WO2014139073A1 - 用于数据传输的方法和装置 - Google Patents

用于数据传输的方法和装置 Download PDF

Info

Publication number
WO2014139073A1
WO2014139073A1 PCT/CN2013/072396 CN2013072396W WO2014139073A1 WO 2014139073 A1 WO2014139073 A1 WO 2014139073A1 CN 2013072396 W CN2013072396 W CN 2013072396W WO 2014139073 A1 WO2014139073 A1 WO 2014139073A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
data stream
user equipment
transmitted
measurement set
Prior art date
Application number
PCT/CN2013/072396
Other languages
English (en)
French (fr)
Inventor
李琦
李小捷
辛嘉鹏
赵楠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2015561882A priority Critical patent/JP6037058B2/ja
Priority to CN201380000266.XA priority patent/CN104221313B/zh
Priority to PCT/CN2013/072396 priority patent/WO2014139073A1/zh
Priority to KR1020157026039A priority patent/KR101799475B1/ko
Publication of WO2014139073A1 publication Critical patent/WO2014139073A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method and apparatus for data transmission. Background technique
  • LTE Long Term Evolution
  • 3G third-generation mobile communication technology
  • LTE-A Enhanced LTE
  • LTE-A LTE-Advanced
  • LTE-A introduces many new technologies, such as relay technology, coordinated multipoint transmission, carrier aggregation, etc.
  • LTE-A is collectively referred to as LTE technology.
  • the user equipment in order to better adapt to the downlink channel, the user equipment is required to feed back the channel quality index (CQI) of the downlink channel, and the base station selects an appropriate modulation and coding scheme according to the CQI fed back by the user equipment.
  • the cylinder is called MCS) to transmit downlink data. This can make full use of the quality of the downlink channel and maximize transmission efficiency.
  • the user equipment When calculating the CQI, the user equipment needs to presuppose the transmission mode of the downlink data on the base station side, and then calculate the CQI according to the assumed transmission mode and feed back the CQI to the base station.
  • the base station performs downlink transmission, another transmission mode may be adopted, which may result in failure to obtain an accurate downlink CQI, so that an appropriate MCS cannot be determined to transmit downlink data, resulting in insufficient utilization of downlink channel quality, resulting in impaired transmission efficiency.
  • Embodiments of the present invention provide a method and apparatus for data transmission, which can improve downlink transmission efficiency.
  • a method for data transmission comprising:
  • the emission set is a subset of the measurement set
  • the determining, by the cell in the transmitting set, the SINR of the to-be-transmitted data stream to be sent to the user equipment on each sub-band includes: according to the measurement set An uplink channel estimation value of each sub-band of each cell, determining a valid signal power when the cell in the transmission set transmits the to-be-transmitted data stream on each sub-band, and determining a cell in the measurement set except the transmission set The interference noise power of each sub-band for the data stream to be transmitted, and the interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted; transmitting the sub-band according to the cell in the transmission set The effective signal power when the data stream is to be transmitted, the interference noise power of each sub-band of the cell other than the transmission set in the measurement set for the data stream to be transmitted, and the respective sub-bands of the cell outside the measurement set are for the to-be-transmitted The interference noise power of the data stream determines
  • the determining, by the cell in the transmitting set, the SINR of the to-be-transmitted data stream to be sent to the user equipment on each sub-band includes: according to the measurement set An uplink channel estimation value of each sub-band of each cell, determining a valid signal sequence when the cell in the transmission set transmits the to-be-transmitted data stream on each sub-band, and determining each cell in the measurement set except the transmission set a subband with an interference sequence for the data stream to be transmitted, and determining an interference noise power of each subband of the cell outside the measurement set for the data stream to be transmitted;
  • Each sub-band of the outer cell determines the SINR of the data stream to be transmitted on each sub-band for the interference sequence of the data stream to be transmitted.
  • the determining With interference noise power for the data stream to be transmitted including: Obtaining channel quality indication CQI information obtained by the user equipment according to the downlink data stream that has been transmitted by each cell in the transmission set;
  • the interference noise power of each subband of the cell outside the measurement set for the data stream to be transmitted is determined according to the interference noise power of the downlink data stream fed back by the user equipment according to the subband of the cell outside the measurement set.
  • the CQI information is that the user equipment is configured according to the downlink pilot signal of the serving cell and the serving cell The signal-to-noise ratio of the interference noise power calculation of other cells is obtained;
  • determining the interference noise power of each sub-band of the cell outside the measurement set for the line data stream includes: determining a small outside the measurement set according to the formula P n p sb W s
  • Each subband of the zone is for the interference noise power of the downlink data stream fed back by the user equipment; or, when the user equipment feeds back CQI information in a closed loop mode, each subband of the cell outside the determined measurement set is targeted to the user equipment
  • the interference noise power of the downlink data stream fed back including: according to the formula p Determining, by each subband of the cell outside the measurement set, interference noise power of the downlink data stream fed back by the user equipment;
  • the uplink channel estimation value on the subband sb is a virtual antenna mapping matrix of the common reference signal CRS of the serving cell of the user equipment, and the PMI sb is a precoding vector of the downlink data stream fed back by the user equipment on the subband, SINR ⁇ e is the signal-to-noise ratio of the downlink data stream fed back by the user equipment according to the CQ utside mapping on the sub-band sb, where ⁇ is the last scheduled use of the cell on the occupied subband of the
  • the CQI information is calculated by the user equipment according to the downlink pilot signal of the serving cell and the interference noise power outside the measurement set. Obtained by the signal to noise ratio;
  • the interference noise power of each downlink sub-band of the cell outside the measurement set for the downlink data stream fed back by the user equipment includes: according to the formula; Each sub-band of the outer cell is targeted
  • the interference noise power of each downlink subband of the cell outside the measurement set for the downlink data stream fed back by the user equipment includes: According to the formula / ⁇ :.:
  • the interference noise power of each downlink sub-band of the cell outside the measurement set for the downlink data stream fed back by the user equipment includes:
  • the number of transmit antennas of the 7_ ⁇ station ⁇ is the last transmit power of the serving cell on the occupied subband of the user equipment, ⁇ is the uplink channel estimation value of the subband Sb of the serving cell, 1 ⁇ 4 CRS is the user equipment
  • the VAM matrix of the serving cell CRS W ' is the precoding vector of the downlink data stream fed back by the user equipment, and S/NR is the signal to noise ratio of the downlink data stream Sfb fed back by the user equipment according to the mapping on the subband.
  • 1 ⁇ 4 c _ RS is the VAM matrix of the channel state information reference signal CS I -RS of the serving cell.
  • the determining, by using the sub-bands of the cells outside the measurement set, The SINR of the data stream including: Determining, according to an uplink channel estimation value of each subband of each cell in the measurement set, interference noise power of each subband of the cell other than the transmission set in the measurement set for the data stream to be transmitted; according to the measurement set Determining the interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted, according to the interference noise power of the data stream to be transmitted, except for the sub-band of the cell outside the transmission set, where the measurement set is excluded
  • the ratio of the interference noise power of the sub-bands of the cell outside the transmission set to the interference noise power of the sub-bands of the cell outside the measurement set for the data stream to be transmitted is constant.
  • the determining the MCS of the data stream to be transmitted including:
  • the MCS corresponding to the SINR that is closest to and smaller than the SINR of each of the data streams is determined as the data of each channel.
  • the SINR of the stream is determined as the data of each channel.
  • an apparatus for data transmission including:
  • a first determining unit configured to determine an uplink channel estimation value of each subband of each cell in the measurement set, where an uplink channel estimation value of each subband of each cell in the measurement set is determined by each cell in the measurement set according to the The reference signal sent by the user equipment is obtained by measuring;
  • a second determining unit configured to determine, according to an uplink channel estimation value of each subband of each cell in the measurement set, a signal to be transmitted on the subbands to be sent by the cell in the transmitting set to the user equipment Ratio SINR, where the emission set is a subset of the measurement set;
  • An acquiring unit configured to perform a combining process on the SINR of the to-be-transmitted data stream on each sub-band, to obtain an SINR of the to-be-transmitted data stream;
  • a third determining unit configured to determine, according to an SINR of the to-be-transmitted data stream, a modulation and coding scheme MCS of the data stream to be transmitted, so that each cell in the transmission set sends the to-be-transmitted data stream to the user equipment according to the MCS .
  • the second determining unit is specifically configured to:
  • Each sub-band of the cell determines the SINR of the to-be-transmitted data stream on each sub-band for the interference noise power of the to-be-transmitted data stream.
  • the second determining unit is specifically configured to:
  • Each sub-band of the outer cell determines the SINR of the data stream to be transmitted on each sub-band for the interference sequence of the data stream to be transmitted.
  • the second determining unit is specifically configured to: acquire a user The device indicates CQI information according to channel quality obtained by the downlink data stream that has been transmitted by each cell in the transmission set;
  • the interference noise power of each subband of the cell outside the measurement set for the data stream to be transmitted is determined according to the interference noise power of the downlink data stream fed back by the user equipment according to the subband of the cell outside the measurement set.
  • the CQI information is that the user equipment is configured according to the downlink pilot signal of the serving cell and the serving cell The signal-to-noise ratio of the interference noise power calculation of other cells is obtained;
  • the second determining unit is specifically configured to: According to the formula ⁇ p sb HW s determines the interference noise power of each sub-band of the cell outside the measurement set for the downlink data stream fed back by the user equipment; or, when the user equipment feeds back the CQI information in the closed-loop mode, the second determining unit is specific Used for:
  • the transmission set has T cells
  • the number of transmitting antennas is 7_ base station serving the user equipment in a cell occupied by the last sub-band transmit power
  • / is the serving cell in the sub
  • the uplink channel estimation value on the sb is the virtual antenna mapping matrix of the serving cell CRS of the user equipment, PMI;
  • the precoding vector of the downlink data stream fed back by the user equipment on the subband, S1NR outs ⁇ ide is based on
  • the signal-to-noise ratio of the downlink data stream fed back by the user equipment fed back by the CQ side mapping on the sub-band, W transmit to is the weight of the last scheduling used by the cell on the occupied sub-band of the user equipment, ⁇ last ⁇ the cell is in the user
  • the device occupies the last transmitted power on the subband, ⁇ is the estimated value of the upstream channel on the subband of cell m.
  • the CQI information user equipment is calculated according to the downlink pilot signal of the serving cell and the interference noise power outside the measurement set. SNR obtained;
  • the second determining unit is specifically configured to:
  • the second determining unit is specifically configured to: Determining each subband of the cell outside the measurement set according to the formula
  • the second determining unit is specifically configured to: according to the formula / ⁇ ; ⁇
  • the number of transmit antennas of the 7_ ⁇ station is the last transmit power of the serving cell on the occupied subband of the user equipment, and H; b is the uplink channel estimation value of the subband of the serving cell, where the CRS is the user equipment The VAM matrix of the common reference signal CRS of the serving cell, and the PMI s sb is the precoding vector of the downlink data stream fed back by the user equipment, and the S/NR is based on
  • the CQI s utside maps the signal-to-noise ratio of the downlink data stream fed back by the user equipment on the sub-band, and Vi cs/- Rs is the VAM matrix of the CS I _ RS of the serving cell.
  • the second determining unit is specifically configured to:
  • the first possible implementation of the second aspect, the second possible implementation of the second aspect, the third possible implementation of the second aspect, and the fourth possible aspect of the second aspect is specifically configured to:
  • an apparatus for data transmission including a receiver, a transmitter, a memory, and a processor, wherein the memory stores program code, and the processor can call the program code in the memory to execute the following operating:
  • the MCS of the to-be-transmitted data stream is sent to each cell in the transmission set by the transmitter, so that each cell in the transmission set sends the to-be-transmitted data stream to the user equipment according to the MCS.
  • the processor by using the program code stored in the memory, performs the following operations:
  • each sub-band of the outer cell is for the interference noise power of the data stream to be transmitted, and determining the interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted; according to the cell in the transmission set in each sub- The effective signal power when transmitting the data stream to be transmitted, the interference noise power of each subband of the cell except the transmission set in the measurement set for the data stream to be transmitted, and the subbands of the cell outside the measurement set
  • the SINR of the to-be-transmitted data stream on each sub-band is determined for the interference noise power of the to-be-transmitted data stream.
  • the processor by using the program code stored in the memory, performs the following operations:
  • each sub-band of the cell is for an interference sequence of the data stream to be transmitted, and determining an interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted; And an effective signal sequence when the cell in the transmitting set transmits the to-be-transmitted data stream on each sub-band, and an interference sequence and a measurement set of each sub-band of the cell except the transmitting set in the measurement set for the data stream to be transmitted
  • Each sub-band of the outer cell determines an SINR of the to-be-transmitted data stream on each sub-band for the interference sequence of the to-be-transmitted data stream.
  • the processor invokes the program stored in the memory
  • the code does the following:
  • the interference noise power of each subband of the cell outside the measurement set for the data stream to be transmitted is determined according to the interference noise power of the downlink data stream fed back by the user equipment according to the subband of the cell outside the measurement set.
  • the CQI information is that the user equipment is configured according to the downlink pilot signal of the serving cell and the serving cell The signal-to-noise ratio of the interference noise power calculation of other cells is obtained;
  • the processor calls the program code stored in the memory to determine the measurement set according to the formula p s fl> p sb HW s
  • Each sub-band of the cell is for the interference noise power of the downlink data stream fed back by the user equipment;
  • the processor calls the program code stored in the memory to perform the following operations:
  • the uplink channel estimation value on the subband sb is a virtual antenna mapping matrix of the common reference signal CRS of the serving cell of the user equipment, and the PMI s sb is a precoding vector of the downlink data stream fed back by the user equipment on the subband.
  • S / NRl ⁇ i is the downlink user data flow Sfb fed back CQl tside mapping the SNR obtained in the sub-band sb
  • W si is the right cell in the last scheduled on subbands occupied by the user equipment for use sb
  • the value, asi is the last transmission power of the cell w on the user equipment occupied sub-band
  • H is the uplink channel estimation value on the sub-band of the cell m.
  • the CQI information is calculated by the user equipment according to the downlink pilot signal of the serving cell and the interference noise power outside the measurement set. Obtained by the signal to noise ratio;
  • the processor calls the program code stored in the memory to perform the following operations: determining each subband of the cell outside the measurement set according to the formula
  • the processor calls the program code stored in the memory to perform the following operations:
  • the number of transmit antennas of the 7_ ⁇ station is the last transmit power of the serving cell on the occupied subband of the user equipment, and / is the uplink channel estimation value of the subband sb of the serving cell,
  • 1 ⁇ 4 CRS is the VAM matrix of the serving cell CRS of the user equipment
  • /W/ sfc is feedback from the user equipment
  • S/NR is the signal to noise ratio of the downlink data stream Sfb fed back by the user equipment according to the C2/ mapping on the subband b
  • the CS - RS is the channel state information reference of the serving cell.
  • the processor invokes the program code stored in the memory to specifically perform the following Operation:
  • the processor invokes the storage in the memory
  • the program code does the following:
  • the MCS corresponding to the SINR that is closest to and smaller than the SINR of each of the data streams is determined as the data of each channel.
  • the SINR of the stream is determined as the data of each channel.
  • the uplink channel is detected by using the reference signal transmitted by the user equipment, and the channel estimation information of the uplink channel is obtained by using the reference signal for channel estimation, and the channel estimation of the uplink channel may be utilized due to the uplink and downlink reciprocity.
  • the information is calculated by calculating the SINR of the downlink data stream, and calculating the MCS for transmitting the downlink data stream according to the SINR of the downlink data stream, so that the downlink MCS can be calculated more accurately, and the matching degree with the downlink channel quality is improved, thereby improving the downlink. Spectral efficiency. DRAWINGS
  • FIG. 1 is a schematic flow chart of a method for data transmission according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method for data transmission according to another embodiment of the present invention.
  • 3 is a schematic block diagram of an apparatus for data transmission in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of an apparatus for data transmission in accordance with another embodiment of the present invention. detailed description
  • FIG. 1 is a schematic flow diagram of a method 100 for data transmission in accordance with an embodiment of the present invention. As shown in FIG. 1, the method 100 includes:
  • S110 Determine an uplink channel estimation value of each subband of each cell in the measurement set of the user equipment to the user equipment, where an uplink channel estimation value of each subband of each cell in the measurement set is each in the measurement set.
  • the cell is obtained by performing measurement according to the reference signal sent by the user equipment, where the reference signal may be a sounding reference signal (SRS), or may be another reference signal, which is not performed by the embodiment of the present invention. limited.
  • SRS sounding reference signal
  • S120 Determine, according to an uplink channel estimation value of each subband of each cell in the measurement set, a signal to interference ratio of the to-be-transmitted data stream to be sent to the user equipment in each subband in the transmitting set (Signal to Interference) a plus noise ratio, wherein the emission set is a subset of the measurement set, that is, the cells in the transmission set necessarily belong to the measurement set;
  • S140 Determine an MCS of the to-be-transmitted data stream according to the SINR of the to-be-transmitted data stream, so that each cell in the transmission set sends the to-be-transmitted data stream to the user equipment according to the MCS.
  • the embodiments of the present invention can be used in a system with the characteristics of "uplink and downlink reciprocity", for example, Worldwide Interoperability for Microwave Access (WIMAX) system or LTE-time division duplex (Time) Division Duplexing, called “TDD" system, in which a relatively large feature is that the uplink and downlink occupy the same frequency band, so The channel considered to be uplink and downlink is approximate.
  • the user equipment detects the uplink channel by sending a reference signal, for example, an SRS, and the base station obtains channel estimation information of the uplink channel by using the reference signal, and the channel estimation information of the uplink channel can be utilized due to uplink and downlink reciprocity.
  • a reference signal for example, an SRS
  • the SINR of the downlink data stream is calculated, and the MCS for transmitting the downlink data stream is calculated according to the SINR of the downlink data stream, so that the cell in the transmission set can send the downlink data stream to the user equipment according to the determined MCS.
  • the user equipment may transmit the SRS to each cell in the measurement set, and each cell in the measurement set may obtain an uplink channel estimation value of each sub-band according to the SRS sent by the user equipment; All cells in the measurement set may send the uplink channel estimation values of each subband obtained by each to a certain device, for example, a corresponding base station of the serving cell of the user equipment; and then, the device according to each sub-cell of the measurement set
  • the uplink channel estimate of the band determines each data stream to be transmitted that the cell in the transmitting set is to send to the user equipment on each subband
  • the device combines the SINRs of each data stream to be transmitted on each sub-band to obtain an SINR of each data stream to be transmitted, and then the device can be Determining the MCS of each data stream to be transmitted, determining the MCS of each data stream to be transmitted, and notifying the MSC of each data stream to be transmitted with the cell in the transmission set; thus, each cell in the transmission set may follow each An MSC of a data stream to be transmitted transmits a corresponding data stream to be transmitted.
  • the executor of the method 100 may be a base station corresponding to the serving cell of the user equipment, or a base station corresponding to another cell, or may be a device independent of each base station, which is not limited by the present invention. It is sufficient to implement the functions to be implemented by the present invention.
  • the SINR corresponding to the SINR of the SINR that is closest to and smaller than the SINR of each data stream may be determined according to the SINR of each data stream in the data stream to be transmitted and the mapping relationship between the SINR and the MCS.
  • the SINR for each data stream may be determined according to the SINR of each data stream in the data stream to be transmitted and the mapping relationship between the SINR and the MCS.
  • the cell in the measurement set can receive and process the reference signal transmitted by the user equipment, and can measure information interactively.
  • the cell in the measurement set may adopt a fixed allocation method, for example, a measurement set consisting of several cells surrounding the serving cell of the user equipment; or a reference signal receiving power of each cell fed back by the user equipment (Reference Signal Receiving Power, RSRP), according to
  • ⁇ Thr selects a certain number of cells to form a measurement set, where RSR is the RSRP of the serving cell, RSR is the RSRP of other cells, and 73 ⁇ 4r is the threshold.
  • 3 ⁇ 4r can achieve complexity according to the product (for example, the phase of the product Depending on the complexity of the parameter calculation, if the performance requirements of the product are high, you can set a higher value for it.
  • the cells in the transmission set jointly transmit downlink data for the user equipment, and the cells in the transmission set are necessarily in the measurement set.
  • the methods for joint launch which are generally divided into two categories: coherent emission and incoherent emission.
  • the coherent transmission requires the cell interaction channel information in the transmission set to calculate the transmission weight; the non-coherent transmission only needs to calculate the transmission weight separately for each cell.
  • the determining, by the S120, the SINR of the to-be-transmitted data stream to be sent by the cell in the transmitting set to the user equipment on each sub-band may include:
