WO2023036710A1 - Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine - Google Patents

Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine Download PDF

Info

Publication number
WO2023036710A1
WO2023036710A1 PCT/EP2022/074497 EP2022074497W WO2023036710A1 WO 2023036710 A1 WO2023036710 A1 WO 2023036710A1 EP 2022074497 W EP2022074497 W EP 2022074497W WO 2023036710 A1 WO2023036710 A1 WO 2023036710A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
fuel
internal combustion
combustion chamber
combustion engine
Prior art date
Application number
PCT/EP2022/074497
Other languages
English (en)
French (fr)
Inventor
Giovanni Cornetti
Horst Mueller
Moritz Hoess
Gabriele Sgroi
Holger Kauss
Samuel WEINBRENNER
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN202280074910.7A priority Critical patent/CN118234930A/zh
Publication of WO2023036710A1 publication Critical patent/WO2023036710A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/204Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using an exhaust gas igniter, e.g. a spark or glow plug, without introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/38Arrangements for igniting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/20Control of the pumps by increasing exhaust energy, e.g. using combustion chamber by after-burning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/06Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the arrangement of the exhaust apparatus relative to the turbine of a turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/34Control of exhaust back pressure, e.g. for turbocharged engines

Definitions

  • the invention relates to an internal combustion engine and a method for operating this internal combustion engine, the internal combustion engine being provided in particular for the combustion of gaseous fuel.
  • Internal combustion engines are known from the prior art which have a plurality of cylinders with corresponding combustion chambers.
  • Such an internal combustion engine including add-on components is disclosed, for example, in DE 10 2017 200 835 A1, in which the fuel is introduced either into the intake tract or directly into the combustion chambers of the internal combustion engine.
  • the charge air is compressed using an exhaust gas turbocharger.
  • the exhaust gas generated in the combustion chamber is routed via drain valves into an exhaust line and from there into the exhaust gas turbocharger.
  • a rapid increase in air compression in the intake tract is required for high engine performance and above all for good dynamics, i.e. a rapid increase in engine performance when required.
  • the output of the exhaust gas turbocharger depends on the exhaust gas enthalpy, i.e. in particular on the exhaust gas temperature: the higher the temperature of the exhaust gas, the higher the possible output of the turbocharger.
  • the fuel e.g. hydrogen
  • the fuel is used with a high air shot burned. This means that there is significantly more oxygen in the combustion chamber than can chemically react with the fuel present there, which corresponds to a so-called lean mixture.
  • the mixing ratio is expressed by the value X: If there is just as much oxygen as can react with the fuel, this corresponds to an X value of 1.
  • a lean mixture has a value X > 1, a mixture with excess fuel (so-called rich mixture) a value X ⁇ 1.
  • An X value greater than 1 lowers the combustion temperature and reduces the formation of nitrogen oxides during combustion, but also lowers the temperature of the exhaust gas, which reduces the performance of the turbocharger. The result is poor engine response, which means that the engine can only slowly increase its output when there is a corresponding demand and the torque build-up is delayed.
  • the internal combustion engine shows a good response behavior despite a high excess of air in the combustion chamber and thus a rapid increase in performance is made possible.
