WO2014136744A1 - Parabolic solar power generation apparatus - Google Patents

Parabolic solar power generation apparatus Download PDF

Info

Publication number
WO2014136744A1
WO2014136744A1 PCT/JP2014/055373 JP2014055373W WO2014136744A1 WO 2014136744 A1 WO2014136744 A1 WO 2014136744A1 JP 2014055373 W JP2014055373 W JP 2014055373W WO 2014136744 A1 WO2014136744 A1 WO 2014136744A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
reflecting mirror
thermal power
solar thermal
light receiving
Prior art date
Application number
PCT/JP2014/055373
Other languages
French (fr)
Japanese (ja)
Inventor
進藤 勇
勉 和田
昭三 小沢
敏彦 高添
Original Assignee
株式会社クリスタルシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013043030A external-priority patent/JP2016102407A/en
Priority claimed from JP2013076044A external-priority patent/JP2016102591A/en
Application filed by 株式会社クリスタルシステム filed Critical 株式会社クリスタルシステム
Publication of WO2014136744A1 publication Critical patent/WO2014136744A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G6/00Devices for producing mechanical power from solar energy
    • F03G6/06Devices for producing mechanical power from solar energy with solar energy concentrating means
    • F03G6/068Devices for producing mechanical power from solar energy with solar energy concentrating means having other power cycles, e.g. Stirling or transcritical, supercritical cycles; combined with other power sources, e.g. wind, gas or nuclear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/52Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material
    • F24S80/525Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs
    • F02G2254/30Heat inputs using solar radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention is a dish-type solar heat generator that efficiently collects sunlight using a reflecting mirror such as a spherical mirror or a parabolic mirror and efficiently heats a solar power generator installed at the focal position of the reflecting mirror to generate power. It relates to a power generation device.
  • Methods for obtaining electrical energy using sunlight include crystalline silicon, amorphous silicon, inorganic compounds such as InGaAs (indium gallium arsenide) and GaAs (gallium arsenide), organic dyes and conductive polymers.
  • a solar power generation system that irradiates solar cells (solar panels) made of organic compounds, etc., and converts solar energy directly into electrical energy, and efficiently collects sunlight, for example, water, dissolved salt
  • a solar power generation system in which a heat medium such as oil is heated to a high temperature, steam is generated by the heat energy, and a steam turbine is rotated to obtain electric energy.
  • the solar power generation method requires high-performance solar cells (solar panels) that can efficiently convert sunlight into electrical energy. Compared with other power generation methods such as hydroelectric power generation and thermal power generation, the amount of power generation per installation area The power generation cost is also high. For this reason, various public subsidies are required to introduce the solar power generation method.
  • dish method also called a Stirling method for heating a solar power generator such as a Stirling engine, which is installed at the focal position of the reflecting mirror using a reflecting mirror such as a spherical mirror or a parabolic mirror.
  • a solar power generator 120 that generates electric power using a Stirling engine or the like is installed.
  • a solar power generator 120 using a Stirling engine is composed of a high-temperature part 122 and a low-temperature part 124, and the light-receiving surface of the high-temperature part 122 is heated by sunlight collected by the reflecting mirror 110, so The wheel can be rotated to generate electricity.
  • the reflector and the Stirling engine are made independent and the Stirling engine is configured not to be affected by the movement of the reflector, the positional relationship between the high-temperature part of the Stirling engine and the reflector changes, and the light-receiving unit efficiently. As a result, it was impossible to irradiate sunlight, and the power generation efficiency was reduced.
  • the dish type solar thermal power generation apparatus of the present invention is a dish type having a circular shape or a parabolic shape.
  • a reflector, A dish type solar thermal power generation apparatus comprising a solar thermal power generator that generates power with sunlight collected by the reflecting mirror, The solar power generator A Stirling engine that operates according to the temperature difference between the low temperature part and the high temperature part; An alternator that generates power by the operation of the Stirling engine; A light receiving portion provided in contact with a high temperature portion of the Stirling engine; A vertical maintenance mechanism for maintaining the solar power generator in a vertical direction, The light receiving unit is rotatably attached to a solar power generator mount provided on the reflecting mirror so that the light receiving unit is disposed at a condensing position of the reflecting mirror.
  • the Stirling engine is not affected by the movement of the reflecting mirror and is always maintained in the vertical direction, and even if the positional relationship between the high temperature portion of the Stirling engine and the reflecting mirror changes, the reflecting mirror It is possible to efficiently irradiate the collected sunlight to the light receiving part of the Stirling engine to suppress a decrease in power generation efficiency.
  • the shape of the light receiving portion is a substantially cylindrical shape, and a surface opposite to a surface in contact with the high temperature portion is a substantially hemispherical shape.
  • the heat-resistant temperature of the light receiving part is 600 ° C. or higher.
  • the heat-resistant temperature can be improved by subjecting the light receiving portion to surface treatment by any one of ceramic spraying, ceramic impregnation, and ceramic coating.
  • the light receiving unit includes a cooling unit, It is preferable that the light receiving unit is cooled by the cooling unit when the light receiving unit becomes higher than a predetermined temperature.
  • the cooling means can be constituted by a cooling hole provided in the light receiving portion and a cooling fan provided so as to cover the cooling hole. By comprising in this way, it can prevent that the temperature of a light-receiving part rises excessively and exceeds the heat-resistant temperature of a Stirling engine.
  • the transparent cover provided so that the said reflective mirror might be covered.
  • the solar power generator is also covered with the transparent cover.
  • a heat radiating cover in the upper part of the said solar thermal power generator. By comprising in this way, it can prevent that the radiant heat from a Stirling engine or a light-receiving part hits a transparent cover directly, and a transparent cover deform
  • a transparent cover winding installed on one side of the reflecting mirror It is preferable to further include a transparent cover winding device installed on the other side of the reflecting mirror.
  • the transparent cover winding device can be used to remove the transparent cover.
  • the release surface side of the reflecting mirror can be covered with a transparent cover in a clean state.
  • the reflector is A dish-shaped reflector table that forms a spherical or parabolic surface; and A plurality of metal thin plates attached to the release surface side of the reflector table;
  • the metal thin plate is a rectangular metal flat plate having a thickness of 0.3 mm to 0.5 mm, a width of 30 cm to 130 cm, and a length of 100 cm to 1000 cm; It is preferable that the metal flat plate is directly attached to the reflector table.
  • the surface of the said metal thin plate is grind
  • a base for supporting the reflecting mirror is provided, It is preferable that the base has an elevating mechanism.
  • the elevating mechanism 15 on the base 14, for example, in the case of a strong wind such as a typhoon, the reflecting mirror 12 can be lowered to the vicinity of the ground together with the protection box 40 to be less affected by the wind. it can.
  • the Stirling engine is always maintained in the vertical direction even if the reflector is controlled to face the sun. Even when the positional relationship of the solar power generator changes, the light receiving portion provided in the Stirling engine is configured to be irradiated with sunlight condensed by the reflecting mirror, so that the power generation efficiency of the solar power generator is reduced. Can be suppressed.
  • FIG. 1 is a schematic configuration diagram for explaining the structure of a dish type solar thermal power generation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram for explaining the structure of the solar power generator.
  • FIG. 3 is a schematic configuration diagram for explaining the structure of the reflecting mirror.
  • FIG. 4 is a schematic configuration diagram for explaining the structure of a dish type solar thermal power generation apparatus according to another embodiment of the present invention.
  • FIG. 5 is a schematic configuration diagram for explaining the structure of a reflecting mirror of a dish type solar thermal power generation apparatus in still another embodiment of the present invention.
  • FIG. 5 (a) is a plan view and
  • FIG. 5 (b) is a right side.
  • FIG. 5C is a front view.
  • FIG. 6 is a schematic configuration diagram of a solar thermal power generation apparatus using a conventional dish type solar concentrator.
  • FIG. 1 is a schematic configuration diagram for explaining the structure of a dish type solar thermal power generation apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic configuration diagram for explaining the structure of a solar thermal power generator.
  • the dish type solar thermal power generation apparatus 10 of the present embodiment includes a reflecting mirror 12 for concentrating sunlight at a predetermined condensing position, and a base 14 for supporting the reflecting mirror 12.
  • a solar power generator 16 composed of a Stirling engine or the like, and a solar tracking mechanism 18 for keeping the angle of the reflecting mirror 12 at an optimum position so that sunlight enters the reflecting mirror 12 substantially vertically.
  • the reflecting mirror 12 is not particularly limited as long as it can collect sunlight at a predetermined condensing position, and a known spherical mirror or a parabolic mirror can be used. Even if it is comprised, what processed the metal plate in the spherical surface, the paraboloid, etc. may be sufficient.
  • a dish type reflecting mirror base 46 constituting a spherical surface or a parabolic surface and a plurality of metals attached to the release surface side of the reflecting mirror base 46.
  • the thin plate 48 is preferably used.
  • the material of the reflector table 46 is not particularly limited as long as a predetermined strength is ensured, and may be made of wood or metal.
  • the thin metal plate 48 to be attached to the reflector table 46 has a thickness of 0.3 mm to 0.5 mm, a width of 30 cm to 130 cm, a length of 100 cm to 1000 cm, and particularly preferably a width of 30 cm to 60 cm and a length of 100 cm to It is preferable to use a 300 cm square metal flat plate.
  • the material of the metal thin plate 48 is not particularly limited as long as it is a metal that can efficiently reflect sunlight.
  • a metal such as iron or aluminum or an alloy such as stainless steel is used. Can do. In order to reduce manufacturing costs, it is preferable to use aluminum.
  • the reflecting mirror 12 which comprises a surface can be comprised.
  • the size of the mounting hole provided in the thin metal plate 48 is larger than the diameter of the screw portion of a mounting jig such as a screw and smaller than the umbrella portion, and 0.1 mm to 0 than the thickness of the thin metal plate 48.
  • a washer about 2 mm thick, a gap is provided between the mounting jig and the metal thin plate 48, so that even when the metal thin plate 48 expands at a high temperature, the mounting jig and the metal thin plate 48 The deformation of the metal thin plate 48 due to contact can be prevented.
  • the metal thin plates 48 are provided with a gap of about several mm between each other, and are attached to the reflector table 46. For example, even when the metal thin plates 48 expand when the temperature rises, such as in summer, the metal thin plates 48 interfere with each other. Without deformation, the deformation of the reflecting surface of the reflecting mirror 12 can be suppressed.
  • the surface of the metal thin plate 48 (sunlight reflecting surface) is preferably subjected to a surface treatment such as chemical polishing or electrolytic polishing or vacuum deposition so that high reflection performance can be exhibited.
  • the solar thermal power generator 16 according to the present embodiment is provided so as to be in contact with the Stirling engine 20, the alternator 22 that generates power by the operation of the Stirling engine 20, and the high temperature portion 20 a of the Stirling engine 20. And a light receiving unit 24.
  • the vertical maintaining mechanism 26 is not limited to the configuration of the present embodiment.
  • solar power generation is performed so that the solar power generator 16 maintains vertical in synchronization with the operation of the solar tracking mechanism 18.
  • a mechanism for rotating the container 16 may be used.
  • the solar power generator 16 is always maintained in the vertical direction. Further, the light receiving unit 24 provided in the solar power generator 16 is in contact with the high temperature unit 20a of the Stirling engine 20, and the light collected by the reflecting mirror 12 is irradiated onto the light receiving unit 24, whereby the light receiving unit 24 It is comprised so that heat may be transmitted from 24 to the high temperature part 20a.
  • the shape of the light receiving portion 24 is not particularly limited, but as shown in FIG. 2, the surface is substantially cylindrical and the surface opposite to the surface in contact with the high temperature portion 20a is substantially hemispherical. It is desirable.
  • the vertical cross-sectional area of the light receiving portion 24 is preferably about 1 to 3 times the area of the light receiving surface of the high temperature portion 20a. Specifically, the height H of the light receiving portion 24 is about 20 to 50 cm. Is desirable.
  • the material of the light receiving unit 24 is not particularly limited as long as it has high thermal conductivity.
  • graphite, fullerene, carbon nanotube, or the like can be used.
  • the light-receiving part 24 is formed of graphite
  • normal graphite has a heat-resistant temperature of about 500 ° C. Therefore, for example, surface treatment for improving heat resistance such as ceramic spraying, ceramic impregnation, and ceramic coating may be performed.
  • the light receiving unit 24 when strong sunlight continues to hit the light receiving unit 24 in summer or the like, if the temperature of the light receiving unit 24 rises excessively, the heat resistant temperature of the Stirling engine 20 may be exceeded. For this reason, it is preferable to provide the light receiving unit 24 with a cooling means for cooling when the temperature of the light receiving unit 24 rises excessively.
  • the light receiving section 24 By providing a cooling means in the light receiving section 24, when the light receiving section 24 becomes higher than a predetermined temperature, the light receiving section 24 is cooled by the cooling means so that the temperature does not exceed the heat resistant temperature of the Stirling engine 20.
  • the performance of the Stirling engine 20 can be prevented from being deteriorated or damaged.
  • the cooling means includes a cooling hole 30 provided in the light receiving unit 24 and a cooling fan 32 provided so as to cover the cooling hole 30.
  • the light receiving unit 24 becomes higher than a predetermined temperature, the light receiving unit 24 can be cooled by air cooling by operating the cooling fan 32 and sending air to the cooling hole 30.
  • Such a cooling hole 30 may be provided only one or plural. Further, the size of the cooling hole 30 is preferably about 5 mm to 10 mm in diameter, depending on the size of the light receiving portion 24, and preferably within about 20% of the surface area of the light receiving portion 24.
  • the cooling hole 30 is provided in the light receiving unit 24.
  • the cooling fan 32 may be provided as the cooling means, or other known cooling means. May be used.
  • the solar power generator 16 is rotatable to a solar power generator mount 28 provided on the reflecting mirror 12 so that the light receiving unit 24 is disposed at the condensing position of the reflecting mirror 12 (focal point of the reflecting mirror 12). It is attached.
  • the vertical maintenance mechanism 26 provided in the solar power generator 16 (in this embodiment, it is suspended vertically from the solar power generator 16.
  • the solar power generator 16 is maintained in the vertical direction by the weight).
  • a transparent cover winding 36 installed on one side of the reflecting mirror 12, and a transparent cover winding device 38 installed on the other side of the reflecting mirror 12, It has.
  • the reflecting mirror 12 is housed in the protection box 40. Further, a side cover 42 for supporting the transparent cover 34 and closing a gap between the transparent cover 34 and the protection box 40 is provided.
  • the transparent cover 34 is pulled out from the transparent cover winding 36 and covered with the side cover 42 so as to cover the reflecting mirror 12 and the solar thermal power generator 16. Is attached to the transparent cover winder 38.
  • the transparent cover winding 36 can be smoothly wound up by installing the transparent cover winding 36 on the upper side of the reflecting mirror 12 and the transparent cover winding device 38 on the lower side of the reflecting mirror 12.
  • the transparent cover 34 can be pulled out from the transparent cover winding 36 as described above, so that when the transparent cover 34 is dirty or damaged, the transparent cover 34 is placed by the transparent cover winding device 38. By winding the fixed amount, the surface of the reflecting mirror 12 can be covered with the transparent cover 34 in a clean state.
  • the transparent cover 34 and the transparent cover take-up device 38 may be omitted, and the transparent cover 34 may be directly attached to the side cover 42 to cover it.
  • the transparent cover 34 is not particularly limited as long as it has translucency.
  • an ionomer (IO) film a polyethylene (PE) film, a polyethylene terephthalate (PET) film, and polyvinyl chloride.
  • PVDC polyvinylidene chloride
  • PVDC polyvinyl alcohol
  • PP polypropylene film
  • PC polycarbonate
  • EVA ethylene vinyl acetate copolymer
  • EVOH ethylene-vinyl alcohol copolymer A combined
  • EEMAA ethylene-methacrylic acid copolymer
  • fluororesin film or the like can be used.
  • the reflecting mirror 12 by storing the reflecting mirror 12 in the protective box 40, it is possible to prevent the reflecting mirror 12 itself from being affected even in bad weather such as strong winds, and the reflecting mirror 12 can be damaged. Can be prevented. Further, since the mechanical strength of the base 14 and the reflecting mirror base 46 can be reduced, the manufacturing cost of the reflecting mirror 12 and the manufacturing cost of the entire solar thermal power generation apparatus 10 can be significantly reduced.
  • the height of the protective box 40 higher than the height of the reflecting mirror 12, the height of the side cover 42 can be lowered, and the curvature of the transparent cover 34 can be prevented from becoming too large. .
  • a heat radiation cover 44 is provided on the top of the Stirling engine 20.
  • the size of the heat dissipation cover 44 can be set as appropriate so as not to significantly affect the light collection efficiency of the reflecting mirror 12.
  • the shadow of the solar thermal power generator 16 is formed on the reflecting mirror 12. Therefore, it is preferable to set the size of the heat dissipation cover 44 so as not to become extremely large.
  • the transparent cover 34 is provided so as to cover the solar power generator 16 in order to prevent the loss of light amount that occurs when passing through the transparent cover 34, but is provided so as to cover at least the reflecting mirror 12. As a result, it is possible to prevent the reflectance from decreasing due to dust or the like adhering to the surface of the reflecting mirror 12.
  • the base 14 is preferably provided with an elevating mechanism 15.
  • the lifting mechanism 15 is not particularly limited.
  • a known lifting mechanism such as a hydraulic type, a gas type, a bevel gear type, or a belt type can be used.
  • the elevating mechanism 15 on the base 14, for example, in the case of a strong wind such as a typhoon, the reflecting mirror 12 can be lowered to the vicinity of the ground together with the protection box 40 to be less affected by the wind. it can.
  • the solar tracking mechanism 18 is configured to automatically perform the sun tracking. You may adjust the angle of a reflective mirror manually.
  • the reflecting mirror 12 into a shape obtained by cutting four sides of a spherical mirror or a parabolic mirror, a rectangular metal flat plate can be efficiently attached.
  • Various modifications can be made without departing from the object of the present invention, such as improvement in reflection efficiency.