  • the effective signal power when the cell in the transmission set transmits the data stream to be transmitted on each subband and determining each cell in the measurement set except the transmission set
  • the subband has interference noise power for the data stream to be transmitted, and determines the interference noise power of each subband of the cell outside the measurement set for the data stream to be transmitted;
  • Each sub-band of the cell determines the SINR of the data stream to be transmitted on each sub-band for the interference noise power of the data stream to be transmitted.
  • determining, in S120, the SINR of the to-be-transmitted data stream to be sent to the user equipment in the transmitting set on each sub-band may include:
  • Each sub-band is directed to an interference sequence of the data stream to be transmitted, and determining an interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted;
  • the interference sequence of each subband of the cell except the transmission set in the measurement set, and the cell outside the measurement set determines the SINR of the data stream to be transmitted on each subband for the interference sequence of the data stream to be transmitted.
  • the interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted may be directly set to 0 without calculation, where the calculation is performed outside the measurement set.
  • the interference noise power of each sub-band of the cell for the data stream to be transmitted may be determined according to the product implementation complexity (for example, the complexity of the related parameter calculation of the product), or may be determined according to the size of the measurement set.
  • the interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted may be directly set to 0, where
  • the predetermined value is generally 3, and the other predetermined value is generally 2, which may be determined according to actual conditions, for example, may be determined according to the complexity of product implementation (for example, the complexity of calculation of related parameters of the product).
  • how to determine the interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted may include:
  • the interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted is determined according to the interference noise power of the downlink data stream fed back by the user equipment according to each sub-band of the cell outside the measurement set.
  • the user equipment feeds back the number of downlink data flows recommended by the user equipment to the base station and the CQI to the base station, that is, the user equipment may recommend the number of downlink data flows used by the base station according to the downlink channel condition, and each downlink data.
  • the stream corresponds to CQI information.
  • how to determine the SINR of each subband of the cell outside the measurement set for the data stream to be transmitted may include:
  • determining the upper sub-bands of each cell in the measurement set a channel estimation value, wherein an uplink channel estimation value of each subband of each cell in the measurement set is obtained by measuring, by each cell in the measurement set, a reference signal sent by the user equipment, according to each cell in the measurement set.
  • An uplink channel estimation value of each sub-band determining an SINR of the to-be-transmitted data stream to be transmitted to the user equipment in each sub-band, where the transmission set is a subset of the measurement set, and the data stream to be transmitted is
  • the SINRs on the sub-bands are combined to obtain the SINR of the data stream to be transmitted, and the MCS of the data stream to be transmitted is determined according to the SINR of the data stream to be transmitted, so that each cell in the transmission set is sent to the user equipment according to the MCS.
  • the data stream is transmitted, that is, the uplink channel is detected by using the reference signal transmitted by the user equipment, and the channel estimation information of the uplink channel is obtained by using the reference signal for channel estimation, and the channel of the uplink channel can be utilized due to the uplink and downlink reciprocity.
  • Estimating information, calculating the SINR of the downlink data stream, and calculating the SINR according to the downlink data stream for transmission MCS data stream, can be more accurately calculated downlink MCS, enhancing its matching downlink channel quality, which can improve the downlink spectrum efficiency.
  • Transmit a set of seven cells ⁇ (T ⁇ M) composition, concentration of emitted TYA cell number, where t l cell serving cell for the user equipment.
  • S 1
  • the target UE feeds back the CQI according to the closed-loop mode that is, the transmission mode adopted by the base station assumed by the user equipment is closed-loop mode
  • the method 200 can include:
  • SB can be a resource block (resource block, RB) or a combination of multiple RBs.
  • the CQ/ may be obtained by the target UE according to the signal-to-noise ratio calculated by the downlink pilot signal of the serving cell and the total interference noise power of other cells, or may be the target UE according to the downlink pilot signal and the measurement set of the serving cell.
  • the signal-to-noise ratio of the interference noise power calculation is obtained, and the following two cases will be specifically described.
  • the target UE obtains the signal-to-noise ratio calculated from the downlink pilot signal of the serving cell and the total interference noise power of other cells, that is, the target UE assumes that the interference is calculated outside the serving cell, and may be full bandwidth. It can also be sub-band, which can be understood as the feedback method in R10/R9/R8.
  • is the number of transmit antennas of the base station, where it is assumed that the number of antennas of all cells is the same, which is the last transmit power of the serving cell on the sub-band occupied by the target UE, and H is the sub-band of the serving cell.
  • the uplink channel estimation matrix, the CRS is a virtual antenna mapping matrix of a cell-specific reference signal (CRS) of the serving cell of the target UE, and the data stream fed back by the target UE obtained by the H CQd mapping is in the sub-channel.
  • CRS cell-specific reference signal
  • the signal-to-noise ratio on the band 3 ⁇ 4 si is the weight of the last scheduling used by the cell on the target UE occupying the sub-band, R is the last transmitted power of the cell on the occupied UE sub-band, and H is the cell m
  • the uplink channel estimation matrix on the subband 3 ⁇ 4 si is the weight of the last scheduling used by the cell on the target UE occupying the sub-band, R is the last transmitted power of the cell on the occupied UE sub-band, and H is the cell m
  • the uplink channel estimation matrix on the subband 3 ⁇ 4 si is the weight of the last scheduling used by the cell on the target UE occupying the sub-band, R is the last transmitted power of the cell on the occupied UE sub-band, and H is the cell m
  • the uplink channel estimation matrix on the subband 3 ⁇ 4 si is the weight of the last scheduling used by the cell on the target UE occupying the sub-band, R is the last transmitted power of the cell on the occupied UE sub
  • the precoding vector on the subband has the same meaning as the parameter in a).
  • C2/ ⁇ is the downlink pilot signal of the target UE serving cell and the interference noise outside the measurement set
  • the signal-to-noise ratio of the sound power calculation is obtained, that is, the target UE is calculated based on the downlink pilot of the serving cell only and assumes that there is no interference in the measurement set, and may be full bandwidth or sub-band. (Can be understood as the feedback method in R11)
  • R is calculated in the following cases. i:
  • is the number of transmit antennas of the base station, where it is assumed that all cells have the same number of antennas, which is the last transmit power of the serving cell on the sub-band occupied by the target UE, and H is the uplink channel of the sub-band of the serving cell.
  • the estimation matrix, y is a virtual antenna mapping (VAM) matrix of the serving cell CRS of the user equipment, and PM1 S ' sb is a precoding vector of the data stream Sfb fed back by the user equipment on sb, S/ NR is the signal-to-noise ratio of the data stream fed back by the user equipment according to the CQl side mapping.
  • the 1 ⁇ 4 cs - ss is the channel state information reference signal of the serving cell (Channe l Sta te Informa ti on, the cylinder is called "CS" VAM matrix of I-RS").
  • RM/ ' s6 is the PMI on which the target UE feeds the data stream of the serving cell, and the meanings of other parameters are the same as the parameters in a).
  • the interference noise of the measurement set of all the transmitted streams is the same.
  • the SINR s sb can also be calculated by other methods, which is not limited by the embodiment of the present invention.
  • the S/NR ⁇ that can be obtained by the first method is:
  • Keff Kla T num S , which may be determined according to the implementation complexity, and is not limited by the embodiment of the present invention, or is determined according to whether the scheduling weight is the current scheduling authority, if W? No HH b last IT num H m sb , where W Lake is the transmission weight matrix of the cell on the occupied sub-band of the target UE, which may be the weight used in the last scheduling, or may be the weight to be used in the current scheduling According to the implementation complexity, the s tx column of W b is a transmission weight vector indicating the flow of the serving cell to the target UE in the sub-band sb.
  • the ratio of the interference out-of-band interference to the interference within the measurement set is usually a constant, wherein the constant can be obtained by simulation or empirical value.
  • the S/NR ⁇ that can be obtained by the second method is: a
  • Keff ⁇ H X or where / is the value of the diagonal element
  • is the interference ratio coefficient indicating the ratio of the out-of-segregation interference to the interference within the measurement set, which can usually be a constant, which can be obtained by simulation or empirical value.
  • S205 S/NR ⁇ ' of the data streams to be transmitted on the occupied bandwidth of the target UE on each subband is combined to obtain S/N i.
  • the merging method may adopt a SB averaging method, or may be a method of merging an effective SINR mapping (ESSM), or other methods, which are not limited by the embodiment of the present invention.
  • Each cell in the transmit set transmits a downlink data stream on the scheduled bandwidth according to the selected MCS level L.
  • the execution body of the steps S202 to S206 in the method 200 may be a base station corresponding to the serving cell of the user equipment, may be a base station corresponding to other cells, or may be a device independent of each base station, which is not limited by the present invention. As long as the functions to be realized by the present invention can be realized.
  • the embodiment of the present invention by determining an uplink channel estimation value of each subband of each cell in the measurement set, wherein the uplink channel estimation value of each subband of each cell in the measurement set is determined by each cell in the measurement set. Obtaining, by the reference signal sent by the user equipment, the uplink channel estimation value of each sub-band of each cell in the measurement set, determining the to-be-transmitted data stream to be sent by the cell in the transmission set to the user equipment on each sub-band SINR, where the transmit set is a subset of the measurement set, and the SINRs of the transmit data streams on each subband are combined to obtain data to be transmitted.
  • the SINR of the stream, and the SINR of the data stream to be transmitted are determined according to the SINR of the data stream to be transmitted, so that each cell in the transmission set sends the data stream to be transmitted to the user equipment according to the MCS, that is, is determined to be used for transmitting downlink.
  • the MSC of the data stream uses the reference signal transmitted by the user equipment to detect the uplink channel
  • the channel estimation is performed by using the reference signal to obtain the channel estimation information of the uplink channel, and the channel estimation information of the uplink channel can be utilized due to the uplink and downlink reciprocity.
  • the SINR of the downlink data stream is calculated, and the MCS for transmitting the downlink data stream is calculated according to the SINR of the downlink data stream, so that the downlink MCS can be calculated more accurately, and the matching degree with the downlink channel quality is improved, thereby improving the downlink spectrum. effectiveness.
  • the apparatus 300 includes:
  • the first determining unit 310 is configured to determine an uplink channel estimation value of each subband of each cell in the measurement set, where an uplink channel estimation value of each subband of each cell in the measurement set is each cell in the measurement set. Obtained according to the reference signal sent by the user equipment;
  • a second determining unit 320 configured to determine, according to an uplink channel estimation value of each subband of each cell in the measurement set, an SINR of the to-be-transmitted data stream to be sent to the user equipment in the transmit set on each subband, Wherein the emission set is a subset of the measurement set;
  • the obtaining unit 330 is configured to perform combining processing on the SINRs of the to-be-transmitted data streams on the respective sub-bands to obtain an SINR of the to-be-transmitted data stream.
  • the third determining unit 340 is configured to determine an MCS of the to-be-transmitted data stream according to the SINR of the to-be-transmitted data stream, so that each cell in the transmitting set sends the to-be-transmitted data stream to the user equipment according to the MCS.
  • the second determining unit 320 is specifically configured to:
  • each sub-band of the outer cell is for the interference noise power of the data stream to be transmitted, and determining the interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted; according to the cell in the transmission set in each sub- The effective signal power when transmitting the data stream to be transmitted, the interference noise power of each subband of the cell except the transmission set in the measurement set for the data stream to be transmitted, and the subbands of the cell outside the measurement set Interference for the data stream to be transmitted Noise power, determining the SINR of the data stream to be transmitted on each subband
  • the second determining unit 320 is specifically configured to:
  • each sub-band of the cell Determining, according to an uplink channel estimation value of each subband of each cell in the measurement set, a valid signal sequence when the cell in the transmitting set transmits the data stream to be transmitted on each subband, and determining that the measurement set is other than the emission set
  • Each sub-band of the cell is for an interference sequence of the data stream to be transmitted and determining an interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted;
  • Each sub-band of the outer cell determines an SINR of the to-be-transmitted data stream on each sub-band for the interference sequence of the to-be-transmitted data stream.
  • the second determining unit 320 is specifically configured to:
  • the interference noise power of each subband of the cell outside the measurement set for the data stream to be transmitted is determined according to the interference noise power of the downlink data stream fed back by the user equipment according to the subband of the cell outside the measurement set.
  • the CQI information is obtained by the user equipment according to a signal to noise ratio calculated by using a downlink pilot signal of the serving cell and interference noise power of other cells except the serving cell.
  • the second determining unit 320 is specifically configured to: according to the formula P n p sb HW s
  • the second determining unit is specifically configured to: according to a formula
  • the transmission set has T cells
  • the number of transmitting antennas is 7_ of the base station
  • serving cell is the last transmit power on the user equipment is occupied subbands ⁇
  • H is the serving cell
  • the uplink channel estimation value on the subband sb is a virtual antenna mapping matrix of the serving cell CRS of the user equipment
  • ⁇ ⁇ the precoding vector of the downlink data stream fed back by the user equipment on the subband
  • the S/NR is according to the CQ utside mapping user equipment feedback downlink data stream obtained in the subband signal to noise ratio
  • 3 ⁇ 4 si is the weight used in the last cell of the user equipment scheduling occupies subband value
  • the CQI information user equipment is obtained according to a signal to noise ratio calculated by using a downlink pilot signal of the serving cell and an interference noise power outside the measurement set;
  • the second determining unit is specifically configured to: determine, according to the formula, each subband of the cell outside the measurement set
  • the second determining unit is specifically configured to: according to the formula / ⁇ ; ⁇
  • the number of transmit antennas of the 7_ ⁇ station ⁇ is the last transmit power of the serving cell on the occupied subband of the user equipment, and H is the estimated uplink channel of the subband of the serving cell, which is the serving cell CRS of the user equipment.
  • VAM matrix ⁇ / is the feedback from the user equipment
  • S/NR i is the signal to noise ratio of the downlink data stream fed back by the user equipment according to the CQ side mapping on the subband
  • 1 ⁇ 4 cs - Rs is the serving cell
  • VAM matrix of CSI-RS VAM matrix of CSI-RS.
  • the second determining unit 320 is specifically configured to:
  • the third determining unit 340 is specifically configured to:
  • the MCS corresponding to the SINR that is closest to and smaller than the SINR of each of the data streams is determined as the data of each channel.
  • the SINR of the stream is determined as the data of each channel.
  • an uplink channel estimation value of each subband of each cell in the measurement set is each of the measurement sets.
  • the SINR on the subband, where the transmission set is a subset of the measurement set, and the SINR of the data stream to be transmitted is combined in each subband to obtain an SINR of the to-be-transmitted data stream, and according to the to-be-transmitted
  • the SINR of the data stream determines the MCS of the data stream to be transmitted, so that each cell in the transmission set sends the to-be-transmitted data stream to the user equipment according to the MCS, that is, by using a reference signal transmitted by the user equipment.
  • Detecting the uplink channel, performing channel estimation through the reference signal, and obtaining channel estimation information of the uplink channel, which can benefit from uplink and downlink reciprocity The channel estimation information of the uplink channel is calculated, and the SINR of the downlink data stream is calculated, and the MCS for transmitting the downlink data stream is calculated according to the SINR of the downlink data stream, so that the downlink MCS can be calculated more accurately, and the matching degree with the downlink channel quality is improved.
  • the channel estimation information of the uplink channel is calculated, and the SINR of the downlink data stream is calculated, and the MCS for transmitting the downlink data stream is calculated according to the SINR of the downlink data stream, so that the downlink MCS can be calculated more accurately, and the matching degree with the downlink channel quality is improved.
  • the apparatus 400 includes: a receiver 410, a transmitter 420, a memory 430, and a processor 440 connected to the receiver 410, the transmitter 420, and the memory 430, respectively.
  • the device may also include a common component such as an antenna, an input and output component, and the like, and the embodiment of the present invention is not limited thereto.
  • the program code is stored in the memory 430, and the processor 440 can call the program code stored in the memory 430 to perform the following operations:
  • the emission set is a subset of the measurement set
  • the MCS of the data stream to be transmitted is transmitted by the transmitter 440 to each cell in the transmission set, so that each cell in the transmission set transmits the data stream to be transmitted to the user equipment according to the MCS.
  • the processor 440 can call the program code stored in the memory 430 to perform the following operations:
  • each sub-band of the outer cell is for the interference noise power of the data stream to be transmitted, and determining the interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted; according to the cell in the transmission set in each sub- The effective signal power when transmitting the data stream to be transmitted, the interference noise power of each subband of the cell except the transmission set in the measurement set for the data stream to be transmitted, and the subbands of the cell outside the measurement set
  • the SINR of the to-be-transmitted data stream on each sub-band is determined for the interference noise power of the to-be-transmitted data stream.
  • the processor 440 may invoke the program code stored in the memory 430 to specifically perform the following operations:
  • Each sub-band of the outer cell is configured for an interference sequence of the data stream to be transmitted, and determining an interference noise power of each sub-band of the cell outside the measurement set for the data stream to be transmitted;
  • Each sub-band of the outer cell determines the SINR of the data stream to be transmitted on each sub-band for the interference sequence of the data stream to be transmitted.
  • the processor 440 can call the program code stored in the memory 430 to perform the following operations:
  • the interference noise power of each subband of the cell outside the measurement set for the data stream to be transmitted is determined according to the interference noise power of the downlink data stream fed back by the user equipment according to the subband of the cell outside the measurement set.
  • the CQI information is obtained by the user equipment according to a signal to noise ratio calculated by using a downlink pilot signal of the serving cell and interference noise power of other cells except the serving cell.
  • call processor 440 may process stored in the memory 430 to determine measurement set according to the formula P n outer
  • Each sub-band of the cell is for the interference noise power of the downlink data stream fed back by the user equipment; when the user equipment feeds back the CQI information in the closed-loop mode, the processor 440 may call the program code stored in the memory 430 to perform the following operations: According to the formula
  • the transmission set has T cells
  • the number of transmitting antennas is 7_ of the base station
  • serving cell is the last transmit power on the user equipment is occupied subbands ⁇
  • H is the serving cell
  • the uplink channel estimation value on the subband sb is a virtual antenna mapping matrix of the serving cell CRS of the user equipment
  • ⁇ ⁇ the downlink data stream fed back by the user equipment is a precoding vector on the subband
  • the S/NRH is based on
  • the CQI information user equipment is obtained according to a signal to noise ratio calculated by using a downlink pilot signal of the serving cell and an interference noise power outside the measurement set;
  • the processor 440 can invoke the program code stored in the memory 430 to perform the following operations:
  • the processor 440 may perform an operation: determining each subband of the cell outside the measurement set according to the formula.
  • the second determining unit is specifically configured to: determine, according to the formula, each sub-cell of the measurement set
  • Interference noise power with a downlink data stream fed back by the user equipment The number of transmit antennas of the 7_ ⁇ station, ⁇ is the last transmit power of the serving cell on the occupied subband of the user equipment, and H is the uplink channel estimation value of the subband Sb of the serving cell, where R S is the user equipment
  • the VAM matrix of the CRS of the serving cell is a precoding vector of the downlink data stream fed back by the user equipment, and the S/NR is a signal to noise ratio of the downlink data stream fed back by the user equipment according to the mapping, which is the serving cell.
  • VAM matrix of CS I-RS VAM matrix of CS I-RS.
  • the processor 440 can call the program code stored in the memory 430 to perform the following operations:
  • the processor 440 can call the program code stored in the memory 430 to perform the following operations:
  • the MCS corresponding to the SINR that is closest to and smaller than the SINR of each of the data streams is determined as the data of each channel.
  • the SINR of the stream is determined as the data of each channel.
  • the uplink channel estimation value of each subband of each cell in the measurement set is determined by each cell in the measurement set.
  • the MCS of the data stream so that each cell in the transmission set sends the to-be-transmitted data stream to the user equipment according to the MCS, that is, That is, the uplink channel is detected by using the reference signal transmitted by the user equipment, and the channel estimation information of the uplink channel is obtained by using the reference signal for channel estimation. Because of the uplink and downlink reciprocity, the channel estimation information of the uplink channel can be used to calculate the downlink.
  • the SINR of the data stream is calculated according to the SINR of the downlink data stream, and the MCS for transmitting the downlink data stream is calculated.
  • the downlink MCS can be calculated more accurately, and the matching degree with the downlink channel quality is improved, thereby improving the downlink spectrum efficiency.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.
  • the invention is not limited to this.
  • Various equivalent modifications and alterations to the embodiments of the present invention can be made by those skilled in the art without departing from the spirit and scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种用于数据传输的方法和装置。该方法包括:确定测量集内每个小区的各个子带的上行信道估计值,其中测量集内每个小区的各个子带的上行信道估计值是测量集内每个小区根据用户设备发送的参考信号进行测量而获取的;根据测量集内每个小区的各个子带的上行信道估计值,确定发射集内小区将要向用户设备发送的待发射数据流在各个子带上的SINR,其中,所述发射集是测量集的子集;对待发射数据流在各个子带上的SINR进行合并处理,得到待发射数据流的SINR;根据待发射数据流的SINR,确定待发射数据流的MCS,以便于发射集内每个小区按照MCS向用户设备发送待发射数据流。本发明实施例的方法和装置能够提升下行传输效率。

Description

用于数据传输的方法和装置 技术领域
本发明涉及通信领域, 并且更具体地, 涉及一种用于数据传输的方法和 装置。 背景技术
长期演进( Long Term Evolution, 筒称 LTE )项目是第三代移动通信技 术(3rd-generation, 筒称 3G )的演进, 它改进并增强了 3G的空中接入技术, 能够改善小区边缘用户的性能, 提高小区容量和降低系统延迟。 增强型 LTE ( LTE- Advanced, 筒称 LTE-A )是 LTE的后续演进, 完全兼容 LTE, LTE-A 引入了很多新的技术, 例如, 中继技术, 协同多点传输, 载波聚合等, 能够
LTE-A统称为 LTE技术。
在 LTE技术中, 为了更好的适应下行信道,要求用户设备反馈下行信道 的信道质量指示 (Channel quality index, 筒称 CQI ), 基站根据用户设备反 馈的 CQI选择合适的调制编码方案( modulation coding scheme, 筒称 MCS ) 来发射下行数据。 这样可以充分利用下行信道的质量, 最大化传输效率。
其中,用户设备在计算 CQI时, 需要预先假设基站侧的下行数据的传输 方式, 然后根据假设的传输方式计算 CQI并向基站反馈该 CQI。 然而, 基站 进行下行传输时, 采用的可能是另外一种传输模式, 导致无法获取准确的下 行 CQI, 从而不能确定合适的 MCS来发射下行数据, 导致不能充分利用下 行信道质量, 造成传输效率受损。 发明内容
本发明实施例提供了一种用于数据传输的方法和装置,能够提升下行传 输效率。
第一方面, 提供了一种用于数据传输的方法, 包括:
确定测量集内每个小区的各个子带的上行信道估计值, 其中该测量集内 每个小区的各个子带的上行信道估计值是该测量集内每个小区根据用户设 备发送的参考信号进行测量而获取的; 根据该测量集内每个小区的各个子带的上行信道估计值,确定发射集内 小区将要向该用户设备发送的待发射数据流在各个子带上的信干噪比
SINR, 其中, 该发射集是该测量集的子集;
对该待发射数据流在各个子带上的 SINR进行合并处理, 得到该待发射 数据流的 SINR;
根据该待发射数据流的 SINR, 确定该待发射数据流的调制编码方案 MCS, 以便于该发射集内每个小区按照该 MCS向该用户设备发送该待发射 数据流。
结合第一方面, 在第一方面的第一种可能的实现方式中, 该确定发射集 内小区将要向该用户设备发送的待发射数据流在各个子带上的 SINR, 包括: 根据该测量集内每个小区的各个子带的上行信道估计值,确定该发射集 内小区在各个子带上发射该待发射数据流时的有效信号功率,确定该测量集 内除该发射集外的小区的各个子带针对该待发射数据流的干扰噪声功率, 以 及确定该测量集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该发射集内小区在各个子带上发射该待发射数据流时的有效信号 功率、该测量集内除该发射集外的小区的各个子带针对该待发射数据流的干 扰噪声功率以及该测量集外的小区的各个子带针对该待发射数据流的干扰 噪声功率, 确定该待发射数据流在各个子带上的 SINR。
结合第一方面, 在第一方面的第二种可能的实现方式中, 该确定发射集 内小区将要向该用户设备发送的待发射数据流在各个子带上的 SINR, 包括: 根据该测量集内每个小区的各个子带的上行信道估计值,确定发射集内 小区在各个子带上发射该待发射数据流时的有效信号序列,确定测量集内除 该发射集之外的小区的各个子带针对该待发射数据流的干扰序列, 以及确定 测量集外的小区的各个子带针对该待发射数据流的干扰噪声功率;
根据该发射集内小区在各个子带上发射该待发射数据流时的有效信号 序列、测量集内除该发射集之外的小区的各个子带针对该待发射数据流的干 扰序列以及测量集外的小区的各个子带针对该待发射数据流的干扰序列,确 定该待发射数据流在各个子带上的 SINR。
结合第一方面的第一种可能的实现方式或第一方面的第二种可能的实 现方式, 在第一方面的第三种可能的实现方式中, 该确定该测量集外的小区 的各个子带针对该待发射数据流的干扰噪声功率, 包括: 获取该用户设备根据发射集合中的每个小区已发射的下行数据流获取 的信道质量指示 CQI信息;
根据该 CQI信息以及该测量集内每个小区的各个子带对应的上行信道 估计值,确定测量集外的小区的各个子带针对该用户设备所反馈的下行数据 流的干扰噪声功率;
根据该测量集外的小区的各个子带针对该用户设备所反馈的下行数据 流的干扰噪声功率,确定该测量集外的小区的各个子带针对该待发射数据流 的干扰噪声功率。
结合第一方面的第三种可能的实现方式中,在第一方面的第四种可能的 实现方式中,该 CQI信息是该用户设备根据服务小区的下行导频信号与除该 服务小区之外的其他小区的干扰噪声功率计算的信噪比得到的;
在该用户设备以发射分集的方式反馈 CQI信息时,该确定测量集外的小 区的各个子带针对 行数据流的干扰噪声功率, 包括: 根据公式 Pn psb Ws 确定测量集外的小
Figure imgf000005_0001
区的各个子带针对该用户设备所反馈的下行数据流的干扰噪声功率; 或者, 在该用户设备以闭环模式反馈 CQI信息时,该确定测量集外的小区的各 个子带针对该用户设备所反馈的下行数据流的干扰噪声功率, 包括: 根据公 式 p
Figure imgf000005_0002
确定该测量集外的小区的各个子带针对该用户设备所反馈的下行数据流的 干扰噪声功率;
其中, 测量集 μΜ中共有 M个小区, 测量集小区编号 m = l, 2, ...,M , m = l 时为服务小区,发射集 共有 T个小区,发射集小区编号为 t = tl ,t2 , -,tT " = 1 时为服务小区, 7_是基站的发射天线数量, ^是服务小区在该用户设备 占用子带 上的上次发射功率, / 是服务小区的在子带 sb上的上行信道估 计值, ¼^是该用户设备的服务小区的公共参考信号 CRS 的虚拟天线映射 矩阵, PMI sb是用户设备反馈的下行数据流 在子带 上的预编码向量, SINR^e是根据 CQ utside映射得到的用户设备反馈的下行数据流 ^在子带 sb 上的信噪比, ^是小区 在该用户设备占用子带 上的上次调度使用的 权值, asi是小区 W在该用户设备占用子带 上的上次发射功率, 是小 区 m的子带 上的上行信道估计值。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实 现方式中,该 CQI信息是用户设备根据服务小区的下行导频信号与测量集外 的干扰噪声功率计算的信噪比得到的;
在该用户设备以发射分集的方式反馈 CQI信息时,该确定测量集外的小 区的各个子带针对该用户设备所反馈的下行数据流的干扰噪声功率, 包括: 根据公式 ; ~~ 确定测量集外的小区的各个子带针对
SINRSft ':
该用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在该用户设备以 TM8闭环模式反馈该 CQI信息时, 该确定测量集外的 小区的各个子带针对该用户设备所反馈的下行数据流的干扰噪声功率, 包 括: 根据公式/^:.:
Figure imgf000006_0001
t 确定测量集外的小区的各个子带
SINRSfi
针对该用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在该用户设备以 TM9闭环模式反馈该 CQI信息时, 该确定测量集外的 小区的各个子带针对该用户设备所反馈的下行数据流的干扰噪声功率, 包 括:
Figure imgf000006_0002
带针对该用户设备所反馈的下行数据流的干扰噪声功率;
其中, 7_ ^^站的发射天线数量, ^是服务小区在该用户设备占用 子带 上的上次发射功率, ^是服务小区的子带 Sb 的上行信道估计值, ¼CRS是该用户设备的服务小区 CRS的 VAM矩阵, W ' 是用户设备反馈的 下行数据流^在 上的预编码向量, S/NR 是根据 映射得到的用 户设备反馈的下行数据流 Sfb在子带 上的信噪比, ¼c _RS是服务小区的信道 状态信息参考信号 CS I -RS的 VAM矩阵。
结合第一方面的第一种可能的实现方式或第二种可能的实现方式,在第 一方面的第六种可能的实现方式中, 该确定测量集外的小区的各个子带针对 该待发射数据流的 SINR, 包括: 根据该测量集内每个小区的各个子带的上行信道估计值,确定该测量集 内除该发射集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该测量集内除该发射集外的小区的各个子带针对该待发射数据流 的干扰噪声功率,确定测量集外的小区的各个子带针对该待发射数据流的干 扰噪声功率, 其中, 该测量集内除该发射集外的小区的各个子带针对该待发 射数据流的干扰噪声功率与该测量集外的小区的各个子带针对该待发射数 据流的干扰噪声功率的比值为常数。
结合第一方面, 第一方面的第一种可能的实现方式, 第一方面的第二种 可能的实现方式, 第一方面的第三种可能的实现方式, 第一方面的第四种可 能的实现方式, 第一方面的第五种可能的实现方式或第一方面的第六种可能 的实现方式, 在第一方面的第七种可能的实现方式中, 该确定该待发射数据 流的 MCS, 包括:
根据该待发射数据流中每路数据流的 SINR, 以及 SINR与 MCS的映射 关系, 将该映射关系中最接近于以及小于该每路数据流的 SINR的 SINR对 应的 MCS确定为该每路数据流的 SINR。
第二方面, 提供了一种用于数据传输的装置, 包括:
第一确定单元, 用于确定测量集内每个小区的各个子带的上行信道估计 值, 其中该测量集内每个小区的各个子带的上行信道估计值是该测量集内每 个小区根据用户设备发送的参考信号进行测量而获取的;
第二确定单元, 用于根据该测量集内每个小区的各个子带的上行信道估 计值,确定发射集内小区将要向该用户设备发送的待发射数据流在各个子带 上的信干噪比 SINR, 其中, 该发射集是该测量集的子集;
获取单元,用于对该待发射数据流在各个子带上的 SINR进行合并处理, 得到该待发射数据流的 SINR;
第三确定单元, 用于根据该待发射数据流的 SINR, 确定该待发射数据 流的调制编码方案 MCS, 以便于该发射集内每个小区按照该 MCS向该用户 设备发送该待发射数据流。
结合第二方面, 在第二方面的第一种可能的实现方式中, 该第二确定单 元具体用于:
根据该测量集内每个小区的各个子带的上行信道估计值,确定该发射集 内小区在各个子带上发射该待发射数据流时的有效信号功率,确定该测量集 内除该发射集外的小区的各个子带针对该待发射数据流的干扰噪声功率, 以 及确定该测量集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该发射集内小区在各个子带上发射该待发射数据流时的有效信号 功率、该测量集内除该发射集外的小区的各个子带针对该待发射数据流的干 扰噪声功率以及该测量集外的小区的各个子带针对该待发射数据流的干扰 噪声功率, 确定该待发射数据流在各个子带上的 SINR。
结合第二方面, 在第二方面的第二种可能的实现方式中, 该第二确定单 元具体用于:
根据该测量集内每个小区的各个子带的上行信道估计值,确定发射集内 小区在各个子带上发射该待发射数据流时的有效信号序列,确定测量集内除 该发射集之外的小区的各个子带针对该待发射数据流的干扰序列, 以及确定 测量集外的小区的各个子带针对该待发射数据流的干扰噪声功率;
根据该发射集内小区在各个子带上发射该待发射数据流时的有效信号 序列、测量集内除该发射集之外的小区的各个子带针对该待发射数据流的干 扰序列以及测量集外的小区的各个子带针对该待发射数据流的干扰序列,确 定该待发射数据流在各个子带上的 SINR。
结合第二方面的第一种可能的实现方式或第二方面的第二种可能的实 现方式,在第二方面的第三种可能的实现方式中,该第二确定单元具体用于: 获取用户设备根据发射集合中的每个小区已发射的下行数据流获取的 信道质量指示 CQI信息;
根据该 CQI信息以及该测量集内每个小区的各个子带对应的上行信道 估计值,确定测量集外的小区的各个子带针对该用户设备所反馈的下行数据 流的干扰噪声功率;
根据该测量集外的小区的各个子带针对该用户设备所反馈的下行数据 流的干扰噪声功率,确定该测量集外的小区的各个子带针对该待发射数据流 的干扰噪声功率。
结合第二方面的第三种可能的实现方式中,在第二方面的第四种可能的 实现方式中,该 CQI信息是该用户设备根据服务小区的下行导频信号与除该 服务小区之外的其他小区的干扰噪声功率计算的信噪比得到的;
在该用户设备以发射分集的方式反馈 CQI信息时,该第二确定单元具体 用于: 根据公式
Figure imgf000009_0001
∑ psb H Ws 确定测量集外的小 区的各个子带针对该用户设备所反馈的下行数据流的干扰噪声功率; 或者, 在该用户设备以闭环模式反馈 CQI信息时, 该第二确定单元具体用于:
Figure imgf000009_0002
确定该测量集外的小区的各个子带针对该用户设备所反馈的下行数据流的 干扰噪声功率;
其中, 测量集 μΜ中共有 M个小区, 测量集小区编号 m = l, 2, ...,M , m = l 时为服务小区,发射集 共有 T个小区,发射集小区编号为 t = tl ,t2 , -,tT " = 1 时为服务小区, 7_是基站的发射天线数量, 是服务小区在该用户设备 占用子带 上的上次发射功率, / 是服务小区的在子带 sb上的上行信道估 计值, 是该用户设备的服务小区 CRS的虚拟天线映射矩阵, PMI; 疋 用户设备反馈的下行数据流 在子带 上的预编码向量, S1NR outs±ide是根据
CQ side映射得到的用户设备反馈的下行数据流 在子带 上的信噪比 , W„ to是小区 在该用户设备占用子带 上的上次调度使用的权值, Ρ last疋 小区 在该用户设备占用子带 上的上次发射功率, Η=是小区 m的子带 上的上行信道估计值。
结合第二方面的第三种可能的实现方式,在第二方面的第五种可能的实 现方式中,该 CQI信息用户设备根据服务小区的下行导频信号与测量集外的 干扰噪声功率计算的信噪比得到的;
在该用户设备以发射分集的方式反馈 CQI信息时,该第二确定单元具体 用于:
sLH v;
T
根据公式 •确定测量集外的小区的各个子带针对
續:
该用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在该用户设备以 TM8闭环模式反馈该 CQI信息时, 该第二确定单元具 体用于: 根据公式 确定测量集外的小区的各个子带
Figure imgf000010_0001
针对该用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在该用户设备以 TM9闭环模式反馈该 CQI信息时, 该第二确定单元具 体用于: 根据公式/^; ί
Figure imgf000010_0002
带针对该用户设备所反馈的下行数据流的干扰噪声功率;
其中, 7_ ^^站的发射天线数量, 是服务小区在该用户设备占用 子带 上的上次发射功率 , H;b是服务小区的子带 的上行信道估计值 , ¼CRS是该用户设备的服务小区的公共参考信号 CRS的 VAM矩阵, PMIs sb是 用户设备反馈的下行数据流 在 上的预编码向量, S/NR 是根据
CQIs utside映射得到的用户设备反馈的下行数据流 在子带 ^上的信噪比, Vics/-Rs是服务小区的 CS I_RS的 VAM矩阵。
结合第二方面的第一种可能的实现方式或第二种可能的实现方式,在第 二方面的第六种可能的实现方式中, 该第二确定单元具体用于:
根据该测量集内每个小区的各个子带的上行信道估计值,确定该测量集 内除该发射集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该测量集内除该发射集外的小区的各个子带针对该待发射数据流 的干扰噪声功率,确定测量集外的小区的各个子带针对该待发射数据流的干 扰噪声功率, 其中, 该测量集内除该发射集外的小区的各个子带针对该待发 射数据流的干扰噪声功率与该测量集外的小区的各个子带针对该待发射数 据流的干扰噪声功率的比值为常数。
结合第二方面, 第二方面的第一种可能的实现方式, 第二方面的第二种 可能的实现方式, 第二方面的第三种可能的实现方式, 第二方面的第四种可 能的实现方式, 第二方面的第五种可能的实现方式或第二方面的第六种可能 的实现方式, 在第二方面的第七种可能的实现方式, 该第三确定单元具体用 于:
根据该待发射数据流中每路数据流的 SINR, 以及 SINR与 MCS的映射 关系, 将该映射关系中最接近于以及小于该每路数据流的 SINR的 SINR对 应的 MCS确定为该每路数据流的 SINR。 第三方面, 提供了一种用于数据传输的装置, 包括接收机、 发射机、 存 储器以及处理器, 其中该存储器中存储程序代码, 且该处理器可以调用该存 储器中的该程序代码执行以下操作:
通过该接收机接收测量集内每个小区的各个子带的上行信道估计值, 其 中该测量集内每个小区的各个子带的上行信道估计值是该测量集内每个小 区根据用户设备发送的参考信号进行测量而获取的;
根据该测量集内每个小区的各个子带的上行信道估计值,确定发射集内 小区将要向该用户设备发送的待发射数据流在各个子带上的信干噪比 SINR, 其中, 该发射集是该测量集的子集;
对该待发射数据流在各个子带上的 SINR进行合并处理, 得到该待发射 数据流的 SINR;
根据该待发射数据流的 SINR, 确定该待发射数据流的调制编码方案 MCS;
通过该发射机将该待发射数据流的 MCS发送至发射集内每个小区, 以 便于该发射集内每个小区按照该 MCS向该用户设备发送该待发射数据流。
结合第三方面, 在第三方面的第一种可能的实现方式中, 该处理器调用 该存储器中存储的该程序代码具体执行以下操作:
根据该测量集内每个小区的各个子带的上行信道估计值,确定该发射集 内小区在各个子带上发射该待发射数据流时的有效信号功率,确定该测量集 内除该发射集外的小区的各个子带针对该待发射数据流的干扰噪声功率, 以 及确定该测量集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该发射集内小区在各个子带上发射该待发射数据流时的有效信号 功率、该测量集内除该发射集外的小区的各个子带针对该待发射数据流的干 扰噪声功率以及该测量集外的小区的各个子带针对该待发射数据流的干扰 噪声功率, 确定该待发射数据流在各个子带上的 SINR。
结合第三方面, 在第三方面的第二种可能的实现方式中, 该处理器调用 该存储器中存储的该程序代码具体执行以下操作:
根据该测量集内每个小区的各个子带的上行信道估计值,确定发射集内 小区在各个子带上发射该待发射数据流时的有效信号序列,确定测量集内除 该发射集之外的小区的各个子带针对该待发射数据流的干扰序列, 以及确定 测量集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该发射集内小区在各个子带上发射该待发射数据流时的有效信号 序列、测量集内除该发射集之外的小区的各个子带针对该待发射数据流的干 扰序列以及测量集外的小区的各个子带针对该待发射数据流的干扰序列,确 定该待发射数据流在各个子带上的 SINR
结合第三方面的第一种可能的实现方式或第三方面的第二种可能的实 现方式, 在第三方面的第三种可能的实现方式中, 该处理器调用该存储器中 存储的该程序代码具体执行以下操作:
获取该用户设备根据发射集合中的每个小区已发射的下行数据流获取 的信道质量指示 CQI信息;
根据该 CQI信息以及该测量集内每个小区的各个子带对应的上行信道 估计值,确定测量集外的小区的各个子带针对该用户设备所反馈的下行数据 流的干扰噪声功率;
根据该测量集外的小区的各个子带针对该用户设备所反馈的下行数据 流的干扰噪声功率,确定该测量集外的小区的各个子带针对该待发射数据流 的干扰噪声功率。
结合第三方面的第三种可能的实现方式中,在第三方面的第四种可能的 实现方式中,该 CQI信息是该用户设备根据服务小区的下行导频信号与除该 服务小区之外的其他小区的干扰噪声功率计算的信噪比得到的;
在该用户设备以发射分集的方式反馈 CQI信息时,该处理器调用该存储 器中存储的该程序代码 根据公式 psfl> psb H Ws 确定测量集外
Figure imgf000012_0001
的小区的各个子带针对该用户设备所反馈的下行数据流的干扰噪声功率; 或 者,
在该用户设备以闭环模式反馈 CQI信息时,该处理器调用该存储器中存 储的该程序代码具体执行以下操作:
p
Figure imgf000012_0002
确定该测量集外的小区的各个子带针对该用户设备所反馈的下行数据流的 干扰噪声功率;
其中, 测量集 μΜ中共有 M个小区, 测量集小区编号》ί = 1,2,· · ·,Μ , m = l 时为服务小区,发射集 共有 T个小区,发射集小区编号为 t = tl ,t2, -,tT " = 1 时为服务小区, 7_是基站的发射天线数量, 是服务小区在该用户设备 占用子带 上的上次发射功率, / 是服务小区的在子带 sb上的上行信道估 计值, ¼^是该用户设备的服务小区的公共参考信号 CRS 的虚拟天线映射 矩阵, PMIs sb是用户设备反馈的下行数据流 在子带 上的预编码向量,
S/NRl^i是根据 CQl tside映射得到的用户设备反馈的下行数据流 Sfb在子带 sb 上的信噪比, W si是小区 在该用户设备占用子带 sb上的上次调度使用的 权值, asi是小区 w在该用户设备占用子带 ^上的上次发射功率, H 是小 区 m的子带 上的上行信道估计值。
结合第三方面的第三种可能的实现方式,在第三方面的第五种可能的实 现方式中,该 CQI信息是用户设备根据服务小区的下行导频信号与测量集外 的干扰噪声功率计算的信噪比得到的;
在该用户设备以发射分集的方式反馈 CQI信息时,该处理器调用该存储 器中存储的该程序代码具体执行以下操作: 根据公式/^ = τ- s 确定测量集外的小区的各个子带针对 續:
该用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在该用户设备以 TM8闭环模式反馈该 CQI信息时, 该处理器调用该存 储器中存储的该程序代码具体执行以下操作: 根据公式 确定测量集外的小区的各个子带
Figure imgf000013_0001
针对该用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在该用户设备以 TM9闭环模式反馈该 CQI信息时, 该处理器调用该存 储器中存储的该程序代码具体执行以下操作:
Mrv, PML
根据公式/^; ί 确定测量集外的小区的各个子
S IN R。
带针对该用户设备所反馈的下行数据流的干扰噪声功率;
其中, 7_ ^^站的发射天线数量, 是服务小区在该用户设备占用 子带 上的上次发射功率, / 是服务小区的子带 sb 的上行信道估计值,
¼CRS是该用户设备的服务小区 CRS的 VAM矩阵, /W/ sfc是用户设备反馈的 下行数据流 在 上的预编码向量, S/NR 是根据 C2/ 映射得到的用 户设备反馈的下行数据流 Sfb在子带 b上的信噪比, ¼CS -RS是服务小区的信道 状态信息参考信号 CSI-RS的 VAM矩阵。
结合第三方面的第一种可能的实现方式或第二种可能的实现方式,在第 三方面的第六种可能的实现方式中, 该处理器调用该存储器中存储的该程序 代码具体执行以下操作:
根据该测量集内每个小区的各个子带的上行信道估计值,确定该测量集 内除该发射集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该测量集内除该发射集外的小区的各个子带针对该待发射数据流 的干扰噪声功率,确定测量集外的小区的各个子带针对该待发射数据流的干 扰噪声功率, 其中, 该测量集内除该发射集外的小区的各个子带针对该待发 射数据流的干扰噪声功率与该测量集外的小区的各个子带针对该待发射数 据流的干扰噪声功率的比值为常数。
结合第三方面, 第三方面的第一种可能的实现方式, 第三方面的第二种 可能的实现方式, 第三方面的第三种可能的实现方式, 第三方面的第四种可 能的实现方式, 第三方面的第五种可能的实现方式或第三方面的第六种可能 的实现方式, 在第三方面的第七种可能的实现方式中, 该处理器调用该存储 器中存储的该程序代码具体执行以下操作:
根据该待发射数据流中每路数据流的 SINR, 以及 SINR与 MCS的映射 关系, 将该映射关系中最接近于以及小于该每路数据流的 SINR的 SINR对 应的 MCS确定为该每路数据流的 SINR。
在本发明实施例中, 通过利用用户设备发射的参考信号来侦测上行信 道, 通过参考信号进行信道估计, 获取上行信道的信道估计信息, 由于上下 行互易性, 可以利用上行信道的信道估计信息, 计算下行数据流的 SINR, 并根据下行数据流的 SINR来计算用于发射下行数据流的 MCS,可以更为准 确地计算下行 MCS, 提高其与下行信道质量的匹配程度, 从而可以提升下 行频谱效率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的用于数据传输的方法的示意性流程图。
图 2是根据本发明另一实施例的用于数据传输的方法的示意性流程图。 图 3是根据本发明实施例的用于数据传输的装置的示意性框图。
图 4是根据本发明另一实施例的用于数据传输的装置的示意性框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
图 1是根据本发明实施例的用于数据传输的方法 100的示意性流程图。 如图 1所示, 该方法 100包括:
S110,确定用户设备到该用户设备的测量集内每个小区的各个子带的上 行信道估计值,其中该测量集内每个小区的各个子带的上行信道估计值是该 测量集内每个小区根据用户设备发送的参考信号进行测量而获取的; 其中, 该参考信号可以为探测参考信号 ( Sounding Reference Signal, 筒称 SRS ), 也可以为别的参考信号, 本发明实施例并不对此进行限定。
S120, 根据该测量集内每个小区的各个子带的上行信道估计值, 确定发 射集内小区将要向该用户设备发送的待发射数据流在各个子带上的信干噪 比( Signal to Interference plus Noise Ratio, 筒称 SINR ), 其中, 该发射集是 该测量集的子集, 即发射集内的小区必然属于测量集;
S130, 对该待发射数据流在各个子带上的 SINR进行合并处理, 得到该 待发射数据流的 SINR;
S140, 根据该待发射数据流的 SINR, 确定该待发射数据流的 MCS , 以 便于该发射集内每个小区按照该 MCS向该用户设备发送该待发射数据流。
本发明实施例可以用于具有 "上下行互易性" 特点的系统中, 例如, 全 球^波互联接入 (Worldwide Interoperability for Microwave Access , 筒称 "WIMAX" )系统或者 LTE-时分双工( Time Division Duplexing,筒称 "TDD" ) 系统, 在这些系统中, 一个比较大的特点是上下行占用相同的频段, 因此可 以认为上下行的信道是近似的。根据这个特点,用户设备通过发送参考信号, 例如, SRS, 来侦测上行信道, 基站通过该参考信号获取上行信道的信道估 计信息, 由于上下行互易性, 从而可以利用上行信道的信道估计信息, 计算 下行数据流的 SINR, 并根据下行数据流的 SINR来计算用于发射下行数据 流的 MCS, 从而发射集内的小区可以按照已确定的 MCS来向用户设备发送 下行数据流。
具体地说,用户设备可以发射 SRS至测量集内的每个小区,测量集内的 每个小区可以根据用户设备发送的 SRS 进行测量而获取各自的每一个子带 的上行信道估计值; 然后, 测量集中的所有小区可以将各自获取的每一个子 带的上行信道估计值发送至某一装置, 例如, 该用户设备的服务小区的对应 的基站; 然后, 该装置根据测量集内小区的各个子带的上行信道估计值确定 发射集内小区将要向用户设备发送的每一个待发射数据流在各个子带上的
SINR, 其中, 该发射集是测量集的子集; 该装置将每一个待发射数据流在各 个子带上的 SINR进行合并处理, 得到每一个待发射数据流的 SINR, 然后, 该装置可以根据每一个待发射数据流的 SINR, 确定该每一个待发射数据流 的 MCS,并将该每一个待发射数据流的 MSC告知与发射集内的小区;从而, 发射集内每个小区可以按照每一个待发射数据流的 MSC发射相应的待发射 数据流。
在本发明实施例中, 方法 100的执行主体可以为用户设备的服务小区对 应的基站, 或者其他小区对应的基站, 也可以是独立于各个基站的装置, 本 发明并不对此进行限定, 只要能实现本发明所要实现的功能即可。
在本发明实施例中, 可以根据待发射数据流中每路数据流的 SINR, 以 及 SINR与 MCS的映射关系, 将映射关系中最接近于以及小于每路数据流 的 SINR的 SINR对应的 MCS确定为每路数据流的 SINR。
在本发明实施例中, 测量集内的小区能够对用户设备发射的参考信号进 行接收并处理, 并且可以交互测量信息。 测量集内的小区可以采用固定分配 的方法, 例如, 由用户设备的服务小区周边的几个小区组成测量集; 也可以 按照用户设备反馈的各个小区的参考信号接收功率 (Reference Signal Receiving Power , 筒称 RSRP ) , 根据 |RSRS - RSRR, | < Thr选择出一定数量的 小区组成测量集, 其中 RSR 是服务小区的 RSRP , RSR 是其他小区的 RSRP, 7¾r是门限。 其中, ¾r可以根据产品实现复杂度(例如, 产品的相 关参数计算的复杂度)而定, 如果对产品性能要求较高, 则可以为其设置更 高的数值。
在本发明实施例中, 发射集内的小区为用户设备联合发射下行数据, 且 发射集内的小区必然在测量集中。 其中, 联合发射的方法较多, 一般分为相 干发射和非相干发射两大类。相干发射需要发射集内的小区交互信道信息以 计算发射权值; 非相干发射只需各个小区单独计算发射权值。
在本发明实施例中, S120 中所述确定发射集内小区将要向所述用户设 备发送的待发射数据流在各个子带上的 SINR可以包括:
根据测量集内每个小区的各个子带的上行信道估计值,确定发射集内小 区在各个子带上发射待发射数据流时的有效信号功率,确定测量集内除发射 集外的小区的各个子带针对待发射数据流的干扰噪声功率, 以及确定测量集 外的小区的各个子带针对待发射数据流的干扰噪声功率;
根据发射集内小区在各个子带上发射所述待发射数据流时的有效信号 功率、测量集内除发射集外的小区的各个子带针对待发射数据流的干扰噪声 功率以及测量集外的小区的各个子带针对待发射数据流的干扰噪声功率,确 定待发射数据流在各个子带上的 SINR。
或者, 在本发明实施例中, S120 中确定发射集内小区将要向用户设备 发送的待发射数据流在各个子带上的 SINR可以包括:
根据测量集内每个小区的各个子带的上行信道估计值,确定发射集内小 区在各个子带上发射待发射数据流时的有效信号序列,确定测量集内除发射 集之外的小区的各个子带针对待发射数据流的干扰序列, 以及确定测量集外 的小区的各个子带针对待发射数据流的干扰噪声功率;
根据发射集内小区在各个子带上发射待发射数据流时的有效信号序列、 测量集内除发射集之外的小区的各个子带针对待发射数据流的干扰序列以 及测量集外的小区的各个子带针对待发射数据流的干扰序列,确定待发射数 据流在各个子带上的 SINR。
应理解, 在本发明实施例中, 为了实现的筒单, 测量集外的小区的各个 子带针对待发射数据流的干扰噪声功率可以不经计算直接置为 0, 其中, 是 否计算测量集外的小区的各个子带针对待发射数据流的干扰噪声功率可以 根据产品实现复杂度(例如, 产品的相关参数计算的复杂度)进行确定, 也 可以根据测量集大小来判断。 例如, 如果测量集内的小区的数量大于一预定 数值且测量集内小区的数量与发射集内小区的数量之差大于另一预定数值, 则可以直接将测量集外的小区的各个子带针对待发射数据流的干扰噪声功 率置为 0, 其中, 该一预定值一般取 3, 该另一预定值一般取 2, 具体可以根 据实际情况而定, 例如, 可以根据产品实现的复杂度(例如, 产品的相关参 数计算的复杂度) 而定。
如果需要计算测量集外的小区的各个子带针对待发射数据流的干扰噪 声功率, 可选的可以采用以下两种具体实现方法, 但本发明并不对此进行限 定。
在第一种实现方法中,对于如何确定测量集外的小区的各个子带针对待 发射数据流的干扰噪声功率, 可以包括:
获取用户设备根据发射集合中的每个小区已发射的下行数据流获取的 CQI信息; 即, 获取用户设备推荐给基站的下行数据流的个数和 CQI。
根据该 CQI信息以及测量集内每个小区的各个子带对应的上行信道估 计值,确定测量集外的小区的各个子带针对用户设备所反馈的下行数据流的 干扰噪声功率;
根据测量集外的小区的各个子带针对用户设备所反馈的下行数据流的 干扰噪声功率,确定测量集外的小区的各个子带针对待发射数据流的干扰噪 声功率。
在本发明实施例中,用户设备会向基站反馈用户设备推荐给基站的下行 数据流的个数和 CQI, 即用户设备可以根据下行信道状况而推荐基站采用的 下行数据流数量, 每个下行数据流对应有 CQI信息。
在第二种实现方法中,对于如何确定测量集外的小区的各个子带针对待 发射数据流的 SINR, 可以包括:
根据测量集内每个小区的各个子带的上行信道估计值,确定测量集内除 发射集外的小区的各个子带针对待发射数据流的干扰噪声功率;
根据测量集内除发射集外的小区的各个子带针对待发射数据流的干扰 噪声功率,确定测量集外的小区的各个子带针对待发射数据流的干扰噪声功 率, 其中, 测量集内除发射集外的小区的各个子带针对待发射数据流的干扰 噪声功率与测量集外的小区的各个子带针对待发射数据流的干扰噪声功率 的比值为常数。
因此, 在本发明实施例中, 通过确定测量集内每个小区的各个子带的上 行信道估计值,其中该测量集内每个小区的各个子带的上行信道估计值是测 量集中每个小区根据用户设备发送的参考信号进行测量而获取的,根据该测 量集内每个小区的各个子带的上行信道估计值,确定发射集内小区将要向用 户设备发送的待发射数据流在各个子带上的 SINR, 其中, 该发射集是该测 量集的子集, 对待发射数据流在各个子带上的 SINR进行合并处理, 得到待 发射数据流的 SINR, 以及根据待发射数据流的 SINR, 确定待发射数据流的 MCS, 以便于发射集内每个小区按照 MCS向用户设备发送待发射数据流, 也就是说, 通过利用用户设备发射的参考信号来侦测上行信道, 通过参考信 号进行信道估计, 获取上行信道的信道估计信息, 由于上下行互易性, 可以 利用上行信道的信道估计信息, 计算下行数据流的 SINR, 并根据下行数据 流的 SINR来计算用于发射下行数据流的 MCS, 可以更为准确地计算下行 MCS, 提高其与下行信道质量的匹配程度, 从而可以提升下行频谱效率。
为了更加清楚地理解本发明, 以下将结合图 2具体描述根据本发明实施 例的用于数据传输的方法。
图 2是根据本发明实施例的用于数据传输的方法 200的示意性流程图。 其中, 在该方法 200中, 测量集 由 个小区组成, 测量集中的小区 编号为 =1,2,一, ,其中小区^ =1为用户设备的服务小区。发射集^由71个 小区 (T≤M )组成, 发射集中的小区编号为 tyA , 其中小区 t = l为 用户设备的服务小区。 测量集 μΜ中的小区 在子带 上的发射天线总功率 为 ^ , = 1, 2,… ,Μ。发射集^中的小区发给目标用户设备 ( User Equipment, 筒称 " UE" ) 的下行数据流的流数为 Six, 流号为 =1,2,···,^。 目标 UE反 馈的下行数据流的流数为 , 流号为 =1,2,···, , 其中, 当目标 UE按照 发射分集的方式(即用户设备所假定的基站所采取的发射方式为发射分集的 方式 )反馈 CQI时, S = 1 , 当目标 UE按照闭环模式(即用户设备所假定 的基站所采取的发射方式为闭环模式)反馈 CQI时, S ≥1。
如图 2所示, 该方法 200可以包括:
5201, 测量集内的小区对目标 UE发射的 SRS进行测量,得到各个小区 的各个子带 (sub-bandwidth) 的上行信道估计矩阵 H , 其中 m = l,2,...,M , sb = l,2,--、NSB , NSB是传输带宽上总的 SB 数量, SB 可以是一个资源块 ( resource block , 筒称 RB ) , 也可以是多个 RB的组合。
5202, 获取测量集内的小区针对 SRS 进行测量而获取的上行信道估计 矩阵, 以及根据上行信道估计矩阵和用户设备反馈的流^的 CQl。s tside计算该 流对应的测量集外的 上的干扰功率 Pr
其中, CQ/ 可以是目标 UE根据服务小区的下行导频信号与其他小 区总的干扰噪声功率计算的信噪比得到的, 也可以是目标 UE根据服务小区 的下行导频信号与测量集外的干扰噪声功率计算的信噪比得到的, 以下将结 合该两种情况进行具体介绍。
1 ) 是目标 UE根据服务小区的下行导频信号与其他小区总的 干扰噪声功率计算的信噪比得到的, 即目标 UE假设服务小区之外都是干扰 计算得到的, 可以是全带宽的, 也可以是子带的, 即可以理解为 R10/R9/R8 中的反馈方式。
其中, 按照目标 UE反馈方式的不同, 可以分以下几种情况计算
Figure imgf000020_0001
: a ) 当 时 ( Sft =l ) ,
Figure imgf000020_0002
其中, Γ„„Μ是基站的发射天线数量, 此处假设所有的小区的天线数量相 同, 是服务小区在目标 UE占用子带 上的上次发射功率, H 是服务 小区的在子带 上的上行信道估计矩阵, ¼CRS是目标 UE的服务小区的公共 参考信号( Cell-specific reference signals , 筒称 "CRS" )的虚拟天线映射矩 阵, 爾 H CQd映射得到的目标 UE反馈的数据流 在子带 上的信噪比, ¾si是小区 在目标 UE 占用子带 ^上的上次调度使用的权 值, R 是小区 在目标 UE 占用子带 ^上的上次发射功率, H 是小区 m 的子带 上的上行信道估计矩阵。
Figure imgf000020_0003
W 2 其中, /W/ 是目标 UE反馈的数据流 在子带 上的预编码向量,其 他参数的含义与 a ) 中的参数含义相同。
2 ) C2/ ^是目标 UE服务小区的下行导频信号与测量集外的干扰噪 声功率计算的信噪比得到的, 即目标 UE仅根据服务小区下行导频且假设测 量集内无干扰计算得到的, 可以是全带宽的, 也可以是子带的。 (可以理解 为 R11中的反馈方式)
按照目标 UE反馈方式的不同, 分以下几种情况计算 R。 i:
a ) 当目标 UE以发射分集的方式反馈 时 ( Sft = 1 ),
Figure imgf000021_0001
其中, Γ„„Μ是基站的发射天线数量, 此处假设所有的小区的天线数量相 同, 是服务小区在目标 UE占用子带 上的上次发射功率, H 是服务 小区的子带 的上行信道估计矩阵, y是所述用户设备的服务小区 CRS 的虚拟天线映射( Virtual Antenna Mapping , 筒称 VAM )矩阵, PM1S 'sb是用 户设备反馈的数据流 Sfb在 sb上的预编码向量, S/NR 是根据 CQl side映射 得到的用户设备反馈的数据流 在子带 上的信噪比, ¼cs -ss是服务小区的 信道状态信息参考信号 (Channe l S ta te Informa t i on, 筒称 "CS I- RS" ) 的 VAM矩阵。
b ) 当 目 反馈 CQ/ 时 ( Sft≥l ) ,
Figure imgf000021_0002
其中, RM/ 's6是目标 UE给服务小区反馈的数据流 在 上的 PMI, 其他参数的含义与 a ) 中的参数含义相同。
c ) 当目 UE以 TM9闭环模式反馈 CQ/ 时 ( Sft≥1 ),
Figure imgf000021_0003
其中 V - Rs是目标 UE服务小区 CSI-RS的 VAM矩阵,一般 ^ = / , 其他参数的含义与 a ) 以及 b ) 中的参数含义相同。
203 , 构造所有待发射数据流对应的测量集外的干扰噪声功率矩阵 待发射数据流 stx对应的测量集外的干扰噪声功率 P^e可以采用如下方 对反馈流数对应的测量集外干扰噪声功率求平均而得到待发射数据流 对应的测量集外的干扰噪声功率¾ , 即, p e= ∑p=£e , 其中,
S
这种情况下, 所有发射流的测量集外干扰噪声都相同
,sb 可选地, 当反馈流数与待发射流数相同时(即 S,T=Sft ), Pn outside 即, 根据每个流的干扰噪声功率可以得到
Figure imgf000022_0001
outside
S204, 计算目标 UE的 SINRjsfL sb
以下将介绍两种计算 S/NR^ 的方法, 当然, 也可以通过其他方法计算 SINR£s sb , 本发明实施例并不对此进行限定。
1 )通过第一种方法可以得到的 S/NR^ 为:
S/NR¾- =
其 中
Figure imgf000022_0002
ίεμΓ
Keff = Kla Tnum S , 具体可以根据实现复杂度而定, 本发明实施例并不 对此进行限定,或者根据 W„ 是否为本次调度权值而定,若 W„ 为本次调度权
Figure imgf000022_0003
否 HH b lastITnumHm sb, 其中, W„ 是小区 在 目标 UE占用子带 上的发射权值矩阵, 可以是上次调度使用的权值, 也可 以是本次调度将要使用的权值,根据实现复杂度而定。 Wb的第 stx列为 , 表示服务小区在子带 sb给目标 UE发射的流 的发射权值向量。
可选地, 此处的 除了可以通过 S202 和 S203 获得, 也可以通过 = 来获得, 其中 为测量集内的干扰功率, 即, inside
Figure imgf000022_0004
其中, 为干扰比例系数表示测量集外干扰与测量集内干扰的比例, 通 常可以为一个常数, 其中, 该常数可以通过仿真或经验值得到。
2)通过第二种方法可以得到的 S/NR^ 为: a
1- a 其中, " = Η + J Kff ' , 为" 的第 个对角 线元素 ; ff
Figure imgf000023_0001
(( b eff )H ( b eff )) + R。:
ίεμΓ
Keff= ^HX 或 其中, /为对角线元素的值为
1, 其他值为 0的单位矩阵, 其他参数的含义请参考上文所述。
可选地, 此处的 ^ e除了可以通过步骤 S202和 S203 获得, 也可以通 过 d= 来获得, 其中 ^
PLide =画" diag
Figure imgf000023_0002
β为干扰比例系数表示测量集外干扰与测量集内干扰的比例, 通常可以 为一个常数, 其中, 该常数可以通过仿真或经验值得到。
S205,将目标 UE占用带宽上待发射数据流 在各个子带上的 S/NR^' 进 行合并, 得到 S/N i。 合并的方法可以采用 SB平均的方法, 也可以采用指 数有效 SINR映射( Exponential Effective SINR Mapping, 筒称 EESM )合并 的方法, 或者其他方法, 本发明实施例并不对此进行限定。
S206 , 将目标 UE合并后的 SINRjsfL映射为 MCS级别 L。 每个 MCS级别 对应一个 S/NR s,寻找满足 S肩 i≥S/NR 的最大 /max, L = /max
S207, 发射集内的各个小区根据选择的 MCS级别 L在调度的带宽上发 射下行数据流 。
应理解,方法 200中的步骤 S202至 S206的执行主体可以为用户设备的 服务小区对应的基站, 可以为其他小区对应的基站, 也可以是独立于各个基 站的装置, 本发明并不对此进行限定, 只要能实现本发明所要实现的功能即 可。
因此, 在本发明实施例中, 通过确定测量集内每个小区的各个子带的上 行信道估计值,其中测量集内每个小区的各个子带的上行信道估计值是测量 集中每个小区根据用户设备发送的参考信号进行测量而获取的,根据测量集 内每个小区的各个子带的上行信道估计值,确定发射集内小区将要向用户设 备发送的待发射数据流在各个子带上的 SINR, 其中, 发射集是测量集的子 集, 对待发射数据流在各个子带上的 SINR进行合并处理, 得到待发射数据 流的 SINR, 以及根据待发射数据流的 SINR, 确定待发射数据流的 MCS, 以便于发射集内每个小区按照 MCS向用户设备发送待发射数据流, 也就是 说, 在确定用于发射下行数据流的 MSC时, 通过利用用户设备发射的参考 信号来侦测上行信道, 通过参考信号进行信道估计, 获取上行信道的信道估 计信息, 由于上下行互易性, 可以利用上行信道的信道估计信息, 计算下行 数据流的 SINR, 并根据下行数据流的 SINR来计算用于发射下行数据流的 MCS, 可以更为准确地计算下行 MCS, 提高其与下行信道质量的匹配程度, 从而可以提升下行频谱效率。
以上已结合图 1 和图 2描述了根据本发明实施例的用于数据传输的方 法, 以下将结合图 3和图 4描述根据本发明实施例的用于数据传输的装置。
图 3是根据本发明实施例的用于数据传输的装置的示意性框图。 如图 3 所示, 该装置 300包括:
第一确定单元 310, 用于确定测量集内每个小区的各个子带的上行信道 估计值,其中该测量集内每个小区的各个子带的上行信道估计值是该测量集 内每个小区根据用户设备发送的参考信号进行测量而获取的;
第二确定单元 320, 用于根据该测量集内每个小区的各个子带的上行信 道估计值,确定发射集内小区将要向该用户设备发送的待发射数据流在各个 子带上的 SINR, 其中, 该发射集是该测量集的子集;
获取单元 330, 用于对该待发射数据流在各个子带上的 SINR进行合并 处理, 得到该待发射数据流的 SINR;
第三确定单元 340,用于根据该待发射数据流的 SINR,确定该待发射数 据流的 MCS, 以便于该发射集内每个小区按照该 MCS向该用户设备发送该 待发射数据流。
可选地, 该第二确定单元 320具体用于:
根据该测量集内每个小区的各个子带的上行信道估计值,确定该发射集 内小区在各个子带上发射该待发射数据流时的有效信号功率,确定该测量集 内除该发射集外的小区的各个子带针对该待发射数据流的干扰噪声功率, 以 及确定该测量集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该发射集内小区在各个子带上发射该待发射数据流时的有效信号 功率、该测量集内除该发射集外的小区的各个子带针对该待发射数据流的干 扰噪声功率以及该测量集外的小区的各个子带针对该待发射数据流的干扰 噪声功率, 确定该待发射数据流在各个子带上的 SINR
可选地, 该第二确定单元 320具体用于:
根据该测量集内每个小区的各个子带的上行信道估计值,确定发射集内 小区发射在各个子带上该待发射数据流时的有效信号序列,确定测量集内除 该发射集之外的小区的各个子带针对该待发射数据流的干扰序列 以及确定 测量集外的小区的各个子带针对该待发射数据流的干扰噪声功率;
根据该发射集内小区在各个子带上发射该待发射数据流时的有效信号 序列、测量集内除该发射集之外的小区的各个子带针对该待发射数据流的干 扰序列以及测量集外的小区的各个子带针对该待发射数据流的干扰序列,确 定该待发射数据流在各个子带上的 SINR
可选地, 该第二确定单元 320具体用于:
获取用户设备根据发射集合中的每个小区已发射的下行数据流获取的 CQI信息;
根据该 CQI信息以及该测量集内每个小区的各个子带对应的上行信道 估计值,确定测量集外的小区的各个子带针对该用户设备所反馈的下行数据 流的干扰噪声功率;
根据该测量集外的小区的各个子带针对该用户设备所反馈的下行数据 流的干扰噪声功率,确定该测量集外的小区的各个子带针对该待发射数据流 的干扰噪声功率。
可选地,该 CQI信息是该用户设备根据服务小区的下行导频信号与除该 服务小区之外的其他小区的干扰噪声功率计算的信噪比得到的;
在该用户设备以发射分集的方式反馈 CQI信息时, 该第二确定单元 320 具体用于: 根据公式 Pn psb H Ws
Figure imgf000025_0001
确定测量集外的 d 区的各个子带针对该用户设备所反馈的下行数据流的干扰噪声功率;
在该用户设备以闭环模式反馈 CQI信息时, 该第二确定单元具体用于: 根据公式
R M V, RSPML μΜ
3Ρ · 确定该测量集外的小区的各个子带针对该用户设备所反馈的下行数据流的 干扰噪声功率;
其中, 测量集 μΜ中共有 M个小区, 测量集小区编号 m = l,2,...,M , m = l 时为服务小区,发射集 共有 T个小区,发射集小区编号为 t = tl ,t2, -,tT " = 1 时为服务小区, 7_是基站的发射天线数量, 是服务小区在该用户设备 占用子带 ^上的上次发射功率, H 是服务小区的在子带 sb上的上行信道估 计值, 是该用户设备的服务小区 CRS的虚拟天线映射矩阵, ΡΜΙ Ί 用户设备反馈的下行数据流 在子带 上的预编码向量, S/NR 是根据 CQ utside映射得到的用户设备反馈的下行数据流 在子带 上的信噪比, ¾si是小区 在该用户设备占用子带 上的上次调度使用的权值, PH 小区 在该用户设备占用子带 sb上的上次发射功率, H:b是小区 m的子带 sb 上的上行信道估计值。
可选地,该 CQI信息用户设备根据服务小区的下行导频信号与测量集外 的干扰噪声功率计算的信噪比得到的;
在该用户设备以发射分集的方式反馈 CQI信息时, 该第二确定单元 320 具体用于: 根据公式/^ = Tnum ' S 确定测量集外的小区的各个子带针对
續:
该用户设备所反馈的下行数据流的干扰噪声功率;
在该用户设备以 TM8闭环模式反馈该 CQI信息时, 该第二确定单元具 体用于: 根据公式 确定测量集外的小区的各个子带
Figure imgf000026_0001
针对该用户设备所反馈的下行数据流的干扰噪声功率;
在该用户设备以 TM9闭环模式反馈该 CQI信息时, 该第二确定单元具 体用于: 根据公式/^; ί
Figure imgf000026_0002
带针对该用户设备所反馈的下行数据流的干扰噪声功率;
其中, 7_ ^^站的发射天线数量, ^是服务小区在该用户设备占用 子带 上的上次发射功率, H 是服务小区的子带 的上行信道估计值, 是该用户设备的服务小区 CRS的 VAM矩阵, ΡΜ/ 是用户设备反馈的下 行数据流 在 上的预编码向量, S/NR i是根据 CQ side映射得到的用户 设备反馈的下行数据流 在子带 上的信噪比, ¼cs -Rs是服务小区的
CSI-RS的 VAM矩阵。
可选地, 该第二确定单元 320具体用于:
根据该测量集内每个小区的各个子带的上行信道估计值,确定该测量集 内除该发射集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该测量集内除该发射集外的小区的各个子带针对该待发射数据流 的干扰噪声功率,确定测量集外的小区的各个子带针对该待发射数据流的干 扰噪声功率, 其中, 该测量集内除该发射集外的小区的各个子带针对该待发 射数据流的干扰噪声功率与该测量集外的小区的各个子带针对该待发射数 据流的干扰噪声功率的比值为常数。
可选地, 该第三确定单元 340具体用于:
根据该待发射数据流中每路数据流的 SINR, 以及 SINR与 MCS的映射 关系, 将该映射关系中最接近于以及小于该每路数据流的 SINR的 SINR对 应的 MCS确定为该每路数据流的 SINR。
应理解,根据本发明实施例的用于数据传输的装置 300中的各个单元的 上述和其它操作和 /或功能分别为了实现图 1和图 2中的方法的相应流程,为 了筒洁, 在此不再赘述。
因此, 在本发明实施例中, 通过确定测量集内每个小区的各个子带的上 行信道估计值,其中该测量集内每个小区的各个子带的上行信道估计值是该 测量集中每个小区根据用户设备发送的参考信号进行测量而获取的,根据该 测量集内每个小区的各个子带的上行信道估计值,确定发射集内小区将要向 该用户设备发送的待发射数据流在各个子带上的 SINR, 其中, 该发射集是 该测量集的子集, 对该待发射数据流在各个子带上的 SINR进行合并处理, 得到该待发射数据流的 SINR, 以及根据该待发射数据流的 SINR, 确定该待 发射数据流的 MCS , 以便于该发射集内每个小区按照该 MCS向该用户设备 发送该待发射数据流, 也就是说, 通过利用用户设备发射的参考信号来侦测 上行信道, 通过参考信号进行信道估计, 获取上行信道的信道估计信息, 由 于上下行互易性, 可以利用上行信道的信道估计信息, 计算下行数据流的 SINR, 并根据下行数据流的 SINR来计算用于发射下行数据流的 MCS , 可 以更为准确地计算下行 MCS , 提高其与下行信道质量的匹配程度, 从而可 以提升下行频谱效率。
图 4是根据本发明实施例的用于数据传输的装置 400的示意性框图。如 图 4所示, 该装置 400包括: 接收机 410、 发射机 420、 存储器 430以及分 别与接收机 410、 发射机 420、 存储器 430连接的处理器 440。 当然, 该装置 还可以包括天线、 输入输出部件等通用部件, 本发明实施例在此不再任何限 制。
其中, 存储器 430中存储程序代码, 且处理器 440可以调用存储器 430 中存储的程序代码执行以下操作:
通过接收机 410接收测量集内每个小区的各个子带的上行信道估计值, 其中该测量集内每个小区的各个子带的上行信道估计值是该测量集内每个 小区根据用户设备发送的参考信号进行测量而获取的;
根据该测量集内每个小区的各个子带的上行信道估计值,确定发射集内 小区将要向该用户设备发送的待发射数据流在各个子带上的信干噪比
SINR, 其中, 该发射集是该测量集的子集;
对该待发射数据流在各个子带上的 SINR进行合并处理, 得到该待发射 数据流的 SINR;
根据该待发射数据流的 SINR, 确定该待发射数据流的调制编码方案 MCS;
通过发射机 440将该待发射数据流的 MCS发送至发射集内每个小区, 以便于该发射集内每个小区按照该 MCS 向该用户设备发送该待发射数据 流。
可选地, 处理器 440可以调用存储器 430中存储的程序代码具体执行以 下操作:
根据该测量集内每个小区的各个子带的上行信道估计值,确定该发射集 内小区在各个子带上发射该待发射数据流时的有效信号功率,确定该测量集 内除该发射集外的小区的各个子带针对该待发射数据流的干扰噪声功率, 以 及确定该测量集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该发射集内小区在各个子带上发射该待发射数据流时的有效信号 功率、该测量集内除该发射集外的小区的各个子带针对该待发射数据流的干 扰噪声功率以及该测量集外的小区的各个子带针对该待发射数据流的干扰 噪声功率, 确定该待发射数据流在各个子带上的 SINR。 可选地, 处理器 440可以调用存储器 430中存储的程序代码具体执行以 下操作:
根据该测量集内每个小区的各个子带上的上行信道估计值,确定发射集 内小区在各个子带上发射该待发射数据流时的有效信号序列,确定测量集内 除该发射集之外的小区的各个子带针对该待发射数据流的干扰序列, 以及确 定测量集外的小区的各个子带针对该待发射数据流的干扰噪声功率;
根据该发射集内小区在各个子带上发射该待发射数据流时的有效信号 序列、测量集内除该发射集之外的小区的各个子带针对该待发射数据流的干 扰序列以及测量集外的小区的各个子带针对该待发射数据流的干扰序列,确 定该待发射数据流在各个子带上的 SINR。
可选地, 处理器 440可以调用存储器 430中存储的程序代码具体执行以 下操作:
获取用户设备根据发射集合中的每个小区已发射的下行数据流获取的 CQI信息;
根据该 CQI信息以及该测量集内每个小区的各个子带对应的上行信道 估计值,确定测量集外的小区的各个子带针对该用户设备所反馈的下行数据 流的干扰噪声功率;
根据该测量集外的小区的各个子带针对该用户设备所反馈的下行数据 流的干扰噪声功率,确定该测量集外的小区的各个子带针对该待发射数据流 的干扰噪声功率。
可选地,该 CQI信息是该用户设备根据服务小区的下行导频信号与除该 服务小区之外的其他小区的干扰噪声功率计算的信噪比得到的;
在该用户设备以发射分集的方式反馈 CQI信息时,处理器 440可以调用 存储器 430中存储的程 根据公式 Pn 确定测量集外
Figure imgf000029_0001
的小区的各个子带针对该用户设备所反馈的下行数据流的干扰噪声功率; 在该用户设备以闭环模式反馈 CQI信息时,处理器 440可以调用存储器 430中存储的程序代码具体执行以下操作: 根据公式
Figure imgf000030_0001
确定该测量集外的小区的各个子带针对该用户设备所反馈的下行数据流的 干扰噪声功率;
其中, 测量集 μΜ中共有 M个小区, 测量集小区编号 m = l, 2,...,M , m = l 时为服务小区,发射集 共有 T个小区,发射集小区编号为 t = tl ,t2 , -,tT " = 1 时为服务小区, 7_是基站的发射天线数量, 是服务小区在该用户设备 占用子带 ^上的上次发射功率, H 是服务小区的在子带 sb上的上行信道估 计值, 是该用户设备的服务小区 CRS的虚拟天线映射矩阵, ΡΜΙ Ί 用户设备反馈的下行数据流 ^在子带 上的预编码向量, S/NRH是根据
CQ utside映射得到的用户设备反馈的下行数据流^在子带 上的信噪比 ,
¾si是小区 在该用户设备占用子带 上的上次调度使用的权值, 小区 在该用户设备占用子带 ώ上的上次发射功率, Η=是小区 m的子带 sb 上的上行信道估计值。
可选地,该 CQI信息用户设备根据服务小区的下行导频信号与测量集外 的干扰噪声功率计算的信噪比得到的;
在该用户设备以发射分集的方式反馈 CQI信息时,处理器 440可以调用 存储器 430中存储的程序代码具体执行以下操作:
, H: V
T
根据公式 •确定测量集外的小区的各个子带针对 该用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在该用户设备以 TM8闭环模式反馈该 CQI信息时, 处理器 440可以调 操作: 根据公式 确定测量集外的小区的各个子带
Figure imgf000030_0002
针对该用户设备所反馈的下行数据流的干扰噪声功率;
在该用户设备以 TM9闭环模式反馈该 CQI信息时, 该第二确定单元具 体用于: 根据公式 确定测量集外的小区的各个子
Figure imgf000030_0003
带针对该用户设备所反馈的下行数据流的干扰噪声功率; 其中, 7_ ^^站的发射天线数量, ^是服务小区在该用户设备占用 子带 上的上次发射功率, H 是服务小区的子带 Sb 的上行信道估计值, RS是该用户设备的服务小区 CRS的 VAM矩阵, 是用户设备反馈的 下行数据流 在 上的预编码向量, S/NR 是根据 映射得到的用 户设备反馈的下行数据流 在子带 上的信噪比, 是服务小区的 CS I-RS的 VAM矩阵。
可选地, 处理器 440可以调用存储器 430中存储的程序代码具体执行以 下操作:
根据该测量集内每个小区的各个子带的上行信道估计值,确定该测量集 内除该发射集外的小区的各个子带针对该待发射数据流的干扰噪声功率; 根据该测量集内除该发射集外的小区的各个子带针对该待发射数据流 的干扰噪声功率,确定测量集外的小区的各个子带针对该待发射数据流的干 扰噪声功率, 其中, 该测量集内除该发射集外的小区的各个子带针对该待发 射数据流的干扰噪声功率与该测量集外的小区的各个子带针对该待发射数 据流的干扰噪声功率的比值为常数。
可选地, 处理器 440可以调用存储器 430中存储的程序代码具体执行以 下操作:
根据该待发射数据流中每路数据流的 SINR, 以及 SINR与 MCS的映射 关系, 将该映射关系中最接近于以及小于该每路数据流的 SINR的 SINR对 应的 MCS确定为该每路数据流的 SINR。
应理解,根据本发明实施例的用于数据传输的装置 300中的各个单元的 上述和其它操作和 /或功能分别为了实现图 1和图 2中的方法的相应流程,为 了筒洁, 在此不再赘述。
因此, 在本发明实施例中, 通过确定测量集内每个小区的各个子带的上 行信道估计值,其中测量集内每个小区的各个子带的上行信道估计值是测量 集中每个小区根据用户设备发送的参考信号进行测量而获取的,根据测量集 内每个小区的各个子带的上行信道估计值,确定发射集内小区将要向用户设 备发送的待发射数据流在各个子带上的 SINR, 其中, 发射集是测量集的子 集, 对待发射数据流在各个子带上的 SINR进行合并处理, 得到待发射数据 流的 SINR,以及根据待发射数据流的 SINR,确定所述待发射数据流的 MCS , 以便于发射集内每个小区按照 MCS向用户设备发送该待发射数据流, 也就 是说, 通过利用用户设备发射的参考信号来侦测上行信道, 通过参考信号进 行信道估计, 获取上行信道的信道估计信息, 由于上下行互易性, 可以利用 上行信道的信道估计信息, 计算下行数据流的 SINR, 并根据下行数据流的 SINR来计算用于发射下行数据流的 MCS, 可以更为准确地计算下行 MCS, 提高其与下行信道质量的匹配程度, 从而可以提升下行频谱效率。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例中描述的 各方法步骤和单元, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性 地描述了各实施例的步骤及组成。 这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 本领域普通技术人员可以 对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应 认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或步骤可以用硬件、处理器执行 的软件程序,或者二者的结合来实施。软件程序可以置于随机存储器( RAM )、 内存、 只读存储器(ROM )、 电可编程 ROM、 电可擦除可编程 ROM、 寄存 器、 硬盘、 可移动磁盘、 CD-ROM, 或技术领域内所公知的任意其它形式的 存储介质中。 但本发明并不限于此。 在不脱离本发明的精神和实质的前提下, 本领域普通 技术人员可以对本发明的实施例进行各种等效的修改或替换, 而这些修改或 替换都应在本发明的涵盖范围内。

Claims

权利要求
1. 一种用于数据传输的方法, 其特征在于, 包括:
确定测量集内每个小区的各个子带的上行信道估计值, 其中所述测量集 内每个小区的各个子带的上行信道估计值是所述测量集内每个小区根据用 户设备发送的参考信号进行测量而获取的;
根据所述测量集内每个小区的各个子带的上行信道估计值,确定发射集 内小区将要向所述用户设备发送的待发射数据流在各个子带上的信干噪比 SINR, 其中, 所述发射集是所述测量集的子集;
对所述待发射数据流在各个子带上的 SINR进行合并处理, 得到所述待 发射数据流的 SINR;
根据所述待发射数据流的 SINR, 确定所述待发射数据流的调制编码方 案 MCS, 以便于所述发射集内每个小区按照所述 MCS向所述用户设备发送 所述待发射数据流。
2. 根据权利要求 1所述的方法, 其特征在于, 所述确定发射集内小区 将要向所述用户设备发送的待发射数据流在各个子带上的 SINR, 包括: 根据所述测量集内每个小区的各个子带的上行信道估计值,确定所述发 射集内小区在各个子带上发射所述待发射数据流时的有效信号功率,确定所 述测量集内除所述发射集外的小区的各个子带针对所述待发射数据流的干 扰噪声功率, 以及确定所述测量集外的小区的各个子带针对所述待发射数据 流的干扰噪声功率;
根据所述发射集内小区在各个子带上发射所述待发射数据流时的有效 信号功率、所述测量集内除所述发射集外的小区的各个子带针对所述待发射 数据流的干扰噪声功率以及所述测量集外的小区的各个子带针对所述待发 射数据流的干扰噪声功率, 确定所述待发射数据流在各个子带上的 SINR。
3. 根据权利要求 1所述的方法, 其特征在于, 所述确定发射集内小区 将要向所述用户设备发送的待发射数据流在各个子带上的 SINR, 包括: 根据所述测量集内每个小区的各个子带的上行信道估计值,确定发射集 内小区在各个子带上发射所述待发射数据流时的有效信号序列,确定测量集 内除所述发射集之外的小区的各个子带针对所述待发射数据流的干扰序列, 以及确定测量集外的小区的各个子带针对所述待发射数据流的干扰噪声功 率;
根据所述发射集内小区在各个子带上发射所述待发射数据流时的有效 信号序列、测量集内除所述发射集之外的小区的各个子带针对所述待发射数 据流的干扰序列以及测量集外的小区的各个子带针对所述待发射数据流的 干扰序列, 确定所述待发射数据流在各个子带上的 SINR
4. 根据权利要求 2或 3所述的方法, 其特征在于, 所述确定所述测量 集外的小区的各个子带针对所述待发射数据流的干扰噪声功率, 包括: 获取所述用户设备根据发射集合中的每个小区已发射的下行数据流获 取的信道质量指示 CQI信息;
根据所述 CQI信息以及所述测量集内每个小区的各个子带对应的上行 信道估计值,确定测量集外的小区的各个子带针对所述用户设备所反馈的下 行数据流的干扰噪声功率;
根据所述测量集外的小区的各个子带针对所述用户设备所反馈的下行 数据流的干扰噪声功率,确定所述测量集外的小区的各个子带针对所述待发 射数据流的干扰噪声功率。
5. 根据权利要求 4所述的方法, 其特征在于, 所述 CQI信息是所述用 户设备根据服务小区的下行导频信号与除所述服务小区之外的其他小区的 干扰噪声功率计算的信噪比得到的;
在所述用户设备以发射分集的方式反馈 CQI信息时,所述确定测量集外 的小区的各个子带针对所述用户设备所反馈的下行数据流的干扰噪声功率, 包括: 根据公式 psfb Ά psb H Ws 确定测量集外的 d
Figure imgf000034_0001
区的各个子带针对所述用户设备所反馈的下行数据流的干扰噪声功率; 或 者,
在所述用户设备以闭环模式反馈 CQI信息时,所述确定测量集外的小区 的各个子带针对所述用户设备所反馈的下行数据流的干扰噪声功率, 包括: 根据公式
R M V, RSPML μΜ
p 3Ρ · 确定所述测量集外的小区的各个子带针对所述用户设备所反馈的下行数据 流的干扰噪声功率;
其中, 测量集 μΜ中共有 M个小区, 测量集小区编号 m = l, 2, ..., M , m = l 时为服务小区,发射集 共有 T个小区,发射集小区编号为 t = tl ,t2, -,tT " = 1 时为服务小区, 7_是基站的发射天线数量, ≤si是服务小区在所述用户设 备占用子带 ^上的上次发射功率, H;b是服务小区的子带 的上行信道估计 值, ¼°^是所述用户设备的服务小区的公共参考信号 CRS 的虚拟天线映射 矩阵, PMIs 'sb是用户设备反馈的下行数据流 在子带 上的预编码向量, INR^e是根据 CQl tside映射得到的用户设备反馈的下行数据流 在子带 sb 上的信噪比, ¾si是小区 在所述用户设备占用子带 sb上的上次调度使用 的权值, R asi是小区 在所述用户设备占用子带 上的上次发射功率, 是 小区 m的子带 上的上行信道估计值。
6. 根据权利要求 4所述的方法, 其特征在于, 所述 CQI信息是用户设 备根据服务小区的下行导频信号与测量集外的干扰噪声功率计算的信噪比 得到的;
在所述用户设备以发射分集的方式反馈 CQI信息时,所述确定测量集外 的小区的各个子带针对所述用户设备所反馈的下行数据流的干扰噪声功率, 包括: 根据公式 ~~ 确定测量集外的小区的各个子带针对
Figure imgf000035_0001
所述用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在所述用户设备以 TM8闭环模式反馈所述 CQI信息时, 所述确定测量 集外的小区的各个子带针对所述用户设备所反馈的下行数据流的干扰噪声 功率, 包括: 根据公式 确定测量集外的小区的各个子带
SINRSfi
针对所述用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在所述用户设备以 TM9闭环模式反馈所述 CQI信息时, 所述确定测量 集外的小区的各个子带针对所述用户设备所反馈的下行数据流的干扰噪声 功率, 包括:
I psb ~~ HsbvCSI-RS pMISft>,sb
根据公式 p = 1 1 ~~ ~~ F-确定测量集外的小区的各个子
SINR fi 带针对所述用户设备所反馈的下行数据流的干扰噪声功率;
其中, 7_ ^^站的发射天线数量, ^是服务小区在所述用户设备占 用子带 sb上的上次发射功率, H 是服务小区的子带 sb的上行信道估计值, 是所述用户设备的服务小区 CRS的虚拟天线映射 VAM矩阵, ΡΜ Ί 用户设备反馈的下行数据流 在 上的预编码向量, S/NR 是根据 CQ tside映射得到的用户设备反馈的下行数据流 在子带 上的信干噪比, V _^是服务小区的信道状态信息参考信号 CS I-RS的 VAM矩阵。
7. 根据权利要求 2或 3所述的方法, 其特征在于, 所述确定测量集外 的小区的各个子带针对所述待发射数据流的 SINR, 包括:
根据所述测量集内每个小区的各个子带的上行信道估计值,确定所述测 量集内除所述发射集外的小区的各个子带针对所述待发射数据流的干扰噪 声功率;
根据所述测量集内除所述发射集外的小区的各个子带针对所述待发射 数据流的干扰噪声功率,确定测量集外的小区的各个子带针对所述待发射数 据流的干扰噪声功率, 其中, 所述测量集内除所述发射集外的小区的各个子 带针对所述待发射数据流的干扰噪声功率与所述测量集外的小区的各个子 带针对所述待发射数据流的干扰噪声功率的比值为常数。
8. 根据权利要求 1至 7中任一项所述的方法, 其特征在于, 所述确定 所述待发射数据流的 MCS , 包括:
根据所述待发射数据流中每路数据流的 SINR, 以及 SINR与 MCS的映 射关系, 将所述映射关系中最接近于以及小于所述每路数据流的 SINR 的 SINR对应的 MCS确定为所述每路数据流的 SINR。
9. 一种用于数据传输的装置, 其特征在于, 包括:
第一确定单元, 用于确定测量集内每个小区的各个子带的上行信道估计 值, 其中所述测量集内每个小区的各个子带的上行信道估计值是所述测量集 内每个小区根据用户设备发送的参考信号进行测量而获取的;
第二确定单元, 用于根据所述测量集内每个小区的各个子带的上行信道 估计值,确定发射集内小区将要向所述用户设备发送的待发射数据流在各个 子带上的信干噪比 SINR, 其中, 所述发射集是所述测量集的子集;
获取单元, 用于对所述待发射数据流在各个子带上的 SINR进行合并处 理, 得到所述待发射数据流的 SINR; 第三确定单元, 用于根据所述待发射数据流的 SINR, 确定所述待发射 数据流的调制编码方案 MCS, 以便于所述发射集内每个小区按照所述 MCS 向所述用户设备发送所述待发射数据流。
10. 根据权利要求 9所述的装置, 其特征在于, 所述第二确定单元具体 用于:
根据所述测量集内每个小区的各个子带的上行信道估计值,确定所述发 射集内小区在各个子带上发射所述待发射数据流时的有效信号功率,确定所 述测量集内除所述发射集外的小区的各个子带针对所述待发射数据流的干 扰噪声功率, 以及确定所述测量集外的小区的各个子带针对所述待发射数据 流的干扰噪声功率;
根据所述发射集内小区在各个子带上发射所述待发射数据流时的有效 信号功率、所述测量集内除所述发射集外的小区的各个子带针对所述待发射 数据流的干扰噪声功率以及所述测量集外的小区的各个子带针对所述待发 射数据流的干扰噪声功率, 确定所述待发射数据流在各个子带上的 SINR。
11. 根据权利要求 9所述的装置, 其特征在于, 所述第二确定单元具体 用于:
根据所述测量集内每个小区的各个子带的上行信道估计值,确定发射集 内小区在各个子带上发射所述待发射数据流时的有效信号序列,确定测量集 内除所述发射集之外的小区的各个子带针对所述待发射数据流的干扰序列, 以及确定测量集外的小区的各个子带针对所述待发射数据流的干扰噪声功 率;
根据所述发射集内小区在各个子带上发射所述待发射数据流时的有效 信号序列、测量集内除所述发射集之外的小区的各个子带针对所述待发射数 据流的干扰序列以及测量集外的小区的各个子带针对所述待发射数据流的 干扰序列, 确定所述待发射数据流在各个子带上的 SINR。
12. 根据权利要求 10或 11所述的装置, 其特征在于, 所述第二确定单 元具体用于:
获取用户设备根据发射集合中的每个小区已发射的下行数据流获取的 信道质量指示 CQI信息;
根据所述 CQI信息以及所述测量集内每个小区的各个子带对应的上行 信道估计值,确定测量集外的小区的各个子带针对所述用户设备所反馈的下 行数据流的干扰噪声功率;
根据所述测量集外的小区的各个子带针对所述用户设备所反馈的下行 数据流的干扰噪声功率,确定所述测量集外的小区的各个子带针对所述待发 射数据流的干扰噪声功率。
13. 根据权利要求 12所述的装置, 其特征在于, 所述 CQI信息是所述 用户设备根据服务小区的下行导频信号与除所述服务小区之外的其他小区 的干扰噪声功率计算的信噪比得到的;
在所述用户设备以发射分集的方式反馈 CQI信息时,所述第二确定单元 具体用于: 根据公式 确定测量集外的小
Figure imgf000038_0001
区的各个子带针对所述用户设备所反馈的下行数据流的干扰噪声功率; 或 者,
在所述用户设备以闭环模式反馈 CQI信息时,所述第二确定单元具体用 于: p
Figure imgf000038_0002
确定所述测量集外的小区的各个子带针对所述用户设备所反馈的下行数据 流的干扰噪声功率;
其中, 测量集 μΜ中共有 M个小区, 测量集小区编号 m = l,2,...,M , m = l 时为服务小区,发射集 共有 T个小区,发射集小区编号为 t = tl ,t2 , -,tT " = 1 时为服务小区, 7_是基站的发射天线数量, ^是服务小区在所述用户设 备占用子带 ^上的上次发射功率, H;b是服务小区的在子带 sb上的上行信道 估计值, 是所述用户设备的服务小区 CRS的虚拟天线映射矩阵, PMI b 是用户设备反馈的下行数据流 sA在子带 sb上的预编码向量, S/NR2 是根据
CQ utside映射得到的用户设备反馈的下行数据流 在子带 ^上的信噪比 , Wm st是小区 在所述用户设备占用子带 上的上次调度使用的权值, P: last 是小区 在所述用户设备占用子带 上的上次发射功率, H:是小区 m的子 带 上的上行信道估计值。
14. 根据权利要求 12所述的装置, 其特征在于, 所述 CQI信息用户设 备根据服务小区的下行导频信号与测量集外的干扰噪声功率计算的信噪比 得到的;
在所述用户设备以发射分集的方式反馈 CQI信息时,所述第二确定单元 具体用于: 根据公式/^ = Tnum ' S 确定测量集外的小区的各个子带针对
續:
所述用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在所述用户设备以 TM8闭环模式反馈所述 CQI信息时, 所述第二确定 单元具体用于: 根据公式 确定测量集外的小区的各个子带
Figure imgf000039_0001
针对所述用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在所述用户设备以 TM9闭环模式反馈所述 CQI信息时, 所述第二确定 单元具体用于: 根据公式/^; ί
Figure imgf000039_0002
带针对所述用户设备所反馈的下行数据流的干扰噪声功率;
其中, 7_ ^^站的发射天线数量, 是服务小区在所述用户设备占 用子带 sb上的上次发射功率, H 是服务小区的子带 ώ的上行信道估计值, ¼^是所述用户设备的服务小区的公共参考信号 CRS的虚拟天线映射 VAM 矩阵, ΡΜ ώ是用户设备反馈的下行数据流 Sfb在 上的预编码向量,
5/¾;1是根据 CQl tside映射得到的用户设备反馈的下行数据流 Sfb在子带 sb 上的信噪比, V _^是服务小区的信道状态信息参考信号 CS I-RS的 M矩 阵。
15. 根据权利要求 10或 11所述的装置, 其特征在于, 所述第二确定单 元具体用于:
根据所述测量集内每个小区的各个子带的上行信道估计值,确定所述测 量集内除所述发射集外的小区的各个子带针对所述待发射数据流的干扰噪 声功率;
根据所述测量集内除所述发射集外的小区的各个子带针对所述待发射 数据流的干扰噪声功率,确定测量集外的小区的各个子带针对所述待发射数 据流的干扰噪声功率, 其中, 所述测量集内除所述发射集外的小区的各个子 带针对所述待发射数据流的干扰噪声功率与所述测量集外的小区的各个子 带针对所述待发射数据流的干扰噪声功率的比值为常数。
16. 根据权利要求 9至 15中任一项所述的装置, 其特征在于, 所述第 三确定单元具体用于:
根据所述待发射数据流中每路数据流的 SINR, 以及 SINR与 MCS的映 射关系, 将所述映射关系中最接近于以及小于所述每路数据流的 SINR 的 SINR对应的 MCS确定为所述每路数据流的 SINR。
17. 一种用于数据传输的装置, 其特征在于, 包括接收机、 发射机、 存 储器以及处理器, 其中所述存储器中存储程序代码, 且所述处理器调用所述 存储器中的所述程序代码执行以下操作:
通过所述接收机接收测量集内每个小区的各个子带的上行信道估计值, 其中所述测量集内每个小区的各个子带的上行信道估计值是所述测量集内 每个小区根据用户设备发送的参考信号进行测量而获取的;
根据所述测量集内每个小区的各个子带的上行信道估计值,确定发射集 内小区将要向所述用户设备发送的待发射数据流在各个子带上的信干噪比 SINR, 其中, 所述发射集是所述测量集的子集;
对所述待发射数据流在各个子带上的 SINR进行合并处理, 得到所述待 发射数据流的 SINR;
根据所述待发射数据流的 SINR, 确定所述待发射数据流的调制编码方 案 MCS;
通过所述发射机将所述待发射数据流的 MCS 发送至发射集内每个小 区, 以便于所述发射集内每个小区按照所述 MCS向所述用户设备发送所述 待发射数据流。
18. 根据权利要求 17所述的装置, 其特征在于, 所述处理器调用所述 存储器中存储的所述程序代码具体执行以下操作:
根据所述测量集内每个小区的各个子带的上行信道估计值,确定所述发 射集内小区在各个子带上发射所述待发射数据流时的有效信号功率,确定所 述测量集内除所述发射集外的小区的各个子带针对所述待发射数据流的干 扰噪声功率, 以及确定所述测量集外的小区的各个子带针对所述待发射数据 流的干扰噪声功率;
根据所述发射集内小区在各个子带上发射所述待发射数据流时的有效 信号功率、所述测量集内除所述发射集外的小区的各个子带针对所述待发射 数据流的干扰噪声功率以及所述测量集外的小区的各个子带针对所述待发 射数据流的干扰噪声功率, 确定所述待发射数据流在各个子带上的 SINR。
19. 根据权利要求 17所述的装置, 其特征在于, 所述处理器调用所述 存储器中存储的所述程序代码具体执行以下操作:
根据所述测量集内每个小区的各个子带的上行信道估计值,确定发射集 内小区在各个子带上发射所述待发射数据流时的有效信号序列,确定测量集 内除所述发射集之外的小区的各个子带针对所述待发射数据流的干扰序列, 以及确定测量集外的小区的各个子带针对所述待发射数据流的干扰噪声功 率;
根据所述发射集内小区在各个子带上发射所述待发射数据流时的有效 信号序列、测量集内除所述发射集之外的小区的各个子带针对所述待发射数 据流的干扰序列以及测量集外的小区的各个子带针对所述待发射数据流的 干扰序列, 确定所述待发射数据流在各个子带上的 SINR。
20. 根据权利要求 18或 19所述的装置, 其特征在于, 所述处理器调用 获取所述用户设备根据发射集合中的每个小区已发射的下行数据流获 取的信道质量指示 CQI信息;
根据所述 CQI信息以及所述测量集内每个小区的各个子带对应的上行 信道估计值,确定测量集外的小区的各个子带针对所述用户设备所反馈的下 行数据流的干扰噪声功率;
根据所述测量集外的小区的各个子带针对所述用户设备所反馈的下行 数据流的干扰噪声功率,确定所述测量集外的小区的各个子带针对所述待发 射数据流的干扰噪声功率。
21. 根据权利要求 20所述的装置, 其特征在于, 所述 CQI信息是所述 用户设备根据服务小区的下行导频信号与除所述服务小区之外的其他小区 的干扰噪声功率计算的信噪比得到的;
在所述用户设备以发射分集的方式反馈 CQI信息时,所述处理器调用所 述存储器中存储的所述程序代码具体执行以下操作: 根据公式 P„ 3Ρ ·'
Figure imgf000042_0001
psb H Ws 确定测量集外 續
的小区的各个子带针对所述用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在所述用户设备以闭环模式反馈 CQI信息时,所述处理器调用所述存储 器中存储的所述程序代码具体执行以下操作:
Figure imgf000042_0002
确定所述测量集外的小区的各个子带针对所述用户设备所反馈的下行数据 流的干扰噪声功率;
其中, 测量集 μΜ中共有 M个小区, 测量集小区编号 m = l,2,...,M , m = l 时为服务小区,发射集 共有 T个小区,发射集小区编号为 t = tl ,t2, -,tT " = 1 时为服务小区, 7_是基站的发射天线数量, ^是服务小区在所述用户设 备占用子带 ^上的上次发射功率, H;b是服务小区的在子带 sb上的上行信道 估计值, ¼CRS是所述用户设备的服务小区的公共参考信号 CRS 的虚拟天线 映射矩阵, PMI sb是用户设备反馈的下行数据流 在子带 上的预编码向 量, SINJ L是根据 CQl utside映射得到的用户设备反馈的下行数据流 在子 带 sb上的信噪比, 是小区 m在所述用户设备占用子带 上的上次调度 使用的权值, asi是小区 在所述用户设备占用子带 上的上次发射功率, H^是小区 m的子带 上的上行信道估计值。
22. 根据权利要求 20所述的装置, 其特征在于, 所述 CQI信息是用户 设备根据服务小区的下行导频信号与测量集外的干扰噪声功率计算的信噪 比得到的;
在所述用户设备以发射分集的方式反馈 CQI信息时,所述处理器调用所 述存储器中存储的所述程序代码具体执行以下操作:
sLH v;
T
根据公式 •确定测量集外的小区的各个子带针对
續:
所述用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在所述用户设备以 TM8闭环模式反馈所述 CQI信息时, 所述处理器调 2
P CRSPML
根据公式 确定测量集外的小区的各个子带
S IN R
针对所述用户设备所反馈的下行数据流的干扰噪声功率; 或者,
在所述用户设备以 TM9闭环模式反馈所述 CQI信息时, 所述处理器调 操作:
PML
根据公式 确定测量集外的小区的各个子
S IN R
带针对所述用户设备所反馈的下行数据流的干扰噪声功率;
其中, 7_ ^^站的发射天线数量, ^是服务小区在所述用户设备占 用子带 ^上的上次发射功率, H 是服务小区的子带 sb的上行信道估计值, ^是所述用户设备的服务小区 CRS的虚拟天线映射 VAM矩阵, PMI、 疋 用户设备反馈的下行数据流 ^在 上的预编码向量, S/NRm outside是根据
CQ utside映射得到的用户设备反馈的下行数据流^在子带 上的信噪比 ,
V _^是服务小区的信道状态信息参考信号 CS I-RS的 VAM矩阵 ,
23. 根据权利要求 18或 19所述的装置, 其特征在于, 所述处理器调用 根据所述测量集内每个小区的各个子带的上行信道估计值,确定所述测 量集内除所述发射集外的小区的各个子带针对所述待发射数据流的干扰噪 声功率;
根据所述测量集内除所述发射集外的小区的各个子带针对所述待发射 数据流的干扰噪声功率,确定测量集外的小区的各个子带针对所述待发射数 据流的干扰噪声功率, 其中, 所述测量集内除所述发射集外的小区的各个子 带针对所述待发射数据流的干扰噪声功率与所述测量集外的小区的各个子 带针对所述待发射数据流的干扰噪声功率的比值为常数。
24. 根据权利要求 17至 23中任一项所述的装置, 其特征在于, 所述处 根据所述待发射数据流中每路数据流的 SINR, 以及 SINR与 MCS的映 射关系, 将所述映射关系中最接近于以及小于所述每路数据流的 SINR 的 SINR对应的 MCS确定为所述每路数据流的 SINR。
PCT/CN2013/072396 2013-03-11 2013-03-11 用于数据传输的方法和装置 WO2014139073A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015561882A JP6037058B2 (ja) 2013-03-11 2013-03-11 データ伝送のための方法および装置
CN201380000266.XA CN104221313B (zh) 2013-03-11 2013-03-11 用于数据传输的方法和装置
PCT/CN2013/072396 WO2014139073A1 (zh) 2013-03-11 2013-03-11 用于数据传输的方法和装置
KR1020157026039A KR101799475B1 (ko) 2013-03-11 2013-03-11 데이터 송신 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/072396 WO2014139073A1 (zh) 2013-03-11 2013-03-11 用于数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2014139073A1 true WO2014139073A1 (zh) 2014-09-18

Family

ID=51535774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072396 WO2014139073A1 (zh) 2013-03-11 2013-03-11 用于数据传输的方法和装置

Country Status (4)

Country Link
JP (1) JP6037058B2 (zh)
KR (1) KR101799475B1 (zh)
CN (1) CN104221313B (zh)
WO (1) WO2014139073A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016149923A1 (zh) * 2015-03-25 2016-09-29 华为技术有限公司 一种数据传输方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014194474A1 (zh) 2013-06-04 2014-12-11 华为技术有限公司 数据传输方法、装置和用户设备
EP3449579A4 (en) * 2016-04-26 2019-04-24 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR PERMITTING UPLINK MIMO OPERATION
CN110648518B (zh) * 2019-09-23 2021-04-20 湖南长城信息金融设备有限责任公司 用于无人机和遥控器的数据传输方法及其相应的装置
CN113225813B (zh) * 2020-02-04 2023-02-03 华为技术服务有限公司 一种上行参考信号发射方式确定方法、装置及系统
CN113923749B (zh) * 2020-07-10 2023-08-01 北京佰才邦技术股份有限公司 一种服务簇选择方法及节点设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222306A (zh) * 2007-01-08 2008-07-16 上海无线通信研究中心 具有联合频域重复和混合自动重传的通信系统及通信方法
CN101686110A (zh) * 2008-09-26 2010-03-31 大唐移动通信设备有限公司 一种多输入多输出系统、及其数据传输的方法及装置
CN102036393A (zh) * 2009-09-28 2011-04-27 大唐移动通信设备有限公司 多小区信道信息的确定方法和设备
CN102158311A (zh) * 2011-02-21 2011-08-17 中国科学技术大学 一种优化串行干扰消除顺序的迭代检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110019284A (ko) * 2009-08-19 2011-02-25 주식회사 팬택 무선통신시스템에서 상향링크 광대역 측정 신호 전송방법 및 장치, 그를 이용한 하향링크 채널 추정방법
US8861332B2 (en) * 2010-02-11 2014-10-14 Lg Electronics Inc. Method and apparatus of recovering backhaul link failure between base station and relay node
WO2012111266A1 (ja) * 2011-02-14 2012-08-23 パナソニック株式会社 送信装置及び送信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222306A (zh) * 2007-01-08 2008-07-16 上海无线通信研究中心 具有联合频域重复和混合自动重传的通信系统及通信方法
CN101686110A (zh) * 2008-09-26 2010-03-31 大唐移动通信设备有限公司 一种多输入多输出系统、及其数据传输的方法及装置
CN102036393A (zh) * 2009-09-28 2011-04-27 大唐移动通信设备有限公司 多小区信道信息的确定方法和设备
CN102158311A (zh) * 2011-02-21 2011-08-17 中国科学技术大学 一种优化串行干扰消除顺序的迭代检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016149923A1 (zh) * 2015-03-25 2016-09-29 华为技术有限公司 一种数据传输方法及装置
CN107006019A (zh) * 2015-03-25 2017-08-01 华为技术有限公司 一种数据传输方法及装置

Also Published As

Publication number Publication date
KR101799475B1 (ko) 2017-11-20
JP2016515344A (ja) 2016-05-26
KR20150120507A (ko) 2015-10-27
CN104221313A (zh) 2014-12-17
CN104221313B (zh) 2018-04-27
JP6037058B2 (ja) 2016-11-30

Similar Documents

Publication Publication Date Title
EP3337053B1 (en) Communication technique using csi-rs in mobile communication system
US9980260B2 (en) Data transmission method and apparatus, and user equipment
JP5681833B2 (ja) チャネル品質指標の報告方法、装置およびシステム
KR102391724B1 (ko) 무선 통신 시스템에서 비직교 다중 접속을 위한 장치 및 방법
EP2681853B1 (en) Coordinated multiple point transmission and reception
JP5456037B2 (ja) 端末装置及び通信方法、並びに集積回路
RU2590910C1 (ru) Способ и устройство для управления отчетом по ri
US20130021925A1 (en) Coordinated multipoint (comp) transmission method selection and feedback requirements
JP2016197875A (ja) 量子化品質フィードバックを送信および受信するためのデバイス
JP2014527727A (ja) アップリンク複数ポイント協調(comp)のための電力配分パラメータのシグナリング
WO2014139073A1 (zh) 用于数据传输的方法和装置
WO2017193808A1 (zh) 信道质量反馈方法、用户终端、信道质量测量的控制方法及基站
JP2017521925A (ja) 干渉キャンセレーション及び抑制受信機を利用したcsiエンハンスメントのためのユーザ装置及び方法
WO2013066204A1 (en) Link adaptation in coordinated multipoint system
US9615280B2 (en) Calculating and reporting channel characteristics
WO2014139121A1 (zh) 一种调度用户设备的方法及基站
WO2016065516A1 (zh) 一种自适应调制编码的方法及装置
US9220087B1 (en) Dynamic point selection with combined PUCCH/PUSCH feedback
CN113994756A (zh) 对每个空间域幅度的码本子集限制(cbsr)
CN110504999B (zh) 通信方法、终端设备和网络设备
WO2014198032A1 (zh) 信道状态信息测量的方法及设备
WO2019062491A1 (zh) 一种信道测量方法
CN114270721A (zh) 基于侧链路的信道状态信息
KR102382912B1 (ko) 다중 안테나 통신 시스템의 스케줄링 방법 및 장치, 그리고 CQI(channel quality indicator) 피드백 방법 및 장치
CN115150025A (zh) Csi反馈方法、相关设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561882

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157026039

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13878084

Country of ref document: EP

Kind code of ref document: A1