  • fuel is added to the exhaust gas in the exhaust line between the combustion chamber and the exhaust gas turbocharger via a metering valve and the resulting exhaust gas/fuel mixture is ignited in the exhaust line so that the exhaust gas is heated and its enthalpy is increased.
  • the hot exhaust gas is fed into the turbocharger's turbine, where a correspondingly high level of power is available for compressing the charge air.
  • the engine has a quick response and enables a rapid increase in performance.
  • the fuel for example hydrogen
  • a high exhaust gas enthalpy can be generated and thus a good response behavior of the internal combustion engine.
  • fuel is only introduced into the exhaust gas when the air compression capacity of the exhaust gas turbocharger is not sufficient for the power demanded of the internal combustion engine.
  • the fuel in the exhaust system is advantageously ignited by an electric ignition device arranged there, for example by an electric spark plug, as is also used to ignite the air/fuel mixture in the combustion chamber.
  • an electric ignition device arranged there, for example by an electric spark plug, as is also used to ignite the air/fuel mixture in the combustion chamber. This enables precise ignition in terms of time and space, which is optimally matched to the opening of the cylinder exhaust valves.
  • the internal combustion engine according to the invention for carrying out the method according to the invention has a combustion chamber which can be connected to a charge air supply and a metering device for the fuel. There is also an exhaust line, into which the burned-off fuel-air mixture (exhaust gas) flows out of the combustion chamber and is fed to an exhaust gas turbocharger, which compresses the charge air for the internal combustion engine.
  • a metering valve is arranged in the exhaust line, via which fuel can be introduced into the exhaust gas.
  • an electrical ignition device is provided in the exhaust line, with which the exhaust gas/fuel mixture can be ignited precisely in terms of time and space in order to achieve an increase in enthalpy.
  • part of the exhaust gas is returned to the charge air.
  • the mass flow, which is conducted via the turbocharger can be influenced and the efficiency of the internal combustion engine can thus be increased.
  • the temperature of the charge air compressed by the exhaust gas turbocharger is lowered with a charge air cooler before it is introduced into the combustion chamber.
  • the internal combustion engine 1 has a plurality of combustion chambers 2, in this exemplary embodiment six combustion chambers 2 arranged next to one another.
  • the combustion air is supplied via an intake pipe 5 with an air filter 6, an exhaust gas turbocharger 8 and an air line 9 with an intercooler 10, the air line 9 finally opens into an intake manifold 3.
  • the intercooler 10 enables the charge air to be cooled and thus the air temperature to be reduced in order to be able to introduce more air volume and thus also oxygen into the combustion chambers.
  • All Combustion chambers 2 are supplied with the necessary charge air, which enters the combustion chambers 2 at the right time from the intake manifold 3 via intake valves, which are not shown in the drawing.
  • the supply of the fuel is not shown in detail in the drawing and takes place, for example, directly into the combustion chambers 2, so that an ignitable fuel-air mixture is produced there.
  • the fuel-air mixture is ignited in the combustion chamber 2 using an electrical ignition device, such as a spark plug.
  • the burned-off fuel-air mixture in the combustion chambers 2 reaches an exhaust manifold 12 as exhaust gas, which is part of an exhaust line 11 .
  • the exhaust system 11 absorbs the exhaust gas from all combustion chambers 2 and directs it via the exhaust gas turbocharger 8 into an exhaust pipe 16.
