WO2014139745A1 - Anordnung zum testen einer einrichtung zum schutz eines elektronischen bauelements gegen überhitzung und zugehöriges verfahren - Google Patents

Anordnung zum testen einer einrichtung zum schutz eines elektronischen bauelements gegen überhitzung und zugehöriges verfahren Download PDF

Info

Publication number
WO2014139745A1
WO2014139745A1 PCT/EP2014/052687 EP2014052687W WO2014139745A1 WO 2014139745 A1 WO2014139745 A1 WO 2014139745A1 EP 2014052687 W EP2014052687 W EP 2014052687W WO 2014139745 A1 WO2014139745 A1 WO 2014139745A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature sensor
electronic component
temperature
circuit
protecting
Prior art date
Application number
PCT/EP2014/052687
Other languages
English (en)
French (fr)
Inventor
Thomas Luber
Original Assignee
Zf Friedrichshafen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zf Friedrichshafen Ag filed Critical Zf Friedrichshafen Ag
Priority to JP2015561994A priority Critical patent/JP2016509243A/ja
Priority to US14/776,179 priority patent/US20160003688A1/en
Priority to CN201480014293.7A priority patent/CN105190270A/zh
Publication of WO2014139745A1 publication Critical patent/WO2014139745A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/007Testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an arrangement for testing a device for protecting an electronic device against overheating and to an associated method.
  • a circuit breaker which is designed for switching loads, such as a DC motor, an asynchronous motor or the like
  • loads such as a DC motor, an asynchronous motor or the like
  • there may be a short circuit in the load circuit through which the power switch or even the load to be switched can be destroyed.
  • this is provided with one or more temperature sensors whose signals are evaluated by an evaluation circuit and turn off the circuit breaker in the event of a short circuit, which has a strong increase in temperature in the circuit breaker. When a predetermined temperature threshold is exceeded, the power switch is turned off and thus protected against destruction.
  • the temperature sensors which are typically designed as resistors, diodes or transistor sensors, are here preferably integrated in the vicinity of the corresponding hotspot, that is to say in the vicinity of the hottest point of the circuit breaker.
  • the signal of the temperature sensor is then processed by an evaluation circuit such that the shutdown of the circuit breaker or at least a power reduction occurs as soon as the temperature applied to the temperature sensor exceeds a predetermined temperature threshold, which depends on the particular application and which is typically above 150 ° C.
  • a predetermined temperature threshold which depends on the particular application and which is typically above 150 ° C.
  • an arrangement for protecting an integrated circuit against overtemperature is known with at least one detector device which detects a malfunction of the integrated circuit, with at least one temperature sensor which detects the temperature of at least a part of the integrated circuit and with a Logic device, which detects a fault operation in accordance with a detected fault and / or the detected temperature and assigns the temperature sensor in normal operation, a first temperature shift HTL and assigns the fault in the temperature sensor, a second, lower temperature switching stage.
  • DE 101 07 386 C1 discloses an integrated circuit with such an arrangement and a method for protecting an integrated circuit against excessive temperatures known.
  • a circuit arrangement for protecting a circuit breaker against overheating is known from EP 0 208 970 B1.
  • a second semiconductor body which contains a temperature sensor circuit and a semiconductor switch is bonded to a semiconductor body containing the power MOSFET.
  • the two semiconductor bodies are in thermal contact with one another, so that an occurring excess temperature within the semiconductor body of the power MOS-FET in the temperature sensor circuit can be detected.
  • the electronic switch e.g. a thyristor within the second semiconductor body is connected between the source electrode and drain electrode of the power MOSFET. If the temperature in the interior of the MOS-FET increases due to overload or high ambient temperature, the electronic switch contained in the second semiconductor body closes the gate electrode
  • Source electrode of the MOS-FET short, so that in the switched-on state before the source and the gate electrode of the MOS-FET pending voltage collapses and the MOS-FET turns off.
  • a disadvantage of the circuit arrangements known from the prior art is that the function of the temperature sensor can not be tested in normal operation.
  • the object of the invention is to provide a circuit with which it is possible, a temperature sensor and connected to the temperature sensor To test circuit for protecting an electronic device from overheating. Another task is to specify a procedure.
  • the invention is based on a device for protecting an electronic component against overheating.
  • the electronic component may e.g. a part of a controller, e.g. a transmission control device for vehicles.
  • This device comprises a temperature sensor which is in thermal connection or contact with the electronic component.
  • This thermal compound can e.g. be realized by the fact that the temperature sensor is applied to the electronic component by means of a thermally conductive adhesive.
  • the electronic component can also be a semiconductor body mounted on a printed circuit board, wherein the temperature sensor can then also be in thermal connection or thermal contact with the printed circuit board.
  • any type of heat-generating semiconductor body e.g. integrated circuit or transistor as well as a carrier plate carrying this semiconductor body, e.g. PCB to understand.
  • the electronic component is connected to a first control circuit.
  • This control circuit may be a microcontroller which essentially controls the current and voltage supply of the electronic component. However, the control circuit can also receive and process signals and / or data generated by the electronic component.
  • the temperature sensor is electrically connected to the first control circuit. It is thus possible that the first control circuit can receive and process signals and data of the temperature sensor.
  • a heating element is present, which is thermally connected to the temperature sensor.
  • the thermal connection can be achieved, for example, by the use of a thermally conductive adhesive by means of which the heating element is applied to the temperature sensor. But it is also possible that the heating element is integrated in the temperature sensor.