Abstract

[Problem] To provide a parabolic solar power generation apparatus, wherein a Stirling engine is constantly maintained in a vertical direction without being affected by the movement of a reflecting mirror, and sunlight which is focused by the reflecting mirror is efficiently projected on a light-receiving part of the Stirling, regardless of whether the positional relationship between a high-temperature part of the Stirling engine and the reflecting mirror changes, thereby minimizing a reduction in power generation efficiency. [Solution] This parabolic solar power generation apparatus is provided with a parabolic reflecting mirror having a circular surface shape or a parabolic surface shape, and a solar power generator that generates power using sunlight which is focused by the reflecting mirror. The solar power generator is provided with: a Stirling engine that operates by means of a temperature difference between a low temperature part and a high temperature part; an alternator that generates power through the operation of the Stirling engine; a light-receiving part disposed in such a manner as to be in contact with the high temperature part of the Stirling engine; and a vertical maintenance mechanism for maintaining the solar power generator in a vertical direction. The solar power generator is rotatably attached to a solar power generator frame disposed on the reflecting mirror in such a manner that the light-receiving part is positioned at the light focusing position of the reflecting mirror.

Description

ディッシュ型太陽熱発電装置Dish-type solar power generator
 本発明は、球面鏡や放物面鏡などの反射鏡を用いて太陽光を効率良く集光して、反射鏡の焦点位置に設置された太陽熱発電器を効率良く加熱して発電するディッシュ型太陽熱発電装置に関する。 The present invention is a dish-type solar heat generator that efficiently collects sunlight using a reflecting mirror such as a spherical mirror or a parabolic mirror and efficiently heats a solar power generator installed at the focal position of the reflecting mirror to generate power. It relates to a power generation device.
 近年、世界的なエネルギー消費量増大に伴う二酸化炭素の空気中への放出量の増大などを抑止するため、二酸化炭素の放出を伴わない太陽エネルギーを利用した発電装置への期待が高まっている。 In recent years, in order to suppress an increase in the amount of carbon dioxide released into the air accompanying the increase in global energy consumption, there is an increasing expectation for power generation devices that use solar energy without the release of carbon dioxide.
 従来から、反射鏡を用いて太陽光を集めて熱媒体を加熱し、その熱を電気エネルギーに変えて利用可能にした装置は、日本国内はもとより、世界的にも多くの方式が提案され、世界各地に実証装置、実験装置などが設けられ、一部では商業的利用も開始されている。 Conventionally, many systems have been proposed not only in Japan but also around the world to collect solar light using a reflector and heat the heat medium to convert the heat into electrical energy. Demonstration devices, experimental devices, etc. have been established all over the world, and some have been commercialized.
 太陽光を利用して電気エネルギーを得ようとする方式には、結晶シリコンやアモルファスシリコン、InGaAs(インジウムガリウムヒ化物)やGaAs(ヒ化ガリウム)などの無機化合物、有機色素や導電性ポリマーなどの有機化合物などからなる太陽電池(ソーラーパネル)に太陽光を照射して、太陽光エネルギーを直接、電気エネルギーに変換する太陽光発電方式と、太陽光を効率良く集めて、例えば、水、溶解塩、オイルなどの熱媒体を高温に加熱し、その熱エネルギーによって水蒸気を発生させ蒸気タービンを回して電気エネルギーを得る太陽熱発電方式がある。 Methods for obtaining electrical energy using sunlight include crystalline silicon, amorphous silicon, inorganic compounds such as InGaAs (indium gallium arsenide) and GaAs (gallium arsenide), organic dyes and conductive polymers. A solar power generation system that irradiates solar cells (solar panels) made of organic compounds, etc., and converts solar energy directly into electrical energy, and efficiently collects sunlight, for example, water, dissolved salt There is a solar power generation system in which a heat medium such as oil is heated to a high temperature, steam is generated by the heat energy, and a steam turbine is rotated to obtain electric energy.
 太陽光発電方式では、太陽光を効率良く電気エネルギーに変換できる高性能な太陽電池(ソーラーパネル)が必要となり、水力発電や火力発電などの他の発電方式と比べて、設置面積あたりの発電量が少なく、発電コストも割高となっている。このため、太陽光発電方式の導入には、各種の公的助成を必要としているのが現状である。 The solar power generation method requires high-performance solar cells (solar panels) that can efficiently convert sunlight into electrical energy. Compared with other power generation methods such as hydroelectric power generation and thermal power generation, the amount of power generation per installation area The power generation cost is also high. For this reason, various public subsidies are required to introduce the solar power generation method.
 また、太陽熱発電方式についても、従来から様々な検討が行われており、その集光方式として、平面もしくは曲面鏡を用いて太陽光を地上数十メートルの高さに設けられた集光部に集め、熱媒体を加熱する、いわゆるタワー方式、放物線の断面を有する雨樋型(トラフ型)の反射鏡を用いて、反射鏡の集光位置にレシーバーと呼ばれる管に流れる熱媒体を加熱するトラフ方式、球面鏡や放物面鏡などの反射鏡を用いて反射鏡の焦点位置に設置された、例えば、スターリングエンジンなどの太陽熱発電器を加熱するいわゆるディッシュ方式(スターリング方式とも呼ぶ)がある。 In addition, various studies have been conducted on the solar thermal power generation method as well, and as a light condensing method, sunlight is applied to a condensing unit provided at a height of several tens of meters above the ground using a flat or curved mirror. A trough that heats the heat medium that flows through a tube called a receiver at the condensing position of the reflector using a so-called tower-type, trough-type reflector having a parabolic cross section that collects and heats the heat medium. There is a so-called dish method (also called a Stirling method) for heating a solar power generator such as a Stirling engine, which is installed at the focal position of the reflecting mirror using a reflecting mirror such as a spherical mirror or a parabolic mirror.
 図6に示すようなディッシュ型の太陽熱発電装置100では、厚さ数ミリメートルの高光透過性ガラス板を所定の放物面に曲げ加工し、ガラス板の裏面に太陽光反射膜を成膜した反射鏡110を大型架台130に取り付けて用いられている。 In the dish type solar thermal power generation apparatus 100 as shown in FIG. 6, the reflection is performed by bending a high light-transmitting glass plate having a thickness of several millimeters into a predetermined parabolic surface and forming a solar reflective film on the back surface of the glass plate. The mirror 110 is attached to a large gantry 130 and used.
 反射鏡110の焦点位置には、例えば、スターリングエンジンなどを用いて発電する太陽熱発電器120が設置されている。スターリングエンジンを用いた太陽熱発電器120は、高温部122と低温部124とから構成され、高温部122の受光面を反射鏡110によって集光された太陽光によって加熱することによって、スターリングエンジンのフライホイールを回転させ、発電することができる。 At the focal position of the reflecting mirror 110, for example, a solar power generator 120 that generates electric power using a Stirling engine or the like is installed. A solar power generator 120 using a Stirling engine is composed of a high-temperature part 122 and a low-temperature part 124, and the light-receiving surface of the high-temperature part 122 is heated by sunlight collected by the reflecting mirror 110, so The wheel can be rotated to generate electricity.
 ところで、このようなディッシュ型太陽熱発電装置の場合、太陽光を有効に利用するために、反射鏡は常に日周運動を行っている太陽に直面するように制御することが望ましい。一方で、反射鏡で集光した太陽光を用いて発電するスターリングエンジンは、その構造上、常に鉛直方向に維持されることが望ましい。 By the way, in the case of such a dish type solar thermal power generation apparatus, in order to use sunlight effectively, it is desirable to control the reflector so that it always faces the sun that is performing diurnal motion. On the other hand, it is desirable that a Stirling engine that generates power using sunlight collected by a reflecting mirror is always maintained in the vertical direction because of its structure.
 しかしながら、従来のディッシュ型太陽熱発電装置では、反射鏡を太陽に直面するように制御すると、反射鏡の焦点位置に設けられたスターリングエンジンも、反射鏡と一緒に動いてしまい、スターリングエンジンが斜めになった状態で動作することがあった。 However, in the conventional dish type solar thermal power generation device, when the reflector is controlled to face the sun, the Stirling engine provided at the focal point of the reflector also moves together with the reflector, and the Stirling engine is inclined. It sometimes worked in the state.
 また、反射鏡とスターリングエンジンとを独立させ、スターリングエンジンが、反射鏡の動きに影響されないように構成した場合、スターリングエンジンの高温部と反射鏡との位置関係が変化して、効率良く受光部に太陽光を照射できなくなり、発電効率が低下してしまっていた。 In addition, when the reflector and the Stirling engine are made independent and the Stirling engine is configured not to be affected by the movement of the reflector, the positional relationship between the high-temperature part of the Stirling engine and the reflector changes, and the light-receiving unit efficiently. As a result, it was impossible to irradiate sunlight, and the power generation efficiency was reduced.
 本発明では、このような現状に鑑み、スターリングエンジンが、反射鏡の動きに影響されず、常に鉛直方向に維持するとともに、スターリングエンジンの高温部と反射鏡との位置関係が変化しても、反射鏡で集光した太陽光を効率良くスターリングエンジンの受光部に照射して、発電効率の低下を抑制することができるディッシュ型太陽熱発電装置を提供することを目的とする。 In the present invention, in view of such a current situation, the Stirling engine is not affected by the movement of the reflecting mirror and is always maintained in the vertical direction, and even if the positional relationship between the high temperature portion of the Stirling engine and the reflecting mirror changes, An object of the present invention is to provide a dish type solar thermal power generation apparatus that can efficiently irradiate the light receiving unit of the Stirling engine with sunlight condensed by a reflecting mirror and suppress a decrease in power generation efficiency.
 本発明は、前述したような従来技術における課題及び目的を達成するために発明されたものであって、本発明のディッシュ型太陽熱発電装置は、円面形状または放物面形状を有するディッシュ型の反射鏡と、
 前記反射鏡によって集光された太陽光によって発電を行う太陽熱発電器と、を備えるディッシュ型太陽熱発電装置であって、
 前記太陽熱発電器は、
 低温部と高温部との温度差によって動作するスターリングエンジンと、
 前記スターリングエンジンの動作によって発電を行うオルタネーターと、
 前記スターリングエンジンの高温部と接するように設けられた受光部と、
 前記太陽熱発電器を鉛直方向に維持するための鉛直維持機構と、を備え、
 前記反射鏡の集光位置に前記受光部が配置されるように、前記反射鏡に設けられた太陽熱発電器用架台に回動自在に取り付けられていることを特徴とする。
The present invention has been invented to achieve the above-described problems and objects in the prior art, and the dish type solar thermal power generation apparatus of the present invention is a dish type having a circular shape or a parabolic shape. A reflector,
A dish type solar thermal power generation apparatus comprising a solar thermal power generator that generates power with sunlight collected by the reflecting mirror,
The solar power generator
A Stirling engine that operates according to the temperature difference between the low temperature part and the high temperature part;
An alternator that generates power by the operation of the Stirling engine;
A light receiving portion provided in contact with a high temperature portion of the Stirling engine;
A vertical maintenance mechanism for maintaining the solar power generator in a vertical direction,
The light receiving unit is rotatably attached to a solar power generator mount provided on the reflecting mirror so that the light receiving unit is disposed at a condensing position of the reflecting mirror.
 このように構成することによって、スターリングエンジンが、反射鏡の動きに影響されず、常に鉛直方向に維持するとともに、スターリングエンジンの高温部と反射鏡との位置関係が変化しても、反射鏡で集光した太陽光を効率良くスターリングエンジンの受光部に照射して、発電効率の低下を抑制することができる。 With this configuration, the Stirling engine is not affected by the movement of the reflecting mirror and is always maintained in the vertical direction, and even if the positional relationship between the high temperature portion of the Stirling engine and the reflecting mirror changes, the reflecting mirror It is possible to efficiently irradiate the collected sunlight to the light receiving part of the Stirling engine to suppress a decrease in power generation efficiency.
 なお、前記受光部の形状が、略円筒形状であって、前記高温部と接する面とは反対の面が、略半球状となっていることが好ましい。
 このような形状とすることによって、受光部に対してどのような角度から太陽光が照射されたとしても、効率良く、スターリングエンジンの高温部に熱を伝導することができる。
In addition, it is preferable that the shape of the light receiving portion is a substantially cylindrical shape, and a surface opposite to a surface in contact with the high temperature portion is a substantially hemispherical shape.
By adopting such a shape, heat can be efficiently conducted to the high temperature portion of the Stirling engine, regardless of the angle at which sunlight is irradiated to the light receiving portion.
 また、前記受光部の縦断面積が、前記高温部の受光面の面積の1~3倍であることが好ましい。
 また、前記受光部が、グラファイト、フラーレン、カーボンナノチューブのいずれかで形成されていることが好ましい。
Further, it is preferable that a vertical cross-sectional area of the light receiving portion is 1 to 3 times an area of the light receiving surface of the high temperature portion.
Moreover, it is preferable that the light receiving portion is formed of any one of graphite, fullerene, and carbon nanotube.
 このように構成することによって、熱伝導性能が向上して、スターリングエンジンの高温部に効率良く熱を伝導することができる。 By configuring in this way, the heat conduction performance is improved, and heat can be efficiently conducted to the high temperature part of the Stirling engine.
 また、前記受光部の耐熱温度が、600℃以上であることが好ましい。
 この場合、前記受光部が、セラミック溶射、セラミック含浸、セラミックコーティングのいずれかによって表面処理することによって耐熱温度を向上させることができる。
Moreover, it is preferable that the heat-resistant temperature of the light receiving part is 600 ° C. or higher.
In this case, the heat-resistant temperature can be improved by subjecting the light receiving portion to surface treatment by any one of ceramic spraying, ceramic impregnation, and ceramic coating.
 また、前記受光部が、冷却手段を備え、
 前記受光部が所定の温度よりも高くなった場合に、前記冷却手段によって受光部を冷却するように構成されていることが好ましい。
In addition, the light receiving unit includes a cooling unit,
It is preferable that the light receiving unit is cooled by the cooling unit when the light receiving unit becomes higher than a predetermined temperature.
 この場合、前記冷却手段が、前記受光部に設けられた冷却用孔と、該冷却用孔を覆うように備えられた冷却ファンとから構成することができる。
 このように構成することによって、受光部の温度が過剰に上昇して、スターリングエンジンの耐熱温度を超えてしまうようなことを防止できる。
In this case, the cooling means can be constituted by a cooling hole provided in the light receiving portion and a cooling fan provided so as to cover the cooling hole.
By comprising in this way, it can prevent that the temperature of a light-receiving part rises excessively and exceeds the heat-resistant temperature of a Stirling engine.
 また、前記反射鏡を覆うように設けられた透明カバーを備えることが好ましい。
 この場合、前記太陽熱発電器も、前記透明カバーによって覆われていることが好ましい。
 このように構成することによって、反射鏡表面にホコリなどが付着することを防止でき、反射鏡の反射率の低下を抑制するとともに、反射鏡表面の定期的な洗浄が不要となり、運用コストを削減することができる。
Moreover, it is preferable to provide the transparent cover provided so that the said reflective mirror might be covered.
In this case, it is preferable that the solar power generator is also covered with the transparent cover.
By configuring in this way, it is possible to prevent dust and the like from adhering to the surface of the reflecting mirror, and it is possible to suppress a reduction in the reflectance of the reflecting mirror and eliminate the need for periodic cleaning of the reflecting mirror surface, thereby reducing operation costs can do.
 また、前記太陽熱発電器の上部に、放熱カバーを備えることが好ましい。
 このように構成することによって、スターリングエンジンや受光部からの放射熱が透明カバーに直接当たって、透明カバーが熱により変形したり、破損したりすることを防止できる。
Moreover, it is preferable to provide a heat radiating cover in the upper part of the said solar thermal power generator.
By comprising in this way, it can prevent that the radiant heat from a Stirling engine or a light-receiving part hits a transparent cover directly, and a transparent cover deform | transforms or is damaged by a heat | fever.
 また、前記反射鏡の一方の側方に設置された透明カバー巻と、
 前記反射鏡の他方の側方に設置された透明カバー巻き取り装置と、をさらに備えることが好ましい。
A transparent cover winding installed on one side of the reflecting mirror;
It is preferable to further include a transparent cover winding device installed on the other side of the reflecting mirror.
 このように、透明カバー巻として透明カバーを準備しておくことによって、反射鏡の解放面側に位置する透明カバーが汚れたり破損したりした場合にも、透明カバー巻き取り装置によって、透明カバーを所定量巻き取ることによって、反射鏡の解放面側を綺麗な状態の透明カバーによって覆うことができる。 Thus, by preparing a transparent cover as a transparent cover winding, even if the transparent cover located on the release surface side of the reflecting mirror is dirty or damaged, the transparent cover winding device can be used to remove the transparent cover. By winding up a predetermined amount, the release surface side of the reflecting mirror can be covered with a transparent cover in a clean state.
 このため、透明カバーが汚れた場合にも洗浄が不要であり、透明カバー巻き取り装置によって、透明カバーを所定量巻き取るだけで、綺麗な状態の透明カバーによって、常に反射鏡を覆うことができるため、集光効率の低下を防ぎ、運用コストの削減を図ることができる。 For this reason, even when the transparent cover becomes dirty, it is not necessary to wash the transparent cover, and the transparent cover can be always covered with the transparent cover in a clean state by simply winding the transparent cover by a predetermined amount. Therefore, it is possible to prevent a reduction in light collection efficiency and to reduce operational costs.
 また、前記反射鏡が、
 球面または放物面を構成するディッシュ型反射鏡台と、
 前記反射鏡台の解放面側に貼付けられた複数の金属薄板と、
を備え、
 前記金属薄板が、厚さ0.3mm~0.5mm、幅30cm~130cm、長さ100cm~1000cmの方形状の金属平板であり、
 前記金属平板が、前記反射鏡台に直接貼付けられていることが好ましい。
In addition, the reflector is
A dish-shaped reflector table that forms a spherical or parabolic surface; and
A plurality of metal thin plates attached to the release surface side of the reflector table;
With
The metal thin plate is a rectangular metal flat plate having a thickness of 0.3 mm to 0.5 mm, a width of 30 cm to 130 cm, and a length of 100 cm to 1000 cm;
It is preferable that the metal flat plate is directly attached to the reflector table.
 このように複数の平板状の金属薄板を用いることによって、加工コストが過大な球面状や放物面状に金属板を加工しなくともよいので、設置コストの削減を図ることができる。
 また、厚さ0.3mm~0.5mm、幅30cm~130cm、長さ100cm~1000cmの金属平板を、反射鏡台の解放面側に貼付けることによって、反射鏡を構成しているため、製造が非常に容易で、低コストで反射鏡を製造することができる。
By using a plurality of flat metal thin plates in this way, it is not necessary to process the metal plate into a spherical shape or a parabolic shape with excessive processing costs, so that the installation cost can be reduced.
In addition, since the reflecting mirror is constructed by sticking a metal flat plate having a thickness of 0.3 mm to 0.5 mm, a width of 30 cm to 130 cm, and a length of 100 cm to 1000 cm to the release surface side of the reflecting mirror base, the manufacturing is possible. It is very easy to manufacture a reflecting mirror at a low cost.
 また、前記金属薄板の表面は、研磨処理または真空蒸着処理されていることが好ましい。
 このような表面処理が施されることによって、金属薄板の表面(太陽光の反射面)は、高反射性能を発現し、集光効率が向上される。
Moreover, it is preferable that the surface of the said metal thin plate is grind | polished or vacuum-deposited.
By performing such a surface treatment, the surface of the metal thin plate (sunlight reflecting surface) exhibits high reflection performance, and the light collection efficiency is improved.
 また、このようなディッシュ型太陽熱発電装置では、前記反射鏡を支持するための基台を備え、
 前記基台が、昇降機構を有していることが好ましい。
Moreover, in such a dish type solar thermal power generation apparatus, a base for supporting the reflecting mirror is provided,
It is preferable that the base has an elevating mechanism.
 このように、基台14に昇降機構15を備えることにより、例えば、台風などの強風時などには、反射鏡12を保護箱40ごと地上付近まで降下させ、風に影響を受けにくくすることができる。 Thus, by providing the elevating mechanism 15 on the base 14, for example, in the case of a strong wind such as a typhoon, the reflecting mirror 12 can be lowered to the vicinity of the ground together with the protection box 40 to be less affected by the wind. it can.
 本発明に係るディッシュ型太陽熱発電装置によれば、反射鏡を太陽に直面するように制御したとしても、スターリングエンジンは常に鉛直方向に維持されるため、また、スターリングエンジンの高温部と反射鏡との位置関係が変化しても、スターリングエンジンに設けられた受光部に、反射鏡で集光された太陽光が照射されるように構成されているため、太陽熱発電器の発電効率が低下することを抑制することができる。 According to the dish type solar thermal power generation apparatus according to the present invention, the Stirling engine is always maintained in the vertical direction even if the reflector is controlled to face the sun. Even when the positional relationship of the solar power generator changes, the light receiving portion provided in the Stirling engine is configured to be irradiated with sunlight condensed by the reflecting mirror, so that the power generation efficiency of the solar power generator is reduced. Can be suppressed.
図1は、本発明の一実施例におけるディッシュ型太陽熱発電装置の構造を説明するための概略構成図である。FIG. 1 is a schematic configuration diagram for explaining the structure of a dish type solar thermal power generation apparatus according to an embodiment of the present invention. 図2は、太陽熱発電器の構造を説明するための概略構成図である。FIG. 2 is a schematic configuration diagram for explaining the structure of the solar power generator. 図3は、反射鏡の構造を説明するための概略構成図である。FIG. 3 is a schematic configuration diagram for explaining the structure of the reflecting mirror. 図4は、本発明の別の実施例におけるディッシュ型太陽熱発電装置の構造を説明するための概略構成図である。FIG. 4 is a schematic configuration diagram for explaining the structure of a dish type solar thermal power generation apparatus according to another embodiment of the present invention. 図5は、本発明のさらに別の実施例におけるディッシュ型太陽熱発電装置の反射鏡の構造を説明するための概略構成図であり、図5(a)は平面図、図5(b)は右側面図、図5(c)は正面図である。FIG. 5 is a schematic configuration diagram for explaining the structure of a reflecting mirror of a dish type solar thermal power generation apparatus in still another embodiment of the present invention. FIG. 5 (a) is a plan view and FIG. 5 (b) is a right side. FIG. 5C is a front view. 図6は、従来のディッシュ型太陽光集光装置を用いた太陽熱発電装置の概略構成図である。FIG. 6 is a schematic configuration diagram of a solar thermal power generation apparatus using a conventional dish type solar concentrator.
 以下、本発明の実施の形態(実施例)を図面に基づいて、より詳細に説明する。
 図1は、本発明の一実施例におけるディッシュ型太陽熱発電装置の構造を説明するための概略構成図、図2は、太陽熱発電器の構造を説明するための概略構成図である。
Hereinafter, embodiments (examples) of the present invention will be described in more detail based on the drawings.
FIG. 1 is a schematic configuration diagram for explaining the structure of a dish type solar thermal power generation apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram for explaining the structure of a solar thermal power generator.
 図1に示すように、本実施例のディッシュ型太陽熱発電装置10は、太陽光を所定の集光位置に集光するための反射鏡12と、反射鏡12を支持するための基台14と、例えば、スターリングエンジンなどからなる太陽熱発電器16と、反射鏡12に太陽光が略垂直に入射するように反射鏡12の角度を最適位置に保つための太陽追尾機構18とを備えている。 As shown in FIG. 1, the dish type solar thermal power generation apparatus 10 of the present embodiment includes a reflecting mirror 12 for concentrating sunlight at a predetermined condensing position, and a base 14 for supporting the reflecting mirror 12. For example, a solar power generator 16 composed of a Stirling engine or the like, and a solar tracking mechanism 18 for keeping the angle of the reflecting mirror 12 at an optimum position so that sunlight enters the reflecting mirror 12 substantially vertically.
 反射鏡12は、太陽光を所定の集光位置に集光できるものであれば、特に限定されるものではなく、既知の球面鏡や放物面鏡などを用いることができ、一般的な鏡で構成されたものであっても、金属板を球面や放物面などに加工したものであっても構わない。 The reflecting mirror 12 is not particularly limited as long as it can collect sunlight at a predetermined condensing position, and a known spherical mirror or a parabolic mirror can be used. Even if it is comprised, what processed the metal plate in the spherical surface, the paraboloid, etc. may be sufficient.
 なお、反射鏡12を軽量化するためには、図3に示すように、球面または放物面を構成するディッシュ型反射鏡台46と、反射鏡台46の解放面側に貼り付けられた複数の金属薄板48とから構成することが好ましい。 In order to reduce the weight of the reflecting mirror 12, as shown in FIG. 3, a dish type reflecting mirror base 46 constituting a spherical surface or a parabolic surface and a plurality of metals attached to the release surface side of the reflecting mirror base 46. The thin plate 48 is preferably used.
 なお、反射鏡台46の材料は、所定の強度が確保されていれば、特に限定されるものではなく、木製であってもいいし、金属製であっても構わない。
 また、反射鏡台46に貼り付ける金属薄板48としては、厚さ0.3mm~0.5mmであり、幅30cm~130cm、長さ100cm~1000cm、特に好ましくは、幅30cm~60cm、長さ100cm~300cmの方形状の金属平板を用いることが好ましい。
The material of the reflector table 46 is not particularly limited as long as a predetermined strength is ensured, and may be made of wood or metal.
The thin metal plate 48 to be attached to the reflector table 46 has a thickness of 0.3 mm to 0.5 mm, a width of 30 cm to 130 cm, a length of 100 cm to 1000 cm, and particularly preferably a width of 30 cm to 60 cm and a length of 100 cm to It is preferable to use a 300 cm square metal flat plate.
 また、金属薄板48の材料としては、太陽光を効率良く反射できる金属であれば、特に限定されるものではないが、例えば、鉄やアルミニウムなどの金属や、ステンレス鋼などの合金などを用いることができる。なお、製造コストを削減するためには、アルミニウムを用いることが好ましい。 The material of the metal thin plate 48 is not particularly limited as long as it is a metal that can efficiently reflect sunlight. For example, a metal such as iron or aluminum or an alloy such as stainless steel is used. Can do. In order to reduce manufacturing costs, it is preferable to use aluminum.
 このような金属平板を、球面または放物面に構成されたディッシュ型反射鏡台46の解放面側に押し付けながら、例えば、ビスなどを用いて取り付けることで、直接貼り付けることによって、球面または放物面を構成する反射鏡12を構成することができる。 While pressing such a metal flat plate against the release surface side of the dish-type reflector table 46 formed on a spherical surface or a parabolic surface, for example, by attaching using a screw or the like, it is directly attached to the spherical surface or parabolic surface. The reflecting mirror 12 which comprises a surface can be comprised.
 なお、ビスなどを用いて取り付ける場合には、金属薄板48を反射鏡台46に取り付けるためのビスなどの取り付け治具と、金属薄板48との間に所定の間隔を設けることが好ましい。 In addition, when attaching using a screw etc., it is preferable to provide a predetermined space between the metal thin plate 48 and an attachment jig such as a screw for attaching the metal thin plate 48 to the reflector table 46.
 すなわち、金属薄板48に設けられた取付用孔の大きさを、ビスなどの取付け治具のネジ部の直径よりも大きく傘部よりも小さくし、金属薄板48の厚さよりも0.1mm~0.2mm程度厚い座金を使用することで、取付け治具と金属薄板48との間に隙間を設けることによって、高温下において金属薄板48が膨張した場合にも、取付け治具と金属薄板48との接触による金属薄板48の変形を防止することができる。 That is, the size of the mounting hole provided in the thin metal plate 48 is larger than the diameter of the screw portion of a mounting jig such as a screw and smaller than the umbrella portion, and 0.1 mm to 0 than the thickness of the thin metal plate 48. By using a washer about 2 mm thick, a gap is provided between the mounting jig and the metal thin plate 48, so that even when the metal thin plate 48 expands at a high temperature, the mounting jig and the metal thin plate 48 The deformation of the metal thin plate 48 due to contact can be prevented.
 なお、金属平板において、反射鏡台46からはみ出てしまった部分については、適宜切断することが好ましい。
 また、金属薄板48は、互いに、数mm程度の隙間を設けて、反射鏡台46に貼付けることによって、例えば、夏場など温度上昇時に金属薄板48が膨張した場合にも、金属薄板48同士が干渉することなく、反射鏡12の反射面の変形を抑制することができる。
In addition, it is preferable to cut | disconnect suitably the part which protruded from the reflective mirror base 46 in the metal flat plate.
Further, the metal thin plates 48 are provided with a gap of about several mm between each other, and are attached to the reflector table 46. For example, even when the metal thin plates 48 expand when the temperature rises, such as in summer, the metal thin plates 48 interfere with each other. Without deformation, the deformation of the reflecting surface of the reflecting mirror 12 can be suppressed.