  • the exhaust gas drives the exhaust gas turbocharger 8, which compresses the charge air in the air line 9.
  • part of the exhaust gas is fed back into the intake manifold 3 .
  • two exhaust gas recirculation lines 13 branch off from the exhaust manifold 12 and open into an exhaust gas recirculation cooler 15.
  • the recirculated exhaust gas is cooled here in order not to further heat the charge air.
  • a coolant flows through the exhaust gas recirculation cooler 15 and is supplied via a coolant inlet 17 and discharged via a coolant outlet 18 .
  • the exhaust gas cooled in this way is fed back to the intake manifold 3 via the feed pipe 14 .
  • the required metering of the recirculated exhaust gas takes place via throttle valves 23 in the exhaust gas recirculation lines 13.
  • a metering valve 20 is arranged in the exhaust manifold 12, via which fuel, for example hydrogen, can be introduced into the exhaust gas.
  • the exhaust gas/fuel mixture is ignited by an electrical ignition device 22 so that the exhaust gas temperature and thus its enthalpy is increased.
  • the electrical ignition device 22 is, for example, a spark plug, as is also used to ignite the fuel-air mixture in the combustion chambers of the internal combustion engine.
  • an electrical ignition device 22 it is not always necessary to use an electrical ignition device 22 to ignite the exhaust gas/fuel mixture. Will the contribution of the fuel is precisely tailored to the introduction of the hot exhaust gas from one of the combustion chambers 2, the temperature of the exhaust gas is sufficient to ignite the fuel in the exhaust manifold 12. In this case, the electrical ignition device 22 can be omitted.
  • the metering of the fuel into the exhaust manifold can be omitted. If the power demand on the internal combustion engine increases, for example due to a corresponding driver request, the exhaust gas enthalpy can be increased quickly by metering in fuel using the metering valve 20, so that the response of the internal combustion engine is significantly improved compared to the response without an increase in enthalpy.
  • the fuel can be introduced into the exhaust line not only in the exhaust manifold 12 but also downstream of the exhaust manifold 12 .
  • the ignition device must also be arranged in this area in order to ensure the ignition of the exhaust gas/fuel mixture.
  • the invention can be advantageously applied when using hydrogen as the gaseous fuel.
  • gaseous fuels for example natural gas.
  • An application is possible both for vehicles in the field of passenger cars and for commercial vehicles.
  • the method according to the invention can also be used in stationary or other mobile applications of the corresponding internal combustion engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Verfahren zum Betreiben einer Brennkraftmaschine (1) mit einem Brennraum (2), der mit einer Ladeluftzufuhr (3) und einer Zufuhr für Brennstoff verbindbar ist. Ein Abgasstrang (11) nimmt die verbrannte Luft aus dem Brennraum (2) auf und führt diese zumindest teilweise einem Abgas-Turbolader (8) zu, wobei Brennstoff über ein Zumessventil (20) in den Abgasstrang (11) eingebracht werden kann. Das Verfahren beinhaltet die Schritte (i) Zuführen von Brennstoff und Ladeluft in den Brennraum, wobei mehr Sauerstoff im Brennraum vorhanden ist als mit dem Brennstoff reagieren kann, (ii) Zünden des Luft-Gas-Gemisches im Brennraum (2), (iii) Abführen des abgebrannten Gemisches (Abgas) in den Abgasstrang (11), (iv) Zuführen von Brennstoff in das aus dem Brennraum (2) abströmende Abgas, (v) Zünden des Brennstoffs im Abgas und Zuführen des Abgases zum Abgas-Turbolader (8). Die erfindungsgemäße Brennkraftmaschine zur Durchführung des Verfahrens umfasst einen Abgasstrang (11) mit einem darin angeordneten Zumessventil (20), über das Brennstoff in das Abgas eingeleitet werden kann.