  • the heating element is connected to a second control circuit. This second control circuit controls the power and voltage supply of the heating element.
  • a means for storing the heating curve of the temperature sensor is present.
  • the first control circuit is set up such that the temperature-dependent signals transmitted by the temperature sensor to the first control circuit can be stored.
  • a means for checking the switching state of the electronic component is present.
  • the first control circuit is set up such that the operating state of the electronic component can be determined.
  • the method according to the invention for testing a device for protecting an electronic component against overheating comprises the following method steps: a) providing a device for protecting an electronic component, the device comprising a temperature sensor and a temperature sensor in thermal communication with the electronic component, b) providing a heating element in thermal communication with the temperature sensor,
  • the heating of the temperature sensor to a desired temperature in method step d) may be expedient during operation of the electronic component. be made.
  • the method steps c), d) and e) can take place at different time intervals during the operation of the circuit to be monitored for overheating or electronic components.
  • the method steps can also be carried out during the starting process of the electronic components, in other words when switching.
  • Fig. 2 is a generalized embodiment of a temperature protection circuit.
  • Fig. 1 shows a basic circuit arrangement which has an arrangement for protecting the circuit arrangement against overheating.
  • the circuit arrangement is designated 1.
  • the circuit arrangement 1 has an electronic component 6.
  • This electronic component 6 is e.g. a power circuit or a semiconductor element which generates heat by power loss during operation.
  • the electronic component 6 may also be a printed circuit board with a plurality of electronic components 6.
  • the circuit arrangement 1 has a temperature sensor 2.
  • This temperature sensor 2 is applied to the electronic component 6 by means of a thermally conductive connection, e.g. applied by means of a thermally conductive adhesive.
  • the temperature sensor 2 is arranged within the electronic component 6, in other words is integrated in the electronic component 6.
  • the circuit arrangement 1 has a first control unit 4.
  • This first control unit 4 is connected to the temperature sensor 2.
  • the control unit is further connected to the power and power supply 5 for the electronic component 6.
  • the control unit 4 is designed such that the from Temperature sensor 2 measured temperature values can be stored.
  • the control unit 4 is designed such that, when the measured temperature is exceeded above a predetermined threshold value, the current and voltage supply 5 for the electronic component 6 is interrupted and thus further overheating of the electronic component 6 is prevented.
  • the circuit arrangement 1 furthermore has a heating element 3, which is in thermal contact with the temperature sensor 2.
  • This heating element 3 can also be integrated in the temperature sensor 2. It is also possible that the heating element 3, the temperature sensor 2 and the electronic component 6 are integrated in a single component.
  • the heating element 3 is connected to a second control unit 7.
  • This second control device 7 is designed such that the heating element 3 is supplied with current and voltage.
  • the second control unit 7 and the first control unit 4 may expediently form a single control unit.
  • Fig. 2 shows a generalized embodiment of a temperature protection circuit, in which the structure and the operation will be described in more detail.
  • the structure corresponds essentially to the structure of FIG. 1, wherein a heating element 3 is in thermal coupling with a temperature sensor 2, the latter in turn is in thermal coupling with an electronic component 6.
  • the temperature sensor 2 measures the temperature of the electronic component 6, for example a power circuit, which increases due to self-heating and / or external heating.
  • the comparator 9 compares the temperature of the temperature sensor 2 with a threshold value, for example 130 ° C., of a threshold value transmitter 8. This threshold value transmitter 8 can also be integrated in the control unit 4. If the temperature exceeds the threshold value, the comparator 9 switches off the power circuit 6 via the transistor 10 and protects the circuit 1 against overheating. Thereafter, the circuit 6 can cool again until the temperature of the temperature sensor. 2 again falls below the threshold value of the threshold value 8. Then the comparator 9 turns on the transistor 10, the power circuit 6 again. The shutdown takes place in such a way that it is interrupted power and power supply 5 to the power circuit 6.
  • the comparator 9 typically has a hysteresis.
  • the current temperature and the switching threshold can be measured.
  • the microcontroller 4 Via the AD converter input 15 of the microcontroller 4, the microcontroller 4 can then check whether the power circuit 6 is switched off. If not, the microcontroller 4 can additionally switch off the power circuit 6 via the transistor 11.
  • the shutdown of the power circuit 6 is triggered via the second control unit 7 of the heating element 3.
  • the second control unit 7 is integrated in the first control unit 4, the microcontroller.
  • the output 12 of the microcontroller 4 controls the transistor 17 which in turn turns on the heating element 3.
  • This heating element 3 heats the temperature sensor 2 to a predeterminable temperature, e.g. 130 ° C on. If the comparator 9 detects that the temperature of the temperature sensor 2 exceeds the threshold value of the threshold value transmitter 8, then the comparator 9 switches off the power circuit 6 via the transistor 10.
  • the shutdown can be controlled with the AD converter input 15 on the microcontroller 4. If it is detected via the input 15 that the power circuit 6 has not been switched off, as described above via the output 1 6 on the microcontroller 4 and the transistor 1 1, the power and power supply 5 for the power circuit 6 are additionally turned off.
  • the heating curve of the temperature sensor 2 can be recorded when switching on the heating element 3 and checked for plausibility. For example, it can be checked whether the temperature sensor 2 reaches a certain temperature in a defined time window.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

Die Erfindung betrifft eine Anordnung und ein Verfahren zum Testen einer Einrichtung zum Schutz eines elektronischen Bauelements (6) gegen Überhitzung, wobei die Einrichtung (1) einen mit dem elektronischen Bauelement (6) in thermischer Verbindung stehenden Temperatursensor (2) und eine erste Steuerschaltung (4) für das elektronische Bauelement (6) umfasst, wobei der Temperatursensor (2) elektrisch mit der ersten Steuerschaltung (4) verbunden ist, wobei die Anordnung ein mit dem Temperatursensor (2) thermisch verbundenes Heizelement (3) aufweist, welches mittels einer zweiten Steuerschaltung (7) ansteuerbar ist.

Description

Anordnung zum Testen einer Einrichtung zum Schutz eines elektronischen Bauelements gegen Überhitzung und zugehöriges Verfahren
Die vorliegende Erfindung betrifft eine Anordnung zum Testen einer Einrichtung zum Schutz eines elektronischen Bauelements gegen Überhitzung sowie ein zugehöriges Verfahren.
Beim Betrieb von integrierten Halbleiterschaltungen wird zumindest ein Teil der elektrischen Leistung in Wärme umgesetzt. Unter bestimmten Bedingungen - zum Beispiel bei Überlast, Kurzschluss, externer Erwärmung des Halbleiterchips - kann dies zu einer unerwünschten Übertemperatur führen. Zur Erfassung dieser Übertemperatur und zum Schutz der integrierten Halbleiterschaltungen weisen diese typischerweise eine Temperaturschutzeinrichtung auf. Diese muss jedoch unterschiedlichen Anforderungen Genüge leisten.
Bei Schaltungsanordnungen mit einem Leistungsschalter, der zum Schalten von Lasten, wie zum Beispiel einem Gleichstrommotor, einem Asynchronmotor oder dergleichen, ausgelegt ist, kann es zu einem Kurzschluss im Lastkreis kommen, durch den der Leistungsschalter bzw. sogar die zu schaltende Last zerstört werden können. Zum Schutz des Leistungsschalters ist dieser mit einem oder mehreren Temperatursensoren versehen, deren Signale von einer Auswerteschaltung ausgewertet werden und die beim Auftreten eines Kurzschlusses, der einen starken Temperaturanstieg im Leistungsschalter zur Folge hat, den Leistungsschalter abschalten. Beim Überschreiten einer vorgegebenen Temperaturschwelle wird der Leistungsschalter abgeschaltet und somit vor Zerstörung geschützt. Die Temperatursensoren, die typischerweise als Widerstände, Dioden oder Transistorsensoren ausgebildet sind, werden hier vorzugsweise in der Nähe des entsprechenden Hotspots, das heißt also in der Nähe der heißesten Stelle des Leistungsschalters, integriert. Das Signal des Temperatursensors wird dann von einer Auswerteschaltung derart verarbeitet, dass die Abschaltung des Leistungsschalters oder zumindest eine Leistungsreduzierung erfolgt, sobald die am Temperatursensor anliegende Temperatur eine vorbestimmte Temperaturschwelle, die von der jeweiligen Applikation abhängig ist und die typischerweise über 150°C liegt, überschreitet. Aus DE 101 07 386 C1 ist eine Anordnung zum Schutz einer integrierten Schaltung gegen Übertemperatur bekannt mit mindestens einer Detektoreinrichtung, die einen Störfall der integrierten Schaltung erkennt, mit mindestens einem Temperatursensor, der die Temperatur zumindest eines Teils der integrierten Schaltung er- fasst und mit einer Logikeinrichtung, die nach Maßgabe eines erfassten Störfalles und/oder der erfassten Temperatur einen Störbetrieb feststellt und die im Normalbetrieb dem Temperatursensor eine erste Temperaturschaltstufe HTL zuweist und die im Störbetrieb dem Temperatursensor eine zweite, niedrigere Temperaturschaltstufe zuweist. Ferner ist aus DE 101 07 386 C1 eine integrierte Schaltung mit einer solchen Anordnung sowie ein Verfahren zum Schutz einer integrierten Schaltung gegen Übertemperaturen bekannt.
Eine Schaltungsanordnung zum Schutz eines Leistungsschalters vor Überhitzung ist aus EP 0 208 970 B1 bekannt. Zum Schutz des Leistungs-MOS-FET bei auftretender Übertemperatur ist auf einen den Leistungs-MOS-FET enthaltenden Halbleiterkörper ein zweiter Halbleiterkörper geklebt, welcher eine Temperatursensorschaltung und einen Halbleiterschalter enthält. Die beiden Halbleiterkörper stehen einander in Wärmekontakt, so dass eine auftretende Übertemperatur innerhalb des Halbleiterkörpers des Leistungs-MOS-FET in der Temperatursensorschaltung erfasst werden kann. Der elektronische Schalter, z.B. ein Thyristor, innerhalb des zweiten Halbleiterkörpers ist zwischen die Sourceelektrode und Drainelektrode des Leistungs-MOS-FET geschaltet. Steigt die Temperatur im Inneren des MOS-FET durch Überlastung oder hohe Umgebungstemperatur an, schließt der im zweiten Halbleiterkörper enthaltende, elektronische Schalter die Gateelektrode zur
Sourceelektrode des MOS-FET kurz, so dass die im eingeschalteten Zustand zuvor zwischen Sourceelektrode und Gateelektrode des MOS-FET anstehende Spannung zusammenbricht und der MOS-FET ausschaltet.
Nachteil an den aus dem Stand der Technik bekannten Schaltungsanordnungen ist, dass die Funktion des Temperatursensors im normalen Betrieb nicht getestet werden kann.
Aufgabe der Erfindung ist es, eine Schaltung anzugeben, mit welcher es möglich ist, einen Temperatursensor und eine mit dem Temperatursensor verbundene Schaltung zum Schutz eines elektronischen Bauelements vor Überhitzung zu testen. Eine weitere Aufgabe besteht in der Angabe eines Verfahrens.
Diese Aufgabe wird mit der Anordnung gemäß den Merkmalen des geltenden unabhängigen Patentanspruchs 1 sowie mit den Merkmalen des geltenden Patentanspruchs 4 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen.
Die Erfindung geht aus von einer Einrichtung zum Schutz eines elektronischen Bauelements gegen Überhitzung. Das elektronische Bauelement kann z.B. ein Teil eines Steuergeräts, z.B. eines Getriebesteuergeräts für Fahrzeuge sein. Diese Einrichtung umfasst einen Temperatursensor, der mit dem elektronischen Bauelement in thermischer Verbindung bzw. Kontakt steht. Diese thermische Verbindung kann z.B. dadurch realisiert sein, dass der Temperatursensor auf das elektronische Bauelement mittels eines thermisch leitfähigen Klebers aufgebracht ist. Das elektronische Bauelement kann auch ein auf einer Leiterplatte aufgebrachter Halbleiterkörper sein, wobei der Temperatursensor dann auch in thermischer Verbindung oder thermischen Kontakt mit der Leiterplatte stehen kann. Im Weiteren ist unter einem elektronischen Bauelement somit einerseits jede Art von Wärme erzeugenden Halbleiterkörper, z.B. integrierte Schaltung oder Transistor als auch eine diesen Halbleiterkörper tragende Trägerplatte, z.B. Leiterplatte zu verstehen.
Das elektronische Bauelement ist mit einer ersten Steuerschaltung verbunden. Diese Steuerschaltung kann ein MikroController sein, welcher im Wesentlichen die Strom- und Spannungsversorgung des elektronischen Bauelements steuert. Die Steuerschaltung kann aber auch von dem elektronischen Bauelement erzeugte Signale und/oder Daten empfangen und verarbeiten. Der Temperatursensor ist elektrisch mit der ersten Steuerschaltung verbunden. Es ist somit möglich, dass die erste Steuerschaltung Signale und Daten des Temperatursensors empfangen und verarbeiten kann.
Gemäß der Erfindung ist ein Heizelement vorhanden, welches mit dem Temperatursensor thermisch verbunden ist. Die thermische Verbindung kann z.B. durch die Verwendung eines thermisch leitfähigen Klebers erreicht werden mittels welchem das Heizelement auf den Temperatursensor aufgebracht ist. Es ist aber auch möglich, dass das Heizelement in den Temperatursensor integriert ist. Das Heizelement ist mit einer zweiten Steuerschaltung verbunden. Diese zweite Steuerschaltung steuert die Strom- und Spannungsversorgung des Heizelements.
In einer bevorzugten Ausführungsform der Erfindung ist ein Mittel zum Speichern der Aufheizkurve des Temperatursensors vorhanden. Zweckmäßig ist die erste Steuerschaltung derart eingerichtet, dass die von dem Temperatursensor an die erste Steuerschaltung übermittelten temperaturabhängigen Signalen gespeichert werden können.
In einer weiteren bevorzugten Ausführungsform der Erfindung ist ein Mittel zur Überprüfung des Schaltzustands des elektronischen Bauelements vorhanden.
Zweckmäßig ist die erste Steuerschaltung derart eingerichtet, dass der Betriebszustand des elektronischen Bauelements bestimmbar ist.
Das erfindungsgemäße Verfahren zum Testen einer Einrichtung zum Schutz eines elektronischen Bauelements gegen Überhitzung umfasst folgende Verfahrensschritte: a) Bereitstellen einer Einrichtung zum Schutz eines elektronischen Bauelements, wobei die Einrichtung einen Temperatursensor und einen mit dem elektronischen Bauelement in thermischer Verbindung stehenden Temperatursensor umfasst, b) Bereitstellen eines in thermischer Verbindung mit dem Temperatursensor stehenden Heizelements,
c) Aufheizen des Temperatursensors auf eine Soll-Temperatur mittels des Heizelements,
d) Vergleichen der Soll-Temperatur und der Ist-Temperatur des Temperatursensors, e) Abschalten des elektronischen Bauelements, wenn die Ist-Temperatur des Temperatursensors die Soll-Temperatur überschreitet.
Das Aufheizen des Temperatursensors auf eine Soll-Temperatur in Verfahrensschritt d) kann zweckmäßig während des Betriebs des elektronischen Bauele- ments erfolgen. Die Verfahrensschritte c), d) und e) können in verschiedenen Zeitabständen während des Betriebs der auf Überhitzung zu überwachenden Schaltung oder elektronischen Bauelemente erfolgen. Selbstverständlich können die Verfahrensschritte auch beim Startvorgang der elektronischen Bauelemente, mit anderen Worten beim Einschalten erfolgen.
Die Erfindung wird im Weiteren anhand von Figuren näher erläutert.
Es zeigen:
Fig. 1 eine prinzipielle Schaltungsanordnung mit Überhitzungsschutz,
Fig. 2 ein verallgemeinertes Ausführungsbeispiel einer Temperaturschutzschaltung.
Fig. 1 zeigt eine prinzipielle Schaltungsanordnung, die eine Anordnung zum Schutz der Schaltungsanordnung gegen Überhitzung aufweist. In Fig. 1 ist die Schaltungsanordnung mit 1 bezeichnet. Die Schaltungsanordnung 1 weist ein elektronisches Bauelement 6 auf. Dieses elektronische Bauelement 6 ist z.B. eine Leistungsschaltung oder ein Halbleiterelement, welches im Betrieb Wärme durch Verlustleistung erzeugt. Selbstverständlich kann das elektronische Bauelement 6 auch eine Leiterplatte mit mehreren elektronischen Bauelementen 6 sein.
In der unmittelbaren Umgebung, zweckmäßig direkt in thermischer Verbindung mit dem elektronischen Bauelement 6 weist die Schaltungsanordnung 1 einen Temperatursensor 2 auf. Dieser Temperatursensor 2 ist auf das elektronische Bauelement 6 mittels einer thermisch leitfähigen Verbindung z.B. mittels eines thermisch leitfähigen Klebers aufgebracht. Es ist aber möglich, dass der Temperatursensor 2 innerhalb des elektronischen Bauelements 6 angeordnet ist, mit anderen Worten im elektronischen Bauelement 6 integriert ist.
Weiterhin weist die Schaltungsanordnung 1 ein erstes Steuergerät 4 auf. Dieses erste Steuergerät 4 ist mit dem Temperatursensor 2 verbunden. Das Steuergerät ist ferner mit der Strom- und Spannungsversorgung 5 für das elektronische Bauelement 6 verbunden. Das Steuergerät 4 ist dabei derart ausgebildet, dass die vom Temperatursensor 2 gemessenen Temperaturwerte gespeichert werden können. Weiterhin ist das Steuergerät 4 ausgebildet, dass bei Überschreiten der gemessenen Temperatur über einen vorgegebenen Schwellwert die Strom- und Spannungsversorgung 5 für das elektronische Bauelement 6 unterbrochen wird und somit eine weitere Überhitzung des elektronischen Bauelements 6 verhindert wird.
Die Schaltungsanordnung 1 weist weiterhin ein Heizelement 3 auf, welches im thermischen Kontakt mit dem Temperatursensor 2 steht. Dieses Heizelement 3 kann auch in den Temperatursensor 2 integriert sein. Es ist auch möglich, dass das Heizelement 3, der Temperatursensor 2 und das elektronische Bauelement 6 in einem einzelnen Bauteil integriert sind.
Das Heizelement 3 ist mit einem zweiten Steuergerät 7 verbunden. Dieses zweite Steuergerät 7 ist derart ausgebildet, dass das Heizelement 3 mit Strom und Spannung versorgt wird. Das zweite Steuergerät 7 und das erste Steuergerät 4 können zweckmäßig ein einzelnes Steuergerät bilden.
Fig. 2 zeigt ein verallgemeinertes Ausführungsbeispiel einer Temperaturschutzschaltung, bei welcher der Aufbau und die Funktionsweise noch ausführlicher beschrieben werden.
Der Aufbau entspricht im Wesentlichen dem Aufbau aus Fig. 1 , wobei ein Heizelement 3 in thermischer Kopplung mit einem Temperatursensor 2 steht, wobei letzterer wiederum in thermischer Kopplung mit einem elektronischen Bauelement 6 steht.
Der Temperatursensor 2 misst die Temperatur des elektronischen Bauelements 6, z.B. einer Leistungsschaltung, die sich durch Eigenerwärmung und/oder Fremderwärmung erhöht. Der Komparator 9 vergleicht die Temperatur des Temperatursensors 2 mit einem Schwellwert z.B. 130°C eines Schwellwertgebers 8. Dieser Schwellwertgeber 8 kann auch in das Steuergerät 4 integriert sein. Überschreitet die Temperatur den Schwellwert, schaltet der Komparator 9 über den Transistor 10 die Leistungsschaltung 6 ab und schützt die Schaltung 1 vor Überhitzung. Danach kann sich die Schaltung 6 wieder abkühlen, bis die Temperatur des Temperatursensors 2 wieder unter den Schwellwert des Schwellwertgebers 8 fällt. Dann schaltet der Komparator 9 über den Transistor 10 die Leistungsschaltung 6 wieder ein. Die Abschaltung erfolgt dabei derart, dass sie Strom- und Spannungsversorgung 5 zur Leistungsschaltung 6 unterbrochen wird.
Der Komparator 9 hat typischerweise eine Hysterese.
Über die AD-Wandler-Eingänge 13 und 14 am ersten Steuergerät 4, welches z.B. ein Mikrocontroller ist, kann die aktuelle Temperatur und die Schaltschwelle gemessen werden. Über den AD-Wandler-Eingang 15 des MikroControllers 4 kann der Mikrocontroller 4 dann prüfen, ob die Leistungsschaltung 6 abgeschaltet ist. Wenn nicht, kann der Mikrocontroller 4 die Leistungsschaltung 6 zusätzlich über den Transistor 1 1 abschalten.
Die Abschaltung der Leistungsschaltung 6 wird über das zweite Steuergerät 7 des Heizelements 3 ausgelöst. In Fig. 2 ist das zweite Steuergerät 7 in das erste Steuergerät 4, den Mikrocontroller integriert. Der Ausgang 12 des MikroControllers 4 steuert den Transistor 17 an der wiederum das Heizelement 3 einschaltet. Dieses Heizelement 3 heizt den Temperatursensor 2 auf eine vorgebbare Temperatur, z.B. 130°C auf. Erkennt der Komparator 9, dass die Temperatur des Temperatursensors 2 den Schwellwert des Schwellwertgebers 8 überschreitet, dann schaltet der Komparator 9 über den Transistor 10 die Leistungsschaltung 6 aus. Die Abschaltung kann mit dem AD-Wandler-Eingang 15 am Mikrocontroller 4 kontrolliert werden. Falls über den Eingang 15 erkannt wird, dass die Leistungsschaltung 6 nicht abgeschaltet wurde, kann wie oben beschrieben über den Ausgang 1 6 am Mikrocontroller 4 und dem Transistor 1 1 die Strom- und Spannungsversorgung 5 für die Leistungsschaltung 6 zusätzlich abgeschaltet werden.
Über den Eingang 14 am Mikrocontroller 4 kann die Aufheizkurve des Temperatursensors 2 beim Einschalten des Heizelements 3 aufgezeichnet werden und auf Plausibilität geprüft werden. Beispielsweise kann geprüft werden, ob der Temperatursensor 2 in einem festgelegten Zeitfenster eine bestimmte Temperatur erreicht. Bezuqszeichen
Schaltungsanordnung
Temperaursensor
Heizelement
erstes Steuergerät
Strom- und Spanungsversorgung
elektronisches Bauelement
zweites Steuergerät
Schwellwertgeber
Komparator
Transistor
Transistor
Ausgang Steuergerät zum Heizelement
Eingang erstes Steuergerät zu Schwellwertgeber
Eingang erstes Steuergerät zu Temperatursensor
Prüfeingang
Ausgang Abschaltung
Transistor

Claims

Patentansprüche
1 . Anordnung zum Testen einer Einrichtung zum Schutz eines elektronischen Bauelements (6) gegen Überhitzung, wobei die Einrichtung (1 ) einen mit dem elektronischen Bauelement (6) in thermischer Verbindung stehenden Temperatursensor (2) und eine erste Steuerschaltung (4) für das elektronische Bauelement (6) umfasst, wobei der Temperatursensor (2) elektrisch mit der ersten Steuerschaltung (4) verbunden ist, dadurch gekennzeichnet, dass die Anordnung ein mit dem Temperatursensor (2) thermisch verbundenes Heizelement (3) aufweist, welches mittels einer zweiten Steuerschaltung (7) ansteuerbar ist.
2. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass Mittel (4, 14) zum Speichern der Aufheizkurve des Temperatursensors (2) vorhanden sind.
3. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass Mittel (4, 15) zur Überprüfung des Schaltzustands des elektronischen Bauelements (6) vorhanden sind.
4. Verfahren zum Testen einer Einrichtung zum Schutz eines elektronischen Bauelements (6) gegen Überhitzung, umfassend folgende Verfahrensschritte:
Bereitstellen einer Einrichtung zum Schutz eines elektronischen Bauelements (6), wobei die Einrichtung einen Temperatursensor (2) und einen mit dem elektronischen Bauelement (6) in thermischer Verbindung stehenden Temperatursensor (2) umfasst, Bereitstellen eines in thermischer Verbindung mit dem Temperatursensor (2) stehenden Heizelements (3),
Aufheizen des Temperatursensors (2) auf eine Soll-Temperatur mittels des Heizelements,
Vergleichen der Soll-Temperatur und der Ist-Temperatur des Temperatursensors (2), Abschalten des elektronischen Bauelements (6), wenn die Ist-Temperatur des Temperatursensors (2) die Soll-Temperatur überschreitet.
PCT/EP2014/052687 2013-03-14 2014-02-12 Anordnung zum testen einer einrichtung zum schutz eines elektronischen bauelements gegen überhitzung und zugehöriges verfahren WO2014139745A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015561994A JP2016509243A (ja) 2013-03-14 2014-02-12 電子素子の過熱保護装置を検査する配置およびその検査方法
US14/776,179 US20160003688A1 (en) 2013-03-14 2014-02-12 Arrangement for testing a device for protecting an electronic component against overheating and pertaining method
CN201480014293.7A CN105190270A (zh) 2013-03-14 2014-02-12 用于对保护电子元器件以防过热的设备进行测试的装置和附属的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013204467.4A DE102013204467A1 (de) 2013-03-14 2013-03-14 Anordnung zum Testen einer Einrichtung zum Schutz eines elektronischen Bauelements gegen Überhitzung und zugehöriges Verfahren
DE102013204467.4 2013-03-14

Publications (1)

Publication Number Publication Date
WO2014139745A1 true WO2014139745A1 (de) 2014-09-18

Family

ID=50073201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/052687 WO2014139745A1 (de) 2013-03-14 2014-02-12 Anordnung zum testen einer einrichtung zum schutz eines elektronischen bauelements gegen überhitzung und zugehöriges verfahren

Country Status (5)

Country Link
US (1) US20160003688A1 (de)
JP (1) JP2016509243A (de)
CN (1) CN105190270A (de)
DE (1) DE102013204467A1 (de)
WO (1) WO2014139745A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105493391B (zh) * 2013-08-28 2018-02-27 日产自动车株式会社 传感器异常判定装置
US9618945B2 (en) 2013-09-22 2017-04-11 Microsoft Technology Licensing, Llc Monitoring surface temperature of devices
US9521246B2 (en) * 2014-06-03 2016-12-13 Mediatek Inc. Thermal control method and thermal control system
US9817454B2 (en) * 2015-10-15 2017-11-14 Mediatek Inc. Apparatus and method for dynamic thermal management of integrated circuit
CN108172567A (zh) * 2017-12-21 2018-06-15 刘梦思 一种具有抗瞬间电气过载能力的集成电路封装块
FR3105411A1 (fr) * 2019-12-19 2021-06-25 Psa Automobiles Sa Dispositif de mesure à deux sondes de température pour un véhicule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208970B1 (de) 1985-07-09 1990-05-23 Siemens Aktiengesellschaft MOSFET mit Temperaturschutz
US20020048309A1 (en) * 1999-02-23 2002-04-25 Blankenagel John A. Method and apparatus for testing a temperature sensor
DE10107386C1 (de) 2001-02-16 2002-08-22 Infineon Technologies Ag Schaltungsanordnung mit Temperaturschutz und Verfahren
WO2009047812A1 (en) * 2007-10-11 2009-04-16 Ansaldo Segnalamento Ferroviario S.P.A. Fail-safe temperature detection device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50113483U (de) * 1974-02-25 1975-09-16
JPS59149034U (ja) * 1983-03-28 1984-10-05 東洋電機製造株式会社 測温素子監視装置
DE3638131A1 (de) * 1986-11-08 1988-05-11 Audi Ag Kuehlsystem einer wassergekuehlten fahrzeug-brennkraftmaschine
DE19728281C1 (de) * 1997-07-02 1998-10-29 Siemens Ag Zwei-Chip-Leistungs-IC mit verbessertem Kurzschlußverhalten
DE10135805A1 (de) * 2001-07-23 2003-02-13 Infineon Technologies Ag Vorrichtung und Verfahren zur Erfassung einer Zuverlässigkeit von integrierten Halbleiterbauelementen bei hohen Temperaturen
US7035031B2 (en) * 2001-11-26 2006-04-25 Samsung Electronics Co., Ltd. Installation of heater into hard disk drive to improve reliability and performance at low temperature
JP2006237331A (ja) * 2005-02-25 2006-09-07 Nissan Motor Co Ltd 過温度検出回路及び過温度保護回路
US7551411B2 (en) * 2005-10-12 2009-06-23 Black & Decker Inc. Control and protection methodologies for a motor control module
US7841771B2 (en) * 2006-07-13 2010-11-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Self-validating thermocouple
EP2059986B1 (de) * 2006-09-06 2015-08-26 Siemens Aktiengesellschaft Schutzschaltung zum schutz eines geräts, insbesondere eines elektromotors, vor einer thermischen überlastung
JP4940938B2 (ja) * 2006-12-25 2012-05-30 株式会社島津製作所 熱式質量流量計
DE102008001143A1 (de) * 2008-04-14 2009-10-15 Zf Friedrichshafen Ag Verfahren zur Generierung von Ersatzwerten für Messwerte in einer Steuerung
US8529126B2 (en) * 2009-06-11 2013-09-10 Rosemount Inc. Online calibration of a temperature measurement point
US8296093B2 (en) * 2009-12-30 2012-10-23 Infineon Technologies Ag Semiconductor device with thermal fault detection
CN201886264U (zh) * 2010-11-17 2011-06-29 宜兴市普天视电子有限公司 遥控室内水平云台
CN102298406A (zh) * 2011-08-24 2011-12-28 张克勇 电加热器及其控制装置
CN202395414U (zh) * 2011-09-22 2012-08-22 瑞侃电子(上海)有限公司 电路保护器件及包含该器件的电子电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208970B1 (de) 1985-07-09 1990-05-23 Siemens Aktiengesellschaft MOSFET mit Temperaturschutz
US20020048309A1 (en) * 1999-02-23 2002-04-25 Blankenagel John A. Method and apparatus for testing a temperature sensor
DE10107386C1 (de) 2001-02-16 2002-08-22 Infineon Technologies Ag Schaltungsanordnung mit Temperaturschutz und Verfahren
WO2009047812A1 (en) * 2007-10-11 2009-04-16 Ansaldo Segnalamento Ferroviario S.P.A. Fail-safe temperature detection device

Also Published As

Publication number Publication date
DE102013204467A1 (de) 2014-09-18
JP2016509243A (ja) 2016-03-24
CN105190270A (zh) 2015-12-23
US20160003688A1 (en) 2016-01-07

Similar Documents

Publication Publication Date Title
WO2014139745A1 (de) Anordnung zum testen einer einrichtung zum schutz eines elektronischen bauelements gegen überhitzung und zugehöriges verfahren
DE10107386C1 (de) Schaltungsanordnung mit Temperaturschutz und Verfahren
DE10245484B4 (de) Verfahren zur Ansteuerung eines Halbleiterschalters und Schaltungsanordnung mit einem Halbleiterschalter
DE102010000875B4 (de) Verfahren zur Messung der Junction-Temperatur bei Leistungshalbleitern in einem Stromrichter
DE19832558B4 (de) Halbleiteranordnung mit mindestens einem Halbleiterchip
DE102007058740B4 (de) Schaltungsanordnung mit einer Überstromsicherung
DE102005046979B4 (de) Sicherungsschaltung und Verfahren zum Sichern einer Lastschaltung
DE19745040A1 (de) Anordnung und Verfahren zum Messen einer Temperatur
DE102006008292A1 (de) Überlastschutz für steuerbare Stromverbraucher
DE102014008021B4 (de) Schaltungsanordnung zum thermischen Schutz eines Leistungshalbleiters
DE102007016704A1 (de) Schaltungsanordnung zur Spannungsbegrenzung
DE19704861A1 (de) Steuerbare Schalteinrichtung, Anordnung und Verfahren zum Betreiben einer Schalteinrichtung, insbesondere für Leistungshalbleiter
DE102012008999B3 (de) Verfahren zur Steuerung einer Leistungszufuhr und Vorrichtung
EP2130275B1 (de) Fehlererkennung in einem steuergerät
EP3723217A1 (de) Schutzeinrichtung zum abschalten eines überstroms in einem gleichspannungsnetz
DE102012208115B4 (de) Vorrichtung und Verfahren zur intelligenten Absicherung einer elektrischen Leitung
EP2274188B1 (de) Schutzanordnung zum schutz sicherheitsrelevanter elektronikschaltungen vor fehlfunktionen
DE102009034650B4 (de) Verfahren und Schaltung zum Schutz eines Mosfet
EP1932400B1 (de) Vorrichtung zur fehlerstromerkennung in einem elektronischen gerät
DE102007017581B4 (de) Verfahren zur Ansteuerung eines kaltleitenden elektrischen Lastelementes, Schalteinheit für ein kaltleitendes elektrisches Lastelement, Glühlampensteuerung und Fahrzeug
DE102004020274A1 (de) Verfahren und Vorrichtung zum Schutz eines elektronischen Bauelements
DE10006526A1 (de) Temperaturgeschützte Halbleiterschaltungsanordnung
EP3063871A1 (de) Überspannungsschutzschaltung für einen leistungshalbleiter und verfahren zum schutz eines leistungshalbleiters vor überspannungen
EP1875589B1 (de) Verfahren und vorrichtung zur strom- und/oder spannungsabhängigen temperaturbegrenzung
DE102021118817B3 (de) Verfahren zum überwachen eines schaltbaren halbleiterbauelements und überwachungsvorrichtung für ein halbleiterbauelement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480014293.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14703864

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561994

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14776179

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14703864

Country of ref document: EP

Kind code of ref document: A1