgcaaattcacaaggctcattaagattaaccaggagacctgagtggaatctcctggtt ggggtggccgcagatcactttgcgtttgccctgctttatatttggggttcttgggggaacaagaggactgggttctggggaagggctgtgagggtagcac tcagtagtactggggtgtgagtcccattgctgcctgggacactggcccagcctgctggagctggactgatccggtgatttttgcctttcttggtttatttcccat ttggttttcccaggcttttagtagagcccacttgggcaatgccaacctatccacccatgcttaacggaggaatcagagatgattgaacagagaggaac aaagcaggagcattcctcccccaaccttgttctagagacaaagtgagtgctacatcctctactttatattattttgaaatattaaatgtgtgcatttatttttga atagataggactttGatatgatgcacagGtcaggaaatctataaggaaatgtggtgaaaagtccctcttgccctgtggcccggctggcttatctcctcccc agaggccacagcatccctggtttGtgatcatctGctttgtggacataattaggtacatagacgcaaatacgtacaaatttggtttgtttaaacgaatgatag aatcctgtgcacattttcctgtaatattttctcaGtaaacaatagtgaggaatggttgGatatcaggacagcttcGctgttctctttttgtggttacagagcattct actGcatagctGtatttggtcattttcttactgatggctgtttttgcagccttttactctttcaagcaatgccatgtgattatccatgtatatatatctttgagacaaat gGaaaaatgtctctgggaaaaattcctagaaatgaaatgtctgagtcaaaggttatgcacctctggaatattgataggtatttacagactgcattgggag tttGagcactctccatcagtctgagagggtgctccgtgagacagatctcaggacagctcctgcaggcctgggatggtgtgcagaatgatctgatcatgc ctgagggacccaGgtaggccccaggatggggatcctcatggtgtctcagggccccttctgatgtatgcttttgtcaactgtgcactggggttgggaagta cttaggagagcaagtgtcatgtctggagtggttctGCGttggcGttgcGtgcGattGctttgGtcagcgtggagtctcccGtactccaggaatgaactcttga atacaattcaggttccctttcccttagccttaagagcagcagcttttatgatgggaagggaatcattcattttatttttttcaaataaagatctactcttcagag agaaaaagtgccagcaggtcctGatgaagaacagattcattcaggtgtctgcaggtgtcaGcaacaccgtgtgctccccgtgtggcagacctcctgtg tcctcagctgtcattgccccacagggctctctttagctccatcctatagatgcgcaagcaggtgcagagagatgtggcatgggcaggaccacccagct ggagagcccaccggaatgatgctgatgtgccctcagcctgcacagttccctgcctgtgtgtgtgtctgggggcttgcttcctgtcacctagctcggcata acacattggtgggagtttggctttggagataggcacttgggtttgacattggggctgcctGcttcctgcgtgcactgcctctggcacctctctgagcttctggt tttttagctctaaaaatgggaatgactttcatgttggtgcctgatgtgcaggtactcgggggtcatagtctggctgtctttcccttccgcccactctgtccgcct ccctctggtcatcctgagcaggtcgagccagggcggccctaagcagagccctaccctagggttggggtcagggctccaaccctggtttcaggaatgc tgcctggataacccaagggcatggtctgaacagatgtctcttgaggcctacctgccccagctgcacatccttggggctgggtcttaactgggacccag acccctcagcttgctgtcttcctgtctCGCttaaccagggaggagagaacaggtgagtttcctggtgggcaggagcatggaagtgtgatggatctgatg cagtgattggctgggggcGcctttgtcaggagctccggacatcctgccctcacggagaagtcctgccccaaaggaagtatgcctgaatcagacctgg ctggcaaattgaacctGattttctgatcaatttccatcaggattttagatgaggatgcttttcctgtatctttaatggggcgtttggcaaaagctctgctcactttg gctgtgactttgtctcttgggcctctatcaaggtattgacgacagtgacgtcagcatcctgctgcggggctgccaccctctttgtgttatagttctcaaggtct gatcggggacgagggggtgctcgctcctcacagctgcccaggagctccacggagcaggtgtcagggcccttgtttccctgggtgtgagtcgcccaa gtgggaccatgatggccgccctcatcacttcatcactgatgtttttgctaataataatgatgacaatgtcaataatggtagtgttattaccacctaacattatt atgtgctGtGagctaagcacttggtttggattagtttaatcctttgacagtcttctgaggaaacactattgttagtagccctgtttaggaggtgagtaaactga ggtttagcaagcaaagggacatgcacaaagtcacacaaccagccaggcacaaagccaggatttaagtcctggaggtgcgattccaggtcttttcaa aattacacttcactaccacctttctcagatactgtgatggaccagtccaagaccaatgtttttttttccttcattaaaacaaaaaaaatcacaaatcacaaa cctttattttgttttgttttgtttttttggtgagatagagtcttgttctgtcgcccaggctggagtgcagtggtgagatctcagGtGactgcaaGctccaGctccca ggttcaagcaattctcctgccttagcctcctgagtagctgggactacaggtgcatgccaccttgcccacctaacttttatatttttagtagagatggggtttca ccatattggtcagtGtggtcttgaactcctgacctcaggtgatccacctgattcggcctcccatagtgctgggattacaggcttgggccacagctgccagc ctaactttgggaaattttaaaacatatactgagagcatgggggagtaaaatgaacccccatgtactcatcatctgcttcaacagttcccagcttatgatga gtcttggggtgtagctgcctctgtatgcttccctctGtcccagccactgtttagatgcaaatccctgacatgctgttagttcatcagaaatgacttaaatagga atctctaaaaaataaagtatctttlaacaaatagatataaatgtaataccatcctcatgcctaagaaactaacaataattccttgatatcaaatgtccaatg ttcacatttccctagttatttcattcatgatttttactattggtttgctcatttaagattccggacgtggtctacaccctgtatttgcttactgaaggttttacaatctctt taagttagtcatctgccctgtagaattttccatattctgagttttgctgattgcttcctcatggtgtcatttaacacatlcctctgttccctgtatttcctgtagatttcct gcataccttgtgaattcctagtttgtttttacaGaaggtctcactctgttgctcaggctggagtacagttgcatgatcgtggctcactgcagcttcaacttccca ggctcagatgatcctcccacctcagccttcctggtagctgggactacaggtgtgcaccaccacgcctgcctaattttttgtatgttttgtagagatggcgttt caccatgttgcccaggctggtctcgaactcctgggctcaagtgatctgcccacctctacctctcaaagtgctaggattacacgtgtgagccactgcaGCt ggcctctagttagttttagacctgtgctgtccaataccacggccaccagccacacatggtcgctgagcacttgaaatgaggtcctcattgagatgtgctct aagtgtaaaacgcacactggattttgaagacttagtatgaaaaaaaatatacagtatctcactactcattttttgtattgattatatgttgaagtgataatatat ttgatatattgggttaaaatatattattaacattgatttcacctgttttacttttttaaaatgtggctactagaatatttagttttaaacatgtggcttgcattgtatttct attggagagcaGtgatctagagatttggttgatttggattaaaattttcggcatgattcctctctaggtaggtgtttctgtgcacttccagttgcctcactccag ggtccctcatgcGttggtgggggtctttcttgctgtggttgatgggcaggttGtggtgctggctgcctgatctatccatcaccacccGcatcacctttcctgctc atgttccagtgggcaccagcaatcactgctcaggtgcattatttcattagagattgcaaagggcaggtgttttagctGtacctttccttcctcatttgtcagat gggatcatccgaagaagggcttcacttcatcagctacatggttgttgcaatgtttagtgtgtacaggaaaggcagcagaaatgcttcactcttcccctttgt atcaagtttagagtaataaactgattttgtagcatcttccaaaggtttttttttaaatatcaacatgaattcatggatttaaatttatatttgatgaatttcttttttatt aataaaattaattggcGacaaaataattataattaaaataataattttttttgagacagagtcttactctgtcacccaggctggagtgcagtggcatgatctc agctcactgcaacctctgcttcctgggttcaagcaattctcctgcctcagcctcccaagtagctgggattacaggcacgcaccaccacacccagctaat ttttgcatttttagtagaaatggggtttctccatgttgcGcaagctggtctcaaactcttggtctcaagcaatccgccctcctcagcgtcccaaagtgctggg attacaggcgtgagccaccatgtccggcttatttgatgaatttcaattccttgcagttactattcttttggatgctccggttggcccatttttggctggtgggagc ttttgagttttgattttgatcccttgccctctggtaaacctctgagttctttCGtcttcttggtaggttggaagattctccccGtagatcgagttttcgtagagcggg gcctgcctgcatccgttgctgctcaccagacccagagtgtggggcttcctgccagcaggctattcagaggagccgcctttctcttgggGctggttgccaa ggtcccagcaagaggctggagttgaggagacagccagcgcggctggcctgggccccacgcatagtaggtgttccggaaacggctgttgagtgaat gacaggactgcaagctgatctgccataccacctggctggagtgggctcctttccaccccgggattctccaggaggccagtttgcaaatagagctggc ctttgtttctctgccgtgtcggggacaccttcctggggctgagccggcgtggagctgggattgtacctccagcttgtgctgagggtgctgacttgggaacc ccccggtccgttctggcctggctgctgtgcagacccgtgggtctaggcaatggggcaagggtcagatgggtcaattcccagagtggagctgcctcctg tttccaggccaagccgttttgcaagggacacaggcatggccctagctggctccagacttagtgccattacttcctggtgtgaatatttaagattccagctct cggatcctctgggctggctttcattccactgacttgcaacctttgccctgttgtctttgcccaaaccatatttgctgcgcttccctcagcctaggtggggcattc ttgcGcccactgcccagtgcaatcctggggctagaggaaggctttgtgttttgaccccaaaacagaGcatggggtttccgttgtggttgctgctgctagttt aaaagaaaaacaacaaaaacaaaacaaaacaaaaacgccgccagctttgttgatgtccagtgaatcttcatccctaaaataatgcatttgtttatgg agactgacttcatgtatttactatagaagagactagaatccggtgacacttGcagtctatttgaggaatggatttgGatctggttttgtggtgaagagggta ggtgtcccagcccatgcagttggaggggtggggcaggcagggaggaggagggtggctgagaaagcttcccctttgtgggggcgtgtggccacctc cagaggatcagggtgagggaagcttccagaagtggcatgaggagggaggaagaggcagcccagtttgaccttaggaacgaggctaacttgggg tgcagtggtcaggagtgtgacgagaccatccaggttccaacccagctggctactcattagtccatgaccttagacaagtggtttgcgctcactgagcct ccattcttcatctgcaaaatgggtgtactgtgagaattagatgggacagcctattaattaagactttagcgtggctctcagcaccgcatgggcacccctg gtagatctagtgttgcggtcaatcgcggtggctctggagcctgagagcccaggagaaggtcatggcttcaccccttataacctgggtccccgtgggttt gtttccagacttctctgtgcctcagtctccttatctgtaaagtggaggaaacagtatttcctgcttcccagggtggttgtgaagattaagtgacttaatacaca atccttaggctgctgcctggcctgtgtgtgtgccgtgccagtgtgcgccatggtggctctagctgttgctcatactaacatctttcagaggagctaccacag accaagtggggcgctggggtccagtaacagaaaatgcgatgaacactcccctgagcatcgttgttcgagggcctgctgtgtgccaggcccaacagc cctggaggaaggtcatatccttcccattttccagagctggagactgaggccaggaggtgacccatggccacgtggcctgtcctggcaggagtgccct gtcccaaagctctcagccttttccctgtgccagaccgtcttctcccagttaaactagaagcatgactccagcagagagaaacctactgggggctgtgctt tattctgggctctagggctgaaggattgaccgggcaggtgaggctgaaccctctcacctgtcagcgaggcctcaaaatgactcacagctgaaagga acaccttggccttctgattctcatccttgaagcgttgtggtccctcacgcttctagatggaaaaacacaaggtctgtgttggagggcactgacgtgtgtgg cgatgtaaggagaggcacagctgatcttggctttgaaggctgggtgggcgggcaccactgggcttctgtttcagagaacgcactattgatttactattga gtgctttgggagcacagggccagggctggggataatgggaggcgtgtttcgtcagcccaagagcatcgttaagtggccatcaggaaatcacaggg ctggaggggctctcaaatgaagcatcaccggctttattcttttagcaaatgtgtatcctgcaccaggcgctattctaaggaccggaggttggtagctgtgc cagtctgggcctgtttgcccttggggtccgttccttgtccttgctctgatctgctgggtgtggtcgggagccaatctctgtaggttcttgtgtcccaggctcccg tgtcactggattcaacccgtgggaggagctgctaggaggttggaaggcaagaggaatggagaagccagtgtttctacctccctcagtctccagaggc cactctgatggcacctgcaactcctccgtggctccagctcccactggacggaccctatggcctgtcctctgtcggcgcttccagcccctgggcctcagtc ctgccacctcccctgtgtctctctggcctgcgggtgggggcagcttcctgctgttgctaatctctgggttgctccattgcccccgtttgggttctgggatctcct tccttgtgtacccagtgccctgcgttggagtctctcagttccagtgcccaagtggcttccatctcctggttggactctgactgatctagcaatgaaggtgac atggccccagctttggggtggtttctagtccagtcacttgacttcagcagcccattttctcactcttgattcctcGggggattttctaaaatacacatggaatc gcgcttctctcccgttttaaacgttcttctagctcccccgggtcccctGgtCGacccgagtaggactgcaatcatattgagctgctttcttttcctaaaggagc tctacttcggttcagcccttggtttctgcagatacgtgccgtgttccaggcttggaagcGctccccactcccttccctggacactctccctggacactctcat gctcttgctcttggccagccagctctgccttcaggactcagctcatcgccgtcagaggaagccttccctgccctcccagcctggatgcatctcgtcagtg cgcgggcacttgtgcgtcactgctggggattggcttgctctgggctgatagctttagttgtctgcagccaaactgtgggctccctgggggctgggaccag ggctggctagtgtaccactgtgtctgggatgcctggcaatagatatcgaagcatctaggcatctgtcctcaggaaattctctcatgtttgcatagacacat acccaagtatgtgtcaggtagcatagtgaaaaaccagatggcctccaaggtcttcagtgaaaaaccacacggccttcaaggtcatcggtgaaaaac cagacggcctGcaaggtcatcagtgaaaaaccagatggcctccaaggtcttcagtgaaaaaccagaaggcctccaaggtcatcagtgaaaGcca gacggcctccaaggtcatcagtgaaaaatcaggcaggtttcaaggtcatcactgaaaagccagacagccttcaaggtcatcagtggaaaaccaga cggcctccaaggtcttcagcgaaaaaccagacggcctccaaggtcatcggtgaaacccagacggcctccaaggtcatcagtgaaaaatcagaca gctttcaaggtcatcagtgaaaagccagacagcctccaaggtcgtcagtgaaaaaccagacggcctccaaggtcatcagtgaaaaatcagacag cttccaaggtcatcagtgaaagaataggtcagtatgtcttagtacattgattctgtggaatatgatgcagcaatgaaaaagaatgaagtgaatctaaaat gcatgactgtggaaagatatccaagacatgttattgtctaagactcatcacacaaatgcataacacaaaggtattttttaatatgtatatgattgcataga aaaatgagaccaaggaaacaccctcctctggcaagagagtgggcttgaattcaggtaaaggggattttgttgcttttcacacttctcatttctatattattc aaattgtaatgacagccctgtattcacatattagctgtgaaattgcaaagtatgtaataggccattatgagaaagaaaaagccccacattttagccagtg tgtccttggagtctcccccgacaatgccagggaagtgggaaacattttttcctgaagaaatgtggagcagaggcgattctctgggtgtgtttaggaaatg atcccatccttcgggaatgccgtttttggagttcgacgttctctggaggcttgggagatgcagccagggcgcagagttggcagtggctgcagacatctct tttcaatgtggacctcctgccacagccacgagattcaaggattttctaggaaaatgaacgccagtggatgtgtggaattttttcacaaagtaagtgacgg gggtccctttgcacttctcatgcccccatggttaattgtgtgtgtgtgctggaagtggaggagggcggtgggtggtgcagctgtttgaggactcacccttctt cggaaggctggggtcaatggggtgctgtttccccgagtcagttgaaacgcccatggctaaagcctgtggatcatctcacccctgcatttcctatttggctc tcactttggtcgaaagacagcggagcgcagaaaatctgtcataattgtgaaagtaggacctgtcatcctctaagggtcattcttcctggcccaccgggc ttgttgacacctggagttgggtagcagagagagggatgtcgggaccgtgaattaacagtggccaccacttcatggtgaatggcatccagacaacacc ttcacctgtctggggaagaacataggctaggcctgggagaggctgtctactgaagtccctgcaggggtccaggctggactatacccctccagcttggc gagagagccaaggaccagcaagggaagtgatgtacgctgagaaccgtccgggcgcccagcacgggtcagggcGtttggcttacaggctgtgttta tttctgagcagccctatgcagttggcattagcatcctaccgttcccactagccagctgggactcaaaccgattaagtaactgtctacctgcttcctgtgttct gtgtctgttggtgttgattaaaaaatataaaaggccaggttcatgcctgtaatcccagcactttgggtggccgaggcaggaagatcacttgagcccagg agttcaagaccagcGtggggcaacatagcgagacctgcatctctatttttttttttttttttttgagacagagtctcactctgttgcccaggctggagtgcagtg gtgcgatctcaactgactgcaacctccgcctcccaggttcaagcaattatctgcctcagcctcctgagtagctgggattacaggcgcccgcgccacgc ctggctaatttttgtatttttattagagacggggtttcaccgtgttggccaggctggtcttgtactcctgaccttgtgatccacctgccttggcctcccaaattgct gggattccaggcatgagcGactgtacccggGGtcaaaatattttttaacagaagtagcagggtgtggtgatgcctgtagttgcagctactcaggaggct gaggtgggaggatcacttgagactgggaggttgaggctacagtgagctgtgatcgcgctactgcactccagcctggatgacagagtgagacGctgtc tcaaagcaaacacacacacaaaaagtaaaatccctgtgattatatttttgctagtacttgctaagctgtagctgcttcaatttgagagcagagGGtgggct gcccaaagaaagtcGtgaccccttaaGtcagaaGtCGgtcagcagaggaattgggttctctgggctgttctctactcaggcacacccttgctgggcctc ccatgccccagggcagtccaggaaatagtgtgtgcatggtggaggggaaggaccttgactgagaccagacagggttggaatcttgggtctcctactt Gctgtctctgtgaccttggccaaccatttaacctcacttgaggaaattgagcctcagtttcctcatctgtaaagtggggttgttatgacgataagacaggat aaaaGacatgaaaGagGGagcattttaccacttttaacGtacagaacggGagtttgacatggctcactcaagtatgtccatcatggagatgcctcagtg aggtgctgggacatggtagactcagtaatgttcccttcctctcctccagccctcagtgttgaaggctttgtcatcctgaatggcgacgaatgggaagtga gctctgaaactgaaaccaccatttggggacaaaagctggcattgtagttgtggctctctgggaaggtctcatctgtcttctcggggctgttccctaaagct gtcattacgctggctttgcggcaggggtgcagcagcagtgggtggtgatgcggctgctcttgagtggcctggtggggtcatttcagtttcaaggccttgg agagtgtgcttagcaggtggggcctaagatttgcatttcagctgcccaggtagtcaagaagcggtatagcaaagcggctgtgagcccattctctggag tcctgctggctgggtttgaaccccaggtctgcctcttgcctgctggtgcactcagccaagttacttcatctgtctgcctcgatttcttcatctctagtggtttctac ctcagagactctgggagccacaaacaggatccGacttcttgaacaatgcctagaacaaataagcaatttGtatgctgtagagagtgtttgcttacttaaa ataatgcttattaaaaattggcgggtgcagtggctcatacctttaatcccagcactttgggaagccaaggtaggaggatcatttgagcccaggagttca agaccagcttgggcaagatagtgagaccccatctctcagagagagagagagggagggagggaggaagggggagagagagagagagagag agagagagagagagaagatagaaagaaagaaaaagaaagaaaatcaagatgagctgtgattaataagtagggcctgattattggaacttggcat tggatataattaagttgatcagaatttctcatgactggagagtcagacagtctgcccattgtgctgtgtgaccttgggcaaataacttaacttctctgagcct cattcctgtgtaaaatgggtgtaggaagtgaggaattaggtttataagaagggttgtgaggaggaagtcagaggctgcttctgggagggcctaatcctg gtgcctgggtctcccgtaggagctgctgtcgtgagtgtgtggctaaattgtggggagctcGctgggtttcgcatcctctttaaattagcggtggcatgtgtca gaaaaaggaccccccgccccctgggctcttcactgatgcattttgccctggagctttttgcagcctgggaacaggaatgtgctttatacaagatttaatttt gggataaattcttgaggaacaggaggagggcttttataccaaaaaatggattgttctggaaggcttttctttgtcactgcccggtcgccgtgactgtggac catgggaccctttcagccccgaggcctttcggcaagccttcctgagtggcctctgcatcattgcttgctgagcggatggtactgcacggttgccatggta gcagcaggatgtggttcctatggtgatggtcggcagtggcaggaagacagcagaggttttagttatctggtggcttcgcatttgccacccccccccgaa tagcaaacacgagctgcccccgctgtcgttctgctctgtagaaccaccggtgaccgccaaggtcggctgcctccctgaaatgccactgcaggttcttg gaaggactgggttgcaacaatagcatttctgcttccagaagaggagggggctgagtgtctctaagggtgcgtcacctgaggggagggtgcttatattc acactctgaacctagcaggtcgagtctgtgcggagcttcttcaaaaagcccctccctggagtgaattttcttttccttctaagtcttgtgtatttgtagacaga tgtgggatgatgagctaacaggagaaaccaattggcttttgaagctcctatgataccttgtagatttcaaaatggccagtttagggggtcagttgggttttc aaacataagatacttttctacaattgggagttggccgagattagggaaaggagaaaggtatcctgagtgttcccttgtctttttggtatcctatatcttacag atagaatttctccaagaaaggccagtgtctgataGagtgaaatgcagggtacagaatattgtttcctttttatccaggaaggcgagaagaaaagcgtat aagcaggatttcagaggtgctgttacaatttaagagtaaatctgatatttaggagccaagtgcagacggatgaggtttctgcttgtGGattcacacttgata aggctgccactgcctaagacaagggaaatgtcagacatctttgcttctagctggaatcctatcaacccagtgtggcaacaccgattcgcccacgatga tcaggagctcccattggcgatcgatgatgtcactgggtttcctggagtgtgattggtgggttgggccctgtcatcagagccctaagccaggtggccaca cctggattgacacaggagggacacagcttcagtgctgctccatccactgaagcacacccagagctccctgagggtctatgcagtgcccagtagagtt ctccttctcacttgaagtagccagaggccagaggggtgtGttGtggGatagccatggggtgcctgggcctggatttftgtfagaagggtgccatttagtga gcactgcatactgtgatagacttttcttctttttgaattttgaaaagtaaaaagaataaacacacaatttagcatacccaatcagtaggacatgtggGttca ccacctactgatgtcaagatgccttccaggttggttaacaaataaacaagcaaacaggaagcaaaagccacaaagattagtatcataaaatcgcatt tctaccgccccgactagagcattgttagtatgttgtcctctttgctttgccttttttttaagtgaaagaaataaaacattactggaaaaggtataattactfgac attcacctctaatttactaccGacctccaggtacccccttattgtaagtcccttgtgcatcttcacatttaaaatatttttacacacacacacacataatcataa acaatatataacatttctttgtatatggtttttttttctttttttgagacagtgtctcattctgtcacccaggccggagtgcagtggtttgatcacagctcaccgcag ctttgacctctgaggctcaagtgatcctcccacctcagccccccaagtagctgggactacaggcacgcatcacGacatctggctaattttttggtagaga caggacttcgctatgttgGccagactggcctcgaattcctgggctcaagtgatcGtcctgccttggcctcccaaagtgctgggattccaggtgtgagctac cgcgctttgctttgtgtatgtttttaaagttcccttgcagcttgcctttttccaccctatGcgaGgatgctcatgtgttggagatctctccgttgattcctgaatatct agttcatttcttttgattactgtggagtcactccctgtttgccatcttgttccatctgagtgcgaggcctgaatgggggacagactcaccccctgtcacacag aaggacgtggggcccacagtcacacggccgcaaggtgggtctggtaccctcccagcacattttggttggactccagaagcagggcttccctcacga tacctcaagcttacctgggccccggccaagcaactgactcatccagtotgacaaatccaaattctcgagtcactcagcccaaGcgtggttgcctcattt agatGccagccaaacccccttcccgcgaaaagccatggtggcctagaacgaagtctggaaaagaaccaagaggacagcatcttttgtctggagag caccgtgcctgttctccaaccacctcgtagcccctggtggagcctccGtcctcccccaggaagaaggtgagctgagtcaccaccaggtaaccctgaa cctcgctcagacacagcttcctttagctaggagcctggatgtaacacccagctcatcccttggctccctccaaacgtcaaggcgtcttgaactaaaagc cagcgcctgcacaccggcagaactttgcagctcctggctcctgagttgtaggtgtttttgccaggtgtgcctgtacgtgtgtatgtgtgGCcatgggtggac agtgtttctgtgctccttggagtaggcttatttttctgtctcttaaactggctcccttggcctctgcctctttcacgggttccatgcggaaccctctgacctgtgag gtgctaggcttgtcacagcatctattaggagacctgaaagacaggaccctgtaatgccacgatccattgcttataaaggaagccagtattggggtcag acagagctggattctctcaattgctcagcaagtgtttattgagcacctcctGtgtagtgggctctgggggtaacatggcacatgaaacagagatggtgtct gtcccactggagcttagaggggcagagactgtctacaagtgacagagagatacagagagaattataagtctgagttcttcagccagtctggctctgct atgtcctagacaggtgaccttgggtgagttaactaagtcatctgtaacgtgttagccacaacctactaagctcgtggggttatctggaagtcttggtgaga cagtgtctgcaaaatgcttatcgccaagccaggcacgtcatcattgcccaaggtatggcagctgcagccatcacggccctcattttgcagatgccgaa attgaggtcagagaggtgaagtaacttgcccacggtggcacagctcattagtggglttggcggcacaggccctgctcagagccacccagcgactca gctgtcagtcacaagtgaggctgttcctattcttgacagtaactgcgccttcccatgttctgcagggagcatttttatttcttttctttcttttttttttttttgagatgga gtctcattcctctgcccaggctggagtgcagtgttgctatcttggctcactgcaacctccacctcccaggttcaagtgatcctcctgcctcagcctcctctta gtagctaggactacaggcacatgaGatcatgcctggctgataattgtatttttagtagagatggggttacaccatgttggacaggctgttctcaaactcct aacctcaagtgatccgcccacctcggcctcccaaagtactgggattacaggcatgagccaccatgcctggcccctatttttatttctttaaattattcatttat tttttatttttattttatttgtttattttttcttgagatggagtcttgctcagccacccaggctggagtgcagtggcacaatctcggctecccacaaccaccatctcc caggttgaagcgattctcatgtctcagcctcccaagtagctggggttacaggcacccgccattatgcctggctaatttttgtgtttcagtagagacagggtt tcaccatgttggccaggctggtcttaaactcctgacctcaggtgatccgtgcatctcggcctcccaaagtgctgggattacaagcatgagccactgcGtc tggcccctatttttatttccttaattttlMtattatggtcaaatacatataacgtaaggtttaccattttaaatcttaaaaaacattttttttaagagacagagtatg gctatgttgcccaggaactcctgggctcaaatggttctcctccgtcagcctctcaagtagctgggagtacagatgtgtgccactggcctagccaatcattt ttaaatgttaaagttcgttgagtacattcatattgtcatgcgaccatccaccatcatccatctccagaacactgtcatcttcteaaactgaaactccgtcctc attaaatgatagctccacattctgcctactcccgacccctggcaatcacttttctgctttctgtgtgtatgcatttgactcctctaggaacctcgtatgagtgga atcagaagattfgtctttttgtgactggcttattttacttagcgtaatgctctcaaggttcacccatattgtagcatgtatcagaatccttttttttgtttaaaggttga ctaataatacgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtctgtgtgtgtgtgtgtgttcgtccattcagtttgtccgtttgcatttcagttgcttctgcgttttggctttg agaatagtgctgctgtgaacattggtatataagtatctttttgcatccctgctttcagtttgtttgggtctatacctaggtgcagagagcattttctcgtcaggag taaaacaaaagggacaaaagaaagctcctgacttccaggaattctcaaccttgggtccttggatagaattcaagtgatctgtgaacttggatgtggcat tttaaaaaagacatctttatggtcaccaacctgtaactgaaatttagcatttgtttccatgacggctgtaggcagtaccaatcacagtggtgttagcagtgc ctgtgacttagtcatcaatagaaatcgcgggtgtttgcatatttcattcctgttgttgtggatatcttggaatatcattacattcatcagtaccccaaagttaca gtagttatcaggcccacagGtaggtcttgttatacgatggaftaataaagaggggatctgttactccattggaaattttaagggatattttgatagctgtttttc attatgatcagcttcctttcctttgcagtttcctatttattttatacttttaagaagattactctaagaaggggcGcagaggcttcaccagactaccaaggggtc caaggcacaaaaaagcttaggaagcccactcttgccttgcagaggtgcccccgggaggggtcacagtgaaggccccagcccgccagaggagc aggtttgcgtttggtttctgggcagctctgtggaaggcaacccaacttcctttggaagggccctgagcctctctctacccactccaatataagaagagaa attttgctttataatgagcaggaatcttctctcagttccttggatggctttggacatgttttgagtttgtttggattcccaggagtgagcacacagggcgtgagc tttgcagtttggggcctggtttctgaagaagttgcaaacagggtgatggtgcagttcagacaacacgcgcgggccaggcaggcctggacctgaaag gaatgtgttttcttggtttttgtctgctacagaatttctcagctctccagctcgttggctcaaagtgtgtGaggaaagggggtgctgggtaacaagacgatgg tggagagtgaggtttgcagacacaccctggcttggccgggagcccacggtgggggaggttggctgagtgtgtaagagcctttgggttcacagcctgc atgccagaaatatcatttatcgtcagtaataatgataatgcctgatggacgggtaaaggaatagctagataccagaaaaaaacaccaacagggaca tgttcattgtagaatctaggtggtgggtgtaagggtattcatccattcttttcttcttctttctttttattgaagtattacttactttcaaaagtacacaaccaaatga acagctccatgaattatGCcatctcatggacctaccaccaggGtatcagttggattttgtttctaccatggaagcatcctcagacttttcccagagaccacc cttcatcctcctcccccgcgataactctcctgaccacagtgtctgtgtttatttagtttttttagaagGttcaactttacagaaagcaaatcaatgcgtgttctttt atgtctggcctctttggctccacatgtgtttgtgagcttcatctacattctgtttagagctgaaggttatttatttttgttgctggatcacattttatcctaaaaatatc ccattctactgacggtgggcattcacgttgttgccttcttaggcttttatgaataatactgctaggaagtctcttgcgtatgcctttttgggaatgtgtgcatgaa attctgttggcttatagttaggcatgagttgccattcgctggtattgcataggttcaccttttgtagagaaaaccaacctgttttccaaagtggttgtaccagttt acattcccaggagcagtatgggtgatttctggttgcttcatatctatgccaacttgttattgtcagtcttttaaattttagccattttggtgggtatataacagtatt caacttttctttaagtctgaaatttttcataataaaatgttggagaaaaatatcGttcacattcatgacaacttcatagaaaaatagtatttttaaggagatggt tgaaattggcgcttgtctggtcttggagtgaagacttttttttttcattctaaacaatgccaaggctggcccttcctcctatgaccctgtggctccccagtccac cattggtctcatgctgaatgctggatacatttttaaaagctgggtgtagccagagacaggggcccggagtgaggttgggagtaccttgaagctgtgctc atgcattgaattgatatgaccagaggtggagGgtggagctggttcctggGctggtagaagttcttacactttttgctggtcccagagagatgtacttttgagt cagcctgggaaattaaaatagttcattgagttttggctaattctggtaactattcctagaatcctcctggtcattggtttgaggtcacagctacctgcttgctgg ggcttccctctctgacttagcacaaatgatgcccaagtcttgagcttcttcctcatgttgttaactgctcagctgagttatttcaatggcatgaaagaaacat agaattaaggtcatagagcatggtcctaattcatgcctgctcgccctgctttactgccatcatcatctatctccttgctttcactcaacaaatatttggtgagc gcgatttttttgttaggcactcacccatgctccctcccttcctttctcctctccttcagtttgtttgcctaccagtccatgcacccacccgtccatccacccacGc atccctccatctatccgcccatccctttatcccttcatccatcacttactgatggctttacccattgtaaatcaggccttggctagatacagatgaatgagctg tggtccttgcctttgaagtattcccccatactgtgacaaatgattaaatagttattcataatgcagcatgacacggatataaggggggaagaagagaga ggtctctagggcaggttgggaggatgaagaaaagctttctggaggtcacaatgctattgctgcatcttgagaatatettgggatgggcccgtgaggga gggtaaagagagagattgggggcacatggtttctcagatggtacatgatacagagggtagccatgcttgggacactcagtgagccGcgagtcaccg agtgtgggtgggcagagtgtgaggggctgggtgacatagatggctctggatctgtcagcagtttggttggggcttgttggtcttcgaggagatgggctgt gaaactgtggggcagtgagatctgtgtggtggacagactcatgggccctcaaagatgcccatgtcctactccccagaaatggaatatgctgcctgca ggatgaagaggattccgcagaggagactgggttgaggagcttgggatggggaggttaccctggattatccaggggggccagtgtcatcacagggg tccctaccagggacagagggaggtgggagagtctgagtctgaggaggagatgtgcggaggcagagagcagccttgcaattcccggctttaagatg gaggaaggagccaccagccaaggaatgcaggcagccttggagaacgggcaaggatactccttctcctctggaggctccagaaggagccagccc tgcccacaccttgattttagccttgtgaggccgtgttgggctctgacctcaagaactgtaagagaagaagccattgcgtgtgtggccatttgagcagcca taggaaccttatacatgggcaggtgcagggacatctgaaaacctttgtacgagggtccgcattaacagtgagaggatagggtttttggctggggacag taagaccatcatcactgcgtgaaaaccttctcaaagagtccatctttcagtcaggccgctataaatttatctctatagatcattcgttgttaaaattaagccc agggggaaaatcagactcattcaggatcaaggaaagtcacagaatctgatccattcctaccagggtcccacgtcttatgaggctccagccttcttacta gaggattctgatactttattaccccaggcgaatgtgatttgagtagagtcctgcttttgggggaaataaaatcccagtaaaggtggatccggatccctca gggacctaggtgcagttcctgttcctcccgtctcgcctctgttgcgctgcaaggtggggtgtgtagtgagtatcactgtaacctgtacttttctaaagtcaaa cagatttctcttggtgggaggacgtgtettttgtgggatcggtgtagcccgtctgagtcagtgactcacctggcacccctggcagctgactttcctggcagtt cactcgagtctcttgcctctgctcacaaaagcctgcgcctttattcagctttcctcaccgcttcccaaggcagagcagagcctctcccgcGcgcGtccca catctctcccttagctgggtgcccgcgtggctgctacctccgaggcttctgtgtcaccgggtagtggaaatgtcaccgagtgtcagagcttcgagcctcct ccagatccatccaaggtggcatcactaagtggcatttgtgtgctaggcacgtaccctcttttacatacattatcttcgatcagttcagcttcttctgcataaaa aagaaatttctctaccgtcccagggagaataattggaaaagcgagccctgagtactcagcccacccgcccttctcctgctgaactgtcgaacgtagcc accagctagcctgagcttgttctgatgtcttctgggatcgtcattgttatgggttgaactgtagccttcaaaaggcacgtttacgctgtagtctGtgtacctgtg agcatgaccttctttggaaatagggactttgcagatgcgaccaagttaagatcatgctggaggtcatgcgggaggtcatgctggaggagagtgggcc caaatccagtgactgtgtccgtaaaagatgagggaaacttagacacagagagacacacagggacgagcaccgtgtgacagcagagacagattc agctgctagccaaggaatgGcaaggattttggcagccccagaagccccagaagctgagagaggtgtggagcagatcctgcctGagagcctccgg aggaaatcaaccctgttgacatcttgacttaggactctcagcctccagaactttaagaaagcacattgctgatatgcaggccacctggtttatggtctgtt gttcaggaggcccttgggacatcaatgccctcagtccagtGtcgattctacgaccctacGcgtgttttgtttttcacaccaggccgtctctacccgcatggtt agtgctgaccaagtaggaagttgggacacttgaggcatctctgtgacgtgctcacatggcttgaggaggctcgggccacacctcgaggggcaagcc tgggcctgccgcccgacctttgcttggagaactgggttcactgggtttaagaatcattccttttccttccaagttaactgctttcaagaggtcaaccGgtgtgt catggcttttcccagactggctgattcaaaccatgtcaccaccaggaagggggaaacagaagatgattgactaagaaacattcatttctgttgcaaatt actagttggggctagttgttgattatctcacctccattgctatttgtatttagaaatggctcataaatttgcttacatgggtttggtttgtcttctaaatgaaatgatt gcactgcacatacttctaaaactgtcctgcgatttgatagcttccatttcatggcgcttcttGtggatgtcaggcactaagtcgggcgctttattctgtagttctc ctagcaatctggtgagctccactctacagataaggaaatcgaggccaaggacagctaaagaagcgaggtgcgcaaggtgcccaggtccgaagtg tttccgctgctttcagactgcagtcccagggctcaggagtccatgctttctgcgtatcttcacgctggccacggatcacctcatcattagatg tcgaagttgaacaagtggtgttcacattcggacgtgtgttaggtagaagtgtgtgtgcacctgcgtgtgcgtgtatgttccacacgctgatgcaggaggta tacgcacagatataattgtcttttagaagattgactatcactaattttgaaaaatttcctgaatgacctttcctgccaggccaatacattgagcccaacagat aaatccctgaacttattcgcagtctctaagtacctttagaatcccgggggtcgccctgagcctccccagggactagcgctgttgccctcgctcagtctGg ccaccacaggaggcctcggcttgcccagcagctgagtcgggagaacctttcccaggtcccgaggcagcgggaggcgaagccaggagacccac ctggtgccagggaagagctgtcacctgggcctttcctccaggagcctccaaggaaggtggaggtgtgacatcagagtgttgggatgtggaggggtgt gactccctgggatgcagctctgtgccctgactccagtgtgccatgcttggctgatctctcaatgattaactgtgtgaccttggacacaccgtgttgcctcctg cgcctctctgcccagacagcatggcaagtgaaagcctccctcccttactgatggtgtgatctgggctgcctccttggacacgccaagcctgctgtgcctc gaggcctttgccctgactgcttcctctgcctgggatgcctgttgtctaaacacccacaccacacgctccctcgcttccctcctgtctcctgtcagaagtcac ctccttgggctgtccttgatcattccatccatccaaaaagttggcacccactcccacaattttttatttctcgttccctgacttacgtttttttctcctgagcatatgt tatcatctgacagaccacgcgtttcttacttattttgtttattattccatcccactagaaaggcaggggtttgcctgttttttccccatgactgtatcccGagcattt agaacagggcctggcacctgctagatgctcagtacatagttttgagtgagtgaacgaatgaatgaatcatcagtcagtcaaactttgcagcaGtcacttt gtccattggaataaagtttgcctgttaagtacatggtagcGactcagtacatggtagctaaggttatgtgcatgattttttatattattgtcattatgtgctttattg tttttatttttatttttatttttttgagacggagtGtctttttgtcacccaggctggcattcagtggtgtgatcttggctGactgcagcctccgtctcccgggttcaagc agttctcctgtctcagcctccagagtagctgggactatatgcacgtgccgccatgcccagctaattttttgtattttagtagagacagggtttcaccgtgttgc ccaggctggtcacaaactcctgagctcaggcagtccacctgcctctgcctccctaagtgctgggattacaggcatgagccaccgcgcctggcctatgt gctttatttttacaatcagagggctgcactagcagatctgagagcatgaccggggtggagtccatgcagggccgcagggaacactagtcagaagga ggcagtgaacctctGctgccctttccttccatctccatcaccttgagcatcttctgggcagctgaggtgaccgcagatgggaaggaagggcgcagaga tgagcattttcttctctccaccatctggttccaggcagggcaggagagggccccgtgagagctactgctcacggctaccacggctgcctgtgggtcag agcatctccacgctggagctgggccacactggttcctgcacccgggcagcctgtggccaggctgcgtttcaaagccaggactttcaggaatgcaccc ttttgaccacacagcaaggccacacatacccaatagcagtggactctgagctctttaaaattgtgaatgttgcccagtggccctcagtcaggatttgttcc attaaacctcattcactgccctGattttatgggtttgttgactgtttgcatttgctccgcaagttgtttatattctttgtgtgttttattttcaattatggcatgtgtctttaa aaaaagattgtaagggtttcttttgaaatatagaaaactgttcatcctttttcaaatcatttatgtagcagttattactctccaactttttttgtttttctagtctcttgat tttgtttgaggtatttattgatatatagaagttatatatttttctgtggtcagagttgagtgtcttaattagtgacttcttaattagtgtcttcgtggcttagagagttctt ccaaattttaagattgagcaaacattccccataaaaaaaaaaacaaaactatagaactgtaaaattaacctagaactaagcacctacacccaggat aaatttttggtataaggtgtgaggcagggaataatgctattccttccctcGaaatagttaatggattgtctgttatcattcactcaatagtgtgccGttttcccat tgctttaaaatattgctattatcagatactaaatttttcaaatatgtgctaagtttccttttaggctttctgttagttaccactgatatactgtccttgctctgccactgt gctgttttattccagcttcatagtgttttgtttgtttgttttttgagacggagtcttgctctgtctcccaggctggagtgcagaggcgtgatctcggctcactctaag ctctgcctcccgggttcatgccattctcctgcctcagcctcctgagtagctgggactccaggcacctgccaccatgcccagctaattttttgtacttttagtag agacggggtttcactgtgttagccaggatggtctcgatctcctgacctagtgatctgcctgcctcaacctcccaaagtgctggcattacaggtgtgagcc accacgtggcccataatttttttaaaattgagccctctccttttaaagatgaaggaactgaggcaccagagaggtcaagcaacctgcccaaggtcaca cagccaaatgctgtctgagaatctcacatgcataaaattccagtgtatttaaccttctcgtgggctgtgtctcatgatgcttccctgtgcttctttcctgtcactt ctgctcatggtatagcactggaatgctttttttttttttttttttaaacagctgttgtacgttctttctctaagtggagctagtcagaaaaagctgcatgaagctact agcaagaatgagatcagacacgtgaattttgtagtactgtgcctggcatagaaaaagcGcttaatctattagtaataatacaattattattatttccattgat gttgactttttgtaaggtacgtcctcatttgaagcatcagtcagtttggtgatcagttgcccttgagtgttcagacactcgtttacagatgttggaccctgttacc caccttcGCctcccaccataaattaccgaggtcaccccagactctgaactggctgacaagctgttacagtgatagaaagttttgcacttgagcattccca caagctcctaggactccaggtcagtttacatgttccaggtttttgagaaaattgtccacgctgacttcaaggcgagagcatcttggatctcctcccagaga gagtcgtgtcacctgagggcccagggaacctcggtgaGaagggacctcttgtGtgctgtgtgctgtgggctgatgtgatccctgtttgcagtgtaaactc ataagcagggacccgaagcatcccccgacccctggctttgcagagcagcGataaccagccagtatgaagattaatttccctgtaaaacctttgaaat caggtaagtgttaattattaaaatttcacgaggagaggcttgtttggtgtgaaggcttccagcttgctgagggtgacGtggaacttgttgtgaggatgacc aaaggtacttgggagtgctGcttgccttgctgtggcaattggaagtcttcatcttaccttgcgccatgcagggagggtgtgccctggatggacccagtgtg gcctgtgtgcttgctattcggtacctctctcacctgtcattaactcgggggcattataaattgatcgtcaggataagaatattctcttatagttcatctttttaaaa aaatggtgataagatacacagaacataatgccctgtcctaaccatttttaagtgtgcagatcaatagtgttaagtatattcacattgtagcacaacccgtc tccggaaccttctttctataaatgcagaattagggttggctacctcaggtggacacctggttcatgacctttgatgaagtgggtagaacttatttagagcag gaggccgagggacaacagcacGagcctttgtggtaggtgttaatacctctcatttttcagatgaggaaactgaggcactgcttgtcttttttttttccagtaa aatgttgttatagaaacatacgtgcgtcacatacatccggaagcatgcacacgtacagcteagtgaatttttgccaactcagcacgcacgtgtaacca gcgcccaaatcaagagacaacatactgagcagtaccccaccccctgccctgcacctcGcgccagccgttgctctccccaggggtaactgctctcctg gcttgtatcagtgtctaatggttttgcccgcttgtgaactccacatctgtgcagttgtttggcatgtatgattttgtctggcatttttcccatgacatattagtgtgac tttaagagtaagttgctggaaacttcaggacGagtcatggcagaactgggctacagactcagagcagggtcccccctgctGaccgtcctggccgtca caatgttcacgtgtgagcctgccttggcctggagtgtcggggcatcctgagaaataaagttggatagaaacgccccatataggctgggggcggtggct cacacctgtaatgccggcactttgggaggccgaggtgggcggatcacttgaggccaggagttcaagaccaggctggccaacatggtaaaaccctg tctctactaaaaatacaaaaattagccaggcatggtggcacgcacctgtagttgcagccacttgggaggctgagacaggagaattgcttgaacctgg gaggcagaggtcgctctgagccaagattgcaccaccgtactccagcttgggtgacagagagagactccgtctccaaaaaaaagacaaaaaaaa aaaaaaaaaaaaaaaaagacccaaatagaggctgggcacggtggctcactcctgtaaccccagcactttgagaagctgagatgggaggatcgc ttaaggccaggagttcgagaccagcctggtccatatagtgagacgcccatctctgttgaaagaaaagaaaagaaaagaaatgccccaaatggga gtttggtgaaagttcagtggaggattagccatgaggatttcaggagcctcccgctttgagcagggaaacaccctgtggtatgaagtggGagcaagag attggggtggtgggggctgcatgcgtggggtgcagggcaagggtcagctgaaggtgtcggggaactcacagagggtggagagagccctgggtgc agagtcttggccgtcaggccgaggcgggtgggaagagacccggcattccggacagaacaataacaatcatcgtttccactcaccaggggcttgcc ctgcagaagacattgtgcctggtccattacacacacaccacagtctcgttgcatccccctgtaaccctgtgaggtagctgctatcattgtacccattcttag atgggggaactgaggctcaggcaagtaaaatgacttgctccagattagggaagtggtagggagtcaagaggggctaaggcctgagtccgtctcatt ctcagagcgacacccataagcatgggctgcctgccGatggaaactcataaagtagagacacttaagacataggcggGccccggcggtggctcctg cctgcagtggcccagttgcataaacactgagagaaggctgccgaatttcactctaaggggttgttggaacaaagttgaaatgtggtccaaaacagctt catcatcattagtgaatgtgctgtgggttagctttttattttctcaggggatttgtttggggccagcctgtgtctccatgttcttacttcgcgagctgagtaagttg atatctgcaatttaagaagagcctggttttgataggaagttgatttgattaccattttataagattttcttggtctggtcttgatcctgtggatctcttggtttcagta attttggggtggtgatctatcctctgccatttaagccaagtcacactgatgttgagtccaccctgaagaatgtgtcaggatattctcattccaaggaaatag aaaaaggcattaagttcaaaatagcacgtgatattccaaaccaagactttgttatgatcttctcgggcaataatatgattatcaggtttttttttcacaggca agttgattctaaggtcattaattttatctgtatccagtggaaattgtgttcattttaaattaaaataaaatgaacggtgtccatctgtttgtggaaacctgatcta ctaaggttgatataatcaggctatttacaagttcactgtgggtcagacaacagtatttatattcatgcacacagaaaattcgattagatagtgccgaggaa gagcacacaccgatgggccgattaccctgaattcaggcagctcagattctccattcgcttgaatgtcatattagctggggatatcccttttgtgacgcaga atcttgcagcgaaacagttgggtgtagcctcctgtgagaaagaaatgcttgcagcagggattttccaggccggcatctcaattgcacagaaaaacattt tgggaatgtttccatcagcccggcagtctgaaggtttgagcggaatggtgagaaggttctaaccaggcgtccttgggggtggaggatgatgggccag ggcagctgcacaatgtctggctgttcagggggtcttgaaaccaatgtctgcaggccctgcggggatggatgcacacaagggccgtttgaagcacag atctgctcaatcattgttttctgctgggagtgagagaagggcactccacatctctgctcaagaatccttcatgcttcgctgttgcttttaggaaacactccttgt tctgatcaggactacagggctaggtatgtttctgtctggccctgcctctcccactcttactgcacctcggagGtccttaactgctcctaccctgcgtcctgtttc cttttctcagctggagcctcctccctaccacctgaggcccgcagttcctgctaagagcaagactaagcttccctcctgccttcactcactcattcctaattcc ctccgcctcatcttcagtgccacctccactggaccttccatgaccattccGccaccacaggacagtcattctctttatgaatgcacagttcatagcatgtga ttcatagcacaatttacatgaaataataaccaactgtccattggttgctttatgtctctctacgtgctccgtgtgtacaactctgcccccagccctgagcact gggcctggatgtagcagggaccaccatgttattggtgaatgagtgacagaaacaaacgatggcagtgaacgaagccgaaagtagttctctaatttgc acagtaatctcagccaccttgaaaggtcgtttttagtgtcacttcattgtgaatttgtcagacgtggagcacatccatccaaacggaaagacgaagcaa gggccgaaagtacttgctcaccagggcagcttagtgaccagcatcgctggcctttttgtgtctcgtcagagcacactgatttgatgagtccccggctttcc ttagtcttgcctgttggagagctccatcctgtgccgcctctgatccgtgagatgggcttgctcaccctggctgagtctcactttgttgcccaggctggagtac acgggcacaatcacggctcactgcagccttgaGctcccaggctcaagtgattctcctgcctcagcctcccgagtagctgagactacaggcacaaacc acGtcgcGcagctaatttttgtattttttgtagagatgggtttttgccattgcccaggcagggcttgaactcctgggctcaagtgatcctctGctgcctcggcct cccaaagtgttgggattacaggcgtgagGcactgcacctggcctggcctcttctttgaagccagttaaatgtgtcttgttttgagtgtgtgtgtgtgtgtgtgt gtgtgtgtgtgtgtgtgtgtgtttgtttttgttatgagacagagtctcggtctgttgcccaagctggagtgcagtggcgcgatctcggcttactgcagcctccgc ctcccaggttcaagcgatgctcctgcctcagcctcccgagtagctgggacttcaggcttgtgccaccaGgGctggctaattttttgtatttttagtagagac agggtttcaccgtgttagccaggatggtcttgatctcctgacctcatgatccacccacgtctgcttcccaaagtgctgggattacaggtgtgagccactgc acccggccttttttttttttttaagttgcatacttatcagtccgtgggcttatttgttttgggtgctgaacccctctgttaagtcttgatgactaaataaacacaattc aattatgtactatatatataagtatattattcttgtgaaaagcagtgccttaacagaaaagtctgaagttccccttcctccacccccgaccctgttcctaccc catatcccatccttctagggttttttcctttatatttacattcaaacagatggttctatagaaagtatatggtataattttatgtgagtttctttatttaaacataaaa ggaatcctgtcatatagatctttctgcagtttacttcttcactcagtgagtGtttttggagatgtgttttggagatgtgcacggtggagccgtgtaacctgtaact ttcagtggcagagggctgtgatttcataggcccagccagtctaaccactccagcccctgatcggtgccccaggctggtaggatgctcttgggaccctca cacgcttcttccatgagttgagctgtttgtttaccaaacctggttacgctggtgagaggtgttactggatttacacagtttatttgaagattacataaacttatg aaatatgagcgtgaagagagaacggctgtGtttatgaaagctgaatggaatgcttaagaaagtGtcagtggagtggagtgtccctacaaaacaacc gatgttgtgggtgagagaactgtaaaagaacaggaaaaagctgtaatgatcagacagccttgagggggtcttcagagaaacagaagctgcagctt gtcaatcaggcatcaggcatgcgtttatgtgaaaacgacccagaggccgtctgcaaagggaaagcctcatctctactacaaaagatggagaacata tacacctttacatacttttagcaaaaacgaaatgtctatttcatgttttaattttctcctttaatggactcctttgggttcaccactcagtcactggttctaataacc aaagactgaccttattctgttcagctgccacatcacattccataaaatggtcgtgccccaccctgggtcgatggatgtgaaggccctttctcgcttttcactc ttaaacacagcccaggaacaagctgtcttacctgggactctcagtagatgctgagaggcagacttgctgggtgtggcattccaaattttaaaagcagc aggagttggttgattttgaagttgaagactcctaggcggggagctctgtgaaaatgggagccaagtcttttacctgtgaatgagaattaaaatgggggc caactattaaatgctcggacaccccaccagtgcttagatctgtttgtcacgcaggcatttcttgagtcccagttgtatgctctgtgaggcaccgagggtgg gagatttgtagcatggcgtaggttgggagattggtagcatggcgtgcgtgatcttgagaggcaggtgaaactggcctgcatctgggaatagggtctgc aggagtgtgtttttctggaccttcatctgagggtcgtattctccatctgtgttagattgggctgccataacaaaacaccatagactgggtggcttaaaccac aggcatttattgtttcagagttccaggtcaaggtgctggcctggctgggtttgggtgagggccctcttcctggcttgcagacagccaccttctcactgtgtcc tcacatggtagagaaagagagcactctggcctctcttcttatgaggacatttatcctgtcatgggggccccaacttcatgacctcctcaaaccctaatca cctcccaaaggccccacctccacataccatcacattgcagggtcgggggttcaacagaggaatttccgggaggcacaaacatacaatccatagca ccgtccctagcacggaagaacagagagaaggaacggtttacattgcagcagtatgtagcttgacttgtggcttcactctctgggggattgtgaattctgc cccaggcctagcgagaggccgcttgggagccagtccgttccacggggtgctggtctgagccctgcccgctggagcccatgaggtggcaagggccc aggcctggctggtggcactgtgtgtcactgcttttctgGtgatggcttgctgtgtggccttgaagttgcttcgctccaggtgagcgcatctgagaggtgggct gggtctgactttgggaatctgaagactgtgtggttctgagatggcaaagtgacacctgtgggccagcttcctggctggaagacaccctctcctcccttcc ctaatcatgtccagtgctacacggcagccggagagcgctctttgttggtcccgtgagaacattcagaaacaatcatacccacccctgtagctggctgct tattgccaaggcgttgcgttggctagtgtccccacattgaagttcagggccgcccagggctccctgctgcgtcctgggccagcctgtgacctcccttttcc agcagagcagcaggactgagggcgctgaaaggaaggggggtcagggtcgtgggggtaagatctgacccttggagccagacagcctgtgttcaat tcctggcttttatctatgaccatgggctagtcacttccccGcgttcctcagtttccccacctagagctaaggtgaggataaaacaagctactatcttagaac agtgcctggcttctatatcaggcctaacaaaggatggggatttaattttctgaaacaaagagaaatttttatttggctcaggcagtctttccttccaaggag ataactaagtttgagtcattgtttaaaaaatcaacttccactagtccagctatgacccctgaaatgccttccatttcaccttctactttctgtctaaagaagag ggtttactgagctaattgcaggtctgaatcgtattatcgggaaaaggtttatcttacttgggagaacacagctattttaaggagctttagcacatttttattgc atcGacctggcatgagaaatctccattgtgagcctccttggggtacccattcccattagaaaacagttcatcagcccagaagaggggaaaggagag agagaaggaagggcaaacgctggacacgcaggggtccccccgccccaattatccatcatttgtggggttccacatgcacctagtgcacagtgagtg tgaactcacggagacagactcaagtcatgtgcacgcatcccttttcaatgtgggtgctgggcagaggggtggcttcagctctcaaatgagaccgagg ctggagggtcatgcaagtgaaaaatactcaattttttaattgcaaagtctctttggtgctatgtgtgtggcgtgaacacgtgagggcattattttgaaagaat tactgataggactctgtctcatcctcagggggtaagtgtgtgtgtgtgtgtgcgcgcacacaggaaacctcttgtttttaaatatttGcttctccaaacagcct gccgGtgaccttcccggcctctgtgtggctctcaggccacctccttattgctatatcttggagcctaaggacttctatttctgctctgggtccagtgcagggtg ccaggaccaccacaggggtgcatgtgtgcatgtgtgtgtgcctgtgtgtgtgtgtgtatgtttgaatatgtgtggtgtatgggtatttgtatgtgtgtatatgtttg tggaatgttgtgtgtatatgtgcatgtgtgtgtgtgcgtgtatttgtgtatgtgtggagtgttgcgtgtgtgcacgtgtgtgtggagagggtgtatgtgtgagatg tgtgtatgccatgtgtgtgcgtgcatggagggctctgcttccggtttctggggttgagtaactttatgagtggtacttaaaacccttctgttgtccacaggaca aagttcaacccctcatttttttggcagagaaggctgccaaattggggccagactcaatcttttcattttcatctcctgccagttccttaccagacaccctgtgc tccagccacaaacgaccttttgctgttgcccaaaagagcccatgatcttgtaaactcctagactcctagaagatgccaggcccacagccagggttccc ctttccgctttccctgctcagctcatactggtgcgaaactctcGcaggcctgccctcctccctgcagggtgccttagcttcttccatGctttgagacaggctg accacaggtactgtggtgtttgatttaatgcattcgttatctcaggatttgctgcgcttctagagaagtcctgcagacgaacccgtccttgtatcaccagcgc ctagcatggtgcctggaagagggtgggtgcttgatgcttctcgcagtgaaggagcagaagcttaggttctgtactaagatgatgcttatattgtgtagcta aaagggaccgtgcacacaacagtgacaacatcagtaataacgtttactgagcgtctcctgtgtgaagagtccctgtgctcagtgctctatgaatggcat ttaatccacacagcttatgtggcgagctccagcatcGtcctccatctacagatggaagcatgaggctggagagaagtgacttggtccagaccacaca gcacggggcggacctgcgatgctcacggtaaaactagggcaagttactacttgactgatctgcttctgttctagaatccgaaccctcctcagcattgtttG caaatgatggtggttttcaagctccaaacgcccagcttacctgggcatagaagccttcctgccggccctcccgtgggGGCcagggtctttgcacaggat tttccacacacagtacaagtctgggtctcggctgaatgagcgagcacgggattcccacatgcctgtaagagaattgctaaatttgcttcaagcggtgtc accccctcactgcaggtagatctagtgaactGagggagaatccaccgtgacctacatcagaaggaagtgggacggggcggtgggtggggaaaac gcaaatggcgctcgctgtgaatagcagtgttggagaacatcacagccagcagtcgaggatgaaaggcatttgatttataatagactctcaaattcacc ctggttcttacgagttatcgtgtctcctgaaacctcgtgggggcatcctgctgctggggccaggaggcagggaatggcagcccagggaaatgaggaa tcccgatccttctctctgagtcaagagaagacagacttgccctacttctcccatggtgtcctgggagagcaggaagaaggcatggagaaggatgcctt gttcgccggcggcagaagctccctctcaatgccaggcaggacagagccagcatgtagggcggcggtccctttagcaagaggatgaactgggctgg aggtgcactcagaaatccacccagagggagttttccttttcatgacagttttcctgaggcttggtggggaaggagaagaggctctcagttgcaggcggt tcattcattcaGCcattaattcatctaactaatagttactgagggtctgtgtcccaggaaccgaagaaagcacaggttacagcaatgagcgaacacagt tgtgtgtctcctgcctgcaggtagctgcggcctcgtggagaaaattgaagtcagatgattatcgtgcggggtgagaaaggagggtgagaaccaagtg ctgttcactcatcattcattcattctcttgttcagggggtgtggagcactggatgggagctagacatecctctagacctgtgctggctggaagagtagccg Gtgccatgtatggctatttacattgaattaaaattagaccaaagtaaaaattcagcttgtgaggcacgtagccacacttcagtgctccgtagccacgcgt ggcgaacagctcttgtactggagagtgccgatgtagaacattccctgcatcgcgagagctccctggatggtgctgggctgcaaaggccactcccccg ggagtgcacagccttgcggtattaaagaccggcacatattctgtgacagtacagggcagtctgggctgggatgtgggcacacagatgtgggatggc cgagccatgcctgggctcGcggaggcagggaggtttcaatggtgtttaagtcaagtgaggaggatctggggcagaggaggagagggatagcatat ctggtagagggaagcacatatgtcaaggcctggcctccagaaagagagacggaaggggttcagcgcggctgggtcgtagaccatgtcatgtttatg tggccgagggcatggggtgtgtgcagcgagggtgactctggagggggacacagaccagctcctgcagatgctctgccatctctgcagaaagaccc ccgctccaggctccctgctggcccttccagtcagatagagggtctttgcaggccatctcttgctgtgggcacgctgagcagagggtcccaaagccagt gacaaccagttcagaggagggcctggtttgcggggtcagggGtggacacctlgctcagaggggtagctgggccttggagacaaacttaccgtttcag gcaaaagcgagggtttgcaggtggagggtgggaagcgggggaggaggaggaggaggaggaggaaggaagggatctcctcagaagcctgca gggtGcagattgagtgtccgttagttGagtgtacccaagaaaacacttcaggaaatggcccctcttccGtttggggaagtgcaagatgaagaagaatt ggagaggctggctcacagttgtggggcagtgagggggaatttggcagacaccgaaattggacactgggacccttggGctgggaGcagcttgtgccc cagggccaggtgctgtggcaaGaaaggaatgcccagggagccaggcaggcctcttcagctctgctcttcctgtcacccgagcaactcgcagcctct gatcccagcctcctctgcagcacgccggcaatcatgtcatgctgtaaagctgttggaacaatttccagatcattacagcggctggcatttatctagggctt accttgacccaagcattgtagtatatacatcatgatttttcagcctcagctctactgacatctaaggatggatcactttttttttttttttttttttgagacagggtctc Gctctgtccctcaggctagagtgcagtggtacaatcatggcgcactgcagcctcgacttcctgggctcaagcgattctcctccctcagcctcctaagtag ctaggactacaggcacaggccaccactcctggctaatttttaaagtttttgtagagatggggtctcgttttgttgttcaggGtgttctcgaactcctgagctga agcggtcctcttgtctcacctgcctcccaaagtgctgggattacagtgtgaggcaccagccagctggatcagtctttattgcgggcactgtcctgggcat ggtaggacatttggcaccatccctggcctccactcactagatgcccacagcacccttccaccccagttgtgacaaccaaaaatgtctccaggGcacgt gtggtggcatgcacctgtaattccagttccttgggaggctgaggtgggaggatcacttgaagctaggagttggagaccagcctcagcaacataggga gaccatgcctctacaaaaaaaaaaagaaaaaaaaaagccaggcatggtggtgtgtgcctgtagtcttagctacgtgggaggctgaggcaggagg attgcttgaggccatgagttcaaggctgcagtgagctacgatcatgctgctgcactccagcctgggtgacagagcaagattctgtctctgaaaaaaac aaaaaggaaaaaggaagctgtgtctggacattgccaaatgccccccgttgggaaccactgctttacacattgactccttcattctcatagcaacccattt cacacacgaggattgacttggcaccacagctggaccattggtgctgaggtttgaacccaggtctgtctgcatgggcctgtactcagttcctggatctatttt actgcaggcttaggtggaaagggcgtggcccaaagccagatgtgtagtaggtagtcagggaaaggggcttttctgatgatttgtcactggcttattcagt caacaaaccagaccctaagtgcaggttgcaggatgaggagggagccggtcaacctgcaggagcacctgggtgaccagcctgagggttgatgga gccatttgtatttcttaggcaatgattaacctggttgagctggtaaatcattcgatagaaccttaccctggaaaatgccgggcttgcaaatggggggccgt tggtttcacatctgctgtttcttcattggactttgtcacccatgaggtcaggagccagcagccgagggccgttgggaaattctccttgggcagatagctgcc acttttccttgctagccctggagtgctgtacgtgccccaggaaactgtcccatgtaggggattttcatggctgggctctgtgtgtgttgggggcggggggc ggaggatattgaagaagcggccGtgagtgaaatgGcagtggtGGtgagaggcggggctgagacctcctctttatttatttgtGtttggaaattgtaccatt catgatgaaatcgcccctaaaggacacaggcagcaaggactggcctttgctagacctggtaagctgggcagaccgagcccagagcagggcctgg gtgccccagcagggcacagggtgctggctggttcctctgaaggcaactgcgcgttctcttcccatgtggagaaaccaggcaaatgtgtgtgtgcatgc gcgcgtgcatatgccagtgtgtatgtttgtacatgtgtatttgaatgtgtgtgtgcagtgtgctgtgtgtacatgcttgtgcatttgtgtgtgtgtgtatgtgcaca caagcctgtgccgtccaagtgcccatgtgcatatttaaatgcgctGacccgtgtgcgtgggcaaatgtgtgcacatctacatgtgtgtcagaattattgtg cgtgtgcctatgtgatgtgatttcaccccacccctatggctgtaggacgaaggcagtacacactgagcaccctgcccatgccctcggtagcactccttct ttccttactgttccacagtggatacagagagacctgaatttaatacccagctttgccagttactcattgcatgatctgaggctggtcatgcaagctctctga gcctcagtcttctcatccgtgaaatgggagaataaggaacagcactggtgtggagtggcattgaaggtcatgggtcataggtgtgtgtgtggctggggc ctgccttaggtggcagtcagtgatggcatgccctcccagctttgggaaggtctggccctgtccatggaggtgcaggagggtcgcagggctttagttgctt ctttctgctcatgccGccctcccactcttggctgggaaaccttggcagcactgggcaggatggtgttgacaggtcttatcccgtcaaagaatgtctatgtg gcttGcaccctctgtgctctaggtgtggcctggggtcacatggctgctattgctaggatagaccaggaggacccagtggagctgtttgtgcttctggaatc tacctgatcaattagaaactactagaaggctgaagtcaggggctttggtgaccttggcttttgcccactggtgaccacagcactgtcattctgaagtgatg cctggttacagcacatagattctccttacacccaggagaggatgaagaaagtcctaaccccattctgtgccctccccagttccatcacacacacccca gttccatcacacacaccccagttccatcacacacaccccagttccgtcacatgcaccccagttccgtcacatatatcccagttccgtcacacacacccc agtcccgtcacacgcaccccagtcccgtcacacgcaccGcagtccGgtcacacgcaGCCcagttcatcacacgcaccccagtcccgtcacacgca ccccagtcccgtcacacgcaccccagtcccgtcacacgcaccccagttccatcacatatatcccagttccatcacacgcaccccagttccatcacac acaccccagttccatcacatatgtcccagttctatcacacgtaccccagttccatcacacgcaccccagttccatcacacacaccccagtttcatcaca caccccagttccatcacacacacccagagggttctgagtaaccatgggcaaccaaaagccaggaaaatggggggatttcctctgcctcccaactgtt ttctgattagtcacttctagctaattagcaagtgacaaatgggacaataaagctgaaaatatccattggcttcctggaatcccagccacagacatggca catgggacctggctgagaagcagaaaaatgaaaaaacatttggggtcctgaggaaggaagcaGagaggaccacgtcgggccagccatgtcagt gtgtggctgtaggtggctgcagtgtgtgcctcaaagacacactggggccgtgtgcagtatgtgggagctgtgggaacctgctctgtcttccgttttctctcc acactgtctggaagaagtgatttcatctcacagtcatttggtgactaaggcaaacttcccccatccaaggtggaaattgtcacagggccctggggacat cataggggtctgtgtccaaggtggcctctgcttccagaggtggctgaggcccctgttgtggacagttcccctggatgcatgtgggtgacagctcctgctc ccatagacagttccccatgcatcctcagatgggtgaggctctgctgctgtgacaaagactccccggtccagggacttgaaacaactttgttcttgctcag tcaccatggacgctgttccccaccggcagtgtgcaggggggccctggctggtggggtccttccacctggtgactctgcagcctcggcggcaggggca gggaggactggggagcccagcgGtggcagctgcatcctttggctttaggagggacttgtgtgacatcctctgacatctgactgtGcaggcccagttgtg tagcggtggcctggctgcaagggggcagggagttggaatcctccccatacgtggcagtggaaggaagccagaactctgtgctcattggtagttgtctg cctgtctctgacgtcggctcacttgggctgataagggctggctggtggttcccgagggtatcctgtgtgtagtggggatgttcttttcctgtggcctctgtgac atgttccttcaaacccagtggctgaaaaccacacagatcaatcatcttacagtcctggaggtcagaaatccaaaaGagatccccctgggctatgttag gtgggctatgttaggatgttttctccagaggttctaggggacagaatctcttcccatgcctttttcagcttctagaggccacctgcattccttggcttcttggcc ccttcctccatcttcagagccacctgtgtaccatctcccagcctctctctgaccctttgccttcctctttcattgggaccaactcgacaatctgggagaatctc ccatctcaaggtccttaatggaaccacatctgcaacgtctcttctgccatgtcagatggcacattcccaggttctggggatcagggcgaagacatagac atctttggagctgctcttgtgcctaccaccaggggccatGcttagtgggagaagccaggctacctgccttcctGcctccctctctctttctctggctttgttcctt cattgctgtggctggggacagagtgcacaagaggaatgagggccctgtcctcatggagctgccagtcctttccaaggggaagactgaccttcagca gagacttccagtgcagggggtttgggagtcccctccctgggggacaggaaagtctcctctaaagacgtgacttgtcagctgctgtctggggattgagg aggagttagggaggtgaggtggggataaatgttgtgaagaccagttgcttagccacgtgggtcccagcacccagggcctgagtctctgcttgtttcagt cccactgtttctcagtcttccctcgttttcttccaccctgactgtggcctgctccgtttcgcagattgctcatccccattcccgcccactgcttttctggaagatga aggggctggcttcctgcgtcctggcctgggcactggagcaggccatgccGCcaggaggcaggcgggacctggctgcagggatgtgggaaatagg acccaggaccgtatttgcaaaagcaacaaagttgaaagcaggactgggcaggctgggtcgctgtttgcactgggggaagcgctggcctcagaggt gccttcctcctctcgggccagaaagggtgattgtttcagagtcgtctgatgaagagcatatattccaaacagagcccactgcctgtcGcggcgccagct tcgaacaggggaggcaactgtgacgccctgtggctcctttcacccggcagtggggagggtgctcaggccaaggggagagagagagacctctaaa cacagcctggagaggaaggctgggcgtgctccgccagcttcacacgGacctctcttggccctgccagatgccatttgtgttttctctttcccgtgccctcg ccccttgccaaaagctataggcagcatggccaagattcctctgtggggcaggaaaaagcaaagaaggaggcatgagcttctaattagcaaagata gacaaattgctggtggagggaccaccttcagctttgtgtgcagacacgtggcccccctggcccttttatattacgtgtccacattctttggtggtctaacac cctcctaggcactggagccaccatgcaagcgtttccagtgggctgtgaacagaaaagtaattttccacatcagaatcaaatactcaacaggaaggc gaggctgccctgtggtgggGgggacttggccctGtgtactttccatttaaggcatttagaacaacaataattatt aaataatcattaagttaattgtGttGcttgccaaactcattgagggcggatacccaataatacaatcagtgcctgataaatgtatgttgaggggagtctac ctttGcatgagaactgagttttatctctgaattaacaaatgccagatgtgcaattagcattcagagaaaatgctctcctcttcaaaaggcactttaacctgtt attctctatctgagctcatttaatgcaaggagaagctaaggagcagaaagattcagagaaatatcctgcttcagagagttgggcaggagattcctgtag catccgttctgctacttctcagaactgtgtgccctggcagacatcaataatcaatcaccactctttcctgttgagcccagaggcagctgcagaaccgttca caacacacctccaggaggccactaccaggtgcttgagaagtttgcagaatcccagaGtggcaaatatgggtgtataatcgaattcatgtttacctGGa gatttctactttctggctcagagctgtcctttcactttctcattttcttcattcaccgctgtcagcaggtgccttttttcctgcagccacttctctggctgtgtgaccct gggcaggcaactttattcttctctgggcctcagttctttgtctgtagaatggagataatcgttatatctggtaagactctgtgggacccaacgaaagcatag agtgcttagcatcgtgtctgctaggaactaacaggccctgaagagatgatggcaactttaaaatatatttgttttcactttaatcttcagcaaattgaagcc ctggccgcaggtgtcattgggctggaagctcctagggatgccccccagaagggggggtttttccttggtccctggtaagtctgcctcgacacacccGta cagtgggaggggcaccagctgtcaccttggtgcctcctctgtgccatcagtcttcccagccacagggaactttcccaGacacgcaaggcctcatctcg ggtctgcagaatccaacaaagagcaggagggcaaagaaagcctgtcatctcctctcttgcagaaatccacaagcagcatttccgatgttgtcattgtt ataataagcagcaggcctcatccagggaggggaaacgtgatggtgtggtgctgagatagatacctccagttgcttttcccctgagtgggtcaccatag ctctggggaaatcaagaaccGCccctagactgtgggagtGCCcaagtgacatcaggcacagcagaaagccagagaggaatccggacccatggg caaaacagacagaagaattcatgctctcagcagggaatggggacagtgaaagcacacctgcccaggtaacacaccctacaggatgcacacag actcagtgtgcacaacaaaagggtctaaggcctcattcGcagctcagcacatacactgtccgctccctgtccaagagggccttgccatttgggcatttg gggcccggagagatctgagatgaccccatttccctaggcggcctggcagtgatgtgaccaagtctgtgaagtcaccatcttcatgggtccccaGcag ggtatactgtgctcccGaaagctaaatcaggaaggagaaacgtccccacctaagcctggggagatctcGagcatagatgaaacccctccgggctg gttattgccattggagtgtgtctggtctgccctggttgggggagactgattcctgccaagtgatttttctccctgaacctcagtgtcctcatctctaaaatggat ccataataatacccaccGctgggagagctgtgagcatgagagctaggggtaaaccttggtatacaggaagtgtgcaattaataggagctccattgtg aGtgttacttttcttagaatttgagtccagtcctggccaaacagaatcaccgtcttctctgtctgaagccattttttccctggaaaatgcagaGccagcggtg agctatttgttctctcagagtttctgagtcctgggaactgaggccagagatctcaggagtagaacagtccaGttacctggctgcacgtcatctGattttgct gttacggaacctgttctagcccgggtggggtggaaggcagatgttggactggttattatgggggaatgccttctgctgcagaaggaggtggcggcggg cactaggttgcttccaccttttggctacttagagtaatgcttctctgaacacgggtgcgctggtgtcccttttaaaagtccctatttttaattcttctgcatatata gctaggagtaaaattgatggatcacatagtaacttggctgcacccttttatattGgcgccaacaatgcgtgaaggttgtgatttGtcGacaatgtgccaac gattactattttccgttgttttatcagtggccctcctaatgggcatgaggcagtgtctccagagacagaaggtggaatcctggtaaccacaggtagaagg aaggggagccgggagttggtgttcgatggggacagagtttgagtttgggaagatgagaaagctctggaggccgacagtggcgatggttgcacagc agtgtggatggaccaaatgccactgaaccgtacacttaaatggttaaaatggctaaattggacatcacttatacacacaattgtacatcacgtgtacac acacaaaagcaggtgtcacataggagacacccagtttaagggacattctgtacggtgcctgaatggcgctcctgaaaactgtgcaggtcctcaagg ctgaggaaagcgtaaactgtcccagaccagggaggccaaggaggcgcgatgactcaatgtcatgtggtgccctggatgggatccagggacggga aaaggacacttgggaaaaactggtgaagttcacgcaaagtgtccgggttagttcagcatcagagaccaatgatggtttcttgcttgtgacgaaaatgtt ccatggtctgaaaggtgtcaacaccaagggaagctgggtgagagggctaccagaatcctctctactgtcttttcagcttttcggtaaatccaaaagtact ttcaaatgaaaagtttaatttaaaaatgagaagccacctcccccacgagatcatgaagctccatgaaggccaaggccatgtcaatgccaaatgcatg ttggttgaattcactcgtgttggttgaatttactgatgttggttgaatttactgatgttggttgaatttactgatgttggttgaattcactcatgttggttgaattcactt attactgtgtacttaccatcttgttggcagcctcttcgttctttttttctaattgacaaacaatagttgtatgtattacatatttatggagtataatgtgataatttaat atatgtttataatgtggaataattgattaaatcatgctaacaaatccaaaaataaaataaaaataaataaaaatgggaggactaggcagcacagtga gacctcgtttctacagaaaaaatgtttttaattagccaggcatggtggtgcacatctgtggtccccgctactcaggaggccaaggtgggaggatcgcct agttcaaggctacaatgagctatgatgttgctactccactccagcctggttgacagatcaagaacctgtctcaaaaaacaagacaattgtggtgaaata cacataacatcaaattcaccaaatcggaggtgtttttaacatacagttcggtggcattaagtacattcccattgtgcaaccatcactaccctccatcttcag aactcttttcatcttatcagacagagactctgtcGctgttaaacactaactccGcattcccctccccgagcccctgacacctaccattctatgctctgtctcta cgaatttgactgctctaagtacttcttgtaaatgcagtcacgcaatatttatcctttgtggttggcttatttcactaggcgtcatgttcttaagattctttcatattgt agcatgtgtcagaatttctttctcttttatggcaatattccattgtctgtgtatgctgcaccatgcttctccatccgtccgtccatcagaggacacgaggttgctt ccacctctcggccgttagagatagtgctgcggtgaatgcaggccgtgcttctccatccctccatcagcagacacgaggctgcttGcgcctctcggccgtt aGagatagtgctgcagtgaacgtaggtttacaggtatcacacacagaccaagcttcccattcttttgggtctgtacGtggaaatggaacgtGtggatgat acagctcttctccggttaagtttttggggacctgccagattattttCGatagtggctgccacattttacatttccactaacagcatgtagagaccagggatac tgctcagtgccctgccacacacaggacaccgcagagatgacctagccccaaatgtcaacagtgcccaggtggagacagcctggcttggagtgag caaggggcagaaggaaagacaggaggcgtggggaggaggcaggccagccaggcaggctgctgggaaagttgtcctgagcacatcttggaatg aacacagctgcggcagctgtgagtatttgctgcttggcaccccaggaagcttttcttggattgtctcatttcagtccccaatgccaggagcttggcataaa atgtgttgagagtggctgcgcacagtaggcccactgttcctcccgcctgcagccatcctgactttgttcccttcagcgtcacctccccaaccccgccacc aggtactttgtcctttgaaagcaaggtgcaaacactggcaggcgagcccagtagataagatgtctgagtaaacacccagccctctccttgtgggatcc gcattaccccgtgtttgtgaatgatcggggttacctggcaaccaggcctgggcgcccctcctgccgcccagagccaccaggacttccttcttctgtgtgc ggcttccagcttgttggcctccacaggccgggcatgctgggcagaagaagagggtggcgctttttgtttttatttaaaagggaacaccaagcctggctg agcaaaccagacagtttgatatcagacccGgaacatggcctaggtgggGttggggtaagagtgacccccaagagtggggtgaaggtgaacatttat tatgacaccagcatcagtggtcacttatttcatgctgggccagcctcatgattcttttgtgcctctttattgaaagcctcttgtgtttctggagctgttctaggtgc aggagatagagcaacgaccacagtagttaaaatctgttttcatattcctaagttcaggtaaggacagagaagataaacatgtaaacagataacagcc atgcactgcatagtgacgtggtcggtgtgtgatggtggtcccataagatcataatggagctgaaaaattcctgtcacctactcatgccatagctgtagag atgtcatagtgcaatgcattgctcaggtgttggtggtggtgctggtgtaaacctctcgcactgccagtcgtgcaaaagcacagcacctacagtatgcac agtgcataagacttgatggtaaacaactaagttactggcttgtgcattcgctctactgtacattttattgttattttgtggtatactccttctagttataaaaaaat gagccataaaacagcctcaggcaagtctttcaagaggtatacagagaaaggcattgtggggctgggGgtggtggGtcatgcctgtaatcccagGact ttgggaggctgaggcaggtagatcatctgaggtcaggagttcgagaccagcccggccaacgtgttgaatcgccatgtctaccaaaaatacaaaaatt agcggggcatagtggtgtgcacctgtaatcccagctactcaggagcctgaggaaggagaatcgcttcaactggggaggcagaggttgcaggggcc ctgtctgcgtcactgcactccagcctgggcgacagagcgagactctgtcttaaaaaaaaaaaaaaagaaaaagaaaaaaagttgtgtgtttttttggtt cctcccgggttcacgccattctcctgcctcagcctccccagtagctgggactacaggctcccgccactattcctggctcattttttgtatttttcatagagatg gggtttcaccgtgttagGcaggatggtcttgatctcctgacctcgtgatccgcccgcctcggcctcccaaagtgctgggattacaggcgtgagccaGtgc gcccagccagaaaaacaattttttacaaatgtagtgtagcctaagtgtacagtgtttatgaagtctgcagtagtgtacggcaatgtctcaggccttcacat tcactcaccgctcactGactcacccacccagaacagcttccagtcctgtaagctccattcatggtaaatgctctgtacaggtaaatcgtttttatcatttatg ccatattttcactgtaccttttctgtgtttaaatatgtttaggtacacaaatatttaccactgtgctacagctacctacagtattcaggacaataacattctgtac aggtttgtagcccagGcataggtgtgtagtaggccgtataccatgtaggtttgtgtaaatacactctatgatgttcacacaatggcataatcgctgaaaat gcaatttctcagaacctatccccattgttaagagatgcatgacttttttttctttttggagacagtctccgtcacccaggctggagtgccgtggtgcaatcttgc ttcactgcaatcttcacctcctgggttcaagcaattctGatgcctcagcctcctaagtagctgggattaGaggcacatgccaccacgcttggctactttttgt agtttttatagagacagggtttcaccatgttgaccaggctggtcttgaactcctgacctcaagtgattcactcgccttggcttcccaaagtgctgggattgc aggcgtgagtcagtgtgcctggccatgactatagatcacctaatattttaggtgatGatagatgctttagagaaagagggcagagggatctgaggtgc aaaggaGttagggtgtcctttGctgggttGagggacaacattgaacagagGtgtgaatcaagggacGcagctatgcagacacttagcagatgtgtggt ggagggaagggtagggtggaggtaggcacagtatgtgcagagggccctgcagcaggagtgaggctggtcaggtttaagaactaccaggaagcc agtgggggctactatagagtgagggggaagagggtggcaggggctggggtatgaaaggtaggaccagcaattacagagggcctcgcagacaat tgccccggccttgagttttctgcggagtggagagctttggaaggttttgagcagagggaggataaaatctgactctggctttaaaaagcatcGctcagct gctgtatggacagtattctaaaGctccagtctagtagccactgggcatgtgtagccattggaatttaaattaattgaagcaataaagttgaaaattcagttc ctcagtttcagtaggtacatttcagatgctcagtagccagGccagatacagaacatttccaccatcccagacttcttcttggatgatgtggtctaaatccag gcaagtatgggagttgggatacctgctgggggctgttgtagtaatccagttgagagagaaggctgataaatacctcgggcagaggacatgacagtg gtcggactcaggatctatctgctggtaaagagggcaggacacactcgtgggttagatgtaaatgtgcaaggaagggaagtgagggttccatggttgtt ggacagagccattggaaggccagaaaggtcatttatgagatgaggatgcagccaaccgttgtaagttacattgagtgagctgtggtctgtgccaagta ctgagccaaactcggatctcctgggaccctcagcccccattgtgcagcagaacacactgaggctccgcagaggtccatgcctgcccaggcttaccc agctcatggtccaaggagccaggattcaaatctgggtcttcttagtcctgacaagggggccctgtttacaaggaatgcctcatcagcattctctcatccc agaaaccactggcaaggtgctggacccttctgccctcaagcaaatccatttggggctaacttgcagtgctggcagtgttggcagatgcccagctgcgg gcctcttggaccagggtgatgatccctgggctggggcGcatgagagtaggacatgtggcaaaggatggctgccagggtgtcctctcctttgcttcctag ccacgcccacgcccatgcctggcggatggcGccagatgggtgcattacacatttctcctggggaccttctccatcccatgctgggtggttcactcatctgt ccagtgccagatggcacagagccagcaccgaagggctccaagttcatatcacatacccatccagtgagggacgtaaatattttttttcatttttcaaatg tggaaactgaagctcagaagggtacacttacttgctcaaagtcacacagcagccaagtaggagaggcaggatttgaactcagggcttttggaatcc aaagcccttgcccttgtctgctgggatctgccgcgtcctcgagctgagtaggatgcagaactgctgagcagagctttctgccgagggttacacagttttg attttagacctcatcatggtgtggggtccagtgggcaggaatctcacgtgccctggcaaggcgctgacccgccagaggaaaaaccatcttgttttgcac aaagcctcccccagctggctggccatggctgctatcatctgccaagagggggctttgtcttccagttcttgaaaaggtgtctacaggcgagccacaac ctggctggcacctgatggcagacacagaggaacagtgagaatacagcaaagcctcaagcttgccttgagagggtcatcttggcttggggatcatgg gctcataccttggagccagaagtcctgagttcaaatcccagctctgcctctttctgttttgtggactccaggcaagtcacaaactctgcgcgctgctgcggt ttccttcctggtaaaatgggaatgatgataatagcaatacttctttccatccaaggtgcggtctatggaccagcagcgtcagcctcacctgggagtttgtta gagatgGagcatGtggggGcaGactgacacgtaccgcattatagtctgcatgtttacaaaacccccaggcgatacatgtgcacattaaagctgagac actggtgtggactgagcaaggtggttcgggttccatattgagcatgatgctgttgcatggcaatcggtacgcttcttgcttggcgtgttctcttattatcatga gctgtgcaatcttgggccgtctctcctagactcttagctattattatggggcttcatggtgcagaggtgccctgggagacagatcaatgtctagaaaagctt ctgccttttagccctgattctgctgagggagggtcagcactgtcggggccattaatggcaccttggaagagccgccttccattgcagaccacaagctgg acacccaaccccatgctgcagcctagctgtctccagcagctggtgcctgggtctggctttcagggcccgtcttcctgggctagaaagagctgGagagc ctgagcccagggccagtaggccagccattctcccatttcgtcctctccttctacctagcagttttaggacagattgatatatgtggtctgaaaaagccact ggggcaggtaggacagaagcaggtggtgacatcacagtggagcccagattttagttggtcaaatacacctgccaggggagaaaagaatgccgcc ctcacacaggcaaggaagctgggcacccgggggtggggtgctgagaatagacatttttgcattggggccttcctccatatcacccctacttccaaccc Gacttaaggtgcctttcttggaggagtctccgatgtctaaaatgtgcccatgctgagctccagggacttgatttaaaagtacatatgtgtctttacgagtgtg tgttatacatgtaatggtctcagagcagaaataaaaccacaaagctattacagaggaatctagtcttccatgtaatgtggctctgagctcctccctggaat cccctagagttgatgtggggggaagaaggaaaataagagaatgagaagaagcaaagctggcctctgccagcagccgggagccaggagttctca agctcgaggctgcgccgcagtgGcagggagcctgttccaagagtgtgctcttgagacaatggggcagtgggtcgggctgctctggattttaaacaag caagcctgggtgattctgatgctgatgaccctgcagattgcacttctagaaattggggactaggggaagagtcagcaagtcgggcacacaataggtg ttcgatgaatatttgatgagtggaggcatgtacgtgggaatgaataaaacatgctcaagctaatggatgagcacacagagaatgaattcgcagagga gaacatgcggggaagaaggcatccttggaatgagtgcatgtgtgcccgggcgactgtatgcaggtgggaggcatgaacctgtggggggtgggcatt gcagggcaggaggggatggagcaggggtctccagagggggtttcatgaagaggtagtgGtcgggggtgcctggtgaagggctaagacccttcaa gcggggccttaagacattttagctgatggcaggctcagtttagggagtgggggaatggcatggtaaccatggcattacagaaagccctccttcggcca agggatgccccagccccaaagacagggcagtatgtgaacttcagcccaagatctgggcccagatggataggaggcttgtaccatggcccaccttc caaaggaagatttgccccactgggtggcagtgggctttctccaagaagaggagcctctctCGctgttccagatgcagatcccagcagcccaactcca ggagttgttggcaagcaggtgggcaggggccagagcctgcggcaccttcatccctgctcctctctgcactccatcctcctgctcccctcctggtaacac agggccgccagcttcccctggtgcagactgcagctcagcattgccagggagaccatctgcccttctcactccagtcttcacatcccccagaaggaac ccatatcggtgggctcaggcagatgctgacttctggactggtcaactgtggctgccaggtggggtcctagtacacacatggcagcctcctgtggtaacc gtggcatcctcatggcagcggggcaggggagattcagaggggcagggagtgacacaaagacagcggctgtctgccacctgccccctacccagg aggggtttgactcattcgtgctgtcattcaacacacactgattggctttcctgtctgcctccttctggggcacggcgccgcctccttcaggatgtgccgactc tcacccagcttttcccagccctgtgttgggctggcgcttggggagcgggcacagatgtcacggggggacatgcccctgcgccctccttcacctttcagg accagagccagagagtttcccgaacactcatagccagcccggagactccaggcgagaaactcgggaggccgaggcaaatagttggttctttgag gctgaaattgggcagcgggggacctgggagacgttgactgtcgtgtgtttggacaagcgaggcttctgGcactctgtctcggacagtccaggggaga cagaggtgcttcagattggaggctgccctctcctcaagaaggagggtgcgccggtgtggctggatgagttgtggcttccagataaaattatgtgcttgg ggtttagtggacttaggccttattcatgcttctgtgtttgctcagcctaccaggccccgtacctggtctcccagcctcctggggacacatcgggttccttgctg ttctttcagacagtgaaggagccttcctccctcactgctgctgttccttccttcctgtctgctctttctcaggcaggtcctgctcatggtgcccacccatgctac actgggtgaggaggtcatggagctggagccacgcacaactggattttggtaccacagctttgctgtgtgactctgggtatattactagatctctgtttcttca tattcaaggaggGcttcctaggttgGGtgcttaccaggtcttggcaggggtctaatgcattcattcctgcttctcctaggaGccaatgattctactcccaattc tgttcccaagagaactgagtgcttctgtctactaacagacataaacaagaatattcagagcagccttagtcatagtagcctccaactagaaacaaccc aagtatccatcaacagtggaacagataaaccaattgtggcatagttatacaatggagtactacacagcaatgaaaaataaacaccatggatgaatct cacagatattatgttgaacaaaataaagtaaaatgagtacatagtgtattattccagttataggaagttcaaggtcagacaaaactaccctgtagtgata gaggttggaatgatggttacttcttgagggaattgccaagaagggacatgagagagccttctagggtgctgggtggtggtcacatgagtgtgagcattt gtcaggctgtatgcttgccatcagtatgtatgagcgacMcgtacctcctgcacccagagacaagcatccttcagccatacagtttctgtggatgctca ctgggtcttcggagccatgtgtccggctgggaggaattcccacatcgaagtccgaggctttgccgcctggcggaaaccccgcaccacgggagcttgt gctgctctcagggcagctgcagacttccctgaagggacttgcttgtcctagaagcatgtcatgcagtgagacaccgctgctacagggcggaatccact tctttccattGttggatgtggcatccgtggcaggtgttgggagggtggcGtggccacatcctcaccttccccgggcccaggagctccaagtcaggcagt atttgggcctcaggaaaacagtgtggcctggagggaggcagactcactttgggaattcccttgctgcacaactttgggtaagggatgccacgtctctgg gcctcagtttccacttcacaccttcagggatggtgtgaggatcacccaagagaccacatgggaagtgtcggccccttgcgtggctagaagctaggctg aaagtccctttccctctcacagtatgccacgccgcGctcaggaccctcctgctctgGctctccatgcgctgctcctctgctgtgtcgtctgcacagaactga ccaccttctaaagggcatttgccttatttcgtccccgcttcttgtcacctccccgaagcgcagagattcttgtttattctgttcactgctgtatatctgcagccct gggcacgtagtaggtgcttgataaatagttgttgacttgacttgttagcagctggtagaagcttcccctaatgtttcattctccaggctttattttgagtgaagtt gaggGcagaaggcctcagtatcctcttccagggatgctgggaactgtagactggatgaccgtgagcttttcagtgtgtgtgtgtgtgtttttttttttttttttttttg aagctggaagaaactgtacagaaaagaggcccattttgcagatatggagaccaaggtccagagggaccagggccttgccttctagggcacctttga tgggagaatccgtaggcttgatgttgaggtccttcggtttgtctttctgccttttGattgcaactccagggggagagggaccctctggcctcacccttggctGt gacctcagtgcggtcagtaaagtctgcctttccctctaactttcacctctttctccccactgcctacgtgcctgccctctgcccactgaaagtgggagcatc agaagggagctgtgcccccaacccccatgtgagggacagatcagcaaaagcctcaaagtccgtgggccgtgtgtctcccatctcattgtggctggg gccccgggcaagggcaccgtgcctcgggagtgagtcactctctctctgtgccaggcaggagctccagggactaggggtgacccaagagtgaagg cctgatggggaggaggacccggcatgacagcccttggcttgctgggggaggagagtggaaacttttacatttgtttctcgctttcaacccagtaagtag gaatcagcctaacagatcagcaagagcctcaaaccttggctcgttctgttcaagaagacagaaaccacaaaggcaaggagagctggagttggctc cataacaaagtgacccttgagcgtggaaaagcagaccagcaaccagcctcgccataaaccagtctgaaaggcgagtgggtgacctgggaaaac gcacttgtggcccagttgacaattgaagggttaaatgaccttaataagccgaagtagctgtgaatcagtgagaaactgtgactgcctcaaggggaaa aggtgcaaagaacaaaagagaaatacagtgaaaaactgtcagcttctcaaaaatcaaagagatgtaaattagaacagggggtgcagtttttcacct ggagaactcgcagaggtttaaataagatcgtacattttacgaagaaggcatctgtagcacccttatgaatgctttcccttctgggtgcataatcgccctcc tctaaattggatgctcttggggtgacctcacctggttctctctccccatcaccctgtatcccttgagaatatctgtagtgacagctcctgagcacctgttgtgt atcatgcattctatacatactgtctcattctgggggttccattgttccacttcgcagaggcaaaaactgaggcgcagaatgatgaaatgacttcggcgag gtaccccagtaggtaatggagctggcatctgaacctagggtaaccagcctcaagcccgtgctctccttttttgcttattttccaccactgtttggtccctggct ctcccagagggacatggcactggctgggcctcaggggatcctggcttctcttgaattcagtgttaccttccagctgccgagacctgcaggaactgattc cacaggacagtcctgccaaggaggcaagcgggccagagagaggcggcagcaactttctgacaggtgccggggaagtcccgatttgcaatgcttg cccgtttctactgtgtaaatacttacactatggccaaagtgagatgcttaaatgcagagtttggaaaagatgggcacagttggcttctgggagctggaaa gagctggcttagccatagcttcaccactgcccaggtgggtgactttgacctggtgtcaacctctGtgagactcggttttctcatctgtaaaatgggagcagt atttgGtgcatagggtggttgattgtgaggattaaatgagtgaatgtgtgtctagcgcGtgtactgtggtaggtgctgtctaagcgttcgttatgagtgcactt aactttcattcattcattcattcattcattcattcagctttcactaacttcttcagccctccagcatctgtctgtcaaagccaactgtccaccaggcctgtgctag aatcttccttttccctctctcccttggagtatcaatgggggaagggggatggcctcaccccttctgcagacgggcttgtctggatccttgtttgctgtgatttga gccaaggacagctgtagtttttttgtgttttttagaaatttccacttgtgtggctgcctcccttggtgtagccacagagggggtggagaaggcgcatcctctg ggggtcgtggaccttccaaaagccaatcctagcaccccgtgttgtcagtttagaggcagtggcctgggaactggcagtagacttccgggatggctgtc gtggggccagtgctgtgcgggggaagcacactggcggtgaacctggcttggctgcttctcagtggactgccttgggcaaaccactgctccgttctgag cctcggtgtatttttttagtctataaaatgtgctaacaatggcctcctggcaggtggtgggaccgctagttttgaagaagccgaggtggaaacgccaggg agccccaccctacccctgtgggacattgagagtctccagactgatccccttcttcctggaggccccagcaggtccctgggaggagaaccagggatg gcctgaggaaaggctctccctggcaaaaacgcggtcctgtttgaacttggttctctgttaacatgtgctgaaaggagacgccggtgctctgtctctagcg atccctggttccaggtGcccattctgttcccaatccaagcctttgggtcgttagtcctccaccaaggccaccagtgatcaggacctctgtttccagagccct cctgtgtcccaggtgcgtgactgggacaagtctgagaaatgatcacagcccagaggagcctgcggacacgtgatgatgaaatgtcccatggggtcg tgaaacagaaaagggacattagagaaaaaaactgaggaactctgaatcaactgtggactttagcaataaaatgttttaatattatttcattagttgtaac aaattcaccacactaatgtcagatgtaaatagtcggaaaatgaggtgtgggtatgcgtatgggaactctaggtactaactcagcagtttttctgtaaatct gaagctattctcaaaaataaaatctgttaaagaaaaaaagacaggcgggtgcagtgactcatgcctacaatcccagcatttgggaggctcaggtgg gaggattgcttgaggccaggagtttgagaccagcttgggcaacatagtgagaccctgtctctagcaaaactaaaaaattagctagatgcagtggtgtg tgcctatagttccagttactcaggaggctgaggtgagagatcttttgagcccaggaatttgaggctgcagcgagcagggatcacgtcactgcattccag cctggataatagagtgagaccctatgtcatttaggaaagagcccagcgcagtggctcacatctgtaatctcagcattttgggaggcGcagatgggagc ccaggagtttgagaccagtttgggcaacatagtgagatctcatctctaccaaaaaaaaaaaaaaaaaaaaaaaattaagaaaagaaaagaaaa aaaaggccttccaaagagttgcaggctcacaggggatcttggtacagacgagcaagcggtcccttccttggtgtgtgtaggacatggcttagtgagca cgtcgtgcaccttgcgtgtgtcccattcagcaccatggctgctcataccctgcctcgaccgtgcgcgggagccctgcttccctggctggaagcctctccc ttgatgcccaggagaaatagcctcttgcactaacaagggtggatctgtgcttaaattacctcttacctggttcatcccaactctcttccagccctttcctctgc ccccacccagctgccctcagccttcagcctcactggaggaagggtgtctcggaagagttgcatcatgagacccttggtggagtcgctcaccaggacg gccttggccccgaccctggcaccagcccagggtgactttgatgtcgtgttctggcgcgtccttgggcccatttccctcctgtctcccgggggctcttttgcat gttcttcccaaggcttcagagaccttcagctccgcgtctgaagcagccatctctttcttggatctcaagagtggtgatttctggcaactgcctcagactccat ttctcatctctgtctacaaaactagcctggagttgggctgtcgggttggcctggacatcctctgagcagcgattggcccttgccctgtttctgtgaatgaaGg cggtcgctcttggaaagagcccccaccaccttgcagatgtgctggggtagggtgggggcgtgcgaggttggattacatgagactttgggttctttcctgc agtcattcctaagcggtacttctctgcatctggcctttaacagtgagtggacggggccagtgttcttggagcacctactgtgtgcttgctctgttagttctttgtt tccttccctgacgggagttaggccttgccacccttatgttacagacggggagactggggctctgagaagcgacttccccagggtgcccggcccgcac atggtcgagcgggggtctcaaatcccgttgagtcttacttcaagtccaggctccttgatcgctggccctgcttgccctggtggcccacagtcccagagtc agtggcgccaaggtccctcaggctggttgtgaaatcagtttgagtgcagaatgacggcggttcacatcgagcttggtgGCcaccctgctagcctgcctg ggaGttcGccagcattagcaccagcatcagtcctgcctcccaggaaccccctccgtctcagacacacctccatgattggtccctgcctcacatcccagt ttcttcaaatatcagcaagtttcacactgagagagaaatgtagataaccaataataaaatgaaatgacctctggtccctattgtcagagccataatagtg acattacaaaaatgcacctttagaccaggtgcagtagctcatgcctgtaatcccagcacttcgggaggccgaggcaggtggaacacttgagatcag gagttggagaccaggctggccaacacggtgaaaccccgtctctactaaaaatacaaacgttagccgggcgtggtggcgggcacctgtaataccaa ctgttcgggagggtgagtcaagagaattgcttgaacctgggaggtggaggttgcagtgagccgagatcgcgtcactgcactccagcctggacaaca gagctagactccatctcaaaaaataaaaaaaaaaaaaaggcatgttttccctaataggagctgtcagaatgtgaagtgaagcagtagtgtgggaac ccttttaataaggaaaggtataccctgctattcctcatttaaggttttggaaagaagtggagaggaattccacctttggcctgggatgcaggagactgag gacatcgaagctcatatttgatggttaaaaagtgggtgtttgtgttgttttaaaaataagtacaatatatctgttacttgttgaaaatcgctttgtgggttcggg gGCctagggttgggggagggggaggtctagccagcaggacatcacccatagcatcagggtgttgctgagagaagggttttttaaacctcagtctcctc atctgtaaaatgggccttgttgtcattcctacctccctgggtggcagtgtaatgtgtaacgtgtatttgtgccagttaagtgagttaatgtgcttaacgcatgc gtggcccagaggcagttgttcaagaatgtgagctgtcagtgtcctgactcctcttgagcagtgagtgtgtctcagaaataagacatgcttcgtttcaccta ccctccattttctaccaacttttgggggcgccatttaacacccaagcctaggcttgacccctggagcctttacctggactgcaatctagtatagtagtcact agccacgtgtgcctgttctatgctaaattaaacttaagaattcagatccttggtcacactagccacattgtgagtgctcagtagccacctgtggccagtgc agatacagaacatttccatcatcgtagtacgttctgttgggccgcgctagtetggagggatgcctggctgagggcccagggagcccacctgccctactt ccctoacctgcaggctgtgaatctgataaccccacggccccctcctccaactgcttggccaccctgccacctctcagcccttctggggctgcctgtagcc tggcaccaacaacttcacagccccaggagtcctgctggctggcaggaggacatggcaggggtgccaggcttggcaagtggcaGtgttttctcagca ggaccgggcgaagcccgagttctcagctgggtacagccgtgccccaggttcagggcataatccttcagggaaaggtggagatttggcaaaagctg gaaggctgttggaggctttactaatggacaaattggaaaattcagtcactaaaaacagtgacggaaaggttgtaggtgattctgtaagaaagagGctt cgagtatggcctgaaatacagttcctcacccttgctcagttttttcttccacttctgagtaggtttgatgtcccggatgctgggctggtgctggggatacagtg gtggcctctgtggacaggtcaccatccctgttctcgggaggctcacaggccagtaggggaaacaggcacatgaagatgcagctcacacttcagctg actgtcagagcagaccacactgcaagatcacgtgggcaaggacaggattgtcccctgcgtatcctaagcccctccacagtagctgctcacgaaatg gttgctggaagagcatttgcatagggcattctcttgttctgagctcttgctcattcctacctcatttcatcctgtaatggggatggatactcattgctcccattta aggacacaggtgtgccctgctgcttcctgaacctgctcaaggagagttgcctcgtaatataataactgagtaactgagcacttaacttcatgccagccat atgctaaatgcattacccagattatctcattcaaccttcacaacaaatgtacaaaagacctattattatccccagtttatggaggaggaaactgaggcac aggagaagttaggcacttgggcctgagtcatgcagtgttggaatggggatgcgtcgggcctcctGtgggGtttaccaggctcagaacattcGtagaagt ggacgtggactgaattggGcccttcctctctctccccacaccatcagtggagacgactaGaaagctgtcactggccctccttttctagcaggctcagag caggggtgacacatggctacagggagcagaaaacattgtcccgagtcgagtccgtagatcatctagagcagtgatccaggccccagtaagggag gtcccatacagaggctgacttcatccattagtgcagagtaaacacaagggcGctggaggctggagccaacacccccaggacaactccctgctccct tttgtattgtcacctccttggttcctctggggatgctccagttactgccaacgggacagcagtgacattgtagcccaagacaccagcatgtaaacgttgcg tgtttgggaggtgtgtgctgggccctgaagagctctgagttcaggtcctgcctctggtccttcctggccacgtgagtctgatgatgtgtgtgagtaggggtc agtgatggtctgtaagggcagagaactttttctgacacaggttctggctctaagtgtggctattttaattccttgacaaacacttggatacatttagtagactg gctaaactgtaagacttttcaaaataagagtagttcttataaatgcttacttagtgcctggttgcgctaagcagtcactaggtattatctcatctaattcctgta acaaccctctagggtagatactagcatttatcaccagatctgagatatcttgtaagatactccattttcttgcatacctctaagcaagaaaagaatgcgtct aggGgcagtggctcactGctgtaaaGCGagcaGtttgggaggctgaggcgggtggatcacctgaggtcaggagttcgagaGtacGCtggccaacat ggtgaaaccccgtctctactaaaaatacaaaaattatccaggtgtgatggtgcacacctgtaatcctagctactcgggaggctgatggaggagaatcg cttgaacccgggaggcaggggttgcagtgagctgagatcacgtcactgaactccagtctgggtgacagagcaagactctgtctcaaaaaacgggg aaaaacaaacaaacaaacaaaaaacagaaaagaaaagaatgtgcccagagacttattatcacatcagttttaagggaggttcagttgtacgtctct gaattaatgaaacgcagtattatgtccattttacaatgaggagatcaaggcacagagaggtccagtaggttgctcagggatacgtagccaatgagag gcagagccaggacttgaatgtcagcaccccgttactagagcgtggtgtattacccactgctgtgtacttgctgcagaatgatgtctcctaagcctagtgc agaacagtgctgaagaacacagggtctagagttaggcagatccaggtgtgagtcccactcccatgactttctagctgtgtagcttlgagatgtcccagt acctctctaagccttggtgttctcatctgtaaaatggaagtgtcagagcaggtattaaatttggtgaagcttgagaagtacttggtcgtagtggaggctgct ctgatcacatcatcaccaccaccacaatcaacagcagcatcactgtcactgtcatcatcaccaccactattagcatcaccaccaacatccccattacc actacattattatcactatGaccatcaccatcatcaccatcataaccatcacctttatcaccaccatcatcccGattacGactacattattatcactatGacG atcacGaccatcataactatcaccttcatcaccaccatcatccccattaccactacattattatcactatcaccatcaccatcatcaccatcataaccatca cctttatcaccaccatcatccccattaccactacattattatcactatcaccatcaccaccatcatcaccatcaccttcatcaccaccatcatccccattacc actacattattatcactatcaccatcaccatcatcaccatcaccaccatcataaccatcaccttcatcaccaccatcatccccattaccactacattattatc actatcaccatcaccatcataaccatcaccttcatcaccaccatcatccccattaccactatattattatcactatcaccatcatcaccatcaccttcatcac caccatcatccccattacaactatattattatcactatcaccatcatcaccatcaccttcatcaccaccatcatccccattaccactacattattatcactatc accatcaccaccatcatcaccatcaccttcatcaccaccatcatccccattaccactacattattatcactatcaccatcaccatcatcaccatcaccttca tcatcaccgtcatccccattaccactacgctattatcactatcaccatcaccatcatcaccatcaccttcatcatcaccgtcatccccattaccactacgct attatcactgtcaccatcaccatcatcaccatcaccttcatcatcaccatcatccccattaccactacgctattatcactgtcaccatcaccatcatcaccat caGcttcatcaccaccatcatccccattaccactacattattatcactatcaccatcaccatcatcaccatcaccttcatcaccacGatcatccccattacc actactttattatcactatcaccatcaccatcatcaccatcaccttcatcaccaccatcatcccaattaccactacattattatcactatcaccatcaccatca tcaccatcaccaccatcataaccatcatccccattaccactacattattatcactgtcaccatGaccatcatcaccaccatcataaccatcaccttcatca ccaccatcatcttcgtcaccactgttacagcatcaccactatcaccatcgtcatcatttaactaaaagtgagagacactgcatataaggtctctttcctgct cttcctggggtctttgtcataaagagtacagagtcccttaatctctccctggtcaatggcagtcccagccctgagGtatgtgagtgctgggtcttgttactttg aattgtatacctgagcaaggggaagaacacagagagagttctccagatgttttgtgtctccctctctccttccttctccaaaaacgatctcatctcggagct cacattggagagagctgtccttgtgaatttccccaccccttcctctggtcccttcagtccataaagtatgaaatctccatgccatgggctggtgtgtaggat gttcttcccagccagttggataaagacattttggttttttgcacgtgggagacatcacaaaagactgtgcatacatcctctgtgtccctctctggggaccat ggcctggaagcagGcaacacctgctcccttcGtgcactggcgtcggaaaagttccatggcagataagcccgtgccattgcagggaagccttcactcc aaagccacttgctgccccggagacctggcctgcgaggtccaaggttgtgccatctgaccccagatgcttcttctcctttctgtgctggccagtgggagac agcagagggaacactggactaagagtcaggagacacagttccagatctagGtcagcttcttcagctccagaaagcaatttgcctctcctgagtctgttt ttcttccatagaatctcggattcagataagaattccagttgacctagggcaagcaccctcgcctctctgtgcctcagtttcccctgcagggacatggggat ggcacccccctgcctcctagggctattgcagggatgataaggggttacttcttaacaatgaggaggaagatgaaggtgaagggtggtggcggtcctt gcaagacagaggccagcagctggtcctcctggggcctccatggggcagctctcaggtgtggaaggcattcacctttgtccctctgactggtactctttg gccctagctctgctctcttgagccaccacaaatccagccccttcctctgtgccccaaaacagccctccagacctcggaagccagtttctaactggaca gcaatcctgccGcttagtgtcatgttcaccttgagcctccttcttgaaggaaaccagcagaaccctgccaggccctttGttggttgtctcactgggaagag ggaaaatgtggacttggagagattgtccctgaacGatagcaggtgtggaagaggtagagggggcatggGccagccctgctccccGGtgaaggcaa cacctcccgctgagtgtcacctgccttctgttttaagggactctgggcaaagatttcatgtaaaaaaagagttctgccacttaaaaaaaaatggatcacg aggtcaggagatcgagaccatcctggctaacatggtgaaaccccgtctctactgaaaaatacaaaaaaattagctgggcgtggtggcggacgcctg tagtcccagttactcgggaggctgaggccggagaatggcgtgaacccgggaggcggagcttgcagtgagccgagatcgcaccactgcactccag cccgcctgggcgacagtgcgagactccgtctcaaaaaaagaaattaaaaaaaaaatgatatgacaggtttaaaaagtttgaagctaggataactgt ggctcaacttgtctttctgaagaacggatatttccagtagaatggaaccagtgtcttggggctcccaagagttcattctccccttaagatggaggcaggg gtttcctaacctgcttagctgccttgacaccctccctcagctcccattcctaatctccagctttacagGagctgtgatgtagggccttgagggcagggccgt gatcagacccctttaggggacagacaagaatcagagaagcgaggtgccctatgtctcccggctctggagcctgtttgtgacatggtgagctacacgc tgggcactaagctaaggtatttttgtctttctaattgagataaattcacctcatatgaaattgcccacttaatttattttgggtttgttttctttctcttttctttcttttttta atttttttatttttgaaatggagtctcactctgtcacccaggctggagtgcagtggcgtgatctcggctcactgcaacctctgcatcctgggttcaagcaattct tgtgcctcagcctcccaagtagctgggactatatagatgcctgccaccacacccagctaatttttgcatttttagtagagacagggttttgccatgttggGc aggctggtctcgaactcctgacctcaagtgatccacccgtcttcgcctcccaaactgctgggattaGaggcgtgagccactgctGctggttgcagtgag ccgaaatcatgccactgcactccagcctgggcaacagagcgagactctgtctcaaaaacaaacaaacaagagcatagttcagcggcctttagcaa attcgcgatgttgtgtaactgccacttctatctaattccgaaacctcttctccaccccagcacgaaatctcgtgcccattagcagtcattccccattcccctct cttGcagccccctgacagGcatcaatttctgtctttttgggctttcctcttctggacttttcatagcagtacaatcacacagtacatggtctttttccactggcttct ttccctcagcgtcatgttgtcagggttcttccgtgttgcagcatgtgtcagcactgccttccttttgatggcagaatgatactccattgtctgtatgtatcatttttct ttcttatccattcatctgttgatggacgtttgtgttgttttcacctttttggctgtcgtgaataagcggccgtgagcattcttgtacaagtgtagtcatgcattgtttc acgatggggatacgttccgggaagcgcgtagttaggtgatttagtcactgagcgaacatcctggagtgtgctcacagaagcctcgatggtgtagcctg cctcacacctgggctgtgaggtgcggcttattgttcctaggccacaaacctgtacaacaggttactctactgaatactggtggcagttgtaacatagtggt aagtatttgtgtgtctaagcatatctaaacatagaaaaggcacagtaaaaatatggaatcataatcttatggaaGcgcagtcataaatgtggtccatcgt gaccagaacgttgttatgcagtgcttggctgtatttgtttgagtccatgttttcagttctttggggtattcacctagaaggggaatagccgagcttggcatttta ggaatagtgctatccttattcctcaccataacaccctgaggttgctacagagggaaaaccgaggcacagggcaagggaaccacttcctcacgcaga cagctctggggtggcagagctggggttgggacccagggagcctgatccccagaaGcctttagtccctgctcttttccttctctgcagaggggccttgtatt aatcagttcttaccttgctctaaagaaatacctgagactgggtaattttaagaaaggaggtttaatgggctcacggttctgcaggctgtgcagaaagcat ggcagcatcagcttctggggaggcctcaggtggaaggcaaaggaggagccagcacatcacatggcttgagcaggacgaagagagctggcggg gagaggtgccacacactttaaaccaccagatctcatgagaactcactatcacgccaacaataccaagagggatggtattaaatcctgagaaactgc ccccatgatccaatcacctcccacaggccccttctccaacattggggattataattgaacatgagtctggggtggggacacagacGcaaaccatgtca agcctcttccccaaatgttcagcccagtgcctccaggaacccctccttggaatatttttlttgccaacttgccagggtgtccccagtctccttgagcgtgac agggccaaggcagtgcttctgaaagccacttatcagactgagcttgagaagggatgtgtggggactgggaagggtcctcaaaggcctcccctaaag ggtagcaagtggtttttcattgctccctggagtccagtgggctgggttttcagttgtaaggacctctgagctttgagtcatctgtgcaccttgttgatggtaaa cggaggaacaccctgcttattcagagaccactttccagcaaacactccgaacccagcccagaatcGaggtagagaagtgtaccaaagtcacggtg gctgccacaGtctaactctttggttgcattGGcagcagggcctcgctGccatgGagggcacagtcctgactagtgtattgcttgggtttccaagaccatga aactaaaagcagcaaatcaggatgaagcaagagggaacgctttcatgaacggcgagcggaatgcccaacagcacaaagtcggcgggggtaa aacgaaaatgacagaaagaaaatgaagataaagagtgcacggcagttgggggacaccattcgggggccagcagctctccactgcttcaggagc tcctgacggtggcagtgtggggtagcagatgGtcGaagggacaattgGatcagGaagaaagggcaaaggctaGtccctgGGatGtgGttaaagcga ggaaagaaggagtgtttctatctaaaattatttaaatttctctaaagggccttggcactcagagggtaagctctggctggcattgcctctgaccttggccgt ctgatcaggcagtgaaagaaggaattgttcctggggttgcaagggagttgctgccaacatctggcctgcctggcccctttgtctccctattgacggcgac agcattgggcaagtcctgggcctcatgtctgtgcgaatgtccccacGctgtcaccggcacttcccccGggggtcggggctccgggcctctcatacagct gtgggcctgatggtagaaaaggaggctctgttctttaaccctgaatgggatGggccactgatctattcttgtcacttgttgagcaactgttctaggctaaatc tgaattctttctcagttagtgcccgaatttgctttttaaaaataagtcattgggaatacttgaccctgggcagagagcgggaccagcactcaatgaaactt gtcaatagagtttctcacggccgggtcacagacgtggagggagtgactgagtcccaagagaagacccactgtctcactgtgtttcctctcactgtcagc cccaaccgaggcttattgggggtactttgtttctcctttggacctaaagtcctctgtctgtcgttgcagaggcacttctagatacccctttcccaagtggtttct gggaaagacgagagcatctgaaagccttatggaggctactgaatacaaggccaagggggctggatttttctctgtaggcaaatcagggatattcaaa gtcactgagcagaggaacaacacatttgagttgtgttttgggaagaaaactctggcgacagtgttttgggtagagagggaatcgttggaagcaggaa ataaagattggaagcctttggaatattccagaagaaaaataagaggaggcagaggtaggatagagggcaagggaaggtgtggaggaattgaag ggcaagaagcagctggctctgaccctggtgactcactagattcaagggctgggagcgccgaatccaagggagaagtggagttggagtgtggccg agcagtaggcgtggttgccacaagccaggcctgggaagacggcccctagcgcccaccagGaccaggtggtgggttcagcttgcattgccatcact ggagtgtaagccccctactagaaggaaaactccttggaggcaaggagctctttctgttttgttgaacaatgtgtccgtaacacctagaacatgctggaa gtacttcgatgtcctccagcaagcactccgtaaatatttgatgaatgaataaactgtgagtctgaagcgtaggaaggagactcttaatccagtttttaggtt gtttgtttcaagctgagtgtaaggccatgtttgtatatgtgttttatgtgtgtatatatgtatgtaagtgtaaaatcatccttctttttgtcagaatgaccctgtttttac ctcgagtggtcagagtagtctgtgagaatggctgaaaccattggtctgttaagagtgtgcccgtgtagatcagctgcagtcccacataatgacaggag ccttggttcatccaactaggaagactgaagctcatggaaataaacatcaaactagcccggcgccgtccatcatccgaattatcaacacatcgtgagat gccaggaaatgactttctgttcttgaattggcctctggaggaatcccctgagaccctagtacttcattctccctctgtccagtaaaggaacgcttctgcaag gaaggggttcatgtggctgtggatgaagcctgctgggcctggatgcctccatgagtcaactcccccaactgttcagacccctgtgaagggagagcag aggctttgaaatggccattttaatatcacccgtaagtttggaaaattcttagaattcattgcattcgtgtggaacttctttttcattgaggtgaaattcacataat gtaaaaaccacatgtaaatgtacagttcggccaggcatggtggctcacgcctgtaatcccagcactttgggaggctgaggtgggcagatcacttgagt tcaggtgtttgagaccagcctggccaatatggcaaaaccctgtctctactagaaatacaaaaattagccaggcatggtggtgggcacctgtaatccca gctactcaggaggctgaggcaggagaattgtttgaactcaggagttgaggttgcagtgagccgagattgtgccattgtactccagcctgggcaaaag agtaagactctgtctcaaaaaataataataataaatgtaccatttggtggcatttagtacatttataatgtgcaatcactaccacttctatctagttccacaat attctcatcacctcaaaaggaaacccgtgcccatcagcagtcagccctgctcccctcctgccaggccatgacagccgtctgatttctgtcctgtggatttg cctattctggacatttcatatacgtggatcaattccattctgaaaccctttgtatcaggcttctttgatttaggatcacattttcaaggttcatccatgtcgtagcg tgtgtcagtacaaattlaacggcagacaccgcatggcacagtaccttttggccagtccacttccctggaccttagaaattcctttgcatctgctggaggatt gggctggagaagaaccccacctgtcctgaGCctgcagccccaaatgcccttccatgtccctggcGcagcaaaatcctcctcacttctcaagattcggc tgtgagcagagttagtggctgtcttcctctttactgctctgtaagagttgctgcccctgtcgtagcacctgtctcaccagcactgatcacctcccccattctcc atgagctcctggagcatggtgcccagggcgctgccggggaaggcctgttagtgaacgtgtggtccagggaacaaacgcatggcattctcacagcc ggactccattgctccctctagcttcagggattggtcatgttgtcatctgtttgtgctcctatcttttttttttccagaaaggatttggggtgggggtgggtctaaac agctacttgtagagacagccccgccccacaGctaccttctgtcatcaggaccccacttaccaggctctttcagagatgggattttgggccctattgatgg gatagtgaaatggacaaagcaactttactactattttgataacacagtttactgtagtagaggcgtgatgcatctcttcttgcattggaggtggtaatttgtg ggtgctattatcatcgaaacagcgatagtagaaagagatagtcgttcactgcctacttgtttgtagacagtagcaacagtgatccttgggggcccaaga gtccctcttcacaaggcctgttcacatacatttacctagtgtctCGcgtactaggagaattaaatcccagtaagccctcacattcctcagtgatccggtgta actccaagcactgtagcctgcGacgGaaggctctctgtaatcgagatttaatcagtttttatgactcacctccttcaacttctctctctGtgcGGaataaactG ctattcatccttcaaagccGaactcaaacatcgGatactctGtgaagtattcgtcccactttccctcgggctcctGtgcctccacacctgcacacatacaca tggaattctactaatgtgtagacatctgactccccactcaactgtggagtccttaaggaaggggttctggactatgtcacacagatgttagacaaatgaa ccgagggggcatttgcatgggtgcttaaagtgaggtaaaggagagaagaaagtagagaactcaaagaggagagctcgctggattcaaatctggg gtgttccggaattctaggtattcacctaagtctgttgggacccatgagctgttttcccaatttagaaaagtaaagaacaggctacatgagatgaaatctgt gtggttggtttttgtttttgatgcagtgtgtgcagtgtgattccctaatagcagttaactggtattgatttgaaacagaaatgcagaagggcagggagtcaga ggtgtttatacaggagaaagggaacctgcatgactcattaccacggggcagggtctaggggagcgcactggacactggagccagctttacagctgg ggtccactctgatggggccgcccattcctgggctgtaccagcgattaaacatttgaaacaccacctctgctcattatatgatgagtatgtttggtaggcag aattttgaaaggtggagtgctgtgggtggaatcgatgaggcggtcagtctgtgtctgtgccatatgtactcgggggcctgtgacccagtggggggccgg tttcacctctgttcagccagagccaccacaaagtccttgcttccccagctgctgcacagattgcgcagatcatcatccccatcacggtaaagctttgagg tgggtgttcttctcattcccattttaccaatgaaaaaaccaaaggtgctagagatgaagtggccgccaaaggccacccaatgggtgagctacagcgct ggagtgggaatctcagccgtctctgctccatcttccagaactttcctctactgctcctgacttcctgaagtgaccaaacctgtctctccctcctcccctgactt cagggagcagatttttcatggtgattttagagagcacacgttgatcccctcctgagggtgagagcctcagatgttttgggGctgactgtccagcctCGtgg agaaaggtggccaggtcGgtgtgtggacagGcagtgtgcgggtgcatgagtcaagctcGcttgtcacatatcctggaaaccctccatggaagcctgc agcGCCcaggccagcgctgaggcaggaacggtcagggatttcGcacttgaaacacaccgtctaaggctgccggctcttgcttccccaggaactact gcatttgtcttgatattataccctgcctgcctccaagaggaccgaggcttttcagagctgagacactgtgtggaaggaggcaattaggatcaaacagaa cgagaccctccggatccccagggctgggccgatcaccccaagctttgtttggccgtctcggagctctctgttgaggtagcagaaagggaaagacgg cttgcatagtttttgttttttggccagaaaaagtacccaagtctgtctttcaaagtagatg cctttcttctctctctctttttccccagtcGcagattaaacctctttttaagagatttgggggagacttgtcccttccagttgattctctgaaggcagaagttttctct ttaaatctggagccaGgcttgtcaggtgtggtcccggtgtgccaccgtccattgacctcgtttacgggcagggtgctgtaccttgggaggcgctgagcag tagccccagtgcttctccagcattgtcggtgtgacaattacatcattacctacttcttctgaaatgacatggccatggcttcagtaattgccaaaacccaac atcctcgttctctgttatctgcttggtttgcttttcacctacgcttatcatcacttaacatcctgtgtatttcacttatttgtcttftctgtctgtctcccccagcatgcag gagaccctgtgaaagccggtgtgctgtttagtcgtggggcacagcaggccctctgtgctgtacacgGtgacattcattgagcacttaccatgagccaga cgtgggcctcccgtcgtcttcctgtggccctgtctcctggcctctatcactcccatttcacagatgaggagaccgaggttcataaagcccaactggctctct agctgggagtctGacagcctgtaagaggcagagctgagatataaagtcaggttttctgttctGaaagctgtgttctttaccattacaacttgagaaaaatg tatgaaaggccataaacatattccggtgctcagaatattgtattgcttttttlMccttttctttctttgtttttcttttctttttgaggcagtgtgtcaccctgtggtcca ggctgctgcagtgcagtggcgtgatctcggctcactgcaaccactgcctccttgattcaagcgattctcctgcgtcagcttcccaagtagctgggactac aggcgtgcaccaccacacccgggtaatttttctgtttttagtagagacggggtttctccatgttaccctggctggtctcgaactcctggggtcaagtgatcc atccttctttgcctcccaaaatgatgggattacaggcatgagccaccacacctggccttgtcttgcttttcaacaaatttatattcatgacaatagtaactac ctatattagaagcacagtagaaacatatatgcagacttgtgttttttttttttttttccaccctatggcgagtgcttatgggcagggccaggtctcgcaccGcat ggcagccagcctggcccatgccgggcactctggtctctctgtgggacgatgcaggcatgcatggcaagaaaaatcccaaagcagtcccctgagcc
GCtgccatggtctgtgtccatagatgcataaccatcgattcagcgcaatgtagtattttcgaagaaaagtttttgttgaaccagataaaatgcatacagag aagcacacatactcaggcttcataaaaagtagccttctctctgtcccttcctccctctctcaacttgtcatggacatagcgggtaaacttaaggcgctgaa tgaatctgtttagtgaaaaatataagtaaaacgacaaagtgtacctcaatggcgtgtgtaatgataggccggcgtcagccctgggtccctcaagatctc agagaagacattctgagtcctgtgggggatggattgatggggcagggggtgacagcaggtgtccggaggctggaggcGcagggattgactgcag gggctgccctcagggcacagagcttctgaagctcactagggcctcaggatagaccagcaggactcctgagaggaggaagagaggcagccctgtc tgccagcctggacacttggcggggaacGctgggaatgaccacgGccctctgagcctccgtttccGtctgctcgtcggacaaaaacatccctcccattct tttcctccctcccattccttcGctacctcccattccttcgtctcaacctcttttcctggtattctcttgaaggctgtgttgctggaaggcactgtccccagctttcttg acactgtcagagggtgtccaaaggaggcttctgtcacactggctcattccGatgatttcgggaacaagagagagatgtgggtcaccttgtccggggtc ctggcagctcacttctggatcatgtccagcagcctcgcttccccaagtggatgtgggtgtccctgggagagaaaacccatgtcgcccggcttctgggcc atctgctttcttttagggatgggcccaaggaatttttcggcaaatttgtcctctgggaaatttctgcagaacttgtctgatgcttccatagaacttagggattgg gttaaggccagttcctaggagagacattgcagaaatgagggccttaggatgtctcagtaggacccagtcctggcgtaaacaacaaataacaaacta aacctctcacctacacacccactgaaacatcttttggttctctgtgcaaagaaagcaaggagagaaaacatattctcactttctctcatccatccatccat ccatccatccatccatccatccatccatccatcacatttctatttcctcttgaatggtttagatcagggttggacccactacttgtctttgtaaataaagttttatt ggaacacaaccatgatcatttgtgtattgtctgtggctgctttcacaccacaacagcactgctgacagttgtgagacagggcatatggcccacaaagcc tgaagaattttctetctggccctttacagaaaatgtttgctaagctctgatttagagttatagcagattcaaatcctggcttcattaataactagcagcatcact taagaaaagttatttctcttctgtgggcctcagttttctcatctataaaatgggatcataatggtacccctggcatgggtcattcgtggggagatgtctttgag cagttgacccagtatGtggcacacatgaggtctttaatcaagtcacattactctggacaccagctaaggtgccagatagagatgtaaggtgctattttaa ggaactcacaacacaaacagctggagacagtgGacagaaggtactggggttgaggcgtgtcccgggcttgtgagaacccagaggGagagtgcc cttctttccatactggcatctgggggaggagcactacttagcgattcaaagacaaatgagctgcaggtgcacacagccacatggatgaagctctcag acatcatactggccaaaacaagccagacacaaatgtgcatctgctgtgtgattgcatttataacatgttgaggaacaggcagagctaatctgtagaga tggaggtcaacactccggaccttctgggctgggaaggggagcaggggagcccccagggcatggagatgctccccatcttggcctggctggcaggt gcacaggggtgtgcattgtcagaatgaacccactgaagatttctgcccttctgcttgttatgcagtttactggttttctttctttctttctttcttttttttttttgagaca gggtctcgtgctgtcacctaggctagagtgtagtgacgtgatcttggctcactgcaccctccacctcccaggctcaagtatcctcctgcctcagcctccca ggtagctgggattacaggcgcctgccaccacacatggctagtttttgtgtttttagtagagacagggttttgctatgttgccctggctggtctcaaactcctg ggctcaagtgatcctcctgccttggcctcccaaagtgccgggattacaggcatgagccactgcgcctggctgcagtttactgtttatattttacttttttatgc accttactgtttacatcttaattttttataaaagaaaggaatggaaagagagaaagaataagagagaggattcagaaatgggagaagcttgggcagt cgagggctatctcctggtctgtgtcctgtctcaggcccctgcctgagacatccttgtacccaagcctcctctgacaacttctcattccagaccagggtcgc acaaactctggctccttgtgctgtttccttggcggagaatgcctggcgctcccctccttaccttgacagccggctcaaaggccacctctgggcagccctc cccgtgttccagggtgcccctccctcctgtccttgccctttgtaccggaccctcctccttcctcctgcggtgcctttggcactgtggtgttgttactttgcactcc ccattactttgcaccctccgctcaccctgctcatcctggggctcccaggccagtgtctggtagaagcaaggcaggactcaaaacaacagtcctggctt ccatgtggccgttccactgagcggctgtgaccgaggcccactgcttgatggacccgaacctccttttctcctccatggaactggggagtcttagcagtgc ccctttcccaggatccttgggaagtatccatgagatgaagatggtccctggaggctgctttggtgaggacctggcatgtggcatgtgcccagtccaggc tggctgctgtgggccttccaaatgcatgtgacttggcagttggaaatgatgctgactttagggcatctttgtgtccatcacctgttccaatggcaaaggtgc ccagtggcacagatgccaagggctgcaccctggggacccagattttcatccctcttctcatgcccacgaagatgactggggctggaggggtttgaatg tggaaatatcagtcgtttgctctattattaaaccttgagccatgtggccataaaagggggtggctgccatagctggtttcgtgattaatgagcccacgtcct gcctcttgaccgtctccacagagccccaggcaccagctctgccctcccagcccagctgcaggctgtgctgctgaggtctgggcagcagagaagggt gcctggagggtctttctgtcgtcttgatgaacccatgacccctcctgggtccccaaggagagttgggtattgtaggcttggttgagattggcgagaggtgg tgttgtgcctagcctggggggttggagggcggggggagtttctgctctgcagccctgtgatgcgcaggtgccatcgggtctctgaccccaggccatcaa gagctgtgcgacctgcttgccatccatcatgtggagctggtcggtcaccccatgcaccaggccgactccaagccggagctttcctctccgctcttttcgg agtaatccgtggatgatggaggagcttggcaagcatttcagcaaagctcttttttcttgttgaggcttgaaagtaatcgcctecgtgtattgagtgcccgcc gaccacctggcgcgtctgggcattgagctcattggccgctggcacaaatggatcctcgcctcacccggtgGctgcctgtagcctctGccatctgctttctc acagctacactccctccctagcaccctcttgaggagtctgggggagggggcagcataatcatagttacctgtatcagatgctcacctgtgctgagcac gccacatgccctggcccattcaggtgctctctgcaaacacccttaaggcaggtacagtattccttcccttccctcttccctctacccttaccttccccctacc atacctttcctcctcctgctcctcctccccctcctccccctctttcctcctcttccteccccccttctcctcctcctccccctccttctcctcctcctcttcccGctccG cctcttCGCGcgctcctcctcctcttcctccccctcctccGcattctcccccctccteccttttttgagacaagatctggctctgttgcatgggctggagcgcact ggtgcaatatcggctcagtgcaacctccaactcctgggttcaagtgatcctcccacctcagcctccGaagtagctgggactacaggcacccaccacc atgcctggctaattgttgtatttttttgtagagacggagtttcgccatgttgtccaggctggtcttgaacttaagagctcagagccatccaccagcctcagcc tcccaaagtgctgggctgacaggtgtgagccaccgcgcctggccagcattacctttttcttagttgtaatctaattcaaagtgtacagttgggttgatttcac cgtacagcagtcccccctttcccatgggggatatgttccaaggcccccagtggatgcctgagacctcgaatagtactaaatcctatatacactgtgtttttt cctaaacatatatatacctatgataaagtttttgtttttgtttttgtttttgagacggagtctcgctctgttccccaggctggagtgcagtgatgcgatctcggctc actgcaagctctgcctcccgggttcatgccattctcctgcctcagcctcccaagtagttgggactacaggcgcctgtcaccacgcccagctaattttttttttt ttttttttttttgtattttgagtagagacggggttttagcatgttagccagaatggtctcaatctcctgacctcatgatccgcccgcctcggcctcccaaagtgct ggggattacaggtgtgagccaccgcgcccggccatacctatgataaagtttaatttatgaattagataccataagagattaacagGagcaatttaaaa aatagaacaatatactacaataaaggtaatatcatgtggtctctctctctctctctctctctctctcaagacagcttaatattttcagaccatagttgacGactg gtaactgaaacctctgaaagtgaaatctcagattagggaggactgctggattcaccaggttgtacaacaatcactactaattctagaacattttcatccc ccaaaatgaaaccccatacccattagtatcataccccatttccccgtccctgccctggaaaccatgaacccactgtctgtctctatggatttgcctattctg gacatcttacataattggaatcatacaatgtgtggtcttttgtgtggcttcttttgGtttgtgtaataGtttctttccttctttcttttttttttttttttt gctctgttgcccaggctgtagtgcagtgacacaatctgagctcactgcagGttctgcctgccctgttcaagcagttctGccacctcagcctcttgagtagct gggactacaggtggatgccaccatgcctggcttatttttgtgtttttagtggaggcaGggtttcaccatgttggccaggctggtctcaaactcctgacctca agtgatctgcccacctGggcttccGaaagtgccaggattacaggcatgagcGaccacgcctagcccgcataatactttcaaggttcatccatgtggtaa tgtGttttttttatGgctgcataatactccattgaatggatagacaacattttgtttatccatcatctgttgatggatactgtttccatgttttggttcttatgagtcatttt gctttgaatacttgtgtgcatgtttttgtgtgaacctatgttttcacaactcttagatgtatatctaggagtggaattactgggtcatacttaacttttcgaagaact accaaactattttacaaaaagctgcctgcatcattttacattcacactagtggtgtaagcaggtttcactttctccacctctccctcaacactttttttttgtctac gttcttttatttatttggtttttctctatccatcctagtgggtatgagtataatctcacttttaccagggagaaagtggaggctcagagataccaagcgacttgc ctaaggccaagttgtggagtttggattcagctctagaaaatctgatttatttttttaaaaaatctttcggccaggcatggtggctcacgcctgtaatcccagc actttgggaagccaaggtgggcagatcacttgaggtcaggagttcaagaccagcctggccaacatgatgaaaccccatctctactaaaagtacaga aattagctgtctgtggtggggcacgcctatagtccctgctactcgggaggctgagggaagagaatcgcttgaagccaaggaggcagaggttgcagt gagccaggatcgtgccattgcattccagcctgggcaacagagaaaggccctgtctcaaaaaaaaaaaaaaaaaaaaatttcaattggaacattgc atacacacaaaagagtacacacattgtatactgcttgatgaactttaacaaagtgaacaccctgtatcaccaacagccagaatccagacctagaatg ctgccagccctccccagaagctcctatttgcctttttccagcgccatccctccatggggtaaccagtaggatcaacaccatgtcctggttttcccaggatttt cccaatagagtagtgaccattcaacatcccaagaaaccctttagtcctaggcataccagacaattggtcaccccaataaccagtaccctgacttccca cagcacagactcaggtgcacctctttctgaagtttgtatgggtggaagcacatggtgatgtacattgatgacatgcttctgtccagttgcttttgctccatgct cagtttgtgtaggtcatctatgtgttgtgcatagttgtagaccatacattctcatcatttaggcttctgctgagtggatataccaggatttctttattcattcttctctt gatggtcatttgggtagtttctagtttgggctacctaatgctcagggaacacttgtgcaaacatctttgggagcacaaatatgggcctttctgtggaggaag gggattgctgggttctaggggactcatgttcagcttcagcagagctgtcacaaggtggattcacagtttaactcGctccagcaatttaggattctgtttgca ctgtgtctgtgccaacacttatcatttttcatGttttccatttgagccagtctgctggtatgatggtctcatactctggtaacccctctggtctttaacttactagttg cctgtagacaaaggccagggcgtgaagtccaaaggtcttggttttcttcccagctctctcctgaatagctgtgtgcggttggtcaagttgtgcacctgctca gagtgttcatttctggtctgtcatgagagtgatgcaataccttcctcttgcaggattgtgggattaagggcttgtggaggtgggaagagccctggagatgt gggaggtgagcgaggggagcgggggggggggagtctcccagcctggaaggtcctgggactagagcagggggcgggacacctgcacccaggc cctccaccaactccgtggggctccagcaggggcttgggccagttcccccattcagcttccttttggggttcctctgagtcttgttggacactcaactgtcaa agatgcccagtggcacatatgaaaagtgccacactcaaggacacagatttctgttcctctcaccagccatcttcagggatcatctgtctcccccccagc ttgatggctctgtgatggcagagccgtgtccctctccatcactggcctatccccaggtctgggcatagggttgcacctaggaggcctGtgcttgttgaatg acttcatgaattcagtccttaggtgacagctcttatccagggaggggactggaggatcaggacataactgttcccctgtagttctgagtctcggtttcctca tctgtgtggtttttaaaagtactaatcctgaccacaaggctggctgggaggatgaatgtgctcgggaagaaggtgttttggaaactggcacacgctaga gaagtggagggtatcgcctacaacagagctgaccaacaggagggtatcgcctacaacagagctgaccaacgggggtatcgtctacaacagagct gaccaacaggagggtatcgcctacaacagagctgaccaacagggcggcgcctggccacatctggctctttacagtcaaattaacaaaaattaaac aaaatgtgtaatttggttcctccaccacactggccatatttcaggtgctcagtggcccacaggtggctacagcattggccagtgcagatacggagcgttt gcatcatcacagacgatcctgtagggcagtgccagtatcaactcatttaggctacaaagaactttagagctatcaccaagaaagtaagatcaaataa aacacaagagggatgtatttttctcccatgagattttcttgctcaaagcctcattacttttactttacacatggttctaacagactgcatgccctggtttcacag gccacaacagaagagcagtaacgttcggctgggcatggtggctcacacctgtaatcccagcactttgagagactgatgcatgcggatcacctgagg tcaggcgtttgagaccagcctggccaacatggtgaaaccGcatgtctactaaaaaataacaaaaattatctgggcgtggtgttgtgtgcctataatccc agctacttgggaggctgaggcaggagaatcgcttgaagccgggaggcgggggttgcagtgggccaagatcatgccagtgtactccagcctgagtg acagagcaagactctgtctcaaaaaaaaaaaaaaaaaaaaaagagtagtaaccttttgagggcctggcatgggggaaggtgcagtgtcaagtgt cagcaaaaagaactggtcagtcggcgtctggagaatggttggagaaaccatacaaaatagacacagtcaccccaactctgcagccattgagaaa ggtgcaggcagctcccctgtgcccacaacaccaagggcacagctgggttgcagcccagctcaccagtggatcacagtaataataacaacagccc cggggcaaggagaggtcatattacctgagggaaaccaggggagggagagtgtgaacggcatttgagatttcttctgggaccaaggcccaaaccg gcccttctaggatcatatcgttacGtgccactttgcgtttgctgtatgactttcGgtttgtgagattaaaaagaacatgaaatattttgacgggGGttcccGaa atgagcatccatgggtttctgccttggaggccaagctgatctataggtgtctgaggacctgctgcgtggggtagcaacagaagggtggacctgaggcc cctgccatgctggttccagctgtggctttggGtgtggtGccagctcctttctcataatatgtacttgaggtgtgtgagcacaaaggtacacaaattggagttt gcctctggccagaggaatttggcataacagagggatggaagttgctgtcttggggggttacgaaattgaatcctgggcctgtcttataagagcaggag gcctgtgtgagacatcccctgctctgtgcctcagtttcttcctctgtagcatgtggataacagggataaaaacagGctccccgccttagcattgttgtcaag ttaaatgagggattatatataaagctcttagcatggtgctggccacatggtaactgcttgatgaatgttaaccacgggcacctgtgaatgtccatatgggt ggggtgtagtgaggctagcgtctgcatagcaggtgtccttccttctgtcatcattaaaaaaagatatatggcagcagtggtggctcacgcctgtaatccc agcactttgggaggcagaggtgggtggatcacaaggtcaggagttcaagagcatcctgaccaacatggtgaaaccctgtctctactaaaattacaa aaattagccaggagtggtggtgggtgactgtaatcccagctactcaggaggctgaggcaggagaatcacttgacgggaggcggaggttgcagtga gccaagatcgcaccactgcactccagcctaggcgacagagtgagactccatctgaaaaaaaaaaaaaaaaaaaaagatatataaagctggctct tcactatagtcaaaagatagagacaatccatgtgtccatcagcagatgaatgtataaacatgtggcctgcccatacaatggaatgtcagtGagccatg aaaggaatgcggttccgactcatgccatagcacagataaacctcaaaaacagtaagtgaaaggagccaggcacaaacagccacaaagtatgtg atgtGatttatgtgacatgtccagaacaggcaagtcccattgatagataccaggctagtggctgcctggcgcctggggatggggtagcagggagtga cgacttaatggtatggggcttcctttgggagtaaaaacatctcagaactcgatagagatgatggtgacacagcatcaggaatggactcaatgcccgtg aattgtacatcttaagtgattaatggttagttttacgttctgtgaattttactttgaattttagaaatgcagccaggggaggtggggactgaagcccattctCGc agcgcaagccactttgagcaccactgcgtatgacactgtgatggcagcctcatcattagtgttgttggtgttgttgctgttgactgtctaagcagggctgcc atccaacttctcgtttctcctttggggccccagggtgtgtgtgcaggtccagcaaatccttccttacagtggggtggtgccacgtggaacccgactgtgca gcatgggtgtCGCctgtgtgataattcaagccgcttccacgtagggagagaggggaGttgactccagcccagcacatccacccagctgtcagggcc acacatgccccatgacaaacagctgctgttttcaaccccatccccgactgggcaaggtttctctggcctGgggaataagctGatgggaggattttccag actggcttcttttggggtccgggagctcctcccttccctggcacatgttttgagtcagcctggacgtcatgattcgtattcactttgagaggaatccccatgg aaaccagcaggcaggtttgggcaggagggagctggctcaccacaaaggcaagggaaggcgaaggctaggtgtcttctgccagcatcgggggcc caatgggggctctttctgggggggtcagctcaccccattccccacccactctggaagcaggtctgaggccatatctggtttggaatgccagttctgaag atctctgggggttcacatgggaccctcatgaggtccttctaggccctattttttccagcccagatccagcattgtgtgccactggacagggggctcacctg gaaacaggcagaggtgaagtatctcttcctggtctggcaaatgcaggatcccccaaaactagctccatatctgtccccgagagcaaaaagacaaa ggcagagttcaccgacccattctccagctcccatggaaggcagcgtcccccggggccagaaccGcagcttgtgggctgccgcatctccaataccct ctgggcaccgtcaccttgcgggcactcagttagcgagcggtcccaccaaacctacctgggttcgctccttgcttctcacatggccctgtcaagctggtg gcccaggacaaaagccccttagccttggccagggctctccggttcGctttaatatccatttaatgagagGaatttggcaacaacgtaaaacgtgctcttg ccctttgtcccagtaattccatttctgggaatctggcctaaggaaataatcctaaatatagggtagaaaaacatgtttGacaaggatgttcactgcggagt tgtgcatggcagcataaaatgaaacagtggcactgtccctgagggagggggtgagagcagggatgaaattgatggtggcggaatattttatagctgc tacagtgagagttctggagcttgccattcagagcagggacatctatgtgcgataatgtggggaaaaaaaaggcgttacaaaattctttgtactgtatgat ttcggctttataaaaaattatatattaaaataatcaggaaagtcacacaccagagtgctaatgagtggtcttgattggatttttatgggaaagattttattcgt catcttccaaattaccttgtcttcacgcattgcctttttcagtcaggtttgcgttgtaatttacatacagtaagagtcacgcttttagcgtgcagatctgtgagttc tgacaaatgtatacagccaagtgacatcgcccccacagtcaatacagagaatattcccatcacccccaagagtccccctgcccctcgcccgcccca gcggctggcaaccatgggtgtgatttcagcccctgtagttttgtttatttcaggatgtcatataaatggaatcatacagtatgccttacactgctcttaacgttt aggaaaaaaatttttcgtctgcttattgttctcttagctgtacatcttagagcaggattccctaccatccctcaatggaggagaattttaatgttctttcttatcca attcagcctcctaccccagacaggaatctcctcccctggagctGcggtcgtcatgttcagcttaccagggaattatcagttatctgtaaaataatcccagc gataggaaagtacccagaacggcagaggtgcctgggcagtgttagctcatatctgagcccaaggaacagcagcgttcagaggctttccatcccaat ccagcccatgtcccctgcaagcctcccgtgttcctgcccagtgatagcactacagcagcagcagttttttttgtttggttttgttttgtttttgagaaggagtctt gctctgttgcccaggctacagtgcagtggcgcgatctcggctcactgcaagcttcacctcccgggttcacgccattctccttcctcagcctctcgagtagc tgggactacaggcacccgccaccacgcctggctcgtttttttagtatttttagtagagacggggtttcaccatgttagccaggatggtctcgatcaaggtg acgtcatgatccgcccaccttggcctcccaaagtgctgggattacaggcgtgagccaccgcgcccggccttgtttttgtttttaaataaacattttcttttag gacagtttgagatgtataggaaagcgacgaggatacGccagagttctcacacatccgcagtctgcttccccagctgctagtatcttagtctgtgggctgc gtttgtcacaacttgtgaaccaatattgatacatgattgccgaagtccacattttattaggtttctttaggttttccgtgatgtcctttttctgtcccgggatcccat ccaggatccccaGagtacctgtagtcacgtctcccaaaacttcccttggctgggatagctgctcaggctttcctcatgtttaatgagcactggtcaggagt tttgaggaaagtccctcagttatggtttgtctgatatttttctgatggttagacttgggttatgggtttggggaggaagaccccagaggcaaagattggtcttt ctcaaaatagttcgtttgattgcgttctttagtttgttccaggtactgtgctgagtccttgataaactggatctctggtaatgctcccaggaattctacctattaaa taaattctcatcttaaccagtagaggaaatgaactcagagagggggagtaacttgcctaaggacacacagtaagcggcccaaacacaagtctcctt ggtcctaaaaagtctgcttttggccaaatgctgcttcaggcagtaggcatgcagcttgtctgctttttaaaaacagtatgggttgggtgtggtggctcacgc ctgtaatcccagcactttgggaggccgaggcaggaggatcacctgaggtcaggagttcgagaccagcctggccaacatggtgaaaccccatctcta ctaaaaatactgaaaaattagctgggcgtggtggcgcacgcctgtaatcccagctactcaggaggctgaggcaggagaatcgcttgaacccgagtg gcggaagttgcagtgagctgagaatgcaccattgtactccagtcggggtgacaagagcaaaactctgtctcaaaaaaaaaaaaaaaaaaaagga ccggctgcggtggcttatgcctgtaatcccagcactttgggagaccgaagcaggtggatcacaaggtcaggagttcaagaccagcctggccaagat ggtgaaaccccatctctactaaaaatacaaaaaaaattagccaggcatggtggcaggcgcctgtaatctcagcttctcgggaggctgaggcagaga attgcttgaaGacgggaggcagaagttgcagtgagccgagatcgcgccactgGagtccagcctgggcgacagagcaagactccgtctcaaacaa aacaaaacaaaaaaacagtatgtatttatttatacccaacctttccctaaaaagccttggttgcaacttcagatcaaagccacgttaagacagctaagg cagggcatgtgaaaggtagactcagaaagcctctgtccagtgtgttgtgggtggtgcttacagttaaaacacggatgaaagttgcctttatttttgtaaga tagtcattaatttgtcaggaaattagtaatcacctcctaaatgtcagacgccatttaggcatatgaaacagcaggtgaaccctcctgttcccacagtatat aaacagtagcaggggacacagacaatcagtgaccaacacaataaatatttgaatatgggtgaggaaaagaagtacagaaccaaccaccaagc cctggcttctccggcagtgctcaggacaagacatactgttagggctgagtcatttactgcagaatagggagaacagaacagtgcacgggatgctgga acaggccagaacagtgaagggcaggcccacgagtgtgactttgaggcacgctgcataaagagaaccttcttgggtgacacatggcagccgccgg gattgggggccagggggtcctctgaggggtgagcgatgcagtggtggaaaggacaggatgaacgcagctgcctcctcGcctagattgtggggtcca ggcagccttgtcgctcacctggacctgtgcagcagcctgcaggctgtccccctgccaccactgtctcctttcaagtctgttttctatgcagcaatccGtgtg aaccttggctaaagctcctgcaaacccctgggaggaatccctgagcccctaggtggacctaccagcctctccaggagtgacccacccttctctccaa cgcatcgcttacccagccctccctccgtttcaccttctgctcctccttgaacactccGagctgttcccacctctgagcctttgcactggccgtggggtctgtg acactctttaGtcctgctctGggccacctgtcatgacaccccattgtgattctttatgcggcccttgccaGtctccaatagtttatttatttagatattttgtttgttgt ctgtttgcccactaagctcctgtcttattcactgctgaatctccagcacctagcatggcgcctgcagcataacggaagttcagtaaatgtctgtcagatga atgaaggaatgaatgaaaaatgaattgatcaatcttttgtactttttgagcctagcaattgatcacatcagggaaattgaggcagcttcagccatcaacc ctctctacctccacccccatcaccataactctcgtttggcagacagatactgaaattaacaaacctaacagaagtcctccatctttatggtagaattaacc tgttgggccttagactttgaattgcctttgcctctttcttggaacacaggatagaggtcaggcttctgattccggagtcagatggccgagttcagtcttggcG atgccactcctagctagatgaccttgggcaaatcacgtgacctcctgagcctcagcttccttgtctatatgatgggatgaccttgatacctgttccacaag acctgtgtgaggattaaatgattgccatgtgcccagggtgcatgggagagccagggaggtgttcgctgttattcttctcagctgtgctgcactcacctgatt ctcctgaagtctggcttcctggagccaaagtgacaaggacacccgctttggctcctggtggccattgtatccctcggtcacctggtgccttctcgggaca gcaagactcactcagagagtggtgggtggctgtggatttatcttgccccgcccctactcccaacaatgaccaatactaatagcgtttctcattcttttcaac acatgctattgagGacttgcGatgagGcaggcactggggaaagagtgggaaGcaagacagacctaggccctgacttcatggagctagcagcctgg ccaggaggcagacatccaacagataatgacacagaataaagccacaaataaatagggtgtggtgagcaccggaaaaggagggcacagggaa gggtgcaagcaggttgggtcatgagtctagagggtgggagttccccgaaaagtgcagttgagatgagacctggagagtagaagcgcagatgcca ggogtggggctgtgctctttctgggacaaggagccggctgagtttgaggcactgttatcagggcagtgtgaggagtgtggaaagggagagatgccg GcgagaggcgggactgggcgcatagggagagcagaccccgctgggtctgtcgattgtggatgggagtgtggattttgtggccgggGcattgggagc cattgaagaatgttgaggaggagggtggggctatggagttttccatcttggaacgtggctctggaggccgagtggaggatgcatatccgtggggaga gggagaagagaaatcggtgctttctgggcaggagaaggtggtggcttattgctggtgagggatggcgggcttccagccactccctgcgctggccccg cggataccaagagcagcagtccctcagttcttgccctccagctgctcccactctgttcctaactctgcacctccaaacgtgtgggtggagttttacagtga acccccttgcagctggatatggccagcGagaaacagggaggcttgctttggtcaccagaggtgctgagctcctgcaccagctccatttgcctgtcgcc agaggggcgatgtttccaaaaccgtctgagatgcggaGgtcatgcctgGtactgtaaccaatgGatatctcttGtttttctttttttgctgcagCCAACTG GGTACATGGAAAACTCAGTCTCCTACAGCGCAATTGAAGACGTTCAGCTGCTGTCCTGGGAGAATGC CCCGAAGTACTGTTTACAGCTCACGATTCCTGGGGGAACTGTCTTACTGCAGgtaggagaaataaacatgaac aagcagtttcttctccctcatcttcatgcacttgtgcccctcgtttcGcttggagggagccagcagctatcaagaggaaaggttgtttaactttgggtgatttt attccccaagtataagaaagctgtaaaccaggtctgactggagaaaacgaaaaggactgtgcatggcctgagcgtctcctgcacacctgctgcagt ctaggaacttttcaggttgctcatttagtttcccttaataaacctgataaataagttttatgatccccattttacagatgaggaaactgaggGacacaggtga gttgttaggcccaagaaggccgtgaaaagcagatgagcaatagatactgactttttgcattactttgagtgagggagtttctgatatcttgttgatctaagt cttttgaggctgatagaagtataagctatctttttgggaaaaaaagtgcattctgtatgtactggtcaggacgtttggttggaaatggcacaaacattattcc aactagtgagacaaaaagagagtttaatgctgttaactattaaattaactattaaagtaactgggaagccttagaggggacttcaggcattgctggatc cgggggtcagatgacatcattaatattgggcatctctctctccatGtcctggctgtgcttGtgtgtgctggcttcattggcagaatctcaccatgtggtagga aagatgacccacctgcagcccaaagccacatccttagaggctgtaatccttaagagtgagcgGcctttttctttccagtaccttttacaaaatctcatgga agatcctgattggctctgccgtgttcccattcagcccccaggaattcactcccccggattacccgcccacccttgacctcaggcaaggcccaggtctcg gattggtagccccacGaggaccacacagaggcggtgaggtgcgtccaccaagaatggagaagtgactgacaaaaaccacgaccacggtcaca catacataagacatgttacatcatgtcaggggagccagccaattttcagaaggaaccccgagtctgaaacccctcatctagagaaaatttactctctta tcagtgggaagaagacctgGcttgctttttcttttgggatGattttattcctaacttgtttttccagggaaaccttctcttagcccaaagagatgctttctaaaaa cctattttagatctagcagccactggattgtgtaacagcattgggctgagagtcacccagtctgggctccaaggaatgctgagctcagtagcggagcgt aacaacttagcattgttagaaatgtcctgtttcttactgtcatctctcagaggactctggaaaccacgcctgccccagtctgctttcttcttagtgaatctctca cactctgccctctacgcttttcttttaaccctgtccccacacccccacactgtccctccccccctccccaccacagccagcaaagccttcctcttctttctttct ctcctctcatctttatgatagaggtcagtgtGacGctcctgccagaGacttctgccagctcctctgcctcttcactcgctccttcttgGccatccgatggctgca gcacagagtccatgaagggggtggtcagtgccagcccccctcggcgggggagatggggcgggcaatcacagggttcagtggccaacggagag gtagggtagccagagattgtcctaccccaatgactttgctgtagtcacagagctttgaggcagcctctcccctgtgctcggggaggcGccatgcgtgaa gagcccctcagcccctggggagacagagccataaacaaatgattacggaaataatggctaaattagaggcaaccgtggaggactgggagccca gagaaggaggaacttatttggcctggggggccaaagcaggctccccagacagggggcatttgaactgggtgtagagggatgagtagaagtgtgcc agaatggtggggtgggggcacactccccgggcagaggggatgtgtgtgcaaagcctgaatatgggggacctgggtacttgctgcagctggaggag atggagagatggagtttggggctgtggatatgtctagatctgttgggcgatggccagatcacccaggccttgccagccaagtgaagaagcctcagac cctcttccaaaggcaataggcagccactgaaagctctgaaggggtagagggacactagaggaatcagtgtggtggcagggcagaggggcctag atctgtgcatgacagagaggcaggagggagccccttgaaacattccagttggaggagaggaggccctgagcctccactttcctgctccaccagcaa aggggcctcattccttctggggctggaggggcagccctggcctccaaaggaggccagagcatcactGgcGacagggatggaggggcagtgaggc tgaaaagcagagaagcagtgcctggaatgtccctttaacccggctgtggccgcgggcccagctgtgatgactcgcctggccgccgtgtctggcagg gcttcaggacagagctgccgccgtggtgctgaggagccgagcgggcggggagcctctagctgctccagcatCGcacttgctcactgccccctgatc ccgtggacagcgcagtcagaggcaggagcaggagaggaggaagcagaggaaaaggaggaggaggaggcggcttgcaactcctcagatcca gagccggactccgagctaatgagggagcagcagacacggcctcccaacccttcccccaaggggaacccaggtgggtgcagcccctgcccctgg cggctgtggttctctccctggctgccatttccgtcaggggaggtagacctggatcggcttctcccttgcttccctctcatcctcacccccacactctgcccac cgtgatgcatgggtggtatgtagctggctcattctataaacagggctagcgagtctgtgtggttctagggaggctggggcggggtgcacttggcccctg gtgtggtactcagggctttcttcagtcctggttgtattcacgtgccttttgtgacgggtggcaggaccctctgctttgagaggctgtactttgtcttgattcacat acaacatactgtattagatcccagagccgtggtgtcacagagaacaacccctttggccctggggacagatcttccctgctccagggtgggagagggg accaagaaacagccaggtgcGcatctgaacggcattaccttagtgctcctagtcagcagatgagtgaaagtgccttaaatggtgccgcccggcaca gccaccagcagccacgcatggcagcccacagatggatttaatttactcatcaaattaataacacagttcctcagtcccgttagctacacctccagtggc caggggccacacatggccaaaggctgctgtgttggacagcgcacataaagaacatttccattgacacacgaagttctgtggagcagtgctgaccte gaggccttttcattttgaGctcatactgcaggcacctgagcccctcctggggcgaatcacgtcagatcacagggggctcttcgatcttgcagtctggctgt gctgtaatgcagtctgcaccctgctgcattacagcacagccattctctctacagacaaggggaatggcggggcccaaagagggctagtgccccttcc ctaccccagcctgcctgatGtctctecatctctgtctctttcaggttctttgcatccatgtgtgtctgttttcctctctctcatgccttttctccatGtctctcccctccttc cccttctgtccGctcctgcctctcctctttctctctctttagtccttgctgtggctcactctgggcttctcttgcaggtccttcctccaggcctctcaccacctctgag cctgtcccccagtcctctctgtgtgtctctcccctcttctcttcctcctcctccgctctctctgtcttctaaggagctctttgtaaaactcttaGtttgttagaatttga atcaatgcctcttgcagacctcggggagctgacctgatccttcaaggaaggcagagaggacattcaggcccatgcccctcatccccagctcagaga cagagcaatctaccagcaggttgagttggcagacagaggcgcccagccttccagcgtgggtccagttggtgtgttttggatgctttgtgttttcagcgtga gctccctcactgccatgttattagaatccctcgttgcagaaagggcctgtttatcccatttcctccattgatgccctttctgctagcatttcattgtggggaggc caagcatgtaagtacatagacagtgtcatgaaaacgtcctgaaggtgctgtcactggcccctgggatggggtagcaggcattaaagagcagcgcg gcgcagatcatcttctgggggattctgcctaaaaattgagtggctgcGcatcagcaaaaattagacagagccgctgctccacaaacaaggcttcagg caagataagagcagggagaccctcctcccaagagtgtctgcttctttcggggatgggttccgggactcggctcttctcaccaatgttctggaaagtcctg Gaggaggcggggcaactgtttaccccaaacattggcagcagggcagggacggggtgggttcctttcttactggaaggtagcaagcaggacttttccg gtctggaaagcaccagaaaggtctcactctctagcttccagtaagaaaggaagctccttttccctaagaaactgggccggggaaggggagGttgga aaaggtcgctcacagcgcaccctgggctgtttttctcacctctcaagacaatgcaacaatgagaaagaacttggcaagtttgggagaggaaattggg cagcgtttgcctggaaccaggccctttcagcattccaaagatttaacaccagaagtcggaagcctggaaccagctgcccgcaggcttccgggggac ttggggtctggctggggacctctcccatgtGtgaatggattctcctctgagtgaccctcagggttgggctgggggacctttcccaggtctgaatggattctc ctcagagtgaccctcggggttccagccatgccttatgttcccactgggctgagttctcttggctcagccaccagcaggacagtatggggactctgcaca gaagcgtgacccttcccccagctggaacgcagcctggtcagctttccctttgcttggaagccccttagagatgcctgtgctgggactcaagacattgcct agGagcgtatgtcctccttcaaaagtagacaagccaaaggaacgagcagtttacagtccggccttgtcccaacctttttggctccatcagcctccacct gctctGctagaggcaagttctggcgcttcccttagtttcaaggtgaggtctcctgcgtgccacatccttcctcctcctgcttcatcagtagggcagctaccat ggagaaataatgctcacggatgtcccaacccaagtcctgggaatccagaggagctcagatgcattgcttcatgttccagggctggattgcagggagg gaagactgtggggtcagacagacctgagttGctgcccaacttccctgggcactagctctggatccttagactctaactagccatggaaccctaggtttta ccacattctagctgtggaaccctaaacagcaggaagaacctctctggggctcatttaatttatGtgtgaaacgcactctaatacttgtctccttgcatattgt gaggctcgtagatattacatgtaaaatacttagcactgtgcctggtacttagtaggtgttcaagaaaacactgccatgatcatttttagagtcttagtcaaat acagtttggggaagagagggaatcagagctgaagagttcttttgaaggtctgttgtgtgtggactttcttcgctgagcagaatgggtatatgaatgcccc attcatcGatccatctatccgcccacccatCGatttatccatcagactgtccatctgtcttatctgtttttccatccatccatgtctccatctatccaattcattcatt cattcaaGacttcaaGcaatctttcacttaacaaacatttctccgggtttcatggacacagtggtgcctaagtcagacgtggttcctgacctcccagagcc catagcctgcagaagaaggacaactagacaggcgattccaggacagtgtgatgcgttaggcgaggcattctggcctggtttggttggggatgggga ggggaaggcaccatcaagacagtcattctggagaagtggcatttGaggagggacctgaagtgtaagtaggagtccagcgggcagcggagagaa gggggtgacagcagaatgttcctggtgggggagtacacgctgcatggaagccagtctgagagcagggcaggccaggtgctgccacagtcaccag cgaccacgcattctaggtggctggaagcggcacggcattgtttctaacttgtgctgtgtgtccaccatgggccagtgggggaagggagtgtgccaagc ggtgcacgggttctcaggggctcccacgcgcgggccacgggtcacttcagcatgacatcagGtcgttgcattggcctgtgtgGttgccaggagcccgg agggaagagacctggaaatgacacaaatgatgaccccagcaagtctgggtgtgtgtgtggtatatgcattggtttccccagtggaaatgtggcagtgg aggaaaggttgggttagacctgggtccttaagcGgtggtccatggtagattccaaaactacctgcacagtcctgGgtgtgggactgtggtgtgtgtgtat gtatgtctgtatggtttatgtgtgtgtgtgtgtgtatggtatgtctgcatgtgtgtgcgtacacatgtgtgtctctgtgagtgtgtatgtgtctatgtctgtggtgtgtg tggtatgtgtgcatgtgtgtgcctgatatgtgtgtttatatgtggtatgtatatgtgtatacggtgtgtatgcacatgtatctctgtgtgtgcatgtgtgtgtggtatg tgcatgtgtgtgtgtcctgtgtctatatgtggtgtgcatagtgtgtatctctgtgtgtggtgtgtgcatgtgtgtggtgtgttgtgtgatatgtgacgtgtgtgtgtgg tgtatgtgtctatatgtgatgtctctgtgtgtatatggtgtacgtgcatgtgtatctgtgtgtctgtgtgaggtgtgtgtctgtgtggtatgtctttgtgtgtatgaggt gtgtatggtatgtgtctgtggtgtgtgtgtatgtatgtctgtgtgatgtgtgtgcatgtgtgtgtggtgtatgtggtacgtgtatgtgtggtgtgtgtgcatgtgtaac tatggtgtgtatgtgtgtatggtgtatgtgtgtctgtgtgtgtggtgtatgtgtctacgtggtatgtggctgtgtggtgtgtgtgcatgtgtaactggtgtgtgtgtat ggtgtgtgtggtgtatgtgtctttgtgtgtgtggtatgtgtgcatgtgtaactgtatggtgtgtgtatggtgtgtgtgtggtgtatggtgtgtgtgtgtgtgcgtggtg tgtgtacatttgtaactgtatggtgtgtgtgtggtgtatgtgtatttgtgtgtgtggtgtgtgtgtgtggtgtgtgtgtctgtgtgcaggtgtatgtgtttttgtgtgtggt atgtgtgcatgtgtaactgtatggtgcgtgtgtgtatagtgtgtgtgtctgtgtgtgtggtgtatgtgtctttgtgtggtgtgtgtgtatgtgtaactgtatggtgtgtg tatgtgtgtggtgtgtatgtgtctgtgtgtgtggtgtatgtgtccttgtgtgtcgtgtgtgtgcatgtgtaactggtgtgtgtgtgtatggtgtgtgtgtggtgtatgtgt
GtttgtgtgtgtgcataaatgttgaGattacatgggtgtgagtccatagcttgttttaggttctcaaaggggtccataaacccGcctgaatcaggtgatcttta aactCGGtttggcttctgatggaaagatgctcattgttaccgtggacaaacatggctgaagcctctgGCttcttccaaagtgcagccagcctaaacgggg gtggggaggggaccacggccagctttccttctcgtcgcactggggcagaaggagccgggcgcggtgggtgggagatcttggctgtctctgcctccct ggaaggaggcgcaggagagttGcgcatcgagactgtcctcagcccggcatctctgtgccttgccttacatgtcattaattcattcagctgtatttttttttttttt tttttaacaccaggctGaGtggagcagtcgcagttaatcctacgtggatcctgcctcctctcccaatcctgtgggtgggacataaatacccagccagcct cagggtgtgggccgagggcttgaagaagtggccgccagaagcttcaggagagcggaggagggatggggtcctggccgaggtgtggggagggc aggggcaggcgccggagtgtgcagaggcaccccactgcctgctccgagcctcagcttcctcatctgtaagatgggtgcgttgaggaggagaggag gtgtgtgtgagGatttctcgtggtgcGtggtaccgagtaagcacccgtggtctgtggttggtagtgacatgcgtcatcgcacttagttGgccagcctgtgtc atacctgtttagctgggatctgcaaactaaacctgccttcttgaaccgaaacctgccttcttcctggactgccacaccgacctccaagagttgagaggat cccagagtggaacagaagtggccagaaagccaagtgtggctggggaagggggtcacaccctcctatgggaggaaaggcttggaaacccagat ggctctgcctggaaggatggggctgagaagagactgatgtgtagcagtgtctgtggtcagtggctctgaagaaatccgtcccaggcctttagacatca agtgctgctgtgagaggcaggctacgaggacccagctaagactggaggctGctgcagctcagcaggaagtcacagggggcgtggccaggccag gcagctggggcccaggaggagagatctgtcagccatccctgccaacaactcagcagtgggccggacccagtctggcagggccagaaccatctg gatgtgagctcggggcagaggagacgccaggagcaccaacggtgtgaccaggagaagccacagttgtggaaatgctggttccttctgtaaaaatg cctacggggcaaacacatcagaatgtccactttgaaaaggaagaaggggccaagagccagtaggccctgcaggtccctcagggctctcatgtgcc ggcagccgaaatgggatctggGGatcGGaagcaggaaaggaatgtactagaagaacggtggcagcctggagaatggcctggagctggggtcgg ggcatgcaggtggtagtccGatcacGaccagtgcaggaaggtgcagggcaggacccagctcctcccaggtgaattctccctgccccatctccatag cacttgGccaagatccagagtcctgggcaagaaGctctgcctggccaagcGagaggactggctcacacactgttgaggagggctggaaggccccc taagactcatgagcGagggagaGGccagatgggaagggctgggctagcGatcgtggaggacggtctgtgttgggtttcgctacagaggctgggga agggagtctcctctggtcattctctaccacctgtgacacctgggtcactttcctctttcttcctttgtttctgtgttcattcgttccagtgtaaccagctctggccGa gccaggcactgctcacctagctgtggaatcagaaataagaccctgccctcaaggaactcctagtccattcattcctttgttcattcattcagaaaacacct gttggtctcctggtgctccaggccacaggatacagtggtaggtagagcatgcgtggccccttccGtcttagggtcacacatatatacagggcactttggc ggggccagtggacacagaagagggagggatgtggttgtcctcctccaccttctttttgtctttgcttggccgttccgtccagccggtggcagcttacaggc actgcctgggtccactgtggaccctcagagccagtggaacaactcacatccgcgttataccaacctggttgtacctcctgcttttatttcctattgctgctgt gactgcttgcccctaactttgtggttaaaagaacacagatttagtctcttatggttctggaggtccgaagtccaacacaggtcccatggggctaaaacga aggtgtcaggactatgttccttctggaggctctcggggagaattcgtttccagcttctaaaggctgtccgcattccttggctcatggcGacatcactctgac ctctgctttagtctgactctgccctcctgcctccctcttgtgagtacccttgtgatttcattgggctacctagatcatccccatctcaagaccttgaacttggtca GatccagagtcGcgttgccacgGaggataacttaatcacaagggatttaggatggaacatgtttagggggctttattttccttaccacctccttctctctctg gcccccttggtgtgtgaggaagcacaggaatggatgtggaccaggcatgccctggagccagctcatcccagcttgcacctgcccaccagagctgat cgtgcccgtctctcccGagctctggGccaggggcatccccttgaaggtgtggaatcagccaaaatgggattgttcaGaacacagaaatccgcacacg ccgggatcagggcttgttgttccagagagcctgatgttaagcatttatcagcacagacctggccgtggctgctgacgctgctggcccctgtttgtggagt gtttgcacgtgccaggcaccgtgctgaggaagcacttttcatggattagctcattgtttgggatcttcgcacagctctccGcgagcagggtgtattttgtcat cctaatgaataggaattgtcacaagaccagtagagcttgggcagtgctgatgggagggagctcagcaacagtctctccagggggctgtttctcctcctt ggcctccgcaactctgggcagggggcacaggcttgggtcgtcaagcaacttgctgcagtcacaccactagacacgacagagccgagacttgaac ctgcacctgtaagaggctcagccGttgtcggagttcctgtgtcacacggagggcttgcctcctgcctgctttgcacttgggtagactcaagctccaGcag catcagggtggctggtgtggattcgtgcagtccagggttcaaaactctgagtccctgagctcactcaGcagagcctgagtcctcaccacacttgctact ggaatggatcatttatgcaaggccagagattgctccagaccctgacctcggagagcagctgatgtttcgtagatgacttggggagGgggaggtggtc acctgtagcgtgatccggatctcctcgaacaagggtgaaacaaagcggttacatgcttgagtgtgtgtgtgcgcgtttgtgtgcctcgaggcagaaggt ggatgttcgtgcttggagagagactctagccttcgtcagaccccctgaaccgtcagaggcagggtcactttggagagagggttgtgggttctggtggg gaacgcacgctgcacttcggcccagcGtggggtggaggggtagccaatggggaactcagaatggtccggtgttgtggtttacagcaggggtcagatt acctgggttcaattcctggccccgcaccacatgtctgtgaacactcaggaaagtttttaacttccaaagtctcagtttcctcatttgtaccatgagatgaca gtaccgacttcacagggctgtcttgtaaggactgaatgagccagtccacacacaggactcagagctgtgtctggcgtccatgaaacaccatagcatta ctgttctgttagcagaccgagaaaggaggtgagagccgcagtgatactcatgagggatgggagggctgccttgggctgGattttattggaaaggactg gatgatggcaatggtaatgataacaataataataacgatggctgcatttctgaccacctgccatgtgccaagcctggttctagatgctctacaagaata atttctggtctttaaaacatccctggaaaatcagggttattgtccGcattttacagatgggaaaattgaggctgagatgtccaaagactcacagctagtgt ggggtggagctgagaaggttttgtttcacccgctgtgatgtttagcctaggtctgctgggtgccgtttaccatgatcttctgccattggcaggagaaggtca tggttaaatgcccagacttggaagccaggctaccctgggtctgaatgcacttcattgtgagatctcagggtctcgatttttccctctgtgaaatgggcataa tgataggtgccacctcatagggctgctgtgaggaccaaggagagactacgtggataacaaaagccaagttcctagaacagtcctcatacacaggc ccccagccagcccccaccatcctcactcccaggcctccaaccagttcatcccattccctcccatgcccctaagtccagctgtgtgtgcagttaaagctct caagtcagcagtgtctgaagtcactcatatacagcaaaggaagcacacggtgctagtgatgtcttgtttttaggaaatcctccctgaccagcccttctgtt ttggttttgcacacaacaggGtcagcttagcatatctttcagcaggcttgttagggtcacagggcagacgctgtctacagagcaggcttgggggctcac atgctggccttgaaatgccctgagatgccgcaagctgatgaccggaccttgctgtcctgttcttgtcgttacagGCTGCCAATAGCTACCTG CGAGACCAGTGGTTCCATTCTCTGCAATGGAAGgtaagtactgactcggttgcttgtttaaagcgactcaggcagtggtgcgatg gcttaaagccaatctgtcacccagaggcatgaaagtggagaactcatgccttccagatggctcagctgaggaactttgttcccctacctaagagcccc tggcccttcgtcctctgGtgttcaattcctgtcGCGtgcagtgctgaaatagcattctcgccctggtgttctcaaacGctatagctgttttcctgcttcaaaagg atcatagaactgcttgctctcagagtgagggcgaccctgaggggagtccagccggggaggctggacttcaggggctcaagatgcttagttgaaagt aacttccaaaggctgtgccaagtgtaaacttaacagagattcaaaatGCtgagccctatttctgtagtcttcactgattttcagttgtcggattctgtggccta attttctgattctggctctacataggatggttcagagctttctggcacataaagggaacttcatcttcttggagacccaggggcagatcttctaagaggggt cccccagccacccgaggagcctgagttgtgccccatggctcaggcgatggaaaccttgacgtcaggaccagggcgtgaagcacgtacagtcagct tctcattcctgccctgcctccctgtctctccttgtcttctgatcttctggtttagaacaagctttgacaggcGcctggccccacagcgggtatggctggaatga ccagtgtgtcataagctgtcatccttacagtaagctggggagccacaggggatgaacagctggccccatgcagagctgggtgccatgtcacgtgttg ggaggacccagggaacactcaggattcctctcatggctccagaggggctcccccaacggccagggttgggggcagaaaggcaaccccagataa ttactttcctggtcccagagagggccactcccctcctttcctctgtcagctactggtcctcttgctttgtgctgtggggccaagtctcagaagctgagctgagt ctccacgttgggttgcaaaggggaagagaactagtgtttactgagcttctactgtgtgccaggactggcgtgttttgagctcctactgtgtgccaggagct ctgctagtctcatcatgtccatttcaccctcaccacaaccgcataaggttgatgattatcgttgttgccattttccatacgggaaagatgaggctcagactg gagtccaagctcccatcgttaggaaggggctgaggcagggctcagctcgacctttccagtacctgtatgtactggaaatttctgaatgtagtagagtgg gaaggcatagatgtcagccaagcaggtaaggtggtgcacacctgctcgtgtgatcagcaggtgctactgagagctctgtatccactgggagaacatc tctgatgcctgggtctctctttgtgcccgggtacgagtgtgtctgaagacaggcgggacattcgtcagcacctactggggaccgtctgggggtcagatg ccaaagcagttgagagggaggactgagcggtgttggtcacgggggtaccacctcttcccttccccatggtgttttacttgtggggcctcagaaagtgac agccttgcattttctcttagctcaggacacggcagaatgtacttggagacacactgcctacccgacaggttgggggaaaaatgccttatttaaaaggag gccaagatgagtatcaatgaaggctgtcaggtgcggtatcccacaaggctctgttttctgcctttccctggtccacattttcaacagtgacttacacgtgca cctggaaggcagcatttgtgaaatctgtgagtattgcacagctgcaaggggcaaccaacatgatgggcatagaaatggacttcaggaggctttggct agaaagatgatttaaaagctcggccttgaaacattcaaatgtcaaggattggccaggtgtggtggctcatgcctgtaatcccaacactttgggaggcc aaagcaggcgggtagtctaactcaggagttcaagaccagcctgggcagcatggcaaaatgccatctgtaccaaaaatacaaaaaattagccggg cgtagtggtgcgcccatgtggtcccagctacttgggaggctgaggtgggaggatcacttgagcccaggagatggaggttgtagtgagccaagattgg tccactgcactccaacctgagtgatagagtgagacccccatgccccaccccaaaaatgttaaggtttgcatgtgggattcagacagttgattgagcaa gtccagaactgggatcactgtgtttctagcagctctGatgaagacctggatgtttgcattcaattatggtggcatcGggtttatttatggttgctaaatttaatc aagcagtttaaaaaattttcagaaaacctaaatcaggatgtcaaggaactggcagatgcctgggtgtgtgctggcccacttgccaggtgatcaatggt agtctttgctctcagggtgtaagctttggctgtgtctacagcatgcttcagacacagtgtttctccttggacaattgccccccaataatttaggtatgctgcca ccaggtggcagtgatatttcagtgttggcaaGttgatctcaattcctgtggctctttgtacGcagttttggtgatatttgagaaggcatgctctccttccttttaaa atggcaaagaaacgtaaggtgttttggaggtaccgccagctagccaaattagctgggaaacgtgaatttggatcctggttctgtgggcagattccaga aagtgttcacctaatacagatgcagttactgagtacatgtgagatgcGagggctggctaggtcatttctggttcattgtcgttaagcaggtaatagaacca aggctcagagagatcaagtgacttgcctacagttgcccagcagatttcaatccagatctgtggggctgtcctacctcctccttgatcacaccgtgcttttct ctgagattgggactccacagccctGccaggacataacccctGtgcttctgctgataGagccaGtctctctGccctctttatttacaaccacctatttgaggttt ttctttttcttttccttccttgtttcttttctcttttctctgtctttaactgaaaaaaaaaaaaaatcagtggaacatcaaaattgaggacctttagaaattccaccac Gtcagcttgaattttttaactctcttttgtttttattattatactttaagttttagggtacgtgtgcacaacgtgcaggtttgttacatatgtatatatgtgccatgttggt gtgctgcacccattaacttgtcatttaacgttaggtatatctcctaatgctatcttgtttttgtcattttctctcctacaccaatatacatttgtctcctgtggctgcgg tgcacatactgtcagaatacgttctcctgtatgtaaagaatgccacttccagcctgggcgaaagtgcgagactccgtctcaaaaaaaaaaaaaaaaa atgccacctcctaaatactgtgtccccattgcttagttttgatcaagttggacttgcatctctaggccattcGcaacaggggcagcatcacccctaatggg accaaaattggttccttgacacttaaacaaatcttaatgattacaatagtctgtggccctccaaagctcgaccctattcaatgaaatcttattcttgagtattt cttccaaagggaggacagatgagggagacactagggttccttatggggacagtcatgataacagggtcgattgacaaccgctgctatggaattgac ctcaaattgttttgtggaagaaggcaaatatccaggtcatcttggtcacgcttttccgtctgggtaacagtgttgtttttgtggcatcagctcagaactttgag ctgttcacacacggttgtagctcccatgttggaggagtttgctcggcaatggacactgcattttgtgaattacttcctctcactgaataggttctgttcttatca acatttgcagatggggaaacctgagtgtagagaggataagtcagtcgcacaaggttccaaggccaccaagaaggcaagcgggattagaccctga acatGtttgcGtctttctctgagcagctctgctcttcctcccagccctcccggcctggcGtctgccatgttggtctgggagatctgaggaggcctggagcctg caggaggagggccaggatctcccagcccatggctgctccacctcccagcattcgctagagcagaagctgcagtcctgagggcccctggggaggc cagccctgtttggtttgggtggttcagcccttgaggctaattcccaggggtgtggaagcattaaatagttattctgggttaatgaggcttcatttctgactcag atgtacctcctggctcatgccctggccctcagaggccaagccctgtggtgacaggcctgtctgcacatgaggctgtgagggcacaggcctgtgtgcac acgaggccatgaaggcccagtetgtggggcaaggccaagagcgtgttcaggctgtgaggggaccgtgtgtgtttacaaagcattgagaagattggc ctgtttctgtgtccagggtttcaaggtgagagacccaggtatgcacagctgtgagggacaagtctgtccatgtgaacaggcccaggtgacaggtccag gctaGtgggctgtgaggagacacacaccaggctcctagaggagcGccgagaagccaggatgcacctgctatgggagctggagctcctggtgGctc tccaccttctcgcttcctgagaggggttcctcaggccgaggcacactagtcctggaaaccaagatggtttttccccaggggaagtgaggtcactcaga acagccccaggggccaagccccagagccggggaGcaatgagcagactgtgtgtcacaagaagctggcctgtattcctgtcccagggctgccagg gccagaggagtgcccttggctctgggaaaatcccagcccagctttggatcctttctggctgcctgccctggccacgctgccttcttcttgctgggcaggttt cccagccccctagggtggccacagcccctcgatcaccgcatccaggcccaggcctctgtccctcctctgtggagaaaggtggaaaagaatgtggg gtgtgtgagtgtgagagtgagtgtgtgtgcgcgtgagaatgtgtgtaagagtgaatgtgtgagtgtgtgtgagagcgagagtgactgagtgtgactgtgt gttgtgtggggtgactattttatgagtgtggtgaggtgactggtgtgtctgtgtgtggtgtgtgaggtgactgttttgagtatgtgtggtgactattttatgagtgt gtgtggcgtgtggggtgactatgagtgtgtgtggggtgtgggatgactatcttatgagtgtgtgtgtgtatgtgtggcatgtggggtgacttttatgaatgtgtg gggtgactgagcatgtgtgtgtgtggtgtgtggggtgactatgggtgtgcatgtgtgtgtggtgtgtgggtggcttatgagtgtgtgagtggtgtgtggggtg acggtgtgcgtgtgtgtgtggtgtgtgggtggcttatgagtgtgtgtgtgtggtgtgtggggtgactatttgtgtgtatatgtggcatgtggggtcatttgtatga gggtgtgtggtgtggggagattattttatgacagtgggtgtgggtgtgtgtgtggtgtgtggagtgacagagagagagagagtgtgtgtgtgtgtgtgtgtg tgtgtgtggggtgcatatggggtgactattttatgagtgtgtgtgtgtgtcctgtggggtaactattttatgtgtgtgtgtgtggcctgtggggtgactattttatgt gtgtgtttgtgtatgtgtggtgtgtgggggtgactgagtgtgtgtgtggcatatggggcgactattttatgaatgtgtgtgtgtgtggcctgtagggtgactgtttt atgagtatgtgtgcatggcatgtgaggtgactgttttatgtgtgtgtttgtgtatgtgtggtgtgtgggggtgactgtgagagtgtgtgtgtggtgtgtgtgtggc atatgggccaactattttatgaatgtgtgtgtgtgtggcctgtagggtgactattttatgagtgtgtgtgtgtggcatgtgggatgactgttttatgtgtgtgtgag tgtgtgtgtggcctgtggggatactatgagtatgctggtttggagtgtgtttctttgggcctcagttttctectctgtggaatggggatgatcatggcgtctcgtc actgggccgtgtgaggatcgaaggctgtgttgtttgtgcagcaggcagaagggatcctggtaggagcGcacgcgtgggagGctctcatgcgcGatca tcagtgtctccaagtgggtccgacatggtgggagcagctggctcggcctgtctccctggcagccccttccagcctccacaggtggtcccggctgactc atggcctgggagggctagggtgggtgggaagcccgccctcgagactgtctctgcccggctctggccacggagtgtcccctgtgtccagcactatgtg cccctgtgctcctgagtccggaaacagttctgtggggtccacatccctcccccatctcatagcagaggggactgagcgtccaagtggataaaggatg aggataaaggaccgtgccaaagccagatgcctcccagcgagggtcacaatctcgcttccacctcatgagtggctgcggcgcctcgggaatgagtct gttccatgttctgtgttgggagctggcgctgggggaccacaaccctcaaagtccccagcaccaaggcaaagtgcctggggctcagagaggggaag cccacctgacgggaagctgagggcagggcctgggtcatgtccccactggctgcaccctcaggagggcgggatccatcaccctcatccccatgcag gggaaaggcccaggggaccaggtcagaatgacacagagcccttgagctgatgcctcccctgacccctcactgagggccatgctagaagggggg atccctacaaaaggggaaatcctgaggctctggaccgggcctccagtaggggctgtcacccctggctctgaccttgctcccggagcccacctcccct gggtcgcctcctggtcatgggagcctccctggggaagagccactcctagtgtGctagagatgtggccccaggcgclttctccaccaggctgcaaatcc cttcccaagctcacatcccccaagtcgtcatccagcccaagccgagcccccagttgcaccccaaggccttagcacaaggctgcagctggtcctcga gccatgatggacacttaactcctgtcccatgcatgtgccagtgcctcacttaGtGaccttggtgaatccttacagccctgaggaggtgcctgttcctcctctt ctccctttttactgatgtggaaactgaggctgaggttaaatcactcactcaaggtcacacagctgttcaatggcttagatgggatttgaacagaagtctga gtgagtccagaacctgggacttcagccaccgggagtgtggctcccaactgtacatgcatgcatgtacacagacacacgctacccagacacttctcaG acctgatgtgcacttgggagcagtgccccggctcccacctgttctcgtggcacatctgggtagagcctgggtgttgctggtgcctgaggcttgcgtgaga gctttccacttttccctaagtctcccatcaccactagggttatgtgaattggctgcgcgtgatggctcatacctgtaatcccagcactttcggaggccgagg cgggaggatcacttgaggtcaggagttcgagaccagcctggccaacatggggaaaccctgtctctactaaaaatacaaaaattagctgggcgtggt ggctcaggcctatagtcccagctactcaggaggctgaagcatgagaatcgcttgaacccgggaggcggaggttgcagtgagccgagatggtgcca ctatactccagcctgggtgacagagtgaaactgtgcttaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagataatgtgaattgacgtctgacta ggcaggcccctgtttctcacgcagaagggctgattgcctcatcctgtcttgcacgtcatcagcacagccgctgtcagaccacctctcccaggcccggtg tcacactcaggactgacccgcttccacatcttccccaaacacactggtcgctgtgtcccctgactttaaacttgaggtttggaagcccagatctggccttg cacctgactccctcactctatacagtgaccctccgaggtggctcctggctgggcctgtcccctctagcccagctcatcccttggtcttgagggaagacgtt gGCcttgaacGCcaccccacctcGgtttgcccgtctaaccccgtcttggccacGttcctccctGtctgtctccttttcgacctttttacgatcacttcaaggtca gcacccccagctcctgccagttatgaccttgcagttctcctccgaggctgcgtccatcttcacgcagccattttagcagctgtggccaggcacatggaca gtcctgtgagcctcgccaaggcatggcagctcagacatccGagtgccgtgccacagcgcccaagggaggcttcctaatggctgcagaatcgtccgt gaagaggctggggccatttaccaaaggcctctgctgtggttgcccttcgggtcgttcccagctttcctcagttatagataacgcagccatgaccgtcgtgt atctcagctttGgctttatttgagttacttgtttagggcagatttctagaagtggttactgggccagagaggaggggtatttttaggtggctctcaccacctatt acctatttgctcccaaaataatactttctgcagcgcttcagggccagactgcccaggttccaaccctgatccacttcctgctggctgtgtgaccctggacc agttgctttcgtctctgggcctcttgagtcaaatgaaaccaagctcaccagtttcttacggggattaaatgggttcacagctgttcagtatttagaatagcaG ctgccatgtggtacccactcagaacattcattcttcttctctgatctacaaggacacagaggaaaacaggctcttggtgtcggaggatgctaggagacg gggctgcagaagacggaggcaGatgtgtggcacgcaggccaccgactcatgagcccagggcgggcatcacccatcagccaccgcatgctttgcc ctgaggcagagctcttctcaacatagcccctgcctggccacccagttgacagaggcagtgacagtgtcccccgtcctgcttgagtgaccgcccaggc ctatggggcgagtgctcctggaggccgggtcagtgccactggctctggctgtgcctccgtggggttttctcacagaagcttctgtggaacttccaggcag gcaccgtgggtccattcttggagggtcctaccctccgagaaggaaggcagaatggtggggaggcaaggatgggcgggagtcggccttgatcccctt ccaggcccagccacctgcctgcttcatccaggttgaaaaggcaggaattctatccagattaatttctggcactcagtcaaagagggctttgtgacctctt aagaggggatcaaagggattcagtggagaactgtgaaaggaggggctttccccagaggcagggggcccagcccactccaagactgcaggagg ggccctcagtgggaggtgcagctggtgagtccagcctggcagcctctttgtgcacgtgttcaatccaaatgggaaaccttttggggccaggctgccagt cccccgcgagggccacagtctccagcatctcccagccacagcccaagccccacagtgggtcatcagggaccccataactagtaaccagggctgc ttcagggattgaaactaacaagtggcagagggccgggagcattgggaaagagagctcatgtctcgcaggctttcgttacagtagagggagagaaa aacaattactaggcacctactagggtcgggagctctgctggggacttctcaaaatttggttaggcctgtcttgaagcaggagctgaggaagcagaga ggcacgtccaggatcacacagctagagacaggcagggctgtgaattgaacccaggggacaggaggaggatgggccttttggcctcttccgttgga gcccacagagctgccactttgcccagctggagctatctttggaagagacacaggacgttttcgaaataaacttctcattgaaggataaaatacatctag aaaagggtacaaatcaaaaagagttaccattcacctgggcccctcctccccaccatgggcagccactgctatcctgacttctagcagcacaggtgag ctttgcatatacttgaactttatctaaatggactcagacaccctgaactcttttgagactggcttcttatgatttgtctgtgttgtgtgtagcagcagtttgtctattc actttgctgggtggtgttctgttgtctggttagactctgttaacttgttcattctgtggataggtctttccagtttggggctgttacgaatagaccattgtaaacact ctagtgtacatcttttggtgaatgtgtgtccacagtcctgttgcgtatatgcctgggagctgaattatcattGgttgatgctgccctgcagttttgcaaagtggtt gcaccagtgtatacttgcaccagcagtgtgcaagagccctaagacacagagcatttaaaaactggcacttacgaagctttttaaaataccgaaaagg acaaagagaactaagaaaattcccactatccctaaatctctcttaacttcttttaaattgtaaaaaaatcaagctattacctacatgtgacaaaatgtgcat gccctaactgttgagtgtgagggagttctgactgctgtactcacctgagtaaccaccacctggatctccgtcacccagaagatctcctcgcgcccctttc cagccagttccttgtcctgccagatatcccctgcgaacatttaacaaaaataaaatgcacgtacataggtggtagtcctaaaaagtatagaaaggtata aaatgaaaagttggcctctactccttcaagtccattttcGcctaggcagtcactgttagcagctgcacggggcttctcagaaagtgcttatgaatattccttt gtaaacaccacgcagactttatcatccacgcggttccgttccatgctccttaatatatgtcgcagcagtgtctgcagtagcacacaaatccacaccatttt cttttGtagtttcatagtcttcccttcaggcagagtttaaggtggatggaactttagatcctttaggaaaatgctgtcatccacatagggagactgagtttctg acaggaaggagaggtttattgagcatctactatccacaggccagaggcagtacaaggcggtttgctgcccaggcctcgcagccccccaacacgga agcctgtaagcacactccagggaccagggtggagtgagctgcccctggctacagagctgggaggtggaggtcctaggtttgcaccatgtgcctggg tcaccgagccttcccttgcactcccctgtccctggccagggcttcctcaactctacataagggccagccttgggctttgggacattcaagacaccccca cccGcaccttctgggtaaaggtctttcctgagcctcagaaatgacgcattacagtggcttcccaaactgcgaaggaagaagtggcgtttgtgggttgtc atcgtttctttgggcaaggaaggggggacccgagcgttcgtgtgtcatccagcgcaggGtttgatgaggctgatgagtcatggagccatacaaggaa gtttttcatgtaaacggtttgtgggtgaacttgttttttgccctttaaggcagaattttgtttttctttttctcgccctttaaagacaagtttttaaaacgtaaatgaga ggcagcgtcttgatgagcaagatcttttgttctgcaggcgtctgcagtgtgtctctttcacagccagtggtgggcagtggaggcccctgagctgggttgct gatctgGacttggggcacaccttggccaggtgtccagcctggaagagggaggtggcctgccattcttttgttggcctccagggctcccacctgctggcct gttggctcggagatgaggGcaaacagagactttaaaaagagcagtgcttgtccccacagaggaattaggcGcttgcttcaccgagggatcatcaga aaatacccagcgggacagcGggctaactctggaagggaaggtgtttgggagagaggataattgaccgggagatgatgcagaacgactagggcc ctgagggctgttgcccacattctgctGgccggagcacGctggtgcactttcagaaccaacagactgttttgcagaaagccttgagagggacagagac cccctttcagagaaactgaggccactcctaatggagcttgctggGacgtggcagcagaaggccagggtggtttgtttccagcgggggctggcacatg cttggaccattccctttggaaaactgggctgaacctgacctctgtccaggagtacaaggaccttagaaagcacaccccagaggtcggggccagcct gacaccggctggaggcaggaacagactGaggcagaccattcatcatgtctgttgacttttgagacttttgttaaagtctgcaaccaatcttGcatccaag agggtccttatcatcccaggcctcctggcactgcagaccGagggattttgaaGcggtagctGagtggttttGagagtgaagtcccaagaGtagcagtat ctgcatcacctgggaactctctagaaatgccagtcttcagtttcacaaactctgaggtggcaggatgagagcagcaaaGtattttaacataccctccgg gtgactgtgatgcaccccagcgtttgagaaccactgcagtagtgtgaagaaaggggaaagaacaataaacatctattgagtgcctactgttttccatct actttattttcattattttctttaggctgcacagtgtccctgggttttatatctccattgtatgaacacgagtctgactctcagattaaccttGtcatgcatGcaagct ggaattcaaacccagagtctgctgcctccttctgtaaccatttcaccttcttactgggtttctcatagcctgagatcaagcatggatgactaaacgtgtccat agctttcgggttactctgccagaatcccctctgtttgtgcaggtcacttagaattcactgtggtgaacaccattgaactcactcctaggacgctgagGttctc tgggtgagtagagtctgccgcacgagtgtctgaggagccgcctccccagggagggcaggagtgcgccttctcctatattcaagcatgacagcattac ctggcttgaaactcacattagagacttactgaacattaatttattaaagaacaggatccttctccaggattctcataagttaaagccctttgtagtaggcgc cggtgactcccacccagaggatgcagctgggaaggatggaggcttccaaacaaagccatgaacagatcagatgtcctttgaagtgctgcaagcac tagataaagttcttagtgaaataaacaacagaggcccctgttgagatgctaccgtcttgaggcctggcaagggaaatccttatttgggatagagagagt tccctttatcaggcccaaaggaaacagagcctgtggtgtecctcactgtatttcggaagggctaggaaactcgcctggggctgcccgcctcccacacc acagaggaagagcaggctctggtacagtatttgcatttttttatttatttggtgggttgcaattaagcagcgttgtttcctgaaatgccctgaaaatgccacct tatattaatgattaataagaggtgttccccacccGcaccccgtagtctttaatgttgagtgcaaattgctttttcgctctgggtggccttggtcaagagggga gggccaattactgaggttcagaaggccaagctggtggccctgtcagaaagaccctcaggagggttggcacacaggacagagtcagggggaagg atttggtcggcttcattttaattttttaaaggtatatcctacctctgcttaatgaccGttgaagtggcttagaaaagcacacagactgggaaaatcgatacga attgatctggagtgacacccaccaggtgttaggagggaaaagccagatgcagacataagtattatgcagtgccatttgtgtaaaatgaaatgaggac cccacaaaaGctgtctgtatcgtgttggtgcaaaagtaattgcagtttttgccgttgaaagtctgctgccagacaaatatatatttgtatttgattatGcgtga ccatggagaaagagatgaaatgatagacgtcaagcgtctgcaaacgatctggcccagcacctgtttttataaataaggagttttcagggtggcgggg acagctctgcccatttgggggagggggggacagctctgcccattcctgctgtggcattaagctggtgacaacagaggtggcatgacccacaaagcct ggactattattatttggctcttaggaaaatggtttgtggaccccgatatataacatagtctcaaattttcggggtttacatggtgagcatggagttagcatgg attcagggggtggcgggagggagggccgtggtaaggttaaaaagaagaaagccagcatgtatgatgcagctgaaacttaggtgcagttttaaattg ggctggttgtgtgtttgtgtgtgtgagtgtgtgtgtaactgggttgtgggtgtgtgtgtgcaccatgatacaggtgtgcgggccatgagccttccatgctgga gttcttgtcctctgtatgaatttttcaaagaacatgcacttgaaaaatcggattatccatctactagaccactgaaaagtcaaaagtagtaagatctcagat gccttccagttctctttaagaatatgggattctggcccggtgtggtggctcgtgcctgtaatcGcagcactttgggaggctgaggcaggtggctcaGctga ggtcaggagttcaagaccagcctggtcaatgtggtgaagccccatctctactaataatacaaattagctaggcgtggtggcaggcgcccgtaatccc agctactagggaggctgaggcatgagaatcgcttgaacccagggggcagaggttgcagtgagccaagattgcgccactgcattccagcctgggtta cagagtgaaacttcgtctcaaaaaaaaaaaaaaaaaaaaagtatggcattctgactaatttaagaatcctggggaaagatacaatatcaccgtcat gattccaatttctgaaatctttggagagttttttcctttatttctctttaattaaatgcacaatgcatgaacggcttcctgcaataatttgaaacattgcagataaa gctgagccctacccgttggtcctcccccgagccacttccgtctccaaagaagacagctgtcaccagccggacttggtccccaccccccaccccctga agccccgtgaattagatcatatatatgtgtatgtcaacatagattatgcatgtatttgctactgtacttaacagcatgttgtgcaggtggaatccacggcag atcttgtaaccctccttccttctttttaactgctgtttgctgttgcactgtgggggccacagtgtaagcacttctctattgatggacatttagggggtttctggtca ccttttttattttttttgagacagagtttcgctcttgttgcGcatgctggagtgcagtggcacaatcttggctcactgcaacctctgcctcctgggttcaagcattt ctcctgccccagcctcccaagtagctgggattacaggtgcgtgccaccatgcccagctaatttttttgtatttttagtagagacggggtttcatcatgttggc caggctggtcttgaactgctgacctcaggtgatacacctgcctcggccacctgaagtgctgggattacaggtgtgagccacggtgcccagctggtcac ctttattttttctaagacattaactgtctttagtcagtgtcctactgaactcaataggtgtcatttatcaagcctgaaatgtgacatttaattctcccaatagctcc aggatgcaaatgctactattatccccattttacagatgaggaaactaaggttcagagaggtgatgtagtttgcctaaggctgcacagctcataagaagc ggaaaagaaattcaagtgtagatctgcccgactctccgtttgtgatgatgcacacatctgcgagcaaaaacatggcttgcttgagcctctgagctccca ggagtgtgcaggctggtgggggaggcagctggcccataggtcgtagagtgagcaaagagtgatgagggtagtaagttggcatgctgagcatgggg ctgggacctgccagcctccctggcgcaacagaaattcatttctcatggttctagaggccaggaagtccaccatcaaggtagattggtgagggctcgct ccctgcgtcacagagggtgccttctcgctgtgtctcacatgggaaggggtgagggagctcccccaagcctcttttctaagggcactgatcccattggtg agggctccaccctcatgaactaatcacccccacgaggccccacctcctaacaccccccccactggggattaggtttcaataatgaattttttgaagata GaaacattcagagcttagcaGttggcttgtggcGccctcaGtccggtgtctgcctccatggtcacatggcctgcgcGtcctctgtctctcctttgtatacttcct ggggatactGgtcactggattcaggacccaccagataatcGagcgtgatctccccatctGaagatcccaaacgtgggatgttgcattcacagatggca ggggttgatgtggacataccttctttggggccaccagtcacctcatgacccaggcaggagtttgcctctcttagtgaatgtgtctccgggcacagccctc CGCccagagcatcttgacaca ggaatgagcagaagaaaatcccaGagctcttggcccacccccacctgcacgggaGtctctgaggggatggtgGctgggatttgattaaggaaccct gagaaactggtcgtatccttatcaaggccagagcataacacgcGcgaggcgacgctccttattgtcccttctgtcacctctcatccctccccttgtcccttt cctctcccccctctcccttctccttggagaagaacccggcagcttctgcctgcacctgagaatgttttcccctctttccctctttctatagcctgttcaaaatctt aacttaaaacctgctgaactgggtgttcctgccccagttcagcctcctgtgggaatgagggaggtgcctcctgtccgcacagcctctggtcagcctgag agcagggaatccaggaggacaggaggggcgggcaggctgtgttgagttttagaattctgaaagaggggcgcctgttctagtccatgaggaaatgc acttctccaggcccaccGcacacccggcccacccgtgcaggctgtttttccactgcactcagttttcctggagaaacagcccccgccgggattaggac cgtgtgaagatcagagagcctttccagaatgccgagggagagtccaggattgttcctgtgtgtgtggctcagtcccttcaaggaccggagctcaggac cagggggtgaccctgagccagaatcctggttcctacagggccggctgtgacctggagtgggttaccttttcctctgtgtgttgtggtcttcaagtctgtaga atgggggtcgcacctgttaaccccggctgcaGcacattcagatcacctggagatcttaaatattctcttgtttagttcggtgaaatatgcatgaggcatcat ttgaaccaggtttaggtggcagttcagtggttcattcacgttgccgtgctgctgtcaccaccatccgtctccagaactttctcctcttcccaaatggaaactct gtccccattaccccctcccccagcccctggcatccaccattctgctttcggtctctaagaatttgtctactctagggacctcatatgcgtggaatcacacaa gatttggccttttgtggctgccttatctcagcctaatgtccccaaggttcattcatagtgtggcctgcgtcaggatttccttcctttttaagacagaataatgctg cagtgaatgggtagaccacaccttatgtctctctttatccattggtggacctgggttgcttctgccttttggctgttacgaatgacgctgctgtgaacatgggt gtgcaaatgcacttttaaatataccggcgctcaaaaaagtcctgatgcataggttctgcctgcccccaacaccagtctgatgggattgtcctgaggttgg actccgttattggaattctaagccccttgggtggttttaatgtgtagccagggtcaagaaccctgcctgatagagtcatttggggcacacctcagcacag ggcccagtacataggaagcccggggatgttagctggtgtgatggtggctgctggtgtcggctgatgtacagctttgtgtgagaggacagcttggggcc ggaatcctCGGGGatggctGctGtttgccagggaccctgtgcgagGcccatgctgacgtccctacccgaattctcctggaagttcctcctgtagcctcctg ggtccccaggtggctccctctgacctcactgatgatgcaggtgcccaggtgtgccgtttctgacgcagggcagggccagggcttatgcaatcgggtaa tgggctggaggcgggccttagggtggaagtcagtgtttctgtcccctgctgcagcaagagcaggataggacatcaggcccccccccGcccaattccc cagggaaagaaaacccaaccaattccaaacccagctcccactttctcaaccacagttgcagagggccctgctgccttctgtgaaatgatggggctg gaGggctcagctcgagtcaccgcagtaagatggcagactgactgggaccaggGgtcctggggtGagtccttgGttgctccttacagctgtGtgggcttc caacagctgctatgacaaatttccgtaaactgtgttgcttaaaacaacagaaatttgttctcacacaattctggggccagatgtccaaaatcaaggtgtc agcagggccacattgcttctgagactctaggggagggccttttccttgcctcacccagcttctgatggtgtccggctatccttgatgcgccttggcatccag gctctgcctccatacgtggaggtctctctggagcatgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtctctctctctctccacatggcctttttataacgacgcca gtcactggatttagggccaactctaatcGagtatgacctcatGttaattatatctgcgaagacccGatttGcaaagaaggtcatagtcacagataGcggg cttaggacttggacatatgttttgggcagacacagtccaacccacaacaccagctgtgtgacctgggcaaggtgtgagcccctcctctcGtctgcagca cgtccaccatgaaatgaggcttgtgggtgagaaccttgcttcttagagggctcaggaacatctgtgtcacctggaagctgcttaatgcagattcccagg cctcgcccagctctgctgagctggaatctgcatggtaaccagacccccaggcaattcctgtgcacacgaatgagagttgcagggtaggtgaaaggat ttggtgcagggcGtggcctaaagcagcacctaaGgGatgttagGcttGagtgcGattttGattctGGGcactgGctgttGtacGtgcaaGaaacaccgag agcaccttccctgggtggctgcagtcaccatccaacacatcggaggaacagatgagatgtcatcGCtgctcccaagcagctcctagctcagcgagg aaaacagctacatacaattttttttttaatgtgctcaaacagcatctgcgtgatgattggattttgcccacggtgcagctggcctgaagagccaggtagga tgtggtactcagctgggagcctgacaccaaggccagcttatctccttgccagccaggcacgtggttacctaggcaaccagccgatgccgcagagac agtggagcaggacacGcgcGtgagttGccgGtgtttcGctggaagcggcattgagcacaggaggccaccaccggtgggcatttaggcgttttcccctc ttgcaaacaaattgcccatctccccaggagctggcttttcaggcaggtgtccactgggcacccagctgcaccagcctgcaactgcctttgggaaaccg aggaggcgaggctcaactctccgatttgaaggcagcagaatcattgatcaaggcatagaggtgctcaggtttgcctctcggagtggcatgatggtca ggtgctcaggatccagagctagacctggatcccaattctgcctagctcttagtagctgcatgacttacctcactcagcctcgatgttctcatctgtaaaatg ggacttacattataGcactcaGCtcatttagtggatgggatgatttaaaatgtatttatacaaagtgcttcgcacaggacctggcctatggagtgcccttca gaagcgatggcttttccgctgtcttgtcactcgtcattcatcagaacccagtgtgcgtgcttgctgttcttggaaaatgtcagcccttgatatgtagtagccat tatgactgtaatgagtagtttggttagaatgttctgtgccctgtctcacccttcagccagactgggagtgtgcaggggctggtttgtctcatctctgtatcatttc ccccactccctgcccctccatagagacagtgccccactcagagtaggcgtccctccacccaccttgaaaacatgagtcctgaagggtaagcattgatt aattGatGaatgaattagttggaGGagcaggtaacagagttcagtaattgtgtggggtaaattggggtcccctaaaagaccccttacaccctgtgGtgtc ctgtggcaaaatttaaactgattcagtgcagttgaggcacggggacagggcaaaaagcaacaatatatgtgcatagcagcactattcatgatagcct acggtggagacaacccaagagttcatcagcggattaacaaagaaattgcagtgtatctgccgggcgcggtggctctcctgaggtcaggagttcgag accagcctggtcaacatggcgaaaccctgtctctactaaaaatataaaacttagccaggcgtggtggGgggcgcctgtagtcccagctactcgggag gcggaggGaggagaatcgcttgaaccGgggaggcggagtttgcaatgagttgagatcgcaccactgcactccagcctgggtaacagagtgagact ccatctcgcaaaaaaaagaaagaaagaaattgcagcgtatccatgcagtggactgttagtcatggaagggggtgaagcaaagctgccacagccg gatgaaccttgaggacggtatgctaagtggacagaaggccacattgtgtatgatttatatgcagtggaagacacatgttaacccacaacagttttggca gacacagttccacccacaacacaagctatgtgacctgcgcaaggtatgaacctctcctctcctctgtaacacgtccacctcgtggaggagaggaagt gaggcatgtgggtgagaaccttgctgcttagagggctcaaggacatctgtctcacctggaagctgctgaatgcagattcccaggcctcactgtggtca caaaaggacacatagtgtatgattccatttatatgcaatgttcagaataggggaatccaggaacagaaagtggattggtagttgcccaggggctggg ggagagtacaataggaagtaacagcttaaaagggtttccttggaagtgatggagaagtgttggaaatagtggtggtggttacacaaGactgtgctaa acgccgctgaagtgttcactgtaaatgggtacatggtggccgggcgcagtggctcacacctgtaatcctagcactttaggaggccaaggcgggcag atcatctgaggtcaggagttcgagaccagcctggccaacatggtgtgaaaccccatctctactaaaaatacaaaaattagccgggtgtggtggtggg cgcctataatcccagctgctgggaaggctgaggcaggagaatcacttgaacccagaaggcaaaggttgcagtgagccgaggtcatgccactgcct gggtgacagagcgagactctgtctcaataagtaagtaaataaataaataaataaggttaatggttaattttatggtgtgtggattttacctcaatgaagta aatctatatgtatgtgtatatagtgatggcagccccctggtgcctcagacagcctagtttctcaggccagagtgatgggctgtgactggtaaagcccctgt gtgattcccggaggcactagggttgtccctaccaagcctggggcaagaaaggaatcccagtcagagagaaaaaaaatagtgttcagtctaatccca gaagcaccgttgacGctatagcGctgacctgtaatgaaaacgaacgaaacatgcatttacaatatttctttaaaaatgagattttgggggtctcactttcta gttaagttgagtgtcttctcgttattttatactccacaattagatcacagatgccctccagtcatggtggtgctggtgcccatgtatttcactggaaatgtgcac agataatcgggacagtgttgcctccttccctggaaaattgtagccaaagcaccgaggctgattttgtgacatggattgtgtgggctagcaggcatgggg aataaggccagggggctgtgtttgacccagggtgtctctgtggggagtgcaccagcagggagctgagaggttatgagcgggttttaggttgatgttga agacttggcggccaaaagggcagtttgggggtaacacccatgggacagttatgaggcctgcattatatatgaaggtaatgtgacagtctctgatgctc accggattgaagggaagctattctggaggactcaagaaggccaaaaatgctgcctcccaagtgtccagtcctcccggaagccatggcttgctggag atagcaaattatttcctacacacttagcatctgcagccatagtgagtcttgaatcagggaagccagggaagataaccagccagccattgtccccgggt gtgcaaggcacaagtggggacattgcaccttggtagaccttttaagaaaattccaaggcagggtcccagtgagatgggggcttggagaggggggtc tcccatgggaggaggtaggcaagggccctttcctcgggccgaacgcagtgccacacacatactagacctcagcatcgatgggtagaggcaaacat gcatgctcctgggcccgtggggacgtgatgacagggacaccaagactttcggatagcactgcccgacggagcattctgcgatgatgaaaatgttctc tgtctgcaccactatagtcaccactagacacagctggctaccgagtaactgtaatgttacgatgtgatcaagatgctggatttgtagttgtatttcattttaat gaagttcagtgtgcgtagccacctggggctggtagcttctggactaggcagctccgctgtaggacctgcactggaaaaagttttcaaagccgggctgg gtcctccctggctcatatttccctgtggggtcctcctccactctgcagtgccatgggcgcgcccgtgcagcgtcctctcttcacgacaggtggtggggagc atgcgtgcttgggtgtgtacgcgcgcgagccccagaggctgcggcagcagcagagcagcagagcagcagcccctgcctggcgcgacgtgcttcc agtgcattctgagtcactcctctcctggcaaggggcacattcctgctgacgacttgtctcccgtggaggagcaacaggctctgctttccctggcctgaga accctggcatatgtgcttgcctctgctgacagttgccagagcgatggcaagtgttgcccaggtaacgtcccttccttgacaagcagagagggtgagga cagcgctggagtggctgactctgccagacgggaagcaggaggctctgcctgctgtctctgcttgccgctggctggtggggcttgggctcggatgtggg gagccctcctgagttctacctccctggactactcctttacagaacttggtaggtgaaaacaatcagagctgctgtttagccaggaactgagctaagtgttt tatatattatGtcatgaaatagtcacagcaagcctttgacagtagttattcttatcctgatttgcagacaaggaaactggtgcaagtaatagactgtaagttt catgagcaccggggcttgtctgctttgttcaccatggttatccttagtacttaacatagtgcttggcacgtcatagtagatcttcatgggatgattggatgga agggtgaatagatcgatgagtgagtgatggaagtatggatggtagatgggtgatgaatggatgatgaggtgggtgaaggatggatgggtgggtgggt ggatagttgggtgggtggatagttgagagggtaggtgaatggttggatggataagtagatggatgaatgaatgagtggatggatiaatggatggatgg gtgggcgggtgggtggatggatggatggatggatggatggatgggtgggtggttgggcagatggatggatgtgtgggtgaatggtaggtgggtgagt agatgatggatgggtggatggatgaagtagagcttagatttgatctggagtctgctcgtgaagcctatacgcttcgccactgagccatactacctttggttt tgtctgatgactacctccctaggatagcatttttaaaaaatagcattattgaaatggaatccacataccataaaattcacccactgtgagtacacaattca gtgatcttagtaaatttataaagttgtacagtcatcaccacaattcagttttagagcatttccaccatcttgaaagatgccctcatgcttgtttgcagtctcattc ctgttctgtgccccaggcaatgaatgttccactttctgtctctgtgaaattgcctttctagacatttcacataagagaaatcatacactatgtctttcttatctggc ttctttcccttagtgtagtggttatgagttgcatccgtcttgtagcatgtgggtaattcaatcctttttattgccaaatactgtttggttgaatggctataccacatct tgtttatccattcatcagttgatgaatttaagttgttlctgtgaagaatgctgctatggacattcttgggcatgtctttggagtttgtttctctttctcttgggtagatttc taggaacagaattgctgggtcatatgataaatttatgtataatgttttaagaaactttcaaacaattttccaaggtggctgtaccagtttaccttcccaccag caacacacaagattcccagtttctccacacctttgccaacacttggcgttgtctgtcattttctattacagccatcctcgtaggacgaagtcgtatctctttatg gttttagcttgcgttttcccgagggctaatgacgttgagcatcttctttgcatgcttactcctaggctggaatttgacttttaaagccagaccttggcaaactgtt ttctacaaagggccagatagcaaatatttggggctttgtgggccacattggatttctgttgcatattctgtgtttattttccgtcacaactcctacagtttgtgag accattcttggtctcatcgaacaaaaacaggcagggggctgggtttcaccgcatgctatagttcaGcaaccctgctctaagtcagcccctttctgtgaaa acaccaggtcgtgtgcccagccacagaacagttccaaggcccctgtgtactccccacttcagaagaatccagtggcctgtggggtccatgctagaca aaccaccaggccacccaccccacctggcaaagcgcactcagcaggaagaccatattgcaaagctgagggccagcctccagggagcctggagc agggattccggaggcgtccctatcccagctccaccatgattcatcacctgatgagctcatcagagttcctgggatgaggcatgctaatttgtcacctagg gaggagggacagggccctgttgatcctggacaggcctccctcatccctgtggccaccctgacctggggctcagagcctcttctgggaacaggggcct gcctgcagcccgcacccacaacgccgtagcccaccctccccccgcacccgcagagccgtagcccaccctccccccgcacGcgcagagccgtag GccaccctccccccacacccgcagagGcgtagcGGacGCtGCGCccgcacccgcagagccgtagcccaccctccccctgctgcttccaccgccttc tggttacctggcctccactctcagagGcttgtggatcttgtttctggatcttgtccttgtgtcaccaagcattcttgacacttcttcaggatctcttggcaaatctg atatcctcttcacccgaccatcgtggccctcactgatgtgatggaaagagctttgcagtggccagagccagttttcattcctgaattgtccctttctagctgc ttgactctgggcaagtctcttgacGtctcggggccatgataggcttctgtgcacagagaacaccaacaatcctctggcagaagctgcagctggccacc ccctcagcatcgcgtgagggctgccagctgtgcaccatgaacacctgtgaccctgcagagcgcatgcttttttctggctgtgggatcaGtttggcctggg cacacggcagtcagaagccctgaagagttggccaggcgcagtggctgccgcctgtaatCGcagcactttgggaggccgaggcgggtggatcacgt gagatcaggagttcaagaccagcctggccaacatggtgaagcccatctctactaaaaatacaaaaattagctgggcatggtggtgcacacctgtaat cccagcttcttgggaggctgaggcaggagaatcacttgaacctgggaggtggagattatagtgagctgagatctcaccactacactccagcttgagtg acagagcaagactctgtctcagaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaagccctgaagagtttagggagctaatggacaaat ggccagctccctcactctttaggaacgtcaactctgagtgtgatctgcactgtccGctagagcccccagcaggagtgagccctcattgcctatatcatgt gcttgacagtgccctgtttattgactgtcttctcttgcccgtctcacttccccactctccccaccagtatttcctgctgttccctctcagatcagtaagccatttgc actcagtcccttgtctcagggtcctccctatgacaagcccccaactcatgggatactgtgaggattgagtgggataaagctcataagagctagcactgt gctggcacatggtatgtcctcatgaaattttagcccttggtacaagccctgggatcttctggctctgaatacagcctctgcagactctcccatggatgcctg tgaggcaagggcttgggccctcccgggaaagctgttgtcctccccgctccaaggaggggagctgtggatgagctgaggctgggtgtaccgaccccg agggctcgtgtctgaaactgcgttggtgccagcgttgcccactgggccctgctatgcctcagactggttgcctctgcatcttgagtggcatctgtgtgtgga gaacaggagattgtactcatggccacccacctcagggctggttgtattttgcaagtttaaatgagacttcgctggaatgatgttcaccaaatattaatggt ggctatttctgggttgtgggatttttgaggccttttaaaacttatGctcttctttgtgcttttcagtaGagtttagattttttgcaatgagcatgGatcatctttGgcaa aagaatgaagtcattaatctttcaaaagtaaataatgtgcagctgatcagaagagtccacttagagcccagactccatgcaaatgtaagacacgggt gtggatcgctgtggtttgctttggggcttgatatagggtggattttgtgagatcatttcatggtcttttaaaaattaaacaattctctgggtacaaactaaaacc acagactctgaggctcaaaggagcattcatcctctggagcgggtagggttcttgcttcagacatgttgggttttgcacagatatttcatcgtgctattcagg cagcgtgtcctgctcacagcactaggacagggcggctttggttgacagtaactaggaaggaggctggttatggttccagagacgcctcagtggactg ggtgcgtctcatcgttaatgaagttcagccagtagtcactgtcaccatcgtcaacatcaactgcatgtttactcttcactgtacactcacccccgacaactt gtcacgcgtttcttcctgtcctcgtagggtctccaatggctggcaagtgaatgttcctggtctttcccctcccgctccctggggaatgctgggctgccctggc ctcctctgctctgctgggcctatgagaagagctgatctctttctaattcttgatgtgcaatgggtgaatgggcaaagaatagtaagaccaggtgctggaa ggaggaaagaaaggtgggcaggtgggtagatgaaagaactagagagaaggagaaagaaggagcagagagaggagaagggagagatgac gggaaagacttggggtgatgggcggggggaatgaaaaccgtctttggtgtgagttcatgggggcgacaccagtggcaatgagtatatcagaggcc ccagaaaatcatggggtgcgggaaaataatggagaggaggaagatgggatgccgtattggcctaggttttacgtttcatctccttcagtttttcaagag acagattcagtctcagcgttcctttttgtgactcttggctgatttatctggacttgacttttgaatgcggctccatagagtggaGcacatgggtccaggatggg tcagggttacagattgaaagaggtgccggtattttccatcctgacttacagaacaggaccctaaggctcagaaggtgaaagttttctaggaagaacca gatctttccgactcaggtccacctcccgtcccaccagtgtgcctcaccgacagaagtaaccgttccacttggcatggaatgtgtccctcagatacttcctt gatagcggtgggtcccttgaccacttgataattcctagctcagaaactcagcggtcagggaggctctggcagcttctaagtttctgtttgagccttagcag ttcagcaagggaccctcctctcccccctcctctttctgactttggctcagagattgtgacatgtcaccccagctggctgctggcatggtaacactaaaatta ggctctccctaaggagcagagcacttaatgaaggagttcatccagttagaaagtctGtcaagcaggccgggtgcatggggcaggcagctgcaaag gcgggagcccgggcgggggtggagggagtgcttggcccagacctccgccttccgagggcctccgtttccatgatgtcagagaggcggaactaact ctgcctcaaatccagggaggcagcagcccctgtCGcaaccgctctctggcttcgacacagcgGccaagcaaaggtgagagcactcttgtcttcctca ccaggtggatgcggagggcagcgctggatttcGcgggggagcattccaggtttagtccctacctggccggagtctaattcctggccttaatGctgtctgt catgttccctagctgactacctgtcttcaagcgacctcttgggattgacataggcggaaacagtgccttcaactcagagaaagcccctttgtggactgac cattcccactcttactgcgcttgaatccttgggaagtgagtttggcagaagatacgatctaaaagagaagtctcccccttttctttttgaagtcattggaaac tgtgtggagacagtatagtatggtggtgagggcactggcttgagagcccgagcacatgtttctgtctcagctctgccaactctagagccctgggcagatt ttctaacctcttgtgtacctcggtttcttcatcGttttagcaaaaacaaaaacaaaaaaaGaggaaaaaagaaaaaggtaatctatcaaggattatcatc agggtgaagtgagcctgtgtgggaaatgagtctagtgtcaggaggcctggctgcaaatgcaccccgtgactttggatgagacccttcctctctcggggt gtcagtttCGttataaacggggactgggccaagttgtcagtttctcagggccctttacaccctaaGccatctgattctttgattgtcttccatcttctgccttcctt acgtgagtaacatgttgctgtctctttatctctttcaaccagAAAAAGATTTACAAATAT AAGAAAGTGCTGAGTAACCCAAGC CGCTGGGAAGTTGTCTTGAAAGAGATCCGGACCCTGGTGGACATGGCCCTGACATCCCCCCTGCAG GATGACTCCATCAACCAGGCCCCACTGGAAATCGTCTCGAAACTGCTCTCAGAGgtaaaacccctcccctgga cccctttacattgtttgcctttccctccaccgatcaccggctccatgccaagcagcaggcgcaggcagagctccgtgtgggctgtgttgttgccctgctgc cgaaggaggtgagcagttgcccacccagccgtgtgtgggagttgggagagggaggcttgccccagctgcttgcagctgtgctgtctggggattgtag gcaccgaagaggaggtgttgccccgtgcagtgagagccagtagtcccatccccatctctgtcttcccctagcagtggcccacatgagctccaggggt ccagggggattcagctttctgccctcgtcaccccacaaagcctgtagatgtgctctgtttaatttaaaGaccattttaaaaatcaggagatttcacagtaca gtgggaatttccaggttctctttaaaaacaatcagaaaatccagccgcggtttgcagctggtgctacctgatgccacccgtcggctgggcctcctgtgcc atctgctttgctggcctcctcgcatattgaatgtgtgctttgtgccaggcaccatctgggaattcaagcaaagacaagccccctacGcccctggagcttgt gtcccggcaggggagacaggcagtgaacaatgaaactcatcagcgagtctgtcccgctgttggttaggcagaaggcgcttcggaaatgtgcttctttc tgttttctgtttcaggtgctattctaggcgctttacaaatattaatactgctctcgtttatttgctcacctggccctctgggaacactggagttgatgactcctgatt taaactgtgcaGagcGaccagactgatgcttctgtccGCctcccctgacagtgatacccccggtcctgagtctcccccgtcaagctcccatgcaagtgc ctggctgcctggagccctcccctttctctgcaggcccacactggccgctgcccgtgggacggggcctggcaccggccctccgtgtctgtggagtagag aaggtccctcactccaggaggaggcgaggtgggaggtagaaagtaggtggcagtgacagtctcaggcagagggacagaggtcagaggtgttgtc ctcagttgggagaccagcatcgttccaagaggagtaaaaacccaggctgggaaatgaatcacagagtggctggaattctgagcctgggtgctggat gtccagctccaggtgcagacttctcatctggagaaggggtccctgctcacctgtagtaagccaggcaggtgccaggtgccacccaatctggagtgca gtggcgtgacggctcactgcaacctccgcctcctgggttcaagccgttctcctgccacagcctcccaagtagctgagattacaggcgtgcgccaccat gcccagctaatttttgtatttttagtagagacaaggtttcaccgtgttggccaggctggtcttgaactcctgacttcaaatggtccatctgccttggcctccca aagtgagacagcctctcttttaaaactcacattctctctgaaagatgggcctttctgtcttcacttcacagatgaggaaattgaggcccagtgatactgagt gacctgcccaactcacgtggcaagtttgtaatggagctagaagttccaccttagagttgccaagcgcttttgagaccaacttggccaccacttcagcgc caccaggctcaaGcacGaccacacGGttattaaatGagggcagtgGtgagggcagcagacgtgGcccattgcGggcctGgggcaagattttttttGGc ctctcagatgtgcttcaggtgaccgcatgactgttggccttcacatccctccttgggctttattattattattattattattaacaatggggtctcactgtgttgccc aggttggtctcaaactcctgggctcaagtgatcctcccaccttggcctcccaaagtgctgggattataggcatgagccaccaGacctaggaccagaca cctggctgagggtgcttcttgggctttaaagtaaaaatctcaaaggcagctgacccttaagtgctaggatggaggaataaagatatttaaagtaggaa aatggaagaagtttccatgtgctttgaagctactgtgtcaggcaaggagtcagcattactcaccctactttactgaagagagctgacatttagggacag agctgggactccagcccaggctgcctgacGcggcatccactcatgcatgctctgcagtggtcagtttgatggcGCttagacctccccagtttctcccaag gaccctgcaaggtaagtattaaaatgtatagaggagtaaccaggggtgctgagaggttaagtagcttacacagggccagtcagattaagtgttgggc caggaccctcgcccgggtctgcccagtgatgaagcttatgcccctgcaGatagatgtgagataaacccgggttggtagagactttctggcaagtatgt aactatggagatgaagagtgagaaaccgtgttgtagggtcggaaggaccttgtcctgccctcagtagctgggtggccttggacaagttgctaggccttt ctgtgcccagttgttttctgtaaattgggtctgagacgagtacctatttcacagaattgaagatgcgatcctctcatatgcataaagtgcttggcactgtgGct aacttgcaagggcctttgatacatggccacattttcattgtGataggagatgtctgtggtctgaaccGcgtaagcaccttcagccaggggtctggagcta gtagctggaaaaacaaacatctgccttcgacctccgtgccctgttttggggctgggttgtttGtctgttctgtttgcccaagttgtttgcaaggcctcctctgga gaggttccaggcatcaccagaccaaccagaaggtggaaggatctggagggagcaggcagaggggcatcgtggagggagctgctaaggacgc aaaacagttccgagaaagaactgtccgtccaccagcaaagcaaagctggctgtccGcaccctcccaggcctttgttgagttgcgtgtaaagtggccg cttagctcgagagtcaggtgttccctctaatgcagtggctattggtggacatgctctacGaggggtggaaaatggccctgggggagagaaggctccct gtagaatgcatgggctgtcctgtgactgggacaaaggaaatgatgtccgtggtcgccaaagccttcctggaaaggtgcgtgggtggcggcgaggga tggatgtgtcgagctgcccttggcagcccaaaataaggaactgcttcttggatgggtggtggagcactgtagctcagtggcaggaaatatagactttag agtaaggacagacgggttcatatectcactgcagcccctattaccctgcgcGtgctagtcactgcatcccgtcagtcttaggcagctgatcagtcaatgg gatagtagagaacctgtcataatcaaaagaaattggtggcatgagcaaaacaaagctcttacacagtgcctgaggcatagagagctcagcagtcat aaggagagaccaaggccaggcttctccccgaagctgaaaaatgactgatagttaataatctaccataaacaggctgctcaaac{ccactcatatcca ctaaagaaaaaaagcgtgttcagatccaaaaaacatcctttcacatgGctgcattctaggtatcttgggtccaacctcacctaggtcaggacgtctcatg gggaccggtagagactcatgttgttcattcagatgctgacctggcttcacggcctcccgcagccctcgggagccagcttattgggcaaaagcaaattc atagctcgcaagcttttcttttgccttggGttctgtaaacacattagatacccccatatgccttaagcctgtccaggtggtgggagccatggggctctgtcta gaaccagaacaatcgatcttgccaacactgttcaaatgagaggtctctttacaagcagccaatgtggctcttttaggaaatacgaattggcaccactgt gtgtecaccaaaacagacaagcaaagcagaacacaccacgaaactagcaagaaagaagggcgggcacttctgagttttcctgtgattccttgtttat ggcacagccgtctctttccttgticaagtacfcacagatggcggcacaggtcgagcatctctaatcgtgaaacctgaaatgctccaaagtccaaaacttt cttttttagagacagtctcgctctgtcgcccaggctggagtgtggtggcacaatctcagctcactgcagcctccgccttttggattcaaatgcttctcctgcct cagcctcccgagtagcgagtacGatgcccagataatttttgtattttttgtagagacggggtttcaGcatgttggcGaggGtgatcttgaacGcctggcctG aagcaatccacactcctcagGctcccaaagtgctgggattacaggcatgggagccaccatgcctggccaaaagtccgaaactttctgagcatcaac atgacactcaaaggaaacgttcattggagagtttcaggttttgcattGtcagactaggttgctcaactggttaagtataatgcagatattccaaaatttaaa aaaaaaaaatggaaatccaaaacacatgttcccaagcattttcagtaagggatgttGaacctgtaacagttaccaattatttaagaaaagtccagattg ggaaggaaacaggacccctaaaalttcagcaaatgtaatccattcaacctaattatgtttttgcaagtcagttgctagaatttgaattGagctaaaacatc tcgggcccactcacggaacttcatgttccttgggaacttagtttgagaagcactgaaatcatatacgtgttactcctaaaaggctgcctggcacagatta ggactcttgaaaggtctgtttctttacatacttattatgaacctgccttctggcttctaagcagtttGactttgacgagggccagatcctctcccaatagcctatt gaggttactggaagccctgttgaccgaagcaggaactgagtctcccctagactcgactcactcaaggtcacataactcaagccccgaaacaggga caagaactcagttctccctgccccaaaaccataccttctcccccttcccgaccttgcccctgagggtgttctgatotgtttaattaagaaaaaatgacagt gacagttggtctgtgacgctgaagatgtttcaaaaGtgtggatcttgaaatccaaatgctcgttttcttaattttcttttgttttgttttcctcctgctgtctccattca atGctttagAACACAAAGTTGACCACCCAGGAGCATGAAAAGATCATTGTGgtaagttGCtctGgaaGaGgctccctccac ccacctccgcctcctggagcctacaaccGttttcctggtttggggtaattctggcgcctgcgtaatccaccagcatctggccttgctccgttttgtcttttctag caagccggacgcacctccctGtgcctttgcatatttcagagccccagttgataggagcgggagtgtaattgtctgtctttgaggtttgtagcaaatgtatca taatcgcctcctccttcctgcgtctctgcctagggagttgaaggcaggagatggcagagcccgtataatttattcagaggcatcaccccaltagctgaaa ggtaaacgttctctttcttgccccaggacatgtetcccaattaatccacaaatagaacttggatttaattccctgtgatacataaagtgagatgctattttctg ggactctaccatgatgtaagcatttttggggtaaaatatcttcctgaatgacttttagctacgaaacctaactctcacttgagagaagaaagaaatgaaat tgcacctgctagatggtaagcaccatgctatgtatttgaattcacagataacctagtccctaaggagttcatcatetattgtaggaagacaaaagtgatc accgcaaaaaatagagacattgagtgcagagagtaagtagagtgataaactcccctgggaaaggagccagaaagcttcctagaggtagtgctatc tgagctgggttttgaaggatcaataggagttttccaggtggcaaaacgggataaaagcatcccagagagaagaaacaaaatgtgcaagagcaca aagatttaaagcaacgtagtgtgttctggaagcttcagcattgGtggagcataaagcataaggaaatgagaagcaggcggatgggagatgaaatag aagcaagaggcagagGcttttgtgcccaggaggggaccttggaactaacctgcctgggatgtctcctggctgcaaggtacagaacaagagcagca tcagtcactaggcccctcacgctcctctagccgaatcagggccttgggggacccactcagtcggccctggcaagcctagctgggtactgtatgcaca aaatgaggtgagccccaggcctttgattgtggagagtcaaggcagcagcttctgcctttgctgtcagGtccagtgtctggcacgtagtgggctctcagtg ggtgtttgctaacgctaacagtatagaggttttctccatgctttcacccggactgtccattgccttctcttgccagaacaggaggacaagtcaacctgggc acccccaatGactcaccaccacctttttctggcatagtattaattcatcaaftcatttaacgaactttgctgagcatgtgagtctgactatgtgccagacaca gatagagagctggacaagacttgaggcctgccattgaggactgaatgtgtgctgagagaacctggcagatcaacagataatacaaaaataacatg gccaagggctgaggtttgttctgggtgttagagggggtgcagaggataggtacttaacctctgtcagggagggtcctgggaggatgatgatggagga cttccaggaggaggtgaccaaggtgaatcttaaaggatagataggagaatgtcaggtaaacggagcaagctggggaaggcagttcaggcaggg ggacttacatgtgcaaaggcaaagtggtaagacgggGtgctgcagaaccaggagcaagcatgagagctggaaggaggtactgccttcctctccct gccagcaacacctgtgggtcccactgagtgcctggaagccctggatggaggacaagggcttgcattcaggacaagcctgggaaagaaattttgatc tgagaaatccaggctgcatttatccagctaatgtggctgaactgaacccttaattgggtcaggttgagGttcccggctGagcaggaatgcctgagaaca ggaaagaatttgatctgagggtctgaccctcacccctgcattttacagcctccccttccagcattcttttattactattgctgttgtcattattatgatgccttctg gagcctcctttcattGcaacagttacatcctcttatttgccctattggcaattagtcttctttggacatgcttggtagttttttatgcgctaattttfctacGatagcttg agttggttttattcattccattggccaggcagtagtaaccgttgttggtcatggaccaggagtccaaaccGGagctgtggtccggctcactatggaaggc gctcaccatggtggtgaagaacatgagctgaatctaggttcaagttcagaatcgagttcagacccagaccccagccatactagctgtgacagaacttt taattttacttaaaatctcattttgcaagtatttcttttttcttttttettttttttttttaaggGagagtctcactctgtcacccaggctagagtgGagtggcaggaactc ggctcactgcaactccgcctcctaagttcaagtgattctcGtgcctcagcctcccgagtagctgggattacaggggcgcacaccaccacacccagtta atftttgtatttttggtagagacggagtttccctatgttggccaggctggtctccaactcctgaGctcaagtgatctacctgccttggcctcccaaagtgctgg gattacaggcatgagccactgcgcccagccaattttgcaagtatttcatgagtatgagtatgttttcatcaggaaaagagtatttcatcccatcccagtgc cctctttagaaacaccttgttttcaggtggtgacaaacccacacagacagatacggttgtggatttttgggggattttttcttttctttttttttctgcttttaatatga atgatgtgatgcaggatgtgttgctctgcatttatttttttcacttcacaatatggGctggagattgttcgaagtctttccgtggctatctaccccacggttcctga tgcttgtttgttgtgtttcagGCAATCGCTCCTTTGCTGGAAAACAACCACCCACCACCAGATCTCTGTGAATTCTT TTGCAAGgtacgggattgctgagctggggctgtggctgcaggaagtaacctccctctgtgcgcataccagggattgggtttgcacagaaaggcG aaaaacctgggccccaccgtcttgggtcacggtcccagacacaggGggagagggcatgcccggcacccattcttagggctacacccacgtctctg ccagacaggfgacaaagagtcacaaggggaacatcttgcttttccttggaatcacttcccggctgtcttaggagacaggttgctgcagatttcctgggct catgacgtcagagctgggttattattagccaaggftcctctgcgcagtggctggcccacggtggggtgcggctgtggggctttccctgaacacgggag gcagcacggtgctccaggttagcttagaggagctgtggagcagggcatccgctgccgggcacccggcgccagccttgcagtgggattcacataggacatgtccagggcacatetttgtggctcaggccgaaccatcacacaaacctgttttgttctttgctgtgtggtttttttagtgtaataattttatgtccttggagag acatgttctcagcactcccctgtcataccGCtgctgccccgctcagctggtCGtcatccctccccgctcccattacGtgcctcctgccacggtcacccgctg tcctttggagaggcgtgggctgtgtccagcagtgggaccagcctgtggggtggaacagcaggcccctgggaggaaagggggctgtggtgcgcttg atttcccttgccgccccttcccggccccccaccGctcaccGcagggagtcctctgtgtatgtgtcaggggacgggagGtttgaaagggagacaagatt cagttgtcctcctggagtctgcctccctatGaggattccttttctaccaatccacacaccttctggtctgagtgcccagggtacGtgtGagggcctggaatg acccGcaccGccatccttaatgtgggcatgtgGaatgtgtgccccctggcccagggagtgaacacccgtgagtgtgtgtgtgtgtatacaggtgtggat acacacaggccccgggctoGtcaggacacaGaagggccttgtctgcctccgggactcatgggtatcatgcccccagaagagtggaattaaataacc cagtatcctgagagaacggccagctgctcctctgcctgtcacaacagatcacctcctccatctcctgtccaatttaacccaaacctgccccatgcttgcc tctcaagcttaggatttcacGcagatctcatgattctcaaagtctggttctagaacactggatatttgtfgtagaacaagatacacttgcGtcactgtgtttcct acctgaggcttcaGttgcctcactgtgtttcttacctcagcgttcctagtagcacagtttggaaagggatgaggtagaaaaaggtaccctttttggcattcttt gctgtaatcctgtgtgggtgtttcaaagagggccgtctgccttttggagggaggggggtcccagccatgtgggatgcttctttggctattttgcctctggga gttggagcccagagaggagagcttgaggggaccaaagcctcccgcgctgcgtccgctctgccaaactcctgccaaattccaagatctgaggaaag tttattcatcttgctttctcaggggagccctgatttctcttatcccaggtctagcatcctcatctgggggccgggtgggtgatacatgtgtgcaggacacgag ggaggggctgggccttgtcctcacagcctgtgaagggcttcctttccagtatgaaaaacaaaacaccgcgctggtgatgaattgggtctgcagactgc cacccgagtgctaaagccaccagttgaagagtcacagaattttcaacaccctggtggtcaaatgccaaagGcctcgtactatcatacccaatttccaa ggtctttcagaccaaaGatgcagaatcttagctttacagaagtctcattatatattaaataaggaccctgtcagaacgcctatgtgtaccatctgaaatagt ctcaagctttaaggtcaaaaccaaacaaaaagcaaacaaaagctctcatctcgtctacttttttaactccaaaaaaaaaaaaaaaattttaaggctat ggGactcgtaggtatftccccaaatgagttcaacacacctgtccacacaaacatctacatgccgacgttacagcagGtgtattcatgactaGcagaac gtggaagcacccaaaatgccttccagtgggtgaatggataaataaactgtgtaacaatgcagtgttattcagcactaaaaaaaaaaacgagctagc agaccacgaagagaaagggggagctttaaatgcatattagtaagtgagaggagcccatctgaaaaggctgcacactgcacgattccaactacag gacattctgaaaaaagcaaaactatggagaaagtaaaatgatcggtggttgccaggggttggggagagggagggacgaattggctgagcacaga ggatttttagggcgtgaaacgacttcctatgatattacattggtggctccaggacattagacatttgtctaaacacGcagagcgcacagGaccaagagt gaaccctaaagtcaactgtggactctgggtaacaatgatgtgtcagtgtggggttctccattgtaacaaatatcccacagggtatacgtgctacatttgtt acaccgcacggtcctttggggaggcaagggctgtgtccaccaatgagaccagcttgtggggtagaaatgcaggcacctgggaggaaaggggacc gtggtgcactttaccccctgcccagggagtcctctgtgtgtgcatcaggggacaggaaagggaaacaagattgtgttgtcctcttgggccctgtctctcc accaggattccttttccagtgccccacatgcctgctggcctgcgtgcccagggtacatttcagggccgcctggaacgcccccaccccatccttaaaag gagcatgtgcagtgatcgttggggaggctgtgcgtgGcgggggcagggggtatctgggaaaggtctctaccttcctctccgttctgctctgaacctaga actggcccccctccaaaataaactcatttttagaaagcagtgcagccgtgttcatcaagggaacccaggcacccacagctgggctgactgtccccag ccctgctagcagccacgggctgtgttcagaacattcttagggccgcagtaactgtaccccactctgtccccagCACTGCAGAGAGCGGCC CCGGTCCATGGTGGTCATCGAGGTGTTCACCCCCGTGGTGCAGCGAATCCTCAAGCATAACATGgtga gtcaccctgccccaacacccagaccccagcgccGagaacatgaggccccgcgcgcctccctggccttttgcgttggcacagatttggggaatgtggt tggcccagcgtgacagccaggaactggggttgagattctggttaaggacttttgggggttttgtacagcttgtcctccattacggcaacaggaagaatct ttttgcagttcctaagaattacaaaaataccgcagctggaggagaagaggaaagcctcccgggaagaataggcccaaataatgtctgtagatgccc tgccctcaaggacccagagcgcgactttgcactcctttagtgtgtgctgcgcacagcgaggtccttccagagagcactgtatggaagggggcaggag tagccttgcagtggagaaaccagacacactcagcctcagccaggtgatcaaggtcaacatcgacaacaacaagccagttagacagaatattccctt cataggacgtataaaaacgacacttgacctctatggtcttcctcccagtaacccatcaccccattccaatcatgagaaaaacatcagacaaatcccaa caaggggacagtctacaaagtacctggccagtactccccacggtcaaggtcatcaaaaacaaggagattctaagaaactgtcacagctcagagg agtctacgggggcgtaacgactaaatgtcatttggggctctccatgggatcccagaacagaaaagggacatgaagggaaaactgaggaaatctga ataaagcttggcctttaatttttttttttaaatacaaaagcaggatttaattgcacacttagagcgggtggggcgcttgtaatctgtgtggccccttggtgttcc ctcatcattccagggacagcagcaaatgccattatttgccctgtatgtcacgaggaaactgaggcttagctaggtccactaagtggccacagggacca caggtaggaataagaataacatctttttgcagatgcttattgaacactttcttggagtcaagagtgtggtgctctttgagtgtattgtgttattaaccctGatgc cattcccatgacacctgtgcataggaggaatctgggacccagagaggtgggacgggataggcagggtctgatgagcagctgtgggtggtcctggtg ggagctaaggagcaggcagcctgaggccagggcccattcccaatcacatgttgtactgagccagccaccacgttagattttagagtctcctggagca cgtgaaaacaactgaaaaagggtaaccacacatcatttcacttgtgatgtagcttgcctgtctccacaccatgcccctgaagaatagtatatcacctac agccccttccccagtcaggaatggaagtgcatgacacatgtgctcctctaccccttccatgctcatggcagacatcattaatcaattatagcactctttctg tagagccagagacagcatcacactctttcccctcctgcattccaggccaccactaccaactgaaatcgtgttagtaccataatgaatgctatgtaccatt ctctaccctaagcgattgcaaactgtaaatgaattgttgctgatttctgagcccctcctagatttggggtaaattcatttcttgttttcagaacacaggggata gggacaGcctgtgcagttctttctccaggacaaggagactccccactgggggatggggcggggtttctgccttaatttgggcgctcatagtttcaagga ggagctctttctggctttggccagctagaaggaaaggtgccctgtttgttaactttaaaatcactacgggtgtagtgtatggagtgggctgtgccatgctgg agttcagagcaaaggttcttcaggttttcttgcgaaggaccttaacttgtcaatggcagagccacacccccgggacatacttggcagaggaatgcctct tcaggcacataaacatttttgcatactccatgttagtcaataaaccgtttcataagggttctttgaggacatctgacttcaaagggaaaaaattcataattc agacaggctetcggggcttcaccatacaacgcctttcttgtatttggttagttttatgggcctggagtgttgaccatgtattaattttctctataaaaatcagaa ccgctctgggcagacccagaatttatagtatctgtggcagtctggcagagagtagggaccctcagccatgagtcctcgcctcacttgtaacgagtacc ccctaagtgatcccaggtgtctggggatgctttaacgcacccagatcccaccttgctcttggcgcctcctaattacacaccatgagcggcggcggcag aggagaactgctgggaggaccgaggaggatccgcctctcgtgtagaagaacagactgtattaaacagtgattatggccatgccaggcacaggaa gacctgacctcatggaatcctaacaacacaggcggtgggcgagagagagctttgacatttactcactgaatgcgccctgatgcttaatgagtggcac gggtcagcagcaccgttgtggagctggggctctcagctggtgtggggggggggtcatgtctctggctaaggagcgtacctagcctgcctaagccatg agcctgttggggtggcatgaacagtgactgctcttcaccccaaatgcagtgtttctccttaaggaggcactcagacatttaggaaacggggggaacgt agccacggtgctgttctgggatttgggggctcccccattctgggtgGatctcttgcaaatatgttatgtgctccctttcacggatgagcaaactgaagctttg agagtctcaaagaatgttctttactagactgaaataaaaactagaaacaaaaggaagcggttctttagtatgttcctctggagattcagtccaaataattc gccaaactgcgttctgaagaatgaccatgtatctctgtgcccccacgccactcggagtgttcttgtggcaaaggaggcgagaagacacggctgtggtc cccagtggaccgtcaagtaacctaacctGcagttttccaaggggagcgtatttttGagaggctgctggatccctctgtaaatgtttatttccatggaaatga ccttgattattcaaaaatctaatagctaagatgacagttaccttaagtctctgttgaagcagtttacaaaatcataaaaccctcgtggtggaagggggcta gagatcacttctgtggaccctcattccatagtggggtcagtgaggcccagagacagacgtggcagcccaaagccagattaaataGttgtgaggcag aggcctcattttctaacccaggagggagggagggagggagagaaagagagagagagagagagagagagagagagagagtgtgtgtgtgtgtg tgtgtgtgtgtgtgtgtgtgtgtgtgtttgtgctcatgccagtgcgtgcatttttctgaacttgctccgggggctctgcctccctctttatgtagcaggacagtcct agcaggcagacgagtgaaagctccccctgcactgtctctcacaaaggacccctttgactccacatgaagaagcccccagcggctctagaaactctc tcctgggagcctgcgggagggagtggtaggaacgggttcGactcagagctttcatgccagcttcggggtcagttagacctgaggggggtctctatttct gttctacagcttgaagtcctgatgcaggctgctctccttaaaaaatgggttccactgagatgggtacggagggacaggtctggagactccaggctccc ctccgtggtcagccacatcacgtttatggagggtegggggcaggacggtgccgctcctgggtggccagacacagcccgaggggctggcagtccca gcacctccgcagccctggccacgaccctgggaatgaatgcggcggccagattcacaggcccctgtccggcccgtgcctctctcctgcacctctgttct gctcctggcaagccccaagccccccactgggctgggcgccgacttcctgcctcctggcagagctctctgtgccgtggcccctgtcttcctgacacctgg aagaggccgagcacggcagccaccacatatggccctcagccggcacaggcagtgtccctgtgtccttgacctggccccttgacagagccccgcag tggacactttagttccgggggcctggtgcaggcgctgctttccctagcgtggcacagatggggcctccaaccagggtggtgtccctgtcccctcatcata gtgacacgtgccagtgcctcccctgccactaatgcctggtgcccaactcctcattgcacatgtatgcctctgtccacagcagcctgtcacaaacacaca tccattcacacccacctcacactcactgccttccacacccacctcacactcactgccttccacacGcacctcacactcattgccttccgtacccacctca caccttccacacccacctcacactcacggccttccacacccacctcacaccttccacacccacctcacactccttccacacccacctcacactctcctc cttccacacccacctcacactcctccttccacaGccaccacactctcctccttccacacccacctctcacactcacctccttccacatccacctcacacct ccacacccacctctcacactcacctccttccacacccacttcatacctccttccacacccctctcacctccttccacacccacctctcaccttccacaccc atctctcacactcaccttccacatcGaGctcacacctccacacccacctctcacactcacctccttccacatccacctcacacctccacacGcacctctc acactcacctccttccacacccacttcatacctccttccacacccctctcacctccttccacacccacctcaccttccacacccacctctcacactcacct ccttccacacccacttcatacctccttccacacccctctcacctccttccacatccacctctcaccttccacacccacctctctcacctccttccacatccac ctcacacctccacacccacctctcacactcacctccttccacacccacttcatacttccttccacacccacctctcacctccttccacacccacctctcac ctccttccgcaccaacctctcacctccttccacacccacctcacaccttccacacccacctcacactcacctccttccacacccacctcacattcacctc ctcccatacccacctcacactcacctccttccacacccacctctcttctccttccacacccacctctcacacacctccttccacactccacattcccctcgg aagcaccctctcttgtccccccagcctttctggctctcttttctctttctcgtctcatttgtctcacaagtgccttttgagggtggctttctctacagccagaagca cctgctcatcagatggtccttcagagtggaagcgcgggtgtcgcagtgctattctttgaagtagacgccacctgtgctttccagagggttggtgtctcccc attgccttccacatcaacagctccaggcagagctcggtcccgcccttctttctggtgtcctggctgccctgggctcctgccctgcctagcaccgtcccgac tcctgtcctctgctgtctccacagGACTTTGGGAAGTGCCCGCGACTGAGGCTGTTTACTCAGGAGTACATCCTTG CCTTGAACGAGCTCAACGCGGGGATGGAAGTGGTGAAGAAGTTCATTCAGAGgtgggtctccggcgcgacgtc cctctgtggcctaggagccactttcctctcggatcctgtttactcagatatccacggggggctgtcgtgtaattaaatgaagactccctctatgaggaagc ccctagcctactgcacggtgcccgataggaactcggacacactggacctcagcaacactgctgtttcctcaggtcccacgacccctcaggctgtaggt gccacatgtttaggactctgtcccacccctggtggtGccagagcgtcatcgtcgggtgcttgaacaatcaccccataaacataaccaagaggaagcc aaatgttcttgctcttactcacrøggttcttggggttggtgttttgggttωttggggggggggggggtggttgcttttgctttgtttaattttaaattttctctcggtg ctGcagtttcctcatctgtcacacaagaaccatagtatccctGgcccagttagtgtgatgctccagtgagtaggagacacaacacatggagaatgctgc ggaagtctcgtgtcaggccgaggtgtcatcattcttgttcttctcatctcttttgtttgtttgtttgttttgagatggagtctcgctctgtcacccaggctggagtgc agtggctcagtctcggcttactgcaacctccggctcccgggttcaagcaattctcctgcctcagcctcccaagtagctgggattacaggcacacgttac gactcctggctaatttttgtatttttagtagagatggggtttcaacatgttggccaggctagtcttgaactcctgacctcaggtgatccacctgcttcggcctcc caaagtgctgggattataggcgtgaactgctgcccccagactcttctcatgttttaagaaaatcacagtaacccatttaaacaagttctgaagctacgtat ttcctaaatatgcccacttggaactcacgaagtcgtttgaggttggctttgtgacatgccctcatgccagaaccgtggtgacaccacccagttgtggtttgc aaaatcttgtcaggttagggcattcttagtgacagcagcctcgatgacagcttcccagaaatggtacaggtgttatcctcaggaccaccaaaatagcc aagacaagtaataattagtggcacttattgaggacttagtaactatgttggtgactctatgctaagccaaaatgaccctcatcatttttcttccaaagcagg atatgtttgaaagtaaaatgaggtgttaggaataattaattattcctgaaccaccaggtgtgagcatgactgtcccaggacgtatggccaccatttgctag gtctctctgtgaattagaaaatttggtcctaactgtaccGcaactgaggagggggctgctatcctcattttatcgctgcagaaacagggtggagagtttag gaggtttccaaggccactcaggggtttgaacccgggaaccctggatccggagtccacagccaggagctttgccttctgctgcctgcacgtggcacag ccggggcccaaatcctggtgccaccaattgcacagtgaaggctctcagagcGccccaagtggcgctggcagagcgggcagccccgtgcctgagc aacgccctccctttCGccccttaccctgtccatgggcGccactcctgcaggcttctcacGccagccctctgcttttttccagCATGCACGGCCCCA CAGGGCACTGCCCCCACCCCCGGGTCCTGCCCAACCTGGTGGCCGTGTGCCTGGCTGCCATCTACT CCTGCTATGAAGAGTTCATCAACAGgtcagttgctgaaccaccgccacccagagggcttgggaggggcaaactgccacccccatc atgggcaaagtcaccaagaactgaccaggccagagaggtggagtggctgtttactgggcagacctcatggtgtgtttgccagttcccctgggcacatt gattcatgggcccagaagccagggatgctgctgaaaaagcaagcactgaatcagcaccgcaactgcaaggctgttagagctgcttggctttaggga cagatgttttatgctgaagatttctcaccactggagaggtatgacacactggtgtgtgtgtgtgaatgtgtgcacatgggtatgcaaatgcatgtgtgcact gtacacatacatgtgactgtgtgtacgtgtgtgcacatggaggtgtgaatatgtgcccgtgtgttggggacaagggttgacagtaaggtttatcctgtcta gtcttggctttgagaacacaggcttttgcccatgatttgcatggttttattttatttttttgagacagggtctcaccctgtcacttaggttgtgcggcaatacagtg gtgcagtcatagctcactgcagcctcaaactcctgggctcaagccgtcctcccacctcagcctcccgagtagctaggaccacaggcacatgccacc actcatggctaatatttaaaatttttttgtaaagacaggatcttgctgtgttacccaggctagtctcaaactcctgggcttaagcagtcttCGcatttggacctc ccagaatgctgaggttacaggcatgagccattgcatctgtttttcttgagcgcctgctgtgtgcttgacacaatttcagtgctggagagcgagcaagatca caaattcGctgctctcttggggcttccattctaccaggaagagatcatgtacaagtaaatgtgcaagatcatgtcagagggtaagaaaaaccgtgaga gcaataaaaccgagtggtggggtagcaagtgaccggaagaggtggcagggcagggccacgacctggctttggagcctccaaaaggaaactcca agaccaggatttgggtggaagtggcttcctaggaaggtggtcccaggaaacactgggggacagggaagggaggacatcagtgaagtatgaatta ataagcaggtgaggctgggcgcagtagctcacacctgtaatcccagcagtttggaaggccaaggcgggcagatcacttgaggttaggagttggag accagcctggccaacatagtgaaaccccgtctctactaaaaaaatataaaaattagccgggcatggtggtacatgactgtactcagctactcaggag gctgaggcgggagaatagcttgaacctgggaggcagaggttgcagtgagccaagatcacacGactgcactccagcctgtgcaacagagtgagac tcGttctcaaaaataaataaataaataaataagaaagcaagcaagcaggtgaccacttcaggcagctggcatgcactcccactgtgccccaggag gccgtgcgtaacacactgagagttgctctgctgagagttgctccgccgaggctggcggtgctgggatagtcactcaccagctcccatccctcgctggct gagaactgctcccgggatgcagactaatgcagatgccattagtttatggggaactttctgcagtgacctctggtgtcattggagaggatgtgacatgca gaacacagtggtctctgctgcagccacccagttgttcaggtggtacactacacaactccaaggagaccaacatgagtccagaccccaccagagctg gggatacagcaggagggtatttcagtcttttctcaaaatgaaggcagtagagcattctgagtcgctgaaaacctgtacaggggggatttctcaaacaa atgccgtactgctgagttcttcggaggggcaggaaaaggcatttgataaatcaggggctgttttcttgcagcagggcatgagagagggtgactcttttaa tgccctcagcctcaggtcccgatgttcaaaggggatcatgtcccaccttgaatcacttccctgatcagaaggaagtgcagggactccaggggccaga atgtggagatgggaggctgctcattcccaagggcatgttctggagctgacagcacggtgaggcaaaaagaggagaaaacggaagccagagggt agtatcaggcctgcccttttgtatttttagtagaaatggggtttcaccatgttagccaggatggtcttgatctcctgacctcgtgatccacccaccttggcctc ccaaagtgctgggattacaggcgtgagccaccgcgcctggcttacagtatttaagttatacccagagtgtgcaggagccagctcacacgttacatttg ggaacacatcccttcccagttctgtaatgatatcatattgatagcttgaagtagctgtggtgagtatttacaccaaagaaattggtaaacactgcagatca gggcttcttttttttttgagacagcttagctgttgtcgcccaggctggagtgcagtggcacaatcttggctcactacagcctccacctcctgggttcaagcga ttctcctgcctcagcttcctgagtagctgagattataggtgtgggccaccacacctggctaatctttgtatttttagtagagatggggttttactttgttggccag gctggtctcgaactcctgacctcaggtgatctgcccgcctcggcttcccaaagtactgggattacaggcgtgagccaccacatccagccagatcagg gcttctttctttggagagttggttgttagacatttaccagcgtactttgggttatatgtcaatttaaaaaaagaaagaaagaaagaaagaaagaaaaggg tgcccaggaccctcccagtgccattctgatttaattaggatggccctggcatctgtttttggaaggagcgttggggaggtgatatttacgttaatacctcctg gctgttctccaggcaagaagcaggaagagggtgacccagggagagaaccacatggaaaggcctggcagtgatgggtgaaggtgccattcgtca cagtgtttttgtttttggtttttgggtttttttggaaacagtctcactctgtcacccaagctggagtgcggtggcgcaatctctgctcactgcaacctctgcctcGt gtcttcaagcaattctcatgcctcagccacccaagtagctgggattacaggtgtgcactgccacacctggctaattttttttttttttttttttgtattWagtagag atggggtttcgccatgttggccaggctggtctcaaactcctggcctcaagtgaaatgccccccttagcctccagaagtgctgggattacaggggtgagc caccatgcccgtgtacaatgtttttgtatctacgggtccttgaaccactacttcagaatcacctggactgctttaaaatagattcctggctgcaacatttctgg ggtatggcccaggagtctgcattctaaacaaactccacaagtcattctgctgcacactgaatatggaggtccctgcaggggaagagctgaaggaaat ccagtgtgactagagcagagagaggaaagggaagcaaaagatggagttggagaggagagagtgctgggccatgaatagccagcttctcaaac ctcctggtgGctgggactctctagggttggagttaaaatgcagatttggattcagcaggtctggggcggggcctgagactctgcttgtctaacaagctcc caggcgaagctgcaggctggggatcactctgtaagtagcagggttgtcctgggtttcagtggcagaacttttatcctgggaacattggagagtccaca gtgggttgtaagtggagaagggacgtgatgggatttcagttccattcccctctggctgctgctgtgaggaggatggagtagggggcaggcgtgaccct ggggaacggttaggtggctgtggcaaggagatgccaggttggaggcgtggcgagggtgagatggtgcctgctgcctcgtgccagccctggctcagc tgtgttgagccccctcggagcccacagtagcctgggttccagctgatgccatacatttcctggatatcacccagagaagcacgatgctgccaacacgtt tcgtgggctcaggtccatgacgcccccctcagccagtcccttcaagataaagtccgtcatgtcctccaggccgtccccagtgctctcggtgggcaaatg tacacaatgtactcacactgaaaagaacagacaacttgacccaggttagcgtggctctcttgaaaatcaccaatctgagccaaacagccttgaaaat ccacttttaaaacccagcaacggcaaacaaagagaaatgcagtgttgagtacttggggagcaaatcagatctggaccagagaatttaggtctcccc ccatcacagaccacacacaagttgttatcaacgatagaattctGggactttagccgatggattgtttatttcccccagcaaagctgaaagtgtatttattaa acacccttggtgggctcagctcaggcctggttcctggcatgtgctggatacattcagacccttgctgtgcatggggttcaagttctgcacacagcccttgg aggggctattcacgtgccccctcccaccccttcccGcagctgcaacaattccccaaacacaatgccagctgtgtggccctgtcctcaagcctgggagc ccctttagaggcacaggacccatgcatgtgacacatgtggggaaggactagacaagcagctgttttcaatcgtgccgttgtgctcgaagtcttggatta gtggatctcaaccttgaccacacacgaggagccttaaaaattactcatgtccaggtcgcatcctggagattcctgtctaactgggctttgggatgtttgga agtgtacccaggggatcctggtgtcccgccaggggtggagagctttggtttaggaggagttcgagggtaggaagggcaagagtagcaggaagaa atcaaggaagacttcctggaggaggggacctgcacagctcttaggggaccttggaagccaacctagttaggaggatcctgggctttggggtccagg agatctggcttcaaatcccatctccgtcgactcatgggctgtttaattaggggtagatcatttaacttctgagaccgtctttcctcacctgtggcacagagac ggtcggaatcactgttcagtgatgtgtttgagcatctgtgtgactgcacttagcaccttgccggcccatgggcaccagcagaggaacccgttgatggta ctactgtcccttataatgcacctcccaggcaactgggcacgttgggaagcagtcagaggaggggctttaaccaggtcaaggctctgacaagtcctgc cattaagaggcctaatttcatcttgtttgcccagtgtttgcctaacaaatgtgagattaataatgccatagagcccctttctgggttaacatgtgttaacacctt gtgcaggcttctgttcctctgggcagttaaagatgctgtgcctggagggttacccaggaggagtgggggttccgcagacagaagggcagatactgag cttgctcacttggctgggtttgggggcaggagagcagagtcctggaggacattgtggcatgaggtcagggattggagggcagttagactgcaggaa gctactaaaagcaaaacagtagatcccattggcttatcaagaaagtggccagtggcattttggtggaggagaatgccaagagccttatggctgtcac gtgaagatcagcatccactcagtcggtcagcaaatattttttgagcacctgttatgtgctggggtgatagcatgggctgtagagacaggcaacctgggtt gggctgccatccccacctcttcctgtctagaccttgggcaagccgtgcacccaggctgagcctcagtttcctcatttgtagcacaggaatgatgatagtat tacattttggcctcatcctgggattcagggaggcctttagtctgatgggtcatggtgcatcatgaacggtgcctgtactcatgtgccctctcccgcctcttccc ccagCCGCGACAATTCCCCAAGCCTGAAGGAAATCCGGAACGGCTGCCAGCAGCCGTGCGACCGGAA GCCCACTTTACCTCTGCGCCTTCTGCACCCCAGCCCGGACCTGGTGTCTCAGGAAGCCACGCTGTCT GAGGCCCGGCTCAAGTCGGTGGTCGTGGCCTCCAGTGAGATCCACGTGGAGGTGGAACGCACCAG CACTGCCAAGCCGGCGCTGACGGCCAGCGCAGGCAACGACAGCGAGCCCAACCTCATCGACTGCCT
CATGGTCAGCCCCGCCTGCAGCACCATGAGCATCGAGCTGGGCCCCCAGGCCGACCGCACGCTCG GCTGCTACGTGGAAATCCTCAAGCTGCTgtgagtgccccccccgcgtgcccgcccccggggccggtgggaggagactgggcttt gctgctgggtgcggctgtgtttgttggttcgagctacgcagggccgggcatggtagagtggcttgtgtgtgagtgcacacgagctggtgtgtgcaagagt gtgcataagcacaagtgtggctgtgagtacaggcatacagggtgcatatgtacaagtgggtgaggcacatgtggctctggttgtgtatctgtgagcata tggtgtgtgtatatacacacgtggggtgcatgcatggctttgtacctgtatgcttgagtgcctgggcacatgtgcaaggtgcatgcccaagcatacatgtg tacatatgtctacatgagtttgtgtgtgtgtgtgaggatctggatacatctgccagggtgtgcaggagcacaggggtgcccaagtgtgtctttgagtgtgtg gacatctctactgtgttgggtgtgtgggatccttagagcttgtgagtgtctttgtgtgcctgaacggccatgggtggatgtgggtgcgacagcacacgtggt ctgccgagtgtgtgtgtttataggagagatgggtgtgggcatgcctgtggatttctctgtagggatgtgtgtgtgtgtgtgtgtgtgtgttaaatgcacagcag tgggtgtgtctaggcacttgggctagttttgtgcactagtggctgtggctgcatgcatgtgggtgtaaccatttgtgctgtagggttagagagcatgtgtgttt ctctgtatgtttgcaggtatgtgcatgagcccatgtatgtgtgtgttgtgtgagccatgcatgccgtgtgtctttggggtgtgagtatctgtgcatatgcatgtgt ctgagtgagtgacgggtcatgtgcaggagtgtgtgagtctgtcttgggtatgtggctgtgcgtatttgtgccgtgtgcctgggtgtctatgtgtgcacattggt gttgtgtgtgcctgggtgtgggtgtaggagacccgtggacccggggctgctctgggtggtgtggcttctgagctggctccttctgtgcctgtccctccccgt ccctgaacctcaactctgtgactctagggtggaggggagtacagttcttaatccttgacccctaagggtctctccagccttgccatccacacgctccacc tgacacatctcaaacccgtgagcacctggttctgggagccccagtttgagggatctcattgactgttcccttctgccccccacagagccatgtggttcca cagaccagctcaggtctgcagacactcagcagacacctccccctttctcgctccacaaactccttccttcggaacaagctctgccccactctcaggagt tttgaatccagagacaggcattttcagatgcagctgcatgtggttgctggacctttcggaggggttcggggtatggctgtgttgtcatatttaaccaatgcat ggtgcctgtctagagccagggctcccggggccctcagcctgcagggaggccactcggaagcccggtgcctggggtgttgtctgtgtgggtgggtggg gtttccctgagcccctgtgtcgtcacgcgctgggcagcgtttggtcattctgtcatgtatgtgttgtgttgctcctggagcctgctcagggtttcgagggacag agggcagcttctgagggcctggtgagctggagaaatggctgggaggcaccctggggtgccccctgtgctctgctagcaaggcctgtggtgtctgtga aggtgaacatgcgcacacacgttcacaaggtggctgctgctggtttgaaggagatcgtggaggcagcgtccccacatagcctcctctgccctggcttt ggccccggagaggaaagggtggggtgtgcccaggggttcaggaccagcGCcgcctcgtggtcccagcagcagaggtcaggtgagggcataacc acattcagtgaccgccacccccagccaagcggaattccagatcccactaagagagccactccaagaatacgtcacagccctgagtgtcttcaagg cagagaagggtgccagctctcccagcggcagccgggttagggcgcctccctggattttggagggggctccctgctctgatggaggtagaagcGtcc aggccagagagtggccccgctgtccactccaactccccagttccagctggtttttgcaaacaccgtgagctcctgggccttctggtatttggggcctgac tcctatttctcattaagcactaagggtttgagtttcagcacgcagttgacacacattttttccttcttcataaacatgctcatgaatgggggctctgttctccccc atctgcgtccagaccccctgcctgcccgcatcacccagctgccagggtgcaggtgggggtcagggccatcgccaagggcccaggacagtcaggg caagccaggacgggttcccgatggggctacgcagaggagcaggtcacgcctatccccaagccctccacaaaatgggattatgctcctggcagcct cttGcatcttcggggagctcaacacaatttgggcctgataactgtattttcccaacaactttcctccccacacccagcaggctgcttaagttgctggctcatt ggaggcttcaaactggttggacccaaacaaccccagccgctcaaagggctccaaagtgagatacgtcaggaaaggcacagactcagagtcaga ccatgctaggttcaagtctcacccgtgccacatactagttgtgaccttggacggttggtcatGctctctgagcctccggtcccaggctgggaggtggcgc aagtatggctgcatctggcattggcaaagagatgggaggggccagccctgagtgcctggcgcagagcagacacctctgcgaggtgaacacctgg ccaatgggagtagccgccgtttatgatgcagccatgttcccgccgcttgaccatactattgagggcgagatgcgtcattgattcagtaagagtgctttga gagagaaaagccacatggcatttattgcacacctggattgcaggaaacttgcctcctagcattgaggaaatgcagccgtgggcctgagctgctgtgg aactgtggccagtgttcttggctcctctgggcctcagttttcttgtctgtaaaatgcatgtcttctcggaggactgcatgagaattcagggatgttggagatttt tggtgctggcctagcctctggttcttgataagagtaaactgctgttgtcagcctggtgcggtggctcacgcctgtaatcccagcactttaggaggccgag gcgggggaattacttgaggcctcaagaccagcctggccaacgtgacgaaatcctgtttctactaaaaatacaaatattagccgggtgtggtggcggg cgcctgtagtcccagctactcgggaggctgaagcacgagaatcatttgaaccccggggggcggaggttgcagtgatccacgattgcactgctgcact ccaagctgggtgacagagcaagactccatctcaataataaaagcgtgaactgcagttatcagtattgaagtgctgcccaaatgggagttacacataa agaaaaaaagaagcagccaggctcggtggctcacacctgtaatcccagcactttgggaggccaaggcatgcggatcacctgaggtcgggagttc gagaccagccttaccaacatggagaaacctcgtctctactaaaaatacaaaaattagcctggcgtggtggcacatgcccataatcccagctacttgg gaggctgaggGaggagaatcacttgaacccgggaggcggaggttgcagtgagctgagatcacgccattgcgttccatcctgggcaacaagagcg agactcccatctccaaaaaaaaaaaaaagatgactttatgtggaattgaagggtcttaaagaggacgttgccaggcggggctcaggaaggcacgc ttagagcgaaccacatccatcggagagggcagtgcaggtcgcagggtgcacaggtcagtgtttcccgctccactgcGagggagcaggggtagtgg ggcgcaggccctgatcagttgctgcgtgttcccataggaaggcccctgcatcattagaatttgacacttttgaaaagtaacctaagttgcaaaaatttcct ggaggtccttgaaaaggaaaactattccaaatgcgggtcgaggttgatggtgaa aaaaatcaccgcatgaggcgcaggaggggtgaggtgatgaaaagaacgtggattcgggaggcgaagaagagctttgggatttgtagtcatttgga gtccagctcttttcctgctgggcacctatgtatgattcacaccttcatttatccacctgttgattcattctttcatccagcttttgttgtatacctacgccaggccag actctatgccaaatgccatactggtccctgtactcagtccctctgaaGctgagtattgccaagtgctaagagcagtgacatcaagcgctcagtgcggct gctgtaaagctcagatggggagagtgtggaagccgtggcccactggggccacaggggtaggacgcgcttctgattggctcccgtcgaccgcttggg actctttgcaaacattagattttaagaggccttggtgggctgcagctcagctggaagaggcccctccctcggggaacttcagggaaatgcagatgaatt tggggttgtcctaatgactgggaggcagggccaggggacatcctgtattacctgcagtagttccgctcactgcaacctctgccccccaggttcaagcc attctcctgcctcagcctccGcagtagctaggattacaggcgcctgccaccaagtctggctaatttttgtatttttagtagagacgggtttttgccatgttggc caggctggtctcgaactGctgacctcaagtgatctgcccacctcagcctcccaaagattacaggcatgagccactgtgcccagcctgttttgtaattttta agtgacgcgatctcagctcactgcaacctctgcctcgcgggttcaagccattctcctgcctcagcctccccagtagctgggatacaggcatctaccgcc tagcccggctaatttttgtatttttagtagagatggggtttcgccatgttgaccaggctggtctcgaactcttgacctcaagtgatctgcccacctGagcctcc caaagtgctaggattacaggcgtgagccaccacgcccagcctgtttggaaactttaaactgctcattcctggagcacatgataactctagaaactcaa aggtccctggagcatttaaggccagcagatgtgctgtggggcctgggaaggtccctgatgggatgaccgcacaggtggagagaaagggaattttcc tgaggtcctGcggcctcgcgggtaacagccactgtttctcagcctgggttcaaatccccgagctagctggtttgcctttcaagggagcagatgtttctgga tgttgcatagcaggagcaaagtggtctgaatgtgcccccacaggggccttctcatgccccgtgccttcccaagcatcaggccaccgtgaggccgcca cgttctgcccgtgacttgcaggagattctgtgagtcagggaaagcagcgaggctggcaggaagcgtcctgtccacagggcagcacagggctctggt tgaggtggcatcttctgaactgggttaaaatcccagctgagctgcgtgaggtgggagacccgggctttgcactcacaaagccttgttcagtcccaacat gtcccccattagctctgtgacctttgacaagtgtctgaacctctctggacctccgtttctcatctgtgaaatgggggttctaaggccctcttcatgggagggtt aaatgtgcaggtgcctaatgcctgaggcatgttggggtcagcaggatgcatcaggcacctgcctgcttgtccgtcccctccgtccaagctgggaaggg cccagccttcttttctccttcctaggtgggcagtcaggtcgctcacaccctgcctggtgcctgtcctcccaccccaggccagccttggccaaatgggaga ctgccccagtggccagaggcatcccatcctaggataacaggcccgcccagagccagggcagtcccgaggcggggactctgctggccactgggtc ctgtgccgaggcccgtcacagagaggcccatgcacaagagggttcctcattcccttcttcgtgggcctgccagtctggggacacccagcctcacctcc cccacaacctctgtccagcgccccccattcatccaccaacctggtccgactggggtcacagacttccaagctggtctgggccgaggcaaggaagtc cacttgccctctccctccttcccatgcacccctctGggtcttgtgggagctgccaggaagcggagccccaggctgggagaccgagaggaggaggctt ctgtccagaccccgcctcagacaggccacagtctcccactggactgagcacctgggagtacaggccacgctcacggttcacagaacaggctcag gagtaacaagtgaccatgggcctgctgctggggctcatagtcccccgtggggaccctgattcctctgattgtgggtgatttcaaatctccttagagttctgc atttcatgacatttctgcatggaatatgctttatttttaaagtaaaaaaaaacctaagtgctcccctccctttcattttttgagatactctgtcaccgaggctgga gtatagtgccgcagttacaggtcactgcagcctcgaactgccaggctcaaagaatcctcccacctcagactcccaagtagctgggactacaggtgca caccacctgcctggcttactttttttttttttttttaactttttttttctttttagagatgggatctctttatgttgcccaagccagtctcgaactcctggcctcaagcaat
CGtcccgcctcagcctcccaaagtgctgggattacaggcgtgagccaccatgtgcccaccagtgtccttgtgatatagggagatcgtcttccttctcagg tgtgagccgggccaccctccttgtgagacatggttattgagagggtggagcacagacactggggccaggctcacaggttcagatcccagctctcacc agctgtgtggcctggggccagggcagcccatGactgtgtctccattttcctgcctataaaatgggggtgccaagagcacccgcccagccaagttgctg ggagagttgcatgggctgacgcatgggagcccttggagagcacctggcacgcagcaggcgctgcagacgaggtttgctgtcaactgcatttccatttt ctggaaaccatgagtcagggacaggtgggaggaaaggaggaaggtgattcttctggagggaagacaagctagctgcaaaaacagatgacccct cagaagggagcatgtgaatacgggggcataaaggggtctccatgtcctgacatgcacacgacaggcctcaggctcctgcagctctgagaacccca ggctgcacctgggccttccgcactcaagcactgcagtccagaggacctgctgtcagtcctcatctgcctcccaggcgtggagttcagcttcctcaccgg caccctctgccctcacataccgctctggagattaagtgagcaagtcgggtaggcagtgagtaagcggtcgctggcatcactgtcaggacttatctcag gcaacaggctttcctggtcattcttttctccgcgtctggcatcggagcctttcctcagaagcttccagggtatgattggggttctgaaggctgccactctatc gtgggcttatttggaggaaggtggggcaggaaaagccctcactcaggggttatctaaaccgcctgttgtcgatgggagtgaacatttgtacttggtgaa aaaaacatctcctcccgtttctatgtaaggcacagttagacacacagcacgcaaaccgatacacagtgtatctgtggtgagtcgtatgtgggtaggggt cccgggaccacccctctgcccagcccgggtctgagcaccccctggcctctcccgtgggtggtgcccaggtgtcagcggggcatctctctgcagcgcc tccccaacacagaccactggacaagggttcagatcccacctcctgccccagtgcaagccaggatcgaagtcagcatcccactcgatcttggcacct ggtggcacttgctagtcccccagatggagactcaacatcccttctgctctgaagccggtcacaggccccaggctctgtcattggcccggtcccagtgtg cactgggccttgtgttcagcagtcccctcccaagcaccagccatccacGcagcccggggcccagcatgggggatgcagagatgagacctgggccc ctcctggggtggtccgaggGaagatggtcagaagctggggaacaccagggacagctctgtgattcggatggggactgctccagtggccacccctca ctttatgtgtcaGggttttaagctctgggccctcagaggtgcccaggcctggcttaggcgagaaGtgactacctGtgggtttgtttttccgcggagtccctat agccagagagatccggaacccaggtgggggaactggttataaacacagtgcaggtgctggggccgagaggacgggtcatggtctttgaagcacc tgaggtcagatctcagccacttgctggtgacttgtgggaaateacaaacagctctgagcctcattttcctcgtctgtaaaatgggggttgtcatgactgca gtctctgggggccgtgtgtgagtgctctgctgtgtgatacaagcccatctgtactcagactgagacgccggcgagttctctggacgctcccagcttttggg ggcaagagttggccaaaaaactccctctttatgaagctgtgctggtaggtggtcgggaagcagcctgttgggcctGaggaaactcccgaagctattgc ttGcctgctgtggcctggctgtatcacagccctgtggtcacggtcagtgaattgccatactgctccttgtccgtaatttggactcagcacacagggtcctctg ggtagatcccatgagcgaacacaagcagtgcccttacttcaagccccggtgcgcaggcagcgcagagcgaattgcatctgcgttatcagcagtgct aatactgttcggttgtgggacagtggtcttcccagggtcggatgggggtgacaccctggtgcctggcttcaccacacaccatggtgtgatagagcctga aatacGtggttGtgagtccagctttaccccttcctaggctgtgtagatgactcggagtgggtaaGtgacctctcccgctgtctctgcacaGaggaaggag gctctttcatgaaagggttaagtgaagtcaggtgaacagcacggtgcttcccgcagctgctctcactgaggtttagccctccttccttacccaggcaggc gttggcttttgctaagatcacagccgtggcctttcagggctggtgagagccaaggctctgctgtcacagaagcctggatttgactcctcatatgccacag ctgtgtgaGcttaaacctctgagcctccagttcgtcatctgttaagtggggttagtcacactgactttattgtgctcttgtaaagagtaaatgaactaaggtat agcccttagcatcctgcagtgtgtgtggaaagtctccgtgacatcggagctgctgttgttattgtcattgttattaccgtcattagcatcaactctgtttttttttaa tatactttaagttctagggtacatgtgcacaatgtgcaggtttgttacatatgtatacatgtaccatgttgatgtgctgcacccattaactcatcatttacattag atatatctcctaatgctatccctccctcctcccccaaccccacaacaggccccggtgtgtgatgttccccaccccgtggccaagtgttctcatttttcagttc GGacctatgagtgagaacatgcggtgttcgttttctgtcGttgcgatagtttgctcagaatgatggtttccagcttcatccatgtccctacagaggacatgaa ctcatccttttttatggGtgcatagtattccatggtgtatatgtgccacatcttcttaatccagtGtgtcattgatggacattttggttggttccaagtctttgctattgt gaatagtgctgcaatcaatatacatgtgcatgtgtctttatagcagcgtgatttataatcctttgggtatatacccagtaatgggatggctgggtcaaatggt atttctagttctagatcctcaaggcatctccacactgtcttccacaatggttgaactagtttacagtcccacGaacagtgtaaaagtgttcctatttctccaca tcctctccagcacctgttgtttcctgactttttaatgatcgccattctaactggtgtgagatggtatctcattgtggttttcatttgcatttctctgatggccagtgat gatgagcattttttcatgtgtctgttggctgcataaatgtcttcttttgagaagtgtctgttcatatGcttcgcccactttttgatggggttgattttttcttgtaaatttgt ttaagttctttgtagattctggatattagccctttgtcagatgggtagattgtaaaaattttctcccattctgtaggtttccttttcactctgatggtggtttcttttgctg tgcagaagctctttagtttaattagatcccatttgtcaattttggcttttgttgccattgcttttggtattttagtcatgaagtccttgcccatgtttatgtcctgaaag gtattgcctaggttttcttctagggctattatggttttaggtctaacatttaagtGtttaatccatcttgaattaatttttgcataaggtgtaaggaagggatccagt ttcagctttctacatatggctagccagttttcccagcaccatttatcaaatagggaatcctttccccatttcttgtttttatcaggtttgtcaaagatcaggtggtt gtagatgtgtggtattatttctgagggccctgttctgttccattggtctgtatctctgttttggtaccagtaccatgctgttttggttactgtagccttgtagtagagtt tgaagtcaggtagcgtgatgcGtctagctttgttcttttggcttaggattgtcttggcaatgtgggctcttttttggttccatatgaactttaaagtagttttttccaat tctgtgaagaaagtcattggtaggttgatggggatggcattgaatctataaattaccttgggcagtatggccattttcacgatattgattcttcctatccatga gcatggaatgttcttccatttctttgtgtcctcttttatttcattgagcagtggtttgtagttctccttgaagaggtccttcacttccGttgtaagttggattcctgggta tttagcatcaactcttagaaaagaagaaaagctgttgtctgaaagcaaaaatagaagtatccaccaaggccaggcatggtgcctcacacctgtaatG ctagcactttgagttatttatttttttgagtctgagtctcgctctgttgtccaggctagagtgcagtggggtgatctcagctcactgcggcctccgcctcccagg ttctagcaattatcctgcctcagcctGctgagcagctgggattacaggcgtgagccacGacaGGtggcGtatCGGagcaGtttgggaggctgaggcag gcagatcacctgaggccaggagttcaagaccagcatggccaacatggcaaaaccccatccctactagaaatacaaaaaattagctgggcatagt ggcgcacgcctataatcccagctgctcggaaggctgaggcacgagaatcacttgaacccaggaggtggaggttgcagtgagctgagatcgtgcca ttgcactccagcctgggcaacagagtaggactgtgtctcaaataataataataaattttagaaaaagaaaaaaaagggatccaacaaatcaggag gtttgacccaaactacaaacaaacagcttagaatgtttgttgtttatgattctgtctatagaattttccctcagttctgatcacagaaaggtgagaatggccc cagggtcccagcctaagccccctacattagtttgctaggactgctataaagtaccatcaacctcatagcttactcaacaaacatgtatttctctcagttcg ggaaggcacaaccctgaaatcaaggtgtgggcagggctggtttctctggaggcctctctcctggcttgcagatggctgccttctcgctgagtcctggctg gtctttgctctgcgtgtccgtgtttcctcttcttctaaggacatccgtctacagcctcattgtaacctaatcacctctttaaaggttgtgtctcccagtacagtcac attGtgaagtactggggtgcagagcttcagtatatgaatggggggcaaagttGagcctaaaacaccGcctaatggtcccaaagagggcatgaacaa tgatcacgtagccttggttcaaagggcattgtgaagtctggggaatagacagctcaccccctcgggtgccatgaggaagtctctgcacaggcccagtt gtgagtccttgaggccacgctgagaacattgacttgctcatcctggaggtggaagtgggtggagaagtcagtgccactgactacctgccaggctctca ccccatGttttggcccatctgggaccaaaaacagtgccataaaccttccttgtcccaaccaaagctgactgtcaccctctctcattctagGTCAGAC
TATGATGACTGGAGACCGTCTCTGGCCAGTTTGCTTCAACCCATTCCATTCCCCAAAGAgtaagtcccgtgtg catccccggagccctcccacctgtgagacaaacctcagttgtccaccaaggccttagtggggggccagtcatgttatggggaagcgaagtcacagc gggaagaccctggagacgtcggtaccagctcagccacgtcctcagctgtgggacccctggggaggcacatcttccctcagaaaaatggggaactc aggagaacagggacattgtaggagctgcttgactgcattgtcacaaggattcatgagctaagaatgcaaacagagccctccccatggctcctggca ggccgtgcagttatcgtcttttattatgcaccagatgggaaccgtaatacctgccgctcctGttccgagggcgatagtaagaatcaaaagataatgGgc gtagcattgctcgctgtgccgtactgagatgctggaagcgctctaattacgcccggtacaacgctcagctcaggctctgcagcaaacctggccagaa acagaccctctgcctctctcttgccggcccctagcaccatattgaattgatcactggaaactagagagaacgctgtctggtggataatggcctgaagag aaggctttgtcaaaataaccaggccctgaaatgcctccaggtctctttcaagaggttggaaggagcaagcctcgggaggcagctggggctctcgaa ggagccgattaccaagcgtgtttaggaaatgctgcctctgtaagggcacattacacgcagtaattgccccatgtgctggcctggccagtccccgaggg tccccagtacttgaggccggagaaatccacctcctaagaggcgctcagtctcagcagagtcgtgacgtcattggcctcagtccccgtccccataggc ctgggcgctcttggctgtggcaactgtcttagaagaatggtcccccatggccgctgatgtgtgcagtaatgagtgccgcccgccttaatcgtggaacaat taatgaacacacctgggtctccggagcccacatgcacccacacatgctcaggcagcagcttagcccctcttattcacaggtgtgggcacagggaaGt ttcgggaatggggggcccagtgtgttcatgttgctctgatGtgccgcctGCtcaaagaaggcctttgttttggagctttgagtggggacaaaatgttggcat ttGactcacattcctcttcattctttgaatcagacataaagtctagacgtocccagaggttaatcttgggaacattgtgctgtttccgacgcttctgttaaccgc cgtgttttGccctgtttttgttgcagAGCTCTCGCACATGAGAAGTTCACCAAgtgagtgtctgggcaccgcccteattGcattctggcac gcacggcctctgtcctgaggtcttccctccgtggcccatgcattctgggaggcagtggtggctcctcttggcagttctGttgagacacgtgtccctgatcca ccgccttgcccagctccctggcccgttcttccttgacaccatcccctccccttcccacacctcccactcagttccagaccccggcagtaactccggccgc ctcgtctcttccagGGAACTGAAGTACGTGATTCAGAGGTTCGCCGAAGACCCCAGGCAAGAGgtgaggcctttgttt ctgcatctcaggccggctgtctggggatggcaggatgcacgagggccccttagaggccttctgaagcttgtcaccaacaggcattcagaacagctttc agagacccattgcctgtgtataaacacatccccgcctggtgcagagcccagcctgtgatgtcagtgttttactgtaaacgccggctcaGcgggggtggt tttccactggctggtggtttctgcccgcagccgaggccttgatttcgggctgggctggcatggcagctctcaaccagctctgaggcagcattttgatcctgt ctggttctgctattatgtgaatcactgggcagagcaaggaatctgagctgggattcagagctgggtttttatttcccggtcatggtggccaagggtttccct gaagggctgctgtgtccctcaccaaagctgggcttccagggagagggcagccttccaccttctgcccctgagcctgtgcacatgggcagggacctag gcaggcaaggaagccagcctgtagccctgggcccgcatcatctgatagtaacagcaccagcagctgtcttttaggaggtgctgtgccccgggtcac acacattccttttctcatgcctcacagcatccctgtgagtgtcttctatagtattcccagtgttgcgcggctggtccacgactgaggcaagattcgagcctg gtgctgataaccatctcactgcactgtgtgctgtgctctgagatgctcacagcctgcttctctgtgtgcatgagttctgggtgtggtagcgccctaactccca gttgaggacagacctagactcgtgctcccggcagaacagggggaaggatgagcagaggacagggggagttcctctccatagagccatccccag gaggcttcctggagaaggtggtactgaactggctggacttagctaaatgggtcaaactggaccttagtctggagggtggagcatggtgtttgagaagg aatctgaggacacatggacaccaaggtGttgccatgtccaaccatggcaggtctctctgactcagaacccaGagtttatcaggctgtaattccagaagt tctagagtacttgttctcaaactatattacctgaggagcttgttcaaaaggcagacccccctgccgccgcatcccttcccggttccagctcacggggcct gggtggagccaagcatatgcgttttgatgcgttttgaacaagcatcccaagtggttctgaggggctggtctccaggccacactgaaaaaccgagttctg gagggatcttgaagactctagttccaaaacaccgcaattctaaacaccgatttccctaagtgttcctcaggcatggagggaaaaaggagaaacggtg gatatggtgcttttaaatgtcagggaccagtgagtgtctccatttttcttaaacttaagtctttccttgccacctgtgaagacagcgtetcagaattctcctggg aactgagccttaattcaaacccagcctttgacgctgggagaacaaaagtggcatcagctgcttctcagagtagagaggcagggccagctgctggga gggtaattctcaaaccagggaaatgtgcatgaggccccgagtgacctgGcggtctggaaggagccagctcccctggccaaggtcccacacccag gcccttgttctcctgtttgcctctttcttttctctgctgattctctctcccttttcctcctcactcttctttctcccttcccttctaccttctccttcctaaatgaagccaaag ttgtttcctttaaaattatttgctatatttgttgaatagcatctcaacactcctaagtccttattgctttgaagtcgataagggaacccttgatattcttccagctca gagggaaaaataaaagccactgcctttgttttctgtgtgctcgtgtgtgggttgtgatcagtttaatatctgtgggtaacagattcttggcagccaatcgtcct ttcctaaaggaaatgatgaggaacttctctcagctttcttcggaggacaggaggaggtggggaaaagtcctttgtgtttcctgcacgcccttgctctcatg ctctgtctctctccctcactctccccgctctccatcctctccctccttccctctctctctgtgtaatcacagcaggggccagagtggatgtggaattcctcccat acacacaGacacgtgtgctcacatgcacaaacaggcccatccacacagacacacagctctgggaaggaatgtgagagGtgtgcttttggGactga aattgcccccagccacggacagatccttcagtggagggggacaaagactcagggaaggaagtggggatgagacctaacaagagagggtggca gagtcccaaagagggggagagagagagagagagagagattagcagggcagatacctggaggggaggatggtgcctgcacaagtcaagaaa gggagggcagaaggcacacacccaagagggagagtcagtgctgggggcagcagaaccccagagaggcagcagggagaggtttctagagaa agagggcagagagcacgggagaggagttagaaacacagagagaggaggacagagaaccaaacagagaacggagacccaggagatggc cccacccagaggaaggcatagcagaaggagaaagggggcaggagaaagggaaaaggggctgattgtgggcggttgctctgggcatctctacct gctgcagccacaggcccgcttcattcagatcagccaatcaagccggggcctgccGtcGctcctgtgcagctgacagccagtagccagagtcccctg gggtgtgggggccacggtatttcccgaaagacctttcatggcatttggtggaaggctgggggttgctggaggaaacaaagttaagcgggtttcttgact gcaggacttgcctgagcctttcccattcatgtgtgcagatcatggtcgcccttgtcaccggggctgcatgcagctcacacttgtgtcttcccttgtctggcag
GTCCACTCATGCCTGCTGAGCGTGCGGGCCGGCAAAGATGGCTGGTTCCAGCTCTACAGCCCCGGA GGGGTGGCCTGCGACGATGACGGGGAGCTGTTCGCCAGCATGgtacgcagtgggacGccagtggggtgacttccag gggtccctgggcttgccatgcctgactagtaaaacagccgtcccccatcccctggggccagcGccggagtttcccggctaacacagtgctgatcatg aaggtggtggtggtggtggtggtgatggtgaccgtgactgtcacttactcatttcttatctgaggctccaagccaagcacttggctttcccagttgcactca gctctcacagcacagtgagaagacgacacatgtcattgccccattttatacccaaggcagctaaagcctgggccgttactgcctaaggtcacacagtt cattgccatggttatgttcctacaagaaattgagtgcccaacgggaccagggattctggaaggcactgcaggtccaccagcttgtttaatccttacaag gaggtgtcgcggtcagggggattgttcccactatcatgaggggtctgaggtcaccaaaccaatagctgcatccatgataactttctttgtgcccggcact gtatccggcacttcatatgcactatccttttttatctgtactgcatccttgttgctgaattacacctctgttgaaacagaggcccacagaggttcggtggcgtg cctggggtcccacaggccttctgtttccaagcccttccttggccaggcacacatggcttcttccaggagtaaagggccacagactcttcctcccccagg gcagatgctgcaccctagtggccagcagcctcgccgactccacttgctgagaaaaccagctccatttactggtcactggtgctcccacactcaaactg ggcttccagtcgcagctctgctgggagctagcttgttgaccttgggctggtaacttgcctctgccagcttcagcccctcgtccgggagcctcgcattggcc tctcgaggttaccgcagcgatcgcatgcaacagtagatgcacggcgcccggcgggccggcacagtcgctgctcggaaatgacgccggtggtgatt ctcctctctgctgggtggctggtttggctgtccacactgaactcagcagagatgtttgtgcagcgatgacaaattgaggcgctgcccctgggagcttcttg aaaagggcttatttttaggccctttgcctcatgcactccctcgccactcctcgccggccaccccaggcctctcagggccctgcgcatctaggaacatgc ctgcccctgccagcctgcaccacctctctcgcgctctcggtcacctctcgggttctcctctgatgtcacagcttcaccatagcaacgctcagctgcgcccc cccgcGcccgGccGcaGCGtacaatgtgaggattcggtgGaagaaagcgcagggagctggcggcttGccagcccgagagattgcatttgtatgcca gagctgttcatgatggagcggaaaaaatatacacaaggaaggaagcaggcagccgctggatggaagtgtgttgttgccatggagatgcatggcttg gaagccggccccttgatgaggctgctttctccaccgccaagggcatttgccattgtgtgaagttggaggaaagccaatggggtgtcgaggcctccGcc cagccccggtgaccggggacccctgcccttgggcccccatcgcccatgcaccagaacaaaagaccgcccaacacataacccaagaggaagca ggatttgccaattcttggattcctggggcgcaggcagtctcccaaaacacccttccgagctcacagcgggcttggcagaggtggctgggcttcgtcac gtcccctaccccatacatgtgcgaaggctgcctagaagtttctacgtggttccagcggtgccaggaattcaaaggatcaactgtcagcagactcccga ggggagcaggggagggggcttttttgtttttggcagtaaaatacaGatcatataaaagtgtgcatctgtaagcaGacGgttcagtcaGaGtgaagacatt catgttgtaacacaaccatcaccaccgttcatctccagaacgttcttatcttccgaaactgaaactcagcatccattacacactgactcccGcttcGtccc ggcctcagtccctggcagccacttttcctttctgtctctgaatttccctatccaggtacctcatgtaagtggagtcagagtctccttctgcttaaaacttcaacg taataagtgtttcaaacatcagaacttttataatggcaggagattacatatttagagattctattacagattcttgaaaaaactagcaagggccgggcac agtggctcacgcctgtaatcccagcactgtgggaagccgagttgggtggaccacttgagttcaggaattcaagaccagcctggccaacatggtgaa ccccatctctactaaaaatagaaataaattagccaggtatggtggtgcatgcctgtaatcctagcttactagggaggctgaggtgggaggattgcttga acccaagcggcagaggttgGagtgagcGaagatcgcaGcactacacactccagcctggacaatagagcgagactcGatctcaaaaaaaataaa aatagcaagggctacatttgtttaaatcaagagaccttaaattgcattctagtcagcttttattgcatttagtattatagatttatacaaaagatacccttgctg agctggggcttatagttaaatcaggtactactaaaaggcaaaagacagaatgaaaagagggatcatgaacgtgactttcgcgactggcttattccact caacatagtgtcctcagggttcatctgggttagatcgtgtgccagggaggggtttcttgcatccccctggggcctggtgatcctagaacacctggctgtct ggacagcgtgtaggcaggtctgttcaacggctcttgggctcacttcctgccagcacgctggaggctggcactgggtgtctctgtcccttcacctgggcctt cttgcctcacagGTGCACATCCTCATGGGCTCCTGTTACAAGACCAAAAAATTCCTGCTCTCCCTGGCAGAA AACAAGCTGGGTCCCTGCATGCTCCTGGCACTGAGGGGGAACCAGACCATGGTGGAGgtaaggagctggt cggggtccctggtggggtggctggctccccgtcccttgtccgtgccgatagagcatctgctgggagGcaggagctgctgcaggcacggggggcagt gggtgaggcgtgcagtcccagccgtcctgagcttagtgggagcctcgagccttcatcatgcagtgtatttgtttctgttgtgatccagctgatccattgatc agtggggttggggacgcttctgttctgctcatttattgctgtgtaacaaaccacctctaagtgagggctttaaaacaagatcgttcatttcttttgcacatggg cattggggtacctgggcgcagctacgcacttctcacctggggcctcatcagtcagatggggccaggttgggttagccccaaggcttctGgcattggcct aagaggcctcagacaatgagggctttggcggctggggctccccagccgcacccttcacctcgtggcctccaggtagcctgtccacctgccaagaac acacacacccagccccacaggtcacccctcacctgctgctgctcctctctctccctgcacgctccaaagtccccagaagcctgagactcccagagca actgtcccaaagtccccagaagcctgagactcccagagcaactgtcccaagggaaccaaggcagaagccatgtcactttttaacttagcctcccttg gaaggcaggcggcatcacttctgccacatcctcctgctggcagtgagtcaccgcggccggccctcagtcaaagccgtgggagctagacttcacccc tcagtgggaagagcatcgaagagttggcaggcgcagcaaagccatgggagctcccgtggaaatgagagttcgggcagatgtgagcGctgggga agaggcagcgggaaggtgggagctgagcaggctgtggggacatCGcgggcggaggcttgctggaggccagggtggctggaacacagggagc caaggggcaagaggtctgggatgtggctggatgggcatgaagagccttctgggtacctagaggtgctgggaaggagtttggatttaatcttggctgtc ctgtgacagggattcggaggccatgggggagggctgagcagggagacaggagacaggcaagaggcgctgtgagaagcgtgggctgagtgacG tgctccttggtgagtgagaagttctagaactgagcaccatggcatgcacctgtagttccagcaacttgggatgctgaggtaggaggatcacttgagccc aggaggttgaaactagcctgggcaacatagcaagacctcatctcaaaaaaaaaaaaaatcgtcattggaaagggaatgtcagaggcagggctgt caggcgtgttgacccccaggccgaagagccacatgtgcagtcatgaggccctctaggaagctgtgtggtagatgggcccagggctctgagccattc cgtgagtttgagcacctacttcatgacagccactggggaaggaactggggagagagaggtgtGttaacttctggcctttccaccagtgctcaggggcc tgcaaacatcccccgggggcctgccccatgtccagacaccgcacggtaagcagatgcctgggagactcccatgtccattgacatttgaacctggag aacctcagtgcgtggtcactggtgctaccattgtacaagcaggaagttgggcaggtgatttgcccaggcttacacagccggggctgcagaaagggg atagtggggttgctggttttcaaaacaaggcccttggggtgcacagagtgtgctgagctagggtggcaggccgggtccgtaatgcacccctgcggttct ggacagATCCTGTGCTTGATGCTGGAATACAACATCATCGACAACAACGACACCCAACTGCAGATCATC
TCAACCCTGGAGAGCACAGACGTGGGGAAGCGCATGTACGAGCAGCTGTGTGACCGGCAGCGGGA GCTGAAGGAGCTGgtgagtccccggctgctccggaccactcccctgcccagcaggccagggggggccagggcgggatgcggggcagc tagtacttggacctgagtggacctcaatGtcgttgaattctcctccaaacGGcagaaattggtattacGacctgccacttttcaggtaatcaaagagaagc aaagcaatccccagagtcacacagctcattggggcctggccaggacattgcccaccctccGtcctccatgtcccttagacccttccatttGagtacatg ggggacGcaacttccaaatgccagcacccacacctctttgctgaaggactttgtatgtccacatgcatatactcacacatgtgtacacagaaggacgg aaggggcaggaaattcatgccttctgatctcctggagcagccctcaaccagtGCcttctggggagagtgtgtagaaataccGcagctccctcacccctt cagtgagatatgtttgagacatggcttctccaccatttcttagagtcGcccggtgggatttggtgccagtacccacccagtgatagctggattgataacac cccttccattataggtagccacagtgtcacttccccactctcccactggtgtttcttgggatcaccctccagtaaaccacctgtgctcaaacctcatctccg ggtttgcccctgagaccaagaccaccgtgttgccttgtaccaccaagaaaataacgatggctccatgagtgttgttaacagaggtggaagtctagaat ggaaacttggggaaaagaatggttgtaaccagcctggtttctgttgcagCAAAGGAAAGGCGGGCCCACCAGGCTAACACTG
CCCTCCAAGTCCACAgtgagttggtttggttctctttggggctggatggagaaggtgggttggtcctctctgttggggaacggcaggtggtgtct gctgctgagatgggaggtgatggagggcggggcacaaggaccccctagtacttaacacgccagctcttccaggaggtagctgggttacaggaaga gaaatgaaaaccaaaaaggaagttaaaatatgatacagattgttggtgataatagtgttgatatctagttattaatagtacttggaataatagcagatata ccttgagcatttgtgtgtcagatgctcttctattagtttgttttatcctcacagcaacccttggaagcttgtgtatcttaccattcgcatttcacaaggtctttaagg gtcttatttccttctattctgatgcccccattatatttgacacatggcttctacttcctggaGcaaaagggctgctcaggctccagacctcttgtctccattccag ccagcaggaaggagaacgtgccccttcctcttaagaaacttcctggaagttctacttgacatgtctacttacatcccattttccagatttagtgtgtggggc cacacactaaatcagccttcattccgggcagccacagggccgctgacactcaaggatggaggggagtgtggaggttgtcttaggaacctcccagtc cggtgctcaggcatgcgctggtgtcttcaggcattagagttgagtgtggcctcagtgttggcatgagctgctgcccaggagtgaggcagccagtcaca caccctgatgcacagacacagacacacagagacacaccaacacacacacacacaaatatacacagacgtgcacagacacacacatgtacag acacatgcatacacaaacgtgcacacagacacacacagatatacacacatacaggcacacacacacagacacacacacacacagacgcctgt gggaggatcgtggccttggaacaccccgctggtgcctcagggtgtgagtcacagcactggaggctttctcctccgGctggcagctgtcgtccatggga tgcgtggcagcccctccctctctggccacccccttggcccatcccaccgagctgtgcccccatctcagctcctgggatttaccgccccccaggaacag ctctctgtagggcgaggggagaggaggaggataggggataggagggctcagggtctcgggaactGGcagcagcaccctcaggcctctcGcccgt ctgcccgcagGACGCTGACTTGGCTCGTTTGCTGAGCTCCGGCTCCTTCGGAAACCTGGAGMCCTCAGT TTGGCCTTCACCAATGTAACCAGTGCCTGCGCCGAGCACCTCATCAAACTGCCTTCGCTCAAGCAGC
TGAACCTGTGGTCCACTCAGgtacgtcctcccgccctgctgcagtcccccacaccctcctccttcacctctgcactctcctccctattccccc gtaGcatcttcctttccGCtcagcctcctccctgccccctccccctccttcctgccccctccccctcctccctgccccccttactctcctccctgccccttcacc ctcctccctgctcccctcaccctcctccctgccccctcaccctcctccctgtcccccttactctcctccctgccccctcaccctcctccctgccccccttactct cctccctgccccttcaccctcctccctgctcccctcaccctcttccctgccccctcccGctcctccctgccccctccccctccGctacccacttaccctcctcc ctgccccctcaccctcctccctgccccctcaccctcctctctttcccctcaccctcctccctgcccactcaccctcctccctgccccctcacccccccaccc actcaccctcctccctgccccctcaccctcctccctgtcccccttactctcctccctgtcccctcaccctcctccctaactcgttcaccctcctcGctacccctt catcctcctccctgcccccgtcaccctcctccctgccccctcaccctcctccctgcccctcacccgcttccctgcctacaccccaggcattgcttaccaca cgacccttccctcaagctcagcacccactccctgaggctagaggaggttgaggacctcatgaagccctgcagcccatttcccatttggaaataatgtg ccGagttccgagtcctgaggttctgagaggtagagctgagacgtgagccaggcttcgctggcctgcggggggctgcgcaggaggcttctgggtcttttt gttatagtaacaccagtggctgctgagtcccagctcagtgtgaactgcactgctcagtactctgcacagggcagatgaaggggccttGactgcacacc tgtgaagtgcaggttctaccctcaccctaattttccagaggagaaactggggacagtccctgcagcctgcccccggcccagccctgtccttccactgtc cacccagcaggagaaagccacctaggcagcatctcgaagctagggagagacaagttcaaagccctccttcatggaggcaaaactgactccaag ggggGcctggcctggctccactcccaacagcagaagctggattctaacccggttcagagaggcgtgggattgtttaggggacgtgaacgcagccca gaccccagggcttggtgggccatgggcctcagagccaggctctgtccccatccctttcctccacctctgccccagcctcagagtcacttccccaggagt ggccgggagagggctgagagtttctgtgctctacagTTTGGAGACGCTGGCCTTCGGCTCCTGTCGGAACACCTCACC
ATGCTCCAGGTGCTGAACCTGTGCGAGACCCCGGTCACAGACGCTGGCCTGCTGGCCCTGAGCTgtg agtgcctccggggcagctggggggtgaggggccgcttgattcattccttccttgcttcagccaaactggccaagcactgactttgcaccatgcacagat agagaaattcgttcattcacaaacgtgttcactgcacacctgctgtggaccaggcaccattccatgtgccaggaacaacacagggaaaaatatccct aacctcagagagcttatattctagaggcaatagaaaaaatgagtaaggGcagcccatagcctGttgacactcacagtccactgaggggtcgagttca aggacggggctgtagtacattgccactgtggtcccctgaccagtggtggcagcgtcttctgggggctggtcagaaatgtacattcccaagcccactcc agacctcctgactcagacaccgtacggtaagcagatgcctgggaggctcccgtgcccgttgacatttgagaagccctgtcataatagaaggaggca cagaattctcaaggaacctagaaaggccagttcctgtgtgccaaaccccaggtgactgaactagcctcagggatattgagcccgggattctgtatttg accagctttcccttttccaggcccactgctttagacgggaagacccgtggctcagtgggaagagtcagaaaaggcttcccggggaggtgctgttgagt ctgggtgtgaagacagatttgtgggagttggccaagggggaggcaccctgagcaggggccatgactcctaccgggccgctggcaaatgctgggtg gcttgggaggaggtgggagcaggtgactgggtcagtggaggcagagcggcagcgctcggccagtttggctgcaaatgcagatgcgctgcttccact ggagtcccccgggggggcgcggtcctcatcaacagcacagattcctggtccctgctgcggcGctgctcagcgtctctgggagtgggtggaggggtct gccccccgtgcgactccaacaGaaaccagaggttgaggcttgctttcaagaagcagcaccgagtcaatgacgacggggggaccatccggggttc Gcttagtggggaggcctcgggcctgatctggggtgtggcaggcaagctctggggacatcaggtccaggcagtgggggcacacgacagagggacc agaagggagggaggctcagagggtgggaagaaaacgaaggctctgttcagaccagcacgtgcctgaaatagactttcggtgtctagtgggccac ctaccctggctgtgtctacgaaacctccctccccagccccatctcctaacagggggcctggcacctgcattgagctcctccagcttggccatcccatac cttcatacctttggggcctcgctctcctaacaactgtatGtgtctcttgtgcagCCATGAAGAGTCTCTGCAGTTTAAACATGAACAG CACCAAGCTCTCAGCTGACACCTACGAAGATCTGAAGgtaattccctccttcctccccactctcctcccGtccttcttctagccag catctggatgctggtgcatctcctgcacagagctcgttctccagtaaaggatgatgacatctacagatcaatacataaaataatggcagatcaaaaag agtgacaaagaggaagcagcagggaagtaattggaaataggaaggcctgtgtggcctggggtgatcagggatggtgcctttgatgaagaggccg caggagctgagacccaaaacataagaagccagaaataccaagggcgagaggaaaagcaagtgccaaggtcctgagacagaagagatgggc gaggcctggctttgcagcaaatgtaaccaggaactgagagagggaatgggctggggccggatggaaaaagccctcacaggtcacagcagagc agcgagtcatgcttttcaaagcatgctctggctgttaggaaataaatattttgagagggagcaggagtagaagcagggagggttgagcagggctggt gcctcaccactgagggctgcgctgcaccggcactaggccagcaagtgaaatccgggaaagaaaaaggatcggagggtggaaggcaggggcgt tttaagaaacacaGgtgcacatcttgggaaggttggaggagccaggccctcagtcgcctcctgtcaccccgtcctcctgggcctgtaccagctgcccc agaaggagcgggcgggactggcagagggccagcatcctgggagagaagggctgggctcaaaggtgagaaggcacagatggcacccgtgag ccacgctggcaccttcgtgctctggaagctacttagagggaatcccccggcagcccttggccggggcccacctcctacagccaggcctcctgGcgcG agggcgtgctcactggggcatcctccagatgcttGtggagcctctgctgtgtaccaggcccatgtcagggacagggacaccgaggtgtggctgccac agtccccttccgggggatagtcGctcctggcaggcacaggcaagctcagcaaaccaaggcgggcagagggcctggtggggccaggagggaca gtcggtagagagcgaggtccaagagaggacgtatgggacacagaaggtggcaggggcacagccagcagatcacccatcccagcgtttagacct cagccctcagggtggcgtctgcagaccagcaccctcggcaccactcgggggccaacagaaatgcaggatccaggccaccccaggtaaccccaG cctgggggatttctgggcacactcgtgtttgagaaatgctgcctggattatcttgagttcaaagtgctgaaagtcagatgctactgtgagaccaagctgg aaagagaacatggggagtgcaggaaaggccccttgggaagaaaaatcactttcagtcgatttttttattttcacacatttgagagagacatggtgccaa cttaatgctgccagcctgtgacGggcctccctgtggaggggactcgagcaaacagcagctgcctgtcctttggaggaggggcctctgctcagtgcca ggcaggccacgccccactgttcactgcccagtctggccagaccttcccatttttcaagagaaccttgaaatctagattcgtctgtgaagtctcctaattttg aaaggctggcttagtatgctttatagcactgcaggtggctgcaggtccccacctgtaacctctgcctgggcagtggggagccattgagggttgttgagc acaggagagcagcagcgaggaattgcatgtgcatgtgtgtatgtgtgtgtgttcatgcatacatacgtgtacatgtatccaaaaagtgtgctggccagtg tacaggaaagttgggagggaggatgtaaaggcatgaggccagttaggaggcagctacctctctgtatagtggaggcttgttaagaaaaaaagcca actgttcataaagaaaagtggaagtctgggtagcagaaacagaaagcagaaaacaatggagagacatagcaggtggaatcacagagtcgagta atgcatGcagGctagggggagcctcaagtgggaagaatctaagccaaaccctgggtacctgggatttcctgggatccacgtcactcaccctgtccatt ctctgataacgatgagaatatcactaacagtaaaaatgagaacaatttcctttcatagggcatatacggtgccctgggctttctacatttggtatttaaccc ctagcaccatcctttgagccagggactagagtcagatgggcccacagaggaagaaactgaggcccctagaggctgggttatctgcccacggtcac gcagcagcaagtggcagggcctggattcaaaccccagtgcttccacctgcgaagacagagaccaaaggccatctgaggcgggggcatgggaac cccgctgcctggtttctccggggccagggcacatcccacctgctctgttctctgcctaaggccacccacccctccaagagcccaggtagcccacagc accaaggtggggagagggtggcagagacccccagccggcaatgcgggtggagccaggcactggcagcttctgcaagggaatggcctacacgt gacaaggactcttattgccacccccagGCCAAGCTTCCCAATTTGAAGGAAGTGGACGTCCGCTACACCGAAGCC TGGTGAAGCTCCCAGCTCAAGGCAGGAAGACGTTTGCAACCGCGACAAAATAACTCTTGACTAACAG CCGCAGAGCAGCCGGTCCTGGGGTCCCACCCTGGTGCCCTGGCTGTGAGATAGATGGGGAGTCTTT CTGGGGGCGGAGGGGGGAGGGGGTGGGGAGGGGGCCCACAAGCACGCCCAGCCCCCGCCGAATT CTTTTAGCTTCGTAATTGGAACCTTTGACCTGATCTAAAGTGGACTTTGTAGCAACAAGAGGAGCATCA
GCGGGTCGGGGAGGGGTTTGGGGGTGGGCTGGGGGGTGGGGGACCCTTTGTGGATTTTCTTTGCC TTTGTGTTTGATGCCGTCGTGTGGGAAAAGTCAACTCCGATGCCACCATTGCGGGCCGGACGAAGGA TGCTTTCTTCCTAGAGGCTCCGAGCTGAGCTGCGAACTCGCCCCCCGCCCTTGGGACAAGAAGACCC AGTCACATCACTGCACCCGTCCTGTGTCCTCACCATTGCTATGCAAAGTGATTCTTGTTGTACATAAGA TTTAAATAATGCACCTATTTAAGACATGTTGACAAATTGCGGGTCTGGGACCCGCCTCTTATTTATGAA
GTCTTTGACCGTCCCCCCCGCCCGACCCCACCGCCCTCCCGCCCCCACCTGGCGTGTAGTACTGTA TAAACCAGTCAGCTGTCGGGTTAGTGGTAGTATTATTGTTATTTTTTTAAAGGAAACAAACAGACAACA AAAAGAAGAAAAAAAAAAAGAACCTCCTTGGAAAAATTAATTGCTTTTTCGTAATGGATTCTCTATGCTA ATGCTCTCTCGTCTGTCTGTCTGTCTGCCCACTCCCCCACCCACCACTGTGCGTTTCTGATTTCCAAA TGTCTCCAACTCCCTCACGAGGTGGGGCTCAGGCTGGAGGAGGAGGGATTAAGATCCCCTTGCTCC
ACTAAGGCCCAAGCTCTTTCTCTCGGCACCTTTTAGACTTGAATGGGAGGCTGCTAACCCGCCCTCTC CAGTCCACCCCGGTAAAAGAGCTGTTCCCCACCCCCAGGGAGCTCCTGTCCCTGTCAGCCTTTGCTG TCCCCTGTCCCCAACGGAGACTCTGTCACCCCTGGGCTCCCCCTGCCATCGTGTGCTTCACGTGGCC CCATGCATGCCCGCCTCTCTGCATGGTCTCTTGGGAAAAGAGAGATGTGTCGCCTCCGCCAGTCCGA CTGCCCTCCCCACCCCACCCCCGCCACCCCCCACATGTGACCACTGCAACGAAGACACTCCTTCTGT
CCCCACCTGCTCCGAAGACAAACCAACCTCCGTTTCTTTTATAAACAGTCGGCTTTTTCTTAATAAGCC CTCACTGTACAGAACAGCCCGTTGATGGTTTATTTGGGGTCCCCCTCTCCCCCCAGCCCTTTTTTCTG TTGGTTTAGCACAAATACTTCCCTCCTCCGGCACCTCCAAACCTACCCCACAGTCAGTGTACTTGTTTT ATATATATTTAATCTTATTCAATGGAAACCATGCTTTTGTCGTTTTATACTTTGCTAGGTAGACTTTATTA CCCCCCCACTATGCCCTCATTTTTTTAAAAAAGGAAAAAAAAAAGAAACTGGGTTCCAGTCTTAATTCA TTTTCCGTGCCAGGTTTTATTTCGTGTGTGTGTGAGTGTGTTCTGTTTTGTGTTTTGTTTTTTGTTGTTG TTTTTAGTTGTTTGGTTTTCTTTTCTTTCCCCCCTCCGGTCCCATACTTCACAGCACTCTGGTGCGGGA AGAAGCAGAAGCAAAAAAAATAAAAATAAAAAAATAAATAAAAATAAAAAAAATAAAAAAGGAAAAAAAA AAAAGAAGAAACAAGACATGCCACCTTTCCCCTCGCACTGTTGCTTTTCCTGATGGTTAATACTACTGT
CACGTAGCTGTGTACAAAGAGATGTGAAATACTTTCAGGCAAAAATAAACTGTAAGTGACTCATC
SEQ ID NO: 7 cMIPpyr:
GACGCCATGG GCTGTGGCTT AACGATTCTT TTGGTGAAtt ttgattcttt 80091337 atcaaaattt ccttccttcc ttccgtcctt ccttccttcc gtccttcctt 80091387 ccttccttcc ttccttcctt cctgcctccc tccctccc SEQ ID NO: 8
D16S511 agagagtttc tagagccgct gggggcttct tcatgtggag tcaaaggggt 80259075 cctttgtgag agacagtgca gggggagctt tcactcgtct gcctgctagg 80259025
ACTGTCCTGC TΆCATAAAGA GGGAGGCAGA GCCCCCGGAG CAAGTTCAGA 80258975 AAAATGCACG CACTGGCATG AGCACAAACA CACACACACA CACACACACA 80258925
CACACACACA CACACACACT CTCTCTCTCT CTCTCTCTCT CTCTCTCTCT 80258875
CTTTCTCTCC CTCCCTCCCT CCCTCCTGGG TTAGAAAATG AGGCCTCTGC 80258825
CTCACAAGTA TTTAATCTGG CTTTGGGCTG CCACGTCTGT CTCTGGGCCT 80258775
CACTGACCCC ACTATGGAAT GAGGGTCCAC AGAAGTGATC TCTAGCCCCC 80258725 TTCCACCACG AGGGTTTTAT GATTTTGTAA ACTGCTTCAA CAGAGACTTA 80258675
AGGTAACTGT CATCTTAGCT attagatttt tgaataatca aggtcatttc 80258625 catggaaata aacatttaca gagggatcca gcagcctctg aaaaatacgc 80258575 tccccttgga aaactggagg SEQ ID NO: 9
Primer LPEx2 for MLPA analysis of c-mip exon 2
GGGTTCCCTAAGGGTTGGAAGAATGCCCCGAAGTACTGTT
SEQ ID NO: 10 Primer RPEx2 for MLPA analysis of c-mip exon 2
TACAGCTCACGATTCCTGGGGGAACTGTCTTTCTAGATTGGATCTTGCTGGCAC
SEQ ID NO: 11
Primer LPExδ for MLPA analysis of c-mip exon 8 GGGTTCCCTAAGGGTTGGAGACTGAGGCTGTTTACTCAGGAGTACATC
SEQ ID NO: 12
Primer RPExδ for MLPA analysis of c-mip exon 8
CTTGCCTTGAACGAGCTCAACGCGGGGATGGAAGTGGTGAAGAATCTAGATTGGATCTTGCTGGCAC SEQ ID NO: 13
Primer LPEx20 for MLPA analysis of c-mip exon 20
GGGTTCCCTAAGGGTTGGACCATGAAGAGTCTCTGCAGTTTA
SEQ ID NO: 14 Primer RPEx20 for MLPA analysis of c-mip exon 20
AACATGAACAGCACCAAGCTCTCAGCTGACACCTACGAAGTCTAGATTGGATCTTGCTGGCAC -
For SEQ ID NO.: 15 to 48 Exons of c-mip Comparison between the databases: Human Genome Browser/UCSC (http ://genome.ucsc.edu;
CMIP Accession no:NM_198390.1), NCBI (http ://www .ncbi .nlm.nih. gov/; accession no: NT_010498.15) and Ensemble (http://www.ensembl.org/; CMIP accession no: ENSGOOOOO153815) Lowercase letters are exon sequence present in the NCBI database but not in Human Genome Browser or Ensemble.
Exon numbers in brackets are from the UCSC Browser, the first number is from NCBI
SEQ ID NO.:15 Exon 1 (1): ccccgcccccagccccctcccccggcgcggccatggatgtgaccagcagctcgggcggcggcgg cgacccccggcagat CGAGGAGACCAAGCCGCTGCTGGGGGGCGACGTGTCGGCCCCCGAAGGCA
CGAAGATGGGCGCCGTGCCCTGCCGCCGGGCTCTTCTGCTTTGCAACGGG ATGAGGTACAAAC TGC TGCAGGAGGGCGACATTCAGGTC TGTGTC ATC CG
GCACCCGCGGACCTTTCTCAGCAAGATCCTCACCTCGAAATTCCTGAGGC GCTGGGAGCCGCACCACCTAΆCGCTGGCCGACAACAGCCTGGCGTCCGCC ACG
SEQIDNO.:16
Exon 2 (partly coding according to NCBI) : gggaagtggaggaaccactgtccgcctgcggaggggcctcagtgttggccgtgctcatggcgcc ctcctcctggggctccctctcctctggtcctgcctctcctgcacgcccttcctgcctccttggt gccaggggagccagcccaggacagtctctgtgcctaggccctgccagcctggctgccctgcctc cagccatggggggcgggcggggagggagtcgaccagtgcttgtctttgcagaactgctggtgga ctgaatgtggttctgggggtggccaggcctgagggtaactcattttggaaggtttgggatgtca cttcacttaaggagccttcagcaacatggagtttaagtggccctcttcaccgtggccttgtggc ttcatgaatggagctgctgtggtcagcatggctggccctctggagaggagggtgggccatgagg agaagatgctgtgtctggaggccttaaccctttcctcccttctctccctccctccctcctgtct ctttctctctctgtctctttctctctaggtgcataaaaaaaattgctttcagataaagttgaca tgcaataaactgcatattctccctttgcttttaaaatgatgatctgtttcagccatgcaaagca gggtataaaataatatttcagtgtaaccactcagcggaagaaataaaccattccagttgcaata cctga
SEQIDNO.:17 Exon 3 (Exon 1 of CMIP Tc-mip isoform) :
GGCTTCTTGGATGGGCTGGGCGTGCATGGCATAACCGTTTGAGAACAACAAACCAAGCCGGCCG GGCTGCCGCTCTGTTTCCTGCGAGGAGGGAAGTTACAGATCTCCGCCCTGGCGTCCGGGGAAGG ATGGGACAGGCTGCTGAG SEQIDNO.:18
Exon 4 : gttaagtaacgtacccagctgctaggaggcagggctgggcttcagaccatggagtctggacccgggacctgggctgacagtt gcagcataacaaggattaggtgagatgctacatcagtgaggtgaccacttgtcctgttttgcctggacagtcccagtttacacttg tagtcctagtaaagtgatcagtgacgcttcatttcattcatagattacatggtcaacttatgtattgagtattcaggacaatcctggg gacatggtggcactgcctccatgtgagcaatggagggggaggtgacatggccacagagcacccagcctggctcgcctggg ggtgcctgggttacccgcagaacggagatgtcctcgttcattaactcattcgctcagcgatccatgggcctgtcacgtgcgcca ggcatttgggcgtcatgctgatggctgggcgaggatggggaggactcagacaaaagaagacagccagcaggctctgggaa atgaagtcacatccaagacctgcccttgtgagaaatgtcaagtgttaccgttatcatcatattcccattgctttgtttggcaaattatg acaatatggctgttaactaagcagattctgattacctattgtttgaatgcaaaaaacaaaacaaaaaaagaagcaagaaaaagc cttctggctatgtgaccagtatttagaaatttccattcctgaacaggcctcagggcagagccagtccccaggctgtgcggagcc actgctgtccctgcaatgccgggtaatcactttgtctttgctgctgcatccatcacgccctgtctctctgtccttagatatgtttgcgt gatgtcgtgggatgtggctttcccaggcagtctgttaagcagccagagatctactctggcctcctcgttgatgtttcattaaagag ctgccctagttcagcacaacctaaatattacagctaaagaacacaggccccggagtacggtgaccagtttgttctgatttgccca atactgtcccaattatactgaaagtcttgaattccaggagatccctcagtcccagggaaaccgggatacatggttaccctgctct ggagtgaacacagccctgggtcatcatctgtggctctgctgtgtgacagccgggtgcttgatggtgaagagtttecccctggta tgagcagtcagtgttatccctggtctcagtggatcactgggtcgcctgcctagtcccagatacctctgatccctttattttaattttta ttttttgaggcagggtctctgtgcacccaggctggagtgcagtggcaacaattatggcttactgcagccttgaccccccaggctc aagccatcctcccacctcagcctcccgagtaggtgggaccatagatacatgccactgcacctggctaatttttaaatttttttgtac agacaggtctctctgtgttgctgaggttgttcttgaactcttgagctcaagcgatcctcctgccctggcctcccaaggtgctggga ttataggcctgagccaccgcgcctggccttctgccccattgaggtgccagtctggtcaccttatctcactgtggatgtctagaagt gaattctgaatctcaacccactgccttgttctgaggttgcctgaaccccatggcacccctccagatccctgagcggatcaccag gcctgtc agtgacagacgtcatcacctgggaacagggcaggatgtggctgagtagctgacatgtaatgagg gcgtgttcacacctggccctgtgctccatggactttatatttaaatcctcacatgccaactgtc attttataaatggagaggtgaggcttgggaaggttcagttatttcaccagtgttagaaaaaggt cagtggggttgggcgccgtggcttacacctgtaattccagcacttgggaaggccgagggaggca gatcacttggggtcagaagtttgagaccagcctggcccacatggtgaaaccccctctctactaa aaatacaaaaattagcctggcgtggtcgtgggcgccagtaatcccaagtacttgggaggctgag gcaggagaatcgcttgaacccgggaggcagaggttgcagtgggctgagatcatgccactgcact tcagccttggtgatagagtgagactgtctcaaaaaaaggaaaaaagaaaatagaaaatggccag cggggctgggcaccatggctcatgcctgtaatcttagcactttgggaggccaaggcaggtggat cacttgaggtcaaaagtttgagactaccctggccaacatggtgaaactctgtctctactaaaaa tacaaaaattagccgggtgtagtagtgggtgccagtaatcccagctactcgggaggctgaggca ggagaatcgcttgaacccaggagatggaggttgcagtgagccaggattgtgccatcgcactcca gcctcggcgacagagtgagactcgtctcaaaaaaaaaaaaaa
SEQIDNO.:19
Exon 5 : gagttcgacgttctctggaggcttgggagatgcagccagggcgcagagttggcagtggctgcag acatctcttttcaatgtggacctcctgccacagccacgagattcaaggattttctaggaaaatg aacgccagtggatgtgtggaattttttcacaaagtaagtgacgggggtccctttgcacttctca tgcccccatggttaattgtgtgtgtgtgctggaagtggaggagggcggtgggtggtgcagctgt ttgaggactcacccttcttcggaaggctggggtcaatggggtgctgtttccccgagtcagttga aacgcccatggctaaagcctgtggatcatctcacccctgcatttcctatttggctctcactttg gtcgaaagacagcggagcgcagaaaatctgtcataattgtgaaagtaggacctgtcatcctcta agggtcattcttcctggcccaccgggcttgttgacacctggagttgggtagcagagagagggat gtcgggaccgtgaattaacagtggccaccacttcatggtgaatggcatccagacaacaccttca cctgtctggggaagaacataggctaggcctgggagaggctgtctactgaagtccctgcaggggt ccaggctggactatacccctccagcttggcgagagagccaaggaccagcaagggaagtgatgta cgctgagaaccgtccgggcgcccagcacgggtcagggcctttggcttacaggctgtgtttattt ctgagcagccctatgcagttggcattagcatcctaccgttcccactagccagctgggactcaaa ccgattaagtaactgtctacctgcttcctgtgttctgtgtctgttggtgttgattaaaaaatat aaaaggccaggttcatgcctgtaatcccagcactttgggtggccgaggcaggaagatcacttga gcccaggagttcaagaccagcctggggcaacatagcgagacctgcatctctatttttttttttt tttttttgagacagagtctcactctgttgcccaggctggagtgcagtggtgcgatctcaactga ctgcaacctccgcctcccaggttcaagcaattatctgcctcagcctcctgagtagctgggatta caggcgcccgcgccacgcctggctaatttttgtatttttattagagacggggtttcaccgtgtt ggccaggctggtcttgtactcctgaccttgtgatccacctgccttggcctcccaaattgctggg attccaggcatgagccactgtacccggcctcaaaatattttttaacagaagtagcagggtgtgg tgatgcctgtagttgcagctactcaggaggctgaggtgggaggatcacttgagactgggaggtt gaggctacagtgagctgtgatcgcgctactgcactccagcctggatgacagagtgagaccctgt ctcaaagcaaacacacacacaaaaagtaaaatccctgtgattatatttttgctagtacttgcta agctgtagctgcttcaatttgagagcagagcctgggctgcccaaagaaagtcctgaccccttaa ctcagaactccgtcagcagaggaattgggttctctgggctgttctctactcaggcacacccttg ctgggcctcccatgccccagggcagtccaggaaatagtgtgtgcatggtggaggggaaggacct tgactgagaccagacagggttggaatcttgggtctcctacttcctgtctctgtgaccttggcca accatttaacctcacttgaggaaattgagcctcagtttcctcatctgtaaagtggggttgttat gacgataagacaggataaaacacatgaaacagccagcattttaccacttttaacctacagaacg gcagtttgacatggctcactcaagtatgtccatcatggagatgcctcagtgaggtgctgggaca tggtagactcagtaatgttcccttcctctcctccagccctcagtgttgaaggctttgtcatcct gaatggcgacgaatgggaagtgagctctgaaactgaaaccaccatttggggacaaaagctggca ttgtagttgtggctctctgggaaggtctcatctgtcttctcggggctgttccctaaagctgtca ttacgctggctttgcggcaggggtgcagcagcagtgggtggtgatgcggctgctcttgagtggc ctggtggggtcatttcagtttcaaggccttggagagtgtgcttagcaggtggggcctaagattt gcatttcagctgcccaggtagtcaagaagcggtatagcaaagcggctgtgagcccattctctgg agtcctgctggctgggtttgaaccccaggtctgcctcttgcctgctggtgcactcagccaagtt acttcatctgtctgcctcgatttcttcatctctagtggtttctacctcagagactctgggagcc acaaacaggatcccacttcttgaacaatgcctagaacaaataagcaatttctatgctgtagaga gtgtttgcttacttaaaataatgcttattaaaaattggcgggtgcagtggctcatacctttaat cccagcactttgggaagccaaggtaggaggatcatttgagcccaggagttcaagaccagcttgg gcaagatagtgagaccccatctctcagagagagagagagggagggagggaggaagggggagaga gagagagagagagagagagagagagagaagatagaaag
SEQ ID NO.: 20
Exon 6 (partly coding according to NCBI) : ttgtttattctgttcactgctgtatatctgcagccctgggcacgtagtaggtgcttgataaata gttgttgacttgacttgttagcagctggtagaagcttcccctaatgtttcattctccaggcttt attttgagtgaagttgaggccagaaggcctcagtatcctcttccagggatgctgggaactgtag actggatgaccgtgagcttttcagtgtgtgtgtgtgtgttt ttttttttttttttttttgaagctggaagaaactgtacagaaaagaggcccattttgcagatat ggagaccaaggtccagagggaccagggccttgccttctagggcacctttgatgggagaatccgt aggcttgatgttgaggtccttcggtttgtctttctgccttttcattgcaactccagggggagag ggaccctctggcctcacccttggctctgacctcagtgcggtcagtaaagtctgcctttccctct aactttcacctctttctccccactgcctacgtgcctgccctctgcccactgaaagtgggagcat cagaagggagctgtgcccccaacccccatgtgagggacagatcagcaaaagcctcaaagtccgt gggccgtgtgtctcccatctcattgtggctggggccccgggcaagggcaccgtgcctcgggagt gagtcactctctctctgtgccaggcaggagctccagggactaggggtgacccaagagtgaaggc ctgatggggaggaggacccggcatgacagcccttggcttgctgggggaggagagtggaaacttt tacatttgtttctcgctttcaacccagtaagtaggaatcagcctaacagatcagcaagagcctc aaaccttggctcgttctgttcaagaagacagaaaccacaaaggcaaggagagctggagttggct ccataacaaagtgacccttgagcgtggaaaagcagaccagcaaccagcctcgccataaaccagt ctgaaaggcgagtgggtgacctgggaaaacgcacttgtggcccagttgacaattgaagggttaa atgaccttaataagccgaagtagctgtgaatcagtgagaaactgtgactgcctcaaggggaaaa ggtgcaaagaacaaaagagaaatacagtgaaaaactgtcagcttctcaaaaatcaaagagatgt aaattagaacagggggtgcagtttttcacctggagaactcgcagaggtttaaataagatcgtac attttacgaagaaggcatctgtagcacccttatgaatgctttcccttctgggtgcataatcgcc ctcctctaaattggatgctcttggggtgacctcacctggttctctctccccatcaccctgtatc ccttgagaatatctgtagtgacagctcctgagcacctgttgtgtatcatgcattctatacatac tgtctcattctgggggttccattgttccacttcgcagaggcaaaaactgaggcgcagaatgatg aaatgacttcggcgaggtaccccagtaggtaatggagctggcatctgaacctagggtaaccagc ctcaagcccgtgctctccttttttgcttattttccaccactgtttggtccctggctctcccaga gggacatggcactggctgggcctcaggggatcctggcttctcttgaattcagtgttaccttcca g ctgccgagacctgcaggaactgattccacaggacagtcctgccaaggaggcaagcgggccagag agaggcggcagcaactttctgacaggtgccggggaagtcccgatttgcaatgcttgcccgtttc tactgtgtaaatacttacactatggccaaagtgagatgcttaaatgcagagtttggaaaagatg ggcacagttggcttctgggagctggaaagagctggcttagccatagcttcaccactgcccaggt gggtgactttgacctggtgtcaacctctctgagactcggttttctcatctgtaaaatgggagca gtatttgctgcatagggtggttgattgtgaggattaaatgagtgaatgtgtgtctagcgcctgt actgtggtaggtgctgtctaagcgttcgttatgagtgcacttaactttcattcattcattcatt catteatteattcagetttcactaacttcttcagccctccagcatctgtctgtcaaagccaact gtccaccaggcctgtgctagaatcttccttttccctctctcccttggagtatcaatgggggaag ggggatggcctcaccccttctgcagacgggcttgtctggatccttgtttgctgtgatttgagcc aaggacagctgtagtttttttgtgttttttagaaatttccacttgtgtggctgcctcccttggt gtagccacagagggggtggagaaggcgcatcctctgggggtcgtggaccttccaaaagccaatc ctagcaccccgtgttgtcagtttagaggcagtggcctgggaactggcagtagacttccgggatg gctgtcgtggggccagtgctgtgcgggggaagcacactggcggtgaacctggcttggctgcttc tcagtggactgccttgggcaaaccactgctccgttctgagcctcggtgtatttttttagtctat aaaatgtgctaacaatggcctcctggcagg tggtgggaccgctagttttgaagaagccgaggtggaaacgccagggagccccaccctacccctg tgggacattgagagtctccagactgatccccttcttcctggaggccccagcaggtccctgggag gagaaccagggatggcctgaggaaaggctctccctggcaaaaacgcggtcctgtttgaacttgg ttctctgttaacatgtgctgaaaggagacgccggtgctctgtctctagcgatccctggttccag gtccccattctgttcccaatccaagcctttgggtcgttagtcctccaccaaggccaccagtgat caggacctctgtttccagagccctcctgtgtcccaggtgcgtgactgggacaagtctgagaaat gatcacagcccagaggagcctgcggacacgtgatgatgaaatgtcccatggggtcgtgaaacag aaaagggacattagagaaaaaaactgaggaactctgaatcaactgtggactttagcaataaaat gttttaatattatttcattagttgtaacaaattcaccacactaatgtcagatgtaaatagtcgg aaaatgaggtgtgggtatgcgtatgggaactctaggtactaactcagcagtttttctgtaaatc tgaagctattctcaaaaataaaatctgttaaagaaaaaaagacaggcgggtgcagtgactcatg cctacaatcccagcatttgggaggctcaggtgggaggattgcttgaggccaggagtttgagacc agcttgggcaacatagtgagaccctgtctctagcaaaactaaaaaattagctagatgcagtggt gtgtgcctatagttccagttactcaggaggctgaggtgagagatcttttgagcccaggaatttg aggctgcagcgagcagggatcacgtcactgcattccagcctggataatagagtgagaccctatg tcatttaggaaagagcccagcgcagtggctcacatctgtaatctcagcattttgggaggcccag atgggagcccaggagtttgagaccagtttgggcaacatagtgagatctcatctctaccaaaaaa aaaaaaaaaaaaaaaaaattaagaaaagaaaagaaaaaaaaggccttccaaagagttgcaggct cacaggggatcttggtacagacgagcaagcggtcccttccttggtgtgtgtaggacatggctta gtgagcacgtcgtgcaccttgcgtgtgtcccattcagcaccatggctgctcataccctgcctcg accgtgcgcgggagccctgcttccctggctggaagcctctcccttgatgcccaggagaaatagc ctcttgcactaacaagggtggatctgtgcttaaattacctcttacctggttcatcccaactctc ttccagccctttcctctgcccccacccagctgccctcagccttcagcctcactggaggaagggt gtctcggaagagttgcatcatgagacccttggtggagtcgctcaccaggacggcctt ggccccgaccctggcaccagcccagggtgactttgatgtcgtgttctggcgcgtccttgggccc atttccctcctgtctcccgggggctcttttgcatgttcttcccaaggcttcagagaccttcagc tccgcgtctgaagcagccatctctttcttggatctcaagagtggtgatttctggcaactgcctc agactccatttctcatctctgtctacaaaactagcctggagttgggctgtcgggttggcctgga catcctctgagcagcgattggcccttgccctgtttctgtgaatgaacgcggtcgctcttggaaa gagcccccaccaccttgcagatgtgctggggtagggtgggggcgtgcgaggttggattacatga gactttgggttctttcctgcagtcattcctaagcggtacttctctgcatctggcctttaacagt gagtggacggggccagtgttcttggagcacctactgtgtgcttgctctgttagttctttgtttc cttccctgacgggagttaggccttgccacccttatgttacagacggggagactggggctctgag aagcgacttccccagggtgcccggcccgcacatggtcgagcgggggtctcaaatcccgttgagt cttacttcaagtccaggctccttgatcgctggccctgcttgccctggtgcccacagtcccagag tcagtggcgccaaggtccctcaggctggttgtgaaatcagtttgagtgcagaatgacggcggtt cacatcgagcttggtgcccaccctgctagcctgcctgggacttccccagcattagcaccagcat cagtcctgcctcccaggaaccccctccgtctcagacacacctccatgattggtccctgcctcac atcccagtttcttcaaatatcagcaagtttcacactgagagagaaatgtagataaccaataata aaatgaaatgacctctggtccctattgtcagagccataatagtgacattacaaaaatgcacctt tagaccaggtgcagtagctcatgcctgtaatcccagcacttcgggaggccgaggcaggtggaac acttgagatcaggagttggagaccaggctggccaacacggtgaaaccccgtctctactaaaaat acaaacgttagccgggcgtggtggcgggcacctgtaataccaactgttcgggagggtgagtcaa gagaattgcttgaacctgggaggtggaggttgcagtgagccga
SEQ ID NO.:21
Exon 7 : tcattcttctcttgatggtcatttgggtagtttctagtttgggctacctaatgctcagggaaca cttgtgcaaacatctttgggagcacaaatatgggcctttctgtggaggaaggggattgctgggt tctaggggactcatgttcagcttcagcagagctgtcacaaggtggattcacagtttaactccct ccagcaatttaggattctgtttgcactgtgtctgtgccaacacttatcatttttcatcttttcc atttgagccagtctgctggtatgatggtctcatactctggtaacccctctggtctttaacttac tagttgcctgtagacaaaggccagggcgtgaagtccaaaggtcttggttttcttcccagctctc tcctgaatagctgtgtgcggttggtcaagttgtgcacctgctcagagtgttcatttctggtctg tcatgagagtgatgcaataccttcctcttgcaggattgtgggattaagggcttgtggaggtggg aagagccctggagatgtgggaggtgagcgaggggagcgggggggggggagtctcccagcctgga aggtcctgggactagagcagggggcgggacacctgcacccaggccctccaccaactccgtgggg ctccagcaggggcttgggccagttcccccattcagcttccttttggggttcctctgagtcttgt tggacactcaactgtcaaagatgcccagtggcacatatgaaaagtgccacactcaaggacacag atttctgttcctctcaccagccatcttcagggatcatctgtctcccccccagcttgatggctct gtgatggcagagccgtgtccctctccatcactggcctatccccaggtctgggcatagggttgca cctaggaggcctctgcttgttgaatgacttcatgaattcagtccttaggtgacagctcttatcc agggaggggactggaggatcaggacataactgttcccctgtagttctgagtctcggtttcctca tctgtgtggtttttaaaagtactaatcctgaccacaaggctggctgggaggatgaatgtgctcg ggaagaaggtgttttggaaactggcacacgctagagaagtggagggtatcgcctacaacagagc tgaccaacaggagggtat cgcctacaacagagctgaccaacgggggtatcgtctacaacagagctgaccaacaggagggtat cgcctacaacagagctgaccaacagggcggcgcctggccacatctggctctttacagtcaaatt aacaaaaattaaacaaaatgtgtaatttggttcctccaccacactggccatatttcaggtgctc agtggcccacaggtggctacagcattggccagtgcagatacggagcgtttgcatcatcacagac gatcctgtagggcagtgccagtatcaactcatttaggctacaaagaactttagagctatcacca agaaagtaagatcaaataaaacacaagagggatgtatttttctcccatgagattttcttgctca aagcctcattacttttactttacacatggttctaacagactgcatgccctggtttcacaggcca caacagaagagcagtaacgttcggctgggcatggtggctcacacctgtaatcccagcactttga gagactgatgcatgcggatcacctgaggtcaggcgtttgagaccagcctggccaacatggtgaa accccatgtctactaaaaaataacaaaaattatctgggcgtggtgttgtgtgcctataatccca gctacttgggaggctgaggcaggagaatcgcttgaagccgggaggcgggggttgcagtgggcca agatcatgccagtgtactccagcctgagtgacagagcaagactctgtctc
SEQ ID NO.:22 Exon (Ensemble) : TTAGGACAGTTTGAG
SEQ ID NO..23
Exon 8 (2) :
CCAACTGGGTACATGGAAAACTCAGTCTCCTACAGCGCAATTGAAGACGTTCAGCTGCTGTCCT
GGGAGAATGCCCCGAAGTACTGTTTACAGCTCACGATTCCTGGGGGAACTGTCTTACTGCAG SEQ ID NO.:24
Exon 9 : taccacctccttctctctctggcccccttggtgtgtgaggaagcacaggaatggatgtggacca ggcatgccctggagccagctcatcccagcttgcacctgcccaccagagctgatcgtgcccgtct ctccccagctctggcccaggggcatccccttgaaggtgtggaatcagccaaaatgggattgttc acaacacagaaatccgcacacgccgggatcagggcttgttgttccagagagcctgatgttaagc atttatcagcacagacctggccgtggctgctgacgctgctggcccctgtttgtggagtgtttgc acgtgccaggcaccgtgctgaggaagcacttttcatggattagctcattgtttgggatcttcgc acagctctccccgagcagggtgtattttgtcatcctaatgaataggaattgtcacaagaccagt agagcttgggcagtgctgatgggagggagctcagcaacagtctctccagggggctgtttctcct ccttggcctccgcaactctgggcagggggcacaggcttgggtcgtcaagcaacttgctgcagtc acaccactagacacgacagagccgagacttgaacctgcacctgtaagaggctcagcccttgtcg gagttcctgtgtcacacggagggcttgcctcctgcctgctttgcacttgggtagactcaagctc caccagcatcagggtggctggtgtggattcgtgcagtccagggttcaaaactctgagtccctga gctcactcaccagagcctgagtcctcaccacacttgctactggaatggatcatttatgcaaggc cagagattgctccagaccctgacctcggagagcagctgatgtttcgtagatgacttggggagcg ggaggtggtcacctgtagcgtgatccggatctcctcgaacaagggtgaaacaaagcggttacat gcttgagtgtgtgtgtgcgcgtttgtgtgcctcgaggcagaaggtggatgttcgtgcttggaga gagactctagccttcgtcagaccccctgaaccgtcagaggcagggtcactttggagagagggtt gtgggttctggtggggaacgcacgctgcacttcggcccagcctggggtggaggggtagccaatg gggaactcagaatggtccggtgttgtggtttacagcaggggtcagattacctgggttcaattcc tggccccgcaccacatgtctgtgaacactcaggaaagtttttaacttccaaagtctcagtttcc tcatttgtaccatgagatgacagtaccgacttcacagggctgtcttgtaaggactgaatgagcc agtccacacacaggactcagagctgtgtctggcgtccatgaaacaccatagcattactgttctg ttagcagaccgagaaaggaggtgagagccgcagtgatactcatgagggatgggagggctgcctt gggctgcattttattggaaaggactggatgatggcaatggtaatgataacaataataataacga tggctgcatttctgaccacctgccatgtgccaagcctggttctagatgctctacaagaataatt tctggtctttaaaacatccctggaaaatcagggttattgtccccattttacagatgggaaaatt gaggctgagatgtccaaagactcacagctagtgtggggtggagctgagaaggttttgtttcacc cgctgtgatgtttagcctaggtctgctgggtgccgtttaccatgatcttctgccattggcagga gaaggtcatggttaaatgcccagacttggaagccaggctaccctgggtctgaatgcacttcatt gtgagatctcagggtctcgatttttccctctgtgaaatgggcataatgataggtgccacctcat agggctgctgtgaggaccaaggagagactacgtggataacaaaagccaagttcctagaacagtc ctcatacacaggcccccagccagcccccaccatcctcactcccaggcctccaaccagttcatcc cattccctccc
SEQ ID NO.:25
Exon 10 (3) :
GCTGCCAATAGCTACCTGCGAGACCAGTGGTTCCATTCTCTGCAATGGAAG
SEQ ID NO..-26
Exon 11 tagaatagcacctgccatgtggtacccactcagaacattcattcttcttctctgatctacaagg acacagaggaaaacaggctcttggtgtcggaggatgctaggagacggggctgcagaagacggag gcacatgtgtggcacgcaggccaccgactcatgagcccagggcgggcatcacccatcagccacc gcatgctttgccctgaggcagagctcttctcaacatagcccctgcctggccacccagttgacag aggcagtgacagtgtcccccgtcctgcttgagtgaccgcccaggcctatggggcgagtgctcct ggaggccgggtcagtgccactggctctggctgtgcctccgtggggttttctcacagaagcttct gtggaacttccaggcaggcaccgtgggtccattcttggagggtcctaccctccgagaaggaagg cagaatggtggggaggcaaggatgggcgggagtcggccttgatccccttccaggcccagccacc tgcctgcttcatccaggttgaaaaggcaggaattctatccagattaatttctggcactcagtca aagagggctttgtgacctcttaagaggggatcaaagggattcagtggagaactgtgaaaggagg ggctttccccagaggcagggggcccagcccactccaagactgcaggaggggccctcagtgggag gtgcagctggtgagtccagcctggcagcctctttgtgcacgtgttcaatccaaatgggaaacct tttggggccaggctgccagtcccccgcgagggccacagtctccagcatctcccagccacagccc aagccccacagtgggtcatcagggaccccataactagtaaccagggctgcttcagggattgaaa ctaacaagtggcagagggccgggagcattgggaaagagagctcatgtctcgcaggctttcgtta cagtagagggagagaaaaacaattactaggcacctactagggtcgggagctctgctggggactt ctcaaaatttggttaggcctgtcttgaagcaggagctgaggaagcagagaggcacgtccaggat cacacagctagagacaggcagggctgtgaattgaacccaggggacaggaggaggatgggccttt tggcctcttccgttggagcccacagagctgccactttgcccagctggagctatctttggaagag acacaggacgttttcgaaataaacttctcattgaaggataaaatacatctagaaaagggtacaa atcaaaaagagttaccattcacctgggcccctcctccccaccatgggcagccactgctatcctg acttctagcagcacaggtgagctttgcatatacttgaactttatctaaatggactcagacaccc tgaactcttttgagactggcttcttatgatttgtctgtgttgtgtgtagcagcagtttgtctat tcactttgctgggtggtgttctgttgtctggttagactctgttaacttgttcattctgtggata ggtctttccagtttggggctgttacgaatagaccattgtaaacactctagtgtacatcttttgg tgaatgtgtgtccacagtcctgttgcgtatatgcctgggagctgaattatcattcgttgatgct gccctgcagttttgcaaagtggttgcaccagtgtatacttgcaccagcagtgtgcaagagccct aagacacagagcatttaaaaactggcacttacgaagctttttaaaataccgaaaaggacaaaga gaactaagaaaattcccactatccctaaatctctcttaacttcttttaaattgt
SEQ ID NO.:27
Exon 12 (partly coding according to NCBI) : gggtgtgtacgcgcgcgagccccagaggctgcggcagcagcagagcagcagagcagcagcccct gcctggcgcgacgtgcttccagtgcattctgagtcactcctctcctggcaaggggcacattcct gctgacgacttgtctcccgtggaggagcaacaggctctgctttccctggcctgagaaccctggc atatgtgcttgcctctgctgacagttgccagagcgatggcaagtgttgcccag SEQ ID NO.:28
Exon 13 (4) :
AAAAAGATTTACAAATATAAGAAAGTGCTGAGTAACCCAAGCCGCTGGGAAGTTGTCTTGAAAG AGATCCGGACCCTGGTGGACATGGCCCTGACATCCCCCCTGCAGGATGACTCCATCAACCAGGC CCCACTGGAAATCGTCTCGAAACTGCTCTCAGAG
SEQ ID NO.:29
Exon 14 (5) : AACACAAACTTGACCACCCAGGAGCATGAAAACATCATTGTG
SEQ ID NO.-.30
Exon 15 (6) : GCAATCGCTCCTTTGCTGGAAAACAACCACCCACCACCAGATCTCTGTGAATTCTTTTGCAAG
SEQIDNO.:31
Exon 16 (7) :
CACTGCAGAGAGCGGCCCCGGTCCATGGTGGTCATCGAGGTGTTCACCCCCGTGGTGCAGCGAA TCCTCAAGCATAACATG
SEQ ID NO.:32
Exon 17 (Partly coding according to NCBI) : ttttgcagatgcttattgaacactttcttggagtcaagagtgtggtgctctttgagtgtattgt gttattaaccctcatgccattcccatgacacctgtgcataggaggaatctgggacccagagagg tgggacgggataggcagggtctgatgagcagctgtgggtggtcctggtgggagctaaggagcag gcagcctgaggccagggcccattcccaatcacatgttgtactgagccagccaccacgttagatt ttagagtctcctggagcacgtgaaaacaactgaaaaagggtaaccacacatcatttcacttgtg atgtagcttgcctgtctccacaccatgcccctgaagaatagtatatcacctacagccccttccc cagtcaggaatggaagtgcatgacacatgtgctcctctaccccttccatgctcatggcagacat cattaatcaattatagcactctttctgtagagccagagacagcatcacactctttcccctcctg cattccaggccaccactaccaactgaaatcgtgttagtaccataatgaatgctatgtaccattc tctaccctaagcgattgcaaactgtaaatgaattgttgctgatttctgagcccctcctagattt ggggtaaattcatttcttgttttcagaacacaggggatagggacaccctgtgcagttctttctc caggacaaggagactccccactgggggatggggcggggtttctgccttaatttgggcgctcata gtttcaaggaggagctctttctggctttggccagctagaaggaaaggtgccctgtttgttaact ttaaaatcactacgggtgtagtgtatggagtgggctgtgccatgctggagttcagagcaaaggt tcttcaggttttcttgcgaaggaccttaacttgtcaatggcagagccacacccccgggacatac ttggcagaggaatgcctcttcaggcacataaacatttttgcatactccatgttagtcaataaac cgtttcataagggttctttgaggacatctgacttcaaagggaaaaaattcataattcagacagg ctctcggggcttcaccatacaacgcctttcttgtatttggttagttttatgggcctggagtgtt gaccatgtattaattttctctataaaaatcagaaccgctctgggcagacccagaatttatagta tctgtggcagtctggcagagagtagggaccctcagccatgagtcctcgcctcacttgtaacgag taccccctaagtgatcccaggtgtctggggatgctttaacgcacccagatcccaccttgctctt ggcgcctcctaattacacaccatgagcggcggcggcagaggagaactgctgggaggaccgagga ggatccgcctctcgtgtagaagaacagactgtattaaacagtgattatggccatgccaggcaca ggaagacctgacctcatggaatcctaacaacacaggcggtgggcgagagagagctttgacattt actcactgaatgcgccctgatgcttaatgagtggcacgggtcagcagcaccgttgtggagctgg ggctctcagctggtgt-ggg gggggggtcatgtctctggctaaggagcgtacctagcctgcctaagccatgagcctgttggggt ggcatgaacagtgactgctcttcaccccaaatgcagtgtttctccttaaggaggcactcagaca tttaggaaacggggggaacgtagccacggtgctgttctgggatttgggggctcccccattctgg gtgcatctcttgcaaatatgttatgtgctccctttcacggatgagcaaactgaagctttgagag tctcaaagaatgttctttactagactgaaataaaaactagaaac
SEQIDNO.:33 Exon 18 (8) :
GACTTTGGGAAGTGCCCGCGACTGAGGCTGTTTACTCAGGAGTACATCCTTGCCTTGAACGAGC TCAACGCGGGGATGGAAGTGGTGAAGAAGTTCATTCAGAG
SEQ ID NO.:34 Exon 19 (9) :
CATGCACGGCCCCACAGGGCACTGCCCCCACCCCCGGGTCCTGCCCAACCTGGTGGCCGTGTGC CTGGCTGCCATCTACTCCTGCTATGAAGAGTTCATCAACAG
SEQIDNO.:35 Exon 20 (10) :
CCGCGACAATTCCCCAAGCCTGAAGGAAATCCGGAACGGCTGCCAGCAGCCGTGCGACCGGAAG CCCACTTTACCTCTGCGCCTTCTGCACCCCAGCCCGGACCTGGTGTCTCAGGAAGCCACGCTGT CTGAGGCCCGGCTCAAGTCGGTGGTCGTGGCCTCCA
GTGAGATCCACGTGGAGGTGGAACGCACCAGCACTGCCAAGCCGGCGCTGACGGCCAGCGCAGG CAACGACAGCGAGCCCAACCTCATCGACTGCCTCATGGTCAGCCCCGCCTGCAGCACCATGAGC ATCGAGCTGGGCCCCCAGGCCGACCGCACGCTCGGCTGCTACGTGGAAATCCTCAAGCTGCT
SEQ ID NO.:36
Ξxon (Only present in Ensamble)
GTGTGCCCAGGGGTTCAGGACCAGCCCCGCCTCGTGGTCCCAGCAGCAGAGGTCAGGTGAGGGC
ATAACCACATTCAGTGACCGCCACCCCCAGCCAAGCGGAATTCCAGATCCCACTAAGAGAGCCA CTCCAAGAATACGTCACAGCCCTGAGTGTCTTCAAGGCAGAGAAGGGTGCCAGCTCTCCCAGCG GCAGCCGGGTTAGGGCGCCTCCCTGGATTTTGGAGGGGGCTCCCTGCTCTGATGGAGGTAGAAG CCTCCAGGCCAGAGAGTGGCCCCGCTGTCCACTCCAACTCCCCAGTTCCAGCTGGTTTTTGCAA ACACCGTGAGCTCCTGGGCCTTCTGGTATTTGGGGCCTGACTCCTATTTCTCATTAAGCACTAA GGGTTTGAGTTTCAGCACGCAGTTGACACACATTTTTTCCTTCTTCATAAACATGCTCATGAAT GGGGGCTCTGTTCTCCCCCATCTGCGTCCAGACCCCCTGCCTGCCCGCA
SEQ ID NO.:37
Exon 21 (11) :
GTCAGACTATGATGACTGGAGACCGTCTCTGGCCAGTTTGCTTCAACCCATTCCATTCCCCAAA GA
SEQ ID NO.:38
Exon (Only present in Ensamble) CCCCGAGGGTCCCCAGTACTTGAGGCCGGAGAAATCCACCTCCTAAGAGGCGCTCAGTCTCAGC AGAGTCGTGACGTCATTGGCCTCAGTCCCCGTCCCCATAGGCCTGGGCGCTCTTGGCTGTGGCA ACTGTCTTAGAAGAATGGTCCCCCATGGCCGCTGATGTG TGCAGTAA SEQ ID NO.:39
Exon 22 (12) : AGCTCTCGCACATGAGAAGTTCACCAA
SEQ ID NO.:40 Exon 23 (13)
GGAACTGAAGTACGTGATTCAGAGGTTCGCCGAAGACCCCAGGCAAGAG
SEQ ID NO.:41
Exon 24 (14) : GTCCACTCATGCCTGCTGAGCGTGCGGGCCGGCAAAGATGGCTGGTTCCAGCTCTACAGCCCCG GAGGGGTGGCCTGCGACGATGACGGGGAGCTGTTCGCCAGCATG
SEQ ID NO.:42
Exon 25 (15) : GTGCACATCCTCATGGGCTCCTGTTACAAGACCAAAAAATTCCTGCTCTCCCTG GCAGAAAACAAGCTGGGTCCCTGCATGCTCCTGGCACTGAGGGGGAACCA GACCATGGTGGAG
SEQ ID NO.:43 Exon 26 (16) :
ATCCTGTGCTTGATGCTGGAATACAACATCATCGACAACAACGACACCCAACTGCAGATCATCT CAACCCTGGAGAGCACAGACGTGGGGAAGCGCATGTACGAGCAGCTGTGTGACCGGCAGCGGGA GCTGAAGGAGCTG SEQ ID NO.:44
Exon 27 ( 17 ) : CAAAGGAAAGGCGGGCCCACCAGGCTAACACTGCCCTCCAAGTCCACA
SEQ ID NO.:45 Bxon 28 (18) :
GACGCTGACTTGGCTCGTTTGCTGAGCTCCGGCTCCTTCGGAAACCTGGA GAACCTCAGTTTGGCCTTCACCAATGTAACCAGTGCCTGCGCCGAGCACC TCATCAAACTGCCTTCGCTCAAGCAGCTGAACCTGTGGTCCACTCAG
SEQ ID NO.:46 Exon 29 (19) .-
TTTGGAGACGCTGGCCTTCGGCTCCTGTCGGAACACCTCA CCATGCTCCAGGTGCTGAACCTGTGCGAGACCCCGGTCACAGACGCTGGC CTGCTGGCCCTGAGCT
SEQ ID NO.:47
Exon 30 (20) :
CCATGAAGAGTCTCTGCAGTTTAAACATGAACAGCACCAAGCTCTCAGCTGACACCTACGAAGA TCTGAAG
SEQ ID NO.:48
Exon 31 (21) : GCCAAGCTTCCCAATTTGAAGGAAGTGGACGTCCGCTACACCG AAGCCTGGTGAAGCTCCCAGCTCAAGGCAGGAAGACGTTTGCAACCGCGA CAAAATAACTCTTGACTAACAGCCGCAGAGCAGCCGGTCCTGGGGTCCCA CCCTGGTGCCCTGGCTGTGAGATAGATGGGGAGTCTTTCTGGGGGCGGAG GGGGGAGGGGGTGGGGAGGGGGCCCACAAGCACGCCCAGCCCCCGCCGAA TTCTTTTAGCTTCGTAATTGGAACCTTTGACCTGATCTAAAGTGGACTTT GTAGCAACAAGAGGAGCATCAGCGGGTCGGGGAGGGGTTTGGGGGTGGGC TGGGGGGTGGGGGACCCTTTGTGGATTTTCTTTGCCTTTGTGTTTGATGC CGTCGTGTGGGAAAAGTCAACTCCGATGCCACCATTGCGGGCCGGACGAA GGATGCTTTCTTCCTAGAGGCTCCGAGCTGAGCTGCGAACTCGCCCCCCG CCCTTGGGACAAGAAGACCCAGTCACATCACTGCACCCGTCCTGTGTCCT CACCATTGCTATGCAAAGTGATTCTTGTTGTACATAAGATTTAAATAATG CACCTATTTAAGACATGTTGACAAATTGCGGGTCTGGGACCCGCCTCTTA TTTATGAAGTCTTTGACCGTCCCCCCCGCCCGACCCCACCGCCCTCCCGC CCCCACCTGGCGTGTAGTACTGTATAAACCAGTCAGCTGTCGGGTTAGTG GTAGTATTATTGTTATTTTTTTAAAGGAAACAAACAGACAACAAAAAGAA GAAAAAAAAAAAGAACCTCCTTGGAAAAATTAATTGCTTTTTCGTAATGG ATTCTCTATGCTAATGCTCTCTCGTCTGTCTGTCTGTCTGCCCACTCCCC CACCCACCACTGTGCGTTTCTGATTTCCAAATGTCTCCAACTCCCTCACG AGGTGGGGCTCAGGCTGGAGGAGGAGGGATTAAGATCCCCTTGCTCCACT AAGGCCCAAGCTCTTTCTCTCGGCACCTTTTAGACTTGAATGGGAGGCTG CTAACCCGCCCTCTCCAGTCCACCCCGGTAAAAGAGCTGTTCCCCACCCC CAGGGAGCTCCTGTCCCTGTCAGCCTTTGCTGTCCCCTGTCCCCAACGGA GACTCTGTCACCCCTGGGCTCCCCCTGCCATCGTGTGCTTCACGTGGCCC CATGCATGCCCGCCTCTCTGCATGGTCTCTTGGGAAAAGAGAGATGTGTC GCCTCCGCCAGTCCGACTGCCCTCCCCACCCCACCCCCGCCACCCCCCAC ATGTGACCACTGCAACGAAGACACTCCTTCTGTCCCCACCTGCTCCGAAG ACAAACCAACCTCCGTTTCTTTTATAAACAGTCGGCTTTTTCTTAATAAG CCCTCACTGTACAGAACAGCCCGTTGATGGTTTATTTGGGGTCCCCCTCT CCCCCCAGCCCTTTTTTCTGTTGGTTTAGCACAAATACTTCCCTCCTCCG GCACCTCCAAACCTACCCCACAGTCAGTGTACTTGTTTTATATATATTTA ATCTTATTCAATGGAAACCATGCTTTTGTCGTTTTATACTTTGCTAGGTA GACTTTATTACCCCCCCACTATGCCCTCATTTTTTTAAAAAAGGAAAAAA AAAAGAAACTGGGTTCCAGTCTTAATTCATTTTCCGTGCCAGGTTTTATT TCGTGTGTGTGTGAGTGTGTTCTGTTTTGTGTTTTGTTTTTTGTTGTTGT TTTTAGTTGTTTGGTTTTCTTTTCTTTCCCCCCTCCGGTCCCATACTTCA CAGCACTCTGGTGCGGGAAGAAGCAGAAGCAAAAAAAATAAAAATAAAAA AATAAATAAAAATAAAAAAAATAAAAAAGGAAAAAAAAAAAAGAAGAAAC AAGACATGCCACCTTTCCCCTCGCACTGTTGCTTTTCCTGATGGTTAATA CTACTGTCACGTAGCTGTGTACAAAGAGATGTGAAATACTTTCAGGCAAA AATAAACTGTAAGTGACTCATC

Claims

Claims
1. A method for detecting a predisposition to a period of metastasis-free, recurrence-free and/or short disease-free survival in an individual suffering from breast cancer comprising establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO:2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID NO:4) or part thereof in said breast cancer sample, and/or iii) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample,
wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-iii) compared to a cut-off value is indicative of a period of metastasis-free, recurrence-free and/or disease-free survival and/or
wherein an increase in said amount of said gene, the expression level of said transcriptional product, translational product or part thereof determined in i) - iii) compared to a cut-off value indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival
with the proviso that a genetic marker is not the genetic marker D16S511.
2. A method for determining the treatment regime for an individual suffering from breast cancer comprising the steps of establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO:2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID NO:4) or part thereof in said breast cancer sample, and/or iϋ) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, iv) assessing the outcome of i), ii) or iii) v) determining the risk of developing metastasis and/or having a reduced overall survival, vi) deciding on the treatment regime of said individual suffering from breast cancer based on the outcome of iv) and v)
wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-iii) compared to a cut-off value is indicative of a period of metastasis-free, recurrence-free and/or disease-free survival and/or
wherein an increase in said amount of said gene, the expression level of said transcriptional product, translational product or part thereof determined in i) - iii) compared to a cut-off value indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival.
3. A method for classification of at least one tumour from an individual suffering from breast cancer comprising the steps of establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO: 1 and/or SEQ ID NO:2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID NO:4) or part thereof in said breast cancer sample, and/or iii) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample, iv) assessing the outcome of i), ii) or iii)
wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-iii) compared to a cut-off value is indicative of a period of metastasis-free, recurrence-free and/or disease-free survival and/or wherein an increase in said amount of said gene, the expression level of said transcriptional product, translational product or part thereof determined in i) - iii) compared to a cut-off value indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival.
4. A method for determining the prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival in an individual suffering from breast cancer comprising the steps of establishing a breast cancer sample i) determining the amount of a c-mip gene (SEQ ID NO: 1 and/or SEQ ID
NO:2) or part thereof in said breast cancer sample, and/or ii) determining the amount of a c-mip transcriptional product (SEQ ID NO:3 and/or SEQ ID NO:4) or part thereof in said breast cancer sample, and/or iii) determining the amount of a c-mip translational product (SEQ ID NO:5 and/or SEQ ID NO:6) or part thereof in said breast cancer sample,
wherein a decrease in said amount of said gene, transcriptional product, translational product or part thereof determined in i)-iii) compared to a cut-off value is indicative of a period of metastasis-free, recurrence-free and/or disease-free survival and/or
wherein an increase in said amount of said gene, the expression level of said transcriptional product, translational product or part thereof determined in i) - iii) compared to a cut-off value indicative of an increased risk of recurrence, acquisition of metastasis and/or short disease-free survival.
5. The method of any of claims 1 to 4, wherein said period of metastasis-free survival is up to 10 years.
6. The method of any of claims 1 to 4, wherein said metastasis is observed in liver and/or lung.
7. The method of any of claims 1 to 4, wherein said recurrence-free survival is defined as the period of time of up to 10 years, wherein no return of cancer has appeared, at the same site as the original (primary) tumour or in another location, after disappearance of the tumour.
8. The method of any of claims 1 to 4, wherein said breast cancer sample is a malignant primary breast tumour, a ductal carcinoma, a lobular carcinoma, an axillary node tumour, or any biopsy thereof.
9. The method of any of claims 1 to 4, wherein said breast cancer sample is an invasive or non-invasive breast cancer.
10. The method of any of claims 1 to 4, wherein said breast cancer is a hereditary or nonhereditary sporadic breast cancer.
11. The method of any of claims 1 to 4, wherein said breast cancer is of stage I, HA, HB, IHA, IMB, IHC, IV or carcinoma in situ.
12. The method of any of claims 1 to 4, wherein said breast cancer sample is an invasive ductal carcinoma.
13. The method of any of claims 1 to 4, wherein said control sample is any tissue sample in non-diseased state.
14. The method of any of claims 1 to 4, wherein said control sample is selected from the group consisting of blood sample, buccal swap sample, hair sample, sample of nail, non-malignant breast sample and serum.
15. The method of any of claims 1 to 4, wherein said increase or decrease is an increase or decrease compared to said control level of at least 10%.
16. The method of any of claims 1 to 4, wherein said individual is a male or female.
17. The method of any of claims 1 to 4, wherein said individual suffers from unilateral breast cancer, bilateral breast cancer, secondary tumours in the lymph nodes in the axilla.
18. The method of any of claims 1 to 4, wherein said individual has received treatment in the form of surgical removal of tumours, chemotherapy, adjuvant radiotherapy and/or hormonal therapy.
19. The method of claim 18, wherein said surgical removal comprises lumpectomy or mastectomy.
20. The method of any of claims 1 to 4, wherein said amount of said c-mip gene is determined in at least one coding region of said c-mip gene.
21. The method of any of claims 1 to 4, wherein said amount of said c-mip gene is determined in at least one regulatory sequence of said c-mip gene.
22. The method of any of claims 1 to 4, wherein said amount of said c-mip gene is determined by determining the presence or absence of at least one genetic marker present in said c-mip gene.
23. The method of claim 22, wherein said at least one genetic marker is specific for c-mip.
24. The method of any of claims 1 to 4, wherein said amount of said c-mip gene is determined in at least a part of the c-mip gene comprising at least one genetic marker selected from the group consisting of CMIPPYR and D16S511.
25. The method of any of claims 1 to 4, wherein said amount of said c-mip gene is determined in at least a part of the c-mip gene comprising the genetic marker CMIPPYR.
26. The method of any of claims 1 to 4, wherein said amount of said c-mip gene is determined in at least a part of the c-mip gene comprising the genetic marker
D16S51 1.
27. The method of claim 26, wherein said at least one genetic marker is selected from the group of SNPs, deletions, insertions, duplications and simple tandem repeats.
28. The method of claim 26, wherein said at least one genetic marker is simple tandem repeats.
29. The method of claim 26, wherein said genetic marker is CMIPPYR.
30. The method according to any of the claims 26-28 with the proviso that the genetic marker is not the genetic marker D16S511.
31. The method according to any of the preceding claims, wherein said amount of the c-mip gene is determined in i) a nucleotide sequence with SEQ ID NO: 1 and/or SEQ ID NO:2, ii) a nucleotide sequence having at least 90 % sequence identity with a sequence of (i), or with a fragment thereof, and/or iii) a nucleotide sequence complementary to any of the sequences of (i) or (ii).
32. The method according to any of the preceding claims, wherein said amount of the c-mip gene is determined in the transcriptional product in i) a nucleotide sequence with SEQ ID NO: 3 and/or SEQ ID NO: 4, ii) a nucleotide sequence having at least 90 % sequence identity with a sequence of (i), or with a fragment thereof, and/or iii) a nucleotide sequence complementary to any of the sequences of (i) or (ii).
33. The method according to any of the preceding claims, wherein said amount of c-mip is determined in the translational product in i) a nucleotide sequence with SEQ ID NO: 5 and/or SEQ ID NO:6, ii) a nucleotide sequence having at least 90 % sequence identity with a sequence of (i), or with a fragment thereof, and/or iii) a nucleotide sequence complementary to any of the sequences of (i) or (ii).
34. An antibody directed to an epitope of c-mip protein or part thereof.
35. The antibody of claim 34 for use in the detection of the presence or absence of a c-mip protein or part thereof.
36. The antibody of claim 34 wherein said antibody is monoclonal, polyclonal, or a mixture of at least two monoclonal antibodies.
37. The antibody of claim 34, wherein said antibody is monoclonal.
38. A genetic marker of c-mip with the proviso that the genetic marker is not the genetic marker D16S511.
39. The genetic marker of claim 38 wherein said marker is CMIPPYR or CMIPPYR in combination with D16S511.
40. An oligonucleotide primer and/or probe for detecting a c-mip gene or a part thereof, wherein said at least one nucleotide primer and/or probe detects at least one genetic marker of c-mip or part thereof.
41. The nucleotide primer and/or probe of claim 40, wherein said nucleotide primer and/or probe is a primer for the amplification of the genetic marker CMIPPYR.
42. An oligonucleotide primer pair, wherein the at least 2 primers can amplify c-mip or part thereof.
43. The nucleotide primer pair of claim 42, wherein said primer pairs are at least one primer pair for amplification of CMIPPYR.
44. Use of an antibody as defined in claim 34 for the determination of the predisposition of and/or prognosis for a period of metastasis-free, recurrence- free and/or disease-free survival of an individual suffering from breast cancer.
45. Use of at least one detection member for a genetic marker of c-mip or for a second genetic marker in linkage with said genetic marker in a kit for the determination of the predisposition of and/or prognosis for a period of metastasis-free, recurrence-free and/or disease-free survival of an individual suffering from breast cancer.
46. Use according to claim 45, wherein the detection member is a nucleotide primer and/or probe.
47. Use according to claim 45, wherein the detection member is a primer pair.
48. Use of a method as defined in any of the claims 1-33 for producing an assay for detecting a predisposition to and/or determining the prognosis to a period of metastasis-free and/or recurrence-free and/or disease-free survival of an individual suffering from breast cancer.
49. Use of a method as defined in any of the claims 1-33 for producing an assay for determining the treatment regime of an individual suffering from breast cancer.
50. Use of a method as defined in any of the claims 1-33 for producing an assay for classifying a tumour from an individual suffering from breast cancer.
51. Use of a composition as defined in any of claims 52 or 53 for the treatment of an individual suffering from breast cancer.
52. A gene therapy vector comprising i) a DNA sequence identified as SEQ ID NO: 1 and/or SEQ ID NO:2, or a fragment thereof, or ii) a cDNA sequence of the sequence identified as SEQ ID NO: 1 or a fragment of said DNA sequence.
53. A vector comprising a nucleic acid sequence selected from the nucleic acid sequences identified as SEQ ID NO: 1 and/or SEQ ID NO: 2, or a fragment thereof, said sequence, or said fragment comprising a polymorphism associated with a predisposition to and/or prognosis of metastasis and/or recurrence according to any of the claims1-33, said sequence being operably linked to a promoter sequence capable of directing the expression of a variant protein encoded by said sequence.
54. A pharmaceutical composition for the treatment of metastasis and/or recurrence in an individual suffering from breast cancer, comprising a vector as defined in claims 50 or 51 and a pharmaceutically acceptable carrier or excipient.
55. A pharmaceutical composition for the treatment of metastasis and/or recurrence in an individual suffering from breast cancer comprising the c-mip gene or fragment thereof, or a transcriptional or translational product or part thereof and a pharmaceutically acceptable carrier or excipient.
56. A vaccine for the prophylaxis or treatment of metastasis and/or recurrence in an individual suffering from breast cancer comprising at least one expression product from gene with SEQ ID NO:1 and/or SEQ ID NO:2 or a fragment thereof.
57. A method of treatment of an individual suffering from breast cancer having the predisposition to and/or prognosis of metastasis and/or recurrence, said method comprising administering to said subject a therapeutically effective amount of a gene therapy vector as defined in claims 52 or 53 or a pharmaceutical composition as defined in claims 54 or 55.
58. A kit for use in the method as defined in any of claims 1 , 2, 3 and/or 4, comprising at least one detection member, such as a detection member selected from the group consisting of antibodies, primers, probes and primer pairs.
59. An assay kit for use in the method as defined in any of claims 1 , 2, 3, and/or 4, said kit comprising reagents and instructions for the performance of the assay method and for the interpretation of the results.
PCT/DK2008/000011 2007-01-15 2008-01-15 Predisposition to, prognosis for and treatment of breast cancer relating to human chromosome 16 WO2008086800A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US88497507P 2007-01-15 2007-01-15
US60/884,975 2007-01-15
DKPA200700052 2007-01-15
DKPA200700052 2007-01-15

Publications (2)

Publication Number Publication Date
WO2008086800A2 true WO2008086800A2 (en) 2008-07-24
WO2008086800A3 WO2008086800A3 (en) 2008-09-04

Family

ID=39433866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2008/000011 WO2008086800A2 (en) 2007-01-15 2008-01-15 Predisposition to, prognosis for and treatment of breast cancer relating to human chromosome 16

Country Status (1)

Country Link
WO (1) WO2008086800A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140024A1 (en) * 2009-06-03 2010-12-09 Institut National De La Sante Et De La Recherche Medicale (Inserm) Methods for diagnosing and treating a renal disease in an individual
WO2014140896A3 (en) * 2013-03-15 2015-05-21 Fundacio Privada Institut De Recerca Biomedica Method for the diagnosis, prognosis and treatment of cancer metastasis
US10793642B2 (en) 2014-12-11 2020-10-06 Inbiomotion S.L. Binding members for human c-MAF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374533A (en) * 1988-05-10 1994-12-20 Tetjin Limited Method for determining chondrocalcin
WO2005005989A1 (en) * 2003-07-11 2005-01-20 F. Hoffmann-La Roche Ag A method for predicting the metastatic potential of breast cancer
WO2006052218A1 (en) * 2004-10-06 2006-05-18 Agency For Science, Technology And Research Methods, systems, and arrays based on correlating p53 status with gene expression profiles, for classification, prognosis, and diagnosis of cancers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5374533A (en) * 1988-05-10 1994-12-20 Tetjin Limited Method for determining chondrocalcin
WO2005005989A1 (en) * 2003-07-11 2005-01-20 F. Hoffmann-La Roche Ag A method for predicting the metastatic potential of breast cancer
WO2006052218A1 (en) * 2004-10-06 2006-05-18 Agency For Science, Technology And Research Methods, systems, and arrays based on correlating p53 status with gene expression profiles, for classification, prognosis, and diagnosis of cancers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Affymetrix - Show Tabled Results" INTERNET CITATION, [Online] 5 June 2008 (2008-06-05), pages 1-2, XP007904901 Retrieved from the Internet: URL:https://www.affymetrix.com/analysis/ne taffx/showresults.affx> [retrieved on 2008-06-05] *
DELOUKAS P ET AL: "A physical map of 30,000 human genes" SCIENCE, WASHINGTON, DC, vol. 282, no. 5389, 23 October 1998 (1998-10-23), pages 744-746, XP002213284 ISSN: 0036-8075 *
GRIMBERT PHILIPPE ET AL: "The Filamin-A is a partner of Tc-mip, a new adapter protein involved in c-maf-dependent Th2 signaling pathway." MOLECULAR IMMUNOLOGY MAR 2004, vol. 40, no. 17, March 2004 (2004-03), pages 1257-1261, XP009101624 ISSN: 0161-5890 *
WANG ET AL: "Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer" LANCET THE, LANCET LIMITED. LONDON, GB, vol. 365, no. 9460, 19 February 2005 (2005-02-19), pages 671-679, XP005081323 ISSN: 0140-6736 *
YOON D S ET AL: "Genetic mapping and DNA sequence-based analysis of deleted regions on chromosome 16 involved in progression of bladder cancer from occult preneoplastic conditions to invasive disease" ONCOGENE, BASINGSTOKE, HANTS, GB, vol. 20, no. 36, 16 August 2001 (2001-08-16), pages 5005-5014, XP009101577 ISSN: 0950-9232 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140024A1 (en) * 2009-06-03 2010-12-09 Institut National De La Sante Et De La Recherche Medicale (Inserm) Methods for diagnosing and treating a renal disease in an individual
WO2014140896A3 (en) * 2013-03-15 2015-05-21 Fundacio Privada Institut De Recerca Biomedica Method for the diagnosis, prognosis and treatment of cancer metastasis
CN105431548A (en) * 2013-03-15 2016-03-23 生物医学研究机构基金会 Method for the diagnosis, prognosis and treatment of cancer metastasis
EP3272880A3 (en) * 2013-03-15 2018-04-11 Fundació Institut de Recerca Biomèdica IRB (Barcelona) Method for the diagnosis, prognosis and treatment of metastatic cancer
AU2014229563B2 (en) * 2013-03-15 2020-04-09 Fundacio Institut De Recerca Biomedica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of cancer metastasis
US11591599B2 (en) 2013-03-15 2023-02-28 Fundació Institut De Recerca Biomèdica (Irb Barcelona) Method for the diagnosis, prognosis and treatment of cancer metastasis
US10793642B2 (en) 2014-12-11 2020-10-06 Inbiomotion S.L. Binding members for human c-MAF

Also Published As

Publication number Publication date
WO2008086800A3 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
KR101583546B1 (en) Method for prediction of reactivity to sorafenib treatment Using gene polymorphism
DK2859120T3 (en) Method for diagnosis and prognosis of lung cancer metastasis
EP3055429B1 (en) Method for the prognosis and treatment of metastasizing cancer of the bone originating from breast cancer
EP2718466B1 (en) Materials and method for identifying spinal muscular atrophy carriers
KR101872965B1 (en) Method for the diagnosis, prognosis and treatment of prostate cancer metastasis using c-maf
EP2447378B1 (en) Probe for detection of polymorphism in EGFR gene, amplification primer, and use thereof
KR20150122731A (en) Method for the prognosis and treatment of cancer metastasis
KR20170120124A (en) Biomarker panel for cancer detection
JP2008524986A (en) Genetic changes useful for predicting malignant tumor response to taxane-based drug therapy
US20150025230A1 (en) Single Nucleotide Polymorphisms in BRCA1 and Cancer Risk
AU2008286361A1 (en) IVIG modulation of chemokines for treatment of multiple sclerosis, Alzheimer&#39;s disease, and Parkinson&#39;s disease
TW201300777A (en) Biomarkers for predicting the recurrence of colorectal cancer metastasis
WO2008086800A2 (en) Predisposition to, prognosis for and treatment of breast cancer relating to human chromosome 16
EP2065474A1 (en) A method to assess prognosis and to predict therapeutic response to endocrine treatment
US9920376B2 (en) Method for determining lymph node metastasis in cancer or risk thereof and rapid determination kit for the same
JP2009529869A (en) Cancer detection and treatment
WO2008086799A1 (en) Predisposition to, prognosis for and treatment of breast cancer relating to human chromosome 1 (presence)
US20140206002A1 (en) Methods of Diagnosing Breast Cancer
US20130131148A1 (en) Micro-rna for cancer diagnosis, prognosis and therapy
KR101414413B1 (en) Marker for predicting survival in patients with early stage lung cancer and method for predicting survival using the same
WO2008052558A2 (en) Predisposition to, prognosis for and treatment regime for breast cancer using genetic markers on chromosome 13
AU2017270496B9 (en) Determination of genetic predisposition to aggressive prostate cancer
KR20110014324A (en) Fas polymorphism as a prognostic marker for lung cancer
US20180363057A1 (en) Method for evaluating individual radiosensitivity and the risk of adverse effects
ABOU KHOUZAM New molecular players in gastric carcinogenesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08700883

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08700883

Country of ref document: EP

Kind code of ref document: A2