Description

Beschreibung
Titel
Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
Die Erfindung betrifft eine Brennkraftmaschine und ein Verfahren zum betreiben dieser Brennkraftmaschine, wobei die Brennkraftmaschine insbesondere zur Verbrennung von gasförmigem Brennstoff vorgesehen ist.
Stand der Technik
Aus dem Stand der Technik sind Brennkraftmaschinen bekannt, die mehrere Zylinder mit entsprechenden Brennräumen aufweisen. Eine solche Brennkraftmaschine samt Anbaukomponenten ist beispielsweise in der DE 10 2017 200 835 Al offenbart, bei der der Brennstoff entweder in den Ansaugtrakt oder direkt in die Brennräume der Brennkraftmaschine eingebracht wird. Um die Leistung der Brennkraftmaschine zu steigern, wird die Ladeluft mittels eines Abgas-Turboladers verdichtet. Das erzeugte Abgas im Brennraum und wird über Ablassventile in einen Abgasstrang und von dort in den Abgas-Turbolader geleitet. Für eine hohe Leistung des Motors und vor allem für eine gute Dynamik, d.h. eine rasche Leistungssteigerung des Motors bei entsprechender Anforderung, ist eine schnelle Erhöhung der Luftverdichtung im Ansaugtrakt erforderlich. Die Leistung des Abgas-Turboladers hängt dabei von der Abgasenthalpie ab, also insbesondere von der Abgastemperatur: Je höher die Temperatur des Abgases, umso höher ist auch die mögliche Leistung des Turbolader.
Bei einer vorgemischten Verbrennung, wenn also zwischen der Einbringung des Brennstoffs in den Brennraum und dessen Zündung ein zeitlicher Abstand besteht, tritt folgender Zielkonflikt auf: Um eine saubere Verbrennung des Brenn- stoff-Luft-Gemisches zu erreichen und besonders die Stickoxid- Emissionen zu begrenzen, wird der Brennstoff, z.B. Wasserstoff, mit einem hohen Luftüber- schuss verbrannt. Das heißt, es ist im Brennraum deutlich mehr Sauerstoff vorhanden als mit dem dort vorhandenen Brennstoff chemisch reagieren kann, was einem sogenannten mageren Gemisch entspricht. Das Mischungsverhältnis wird dabei durch den Wert X ausgedrückt: Ist genauso viel Sauerstoff vorhanden, wie mit dem Brennstoff reagieren kann, so entspricht dies einem X-Wert von 1. Ein mageres Gemisch hat einen Wert X > 1, ein Gemisch mit Brennstoffüberschuss (sogenanntes fettes Gemisch) einen Wert X < 1. Ein X-Wert größer als 1 senkt die Verbrennungstemperatur und mindert die Entstehung von Stickoxiden bei der Verbrennung, senkt aber auch die Temperatur des Abgases, was die Leistung des Turboladers mindert. Die Folge ist ein schlechtes Ansprechverhalten des Motors, das heißt, dass der Motor seine Leistung bei entsprechender Anforderung nur langsam erhöhen kann und der Drehmomentaufbau nur verzögert erfolgt.
Vorteile der Erfindung
Mit dem erfindungsgemäßen Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere für gasförmige Brennstoffe, und der erfindungsgemäßen Brennkraftmaschine wird erreicht, dass die Brennkraftmaschine trotz eines hohen Luftüberschusses im Brennraum ein gutes Ansprechverhalten zeigt und damit eine schnelle Leistungssteigerung ermöglicht wird. Dazu wird dem Abgas im Abgasstrang zwischen dem Brennraum und dem Abgas-Turbolader Brennstoff über ein Zumessventil zugemischt und das so entstandene Abgas- Brennstoff- Gemisch im Abgasstrang gezündet, so dass das Abgas erwärmt und dessen Enthalpie erhöht wird. Das heiße Abgas wird in die Turbine des Turboladers geleitet, wo eine entsprechend hohe Leistung zur Verdichtung der Ladeluft zur Verfügung steht. Der Motor weist so ein schnelles Ansprechen auf und ermöglicht eine rasche Leistungssteigerung.
Es kann damit zum einen ein hoher Luftüberschuss im Brennraum gefahren werden, insbesondere um die Stickoxidemission niedrig zu halten und den Aufwand für die Abgasnachbehandlung zu minimieren. Zum anderen kann durch die Beimischung des Brennstoffs, beispielsweise Wasserstoff, im Abgas eine hohe Abgasenthalpie erzeugt werden und damit ein gutes Ansprechverhalten der Brennkraftmaschine. ln einer ersten vorteilhaften Ausgestaltung des Verfahrens wird Brennstoff nur dann in das Abgas eingebracht, wenn die Luftverdichtungsleistung des Abgas- Turboladers für die Leistungsanforderung an die Brennkraftmaschine nicht ausreicht. Bei niedriger oder bei mittlerer Leistungsanforderung ist eine zusätzliche Erhöhung der Abgasenthalpie meist nicht notwendig, um die gewünschte Leistung der Brennkraftmaschine zu erreichen, und es kann auf den zusätzlichen Brennstoff im Abgas verzichtet werden, um den Verbrauch nicht unnötig zu erhöhen.
Um die Abgasenthalpie entsprechend der Leistungsanforderung zu steigern ist vorteilhafterweise vorgesehen, dass umso mehr Brennstoff in das Abgas eingebracht wird, je höher die Leistungsanforderung an der Brennkraftmaschine ist. Dabei ist zu beachten, dass maximal so viel Brennstoff eingebracht wird, wie mit dem vorhandenen Restsauerstoff im Abgas reagieren kann.
Die Zündung des Brennstoffs im Abgasstrang geschieht in vorteilhafter Weise durch eine dort angeordnete elektrische Zündvorrichtung, beispielsweise durch eine elektrische Zündkerze, wie sie auch zur Zündung des Luft-Brennstoff-Gemi- sches im Brennraum verwendet wird. Damit ist eine zeitlich und räumlich präzise Zündung möglich, die optimal auf die Öffnung der Auslassventile der Zylinder abgestimmt ist.
Bei Brennkraftmaschinen sind in der Regel mehrere Zylinder vorhanden und es ist deshalb auch möglich, das Abgas-Brennstoff-Gemisch durch das heiße Abgas eines der Zylinder zu zünden, das in diesem Moment in den Abgasstrang eingeleitet wird. Ist dies zeitlich und räumlich aufeinander abgestimmt, so wird das Abgas- Brennstoff- Gemisch zuverlässig gezündet, ohne dass eine elektrische Zündvorrichtung erforderlich ist.
Die erfindungsgemäße Brennkraftmaschine zur Durchführung des erfindungsgemäßen Verfahrens weist einen Brennraum auf, der mit einer Ladeluftzufuhr und einer Zumesseinrichtung für den Brennstoff verbindbar ist. Weiter ist ein Abgasstrang vorhanden, in den das abgebrannte Brennstoff-Luft-Gemisch (Abgas) aus dem Brennraum abströmt und einem Abgas-Turbolader zugeführt wird, der die Ladeluft für die Brennkraftmaschine verdichtet. Im Abgasstrang ist ein Zumessventil angeordnet, über das Brennstoff in das Abgas eingeleitet werden kann. ln vorteilhafter Weiterbildung der Erfindung ist eine elektrische Zündvorrichtung im Abgasstrang vorgesehen, mit der das Abgas-Brennstoff-Gemisch zeitlich und räumlich präzise gezündet werden kann, um eine Erhöhung der Enthalpie zu erreichen.
In weiterer vorteilhafter Weiterbildung der Erfindung wird ein Teil des Abgases in die Ladeluft zurückgeführt. Dadurch kann der Massenstrom, welcher über den Turbolader geleitet wird, beeinflusst und so die Effizienz der Brennkraftmaschine erhöht werden.
In weiterer vorteilhafter Ausgestaltung wird die Temperatur der vom Abgas-Turbolader verdichteten Ladeluft vor dem Einbringen in den Brennraum mit einem Ladeluftkühler gesenkt. Dadurch kann mehr Luftmenge und damit Sauerstoff in den Brennraum gebracht werden und damit die Leistung der Brennkraftmaschine gesteigert werden.
Weitere Vorteile und vorteilhafte Ausgestaltung und der Erfindung sind der Beschreibung und der Zeichnung zu entnehmen.
Zeichnung
In der einzigen Fig. 1 der Zeichnung ist eine erfindungsgemäße Brennkraftmaschine schematisch dargestellt.
Beschreibung des Ausführungsbeispiels
In der Zeichnung ist eine erfindungsgemäße Brennkraftmaschine schematisch dargestellt. Die Brennkraftmaschine 1 weist mehrere Brennräume 2 auf, in diesem Ausführungsbeispiel sechs nebeneinander angeordnete Brennräume 2. Die Zufuhr der Verbrennungsluft geschieht über ein Ansaugrohr 5 mit einem Luftfilter 6, einen Abgas-Turbolader 8 und eine Luftleitung 9 mit einem Ladeluftkühler 10, wobei die Luftleitung 9 schließlich in einen Ansaugkrümmer 3 mündet. Dabei ermöglicht der Ladeluftkühler 10 eine Abkühlung der Ladeluft und damit eine Senkung der Lufttemperatur, um mehr Luftmenge und damit auch Sauerstoff in die Brennräume einbringen zu können. Über den Ansaugkrümmer 3 werden alle Brennräume 2 mit der notwendigen Ladeluft versorgt, die vom Ansaugkrümmer 3 über in der Zeichnung nicht dargestellte Einlassventile zum richtigen Zeitpunkt in die Brennräume 2 gelangt. Die Zuführung des Brennstoffs ist in der Zeichnung nicht näher dargestellt und geschieht beispielsweise direkt in die Brennräume 2, so dass dort ein zündfähiges Brennstoff-Luft-Gemisch entsteht. Das Brennstoff- Luft-Gemisch wird im Brennraum 2 mit Hilfe einer elektrischen Zündvorrichtung gezündet, beispielsweise einer Zündkerze.
Das abgebrannte Brennstoff-Luft-Gemisch in den Brennräumen 2 gelangt als Abgas in einen Abgaskrümmer 12, der Teil eines Abgasstrangs 11 ist. Der Abgasstrang 11 nimmt dabei das Abgas aus allen Brennräumen 2 auf und führte es über den Abgas-Turbolader 8 in ein Abgasrohr 16. Das Abgas treibt dabei den Abgas-Turbolader 8 an, der die Ladeluft in der Luftleitung 9 verdichtet. Um die Effizienz der Brennkraftmaschine zu steigern, wird ein Teil des Abgases zurück in den Ansaugkrümmer 3 geleitet. Dazu zweigen in diesem Ausführungsbeispiel zwei Abgasrückführleitungen 13 vom Abgaskrümmer 12 ab und münden in einen Abgasrückführkühler 15. Hier wird das rückgeführte Abgas gekühlt, um die Ladeluft nicht weiter zu erwärmen. Der Abgasrückführkühler 15 wird von einem Kühlmittel durchströmt, das über einen Kühlmittelzulauf 17 zugeführt und über einen Kühlmittelablauf 18 abgeführt wird. Das so gekühlte Abgas und wird über Zuführrohr 14 dem Ansaugkrümmer 3 erneut zugeführt. Die bedarfsgerechte Zumessung des rückgeführten Abgases erfolgt über Drosselventile 23 in den Abgasrückführleitungen 13.
Um die Abgasenthalpie zu erhöhen ist ein Zumessventil 20 im Abgaskrümmer 12 angeordnet, über das Brennstoff, beispielswese Wasserstoff, in das Abgas eingebracht werden kann. Das Abgas- Brennstoff- Gemisch wird mittels einer elektrischen Zündvorrichtung 22 gezündet, so dass die Abgastemperatur und damit dessen Enthalpie erhöht wird. Je höher die Abgasenthalpie, desto höher ist die mögliche Leistung des Turboladers 8 und damit die erzielbare Verdichtung der Ladeluft. Die elektrische Zündvorrichtung 22 ist beispielsweise eine Zündkerze, wie sie auch zur Zündung des Brennstoff-Luft-Gemisches in den Brennräumen der Brennkraftmaschine Verwendung findet.
Zur Zündung des Abgas-Brennstoff-Gemisches ist die Verwendung einer elektrischen Zündvorrichtung 22 nicht in jedem Fall notwendig. Wird die Einbringung des Brennstoff genau auf die Einleitung des heißen Abgases aus einem der Brennräume 2 abgestimmt, so reicht die Temperatur des Abgases aus, um den Brennstoff im Abgaskrümmer 12 zu zünden. In diesem Fall kann die elektrische Zündvorrichtungen 22 entfallen.
Reicht die Leistung des Turboladers für die Leistungsanforderung an die Brennkraftmaschine aus, ohne dass eine Erhöhung der Enthalpie des Abgases notwendig ist, so kann die Eindosierung des Brennstoffs in den Abgaskrümmer unterbleiben. Steigt die Leistungsanforderung an die Brennkraftmaschine, beispielsweise durch entsprechenden Fahrerwunsch, so kann die Abgasenthalpie rasch durch das Zudosieren von Brennstoff mittels des Dosierventils 20 erhöht werden, so dass das Ansprechverhalten der Brennkraftmaschine gegenüber dem Ansprechverhalten ohne Enthalpieerhöhung deutlich verbessert ist.
Der Brennstoff kann nicht nur im Abgaskrümmer 12, sondern auch stromabwärts des Abgaskrümmers 12 in den Abgasstrang eingebracht werden. Auch die Zündvorrichtung muss in diesem Fall in diesem Bereich angeordnet sein, um die Zündung des Abgas-Brennstoff-Gemisches sicherzustellen.
Die Erfindung kann vorteilhafterweise bei der Verwendung von Wasserstoff als gasförmigem Brennstoff angewandt werden. Es ist jedoch auch möglich, andere gasförmige Brennstoffe zu verwenden, beispielsweise Erdgas. Dabei ist eine Anwendung sowohl für Fahrzeuge aus dem Bereich der Personenkraftwagen als auch bei Nutzfahrzeugen möglich. Das erfindungsgemäße Verfahren kann auch bei stationären oder anderen mobilen Anwendungen der entsprechenden Brennkraftmaschine angewandt werden.

Claims

- 7 - Ansprüche
1. Verfahren zum Betreiben einer Brennkraftmaschine (1) mit einem Brennraum (2), der mit einer Ladeluftzufuhr (3) und einer Zufuhr für Brennstoff verbindbar ist, und mit einem Abgasstrang (11), der die verbrannte Luft aus dem Brennraum (2) aufnimmt und zumindest teilweise einem Abgas-Turbolader (8) zuführt, wobei Brennstoff über ein Zumessventil (20) zwischen dem Brennraum und dem Abgas-Turbolader (8) in den Abgasstrang (11) eingebracht werden kann, gekennzeichnet durch
Zufuhr von Ladeluft und Brennstoff in den Brennraum (2) der Brennkraftmaschine, wobei im Brennraum (2) mehr Sauerstoff vorhanden ist als bei der Verbrennung verbraucht wird,
Zünden des Luft-Brennstoff-Gemisches im Brennraum (2),
Abführen des abgebrannten Gemisches (Abgas) in den Abgasstrang (11), Zuführen von Brennstoff in das aus dem Brennraum (2) abströmende Abgas zwischen dem Brennraum und dem Abgas-Turbolader (8), Zünden des Brennstoffs im Abgasstrang (11),
Zuführen zumindest eines Teils des Abgases zum Abgas-Turbolader (8).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nur dann Brennstoff das Abgas eingebracht wird, wenn die Luftverdichtungsleistung des Abgas-Turboladers (8) für die Leistungsanforderung an die Brennkraftmaschine (1) nicht ausreicht.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Menge des in das Abgas zugeführten Brennstoffs umso größer ist, je größer die Leistungsanforderung an die Brennkraftmaschine (1) ist.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Brennstoff mittels einer im Abgasstrang (11) angeordneten elektrischen Zündvorrichtung (22) gezündet wird. - 8 -
5. Verfahren nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, dass mehrere Brennräume (2) vorhanden sind, die ihr Abgas demselben Abgasstrang (11) zuführen, und der Brennstoff zeitlich und räumlich so zugeführt wird, dass er durch das heiße Abgas eines der Brennräume (2) entzündet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass dem Abgas nicht mehr Brennstoff zugeführt wird, als mit der im Abgas vorhandenen Sauerstoffmenge verbrannt werden kann.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Brennstoff ein gasförmiger Brennstoff ist, insbesondere Wasserstoff.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass im Brennraum eine vorgemischte Verbrennung stattfindet.
9. Brennkraftmaschine (1) zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 8, mit einem Brennraum (2), der mit einer Ladeluftzufuhr (3) und einer Zufuhreinrichtung für Brennstoff verbindbar ist, und mit einem Abgasstrang (11), in den das Abgas des Brennraums (2) abgeführt wird, und mit einem Abgas-Turbolader (8), in den zumindest ein Teil des Abgases geleitet wird und der die Ladeluft verdichtet, dadurch gekennzeichnet, dass im Abgasstrang (11) zwischen dem Brennraum (2) und dem Abgasturbolader (8) ein Zumessventil (20) angeordnet ist, über das Brennstoff in das Abgas eingeleitet werden kann.
10. Brennkraftmaschine nach Anspruch 9, dadurch gekennzeichnet, dass im Abgasstrang (11) eine elektrische Zündeinrichtung (22) angeordnet ist, mit der das Abgas-Brennstoff-Gemisch gezündet werden kann.
11. Brennkraftmaschine nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass ein Teil des Abgases in die Ladeluft zurückgeführt wird. - 9 - Brennkraftmaschine nach einem der Ansprüche 9, 10 oder 11, dadurch gekennzeichnet, dass die Temperatur der vom Abgas-Turbolader (8) verdichteten Ladeluft vor dem Einbringen in den Brennraum (2) mit einem Ladeluftkühler (10) gesenkt wird.
PCT/EP2022/074497 2021-09-10 2022-09-02 Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine WO2023036710A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280074910.7A CN118234930A (zh) 2021-09-10 2022-09-02 用于运行内燃机的方法和内燃机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021210001.5A DE102021210001A1 (de) 2021-09-10 2021-09-10 Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
DE102021210001.5 2021-09-10

Publications (1)

Publication Number Publication Date
WO2023036710A1 true WO2023036710A1 (de) 2023-03-16

Family

ID=83361077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/074497 WO2023036710A1 (de) 2021-09-10 2022-09-02 Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine

Country Status (3)

Country Link
CN (1) CN118234930A (de)
DE (1) DE102021210001A1 (de)
WO (1) WO2023036710A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022212891A1 (de) 2022-11-30 2024-06-06 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021567A (ja) * 2000-07-05 2002-01-23 Osaka Gas Co Ltd 予混合圧縮自着火エンジン
FR2864161A1 (fr) * 2003-12-18 2005-06-24 Inst Francais Du Petrole Procede de controle d'un moteur a combustion interne suralimente
US20060053777A1 (en) * 2004-09-16 2006-03-16 Thomas Bruckmann System and method for increasing the temperature of gases within an exhaust of an internal combustion engine
DE102006037649A1 (de) * 2006-08-10 2008-02-14 Fev Motorentechnik Gmbh Gasmotor mit verbessertem instationären Verhalten
DE102012200012A1 (de) * 2012-01-02 2013-07-04 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
US20130247884A1 (en) * 2012-03-26 2013-09-26 Ford Global Technologies, Llc Method and apparatus for injecting oxygen within an engine
DE102017200835A1 (de) 2017-01-19 2018-07-19 Robert Bosch Gmbh Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280944A (ja) 2007-05-11 2008-11-20 Mazda Motor Corp 過給機付き気体燃料エンジン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002021567A (ja) * 2000-07-05 2002-01-23 Osaka Gas Co Ltd 予混合圧縮自着火エンジン
FR2864161A1 (fr) * 2003-12-18 2005-06-24 Inst Francais Du Petrole Procede de controle d'un moteur a combustion interne suralimente
US20060053777A1 (en) * 2004-09-16 2006-03-16 Thomas Bruckmann System and method for increasing the temperature of gases within an exhaust of an internal combustion engine
DE102006037649A1 (de) * 2006-08-10 2008-02-14 Fev Motorentechnik Gmbh Gasmotor mit verbessertem instationären Verhalten
DE102012200012A1 (de) * 2012-01-02 2013-07-04 Ford Global Technologies, Llc Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
US20130247884A1 (en) * 2012-03-26 2013-09-26 Ford Global Technologies, Llc Method and apparatus for injecting oxygen within an engine
DE102017200835A1 (de) 2017-01-19 2018-07-19 Robert Bosch Gmbh Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE102021210001A1 (de) 2023-03-16
CN118234930A (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
DE3633405C2 (de)
EP2628922B1 (de) Verfahren zum Betreiben einer selbstzündenden Brennkraftmaschine
WO2019020647A1 (de) Verbrennungskraftmaschine, insbesondere für ein kraftfahrzeug, sowie verfahren zum betreiben einer solchen verbrennungskraftmaschine
AT506561A1 (de) Verfahren zum starten einer mit brenngas betriebenen brennkraftmaschine
DE102015117089A1 (de) Unterschiedliche Brennstoffzufuhr zwischen Geber- und Nichtgeberzylindern in Motoren
DE102017222084A1 (de) Fremdgezündete Hubkolben-Brennkraftmaschine
EP2427641A2 (de) Verfahren zum starten einer mit brenngas betriebenen brennkraftmaschine
EP3812559B1 (de) Spülfluid-versorgung einer aktiven vorkammer eines aufgeladenen ottomotors in kombination mit einer turbokühlung
DE102017108367A1 (de) Unterschiedliche Brennstoffversorgung zwischen Geber- und Nichtgeberzylindern in Motoren
DE102008045915A1 (de) Brennkraftmaschine mit Vorkammerzündung
WO2023036710A1 (de) Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine
WO2014140153A1 (de) Brennkraftmaschine mit mehreren zylindern
DE102016208208A1 (de) Verbrennungsmotor und Kraftfahrzeug
DE102017009613A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens
EP3947943A1 (de) Verfahren zum betreiben eines verbrennungsmotors sowie verbrennungsmotor
DE102019006019A1 (de) Fremdgezündete Brennkraftmaschine mit innerer Gemischbildung zur Verbrennung eines Gemischs aus einem gasförmigen Kraftstoff und Luft
DE10160057A1 (de) Brennkraftmaschine mit Kompressionszündung
DE102021113860B3 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102014019556A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine für einen Kraftwagen
DE102013209305A1 (de) Optimierung von Motorsteuerungen bei Kraftstoffnachverbrennung
DE3539578A1 (de) Fremdgezuendete, mehrzylindrige brennkraftmaschine mit abgasturboaufladung
EP4028655A1 (de) Vorrichtung zur kraftstoffeinspritzung für verbrennungsmotoren
DE102009037876B4 (de) Brennkraftmaschine und Verfahren mit Einbringung und Zündung von Kraftstoff in mindestens einem von mehreren Abgasteilströmen und mit Abgasrückführung
DE102020108261A1 (de) Verbrennungskraftmaschine für ein kraftfahrzeug und verfahren zum betreiben einer verbrennungskraftmaschine
DE102019006486A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine, aufweisend eine Hauptbrennkammer und eine Vorkammer, mit Gaskraftstoff.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22772945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE