WO2014140153A1 - Brennkraftmaschine mit mehreren zylindern - Google Patents

Brennkraftmaschine mit mehreren zylindern Download PDF

Info

Publication number
WO2014140153A1
WO2014140153A1 PCT/EP2014/054923 EP2014054923W WO2014140153A1 WO 2014140153 A1 WO2014140153 A1 WO 2014140153A1 EP 2014054923 W EP2014054923 W EP 2014054923W WO 2014140153 A1 WO2014140153 A1 WO 2014140153A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
internal combustion
combustion engine
valve
inlet
Prior art date
Application number
PCT/EP2014/054923
Other languages
English (en)
French (fr)
Inventor
Paul Kapus
Matthias Neubauer
Kurt Prevedel
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to DE112014000279.8T priority Critical patent/DE112014000279A5/de
Publication of WO2014140153A1 publication Critical patent/WO2014140153A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/20Feeding recirculated exhaust gases directly into the combustion chambers or into the intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/34Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with compressors, turbines or the like in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/41Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories characterised by the arrangement of the recirculation passage in relation to the engine, e.g. to cylinder heads, liners, spark plugs or manifolds; characterised by the arrangement of the recirculation passage in relation to specially adapted combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/44Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which a main EGR passage is branched into multiple passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/162Control of the pumps by bypassing charging air by bypassing, e.g. partially, intake air from pump inlet to pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an internal combustion engine with a plurality of cylinders, with an exhaust gas recirculation system having an exhaust gas recirculation line between an exhaust system and an intake system, and with at least one exhaust gas turbocharger, with an electrically operated compressor arranged in an air / EGR flow path, controlled by at least one valve , optionally with fresh air and / or recirculated exhaust gas is flowed through, wherein the inlet system has at least one with a fresh air flow path associated with flow inlet collector, from which at least one leading to at least one cylinder inlet channel emanates.
  • the electric compressor can be bypassed via a by-pass valve having a bypass valve.
  • a mixing valve is arranged in the region of a merger of the exhaust gas recirculation line and a fresh air flow path.
  • the air / EGR flow path opens into the inlet header as the only inlet line.
  • a cylinder-selective exhaust gas recirculation is therefore not possible.
  • the mixing valve has the disadvantage that it must be designed for both high temperatures, as well as high exhaust gas / air flow rates, which adversely affects the manufacturing cost and cost. Since the mixing valve is traversed by the exhaust gas, it is exposed to heavy pollution, which has a very adverse effect on the life.
  • EP 0 911 502 B1 discloses an internal combustion engine with an exhaust gas recirculation system, wherein the exhaust gas recirculation line opens into a distributor strip, from which in each case one distributor channel discharges into each case into one inlet channel. As a result, the same and high charge dilution can be achieved for all cylinders.
  • the object of the invention is to reduce in the simplest possible way in an internal combustion engine of the type mentioned with the least possible effort fuel consumption and emissions in all operating areas and to allow a long service life.
  • the first valve which is preferably designed as a simple control valve, in the exhaust gas recirculation line of the exhaust gas recirculation system, preferably upstream of the electrically operated exhaust gas recirculation system. dichters, and a second valve in a fresh air flow path of the intake system, preferably upstream of the electric compressor, is arranged.
  • a particularly simple variant of the invention provides that the second valve as a check valve - preferably upstream of the bypass line - is formed. This allows a particularly simple and accurate control of the EGR rates in all operating ranges of the internal combustion engine.
  • a preferred embodiment of the invention provides that the second valve is formed by a simple control valve. This allows a particularly wide control range for exhaust gas and fresh air, as well as a mixture of exhaust gas and fresh air.
  • the first valve can be designed for high exhaust gas temperatures, the second valve for the maximum intake air volume.
  • the mixing valve known from the prior art there are not only advantages in terms of costs, production, installation space and service life, but also in the control range.
  • 100% fresh air and 100% EGR quantity all intermediate mixing ratios are possible.
  • the known from the prior art function of the mixing valve is thus divided into at least two valves. By dividing it into two valves, they can be better designed than a two-way mixing valve.
  • the arranged in the exhaust gas recirculation line first valve can be designed for high temperature and relatively low throughput, while the second valve can be designed for lower temperature, but higher throughput. When sizing the two valves thus no compromise needs to be made. On the other hand, oversizing to high temperatures and high throughputs is not required. Thus, the production cost can be significantly reduced. In addition to the advantage of a lower production effort, there is also less control effort than with a mixing valve.
  • the electric supercharger can optionally be used to convey recirculated exhaust gas, fresh air, or a mixture of exhaust gas and fresh air. As a result, the transient behavior can be significantly improved.
  • the electric compressor makes it possible to recycle high amounts of exhaust gas into the intake system even under unfavorable pressure conditions. Furthermore, the electric compressor can be used as a supplement to the compressor of the exhaust gas turbocharger. Additional charge level for fresh air or a mixture of fresh air and recirculated exhaust gas can be used.
  • the electric compressor can be bypassed by a bypass line, wherein preferably in the bypass line, in particular designed as a check valve third valve is arranged.
  • the invention is applicable both to low pressure exhaust gas recirculation systems in which the exhaust gas recirculation line branches off the exhaust gas system downstream of the exhaust gas turbocharger of the exhaust gas turbocharger and into the intake system upstream of the compressor of the exhaust gas turbocharger, as well as in high pressure exhaust gas recirculation systems in which the exhaust gas recirculation line upstream of the turbine of the exhaust gas turbocharger from the exhaust system branches off and flows downstream of the compressor of the exhaust gas turbocharger in the inlet system, insert.
  • the air / EGR flow path downstream of the electric compressor is divided into cylinder-selective feed channels, wherein at least one feed channel opens into an inlet channel per cylinder.
  • the cylinder-selective exhaust gas recirculation has the added benefit of avoiding contamination of parts of the intake system, such as intercoolers, intake manifolds or the like, and moreover, the transient behavior can be substantially improved.
  • a particular advantage results if at least one feed channel in the direction of the inlet channel main flow opens eccentrically into the inlet channel such that a tumble flow is generated or at least supported in the combustion chamber.
  • the channel axis of the feed channel may include an angle of 0 ° +/- 30 ° with the central axis of the inlet channel in the region of the outlet opening.
  • Effective support for the tumble flow in the cylinder is achieved when the outlet opening is located in an upper channel section farther from the cylinder.
  • the mouth of at least one feed channel can be arranged, for example, in the starting region of the inlet channel, preferably in the region of the inlet collector, or in the end region of the inlet channel, preferably immediately before the mouth of the inlet channel into the combustion chamber. Due to the eccentric inflow, an asymmetric velocity distribution is initiated in the inlet channel, whereby a tumble pulse is initiated when flowing into the cylinder. As a result, the charge movement generated in the combustion chamber or get supported. Furthermore, an EGR stratification in the combustion chamber can also be generated via the directed EGR supply
  • a particularly good charge movement can be generated if the inlet channel has, at least in sections, a channel partition wall formed parallel to the inlet channel main flow, wherein the channel partition wall is preferably arranged in the region of the central axis or the upper third of the inlet channel.
  • the upper third of the inlet channel is to be understood as the third which is furthest away from the cylinder or the cylinder head density plane.
  • the inlet channel is thus divided by the channel partition into at least two channel sections, wherein the exhaust gas recirculation line opens into the upper channel section.
  • the channel partition helps maintain the velocity distribution of inlet flow in the inlet channel until it enters the cylinder.
  • the air / EGR flow path upstream of the division into the feed channels is flow-connected to the fresh air flow path of the inlet system, preferably in the flow connection between the fresh air flow path and the air / EGR flow path a, preferably formed by a control valve, fourth valve is arranged.
  • the flow connection makes it possible to decouple the charge movement supporting effect of the exhaust gas recirculation and set exhaust gas recirculation rate and charge motion support largely independently.
  • FIG. 1 to Fig. 6 internal combustion engine according to the invention in various embodiments
  • the engine 1 designed for a plurality of cylinders Z has an exhaust gas recirculation system 2 between an exhaust system 3 and an intake system 4.
  • Reference numeral 5 designates an exhaust-gas turbocharger whose exhaust gas 6 is arranged in the outlet branch 7 of the outlet system 3 and whose compressor 8 is arranged in the inlet branch 9 of the inlet system 4. Downstream of the turbine 6 of the exhaust gas turbocharger 5 exhaust gas purification devices 10 and muffler 11 are arranged.
  • an air filter 12 is arranged upstream of the compressor 8 of the exhaust gas turbocharger, and a charge air cooler 13 is arranged downstream of the compressor 8.
  • Reference number 14 designates a lambda probe arranged in the exhaust gas line downstream of the exhaust gas turbine 6
  • reference number 15 designates a boost pressure sensor arranged in the intake line 9 downstream of the compressor 8.
  • a throttle valve 17 is arranged before entering the inlet string 9 in the intake manifold 16. From the intake manifold 16, cylinder-specific intake ports 18 lead to the individual cylinders Z.
  • the exhaust gas recirculation system 2 has an exhaust gas recirculation line 19, which starts from the exhaust line 7 and leads to the intake system 4.
  • an exhaust gas recirculation cooler 20 and designed as a control valve first valve 21 is arranged in the exhaust gas recirculation line 19, which starts from the exhaust line 7 and leads to the intake system 4.
  • an exhaust gas recirculation cooler 20 and designed as a control valve first valve 21 is arranged in the exhaust gas recirculation cooler 20 and designed as a control valve first valve 21.
  • Reference numeral 22 denotes an electric compressor which is positioned in an air / EGR flow path 30 between the exhaust gas recirculation system 2 and the intake system 4 so as to selectively supply recirculated exhaust gas, fresh air, or a mixture of recirculated exhaust gas and fresh air.
  • a second valve 23 is arranged in the fresh air flow path 9a, 9b upstream of the electric compressor 22, which can be designed as a control valve 23a (FIG. 1) or as a check valve 23b (FIG. 2).
  • the electric supercharger 22 can be bypassed on the fresh air side via a bypass line 24 emanating from the fresh air flow path 9a - the fresh air flow path 9c, in which a third valve 25 configured as a check valve is arranged.
  • the exhaust gas recirculation system 2 is designed as a low-pressure exhaust gas recirculation system, wherein the exhaust gas recirculation line 19 downstream of the exhaust gas turbine 6 from the exhaust line 7 and opens upstream of the compressor 8 in the intake system 4.
  • 1 and 2 differ only by the arrangement and design of the second valve 23 from each other, wherein in FIG. 1, the second valve 23 is formed as a control valve 23a, and the control valve 23a is disposed in the fresh air flow path 9b leading to the electric compressor 22 downstream of the branch of the bypass passage 24.
  • the second valve 23 is formed as a check valve 23 b and disposed upstream of the branch of the bypass line 24 in the fresh air flow path 9 a of the intake system 4.
  • the exhaust gas recirculation system 2 is designed as a high-pressure exhaust gas recirculation system, wherein the exhaust gas recirculation line 19 branches off from the exhaust gas line 7 upstream of the exhaust gas turbine 6 and opens into the intake system 4 downstream of the compressor 8.
  • a distributor strip 26 with cylinder-selective feed channels 27 is arranged in the region of the confluence of the air / EGR flow path 30 into the intake system 4.
  • the feed channels 27 lead either directly into inlet ducts 18 leading to each cylinder Z (FIG. 7) or into the inlet header 16 (FIGS. 8 and 9), the outlet openings 27a of the feed ducts 27 into the inlet duct main flow E of the inlet ducts 18 are directed.
  • the channel axis 27 'of the feed channel 27 includes in the region of its outlet opening 27a with the central axis 28 of the inlet channel 18 an angle ⁇ of 0 ° +/- 30 °.
  • the outlet opening 27a of each feed channel 27 is arranged eccentrically with respect to the inlet channel 18, preferably in the upper channel half which is further spaced from the cylinder Z, whereby a deliberate charge movement of the inlet flow in the cylinder Z is initiated, as shown in FIGS. 7 to FIG. 9 is indicated.
  • a tumble motion T in the cylinder space Z is amplified or caused.
  • the charge movement can be further enhanced if the inlet channel 18 is divided into at least two sections by a channel partition wall 29 oriented in the region of the central axis 28 of the inlet channel 18 and oriented in inlet channel main flow E - an upper section 18a facing away from the cylinder the cylinder-facing lower portion 18b - is divided, wherein the inflow of the recirculated exhaust gas A in Figs. 7 to Fig. 7. 9 takes place in the upper portion 18 a of the inlet channel 18.
  • the cylinder Z thus different flow rates form, as indicated by the arrows S. This results in the cylinder space Z a pronounced tumble movement T.
  • the air / EGR flow path 30 of the electric compressor 22 may further be connected via a connecting line 32 to the fresh air flow path 9c of the intake manifold 9, wherein in the connecting line 32 may be arranged as a control valve fourth valve 33 may be arranged.
  • the connecting line 32 between the throttle valve 17 and the inlet header 16 opens into the intake branch 9.
  • FIG. 6 shows a variant in which the connecting line 32 is connected upstream of the throttle valve 17 to the fresh air flow path 9 c of the intake branch 9.
  • the fourth valve 33 can be dispensed with.
  • the connecting line 32 makes it possible to decouple exhaust gas recirculation and charging movement from each other.
  • Figs. 3 and FIG. 4 can be seen, in the charge air line 30 downstream of the electric compressor 22, another charge air cooler 31 is arranged.
  • the electric compressor 22 delivers either fresh air from the fresh air train 9a of the intake system 4, or recirculated exhaust gas from the exhaust gas recirculation line 19, or a mixture of recirculated exhaust gas and fresh air.
  • the first valve 21 needs to be designed only for the maximum permissible recirculated exhaust gas quantity, but for high exhaust gas temperatures.
  • the second valve 23, however, is thermally stressed little, but must be able to control large quantities of intake air.
  • each of the two valves 21, 23 can be optimally designed for its respective intended use.
  • the electric compressor 22 serves both as a second charging stage, as well as a pump for recirculated exhaust gas. This makes it possible to carry out an exhaust gas recirculation with high exhaust gas recirculation rates even under unfavorable pressure conditions.
  • the electric compressor 22 (which may be located either before or after the compressor 8 of the exhaust gas turbocharger) acts as a second charging stage that can close the so-called "turbo lag".
  • the electric compressor 22 acts as a pump for recirculated exhaust gas.
  • the required electrical energy is preferably generated via an improved generator (eg, a belt starter generator) - in deceleration phases or in phases in which the energy generation from the energy balance is positive. Only in emergencies, the energy is generated at the time of consumption of the electric compressor 22.
  • Figs. 3 to FIG. 6 illustrated variants - high-pressure exhaust gas recirculation with electric charger 22 - have the added benefit that, as with any high-pressure exhaust gas recirculation cylinder-selective exhaust gas recirculation is possible.
  • excessive contamination of the intake system 4 can be avoided and the transient behavior can be improved.
  • cylinder-selective supply in the cylinder head and the generation of charge movement is possible.
  • a stratification of the recirculated exhaust gas in the combustion chamber can be generated via the directed supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft eine Brennkraftmaschine (1) mit mehreren Zylindern (Z), mit einem eine Abgasrückführieitung (19) zwischen einem Auslasssystem (3) und einem Einlasssystem (4) aufweisenden Abgasrückführsystem (2), sowie mit zumindest einem Abgasturbolader (5), mit einem in einem Luft/EGR -Strömungsweg (30) angeordneten, elektrisch betriebenen Verdichter (22), welcher, gesteuert durch zumindest ein Ventil (21), wahlweise mit Frischluft und/oder rückgeführtem Abgas durchströmbar ist, wobei das Einlasssystem (4) zumindest einen mit einem Frischluftströmungsweg (9a, 9b, 9c) strömungsverbundenen Einlasssammler (16) aufweist, von welchem zumindest ein zu mindestens einem Zylinder (Z) führender Einlasskanal (18) ausgeht. Um auf möglichst einfache Weise Kraftstoffverbrauch und/oder Emissionen in allen Betriebsbereichen zu verringern und eine für alle Zylinder gleiche und hohe Ladungsverdünnung zu ermöglichen, ist vorgesehen, dass ein vorzugsweise als einfaches Regelventil ausgebildetes erstes Ventil (21) in der Abgasrückführieitung (19) des Abgasrückführsystems (2), vorzugsweise stromaufwärts des elektrisch betriebenen Verdichters (22), und ein zweites Ventil (23) in einem Frischluftströmungsweg (9a, 9b) des Einlasssystems (4), vorzugsweise stromaufwärts des elektrischen Verdichters (22), angeordnet ist.

Description

Brennkraftmaschine mit mehreren Zylindern
Die Erfindung betrifft eine Brennkraftmaschine mit mehreren Zylindern, mit einem eine Abgasrückführleitung zwischen einem Auslasssystem und einem Einlasssystem aufweisenden Abgasrückführsystem, sowie mit zumindest einem Abgasturbolader, mit einem in einem Luft/EGR -Strömungsweg angeordneten, elektrisch betriebenen Verdichter, welcher, gesteuert durch zumindest ein Ventil, wahlweise mit Frischluft und/oder rückgeführtem Abgas durchströmbar ist, wobei das Einlasssystem zumindest einen mit einem Frischluftströmungsweg strö- mungsverbundenen Einlasssammler aufweist, von welchem zumindest ein zu mindestens einem Zylinder führender Einlasskanal ausgeht.
Aus der US 6,062,026 ist eine Brennkraftmaschine mit einem Abgasrückführsystem bekannt, wobei in einem Luft/EGR-Strömungsweg (EGR= Exhaust Gas Recirculation) ein elektrischer Verdichter angeordnet ist. Der elektrische Verdichter ist über eine ein Bypassventil aufweisende Umgehungsleitung umgehbar. Dabei ist im Bereich einer Zusammenführung der Abgasrückführleitung und eines Frischluftströmungsweges ein Mischventil angeordnet. Der Luft/EGR-Strömungsweg mündet als einzige Einlassleitung in den Einlasssammlers. Eine zylinderselektive Abgasrückführung ist somit nicht möglich. Das Mischventil hat den Nachteil, dass es für sowohl für hohe Temperaturen, als auch für hohe Abgas/Luft- Durchsätze ausgelegt werden muss, was sich nachteilig auf den Herstellungsaufwand und die Kosten auswirkt. Da das Mischventil vom Abgas durchströmt wird, ist es starker Verschmutzung ausgesetzt, was sich sehr nachteilig auf die Standzeit auswirkt.
Aus der EP 0 911 502 Bl ist eine Brennkraftmaschine mit einem Abgasrückführsystem, wobei die Abgasrückführleitung in eine Verteilerleiste einmündet, von welcher pro Zylinder jeweils ein in jeweils einen Einlasskanal einmündender Verteilerkanal ausgeht. Dadurch kann für alle Zylinder ein möglichst gleiche und hohe Ladungsverdünnung erreicht werden.
Aufgabe der Erfindung ist es, auf möglichst einfache Weise bei einer Brennkraftmaschine der eingangs genannten Art mit möglichst geringem Aufwand Kraftstoffverbrauch und Emissionen in allen Betriebsbereichen zu verringern und eine hohe Standzeit zu ermöglichen.
Erfindungsgemäß wird das dadurch erreicht, dass das vorzugsweise als einfaches Regelventil ausgebildete erste Ventil in der Abgasrückführleitung des Abgas- rückführsystems, vorzugsweise stromaufwärts des elektrischen betriebenen Ver- dichters, und ein zweites Ventil in einer Frischluftströmungsweg des Einlasssystems, vorzugsweise stromaufwärts des elektrischen Verdichters, angeordnet ist.
Somit kann auf ein fehleranfälliges und kostenintensives hochtemperaturbeständiges Frischluft/EGR-Mischventil verzichtet werden. Eine besonders einfache Variante der Erfindung sieht vor, dass das zweite Ventil als Rückschlagventil - vorzugsweise stromaufwärts der Umgehungsleitung - ausgebildet ist. Dies ermöglicht eine besonders einfache und genaue Regelung der EGR-Raten in allen Betriebsbereichen der Brennkraftmaschine.
Eine bevorzugte Ausführung der Erfindung sieht vor, dass das zweite Ventil durch ein einfaches Regelventil gebildet ist. Dadurch kann ein besonders weiter Regelbereich für Abgas und Frischluft, sowie einem Gemisch aus Abgas und Frischluft, ermöglicht werden. Das erste Ventil kann auf hohe Abgastemperaturen ausgelegt werden, das zweite Ventil auf die maximale Einlassluftmenge. Im Vergleich zu dem aus dem Stand der Technik bekannten Mischventil ergeben sich nicht nur Vorteile hinsichtlich Kosten, Fertigung, Bauraum und Standzeit, sondern auch im Regelbereich. So ist es möglich das erste und das zweite Ventil vollkommen unabhängig voneinander zwischen einer Schließ- und einer vollkommenen Öffnungsstellung zu regeln. Somit sind zwischen 100 % Frischluft und 100 % EGR- Menge alle Zwischenmischverhältnisse möglich.
Die aus dem Stand der Technik bekannte Funktion des Mischventils ist somit auf zumindest zwei Ventile aufgeteilt. Durch die Aufteilung auf zwei Ventile können diese gegenüber einem Zweiwege-Mischventil besser ausgelegt werden. Das in der Abgasrückführleitung angeordnete erste Ventil kann auf hohe Temperatur und relativ geringem Durchsatz ausgelegt werden, während das zweite Ventil auf niedrigere Temperatur, aber auf höheren Durchsatz ausgelegt werden kann. Bei der Dimensionierung der beiden Ventile braucht somit kein Kompromiss eingegangen werden. Andererseits ist auch eine Überdimensionierung auf hohe Temperaturen und hohe Durchsätze nicht erforderlich. Somit kann der Herstellungsaufwand wesentlich verringert werden. Neben dem Vorteil eines geringeren Herstellungsaufwands ergibt sich auch ein geringerer Regelaufwand, als bei einem Mischventil . Der elektrische Lader kann wahlweise zur Förderung von rückgeführtem Abgas, von Frischluft, oder eines Gemisches aus Abgas und Frischluft eingesetzt werden. Dadurch kann das Transientverhalten wesentlich verbessert werden.
Der elektrische Verdichter ermöglicht es, auch bei ungünstigen Druckverhältnissen hohe Mengen an Abgas in das Einlasssystem rückzuführen. Weiters kann der elektrische Verdichter ergänzend zum Verdichter des Abgasturboladers als zu- sätzliche Ladestufe für Frischluft oder einem Gemisch aus Frischluft und rückgeführtem Abgas verwendet werden.
In weiterer Ausführung der Erfindung kann vorgesehen sein, dass der elektrische Verdichter durch eine Umgehungsleitung umgehbar ist, wobei vorzugsweise in der Umgehungsleitung ein insbesondere als Rückschlagventil ausgebildetes drittes Ventil angeordnet ist.
Die Erfindung lässt sich sowohl bei Niederdruckabgasrückführsystemen, bei denen die Abgasrückführleitung stromabwärts der Abgasturbine des Abgasturboladers vom Abgassystem abzweigt und stromaufwärts des Verdichters des Abgasturboladers in das Einlasssystem einmündet., als auch bei Hochdruckabgasrück- führsystemen, bei denen die Abgasrückführleitung stromaufwärts der Turbine des Abgasturboladers vom Abgassystem abzweigt und stromabwärts des Verdichters des Abgasturboladers in das Einlasssystem einmündet, einsetzen.
Um insbesondere bei Hochdruckabgasrückführsystemen eine gleichmäßige Aufteilung des rückgeführten Abgases zu ermöglichen, ist es von besonderem Vorteil, wenn der Luft/EGR-Strömungsweg stromabwärts des elektrischen Verdichters in zylinderselektive Zuführkanäle aufgeteilt ist, wobei pro Zylinder zumindest ein Zuführkanal in einen Einlasskanal einmündet. Die zylinderselektive Abgasrückführung hat den Zusatznutzen, dass eine Verschmutzung von Teilen des Einlasssystems, wie Ladeluftkühler, Einlasssammler oder dergleichen, vermieden und darüber hinaus das Transientverhalten wesentlich verbessert werden kann.
Ein besonderer Vorteil ergibt sich, wenn zumindest ein Zuführkanal in Richtung der Einlasskanal-Hauptströmung exzentrisch in den Einlasskanal so einmündet, dass eine Tumble-Strömung im Brennraum generiert oder zumindest unterstützt wird . Die Kanalachse des Zuführkanals kann im Bereich der Auslassöffnung mit der Mittelachse des Einlasskanals einen Winkel von 0° +/- 30° einschließen.
Eine effektive Unterstützung der Tumble-Strömung im Zylinder wird erreicht, wenn die Auslassöffnung in einem vom Zylinder weiter beabstandeten oberen Kanalabschnitt angeordnet ist.
Die Mündung zumindest eines Zuführkanals kann beispielsweise im Anfangsbereich des Einlasskanals, vorzugsweise im Bereich des Einlasssammlers, oder im Endbereich des Einlasskanals - vorzugsweise unmittelbar vor der Einmündung des Einlasskanals in den Brennraum - angeordnet sein. Durch die exzentrische Einströmung wird im Einlasskanal eine asymmetrische Geschwindigkeitsverteilung initiiert, wodurch bei der Einströmung in den Zylinder ein Tumble-Impuls initiiert wird . Dadurch kann die Ladungsbewegung im Brennraum erzeugt oder unterstützt werden. Weiters kann über die gerichtete EGR-Zufuhr auch eine EGR- Schichtung im Brennraum erzeugt werden
Eine besonders gute Ladungsbewegung lässt sich generieren, wenn der Einlasskanal zumindest abschnittsweise eine parallel zur Einlasskanal-Hauptströmung ausgebildete Kanaltrennwand aufweist, wobei die Kanaltrennwand vorzugsweise im Bereich der Mittelachse bzw. des oberen Drittels des Einlasskanals angeordnet ist. Unter dem oberen Drittel des Einlasskanals ist jenes Drittel zu verstehen, welches am weitesten vom Zylinder bzw. der Zylinderkopfdichtebene entfernt ist. Der Einlasskanal ist somit durch die Kanaltrennwand in zumindest zwei Kanalabschnitte aufgeteilt, wobei in den oberen Kanalabschnitt die Abgasrückführleitung einmündet. Die Kanaltrennwand trägt dazu bei, dass die Geschwindigkeitsverteilung der Einlassströmung im Einlasskanal bis zum Eintritt in den Zylinder aufrecht erhalten bleibt.
Weiters kann vorgesehen sein, dass der Luft/EGR-Strömungsweg stromaufwärts der Aufteilung in die Zuführkanäle, vorzugsweise stromabwärts des elektrischen Verdichters, mit dem Frischluftströmungsweg des Einlasssystems strömungsver- bunden ist, wobei vorzugsweise in der Strömungsverbindung zwischen dem Frischluftströmungsweg und dem Luft/EGR-Strömungsweg ein, vorzugsweise durch ein Regelventil gebildetes, viertes Ventil angeordnet ist.
Die Strömungsverbindung ermöglicht es, den die Ladungsbewegung unterstützenden Effekt von der Abgasrückführung zu entkoppeln und Abgasrückführrate und Ladungsbewegungsunterstützung weitgehend unabhängig voneinander einzustellen.
Die Erfindung wird im Folgenden anhand der Figuren näher erläutert. Es zeigen :
Fig. 1 bis Fig. 6 erfindungsgemäße Brennkraftmaschinen in verschiedenen Ausführungsvarianten;
Fig. 7 bis Fig. 9 Einlasssysteme von erfindungsgemäßen Brennkraftmaschinen in verschiedenen Ausbildungen.
Funktionsgleiche Teile sind in den Ausführungsvarianten mit gleichen Bezugszeichen versehen.
Die für mehrere Zylinder Z ausgebildete Brennkraftmaschine 1 weist ein Abgas- rückführsystem 2 zwischen einem Auslasssystem 3 und einem Einlasssystem 4 auf. Mit Bezugszeichen 5 ist ein Abgasturbolader bezeichnet, dessen Abgasturbi- ne 6 im Auslassstrang 7 des Auslasssystems 3 und dessen Verdichter 8 im Einlassstrang 9 des Einlasssystems 4 angeordnet ist. Stromabwärts der Turbine 6 des Abgasturboladers 5 sind Abgasreinigungseinrichtungen 10 und Schalldämpfer 11 angeordnet.
Im Einlassstrang 4 ist stromaufwärts des Verdichters 8 des Abgasturboladers ein Luftfilter 12 und stromabwärts des Verdichters 8 ein Ladeluftkühler 13 angeordnet. Mit Bezugszeichen 14 ist eine im Abgasstrang stromabwärts der Abgastur- bine 6 angeordnete Lambdasonde, mit Bezugszeichen 15 ein im Einlassstrang 9 stromabwärts des Verdichters 8 angeordneter Ladedrucksensor bezeichnet. Vor dem Eintritt des Einlassstranges 9 in den Einlasssammler 16 ist eine Drosselklappe 17 angeordnet. Vom Einlasssammler 16 führen zylinderindividuelle Einlasskanäle 18 zu den einzelnen Zylindern Z.
Das Abgasrückführsystem 2 weist eine Abgasrückführleitung 19 auf, welche vom Abgasstrang 7 ausgeht, und zum Einlasssystem 4 führt. In der Abgasrückführleitung 19 ist ein Abgasrückführkühler 20 und ein als Regelventil ausgebildetes erstes Ventil 21 angeordnet.
Mit Bezugszeichen 22 ist ein elektrischer Verdichter bezeichnet, welcher in einem Luft/EGR -Strömungsweg 30 so zwischen dem Abgasrückführsystem 2 und dem Einlasssystem 4 positioniert ist, dass er wahlweise rückgeführtes Abgas, Frischluft, oder ein Gemisch aus rückgeführtem Abgas und Frischluft fördern kann. Frischluftseitig ist im Frischluftströmungsweg 9a, 9b stromaufwärts des elektrischen Verdichters 22 ein zweites Ventil 23 angeordnet, welches als Regelventil 23a (Fig . 1) oder als Rückschlagventil 23b (Fig. 2) ausgeführt sein kann. Der elektrische Lader 22 kann frischluftseitig über eine vom Frischluftströmungsweg 9a ausgehende Umgehungsleitung 24 - dem Frischluftströmungsweg 9c-, in welcher ein als Rückschlagventil ausgebildetes drittes Ventil 25 angeordnet ist, umgangen werden.
In den Fig. 1 und Fig . 2 ist das Abgasrückführsystem 2 als Niederdruck- Abgasrückführsystem ausgebildet, wobei die Abgasrückführleitung 19 stromabwärts der Abgasturbine 6 vom Abgasstrang 7 ausgeht und stromaufwärts des Verdichters 8 in das Einlasssystem 4 einmündet. Die Fig. 1 und 2 unterscheiden sich dabei nur durch die Anordnung und Ausbildung des zweiten Ventils 23 voneinander, wobei in Fig . 1 das zweite Ventil 23 als Regelventil 23a ausgebildet ist und das Regelventil 23a im zum elektrischen Verdichter 22 führenden Frischluftströmungsweg 9b stromabwärts der Abzweigung der Umgehungsleitung 24 angeordnet ist. In Fig . 12 ist das zweite Ventil 23 als Rückschlagventil 23b ausgebildet und stromaufwärts der Abzweigung der Umgehungsleitung 24 im Frischluftströmungsweg 9a des Einlasssystems 4 angeordnet. In den in Fig . 3 bis Fig . 6 dargestellten Ausführungsbeispielen ist das Abgas- rückführsystem 2 als Hochdruckabgasrückführsystem ausgebildet, wobei die Ab- gasrückführleitung 19 stromaufwärts der Abgasturbine 6 vom Abgasstrang 7 abzweigt und stromabwärts des Verdichters 8 in das Einlasssystem 4 einmündet. Im Bereich der Einmündung des Luft/EGR -Strömungsweges 30 in das Einlasssystem 4 ist eine Verteilerleiste 26 mit zylinderselektiven Zuführkanälen 27 angeordnet. Die Zuführkanäle 27 münden entweder direkt in zu jedem Zylinder Z führenden Einlasskanälen 18 (Fig . 7) oder in den Einlasssammler 16 (Fig. 8 und Fig. 9) ein, wobei die Austrittsöffnungen 27a der Zuführkanäle 27 in die Einlasskanal-Hauptströmung E der Einlasskanäle 18 gerichtet sind . Die Kanalachse 27' des Zuführkanals 27 schließt im Bereich von dessen Austrittsöffnung 27a mit der Mittelachse 28 des Einlasskanals 18 einen Winkel α von 0° +/- 30° ein . Die Auslassöffnung 27a jedes Zuführkanals 27 ist dabei exzentrisch bezüglich des Einlasskanals 18, vorzugsweise in der vom Zylinder Z weiter beabstandeten oberen Kanalhälfte, angeordnet, wodurch eine gezielte Ladungsbewegung der Einlassströmung im Zylinder Z initiiert wird, wie in den Fig . 7 bis Fig . 9 angedeutet ist. Insbesondere wird eine Tumble-Bewegung T im Zylinderraum Z verstärkt oder verursacht. Die Ladungsbewegung kann weiters verstärkt werden, wenn der Einlasskanal 18 durch eine in Einlasskanal-Hauptströmung E orientierte Kanaltrennwand 29, welche beispielsweise im Bereich der Mittelachse 28 des Einlasskanals 18 angeordnet sein kann, in zumindest zwei Abschnitte - einen dem Zylinder abgewandten oberen Abschnitt 18a und einen dem Zylinder zugewandten unteren Abschnitt 18b - geteilt ist, wobei die Einströmung des rückgeführten Abgases A in den Fig. 7 bis Fig . 9 in den oberen Abschnitt 18a des Einlasskanals 18 erfolgt. Beim Eintritt in den Zylinder Z bilden sich somit unterschiedliche Strömungsgeschwindigkeiten aus, wie mit den Pfeilen S angedeutet ist. Dadurch entsteht im Zylinderraum Z eine ausgeprägte Tumble-Bewegung T.
Der Luft/EGR-Strömungsweg 30 des elektrischen Verdichters 22 kann weiters über eine Verbindungsleitung 32 mit dem Frischluftströmungsweg 9c des Einlassstranges 9 verbunden sein, wobei in der Verbindungsleitung 32 ein als Regelventil ausgebildetes viertes Ventil 33 angeordnet sein kann. Bei der in Fig . 5 abgebildeten Ausführung mündet die Verbindungsleitung 32 zwischen der Drosselklappe 17 und dem Einlasssammler 16 in den Einlassstrang 9 ein .
Fig. 6 zeigt eine Variante, bei der die Verbindungsleitung 32 stromaufwärts der Drosselklappe 17 mit dem Frischluftströmungsweg 9c des Einlassstranges 9 verbunden ist. In diesem Fall kann auf das vierte Ventil 33 verzichtet werden. Die Verbindungsleitung 32 ermöglicht es, Abgasrückführung und Ladebewegung voneinander zu entkoppeln. Wie in den Fig . 3 und Fig. 4 ersichtlich ist, ist in der Ladeluftleitung 30 stromabwärts des elektrischen Verdichters 22 ein weiterer Ladeluftkühler 31 angeordnet. Durch Ansteuerung des ersten Ventils 21 und des zweiten Ventils 23 fördert der elektrische Verdichter 22 entweder Frischluft aus dem Frischluftstrang 9a des Einlasssystems 4, oder rückgeführtes Abgas aus der Abgasrückführleitung 19, oder ein Gemisch aus rückgeführtem Abgas und Frischluft. Das erste Ventil 21 braucht dabei nur für die höchstzulässige rückgeführte Abgasmenge, aber für hohe Abgastemperaturen ausgelegt werden. Das zweite Ventil 23 dagegen wird thermisch wenig belastet, muss aber große Einlassluftmengen steuern können. Somit kann jedes der beiden Ventile 21, 23 optimal für seinen jeweiligen Verwendungszweck ausgelegt werden.
In allen Ausführungsvarianten dient der elektrische Verdichter 22 sowohl als zweite Ladestufe, als auch als Pumpe für rückgeführtes Abgas. Dadurch gelingt es, auch bei ungünstigen Druckverhältnissen eine Abgasrückführung mit hohen Abgasrückführraten durchzuführen. In Bereichen schlechten Ansprechverhaltens wirkt der elektrische Verdichter 22 (der entweder vor oder nach dem Verdichter 8 des Abgasturboladers angeordnet sein kann) als zweite Ladestufe, die das sogenannte "Turboloch" schließen kann. In Bereichen ungünstigen Druckverhältnisses wirkt der elektrische Verdichter 22 als Pumpe für rückgeführtes Abgas. Die benötigte elektrische Energie wird dabei vorzugsweise über einen verbesserten Generator (z. B. einem Riemen-Starter-Generator) erzeugt - und zwar in Schubphasen oder in Phasen, in denen die Energieerzeugung von der Energiebilanz her positiv ist. Nur in Notfällen wird die Energie zum Zeitpunkt des Verbrauches am elektrischen Verdichter 22 erzeugt.
Die in den Fig . 3 bis Fig . 6 dargestellten Varianten - Hochdruckabgasrückführung mit elektrischem Lader 22 - haben den Zusatznutzen, dass wie bei jeder Hochdruckabgasrückführung zylinderselektive Abgasrückführung möglich ist. Dadurch kann übermäßige Verschmutzung des Einlasssystems 4 vermieden und das Tran- sientverhalten verbessert werden. Weiters ist bei zylinderselektiver Zufuhr im Zylinderkopf auch die Erzeugung von Ladungsbewegung möglich. Darüber hinaus kann über die gerichtete Zufuhr auch eine Schichtung des rückgeführten Abgases im Brennraum erzeugt werden.

Claims

P A T E N T A N S P R Ü C H E
1. Brennkraftmaschine (1) mit mehreren Zylindern (Z), mit einem eine Abgas- rückführleitung (19) zwischen einem Auslasssystem (3) und einem Einlasssystem (4) aufweisenden Abgasrückführsystem (2), sowie mit zumindest einem Abgasturbolader (5), mit einem in einem Luft/EGR -Strömungsweg (30) angeordneten, elektrisch betriebenen Verdichter (22), welcher, gesteuert durch zumindest ein Ventil (21), wahlweise mit Frischluft und/oder rückgeführtem Abgas durchströmbar ist, wobei das Einlasssystem (4) zumindest einen mit einem Frischluftströmungsweg (9a, 9b, 9c) strömungs- verbundenen Einlasssammler (16) aufweist, von welchem zumindest ein zu mindestens einem Zylinder (Z) führender Einlasskanal (18) ausgeht, dadurch gekennzeichnet, dass ein vorzugsweise als einfaches Regelventil ausgebildetes erste Ventil (21) in der Abgasrückführleitung (19) des Ab- gasrückführsystems (2), vorzugsweise stromaufwärts des elektrisch betriebenen Verdichters (22), und ein zweites Ventil (23) in einem Frischluftströmungsweg (9a, 9b) des Einlasssystems (4), vorzugsweise stromaufwärts des elektrischen Verdichters (22), angeordnet ist.
2. Brennkraftmaschine (1) nach Anspruch 1, dadurch gekennzeichnet, dass das zweite Ventil (23) als Regelventil (23a) ausgebildet ist.
3. Brennkraftmaschine (1) nach Anspruch 1, dadurch gekennzeichnet, dass das zweite Ventil (23) als Rückschlagventil (23b) ausgebildet ist.
4. Brennkraftmaschine ( 1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der elektrische Verdichter (22) durch eine Umgehungsleitung (24) umgehbar ist, wobei vorzugsweise in der Umgehungsleitung (24) ein insbesondere als Rückschlagventil ausgebildetes drittes Ventil (25) angeordnet ist.
5. Brennkraftmaschine ( 1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Abgasrückführsystem (2) als Niederdruckabgas- rückführsystem ausgebildet ist, wobei die Abgasrückführleitung (19) stromabwärts der Abgasturbine (6) des Abgasturboladers (5) vom Abgassystem (3) abzweigt und stromaufwärts des Verdichters (8) des Abgasturboladers (5) in das Einlasssystem (4) einmündet.
6. Brennkraftmaschine ( 1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Abgasrückführsystem (2) als Hochdruckabgas- rückführsystem ausgebildet ist, wobei die Abgasrückführleitung (19) stromaufwärts der Turbine (6) des Abgasturboladers (5) vom Abgassystem (3) abzweigt und stromabwärts des Verdichters (8) des Abgasturboladers (5) in das Einlasssystem (4) einmündet.
7. Brennkraftmaschine (1) nach Anspruch 6, dadurch gekennzeichnet, dass sich der Luft/EGR-Strömungsweg (30) stromabwärts des elektrischen Verdichters (22) in zylinderselektive Zuführkanäle (27) aufteilt, wobei pro Zylinder (Z) zumindest ein Zuführkanal (27) in einen Einlasskanal (18) einmündet.
8. Brennkraftmaschine (1) nach Anspruch 7, dadurch gekennzeichnet, dass der Luft/EGR-Strömungsweg (30) stromaufwärts der Aufteilung in die Zuführkanäle (27), vorzugsweise stromabwärts des elektrischen Verdichters (22), mit dem Frischluftströmungsweg (9c) des Einlasssystems (4) strö- mungsverbunden ist (Fig . 5, 6).
9. Brennkraftmaschine (1) nach Anspruch 8, dadurch gekennzeichnet, dass in der Strömungsverbindung (32) zwischen dem Frischluftströmungsweg (9c) und dem Luft/EGR-Strömungsweg (30) ein, vorzugsweise durch ein Regelventil gebildetes, viertes Ventil (33) angeordnet ist.
10. Brennkraftmaschine ( 1) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass zumindest ein Zuführkanal (27) in Richtung der Einlasskanal-Hauptströmung (E) exzentrisch in den Einlasskanal (18) so einmündet, dass eine Tumble-Strömung (T) im Zylinder (Z) generiert oder zumindest unterstützt wird .
11. Brennkraftmaschine (1) nach Anspruch 7 bis 10, dadurch gekennzeichnet, dass die Kanalachse (27') des Zuführkanals (27) im Bereich dessen Austrittsöffnung (27a) mit der Mittelachse (28) des Einlasskanals (18) einen Winkel (a) von 0° +/- 30° einschließt.
12. Brennkraftmaschine (1) nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass die Austrittsöffnung (27a) in einem vom Zylinder (Z) weiter beabstandeten oberen Kanalabschnitt (18a) des Einlasskanals angeordnet ist.
13. Brennkraftmaschine (1) nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass die Austrittsöffnung (27a) zumindest eines Zuführkanals (27) im Anfangsbereich des Einlasskanals (18), vorzugsweise im Bereich des Einlasssammlers (16), angeordnet ist.
14. Brennkraftmaschine (1) nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die Austrittsöffnung (27a) zumindest eines Zuführka- nals (27) im Endbereich des Einlasskanals (18) - vorzugsweise unmittelbar vor der Einmündung des Einlasskanals (18) in den Zylinder (Z) - angeordnet ist.
15. Brennkraftmaschine (1) nach einem der Ansprüche 7 bis 14, dadurch gekennzeichnet, dass der Einlasskanal (18) zumindest abschnittsweise eine parallel zur Einlasskanal-Hauptströmung (E) ausgebildete Kanaltrennwand (29) aufweist, wobei vorzugsweise die Kanaltrennwand (29) zumindest abschnittsweise im Bereich der Mittelachse (28) des Einlasskanals (18) angeordnet ist, und wobei die Kanaltrennwand (29) den Einlasskanal (18) in einen dem Zylinder abgewandten oberen und einen dem Zylinder zugewandten unteren Kanalabschnitt (18a, 18b) teilt.
Brennkraftmaschine (1) nach Anspruch 15, dadurch gekennzeichnet, dass die Kanaltrennwand (29) zumindest abschnittsweise in einem oberen Drittel des Einlasskanals (18) angeordnet ist.
PCT/EP2014/054923 2013-03-13 2014-03-13 Brennkraftmaschine mit mehreren zylindern WO2014140153A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112014000279.8T DE112014000279A5 (de) 2013-03-13 2014-03-13 Brennkraftmaschine mit mehreren Zylindern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50171/2013A AT514054B1 (de) 2013-03-13 2013-03-13 Brennkraftmaschine mit mehreren Zylindern
ATA50171/2013 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014140153A1 true WO2014140153A1 (de) 2014-09-18

Family

ID=50272632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/054923 WO2014140153A1 (de) 2013-03-13 2014-03-13 Brennkraftmaschine mit mehreren zylindern

Country Status (3)

Country Link
AT (1) AT514054B1 (de)
DE (1) DE112014000279A5 (de)
WO (1) WO2014140153A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3192992A1 (de) * 2016-01-18 2017-07-19 Mahle International GmbH Brennkraftmaschinensystem
JP2018071524A (ja) * 2016-11-04 2018-05-10 マツダ株式会社 Egr装置付きエンジンの吸気装置
JP2018165478A (ja) * 2017-03-28 2018-10-25 トヨタ自動車株式会社 排気再循環装置
EP4257812A1 (de) * 2022-04-05 2023-10-11 Winterthur Gas & Diesel Ltd. Brennkraftmaschine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8549854B2 (en) 2010-05-18 2013-10-08 Achates Power, Inc. EGR constructions for opposed-piston engines
US20130174548A1 (en) * 2011-05-16 2013-07-11 Achates Power, Inc. EGR for a Two-Stroke Cycle Engine without a Supercharger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586123A2 (de) * 1992-08-31 1994-03-09 Hitachi, Ltd. Einlassluftanlage für Brennkraftmaschine
GB2293862A (en) * 1994-10-04 1996-04-10 Ford Motor Co Stratified charge engine
EP1493907A2 (de) * 2003-07-02 2005-01-05 Mazda Motor Corporation EGR Steuervorrictung für Brennkraftmaschinen
WO2005090763A1 (de) * 2004-03-09 2005-09-29 Daimlerchrysler Ag Verdichter, brennkraftmaschine mit einem verdichter und verfahren zum betrieb einer brennkraftmaschine
WO2007083131A1 (en) * 2006-01-23 2007-07-26 Ricardo Uk Limited Supercharged diesel engines
WO2010012919A1 (fr) * 2008-07-29 2010-02-04 Renault S.A.S. Moteur a combustion interne suralimente equipe d'un circuit de recirculation de gazes d'echappement flexible et procede de mise en action du moteur
US20100146968A1 (en) * 2008-12-12 2010-06-17 Alexander Simpson Emission system, apparatus, and method
EP2330278A1 (de) * 2008-12-17 2011-06-08 Aisin Seiki Kabushiki Kaisha Lufteinlassverteiler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6062026A (en) * 1997-05-30 2000-05-16 Turbodyne Systems, Inc. Turbocharging systems for internal combustion engines
AT2434U1 (de) * 1997-10-21 1998-10-27 Avl List Gmbh Fremdgezündete brennkraftmaschine
JP4341423B2 (ja) * 2004-02-05 2009-10-07 トヨタ自動車株式会社 内燃機関用過給システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586123A2 (de) * 1992-08-31 1994-03-09 Hitachi, Ltd. Einlassluftanlage für Brennkraftmaschine
GB2293862A (en) * 1994-10-04 1996-04-10 Ford Motor Co Stratified charge engine
EP1493907A2 (de) * 2003-07-02 2005-01-05 Mazda Motor Corporation EGR Steuervorrictung für Brennkraftmaschinen
WO2005090763A1 (de) * 2004-03-09 2005-09-29 Daimlerchrysler Ag Verdichter, brennkraftmaschine mit einem verdichter und verfahren zum betrieb einer brennkraftmaschine
WO2007083131A1 (en) * 2006-01-23 2007-07-26 Ricardo Uk Limited Supercharged diesel engines
WO2010012919A1 (fr) * 2008-07-29 2010-02-04 Renault S.A.S. Moteur a combustion interne suralimente equipe d'un circuit de recirculation de gazes d'echappement flexible et procede de mise en action du moteur
US20100146968A1 (en) * 2008-12-12 2010-06-17 Alexander Simpson Emission system, apparatus, and method
EP2330278A1 (de) * 2008-12-17 2011-06-08 Aisin Seiki Kabushiki Kaisha Lufteinlassverteiler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3192992A1 (de) * 2016-01-18 2017-07-19 Mahle International GmbH Brennkraftmaschinensystem
JP2018071524A (ja) * 2016-11-04 2018-05-10 マツダ株式会社 Egr装置付きエンジンの吸気装置
JP2018165478A (ja) * 2017-03-28 2018-10-25 トヨタ自動車株式会社 排気再循環装置
US10527009B2 (en) 2017-03-28 2020-01-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculating apparatus
EP4257812A1 (de) * 2022-04-05 2023-10-11 Winterthur Gas & Diesel Ltd. Brennkraftmaschine

Also Published As

Publication number Publication date
DE112014000279A5 (de) 2015-08-20
AT514054A1 (de) 2014-09-15
AT514054B1 (de) 2015-01-15

Similar Documents

Publication Publication Date Title
AT512890B1 (de) Brennkraftmaschine
EP2525074B1 (de) Brennkraftmaschine mit Heizvorrichtung zur Ansauglufterwärmung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP2059663B1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
WO2014140153A1 (de) Brennkraftmaschine mit mehreren zylindern
DE102004032589B4 (de) Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zu deren Betrieb
DE102006049392B4 (de) Abgasemissionssteuersystem für eine Verbrennungsmaschine
DE102011002552A1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE202017105126U1 (de) Abgasleitsystem
DE102011078454B4 (de) Brennkraftmaschine mit Ladeluftkühlung
DE102013220026A1 (de) Einlasskrümmer mit AGR für Zweifachdurchlass
DE102013215574A1 (de) Aufgeladene Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
WO2009037120A2 (de) Brennkraftmaschine mit mehrflutigen abgasturbolader
DE102016208208A1 (de) Verbrennungsmotor und Kraftfahrzeug
DE102014101399B4 (de) Motorbaugruppe mit einem Abgasrückführungssystem sowie einem Turbolader mit variabler Geometrie
DE102017119537A1 (de) Abgasleitsystem
EP1633967A2 (de) Brennkraftmaschine mit abgasrückführeinrichtung und verfahren hierzu
WO2023036710A1 (de) Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine
DE102008049091A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit acht Zylindern und Brennkraftmaschine
AT518400B1 (de) Brennkraftmaschine mit mehreren zylindern
DE102013216608B4 (de) Abgasturboaufgeladene Brennkraftmaschine umfassend einen Verdichter mit zwei Laufrädern
DE102011110698A1 (de) Brennkraftmaschine
AT503869A2 (de) Brennkraftmaschine mit einem mehrflutigen abgasturbolader
DE202013101602U1 (de) Brennkraftmaschine mit Ladeluftkühler
WO2018028812A1 (de) Verfahren zum betrieb einer brennkraftmaschine, einrichtung zum steuern und/oder regeln und brennkraftmaschine
DE102010025873A1 (de) Ansaugmodul für eine Verbrennungskraftmaschine sowie Verbrennungskraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14709674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120140002798

Country of ref document: DE

Ref document number: 112014000279

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014000279

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14709674

Country of ref document: EP

Kind code of ref document: A1