 なお、金属薄板48を反射鏡台46に貼付ける際には、反射鏡台46の円周方向の取り付け治具の数を増やすことによって、金属薄板48を放物面形状に近い状態で貼付けることができる。 In addition, when affixing the thin metal plate 48 to the reflecting mirror base 46, the thin metal plate 48 can be affixed in a state close to a parabolic shape by increasing the number of mounting jigs in the circumferential direction of the reflecting mirror base 46. it can.
 また、金属薄板48の表面(太陽光の反射面)は、高反射性能を発現できるように、例えば、化学研磨、電解研磨などの研磨処理や真空蒸着などの表面処理を施すことが好ましい。 Further, the surface of the metal thin plate 48 (sunlight reflecting surface) is preferably subjected to a surface treatment such as chemical polishing or electrolytic polishing or vacuum deposition so that high reflection performance can be exhibited.
 また、本実施例の太陽熱発電器16は、図2に示すように、スターリングエンジン20と、スターリングエンジン20の動作によって発電を行うオルタネーター22と、スターリングエンジン20の高温部20aと接するように設けられた受光部24とを備えている。 Further, as shown in FIG. 2, the solar thermal power generator 16 according to the present embodiment is provided so as to be in contact with the Stirling engine 20, the alternator 22 that generates power by the operation of the Stirling engine 20, and the high temperature portion 20 a of the Stirling engine 20. And a light receiving unit 24.
 また、太陽熱発電器16は、図1に示すように、スターリングエンジン20を鉛直方向に維持するための鉛直維持機構26を備えている。本実施例において、鉛直維持機構26は、太陽熱発電器16から鉛直に吊された錘26aによって構成されている。 Further, as shown in FIG. 1, the solar power generator 16 includes a vertical maintaining mechanism 26 for maintaining the Stirling engine 20 in the vertical direction. In the present embodiment, the vertical maintaining mechanism 26 is constituted by a weight 26 a that is suspended vertically from the solar power generator 16.
 なお、鉛直維持機構26としては、本実施例の構成には限定されるものではなく、例えば、太陽追尾機構18の動作に同期して、太陽熱発電器16が鉛直を維持するように、太陽熱発電器16を回転させる機構などであっても構わない。 The vertical maintaining mechanism 26 is not limited to the configuration of the present embodiment. For example, solar power generation is performed so that the solar power generator 16 maintains vertical in synchronization with the operation of the solar tracking mechanism 18. A mechanism for rotating the container 16 may be used.
 このように構成することによって、太陽追尾機構18によって反射鏡12の角度が変化したとしても、太陽熱発電器16は常に鉛直方向に維持されることになる。
 また、太陽熱発電器16に備えられた受光部24は、スターリングエンジン20の高温部20aと接しており、反射鏡12によって集光された太陽光が受光部24に照射されることによって、受光部24から高温部20aに熱を伝えるように構成されている。
With such a configuration, even if the angle of the reflecting mirror 12 is changed by the solar tracking mechanism 18, the solar power generator 16 is always maintained in the vertical direction.
Further, the light receiving unit 24 provided in the solar power generator 16 is in contact with the high temperature unit 20a of the Stirling engine 20, and the light collected by the reflecting mirror 12 is irradiated onto the light receiving unit 24, whereby the light receiving unit 24 It is comprised so that heat may be transmitted from 24 to the high temperature part 20a.
 受光部24の形状は、特に限定されるものではないが、図2に示すように、略円筒形状であって、高温部20aと接する面とは反対の面が、略半球状となっていることが望ましい。 The shape of the light receiving portion 24 is not particularly limited, but as shown in FIG. 2, the surface is substantially cylindrical and the surface opposite to the surface in contact with the high temperature portion 20a is substantially hemispherical. It is desirable.
 また、受光部24の縦断面積は、高温部20aの受光面の面積の1~3倍程度とすることが望ましく、具体的には、受光部24の高さHを20~50cm程度とすることが望ましい。 The vertical cross-sectional area of the light receiving portion 24 is preferably about 1 to 3 times the area of the light receiving surface of the high temperature portion 20a. Specifically, the height H of the light receiving portion 24 is about 20 to 50 cm. Is desirable.
 また、受光部24の材質は、熱伝導性の高いものであれば、特に限定されるものではないが、例えば、グラファイト、フラーレン、カーボンナノチューブなどを用いることができる。また、受光部24の耐熱温度は高い方が望ましく、特に、600℃以上とすることが望ましい。 The material of the light receiving unit 24 is not particularly limited as long as it has high thermal conductivity. For example, graphite, fullerene, carbon nanotube, or the like can be used. In addition, it is desirable that the heat-resistant temperature of the light receiving unit 24 is high, and it is particularly desirable that the temperature is 600 ° C. or higher.
 なお、受光部24をグラファイトで形成した場合、通常のグラファイトでは耐熱温度が500℃程度であるため、例えば、セラミック溶射、セラミック含浸、セラミックコーティングなどの耐熱性を向上させる表面処理を行えばよい。 In addition, when the light-receiving part 24 is formed of graphite, normal graphite has a heat-resistant temperature of about 500 ° C. Therefore, for example, surface treatment for improving heat resistance such as ceramic spraying, ceramic impregnation, and ceramic coating may be performed.
 なお、例えば、夏などに強い日光が受光部24に当たり続けた場合に、受光部24の温度が過剰に上昇してしまうと、スターリングエンジン20の耐熱温度を超えてしまう場合がある。このため、受光部24には、受光部24の温度が過剰に上昇した場合に冷却を行うための冷却手段を設けることが好ましい。 In addition, for example, when strong sunlight continues to hit the light receiving unit 24 in summer or the like, if the temperature of the light receiving unit 24 rises excessively, the heat resistant temperature of the Stirling engine 20 may be exceeded. For this reason, it is preferable to provide the light receiving unit 24 with a cooling means for cooling when the temperature of the light receiving unit 24 rises excessively.
 受光部24に冷却手段を設けることにより、受光部24が所定の温度よりも高くなった場合に、冷却手段によって受光部24を冷却することによって、スターリングエンジン20の耐熱温度以上にならないようにして、スターリングエンジン20の性能が低下したり、破損したりすることがないようにできる。 By providing a cooling means in the light receiving section 24, when the light receiving section 24 becomes higher than a predetermined temperature, the light receiving section 24 is cooled by the cooling means so that the temperature does not exceed the heat resistant temperature of the Stirling engine 20. The performance of the Stirling engine 20 can be prevented from being deteriorated or damaged.
 なお、図2に示すように、本実施例において冷却手段は、受光部24に設けられた冷却用孔30と、冷却用孔30を覆うように備えられた冷却ファン32によって構成されており、受光部24が所定の温度よりも高くなった場合に、冷却ファン32を作動させ、冷却用孔30に風を送ることによって、空冷により受光部24を冷却することができる。 As shown in FIG. 2, in this embodiment, the cooling means includes a cooling hole 30 provided in the light receiving unit 24 and a cooling fan 32 provided so as to cover the cooling hole 30. When the light receiving unit 24 becomes higher than a predetermined temperature, the light receiving unit 24 can be cooled by air cooling by operating the cooling fan 32 and sending air to the cooling hole 30.
 このような冷却用孔30は、1つだけ設けても、複数設けても構わない。また、冷却用孔30の大きさとしては、受光部24の大きさにもよるが、直径5mm~10mm程度が好ましく、受光部24の表面積の20%程度以内となるようにすることが好ましい。 Such a cooling hole 30 may be provided only one or plural. Further, the size of the cooling hole 30 is preferably about 5 mm to 10 mm in diameter, depending on the size of the light receiving portion 24, and preferably within about 20% of the surface area of the light receiving portion 24.
 なお、本実施例では受光部24に冷却孔30を設けているが、必ずしも冷却孔30を設ける必要はなく、冷却手段として冷却ファン32だけを設けてもよく、また、他の既知の冷却手段を用いても構わない。 In this embodiment, the cooling hole 30 is provided in the light receiving unit 24. However, it is not always necessary to provide the cooling hole 30, and only the cooling fan 32 may be provided as the cooling means, or other known cooling means. May be used.
 また、太陽熱発電器16は、受光部24が反射鏡12の集光位置(反射鏡12の焦点)に配置されるように、反射鏡12に設けられた太陽熱発電器用架台28に回動自在に取り付けられている。 Further, the solar power generator 16 is rotatable to a solar power generator mount 28 provided on the reflecting mirror 12 so that the light receiving unit 24 is disposed at the condensing position of the reflecting mirror 12 (focal point of the reflecting mirror 12). It is attached.
 このため、太陽追尾機構18によって反射鏡12の角度が変化させられたとしても、太陽熱発電器16に備えられた鉛直維持機構26(本実施例においては、太陽熱発電器16から鉛直に吊された錘)によって、太陽熱発電器16は鉛直方向に維持されることになる。 For this reason, even if the angle of the reflecting mirror 12 is changed by the solar tracking mechanism 18, the vertical maintenance mechanism 26 provided in the solar power generator 16 (in this embodiment, it is suspended vertically from the solar power generator 16. The solar power generator 16 is maintained in the vertical direction by the weight).
 また、図4に示すように、反射鏡12及び太陽熱発電器16を覆うように、透明カバー34を設けるように構成することが好ましい。
 このように透明カバー34を設けることによって、反射鏡12表面にホコリなどが付着することを防止でき、反射鏡12の反射率の低下を抑制するとともに、反射鏡12表面の定期的な洗浄が不要となり、運用コストを削減することができる。
Further, as shown in FIG. 4, it is preferable to provide a transparent cover 34 so as to cover the reflecting mirror 12 and the solar power generator 16.
By providing the transparent cover 34 in this manner, dust or the like can be prevented from adhering to the surface of the reflecting mirror 12, and a decrease in the reflectance of the reflecting mirror 12 can be suppressed, and regular cleaning of the surface of the reflecting mirror 12 is unnecessary. Thus, the operation cost can be reduced.
 本実施例においては、図4に示すように、反射鏡12の一方の側方に設置された透明カバー巻36と、反射鏡12の他方の側方に設置された透明カバー巻き取り装置38とを備えている。 In this embodiment, as shown in FIG. 4, a transparent cover winding 36 installed on one side of the reflecting mirror 12, and a transparent cover winding device 38 installed on the other side of the reflecting mirror 12, It has.
なお、図4に示すディッシュ型太陽熱発電装置10では、反射鏡12が保護箱40に納められている。また、透明カバー34を支持するとともに、透明カバー34と保護箱40の隙間を塞ぐための側部カバー42が設けられている。 In the dish type solar thermal power generation apparatus 10 shown in FIG. 4, the reflecting mirror 12 is housed in the protection box 40. Further, a side cover 42 for supporting the transparent cover 34 and closing a gap between the transparent cover 34 and the protection box 40 is provided.
 このようなディッシュ型太陽熱発電装置10では、透明カバー巻36から透明カバー34を引き出し、反射鏡12及び太陽熱発電器16を覆うように側部カバー42に被せた状態で、透明カバー34の端部を透明カバー巻き取り装置38に取り付ける。 In such a dish type solar thermal power generation apparatus 10, the transparent cover 34 is pulled out from the transparent cover winding 36 and covered with the side cover 42 so as to cover the reflecting mirror 12 and the solar thermal power generator 16. Is attached to the transparent cover winder 38.
 なお、透明カバー巻36は反射鏡12の上方側、透明カバー巻き取り装置38は反射鏡12の下方側に設置することによって、スムースに透明カバー34の巻き取りを行うことができる。 Note that the transparent cover winding 36 can be smoothly wound up by installing the transparent cover winding 36 on the upper side of the reflecting mirror 12 and the transparent cover winding device 38 on the lower side of the reflecting mirror 12.
 本実施例では、このように透明カバー巻36から透明カバー34を引き出せるように構成することによって、透明カバー34が汚れたり破損したりした場合に、透明カバー巻き取り装置38によって透明カバー34を所定量巻き取ることによって、反射鏡12の表面を綺麗な状態の透明カバー34によって覆うことができる。 In this embodiment, the transparent cover 34 can be pulled out from the transparent cover winding 36 as described above, so that when the transparent cover 34 is dirty or damaged, the transparent cover 34 is placed by the transparent cover winding device 38. By winding the fixed amount, the surface of the reflecting mirror 12 can be covered with the transparent cover 34 in a clean state.
 なお、透明カバー巻36及び透明カバー巻き取り装置38を備えずに、側部カバー42に透明カバー34を直接貼り付けて覆うようにしても構わない。
 また、透明カバー34としては、透光性を有するものであれば特に限定されるものではないが、例えば、アイオノマー(IO)フィルム、ポリエチレン(PE)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリ塩化ビニル(PVC)フィルム、ポリ塩化ビニリデン(PVDC)フィルム、ポリビニルアルコール(PVA)フィルム、ポリプロピレンフィルム(PP)フィルム、ポリカーボネート(PC)フィルム、エチレン酢酸ビニル共重合体(EVA)フィルム、エチレン-ビニルアルコール共重合体(EVOH)フィルム、エチレン-メタクリル酸共重合体(EMAA)フィルム、フッ素樹脂フィルムなどを用いることができる。
The transparent cover 34 and the transparent cover take-up device 38 may be omitted, and the transparent cover 34 may be directly attached to the side cover 42 to cover it.
The transparent cover 34 is not particularly limited as long as it has translucency. For example, an ionomer (IO) film, a polyethylene (PE) film, a polyethylene terephthalate (PET) film, and polyvinyl chloride. (PVC) film, polyvinylidene chloride (PVDC) film, polyvinyl alcohol (PVA) film, polypropylene film (PP) film, polycarbonate (PC) film, ethylene vinyl acetate copolymer (EVA) film, ethylene-vinyl alcohol copolymer A combined (EVOH) film, an ethylene-methacrylic acid copolymer (EMAA) film, a fluororesin film, or the like can be used.
 また、反射鏡12を保護箱40に収めることによって、例えば、強風などの悪天候であっても、反射鏡12自体に影響が及ぶことを防ぐことができ、反射鏡12が破損したりするのを防止することができる。さらに、基台14や反射鏡台46の機械的強度を小さくすることができるため、反射鏡12の製造コストや太陽熱発電装置10全体の製造コストを大幅に削減することができる。 Further, by storing the reflecting mirror 12 in the protective box 40, it is possible to prevent the reflecting mirror 12 itself from being affected even in bad weather such as strong winds, and the reflecting mirror 12 can be damaged. Can be prevented. Further, since the mechanical strength of the base 14 and the reflecting mirror base 46 can be reduced, the manufacturing cost of the reflecting mirror 12 and the manufacturing cost of the entire solar thermal power generation apparatus 10 can be significantly reduced.
 また、保護箱40の高さを反射鏡12の高さよりも高くすることによって、側部カバー42の高さを低くすることができ、透明カバー34の曲率が大きくなり過ぎることを防ぐことができる。 Further, by making the height of the protective box 40 higher than the height of the reflecting mirror 12, the height of the side cover 42 can be lowered, and the curvature of the transparent cover 34 can be prevented from becoming too large. .
 また、本実施例では、スターリングエンジン20の上部に、放熱カバー44を設けている。このように構成することによって、スターリングエンジン20や受光部24からの放射熱が透明カバー34に直接当たって、透明カバー34が熱により変形したり、破損したりすることを防止できる。 In the present embodiment, a heat radiation cover 44 is provided on the top of the Stirling engine 20. By configuring in this way, it is possible to prevent the radiant heat from the Stirling engine 20 and the light receiving unit 24 from directly hitting the transparent cover 34 and causing the transparent cover 34 to be deformed or damaged by heat.
 なお、放熱カバー44の大きさとしては、反射鏡12の集光効率に大きな影響を与えないように適宜設定することができる。特に、本実施例のように、太陽熱発電器16を備えたディッシュ型太陽熱発電装置10では、反射鏡12に太陽熱発電器16の影ができることになるため、この影が、放熱カバー44を設けることで極端に大きくならない程度に、放熱カバー44の大きさを設定することが好ましい。 It should be noted that the size of the heat dissipation cover 44 can be set as appropriate so as not to significantly affect the light collection efficiency of the reflecting mirror 12. In particular, in the dish type solar thermal power generation apparatus 10 provided with the solar thermal power generator 16 as in the present embodiment, the shadow of the solar thermal power generator 16 is formed on the reflecting mirror 12. Therefore, it is preferable to set the size of the heat dissipation cover 44 so as not to become extremely large.
 なお、本実施例では、透明カバー34を透過する際に生じる光量のロスを防ぐため、太陽熱発電器16を覆うように透明カバー34を設けているが、少なくとも反射鏡12を覆うように設けていれば、反射鏡12の表面にホコリなどが付着して、反射率が低下することを防止できる。 In the present embodiment, the transparent cover 34 is provided so as to cover the solar power generator 16 in order to prevent the loss of light amount that occurs when passing through the transparent cover 34, but is provided so as to cover at least the reflecting mirror 12. As a result, it is possible to prevent the reflectance from decreasing due to dust or the like adhering to the surface of the reflecting mirror 12.
 また、図4に示すように、基台14には昇降機構15を備えていることが好ましい。昇降機構15としては、特に限定されるものではないが、例えば、油圧式、ガス式、ベベルギア式、ベルト式など既知の昇降機構を用いることができる。 Further, as shown in FIG. 4, the base 14 is preferably provided with an elevating mechanism 15. The lifting mechanism 15 is not particularly limited. For example, a known lifting mechanism such as a hydraulic type, a gas type, a bevel gear type, or a belt type can be used.
 このように、基台14に昇降機構15を備えることにより、例えば、台風などの強風時などには、反射鏡12を保護箱40ごと地上付近まで降下させ、風に影響を受けにくくすることができる。 Thus, by providing the elevating mechanism 15 on the base 14, for example, in the case of a strong wind such as a typhoon, the reflecting mirror 12 can be lowered to the vicinity of the ground together with the protection box 40 to be less affected by the wind. it can.
 以上、本発明の好ましい実施例を説明したが、本発明はこれに限定されることはなく、上記実施例では、太陽追尾機構18によって自動的に太陽追尾を行うように構成しているが、反射鏡の角度を手動で調整するなどしてもよい。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to this, and in the above embodiment, the solar tracking mechanism 18 is configured to automatically perform the sun tracking. You may adjust the angle of a reflective mirror manually.
 また、図5に示すように、反射鏡12を球面鏡または放物面鏡の四方を切断したような形状とすることによって、方形状の金属平板を効率良く貼付けることができ、反射鏡12の反射効率を向上させることもできるなど、本発明の目的を逸脱しない範囲で種々の変更が可能である。 In addition, as shown in FIG. 5, by making the reflecting mirror 12 into a shape obtained by cutting four sides of a spherical mirror or a parabolic mirror, a rectangular metal flat plate can be efficiently attached. Various modifications can be made without departing from the object of the present invention, such as improvement in reflection efficiency.
10   太陽熱発電装置
12   反射鏡
14   基台
15   昇降機構
16   太陽熱発電器
18   太陽追尾機構
20   スターリングエンジン
20a  高温部
22   オルタネーター
24   受光部
26   鉛直維持機構
26a  錘
28   太陽熱発電器用架台
30   冷却用孔
32   冷却ファン
34   透明カバー
36   透明カバー巻
38   透明カバー巻き取り装置
40   保護箱
42   側部カバー
44   放熱カバー
46   反射鏡台
46a  解放面側
48   金属薄板
100  太陽熱発電装置
110  反射鏡
120  太陽熱発電器
122  高温部
124  低温部
130  大型架台
DESCRIPTION OF SYMBOLS 10 Solar power generator 12 Reflector 14 Base 15 Lifting mechanism 16 Solar power generator 18 Solar tracking mechanism 20 Stirling engine 20a High temperature part 22 Alternator 24 Light receiving part 26 Vertical maintenance mechanism 26a Weight 28 Solar power generator mount 30 Cooling hole 32 Cooling fan 34 Transparent cover 36 Transparent cover winding 38 Transparent cover winding device 40 Protective box 42 Side cover 44 Radiation cover 46 Reflective mirror base 46a Release surface side 48 Metal thin plate 100 Solar thermal power generation device 110 Reflective mirror 120 Solar thermal power generator 122 High temperature portion 124 Low temperature portion 130 Large platform

Claims (15)

  1.  放物面形状を有するディッシュ型の反射鏡と、
     前記反射鏡によって集光された太陽光によって発電を行う太陽熱発電器と、を備えるディッシュ型太陽熱発電装置であって、
     前記太陽熱発電器は、
     低温部と高温部との温度差によって動作するスターリングエンジンと、
     前記スターリングエンジンの動作によって発電を行うオルタネーターと、
     前記スターリングエンジンの高温部と接するように設けられた受光部と、
     前記太陽熱発電器を鉛直方向に維持するための鉛直維持機構と、を備え、
     前記反射鏡の集光位置に前記受光部が配置されるように、前記反射鏡に設けられた太陽熱発電器用架台に回動自在に取り付けられていることを特徴とするディッシュ型太陽熱発電装置。
    A dish-shaped reflector having a parabolic shape; and
    A dish type solar thermal power generation apparatus comprising a solar thermal power generator that generates power with sunlight collected by the reflecting mirror,
    The solar power generator
    A Stirling engine that operates according to the temperature difference between the low temperature part and the high temperature part;
    An alternator that generates power by the operation of the Stirling engine;
    A light receiving portion provided in contact with a high temperature portion of the Stirling engine;
    A vertical maintenance mechanism for maintaining the solar power generator in a vertical direction,
    A dish type solar thermal power generation apparatus, wherein the dish type solar thermal power generation apparatus is rotatably attached to a solar power generator mount provided on the reflecting mirror so that the light receiving portion is disposed at a condensing position of the reflecting mirror.
  2.  前記受光部の形状が、略円筒形状であって、前記高温部と接する面とは反対の面が、略半球状となっていることを特徴とする請求項1に記載のディッシュ型太陽熱発電装置。 2. The dish type solar power generation apparatus according to claim 1, wherein a shape of the light receiving portion is a substantially cylindrical shape, and a surface opposite to a surface in contact with the high temperature portion is a substantially hemispherical shape. .
  3.  前記受光部の縦断面積が、前記高温部の受光面の面積の1~3倍であることを特徴とする請求項1または2に記載のディッシュ型太陽熱発電装置。 The dish type solar thermal power generation apparatus according to claim 1 or 2, wherein a vertical sectional area of the light receiving part is 1 to 3 times an area of a light receiving surface of the high temperature part.
  4.  前記受光部が、グラファイト、フラーレン、カーボンナノチューブのいずれかで形成されていることを特徴とする請求項1から3のいずれかに記載のディッシュ型太陽熱発電装置。 The dish type solar thermal power generation apparatus according to any one of claims 1 to 3, wherein the light receiving portion is formed of any one of graphite, fullerene, and carbon nanotubes.
  5.  前記受光部の耐熱温度が、600℃以上であることを特徴とする請求項1から4のいずれかに記載のディッシュ型太陽熱発電装置。 The dish-type solar thermal power generation device according to any one of claims 1 to 4, wherein the heat-resistant temperature of the light-receiving unit is 600 ° C or higher.
  6.  前記受光部が、セラミック溶射、セラミック含浸、セラミックコーティングのいずれかによって表面処理がなされていることを特徴とする請求項5に記載のディッシュ型太陽熱発電装置。 6. The dish type solar thermal power generation apparatus according to claim 5, wherein the light receiving portion is surface-treated by any one of ceramic spraying, ceramic impregnation, and ceramic coating.
  7.  前記受光部が、冷却手段を備え、
     前記受光部が所定の温度よりも高くなった場合に、前記冷却手段によって受光部を冷却するように構成されていることを特徴とする請求項1から6のいずれかに記載のディッシュ型太陽熱発電装置。
    The light receiving unit includes a cooling unit,
    The dish type solar thermal power generator according to any one of claims 1 to 6, wherein the light receiving part is cooled by the cooling means when the light receiving part becomes higher than a predetermined temperature. apparatus.
  8.  前記冷却手段が、前記受光部に設けられた冷却用孔と、該冷却用孔を覆うように備えられた冷却ファンとから構成されることを特徴とする請求項7に記載のディッシュ型太陽熱発電装置。 The dish-type solar power generation according to claim 7, wherein the cooling means includes a cooling hole provided in the light receiving portion and a cooling fan provided so as to cover the cooling hole. apparatus.
  9.  前記反射鏡を覆うように設けられた透明カバーを備えることを特徴とする請求項1から8のいずれかに記載のディッシュ型太陽熱発電装置。 A dish type solar thermal power generation apparatus according to any one of claims 1 to 8, further comprising a transparent cover provided to cover the reflecting mirror.
  10.  前記太陽熱発電器が、前記透明カバーによって覆われていることを特徴とする請求項9に記載のディッシュ型太陽熱発電装置。 The dish type solar thermal power generation apparatus according to claim 9, wherein the solar thermal power generator is covered with the transparent cover.
  11.  前記太陽熱発電器の上部に、放熱カバーを備えることを特徴とする請求項12に記載のディッシュ型太陽熱発電装置。 13. The dish type solar thermal power generation apparatus according to claim 12, further comprising a heat radiation cover on an upper portion of the solar thermal power generator.
  12.  前記反射鏡の一方の側方に設置された透明カバー巻と、
     前記反射鏡の他方の側方に設置された透明カバー巻き取り装置と、をさらに備えることを特徴とする請求項9から12のいずれかに記載のディッシュ型太陽熱発電装置。
    A transparent cover winding installed on one side of the reflecting mirror;
    The dish type solar power generation device according to any one of claims 9 to 12, further comprising: a transparent cover winding device installed on the other side of the reflecting mirror.
  13.  前記反射鏡が、
     球面または放物面を構成するディッシュ型反射鏡台と、
     前記反射鏡台の解放面側に貼付けられた複数の金属薄板と、
    を備え、
     前記金属薄板が、厚さ0.3mm~0.5mm、幅30cm~130cm、長さ100cm~1000cmの方形状の金属平板であり、
     前記金属平板が、前記反射鏡台に直接貼付けられていることを特徴とする請求項1から12のいずれかに記載のディッシュ型太陽熱発電装置。
    The reflector is
    A dish-shaped reflector table that forms a spherical or parabolic surface; and
    A plurality of metal thin plates attached to the release surface side of the reflector table;
    With
    The metal thin plate is a rectangular metal flat plate having a thickness of 0.3 mm to 0.5 mm, a width of 30 cm to 130 cm, and a length of 100 cm to 1000 cm;
    The dish type solar thermal power generation apparatus according to any one of claims 1 to 12, wherein the metal flat plate is directly attached to the reflecting mirror base.
  14.  前記金属薄板の表面が、研磨処理または真空蒸着処理されていることを特徴とする請求項13に記載のディッシュ型太陽熱発電装置。 14. The dish type solar thermal power generation device according to claim 13, wherein the surface of the metal thin plate is subjected to polishing treatment or vacuum deposition treatment.
  15.  前記反射鏡を支持するための基台を備え、
     前記基台が、昇降機構を有していることを特徴とする請求項1から14のいずれかに記載のディッシュ型太陽熱発電装置。
    A base for supporting the reflecting mirror;
    The dish type solar thermal power generation apparatus according to any one of claims 1 to 14, wherein the base has an elevating mechanism.
PCT/JP2014/055373 2013-03-05 2014-03-04 Parabolic solar power generation apparatus WO2014136744A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-043030 2013-03-05
JP2013043030A JP2016102407A (en) 2013-03-05 2013-03-05 Dish type solar heat power generation system
JP2013-076044 2013-04-01
JP2013076044A JP2016102591A (en) 2013-04-01 2013-04-01 Dish type sunlight collection device

Publications (1)

Publication Number Publication Date
WO2014136744A1 true WO2014136744A1 (en) 2014-09-12

Family

ID=51491260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055373 WO2014136744A1 (en) 2013-03-05 2014-03-04 Parabolic solar power generation apparatus

Country Status (1)

Country Link
WO (1) WO2014136744A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151757A (en) * 1987-12-08 1989-06-14 Agency Of Ind Science & Technol Stirling engine utilizing solar heat
JPH0210055A (en) * 1988-03-10 1990-01-12 Stirling Thermal Motors Inc Solar heat evaporator
JPH05272410A (en) * 1992-03-27 1993-10-19 Aisin Seiki Co Ltd Stirling engine for utilizing solar heat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01151757A (en) * 1987-12-08 1989-06-14 Agency Of Ind Science & Technol Stirling engine utilizing solar heat
JPH0210055A (en) * 1988-03-10 1990-01-12 Stirling Thermal Motors Inc Solar heat evaporator
JPH05272410A (en) * 1992-03-27 1993-10-19 Aisin Seiki Co Ltd Stirling engine for utilizing solar heat

Similar Documents

Publication Publication Date Title
AU2002362938B8 (en) Solar electricity generator
JP5797737B2 (en) Solar heat collection system
US20100319678A1 (en) Hybrid solar heat power generation device
WO2012113195A1 (en) Solar secondary light concentrating frequency dividing method and apparatus thereof based on dish-like light concentration
CN102035437B (en) Portable Fresnel-lens solar automatic-tracking power generating and heating dual-purpose device
CN201904740U (en) High-power solar generating device
EP2534703A1 (en) Concentrated photovoltaic and thermal system
WO2014163066A1 (en) Trough-type solar energy power generation device
CN101982799A (en) Solar condensing mirror with adjustable focus and application thereof
CN1983642A (en) Superhigh multiplying-power focusing solar battery
CN103219409A (en) Use of rotating photovoltaic cells and assemblies for concentrated and non-concentrated solar systems
CN201918922U (en) Portable Fresnel-lens solar-energy automatic-tracking power-generating and heating dual-purpose device
CN201409099Y (en) Solar energy condensing power generation system with cooling device
CN108365793B (en) Thermoelectric power generation device utilizing solar photovoltaic power generation waste heat and wind power for heating
CN106026912A (en) Perovskite solar cell-based reflective concentrated electricity and heat cogeneration device
CN102064740B (en) Dish type high-multiple concentrating photovoltaic generating device
JP2016102407A (en) Dish type solar heat power generation system
JP2016114252A (en) Trough-type reflection mirror
WO2014136744A1 (en) Parabolic solar power generation apparatus
KR100995821B1 (en) Solar compound parabolic conentrator
JP2016115687A (en) Condensing trough solar power generation device
JP2016114616A (en) Trough-type reflector
CN202350334U (en) Solar photothermal and photoelectricity conversion device
CN109140796B (en) Solar power generation device
JP2013117339A (en) Dish type solar light concentrator and solar thermal power generator using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP