WO2014163066A1 - Trough-type solar energy power generation device - Google Patents

Trough-type solar energy power generation device Download PDF

Info

Publication number
WO2014163066A1
WO2014163066A1 PCT/JP2014/059612 JP2014059612W WO2014163066A1 WO 2014163066 A1 WO2014163066 A1 WO 2014163066A1 JP 2014059612 W JP2014059612 W JP 2014059612W WO 2014163066 A1 WO2014163066 A1 WO 2014163066A1
Authority
WO
WIPO (PCT)
Prior art keywords
trough
reflector
solar energy
power generation
energy power
Prior art date
Application number
PCT/JP2014/059612
Other languages
French (fr)
Japanese (ja)
Inventor
進藤 勇
Original Assignee
株式会社クリスタルシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013076045A external-priority patent/JP2016115687A/en
Priority claimed from JP2013091049A external-priority patent/JP2016114252A/en
Priority claimed from JP2013097427A external-priority patent/JP2016114616A/en
Application filed by 株式会社クリスタルシステム filed Critical 株式会社クリスタルシステム
Publication of WO2014163066A1 publication Critical patent/WO2014163066A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • F24S2020/23Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants movable or adjustable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention is a trough solar energy power generation apparatus that efficiently collects sunlight using a rain gutter (trough type) reflector and efficiently generates power with a solar cell installed at the focal position of the reflector. About.
  • solar power generation devices that use solar cells that irradiate a semiconductor substrate with sunlight to convert light energy into electrical energy
  • Stirling engines A so-called “solar thermal power generation device” that heats the temperature of the heat collecting section to a predetermined temperature and drives the piston to generate power, or heats a heat medium with solar heat to generate high-temperature steam to generate power with a steam turbine, etc. is there.
  • the utilization efficiency when used as a solar cell is about 20% when the most popular silicon semiconductor is currently used, whereas the utilization efficiency when used as a water heater reaches nearly 50%. Therefore, the utilization efficiency is higher when it is used as hot water than when it is used as electricity.
  • a solar power generation device requires a high-performance and inexpensive solar cell (solar panel) that can efficiently convert sunlight into electric energy.
  • the manufacturing cost of the semiconductor substrate that is the source of the solar cell and the manufacturing cost of the module incorporating the semiconductor substrate are expensive.
  • a solar tracking device is often used to enable high-efficiency power generation, but this solar tracking device is expensive and has become a factor that increases power generation costs.
  • Such a method is called a “condensing type”, and development of a highly efficient condensing system is being promoted energetically around the world. This is because when the semiconductor substrate is irradiated with a large amount of light energy condensed several hundred times, the conversion efficiency increases and a large amount of power can be obtained.
  • various so-called “condensing solar thermal power generation devices” have been developed that efficiently generate sunlight by collecting sunlight with a reflecting mirror.
  • a heat collecting part is installed on a high tower, and sunlight is condensed with a number of reflectors toward this heat collecting part, and the tower-type, rain gutter-like (trough-like) reflecting mirror obtains high heat.
  • the heat collecting part of the Stirling engine is arranged at the focal position of the trough type and dish-shaped reflector that heats the heat medium in the heat collecting tube arranged at the focal position by the reflector, and the piston of the engine is driven to generate electricity
  • Various methods such as a dish type are known.
  • the sun that repeats the diurnal motion must be accurately tracked, and despite the necessity to arrange a large number of reflectors, the usage efficiency is extremely low due to the relative position of the sun. There is a fatal flaw that does not increase the overall efficiency.
  • the trough type is expected to be the most efficient, and the installation of large-scale power plants for practical use is also progressing, but a high-light-transmissive glass plate with a thickness of several millimeters is bent into a predetermined curved surface as a reflector. Because it is necessary to use a reflector that has been processed and a solar reflective film is formed on the back of a highly light-transmitting glass plate, it is attached to a large pedestal, so it is expensive and heavy, and the highly light-transmitting glass plate is easily damaged. Reflector mirrors that use this are expensive to manufacture, and, in addition, the installation of the entire device requires a robust manufacturing process, and a large amount of expenses are incurred for the production of the base and the production of the base.
  • a “concentrating solar power generation device” that generates power by placing solar cells at the condensing position of the reflector and irradiating the solar cells with the collected sunlight
  • a reflecting mirror using a metal plate unlike a reflecting mirror using a glass material, it does not pass light, so it must be a concave mirror and a surface mirror. In this case, the concave mirror is used in the field. Since dust or the like adheres to the surface of the film and the reflection characteristics deteriorate, cleaning is necessary.
  • the present invention can keep the manufacturing cost and the maintenance cost low, maintain a high photoelectric conversion efficiency and a high power generation efficiency over a long period of time, and can reduce the total cost.
  • An object is to provide a solar power generation device. Furthermore, it aims at providing the trough type
  • the present invention was invented in order to achieve the problems and objects in the prior art as described above,
  • the trough solar power generation device of the present invention is A concentrating trough solar power generation device for generating electricity using sunlight
  • the trough-type solar energy power generator is A trough reflector having a parabolic cross section for collecting the sunlight; and A solar cell that is installed at the focal position of the sunlight by the trough reflector and directly converts the concentrated sunlight into electric power; Cooling means for cooling the solar cell; A transparent film covering the release surface side of the trough reflector, At least.
  • mold reflector and a solar cell can be avoided, and long-term stable use can be implement
  • the transparent film is soiled by the outside air, and the transmittance gradually deteriorates. Therefore, when a certain degree of deterioration is observed, it is preferable to replace the transparent film with a new one to always maintain a high transmittance.
  • the operation of replacing the dirty transparent film with a new one may be performed each time the transparent film is deteriorated, or the wound body on which the long transparent film is previously wound is placed on one side of the trough reflector. It may be arranged on the other side, and if it gets dirty, it may be wound up sequentially from the other side and covered with a new transparent film.
  • the replacement work of the transparent film may be performed automatically by a motor or manually.
  • a transparent film having a length sufficient to cover the trough-type reflecting mirror may be prepared and used by exchanging each time. By exchanging the dirty transparent film, it is possible to prevent a decrease in light collection efficiency and to always generate power with high efficiency. Since the cost required for replacing the transparent film is small, the overall power generation cost can be reduced.
  • the material of the transparent film it is preferable to use a fluororesin having a thickness of about 50 to 100 ⁇ m.
  • a transparent film has a high light transmittance and a low price, so it hardly affects the power generation cost.
  • the manufacturing cost and the maintenance cost can be kept low, and the high photoelectric conversion efficiency and the high power generation efficiency can be maintained for a long time.
  • the trough type solar energy power generator of the present invention is The short side width of the solar cell is It is within a range of 1 to 10% of the diameter on the release surface side of the trough reflector.
  • the trough type solar energy power generator of the present invention is The solar cell is In the cross section of the trough reflector, the trough reflector is installed at an angle orthogonal to the reflected light of the sunlight from a half position from the one end portion to the center portion on the release surface side.
  • the reflected light from the trough reflector needs to be efficiently applied to the solar cell.
  • the most convenient is that the sunlight is irradiated at right angles to the solar cell.
  • the cross section of the trough reflector forms a paraboloid, and the angle at which sunlight arriving from infinity is reflected by the trough reflector varies depending on the location of the trough reflector. It is not constant.
  • the shape of a general solar cell is a flat plate, and the ideal solar cell shape is to create a solar cell so that all reflected light is irradiated from a right angle direction according to the angular distribution of the reflected light. That is. Although it is not impossible to manufacture in such a shape, it is impossible and impossible to manufacture at a low cost.
  • this solar cell portion is only reflected on the reflector.
  • a general flat solar cell so that the reflected light from each half of the cross section of the trough reflector is irradiated as evenly as possible.
  • direction which can generate electric power most efficiently about the installation angle of a solar cell is making it orthogonally cross with respect to the reflected light from the half position of the position from the edge part by the side of an open surface in the cross section of a trough-type reflective mirror.
  • the trough type solar energy power generator of the present invention is
  • the cooling means is a plate-like cooling plate;
  • the plate-like cooling plate is provided on the back surface of the solar cell.
  • the cooling means is preferably a plate-like cooling plate.
  • the plate-shaped cooling plate can surely take away the heat of a solar cell, and desired power generation efficiency can be maintained.
  • the power generation efficiency can be increased by increasing the cooling effect as much as possible. Nevertheless, if more cooling water is used than is necessary, the cost increases the overall power generation cost.
  • a large tank (container) is placed near the trough type solar energy power generation apparatus of the present invention, and the water stored inside is circulated and used as cooling water until the temperature becomes close to 50 ° C. At that point, the radiator should be activated.
  • the trough type solar energy power generator of the present invention is The solar cell and the cooling means are integrally configured as a light collecting unit,
  • the condensing unit is provided with a rotation mechanism that rotates and reverses the condensing unit.
  • the rotation mechanism is provided in this way, the sunlight can be condensed on the cooling means side, in addition to the case where the sunlight is condensed on the normal solar cell side. Therefore, when warm water or high-temperature steam is required, the condensing unit can be inverted by the rotation mechanism, and the cooling means can be efficiently warmed to obtain warm water or high-temperature steam.
  • the trough type solar energy power generation device of the present invention can be used as both the power generation device and the hot water production device.
  • power may be separately generated using a steam turbine, and may be used as a so-called solar power generator.
  • hot water If hot water is obtained, it can be used for cooking, bathing, floor heating, etc., and solar energy can be used extremely efficiently as a whole. Furthermore, if the water in the tank installed near the farmhouse is similarly circulated and used as cooling water to heat to about 50 ° C and used for warming the farmhouse, it has been used in large quantities until then. The consumption of fuel can be dramatically reduced.
  • the trough type solar energy power generator of the present invention is The trough-type reflecting mirror is provided on a gantry. If the trough-type reflecting mirror is provided on the gantry in this way, it is preferable because the trough-type solar energy power generation device can be easily installed and the maintainability is good.
  • the trough type solar energy power generator of the present invention is Between the gantry and the trough reflector, An elevating mechanism for placing the trough reflector on the gantry and for lowering the trough reflector from the gantry is provided.
  • the trough reflector can be lowered from the gantry to facilitate maintenance, and when trough solar energy power generation equipment is predicted to be damaged, such as storms, The trough reflector can be easily lowered from the gantry. In addition, since it can be quickly restored to the original state even after it is lowered, the trough solar energy power generation device can be stopped to a minimum even during maintenance, etc., and can be operated efficiently.
  • the trough type solar energy power generator of the present invention is The distance from the bottom of the cross-sectional parabolic shape of the reflector to the focal position is T1, the distance in the width direction of the cross-sectional parabolic shape of the reflector is d1, When the distance from the bottom of the cross-sectional parabolic shape of the transparent cover to the focal position is T2, and the distance in the width direction of the cross-sectional parabolic shape of the transparent cover is d2, It is characterized by satisfy
  • the trough type solar energy power generator of the present invention is A windshield curtain is suspended from four side edges constituting the release surface side of the trough reflector.
  • the trough type solar energy power generator of the present invention is
  • the trough reflector is A D-shaped frame having a curved parabolic section, and A plurality of connecting frames that connect the curved surfaces of the D-shaped frame and the D-shaped frame;
  • a substantially rectangular reflecting plate having both end portions and a plane portion connected to each of the curved surface portion and the plurality of connecting frames of the D-shaped frame;
  • Comprising at least The D-shaped frame is A strip, A standing structure erected from a substantially central portion of the belt-shaped plate; A plurality of horizontal structures arranged so as to intersect the upright structure vertically; With The strip plate is supported by both end portions of each of the plurality of horizontal structures and the base end portion of the standing structure, and the curved plate portion of the D-shaped frame is configured by the strip plate.
  • Such trough-type reflectors can create a highly accurate cross-sectional parabolic shape with an extremely simple structure, greatly reducing manufacturing costs and greatly increasing the total cost of solar energy power generation using this. Can be reduced.
  • the trough type solar energy power generator of the present invention is An end of the connecting frame is connected to ends of the plurality of horizontal structures constituting the D-shaped frame. If comprised in this way, a strong frame structure can be obtained with the standing structure, the horizontal structure, and the connecting frame.
  • the trough type solar energy power generator of the present invention is
  • the reflection plate is composed of a plurality of reflection division bodies, and the adjacent reflection division bodies are connected to each other by a connecting belt-like plate.
  • the entire trough reflector is covered with a transparent film, so that it can be used stably for a long time even when used outdoors, reducing maintenance costs and achieving a significant reduction in overall power generation costs. be able to.
  • the distance from the bottom of the cross-section parabolic shape of the trough reflector to the focal position is T1
  • the distance in the width direction of the cross-section parabolic shape of the trough reflector is d1
  • the cross-sectional parabolic shape of the transparent cover is If the distance from the bottom to the focal position is T2, and the distance in the width direction of the cross-sectional parabolic shape of the transparent cover is d2, the manufacturing cost can be kept low by configuring it to satisfy the relationship of T2 / d2 ⁇ T1 / d1. Can withstand wind.
  • the trough type solar energy power generation device that can also serve as a hot water production device together with the power generation device can be provided by the rotation mechanism.
  • FIG. 1 is a schematic diagram of a trough solar energy power generation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view for explaining a transparent film winding device.
  • FIG. 3 is a cross-sectional view of the trough reflector shown in FIG.
  • FIG. 4 is a schematic diagram for explaining a rotation mechanism of the light collecting unit.
  • FIG. 5 is a schematic view showing an operating state of the rotating mechanism shown in FIG. 4, and FIG. 5 (a) is a view showing a state where sunlight is condensed on the solar cell side, and FIG. (b) is the figure which showed the state which has condensed sunlight on the cooling means side.
  • FIG. 6 is a schematic view for explaining an elevating mechanism using a wire.
  • FIG. 1 is a schematic diagram of a trough solar energy power generation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view for explaining a transparent film winding device.
  • FIG. 3 is a cross-sectional view of
  • FIG. 7 is a schematic view showing an operating state of the elevating mechanism shown in FIG.
  • FIG. 8 is a schematic diagram for explaining an elevating mechanism using a jack.
  • FIG. 9 is a schematic view showing an operating state of the lifting mechanism shown in FIG.
  • FIG. 10 is a schematic diagram for explaining a windshield curtain.
  • FIG. 11 is a schematic perspective view of a trough reflector used in the trough solar energy power generator of the present invention.
  • 12 is a cross-sectional view taken along line AA of the trough reflector shown in FIG.
  • FIG. 13 is a perspective view for explaining the manufacturing procedure of the trough-type reflecting mirror.
  • FIG. 14 is a perspective view for explaining the procedure for manufacturing the trough reflector.
  • FIG. 14 is a perspective view for explaining the procedure for manufacturing the trough reflector.
  • FIG. 15 is a perspective view for explaining the manufacturing procedure of the trough reflector.
  • FIG. 16 is a schematic perspective view for explaining another embodiment of the trough reflector.
  • FIG. 17 is an explanatory diagram for describing a connection structure of reflection division bodies of a trough reflector.
  • FIG. 18 is an explanatory diagram for explaining a state in which a strip-shaped reflector is added to the connection structure of the reflection division bodies of the trough reflector.
  • the trough-type solar energy power generation device of the present invention efficiently collects sunlight using a trough-type (rain gutter-type) reflector and efficiently generates power with a solar cell installed at the focal position of the trough-type reflector. Is to do.
  • a trough solar energy power generation apparatus 10 includes a trough reflector 12 having a parabolic cross section for concentrating sunlight at a predetermined condensing position, and the trough reflector. 12, a solar cell 14 that is installed at the focal position of sunlight and converts the condensed sunlight directly into electric power, a cooling means 16 that is provided on the back surface of the solar cell 14 and cools the solar cell 14, a trough And a transparent film 18 covering the open surface 80 side (concave surface side) of the mold reflecting mirror 12.
  • the transparent film 18 is for preventing dust and the like from adhering to the open surface 80 of the trough reflector 12 and lowering the power generation efficiency, and is preferably provided via the support 36. Thus, the transparent film 18 can be pasted without bending through the support 36.
  • the interval between the supports 36 may be arbitrary, but if the interval is too narrow, the sunlight shielding effect is increased and the light collection efficiency is deteriorated. If the interval is too wide, the transparent film 18 is bent, May be beaten by the wind.
  • the support body 36 can make the influence of a wind small by making high the center part by the side of the open surface 80 of the trough-type reflective mirror 12, ie, making it arch shape.
  • the transparent film 18 may be replaced periodically or after it becomes dirty.
  • the transparent film 18 is wound around one side of the trough reflector 12.
  • a winding device 72 on the other side of the trough reflector 12 so that when the transparent film 18 becomes dirty, the new transparent film 18 is immediately unwound from the wound body 74. It is preferable that it can be used.
  • the transparent film 18 is not limited to the form provided with the winding body 74 and the winding device 72 as in the above-described embodiment, and a film processed into a predetermined size is prepared and replaced whenever it becomes dirty. It may be made to do.
  • the material of the transparent film 18 is not particularly limited as long as it has translucency.
  • a fluorine film an acrylic film, an ionomer (IO) film, a polyethylene (PE) film, polyethylene Terephthalate (PET) film, polyvinyl chloride (PVC) film, polyvinylidene chloride (PVDC) film, polyvinyl alcohol (PVA) film, polypropylene film (PP) film, polycarbonate (PC) film, ethylene vinyl acetate copolymer (EVA) ) Film, ethylene-vinyl alcohol copolymer (EVOH) film, ethylene-methacrylic acid copolymer (EMAA) film, etc., among which a fluorine film is preferred.
  • the solar cell 14 installed in the sunlight collecting position by the trough type reflecting mirror 12 is composed of crystalline silicon, amorphous silicon, InGaAs (indium gallium arsenide). It is preferable to use a cell made of a cell made of a material such as an inorganic compound such as GaAs (gallium arsenide) or an organic compound such as an organic dye or a conductive polymer.
  • the outer shape of the solar cell 14 is not particularly limited, and for example, a rectangular shape can be used.
  • the cooling means 16 for cooling the back surface of the solar cell 14 is a plate-like cooling plate as shown in FIG. 3, and this plate-like cooling plate is arranged on the back surface of the solar cell 14. Yes.
  • the solar cell 14 and the cooling means 16 are comprised integrally, and the light collection unit 38 is comprised.
  • the condensing unit 38 is provided with a rotation mechanism 46 that rotates the condensing unit 38 in the direction of the arrow and reverses it.
  • a rotation mechanism 46 that rotates the condensing unit 38 in the direction of the arrow and reverses it.
  • sunlight is condensed on the solar cell 14 side, or as shown in FIG. 5 (b), on the cooling means 16 side. It can be used selectively, such as collecting sunlight.
  • the arrow in FIG. 5 is the sunlight reflected by the trough-type reflecting mirror 12.
  • the plate-like cooling plate is formed with a water supply passage 48 for flowing cooling water, and the water supply passage 48 is separately provided with a liquid supply means (not shown) for flowing cooling water.
  • a water supply path 48 is provided in accordance with the extending direction of the trough-type reflecting mirror 12 (left-right direction in FIG. 5).
  • aluminum and copper with favorable heat conductivity are preferable, and aluminum is suitable in view of cost and productivity.
  • the role of the rotation mechanism 46 is to collect sunlight on the cooling means 16 side, other than when collecting sunlight on the normal solar cell 14 side, and requires hot water or high-temperature steam.
  • the condensing unit 38 can be reversed by the rotating mechanism 46, and the cooling water of the cooling means 16 can be efficiently warmed to obtain hot water or high-temperature steam.
  • the solar cell 14 on the opposite side does not receive sunlight, so that it does not become hot water or more. Therefore, the solar cell 14 does not become defective due to high temperature.
  • the trough solar energy power generation device 10 of the present invention can be used as both a power generation device and a hot water production device. Furthermore, when high-temperature steam is obtained, power may be separately generated using a steam turbine (not shown) and used as a so-called solar thermal power generator.
  • the water supply path 48 of the cooling means 16 is preferably formed by directly drilling a plate-shaped cooling plate, but is not particularly limited.
  • a stainless tube or an iron tube is formed in a hole formed in the plate-shaped cooling plate.
  • Plastic tube etc. may be inserted and used.
  • the cooling water is not particularly limited as long as it has fluidity, and for example, antifreeze, fresh water, rainwater, or the like is used. As will be described later, fresh water is preferred when the cooling water is heated and then used for another purpose. In mountainous areas, water may be pumped from a lake or the like. Furthermore, it is preferable that the surface of the plate-like cooling plate is blackened. By performing such treatment, it is possible to efficiently absorb solar heat and obtain hot water.
  • the solar cell 14 may be directly attached to the outer surface of the plate-like cooling plate, but is not limited to this, for example, by interposing a high thermal conductivity material (not shown) between both members.
  • the solar cell 14 may be efficiently cooled.
  • a known material may be used as the high thermal conductivity material, and for example, carbon is preferably used.
  • the short side width t of the solar cell 14 attached to the outer surface of the plate-shaped cooling plate is 1 to 10 of the distance d1 in the width direction of the cross-sectional parabolic shape of the trough reflector 12.
  • the size is preferably in the range of%, and more preferably in the range of 3 to 5%.
  • the price of the solar cell 14 is high and the cost is high.
  • the price of the solar cell 14 can be reduced, but the ratio at which the reflected light from the trough reflector 12 cannot be used increases. Therefore, it is preferable to set within the above range.
  • the direction in which the most efficient power generation is possible is the reflected light from the half position C from the end position A to the center position B on the open surface 80 side in the section of the trough reflector 12.
  • the solar cell 14 is installed so as to be orthogonal.
  • the solar cell 14 can be efficiently irradiated with the light reflected by the trough reflector 12.
  • the trough solar energy power generation apparatus 10 includes a gantry 70 for supporting the trough reflector 12.
  • the material of the gantry 70 is not particularly limited as long as a predetermined strength is ensured, and may be made of wood or metal.
  • an elevating mechanism 44 for placing the trough reflector 12 on the gantry 70 and for lowering the trough reflector 12 from the gantry 70 is provided. preferable.
  • the lifting mechanism 44 is not particularly limited.
  • a structure in which one side of the trough reflector 12 is lifted by a wire 64 and the trough reflector 12 is inclined As shown in FIGS. 8 and 9, it is preferable to use a structure in which the trough reflector 12 is moved up and down using a jack 66.
  • the trough reflector 12 can be lowered from the gantry 70 for easy maintenance, and when the trough solar energy power generation device 10 is predicted to be damaged by a storm or the like. In this case, the trough reflector 12 can be easily lowered from the gantry 70 to cope with the problem. Further, since it can be quickly restored to the original state even when lowered, the trough solar energy power generation device 10 can be stopped at a minimum even in maintenance, etc., and can be operated efficiently.
  • the trough type reflecting mirror 12 has a distance T1 from the bottom 78 of the parabolic cross section of the trough type reflecting mirror 12 to the focal position a1, and the width direction of the cross section parabolic shape of the trough type reflecting mirror 12.
  • the distance from the bottom 34 of the cross-sectional parabolic shape of the transparent film 18 to the focal position a2 is T2, and the distance in the width direction of the cross-sectional parabolic shape of the transparent film 18 is d2, where T2 / d2 ⁇ T1 / It is configured to satisfy the relationship of d1. That is, the cross-sectional parabolic shape of the trough-type reflecting mirror 12 draws a curve equal to or greater than the cross-sectional parabolic shape of the transparent film 18.
  • the trough reflector 12 may have windbreak curtains 60 hung on the four side edges 76 constituting the open surface 80 side of the trough reflector 12. It is.
  • the windbreak curtain 60 it is possible to more reliably prevent the wind from entering the trough reflector 12 located below and the trough reflector 12 from being lifted.
  • the windbreak curtain 60 may be suspended by its own weight, but it is more preferable to provide the weight member 62 at the lower end.
  • the weight members 62 are connected to each other or fixed to the gantry 70 or the like, so that the windbreak curtain 60 can be prevented from fluttering due to wind.
  • the material of the windbreak curtain 60 is not particularly limited, but is preferably made of vinyl which has resistance against rain and wind and is easy to handle.
  • a trough-type reflecting mirror 12 can be suitably used for the trough-type solar energy power generation apparatus 10.
  • the trough-type reflecting mirror 12 is provided with a D-shaped frame 20 having a curved parabolic section 28 and a D-shaped frame 20 spaced apart from each other by a predetermined distance.
  • a plurality of connecting frames 30 that connect the curved surface portions 28 of the letter-shaped frame 20 and the D-shaped frame 20, and both end portions and plane portions on the curved surface portions 28 and the plurality of connecting frames 30 of the D-shaped frame 20.
  • a substantially rectangular reflecting plate 40 to which a part of each is connected.
  • the thickness of the reflector 40 is preferably about 0.3 to 0.5 mm.
  • the D-shaped frame 20 includes a strip-shaped plate 22, a standing structure 24 that is erected from a substantially central portion of the strip-shaped plate 22, and a plurality of horizontal structures that are disposed so that the standing structure 24 intersects vertically.
  • the structure 26 is provided.
  • the strip plate 22 preferably has a width of about 3 to 5 cm and a thickness of about 2 to 5 mm.
  • belt-shaped board 22 is supported by the both ends of each of the some horizontal structure 26, and the base end part of the standing structure 24,
  • the curved-surface part 28 of the D-shaped frame 20 is comprised by this strip
  • the trough-type reflecting mirror 12 thus constructed has a very simplified structure and has a small number of components, so that the manufacturing cost required for the trough-type reflecting mirror 12 can be greatly reduced as compared with the prior art.
  • the material of the reflecting plate 40 is not particularly limited as long as it is a metal that can efficiently reflect sunlight, and for example, a metal such as aluminum or stainless steel or an alloy containing these metals can be used. In order to reduce manufacturing costs, it is preferable to use aluminum.
  • the surface of the reflector 40 (sunlight reflecting surface) is preferably subjected to a surface treatment such as chemical polishing or electrolytic polishing so as to exhibit high reflection performance.
  • the material of the standing structure 24 and the horizontal structure 26 is not particularly limited as long as it is a material having high strength.
  • a metal such as aluminum or stainless steel or an alloy containing these metals is used. Can do. In order to reduce manufacturing costs, it is preferable to use aluminum.
  • Such a trough reflector 12 can reduce the manufacturing cost, the installation cost, and the maintenance cost, and can achieve a high light collection efficiency. Next, the manufacturing procedure of such a trough reflector 12 will be described.
  • the D-shaped frames 20 are provided at a predetermined interval.
  • the D-shaped frame 20 and the curved surface portions 28 of the D-shaped frame 20 are connected by a connecting frame 30.
  • a framework is formed in which the ends of the plurality of horizontal structures 26 and the ends of the connection frame 30 are connected, and the ends of the standing structure 24 and the ends of the connection frame 30 are connected.
  • a substantially square reflecting plate 40 is disposed on the framework formed in FIG.
  • the size of the reflector 40 is defined so as to fit between the D-shaped frame 20 and the D-shaped frame 20.
  • the trough reflector 12 shown in FIG. 11 is obtained by superimposing the reflector 40 on the framework formed in FIG. 14 and fixing the framework and the reflector 40.
  • the reflecting plate 40 of the trough-type reflecting mirror 12 may be one in which a plurality of reflecting division bodies 42 are connected as shown in FIG.
  • the width of each reflective divided body 42 is preferably about 100 to 150 cm, for example.
  • connection method of the reflective division bodies 42 is not particularly limited, for example, as shown in FIG. 17, it is preferable to connect via the connecting strip plate 50.
  • the reflective divided body 42 and the reflective divided body 42 are not directly connected by the connecting strip-shaped plate 50, but a washer 52 is provided between the connecting strip-shaped plate 50 and the pressing member 54. It is preferable that the reflection division body 42 is positioned in the gap formed by the washer 52 by tightening with the fastening member 56.
  • the reflective division bodies 42 are thermally expanded at high temperatures in the daytime and change their dimensions, it is preferable to connect them with a certain gap without directly fixing each other. .
  • the connecting strip-shaped plate 50 when used, the sunlight collecting efficiency is reduced by the area of the pressing member 54, so that a new one is formed on the pressing member 54 as shown in FIG. It is preferable to provide a band-shaped reflector 58 on the surface of the band-shaped reflector 58 so that sunlight can be collected at the portion of the band-shaped reflector 58.
  • the strip-shaped reflecting plate 58 can be made of the same material as the reflecting plate 40 described above.
  • a large amount of hot water is obtained by concentrating sunlight on the cooling means 16 using the rotation mechanism 46, and therefore when this hot water is reused. For example, it is preferable to cool using an automobile radiator and use it again as cooling water.
  • a solar tracking device that tracks the direction of the trough reflector according to the position of the sun may be provided separately.
  • all or a part of the functions of the winding device, the rotation mechanism, the lifting mechanism, and the windshield curtain may be selectively provided, and various modifications may be made without departing from the object of the present invention. And can be combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

[Problem] To provide a trough-type solar energy power generation device capable of suppressing the manufacturing cost and maintenance cost to be low, capable of maintaining a high photovoltaic conversion efficiency and a high power generation efficiency over a long period of time, capable of suppressing the total cost, and capable of serving not only as a power generation device but also as a hot water producing device. [Solution] A concentrating trough-type solar energy power generation device uses sunlight to generate power and at least comprises: a trough-type reflecting mirror having a parabolic shape in section to collect the sunlight; a solar cell placed at the position where the sunlight is focused by the trough-type reflecting mirror and directly converting the collected sunlight into electric power; a cooling means for cooling the solar cell; and a transparent film for covering the open face side of the trough-type reflecting mirror.

Description

トラフ型太陽エネルギー発電装置Trough solar power generator
 本発明は、雨樋型(トラフ型)の反射鏡を用いて太陽光を効率良く集光し、この反射鏡の焦点位置に設置された太陽電池で効率良く発電を行うトラフ型太陽エネルギー発電装置に関する。 The present invention is a trough solar energy power generation apparatus that efficiently collects sunlight using a rain gutter (trough type) reflector and efficiently generates power with a solar cell installed at the focal position of the reflector. About.
 太陽エネルギーを用いた発電装置には、太陽光を半導体基板に照射して光エネルギーを電気エネルギーに変換する太陽電池を用いた「太陽光発電装置」や、太陽光を照射して例えばスターリングエンジンの集熱部の温度を所定の温度に加熱しピストンを駆動して発電したり、または太陽熱で熱媒体を加熱して高温の水蒸気を発生させ蒸気タービンによって発電する、いわゆる「太陽熱発電装置」などがある。 For power generation devices that use solar energy, solar power generation devices that use solar cells that irradiate a semiconductor substrate with sunlight to convert light energy into electrical energy, for example, Stirling engines A so-called “solar thermal power generation device” that heats the temperature of the heat collecting section to a predetermined temperature and drives the piston to generate power, or heats a heat medium with solar heat to generate high-temperature steam to generate power with a steam turbine, etc. is there.
 近年、世界的なエネルギー消費量増大に伴う二酸化炭素の空気中への放出量の増大などを抑止するため、二酸化炭素の放出を伴わない太陽エネルギーを利用した発電装置への期待が高まっている。太陽エネルギーは、1平方メートル当たり1KWのエネルギーが照射されており、その有効利用は極めて重要である。 In recent years, in order to suppress an increase in the amount of carbon dioxide released into the air accompanying the increase in global energy consumption, there is an increasing expectation for power generation devices that use solar energy without the release of carbon dioxide. Solar energy is irradiated with 1 KW of energy per square meter, and its effective use is extremely important.
 太陽エネルギーの利用形態としては、発電して電気エネルギーとして利用する他に、太陽熱温水器などとしての利用も活発に行われている。太陽電池として利用する場合の利用効率は、現在、最も普及しているシリコン半導体を使った場合20%程度であるのに対し、温水器として使用する場合の利用効率は50%近くに達する。したがって、電気として利用する場合よりも温水として利用する場合の方が利用効率としては高い。 As a form of solar energy use, in addition to generating electricity and using it as electric energy, it is also actively used as a solar water heater. The utilization efficiency when used as a solar cell is about 20% when the most popular silicon semiconductor is currently used, whereas the utilization efficiency when used as a water heater reaches nearly 50%. Therefore, the utilization efficiency is higher when it is used as hot water than when it is used as electricity.
 しかしながら利用形態としては電気エネルギーとして利用する方が好都合である場合が多いので、最近はできるだけ安価に効率良く電気エネルギーとして利用可能な方式の開発が進められている。 However, since there are many cases where it is more convenient to use it as electric energy as a form of use, recently, development of a method that can be used as electric energy as efficiently and inexpensively as possible has been promoted.
 それでも折角の太陽エネルギーを効率良く利用する形態として、同じ装置を使って、電気エネルギーとして利用するのと同時に熱エネルギーとしても利用可能であれば、最も効率の良い利用機器となることは自明である。 Still, as a form of efficiently using the solar energy at the corner, it is obvious that if it can be used as heat energy at the same time as the electric energy using the same device, it will be the most efficient use device .
 従来より、太陽光発電装置や太陽熱発電装置は、日本国内はもとより世界中で多くの方式が提案され、世界各地に実証装置や実験装置などが設けられ、一部では商業的利用も開始されている。 Conventionally, many solar power generation systems and solar thermal power generation systems have been proposed not only in Japan but also all over the world. Demonstration devices and experimental devices have been established in various parts of the world, and commercial use has been partially started. Yes.
 ところで太陽光を利用する太陽電池の原料として、結晶シリコンやアモルファスシリコン、InGaAs(インジウムガリウムヒ化物)やGaAs(ヒ化ガリウム)などの無機化合物、有機色素や導電性ポリマーなどの有機化合物などが検討されている。 By the way, as raw materials for solar cells using sunlight, crystalline silicon, amorphous silicon, inorganic compounds such as InGaAs (indium gallium arsenide) and GaAs (gallium arsenide), organic compounds such as organic dyes and conductive polymers, etc. are examined. Has been.
 それぞれ変換効率、製造コスト、耐候性など様々な観点から実用化の検討が進められており、中でもシリコンを使用する太陽電池は、世界中で市販されている太陽電池の90%以上を占有しており最も多用されている。市場規模は全世界で一兆円超と言われ、その効率アップの果たす役割は極めて大きいものである。 The practical application is underway from various viewpoints such as conversion efficiency, manufacturing cost, and weather resistance. Solar cells using silicon occupy more than 90% of solar cells that are commercially available all over the world. Most commonly used. The market size is said to be over 1 trillion yen worldwide, and its role in improving efficiency is extremely large.
 なお、太陽光発電装置では、太陽光を効率良く電気エネルギーに変換できる高性能で安価な太陽電池(ソーラーパネル)が必要である。しかしながら太陽電池の元となる半導体基板の製造コスト、および半導体基板を組み込んだモジュールの製造コストは割高である。さらに太陽光発電装置では、高効率発電を可能にするために太陽追跡装置が用いられる場合が多いが、この太陽追跡装置は割高であり、発電コストを押し上げる要因となってしまっている。 In addition, a solar power generation device requires a high-performance and inexpensive solar cell (solar panel) that can efficiently convert sunlight into electric energy. However, the manufacturing cost of the semiconductor substrate that is the source of the solar cell and the manufacturing cost of the module incorporating the semiconductor substrate are expensive. Furthermore, in solar power generation devices, a solar tracking device is often used to enable high-efficiency power generation, but this solar tracking device is expensive and has become a factor that increases power generation costs.
 このため太陽光発電は、水力発電や火力発電などの他の発電方式と比べ、コスト高となっている。
 発電コスト削減のためには、太陽電池の元となる半導体基板およびこれを組み込んだモジュールの製造コスト削減と、変換効率の向上が有効であることは無論であるが、他に安価な集光システムを開発し、少ない半導体基板で大量の発電を可能とし発電コストを大幅に削減する方策も有力である。
For this reason, solar power generation is expensive compared with other power generation methods such as hydroelectric power generation and thermal power generation.
In order to reduce the power generation cost, it is obvious that reducing the manufacturing cost and improving the conversion efficiency of the semiconductor substrate that is the source of the solar cell and the module incorporating the solar cell is effective, but other inexpensive condensing systems. In order to reduce power generation costs, it is possible to develop a large amount of power with a small number of semiconductor substrates.
 このような方式は「集光式」と呼ばれ、世界各国で精力的に高効率な集光システムの開発が進められている。半導体基板に数百倍に集光した大量の光エネルギーを照射すると変換効率が高くなり、大量の電力を得ることが可能となるからである。 Such a method is called a “condensing type”, and development of a highly efficient condensing system is being promoted energetically around the world. This is because when the semiconductor substrate is irradiated with a large amount of light energy condensed several hundred times, the conversion efficiency increases and a large amount of power can be obtained.
 但し、一般的に半導体基板は基板温度が上がると変換効率が劣化してしまうので、高密度の光照射下においても基板温度を効果的に冷却して変換効率の劣化を抑止する手段が求められる。 However, since the conversion efficiency of semiconductor substrates generally deteriorates when the substrate temperature rises, a means for effectively cooling the substrate temperature and suppressing the deterioration of conversion efficiency even under high-density light irradiation is required. .
 一方、太陽光を反射鏡で集光して効率的に発電するいわゆる「集光式太陽熱発電装置」が様々に開発されている。高いタワーの上に集熱部を設け、この集熱部に向かって多数の反射鏡で太陽光を集光して高熱を得るタワー型、雨樋状(トラフ状)の反射鏡で集光し、反射鏡による焦点位置に配置された集熱管中の熱媒体を加熱するトラフ型、ディッシュ状の反射鏡の焦点位置にスターリングエンジンの集熱部を配置し、エンジンのピストンを駆動させて発電するディッシュ型など、様々な方式が知られている。 On the other hand, various so-called “condensing solar thermal power generation devices” have been developed that efficiently generate sunlight by collecting sunlight with a reflecting mirror. A heat collecting part is installed on a high tower, and sunlight is condensed with a number of reflectors toward this heat collecting part, and the tower-type, rain gutter-like (trough-like) reflecting mirror obtains high heat. The heat collecting part of the Stirling engine is arranged at the focal position of the trough type and dish-shaped reflector that heats the heat medium in the heat collecting tube arranged at the focal position by the reflector, and the piston of the engine is driven to generate electricity Various methods such as a dish type are known.
 タワー型については、日周運動を繰り返す太陽を正確に追跡しなければならず、多数の反射鏡を配置する必要があるにも関わらず、太陽の位置との相対関係で利用効率が極端に低くなってしまう時間帯が発生してしまい、全体としての効率は高くならない致命的欠陥がある。 For the tower type, the sun that repeats the diurnal motion must be accurately tracked, and despite the necessity to arrange a large number of reflectors, the usage efficiency is extremely low due to the relative position of the sun. There is a fatal flaw that does not increase the overall efficiency.
 トラフ型については、最も効率を高くできると期待され、実用化に向けた大規模発電所の設置も進んでいるが、反射鏡として厚さ数ミリメートルの高光透過性ガラス板を所定の曲面に曲げ加工し、高光透過性ガラス板の裏面に太陽光反射膜を成膜した反射鏡を大型架台に取り付けて使用することになるので高価で重量が大きく、しかも高光透過性ガラス板は破損し易いため、これを用いた反射鏡は製造コストが高く、さらには設置に関しても装置全体を頑丈に製造する必要上、土台の制作、架台の制作にそれぞれ多額の経費が発生している。 The trough type is expected to be the most efficient, and the installation of large-scale power plants for practical use is also progressing, but a high-light-transmissive glass plate with a thickness of several millimeters is bent into a predetermined curved surface as a reflector. Because it is necessary to use a reflector that has been processed and a solar reflective film is formed on the back of a highly light-transmitting glass plate, it is attached to a large pedestal, so it is expensive and heavy, and the highly light-transmitting glass plate is easily damaged. Reflector mirrors that use this are expensive to manufacture, and, in addition, the installation of the entire device requires a robust manufacturing process, and a large amount of expenses are incurred for the production of the base and the production of the base.
 しかも設置後、運転を開始しても反射鏡が風雨、結露などによって容易に汚れ、多数のシミなどが発生したり、埃が付着したりして反射特性が劣化するので間断なく洗浄作業を行う必要があり、これらの理由により発電コストを押し上げてしまっている。 In addition, after installation, even if the operation is started, the reflector is easily soiled by wind and rain, condensation, etc., many spots are generated, and the reflection characteristics deteriorate due to dust adhering. It is necessary, and for these reasons, power generation costs have been pushed up.
 ディッシュ型については、大型のスターリングエンジンの長期間の安定使用に問題が残されており、さらには反射鏡の汚れを洗浄する必要性はトラフ型と同様の問題に直面しており、本格的な普及には至っていないのが現状である。 As for the dish type, problems remain in the long-term stable use of large Stirling engines, and the necessity to clean the reflectors is facing the same problem as the trough type. The current situation is that it has not spread.
 このような集光式太陽熱発電装置と同様に、反射鏡の集光位置に太陽電池を配置し、集光した太陽光を太陽電池に照射して発電する「集光式太陽光発電装置」については高価な半導体基板の使用量を節約することで発電コストを低減できる可能性があり、様々な方式について検討がなされ、一部は実用化されている。 As with such a concentrating solar power generation device, a “concentrating solar power generation device” that generates power by placing solar cells at the condensing position of the reflector and irradiating the solar cells with the collected sunlight There is a possibility that power generation costs can be reduced by saving the amount of expensive semiconductor substrates used, and various methods have been studied and some have been put into practical use.
 しかしながら、この場合にもいわゆる集光式太陽熱発電装置と同様、反射鏡の製造コスト、設置コスト、さらには運転開始後の洗浄コストの問題に直面し、安価な発電システムとして本格的な普及には至っていない。 However, in this case as well as the so-called concentrating solar power generation device, the manufacturing cost and installation cost of the reflector, and the cleaning cost after the start of operation are faced. Not reached.
 太陽光を安価に効率良く集光するには、安価で効率の良い反射鏡を開発することが最も肝要である。現在、もっぱら使用されているガラス材を用いた反射鏡を軽量化するためにガラス板の厚さを薄くすると、製造、移動、設置、及び運転中においてガラス材が破損する可能性が高まり、運用コストの増大を招くため、軽量化にも限界がある。 Developing inexpensive and efficient reflectors is the most important factor for concentrating sunlight efficiently at low cost. If the thickness of the glass plate is reduced in order to reduce the weight of reflectors that use glass materials that are currently used exclusively, there is an increased possibility of glass materials being damaged during manufacturing, transportation, installation, and operation. There is a limit to reducing the weight because it increases the cost.
 反射鏡の素材としてガラス材の他に硬質プラスチックなども検討され、一部では使用されているが長期間の安定使用に不安を抱えている。
 他方、ガラス材の替わりに金属板を用いた反射鏡を用いることも検討されている。この場合には金属板なので軽量で変形に強く、架台を支える土台も簡素化可能で架台も安価な簡易装置で十分であり、強風に対しても破損の恐れが大幅に低減され、装置全体の製造コストおよび運転コストを大幅に低減可能である。
In addition to glass materials, hard plastics have been studied as a material for reflectors, and some of them are used, but they are worried about long-term stable use.
On the other hand, the use of a reflecting mirror using a metal plate instead of a glass material has been studied. In this case, since it is a metal plate, it is lightweight and resistant to deformation, the base supporting the gantry can be simplified, and the gantry is an inexpensive simple device, and the risk of damage is greatly reduced even with strong winds. Manufacturing costs and operating costs can be greatly reduced.
 しかしながら、金属板を用いた反射鏡の場合にはガラス材を用いた反射鏡と異なり、光を通過しないので凹面鏡かつ表面鏡にせざるを得ず、この場合には野外での使用に伴って凹面鏡の表面に埃などが付着して反射特性が低下してしまうため、洗浄が必要となる。 However, in the case of a reflecting mirror using a metal plate, unlike a reflecting mirror using a glass material, it does not pass light, so it must be a concave mirror and a surface mirror. In this case, the concave mirror is used in the field. Since dust or the like adheres to the surface of the film and the reflection characteristics deteriorate, cleaning is necessary.
 しかしながら金属製の表面鏡にこのような洗浄作業を行うと、凹面鏡の表面の反射特性が大幅に低下してしまうことが知られており、安価で機械的強度に優れた金属製反射鏡を屋外で長期間安定的に使用することができなかった。 However, it is known that when such a cleaning operation is performed on a metal surface mirror, the reflection characteristics of the surface of the concave mirror are greatly deteriorated. And could not be used stably for a long time.
 本発明はこのような現状に鑑み、製造コスト,メンテナンスコストを低く抑えることができるとともに、高光電変換効率,高発電効率を長時間にわたって維持することができ、総コストを抑制することのできるトラフ型太陽エネルギー発電装置を提供することを目的とする。
 さらに発電装置とともに温水製造装置としても役割もなすことのできるトラフ型太陽エネルギー発電装置を提供することを目的とする。
In view of such a current situation, the present invention can keep the manufacturing cost and the maintenance cost low, maintain a high photoelectric conversion efficiency and a high power generation efficiency over a long period of time, and can reduce the total cost. An object is to provide a solar power generation device.
Furthermore, it aims at providing the trough type | mold solar energy power generation device which can also play a role as a warm water manufacturing apparatus with a power generation device.
 本発明は、前述したような従来技術における課題および目的を達成するために発明されたものであって、
 本発明のトラフ型太陽エネルギー発電装置は、
 太陽光を使用して発電するための集光式のトラフ型太陽エネルギー発電装置であって、
 前記トラフ型太陽エネルギー発電装置は、
 前記太陽光を集光するための断面放物線形状のトラフ型反射鏡と、
 前記トラフ型反射鏡による前記太陽光の焦点位置に設置され、集光された前記太陽光を直接的に電力に変換する太陽電池と、
 前記太陽電池を冷却する冷却手段と、
 前記トラフ型反射鏡の解放面側を覆う透明フィルムと、
 を少なくとも備えることを特徴とする。
The present invention was invented in order to achieve the problems and objects in the prior art as described above,
The trough solar power generation device of the present invention is
A concentrating trough solar power generation device for generating electricity using sunlight,
The trough-type solar energy power generator is
A trough reflector having a parabolic cross section for collecting the sunlight; and
A solar cell that is installed at the focal position of the sunlight by the trough reflector and directly converts the concentrated sunlight into electric power;
Cooling means for cooling the solar cell;
A transparent film covering the release surface side of the trough reflector,
At least.
 このように構成すれば、トラフ型反射鏡や太陽電池の外気による汚染が避けられ、長期間の安定した使用を実現することができる。
 なお透明フィルムは外気によって汚れ、次第に透過率が劣化するので、ある程度の劣化が見られたら新品に交換して常に高い透過率を維持することが好ましい。
If comprised in this way, the contamination by the outside air of a trough type | mold reflector and a solar cell can be avoided, and long-term stable use can be implement | achieved.
The transparent film is soiled by the outside air, and the transmittance gradually deteriorates. Therefore, when a certain degree of deterioration is observed, it is preferable to replace the transparent film with a new one to always maintain a high transmittance.
 この汚れた透明フィルムを新品に交換する作業は、透明フィルムを劣化が生じたその都度、交換しても良いし、予め長い透明フィルムを巻いた巻装体をトラフ型反射鏡の一方側の側方に配置しておき、汚れたら他方側の側方から順次巻き取って新品の透明フィルムで覆うようにしてもよい。 The operation of replacing the dirty transparent film with a new one may be performed each time the transparent film is deteriorated, or the wound body on which the long transparent film is previously wound is placed on one side of the trough reflector. It may be arranged on the other side, and if it gets dirty, it may be wound up sequentially from the other side and covered with a new transparent film.
 この場合、透明フィルムの交換作業はモーターなどで自動的に行っても良いし、手動で行っても良い。またトラフ型反射鏡を覆うに足り得る長さの透明フィルムを用意し、一回毎に交換して使用しても良い。汚れた透明フィルムを交換することによって、集光効率の低下を防ぎ、常に高い効率で発電することができる。透明フィルムの交換作業に要する経費は僅かなので、全体として発電コストの削減を図ることができる。 In this case, the replacement work of the transparent film may be performed automatically by a motor or manually. Further, a transparent film having a length sufficient to cover the trough-type reflecting mirror may be prepared and used by exchanging each time. By exchanging the dirty transparent film, it is possible to prevent a decrease in light collection efficiency and to always generate power with high efficiency. Since the cost required for replacing the transparent film is small, the overall power generation cost can be reduced.
 透明フィルムの材質としては、フッ素樹脂製で厚み50~100μm程度のものを用いることが好ましい。このような透明フィルムは、光透過率が高く、価格も安価なので発電コストにほとんど影響しないものである。 As the material of the transparent film, it is preferable to use a fluororesin having a thickness of about 50 to 100 μm. Such a transparent film has a high light transmittance and a low price, so it hardly affects the power generation cost.
 このように、本発明のトラフ型太陽エネルギー発電装置によれば、製造コスト,メンテナンスコストを低く抑えることができるとともに、高光電変換効率,高発電効率を長時間にわたって維持することができる。 Thus, according to the trough type solar energy power generation apparatus of the present invention, the manufacturing cost and the maintenance cost can be kept low, and the high photoelectric conversion efficiency and the high power generation efficiency can be maintained for a long time.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記太陽電池の短辺幅が、
 前記トラフ型反射鏡の解放面側の径の1~10%の範囲内であることを特徴とする。
Moreover, the trough type solar energy power generator of the present invention is
The short side width of the solar cell is
It is within a range of 1 to 10% of the diameter on the release surface side of the trough reflector.
 このように構成すれば、製造コスト,メンテナンスコストを低く抑えることができるとともに、高光電変換効率,高発電効率を長時間にわたって維持することができる。
 なお、太陽電池の短辺幅のサイズがあまりに大きいサイズだと太陽電池の価格が高くコスト高となる。一方、あまりに小さいサイズだと太陽電池の価格は低減できるがトラフ型反射鏡からの反射光を利用できない割合が大きくなってしまうマイナスが発生する。したがって上記の範囲内とすることが望ましい。
If comprised in this way, while being able to hold down manufacturing cost and maintenance cost low, high photoelectric conversion efficiency and high power generation efficiency can be maintained over a long time.
If the short side width of the solar cell is too large, the price of the solar cell is high and the cost is high. On the other hand, if the size is too small, the price of the solar cell can be reduced, but there is a negative effect that the ratio that the reflected light from the trough reflector cannot be used increases. Therefore, it is desirable to be within the above range.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記太陽電池が、
 前記トラフ型反射鏡の断面において、前記解放面側の一端部から中心部までの位置の半分の位置からの、前記太陽光の反射光に直交する角度に設置されていることを特徴とする。
Moreover, the trough type solar energy power generator of the present invention is
The solar cell is
In the cross section of the trough reflector, the trough reflector is installed at an angle orthogonal to the reflected light of the sunlight from a half position from the one end portion to the center portion on the release surface side.
 トラフ型反射鏡からの反射光は効率良く太陽電池に照射される必要がある。この場合、最も好都合には太陽光は太陽電池に対して直角に照射されることである。
 しかしながらトラフ型反射鏡の場合、トラフ型反射鏡の断面は放物面を形成しており、無限遠方から到達する太陽光がトラフ型反射鏡によって反射される角度はトラフ型反射鏡の部位によって変化しており、一定では無い。
The reflected light from the trough reflector needs to be efficiently applied to the solar cell. In this case, the most convenient is that the sunlight is irradiated at right angles to the solar cell.
However, in the case of a trough reflector, the cross section of the trough reflector forms a paraboloid, and the angle at which sunlight arriving from infinity is reflected by the trough reflector varies depending on the location of the trough reflector. It is not constant.
 一般的な太陽電池の形状は平板状であり、理想的な太陽電池の形状としては反射光の角度分布に合致させて全ての反射光がそれぞれ直角方向から照射されるように太陽電池を作成することである。このような形状に製造することは不可能ではないものの、安価なコストで製造するには無理があり現実的でない。 The shape of a general solar cell is a flat plate, and the ideal solar cell shape is to create a solar cell so that all reflected light is irradiated from a right angle direction according to the angular distribution of the reflected light. That is. Although it is not impossible to manufacture in such a shape, it is impossible and impossible to manufacture at a low cost.
 さらにはトラフ型反射鏡ではトラフ型反射鏡の中心位置の焦点位置に太陽電池が配置されるので、この太陽電池の部分は反射鏡には影としか映らない。
 一般的な太陽電池において、理想的には太陽電池の全域に均等な太陽光が照射されることが望ましいので、このような影の部分が太陽電池に影響しない構成とするため、この影の部分を避けて太陽電池を配置する工夫が必要である。
Furthermore, since the solar cell is disposed at the focal position of the central position of the trough reflector in the trough reflector, this solar cell portion is only reflected on the reflector.
In a general solar cell, ideally, it is desirable to irradiate the entire solar cell with uniform sunlight. Therefore, in order to configure such a shadow portion not to affect the solar cell, this shadow portion It is necessary to devise the arrangement of solar cells avoiding the above.
 このため、一般的な平板状の太陽電池を、トラフ型反射鏡の断面半分ずつからの反射光ができるだけ均等に照射されるように配置することが好ましい。
 太陽電池の設置角度について最も効率良く発電できる方位は、トラフ型反射鏡の断面において解放面側の端部から中心までの位置の半分の位置からの反射光に対して直交させることである。
For this reason, it is preferable to arrange a general flat solar cell so that the reflected light from each half of the cross section of the trough reflector is irradiated as evenly as possible.
The azimuth | direction which can generate electric power most efficiently about the installation angle of a solar cell is making it orthogonally cross with respect to the reflected light from the half position of the position from the edge part by the side of an open surface in the cross section of a trough-type reflective mirror.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記冷却手段が、板状冷却板であり、
 前記板状冷却板が前記太陽電池の裏面に配設されてなることを特徴とする。
Moreover, the trough type solar energy power generator of the present invention is
The cooling means is a plate-like cooling plate;
The plate-like cooling plate is provided on the back surface of the solar cell.
 太陽電池は裏面が水冷されていることが望ましいが、冷却手段が板状冷却板であることが好ましい。このように構成することにより、太陽電池の熱を板状冷却板が確実に奪い、所望の発電効率を維持させることができる。 Although the back surface of the solar cell is desirably water-cooled, the cooling means is preferably a plate-like cooling plate. By comprising in this way, the plate-shaped cooling plate can surely take away the heat of a solar cell, and desired power generation efficiency can be maintained.
 太陽電池の半導体基板の温度は、低温であればあるほど変換効率が高くなるので、できるだけ冷却効果を高めることで、発電効率を高めることができる。それでも必要以上に大量の冷却水を使用すると、その経費が全体の発電コストを上昇させる。 Since the conversion efficiency increases as the temperature of the semiconductor substrate of the solar cell becomes lower, the power generation efficiency can be increased by increasing the cooling effect as much as possible. Nevertheless, if more cooling water is used than is necessary, the cost increases the overall power generation cost.
 河川や湖水などから大量の冷却水を利用可能であれば好都合であるが、それが困難な場合には自動車などで使用されているラジエータなどを使って温水の冷却を行い、発電効率の劣化を抑止することが好ましい。 It is convenient if a large amount of cooling water can be used from rivers, lakes, etc., but if that is not possible, cool the hot water using a radiator, etc. used in automobiles, etc. to reduce power generation efficiency. It is preferable to suppress.
 この場合には、本発明のトラフ型太陽エネルギー発電装置の近くに大型のタンク(容器)を置き、内部に貯めた水を50℃近くになるまで冷却水として循環使用し、それ以上の温度になったところでラジエータを作動させれば良い。 In this case, a large tank (container) is placed near the trough type solar energy power generation apparatus of the present invention, and the water stored inside is circulated and used as cooling water until the temperature becomes close to 50 ° C. At that point, the radiator should be activated.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記太陽電池と前記冷却手段とが一体的に構成された集光ユニットであって、
 前記集光ユニットには、前記集光ユニットを回動して反転させる回動機構が設けられていることを特徴とする。
Moreover, the trough type solar energy power generator of the present invention is
The solar cell and the cooling means are integrally configured as a light collecting unit,
The condensing unit is provided with a rotation mechanism that rotates and reverses the condensing unit.
 このように回転機構が設けられていれば、通常の太陽電池側に太陽光を集光する場合以外に、冷却手段側に太陽光を集光させるようにすることができる。
 したがって、温水や高温の水蒸気が必要な場合などにおいては、回動機構で集光ユニットを反転させ、効率的に冷却手段を温めて温水や高温の水蒸気を得るようにすることができる。これにより、本発明のトラフ型太陽エネルギー発電装置を発電装置と温水製造装置の両方の装置として用いることができる。
 さらに、高温の水蒸気を得た場合には、別途蒸気タービンを用いて発電するようにし、いわゆる太陽熱発電装置として使用するようにしても良い。
If the rotation mechanism is provided in this way, the sunlight can be condensed on the cooling means side, in addition to the case where the sunlight is condensed on the normal solar cell side.
Therefore, when warm water or high-temperature steam is required, the condensing unit can be inverted by the rotation mechanism, and the cooling means can be efficiently warmed to obtain warm water or high-temperature steam. Thereby, the trough type solar energy power generation device of the present invention can be used as both the power generation device and the hot water production device.
Furthermore, when high-temperature steam is obtained, power may be separately generated using a steam turbine, and may be used as a so-called solar power generator.
 なお温水を得た場合には、炊事、風呂、床暖房などに使用可能であり、全体としては極めて高効率に太陽エネルギーの利用が可能となる。さらには農用ハウス近くに設置したタンク内の水を同様に冷却水として循環使用して50℃程度まで加温し、農用ハウスの加温に使用すれば、それまで大量に使用していた加温用の燃料の消費量を劇的に削減することができる。 If hot water is obtained, it can be used for cooking, bathing, floor heating, etc., and solar energy can be used extremely efficiently as a whole. Furthermore, if the water in the tank installed near the farmhouse is similarly circulated and used as cooling water to heat to about 50 ° C and used for warming the farmhouse, it has been used in large quantities until then. The consumption of fuel can be dramatically reduced.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記トラフ型反射鏡が、架台上に設けられていることを特徴とする。
 このように架台上にトラフ型反射鏡が設けられていれば、トラフ型太陽エネルギー発電装置の設置が容易であり、またメンテナンス性が良好であり好ましい。
Moreover, the trough type solar energy power generator of the present invention is
The trough-type reflecting mirror is provided on a gantry.
If the trough-type reflecting mirror is provided on the gantry in this way, it is preferable because the trough-type solar energy power generation device can be easily installed and the maintainability is good.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記架台と前記トラフ型反射鏡の間には、
 前記架台に前記トラフ型反射鏡を載せるため、および前記架台から前記トラフ型反射鏡を降ろすための昇降機構が設けられていることを特徴とする。
Moreover, the trough type solar energy power generator of the present invention is
Between the gantry and the trough reflector,
An elevating mechanism for placing the trough reflector on the gantry and for lowering the trough reflector from the gantry is provided.
 このように昇降機構が設けられていれば、架台からトラフ型反射鏡を降ろしてメンテナンスをし易くすることができ、また暴風など、トラフ型太陽エネルギー発電装置の破損が予測される際などにおいて、簡単に架台からトラフ型反射鏡を降ろして対応することができる。また降ろしてもすぐに元に戻せるため、復帰も早く、メンテナンスなどであっても、トラフ型太陽エネルギー発電装置の停止を最低限とすることができ、効率的に稼働させることができる。 If an elevating mechanism is provided in this way, the trough reflector can be lowered from the gantry to facilitate maintenance, and when trough solar energy power generation equipment is predicted to be damaged, such as storms, The trough reflector can be easily lowered from the gantry. In addition, since it can be quickly restored to the original state even after it is lowered, the trough solar energy power generation device can be stopped to a minimum even during maintenance, etc., and can be operated efficiently.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記反射板の断面放物線形状の底部から焦点位置までの距離をT1、反射板の断面放物線形状の幅方向の距離をd1とし、
 前記透明カバーの断面放物線形状の底部から焦点位置までの距離をT2、透明カバーの断面放物線形状の幅方向の距離をd2とした場合、
 T2/d2 < T1/d1 の関係を満たすよう構成されていることを特徴とする。
Moreover, the trough type solar energy power generator of the present invention is
The distance from the bottom of the cross-sectional parabolic shape of the reflector to the focal position is T1, the distance in the width direction of the cross-sectional parabolic shape of the reflector is d1,
When the distance from the bottom of the cross-sectional parabolic shape of the transparent cover to the focal position is T2, and the distance in the width direction of the cross-sectional parabolic shape of the transparent cover is d2,
It is characterized by satisfy | filling the relationship of T2 / d2 <T1 / d1.
 このように設定されていれば、トラフ型反射鏡が風を受けた際に、下方に位置する反射板が上方に向かって浮き上がる力が加わるものの、上方に位置する透明カバーは下方に向かって押し下げられる力が加わるため、上下の力を合算した場合に、下方に向かって押し下げられる力が勝り、風に対する耐性を向上させ、風による影響を最小限に抑えることができる。 With this setting, when the trough reflector receives wind, a force is applied to lift the reflector located below, but the transparent cover located above is pushed downward. Therefore, when the upper and lower forces are added, the force pushed down is superior, improving resistance to wind and minimizing the influence of wind.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記トラフ型反射鏡の解放面側を構成する四方の端辺に、風除けカーテンが吊り下げられていることを特徴とする。
Moreover, the trough type solar energy power generator of the present invention is
A windshield curtain is suspended from four side edges constituting the release surface side of the trough reflector.
 このように構成されていれば、反射板側に風が入り込んでトラフ型反射鏡が浮き上がってしまうことをより確実に防止することができる。 If configured in this way, it is possible to more reliably prevent the trough reflector from being lifted by wind entering the reflector side.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記トラフ型反射鏡は、
 断面放物線形状の曲面部を有するD字状フレームと、
 前記D字状フレームを所定間隔離間して設け、前記D字状フレームとD字状フレームの各曲面部同士を連結する複数の連結フレームと、
 前記D字状フレームのそれぞれの前記曲面部および前記複数の連結フレームに、両端部および平面部がそれぞれ接続される略方形の反射板と、
 を少なくとも備え、
 前記D字状フレームが、
 帯状板と、
 前記帯状板の略中心部分から立設された立設構造体と、
 前記立設構造体とは垂直に交わるように配設された複数の水平構造体と、
 を備え、
 前記複数の水平構造体の各々の両端部および前記立設構造体の基端部によって、前記帯状板が支えられ、前記帯状板によって前記D字状フレームの曲面部が構成されていることを特徴とする。
Moreover, the trough type solar energy power generator of the present invention is
The trough reflector is
A D-shaped frame having a curved parabolic section, and
A plurality of connecting frames that connect the curved surfaces of the D-shaped frame and the D-shaped frame;
A substantially rectangular reflecting plate having both end portions and a plane portion connected to each of the curved surface portion and the plurality of connecting frames of the D-shaped frame;
Comprising at least
The D-shaped frame is
A strip,
A standing structure erected from a substantially central portion of the belt-shaped plate;
A plurality of horizontal structures arranged so as to intersect the upright structure vertically;
With
The strip plate is supported by both end portions of each of the plurality of horizontal structures and the base end portion of the standing structure, and the curved plate portion of the D-shaped frame is configured by the strip plate. And
 このようなトラフ型反射鏡は、極めて簡単な構造で高精度な断面放物線形状を作成可能としたものであるため、製造コストを大幅に削減でき、これを用いた太陽エネルギー発電の総コストを大幅に削減することができる。 Such trough-type reflectors can create a highly accurate cross-sectional parabolic shape with an extremely simple structure, greatly reducing manufacturing costs and greatly increasing the total cost of solar energy power generation using this. Can be reduced.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記D字状フレームを構成する前記複数の水平構造体の端部に、前記連結フレームの端部が接続されていることを特徴とする。
 このように構成されていれば、立設構造体と水平構造体と連結フレームとで強固な骨組み構造を得ることができる。
Moreover, the trough type solar energy power generator of the present invention is
An end of the connecting frame is connected to ends of the plurality of horizontal structures constituting the D-shaped frame.
If comprised in this way, a strong frame structure can be obtained with the standing structure, the horizontal structure, and the connecting frame.
 また、本発明のトラフ型太陽エネルギー発電装置は、
 前記反射板が複数の反射分割体から構成され、隣合う前記反射分割体同士が、連結用帯状板によって連結されていることを特徴とする。
Moreover, the trough type solar energy power generator of the present invention is
The reflection plate is composed of a plurality of reflection division bodies, and the adjacent reflection division bodies are connected to each other by a connecting belt-like plate.
 このように構成されていれば、例えば連結用帯状板の一部が破損した場合に容易に交換ができ、メンテナンス性が良好である。また分解時における全体の大きさを小さくすることができるため、搬送に要するコストを抑えることもできる。 If configured in this way, for example, when a part of the connecting strip-like plate is broken, it can be easily replaced, and the maintainability is good. Moreover, since the whole size at the time of decomposition | disassembly can be made small, the cost required for conveyance can also be suppressed.
 本発明によれば、安価で高効率なトラフ型反射鏡を用いて集光を行い、高価な太陽電池を効率的に利用することによって大量の電気エネルギーを得ることが可能となり、発電コストの大幅な削減を実現することができる。 According to the present invention, it is possible to obtain a large amount of electric energy by performing condensing using an inexpensive and highly efficient trough-type reflector and efficiently using an expensive solar cell. Reduction can be realized.
 またトラフ型反射鏡の全体を透明フィルムで覆う構成としたことで屋外の使用でも長期間の安定的使用が可能となり、メンテナンスコストの削減も実現し、総合的な発電コストの大幅削減を達成することができる。 In addition, the entire trough reflector is covered with a transparent film, so that it can be used stably for a long time even when used outdoors, reducing maintenance costs and achieving a significant reduction in overall power generation costs. be able to.
 さらには太陽電池の冷却に使用する冷却水が加温されるので、大量の温水が得られ、これを有効利用することで極めて高効率に太陽エネルギーを利用することができる。 Furthermore, since the cooling water used for cooling the solar cell is heated, a large amount of hot water is obtained, and solar energy can be used with extremely high efficiency by effectively using this.
 またトラフ型反射鏡において、トラフ型反射鏡の断面放物線形状の底部から焦点位置までの距離をT1、トラフ型反射鏡の断面放物線形状の幅方向の距離をd1とし、透明カバーの断面放物線形状の底部から焦点位置までの距離をT2、透明カバーの断面放物線形状の幅方向の距離をd2とした場合、T2/d2 < T1/d1 の関係を満たすよう構成することにより、製造コストを低く抑えることができ、風に対しても耐性を有することができる。 In the trough reflector, the distance from the bottom of the cross-section parabolic shape of the trough reflector to the focal position is T1, the distance in the width direction of the cross-section parabolic shape of the trough reflector is d1, and the cross-sectional parabolic shape of the transparent cover is If the distance from the bottom to the focal position is T2, and the distance in the width direction of the cross-sectional parabolic shape of the transparent cover is d2, the manufacturing cost can be kept low by configuring it to satisfy the relationship of T2 / d2 <T1 / d1. Can withstand wind.
 また、回動機構により、発電装置とともに温水製造装置としても役割もなすことのできるトラフ型太陽エネルギー発電装置を提供することができる。 Moreover, the trough type solar energy power generation device that can also serve as a hot water production device together with the power generation device can be provided by the rotation mechanism.
 さらに上記したトラフ型反射鏡の構成を有することで、製造コスト,設置コスト,メンテナンスコストを低く抑えるとともに高い集光効率を達成することができる。 Furthermore, by having the configuration of the trough reflector described above, it is possible to reduce the manufacturing cost, the installation cost, and the maintenance cost, and to achieve a high light collection efficiency.
図1は、本発明の実施形態におけるトラフ型太陽エネルギー発電装置の概略図である。FIG. 1 is a schematic diagram of a trough solar energy power generation apparatus according to an embodiment of the present invention. 図2は、透明フィルムの巻き取り装置を説明するための概略図である。FIG. 2 is a schematic view for explaining a transparent film winding device. 図3は、図1に示したトラフ型反射鏡の断面図である。FIG. 3 is a cross-sectional view of the trough reflector shown in FIG. 図4は、集光ユニットの回動機構を説明するための概略図である。FIG. 4 is a schematic diagram for explaining a rotation mechanism of the light collecting unit. 図5は、図4に示した回動機構の作動状態を示した概略図であり、図5(a)は太陽電池側で太陽光を集光している状態を示した図、図5(b)は冷却手段側にて太陽光を集光している状態を示した図である。FIG. 5 is a schematic view showing an operating state of the rotating mechanism shown in FIG. 4, and FIG. 5 (a) is a view showing a state where sunlight is condensed on the solar cell side, and FIG. (b) is the figure which showed the state which has condensed sunlight on the cooling means side. 図6は、ワイヤを用いた昇降機構を説明するための概略図である。FIG. 6 is a schematic view for explaining an elevating mechanism using a wire. 図7は、図6に示した昇降機構の作動状態を示した概略図である。FIG. 7 is a schematic view showing an operating state of the elevating mechanism shown in FIG. 図8は、ジャッキを用いた昇降機構を説明するための概略図である。FIG. 8 is a schematic diagram for explaining an elevating mechanism using a jack. 図9は、図8に示した昇降機構の作動状態を示した概略図である。FIG. 9 is a schematic view showing an operating state of the lifting mechanism shown in FIG. 図10は、風除けカーテンを説明するための概略図である。FIG. 10 is a schematic diagram for explaining a windshield curtain. 図11は、本発明のトラフ型太陽エネルギー発電装置に用いられるトラフ型反射鏡の概略斜視図である。FIG. 11 is a schematic perspective view of a trough reflector used in the trough solar energy power generator of the present invention. 図12は、図11に示したトラフ型反射鏡のA-A線による断面図である。12 is a cross-sectional view taken along line AA of the trough reflector shown in FIG. 図13は、トラフ型反射鏡の製造手順を説明するための斜視図である。FIG. 13 is a perspective view for explaining the manufacturing procedure of the trough-type reflecting mirror. 図14は、トラフ型反射鏡の製造手順を説明するための斜視図である。FIG. 14 is a perspective view for explaining the procedure for manufacturing the trough reflector. 図15は、トラフ型反射鏡の製造手順を説明するための斜視図である。FIG. 15 is a perspective view for explaining the manufacturing procedure of the trough reflector. 図16は、トラフ型反射鏡の他の実施形態を説明するための概略斜視図である。FIG. 16 is a schematic perspective view for explaining another embodiment of the trough reflector. 図17は、トラフ型反射鏡の反射分割体の連結構造について説明するための説明図である。FIG. 17 is an explanatory diagram for describing a connection structure of reflection division bodies of a trough reflector. 図18は、トラフ型反射鏡の反射分割体の連結構造に帯状反射板を追加した状態を説明するための説明図である。FIG. 18 is an explanatory diagram for explaining a state in which a strip-shaped reflector is added to the connection structure of the reflection division bodies of the trough reflector.
 以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。
 本発明のトラフ型太陽エネルギー発電装置は、トラフ型(雨樋型)反射鏡を用いて太陽光を効率良く集光し、このトラフ型反射鏡の焦点位置に設置された太陽電池で効率良く発電を行うものである。
Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings.
The trough-type solar energy power generation device of the present invention efficiently collects sunlight using a trough-type (rain gutter-type) reflector and efficiently generates power with a solar cell installed at the focal position of the trough-type reflector. Is to do.
 図1に示したように、本発明のトラフ型太陽エネルギー発電装置10は、太陽光を所定の集光位置に集光するための断面放物線形状のトラフ型反射鏡12と、このトラフ型反射鏡12による太陽光の焦点位置に設置され、集光された太陽光を直接的に電力に変換する太陽電池14と、太陽電池14の裏面に設けられ太陽電池14を冷却する冷却手段16と、トラフ型反射鏡12の開放面80側(凹面側)を覆う透明フィルム18と、を備えている。 As shown in FIG. 1, a trough solar energy power generation apparatus 10 according to the present invention includes a trough reflector 12 having a parabolic cross section for concentrating sunlight at a predetermined condensing position, and the trough reflector. 12, a solar cell 14 that is installed at the focal position of sunlight and converts the condensed sunlight directly into electric power, a cooling means 16 that is provided on the back surface of the solar cell 14 and cools the solar cell 14, a trough And a transparent film 18 covering the open surface 80 side (concave surface side) of the mold reflecting mirror 12.
 透明フィルム18は、トラフ型反射鏡12の開放面80にゴミなどが付着して発電効率を下げてしまうことを防止するためのものであり、支持体36を介して設けることが好ましい。
 このように支持体36を介することにより、透明フィルム18を撓み無く貼ることができる。
The transparent film 18 is for preventing dust and the like from adhering to the open surface 80 of the trough reflector 12 and lowering the power generation efficiency, and is preferably provided via the support 36.
Thus, the transparent film 18 can be pasted without bending through the support 36.
 ここで支持体36間の間隔は任意で良いが、間隔を狭くしすぎると太陽光の遮蔽効果が増大して集光効率が悪化し、間隔を広くしすぎると透明フィルム18に撓みが生じ、風によって煽られる可能性がある。なお、支持体36は、トラフ型反射鏡12の開放面80側の中心部を高くする、すなわちアーチ状とすることによって、風の影響を小さくすることができる。 Here, the interval between the supports 36 may be arbitrary, but if the interval is too narrow, the sunlight shielding effect is increased and the light collection efficiency is deteriorated. If the interval is too wide, the transparent film 18 is bent, May be beaten by the wind. In addition, the support body 36 can make the influence of a wind small by making high the center part by the side of the open surface 80 of the trough-type reflective mirror 12, ie, making it arch shape.
 透明フィルム18は、定期的に取り換えたり、汚れてから取り換えるなどすればよいものであるが、例えば図2に示したように、トラフ型反射鏡12の一方の側方に透明フィルム18の巻装体74を備えるとともに、トラフ型反射鏡12の他方の側方に巻き取り装置72とを備え、これにより透明フィルム18が汚れた際には直ちに巻装体74から新しい透明フィルム18を巻き出して用いることができるようにすることが好ましい。 The transparent film 18 may be replaced periodically or after it becomes dirty. For example, as shown in FIG. 2, the transparent film 18 is wound around one side of the trough reflector 12. And a winding device 72 on the other side of the trough reflector 12 so that when the transparent film 18 becomes dirty, the new transparent film 18 is immediately unwound from the wound body 74. It is preferable that it can be used.
 なお、透明フィルム18は上記の実施形態のように巻装体74および巻き取り装置72を備える形態に限定されるものではなく、所定の大きさに加工したものを用意し、汚れたらその都度交換するようにしても良いものである。 In addition, the transparent film 18 is not limited to the form provided with the winding body 74 and the winding device 72 as in the above-described embodiment, and a film processed into a predetermined size is prepared and replaced whenever it becomes dirty. It may be made to do.
 このような透明フィルム18の材質としては、透光性を有するものであれば特に限定されるものではないが、例えば、フッ素フィルム、アクリルフィルム、アイオノマー(IO)フィルム、ポリエチレン(PE)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリ塩化ビニル(PVC)フィルム、ポリ塩化ビニリデン(PVDC)フィルム、ポリビニルアルコール(PVA)フィルム、ポリプロピレンフィルム(PP)フィルム、ポリカーボネート(PC)フィルム、エチレン酢酸ビニル共重合体(EVA)フィルム、エチレン-ビニルアルコール共重合体(EVOH)フィルム、エチレン-メタクリル酸共重合体(EMAA)フィルムなどを用いることができ、中でもフッ素フィルムが好ましい。 The material of the transparent film 18 is not particularly limited as long as it has translucency. For example, a fluorine film, an acrylic film, an ionomer (IO) film, a polyethylene (PE) film, polyethylene Terephthalate (PET) film, polyvinyl chloride (PVC) film, polyvinylidene chloride (PVDC) film, polyvinyl alcohol (PVA) film, polypropylene film (PP) film, polycarbonate (PC) film, ethylene vinyl acetate copolymer (EVA) ) Film, ethylene-vinyl alcohol copolymer (EVOH) film, ethylene-methacrylic acid copolymer (EMAA) film, etc., among which a fluorine film is preferred.
 また、図1に示したトラフ型太陽エネルギー発電装置10において、トラフ型反射鏡12による太陽光の集光位置に設置された太陽電池14は、結晶シリコンやアモルファスシリコン、InGaAs(インジウムガリウムヒ化物)やGaAs(ヒ化ガリウム)などの無機化合物、有機色素や導電性ポリマーなどの有機化合物などの材料からなるセルを用いて成るものを用いることが好ましい。 Further, in the trough type solar energy power generation apparatus 10 shown in FIG. 1, the solar cell 14 installed in the sunlight collecting position by the trough type reflecting mirror 12 is composed of crystalline silicon, amorphous silicon, InGaAs (indium gallium arsenide). It is preferable to use a cell made of a cell made of a material such as an inorganic compound such as GaAs (gallium arsenide) or an organic compound such as an organic dye or a conductive polymer.
 なお太陽電池14の外形形状については特に限定されるものではなく、例えば四角形状のものを用いることができる。
 一方、太陽電池14の裏面を冷却する冷却手段16は、図3に示したように、板状冷却板であり、この板状冷却板が太陽電池14の裏面に配設されるようになっている。
 なお、太陽電池14と冷却手段16とは一体的に構成され、集光ユニット38を構成するようになっている。
The outer shape of the solar cell 14 is not particularly limited, and for example, a rectangular shape can be used.
On the other hand, the cooling means 16 for cooling the back surface of the solar cell 14 is a plate-like cooling plate as shown in FIG. 3, and this plate-like cooling plate is arranged on the back surface of the solar cell 14. Yes.
In addition, the solar cell 14 and the cooling means 16 are comprised integrally, and the light collection unit 38 is comprised.
 この集光ユニット38には、図4に示したように、集光ユニット38を矢印の方向に回動して反転させる回動機構46がそれぞれ設けられている。
 この回動機構46を用いることにより図5(a)に示したように、太陽電池14側で太陽光を集光するようにしたり、図5(b)に示したように、冷却手段16側で太陽光を集光するようにしたりと、選択的に使用することができるようになっている。なお、図5中の矢印は、トラフ型反射鏡12に反射された太陽光である。
As shown in FIG. 4, the condensing unit 38 is provided with a rotation mechanism 46 that rotates the condensing unit 38 in the direction of the arrow and reverses it.
By using this rotating mechanism 46, as shown in FIG. 5 (a), sunlight is condensed on the solar cell 14 side, or as shown in FIG. 5 (b), on the cooling means 16 side. It can be used selectively, such as collecting sunlight. In addition, the arrow in FIG. 5 is the sunlight reflected by the trough-type reflecting mirror 12.
 板状冷却板には冷却水を流すための送水路48が形成されており、この送水路48には冷却水を流すための送液手段(図示せず)が別途備えられている。このような送水路48はトラフ型反射鏡12の延設方向(図5では左右方向)に合わせて設けられている。
 また板状冷却板の材質については、熱伝導性の良いアルムニウムや銅が好ましく、コストや生産性を鑑みるとアルムニウムが好適である。
The plate-like cooling plate is formed with a water supply passage 48 for flowing cooling water, and the water supply passage 48 is separately provided with a liquid supply means (not shown) for flowing cooling water. Such a water supply path 48 is provided in accordance with the extending direction of the trough-type reflecting mirror 12 (left-right direction in FIG. 5).
Moreover, about the material of a plate-shaped cooling plate, aluminum and copper with favorable heat conductivity are preferable, and aluminum is suitable in view of cost and productivity.
 回動機構46の役割は、通常の太陽電池14側に太陽光を集光する場合以外に、冷却手段16側に太陽光を集光させるようにすることであり、温水や高温の水蒸気が必要な場合などにおいては、この回動機構46で集光ユニット38を反転させ、効率的に冷却手段16の冷却水を温めて温水や高温の水蒸気を得るようにすることができる。 The role of the rotation mechanism 46 is to collect sunlight on the cooling means 16 side, other than when collecting sunlight on the normal solar cell 14 side, and requires hot water or high-temperature steam. In such a case, the condensing unit 38 can be reversed by the rotating mechanism 46, and the cooling water of the cooling means 16 can be efficiently warmed to obtain hot water or high-temperature steam.
 なお冷却手段16を温める際において、反対側の太陽電池14は太陽光を受けないため、温水以上になることはない。したがって、太陽電池14が高温になって不具合を生ずるようなことはないものである。 Note that when the cooling means 16 is warmed, the solar cell 14 on the opposite side does not receive sunlight, so that it does not become hot water or more. Therefore, the solar cell 14 does not become defective due to high temperature.
 このような回動機構46を用いることにより、本発明のトラフ型太陽エネルギー発電装置10を、発電装置と温水製造装置の両方の装置として用いることができる。
 さらに、高温の水蒸気を得た場合には、別途蒸気タービン(図示せず)を用いて発電するようにし、いわゆる太陽熱発電装置として使用するようにしても良いものである。
By using such a rotation mechanism 46, the trough solar energy power generation device 10 of the present invention can be used as both a power generation device and a hot water production device.
Furthermore, when high-temperature steam is obtained, power may be separately generated using a steam turbine (not shown) and used as a so-called solar thermal power generator.
 冷却手段16の送水路48は、板状冷却板に直接穴開け加工してなることが好ましいが、特に限定されるものではなく、例えば板状冷却板に開けられた穴に、ステンレス管,鉄管,プラスチック管などを挿入して使用しても良いものである。
 また冷却水は、流動性を有するものであれば特に限定されるものではないが、例えば不凍液,真水,雨水などが用いられる。後述するようにこの冷却水を暖められた後、別の用途に用いる場合には真水が好ましい。また山間部などであれば、湖などから水を汲み上げて使用しても良いものである。
 さらに板状冷却板は、表面を黒化処理することが好ましく、このような処理をすることにより、太陽熱を効率的に吸熱して温水を得ることができる。
The water supply path 48 of the cooling means 16 is preferably formed by directly drilling a plate-shaped cooling plate, but is not particularly limited. For example, a stainless tube or an iron tube is formed in a hole formed in the plate-shaped cooling plate. , Plastic tube etc. may be inserted and used.
The cooling water is not particularly limited as long as it has fluidity, and for example, antifreeze, fresh water, rainwater, or the like is used. As will be described later, fresh water is preferred when the cooling water is heated and then used for another purpose. In mountainous areas, water may be pumped from a lake or the like.
Furthermore, it is preferable that the surface of the plate-like cooling plate is blackened. By performing such treatment, it is possible to efficiently absorb solar heat and obtain hot water.
 また太陽電池14は、板状冷却板の外表面に直接貼り付けられていても良いが、これに限定されず、例えば両部材の間に高熱伝導性素材(図示せず)を介在させることにより、太陽電池14を効率的に冷却するようにしても良いものである。高熱伝導性素材としては公知のものを用いれば良く、例えばカーボンを用いることが好ましい。 Further, the solar cell 14 may be directly attached to the outer surface of the plate-like cooling plate, but is not limited to this, for example, by interposing a high thermal conductivity material (not shown) between both members. The solar cell 14 may be efficiently cooled. A known material may be used as the high thermal conductivity material, and for example, carbon is preferably used.
 なお図3に示したように、板状冷却板の外表面に貼着される太陽電池14の短辺幅tは、トラフ型反射鏡12の断面放物線形状の幅方向の距離d1の1~10%の範囲内のサイズであることが好ましく、より好ましくは3~5%の範囲内のサイズである。 As shown in FIG. 3, the short side width t of the solar cell 14 attached to the outer surface of the plate-shaped cooling plate is 1 to 10 of the distance d1 in the width direction of the cross-sectional parabolic shape of the trough reflector 12. The size is preferably in the range of%, and more preferably in the range of 3 to 5%.
 太陽電池14の短辺幅tのサイズがあまりに大きいと、太陽電池14の価格が高くコスト高となる。一方、あまりに小さいと太陽電池14の価格は低減できるがトラフ型反射鏡12からの反射光を利用できない割合が大きくなってしまう。したがって、上記の範囲内に設定することが好ましい。 When the size of the short side width t of the solar cell 14 is too large, the price of the solar cell 14 is high and the cost is high. On the other hand, if it is too small, the price of the solar cell 14 can be reduced, but the ratio at which the reflected light from the trough reflector 12 cannot be used increases. Therefore, it is preferable to set within the above range.
 また太陽電池14の設置について、最も効率良く発電できる方位は、トラフ型反射鏡12の断面において、開放面80側の端部位置Aから中心位置Bまでの半分の位置Cからの反射光に対して太陽電池14が直交するように設置することである。 Regarding the installation of the solar cell 14, the direction in which the most efficient power generation is possible is the reflected light from the half position C from the end position A to the center position B on the open surface 80 side in the section of the trough reflector 12. The solar cell 14 is installed so as to be orthogonal.
 このように設置することにより、トラフ型反射鏡12による反射光を効率良く太陽電池14に照射させることができる。 By installing in this way, the solar cell 14 can be efficiently irradiated with the light reflected by the trough reflector 12.
 本実施形態のトラフ型太陽エネルギー発電装置10は、トラフ型反射鏡12を支持するための架台70を備えている。架台70の材料は、所定の強度が確保されていれば特に限定されるものではなく、木製であっても良いし、金属製であっても構わない。 The trough solar energy power generation apparatus 10 according to the present embodiment includes a gantry 70 for supporting the trough reflector 12. The material of the gantry 70 is not particularly limited as long as a predetermined strength is ensured, and may be made of wood or metal.
 さらに架台70とトラフ型反射鏡12の間においては、架台70にトラフ型反射鏡12を載せたり、架台70からトラフ型反射鏡12を降ろしたりするための昇降機構44が設けられていることが好ましい。 Further, between the gantry 70 and the trough reflector 12, an elevating mechanism 44 for placing the trough reflector 12 on the gantry 70 and for lowering the trough reflector 12 from the gantry 70 is provided. preferable.
 昇降機構44としては特に限定されないものであるが、例えば図6および図7に示したようにトラフ型反射鏡12の一方側をワイヤ64で釣り上げてトラフ型反射鏡12を傾斜させる構造や、図8および図9に示したようにジャッキ66を用いてトラフ型反射鏡12を上下動させる構造などとすることが好ましい。 The lifting mechanism 44 is not particularly limited. For example, as shown in FIGS. 6 and 7, a structure in which one side of the trough reflector 12 is lifted by a wire 64 and the trough reflector 12 is inclined, As shown in FIGS. 8 and 9, it is preferable to use a structure in which the trough reflector 12 is moved up and down using a jack 66.
 このように昇降機構44を備えることにより、架台70からトラフ型反射鏡12を降ろしてメンテナンスをし易くすることができ、また暴風などでトラフ型太陽エネルギー発電装置10の破損が予測される際などにおいて、簡単に架台70からトラフ型反射鏡12を降ろして対応することができる。また降ろしてもすぐに元に戻せるため、復帰も早く、メンテナンスなどであっても、トラフ型太陽エネルギー発電装置10の停止を最低限とすることができ、効率的に稼働させることができる。 By providing the elevating mechanism 44 in this way, the trough reflector 12 can be lowered from the gantry 70 for easy maintenance, and when the trough solar energy power generation device 10 is predicted to be damaged by a storm or the like. In this case, the trough reflector 12 can be easily lowered from the gantry 70 to cope with the problem. Further, since it can be quickly restored to the original state even when lowered, the trough solar energy power generation device 10 can be stopped at a minimum even in maintenance, etc., and can be operated efficiently.
 またトラフ型反射鏡12は、図3に示したように、トラフ型反射鏡12の断面放物線形状の底部78から焦点位置a1までの距離をT1、トラフ型反射鏡12の断面放物線形状の幅方向の距離をd1とし、透明フィルム18の断面放物線形状の底部34から焦点位置a2までの距離をT2、透明フィルム18の断面放物線形状の幅方向の距離をd2とした場合、T2/d2 < T1/d1 の関係を満たすよう構成されている。
 すなわち、トラフ型反射鏡12の断面放物線形状が、透明フィルム18の断面放物線形状と同等以上のカーブを描いている。
Further, as shown in FIG. 3, the trough type reflecting mirror 12 has a distance T1 from the bottom 78 of the parabolic cross section of the trough type reflecting mirror 12 to the focal position a1, and the width direction of the cross section parabolic shape of the trough type reflecting mirror 12. The distance from the bottom 34 of the cross-sectional parabolic shape of the transparent film 18 to the focal position a2 is T2, and the distance in the width direction of the cross-sectional parabolic shape of the transparent film 18 is d2, where T2 / d2 <T1 / It is configured to satisfy the relationship of d1.
That is, the cross-sectional parabolic shape of the trough-type reflecting mirror 12 draws a curve equal to or greater than the cross-sectional parabolic shape of the transparent film 18.
 このように設定すると、トラフ型反射鏡12が側方(図3では左右方向)より風を受けた際に、下方に位置するトラフ型反射鏡12が上方に向かって浮き上がる力が加わるものの、上方に位置する透明フィルム18は下方に向かって押し下げられる力が加わることとなる。 With this setting, when the trough reflector 12 receives wind from the side (left and right in FIG. 3), the trough reflector 12 positioned below is applied with a force that lifts upward. The transparent film 18 positioned at is applied with a force to be pushed downward.
 したがって、風によって生ずる上下の力を合算した場合に、下方に向かって押し下げられる力が勝り、風に対する耐性を向上させ、風による影響を最小限に抑えることができる。 Therefore, when the upper and lower forces generated by the wind are added together, the force pushed downward is superior, the resistance to the wind is improved, and the influence of the wind can be minimized.
 なお、トラフ型反射鏡12は、図10に示したように、トラフ型反射鏡12の開放面80側を構成する四方の端辺76に、それぞれ風除けカーテン60が吊り下げられていても良いものである。 As shown in FIG. 10, the trough reflector 12 may have windbreak curtains 60 hung on the four side edges 76 constituting the open surface 80 side of the trough reflector 12. It is.
 このように、風除けカーテン60を備えれば、下方に位置するトラフ型反射鏡12側に風が入り込んでトラフ型反射鏡12が浮き上がってしまうことをより確実に防止することができる。 Thus, if the windbreak curtain 60 is provided, it is possible to more reliably prevent the wind from entering the trough reflector 12 located below and the trough reflector 12 from being lifted.
 なお、風除けカーテン60は、自重によって垂下されるようにしても良いが、下端に重り部材62を備えることがより好ましい。重り部材62は互いに連結されるか、あるいは架台70などに固定されることで、風を受けて風除けカーテン60がばたつくことを防止することができる。 Note that the windbreak curtain 60 may be suspended by its own weight, but it is more preferable to provide the weight member 62 at the lower end. The weight members 62 are connected to each other or fixed to the gantry 70 or the like, so that the windbreak curtain 60 can be prevented from fluttering due to wind.
 また風除けカーテン60の材質としては特に限定されるものではないが、雨風に対する耐性を有し、取扱い性が容易なビニル製であることが好ましい。
 このようなトラフ型反射鏡12は、トラフ型太陽エネルギー発電装置10に好適に用いることができる。
The material of the windbreak curtain 60 is not particularly limited, but is preferably made of vinyl which has resistance against rain and wind and is easy to handle.
Such a trough-type reflecting mirror 12 can be suitably used for the trough-type solar energy power generation apparatus 10.
 またトラフ型反射鏡12は、図11および図12に示したように、断面放物線形状の曲面部28を有するD字状フレーム20と、このD字状フレーム20を所定間隔離間して設け、D字状フレーム20とD字状フレーム20の各曲面部28同士を連結する複数の連結フレーム30と、D字状フレーム20のそれぞれの曲面部28および複数の連結フレーム30に、両端部および平面部の一部がそれぞれ接続される略方形の反射板40と、を少なくとも備えている。 Further, as shown in FIGS. 11 and 12, the trough-type reflecting mirror 12 is provided with a D-shaped frame 20 having a curved parabolic section 28 and a D-shaped frame 20 spaced apart from each other by a predetermined distance. A plurality of connecting frames 30 that connect the curved surface portions 28 of the letter-shaped frame 20 and the D-shaped frame 20, and both end portions and plane portions on the curved surface portions 28 and the plurality of connecting frames 30 of the D-shaped frame 20. And a substantially rectangular reflecting plate 40 to which a part of each is connected.
 反射板40は、その厚みが0.3~0.5mm程度であることが好ましい。
 D字状フレーム20は、帯状板22と、帯状板22の略中心部分から立設された立設構造体24と、立設構造体24とは垂直に交わるように配設された複数の水平構造体26とを備えてなるものである。帯状板22としては、幅が3~5cm程度、厚さが2~5mm程度であることが好ましい。
The thickness of the reflector 40 is preferably about 0.3 to 0.5 mm.
The D-shaped frame 20 includes a strip-shaped plate 22, a standing structure 24 that is erected from a substantially central portion of the strip-shaped plate 22, and a plurality of horizontal structures that are disposed so that the standing structure 24 intersects vertically. The structure 26 is provided. The strip plate 22 preferably has a width of about 3 to 5 cm and a thickness of about 2 to 5 mm.
 そして、複数の水平構造体26の各々の両端部および立設構造体24の基端部によって帯状板22が支えられ、この帯状板22によってD字状フレーム20の曲面部28が構成され、この曲面部28によって、トラフ型反射鏡12の反射面の曲率が規定されるようになっている。 And the strip | belt-shaped board 22 is supported by the both ends of each of the some horizontal structure 26, and the base end part of the standing structure 24, The curved-surface part 28 of the D-shaped frame 20 is comprised by this strip | belt-shaped board 22, This The curved surface portion 28 defines the curvature of the reflecting surface of the trough reflector 12.
 このようにしてなるトラフ型反射鏡12は、構造が極めて簡素化されており、また構成する部品点数が少ないため、トラフ型反射鏡12に要する製造コストを従来より大幅に下げることができる。 The trough-type reflecting mirror 12 thus constructed has a very simplified structure and has a small number of components, so that the manufacturing cost required for the trough-type reflecting mirror 12 can be greatly reduced as compared with the prior art.
 ここで反射板40の材質としては、太陽光を効率良く反射できる金属であれば特に限定されず、例えば、アルミニウム、ステンレスなどの金属や、これらの金属を含む合金などを用いることができる。なお、製造コストを削減するうえでは、アルミニウムを用いることが好ましい。 Here, the material of the reflecting plate 40 is not particularly limited as long as it is a metal that can efficiently reflect sunlight, and for example, a metal such as aluminum or stainless steel or an alloy containing these metals can be used. In order to reduce manufacturing costs, it is preferable to use aluminum.
 さらに反射板40の表面(太陽光の反射面)は、高反射性能を発現できるように、例えば、化学研磨や電解研磨などの表面処理を施すことが好ましい。
 一方、立設構造体24および水平構造体26の材質としては、高い強度を有する材質であれば特に限定されず、例えば、アルミニウム、ステンレスなどの金属や、これらの金属を含む合金などを用いることができる。なお、製造コストを削減するうえでは、アルミニウムを用いることが好ましい。
Further, the surface of the reflector 40 (sunlight reflecting surface) is preferably subjected to a surface treatment such as chemical polishing or electrolytic polishing so as to exhibit high reflection performance.
On the other hand, the material of the standing structure 24 and the horizontal structure 26 is not particularly limited as long as it is a material having high strength. For example, a metal such as aluminum or stainless steel or an alloy containing these metals is used. Can do. In order to reduce manufacturing costs, it is preferable to use aluminum.
 このようなトラフ型反射鏡12は、製造コスト,設置コスト,メンテナンスコストを低く抑えることができるとともに、高い集光効率を達成することのできるものである。
 次にこのようなトラフ型反射鏡12の製造手順について説明する。
Such a trough reflector 12 can reduce the manufacturing cost, the installation cost, and the maintenance cost, and can achieve a high light collection efficiency.
Next, the manufacturing procedure of such a trough reflector 12 will be described.
 まず図13に示したように、D字状フレーム20を所定間隔離間して設ける。
 次いで図14に示したように、D字状フレーム20とD字状フレーム20の各曲面部28同士を、それぞれ連結フレーム30で連結する。具体的には、複数の水平構造体26の端部と連結フレーム30の端部、立設構造体24の端部と連結フレーム30の端部とを接続した骨組みを形成する。
First, as shown in FIG. 13, the D-shaped frames 20 are provided at a predetermined interval.
Next, as shown in FIG. 14, the D-shaped frame 20 and the curved surface portions 28 of the D-shaped frame 20 are connected by a connecting frame 30. Specifically, a framework is formed in which the ends of the plurality of horizontal structures 26 and the ends of the connection frame 30 are connected, and the ends of the standing structure 24 and the ends of the connection frame 30 are connected.
 今度は図15に示したように、図14で形成された骨組みの上に、略方形の反射板40を配設する。反射板40は、ちょうどD字状フレーム20とD字状フレーム20の間に嵌るように寸法が規定されたものである。 Next, as shown in FIG. 15, a substantially square reflecting plate 40 is disposed on the framework formed in FIG. The size of the reflector 40 is defined so as to fit between the D-shaped frame 20 and the D-shaped frame 20.
 この反射板40を図14で形成された骨組みの上に重ね、骨組みと反射板40とを固定することにより図11に示したトラフ型反射鏡12が得られる。
 なお、トラフ型反射鏡12の反射板40は、図16に示したように複数の反射分割体42を連結したものであっても良いものである。各反射分割体42の幅は、例えば100~150cm程度であることが好ましい。
The trough reflector 12 shown in FIG. 11 is obtained by superimposing the reflector 40 on the framework formed in FIG. 14 and fixing the framework and the reflector 40.
In addition, the reflecting plate 40 of the trough-type reflecting mirror 12 may be one in which a plurality of reflecting division bodies 42 are connected as shown in FIG. The width of each reflective divided body 42 is preferably about 100 to 150 cm, for example.
 反射分割体42同士の連結方法については特に限定されるものではないが、例えば図17に示したように、連結用帯状板50を介して連結することが好ましい。
 この場合、連結用帯状板50で反射分割体42と反射分割体42とを直接的に連結してしまうのではなく、連結用帯状板50と押さえ部材54との間に座金52を設け、これを締結部材56で締め付け、座金52によって形成された隙間内に、反射分割体42が位置するようにすることが好ましい。
Although the connection method of the reflective division bodies 42 is not particularly limited, for example, as shown in FIG. 17, it is preferable to connect via the connecting strip plate 50.
In this case, the reflective divided body 42 and the reflective divided body 42 are not directly connected by the connecting strip-shaped plate 50, but a washer 52 is provided between the connecting strip-shaped plate 50 and the pressing member 54. It is preferable that the reflection division body 42 is positioned in the gap formed by the washer 52 by tightening with the fastening member 56.
 つまり、反射分割体42は昼間の高温時には熱膨張し、寸法が変化することとなるため、直接的に互いを固定してしまうことなく、ある程度の隙間を設けて連結するようにすることが好ましい。 That is, since the reflective division bodies 42 are thermally expanded at high temperatures in the daytime and change their dimensions, it is preferable to connect them with a certain gap without directly fixing each other. .
 なお、連結用帯状板50を用いた場合には、押さえ部材54の面積分だけ太陽光の集光効率が低下することとなるため、図18に示したようにこの押さえ部材54の上に新たに帯状反射板58を設け、帯状反射板58の部分でも太陽光の集光ができるようにすることが好ましい。帯状反射板58は、上記した反射板40と同材質のものを用いることができる。 Note that when the connecting strip-shaped plate 50 is used, the sunlight collecting efficiency is reduced by the area of the pressing member 54, so that a new one is formed on the pressing member 54 as shown in FIG. It is preferable to provide a band-shaped reflector 58 on the surface of the band-shaped reflector 58 so that sunlight can be collected at the portion of the band-shaped reflector 58. The strip-shaped reflecting plate 58 can be made of the same material as the reflecting plate 40 described above.
 また、本発明のトラフ型太陽エネルギー発電装置10では、回動機構46を用いて冷却手段16に太陽光を集光することにより、大量の温水が得られるので、この温水を再利用する場合には、例えば自動車のラジエータを用いて冷却し再び冷却水として使用することが好ましい。 Moreover, in the trough type solar energy power generation device 10 of the present invention, a large amount of hot water is obtained by concentrating sunlight on the cooling means 16 using the rotation mechanism 46, and therefore when this hot water is reused. For example, it is preferable to cool using an automobile radiator and use it again as cooling water.
 また、暖められた大量の温水を別の用途、例えば炊事、風呂、床暖房などの一般家庭用として利用する他、大量の暖房用燃料を使用している農用ハウスの暖房に利用するようにしても良いものである。この場合には総合的に極めて高効率であり、総コストを抑制することができる。 In addition to using a large amount of warm water for other purposes such as cooking, bathing, floor heating, etc., it is also used for heating agricultural houses that use large amounts of heating fuel. Is also good. In this case, the overall efficiency is extremely high, and the total cost can be suppressed.
 以上、本発明の好ましい実施形態を説明したが、本発明はこれに限定されることはなく、例えばトラフ型反射鏡の向きを太陽の位置に合わせて追跡する太陽追跡装置を別途設けても良く、また巻き取り装置と回動機構と昇降機構と風除けカーテンの全ての機能または一部の機能のみを選択的に有する形態で有っても良く、本発明の目的を逸脱しない範囲で種々の変更や組み合わせが可能なものである。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to this. For example, a solar tracking device that tracks the direction of the trough reflector according to the position of the sun may be provided separately. Further, all or a part of the functions of the winding device, the rotation mechanism, the lifting mechanism, and the windshield curtain may be selectively provided, and various modifications may be made without departing from the object of the present invention. And can be combined.
10   トラフ型太陽エネルギー発電装置
12   トラフ型反射鏡
14   太陽電池
16   冷却手段
18   透明フィルム
20   D字状フレーム
22   帯状板
24   立設構造体
26   水平構造体
28   曲面部
30   連結フレーム
32   支持体
34   透明フィルムの底部
36   支持体
38   集光ユニット
40   反射板
42   反射分割体
44   昇降機構
46   回動機構
48   送水路
50   連結用帯状板
52   座金
54   押さえ部材
56   締結部材
58   帯状反射板
60   風除けカーテン
62   重り部材
64   ワイヤ
66   ジャッキ
70   架台
72   巻き取り装置
74   巻装体
76   端辺
78   トラフ型反射鏡の底部
80   開放面
a1   トラフ型反射鏡の焦点位置
a2   透明フィルムの焦点位置
A     端部位置
B     中心位置
C     端部位置から中心位置までの半分の位置
d1   トラフ型反射鏡の幅方向の距離
d2   透明フィルムの幅方向の距離
t     短辺幅
T1   トラフ型反射鏡の底部から焦点位置a1までの距離
T2   透明フィルムの底部から焦点位置a2までの距離
DESCRIPTION OF SYMBOLS 10 Trough type solar energy power generation device 12 Trough type reflector 14 Solar cell 16 Cooling means 18 Transparent film 20 D-shaped frame 22 Strip plate 24 Standing structure 26 Horizontal structure 28 Curved portion 30 Connecting frame 32 Support 34 Transparent film Bottom part 36 support 38 condensing unit 40 reflecting plate 42 reflecting divided body 44 elevating mechanism 46 rotating mechanism 48 water supply channel 50 connecting strip plate 52 washer 54 holding member 56 fastening member 58 strip reflector 60 windbreak curtain 62 weight member 64 Wire 66 Jack 70 Base 72 Winding device 74 Winding body 76 End side 78 Trough-type reflector bottom 80 Open surface a1 Trough-type reflector focus position a2 Transparent film focus position A End position B Center position C End From position to center Half position d1 Distance in the width direction of the trough reflector d2 Distance t in the width direction of the transparent film Short side width T1 Distance T2 from the bottom of the trough reflector to the focal position a1 From the bottom of the transparent film to the focal position a2 distance

Claims (12)

  1.  太陽光を使用して発電するための集光式のトラフ型太陽エネルギー発電装置であって、
     前記トラフ型太陽エネルギー発電装置は、
     前記太陽光を集光するための断面放物線形状のトラフ型反射鏡と、
     前記トラフ型反射鏡による前記太陽光の焦点位置に設置され、集光された前記太陽光を直接的に電力に変換する太陽電池と、
     前記太陽電池を冷却する冷却手段と、
     前記トラフ型反射鏡の解放面側を覆う透明フィルムと、
     を少なくとも備えることを特徴とするトラフ型太陽エネルギー発電装置。
    A concentrating trough solar power generation device for generating electricity using sunlight,
    The trough-type solar energy power generator is
    A trough reflector having a parabolic cross section for collecting the sunlight; and
    A solar cell that is installed at the focal position of the sunlight by the trough reflector and directly converts the concentrated sunlight into electric power;
    Cooling means for cooling the solar cell;
    A transparent film covering the release surface side of the trough reflector,
    A trough-type solar energy power generation device comprising:
  2.  前記太陽電池の短辺幅が、
     前記トラフ型反射鏡の解放面側の径の1~10%の範囲内であることを特徴とする請求項1に記載のトラフ型太陽エネルギー発電装置。
    The short side width of the solar cell is
    The trough solar energy power generation apparatus according to claim 1, wherein the trough solar energy power generation device is within a range of 1 to 10% of a diameter on a release surface side of the trough reflector.
  3.  前記太陽電池が、
     前記トラフ型反射鏡の断面において、前記解放面側の一端部から中心部までの位置の半分の位置からの、前記太陽光の反射光に直交する角度に設置されていることを特徴とする請求項1または2に記載のトラフ型太陽エネルギー発電装置。
    The solar cell is
    The cross section of the trough reflector is installed at an angle perpendicular to the reflected light of the sunlight from a position that is half of the position from one end to the center of the release surface. Item 3. The trough solar energy power generation device according to item 1 or 2.
  4.  前記冷却手段が、板状冷却板であり、
     前記板状冷却板が前記太陽電池の裏面に配設されてなることを特徴とする請求項1~3のいずれかに記載のトラフ型太陽エネルギー発電装置。
    The cooling means is a plate-like cooling plate;
    The trough solar energy power generator according to any one of claims 1 to 3, wherein the plate-like cooling plate is disposed on a back surface of the solar cell.
  5.  前記太陽電池と前記冷却手段とが一体的に構成された集光ユニットであって、
     前記集光ユニットには、前記集光ユニットを回動して反転させる回動機構が設けられていることを特徴とする請求項1~4のいずれかに記載のトラフ型太陽エネルギー発電装置。
    The solar cell and the cooling means are integrally configured as a light collecting unit,
    The trough solar power generation device according to any one of claims 1 to 4, wherein the concentrating unit is provided with a rotating mechanism that rotates and reverses the condensing unit.
  6.  前記トラフ型反射鏡が、架台上に設けられていることを特徴とする請求項1~5のいずれかに記載のトラフ型太陽エネルギー発電装置。 The trough-type solar energy power generator according to any one of claims 1 to 5, wherein the trough-type reflector is provided on a gantry.
  7.  前記架台と前記トラフ型反射鏡の間には、
     前記架台に前記トラフ型反射鏡を載せるため、および前記架台から前記トラフ型反射鏡を降ろすための昇降機構が設けられていることを特徴とする請求項6に記載のトラフ型太陽エネルギー発電装置。
    Between the gantry and the trough reflector,
    The trough-type solar energy power generator according to claim 6, further comprising an elevating mechanism for placing the trough reflector on the gantry and for lowering the trough reflector from the gantry.
  8.  前記トラフ型反射鏡の断面放物線形状の底部から焦点位置までの距離をT1、トラフ型反射鏡の断面放物線形状の幅方向の距離をd1とし、
     前記透明カバーの断面放物線形状の底部から焦点位置までの距離をT2、透明カバーの断面放物線形状の幅方向の距離をd2とした場合、
     T2/d2 < T1/d1 の関係を満たすよう構成されていることを特徴とする請求項1~7のいずれかに記載のトラフ型太陽エネルギー発電装置。
    The distance from the bottom of the parabolic cross section of the trough reflector to the focal position is T1, and the distance in the width direction of the cross parabolic shape of the trough reflector is d1,
    When the distance from the bottom of the cross-sectional parabolic shape of the transparent cover to the focal position is T2, and the distance in the width direction of the cross-sectional parabolic shape of the transparent cover is d2,
    The trough solar energy power generator according to any one of claims 1 to 7, wherein the trough solar energy power generator is configured to satisfy a relationship of T2 / d2 <T1 / d1.
  9.  前記トラフ型反射鏡の解放面側を構成する四方の端辺に、風除けカーテンが吊り下げられていることを特徴とする請求項1~8のいずれかに記載のトラフ型太陽エネルギー発電装置。 The trough solar energy power generator according to any one of claims 1 to 8, wherein windbreak curtains are suspended from four side edges constituting the release surface side of the trough reflector.
  10.  前記トラフ型反射鏡は、
     断面放物線形状の曲面部を有するD字状フレームと、
     前記D字状フレームを所定間隔離間して設け、前記D字状フレームとD字状フレームの各曲面部同士を連結する複数の連結フレームと、
     前記D字状フレームのそれぞれの前記曲面部および前記複数の連結フレームに、両端部および平面部がそれぞれ接続される略方形の反射板と、
     を少なくとも備え、
     前記D字状フレームが、
     帯状板と、
     前記帯状板の略中心部分から立設された立設構造体と、
     前記立設構造体とは垂直に交わるように配設された複数の水平構造体と、
     を備え、
     前記複数の水平構造体の各々の両端部および前記立設構造体の基端部によって、前記帯状板が支えられ、前記帯状板によって前記D字状フレームの曲面部が構成されていることを特徴とする請求項1~9のいずれかに記載のトラフ型太陽エネルギー発電装置。
    The trough reflector is
    A D-shaped frame having a curved parabolic section, and
    A plurality of connecting frames that connect the curved surfaces of the D-shaped frame and the D-shaped frame;
    A substantially rectangular reflecting plate having both end portions and a plane portion connected to each of the curved surface portion and the plurality of connecting frames of the D-shaped frame;
    Comprising at least
    The D-shaped frame is
    A strip,
    A standing structure erected from a substantially central portion of the belt-shaped plate;
    A plurality of horizontal structures arranged so as to intersect the upright structure vertically;
    With
    The strip plate is supported by both end portions of each of the plurality of horizontal structures and the base end portion of the standing structure, and the curved plate portion of the D-shaped frame is configured by the strip plate. The trough solar energy power generation device according to any one of claims 1 to 9.
  11.  前記D字状フレームを構成する前記複数の水平構造体の端部に、前記連結フレームの端部が接続されていることを特徴とする請求項10に記載のトラフ型太陽エネルギー発電装置。 The trough-type solar energy power generator according to claim 10, wherein an end of the connecting frame is connected to an end of the plurality of horizontal structures constituting the D-shaped frame.
  12.  前記反射板が複数の反射分割体から構成され、隣合う前記反射分割体同士が、連結用帯状板によって連結されていることを特徴とする請求項10または11に記載のトラフ型太陽エネルギー発電装置。 The trough solar energy power generator according to claim 10 or 11, wherein the reflecting plate is composed of a plurality of reflecting divided bodies, and the adjacent reflecting divided bodies are connected by a connecting belt-like plate. .
PCT/JP2014/059612 2013-04-01 2014-04-01 Trough-type solar energy power generation device WO2014163066A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-076045 2013-04-01
JP2013076045A JP2016115687A (en) 2013-04-01 2013-04-01 Condensing trough solar power generation device
JP2013091049A JP2016114252A (en) 2013-04-24 2013-04-24 Trough-type reflection mirror
JP2013-091049 2013-04-24
JP2013-097427 2013-05-07
JP2013097427A JP2016114616A (en) 2013-05-07 2013-05-07 Trough-type reflector

Publications (1)

Publication Number Publication Date
WO2014163066A1 true WO2014163066A1 (en) 2014-10-09

Family

ID=51658361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059612 WO2014163066A1 (en) 2013-04-01 2014-04-01 Trough-type solar energy power generation device

Country Status (1)

Country Link
WO (1) WO2014163066A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393832A (en) * 2014-11-28 2015-03-04 吴加林 Prolonged double-plane mirror reflection photovoltaic intelligent condensation system
CN105186993A (en) * 2015-09-24 2015-12-23 陕西苏普电能设备有限公司 High-efficiency spotlight tracking solar power generation device
CN106160657A (en) * 2015-04-02 2016-11-23 中海阳能源集团股份有限公司 A kind of novel concentrator integrated photovoltaic electricity generation system
CN106330086A (en) * 2016-11-11 2017-01-11 杭州品联科技有限公司 Two-sided photovoltaic power generator
CN107070381A (en) * 2017-05-16 2017-08-18 南通欧贝黎新能源电力股份有限公司 A kind of photovoltaic power generation apparatus
CN112782380A (en) * 2020-12-24 2021-05-11 河海大学 Mechanical shell structure of environment-friendly water chemistry monitoring device with self-supplied energy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314112A (en) * 2001-04-16 2002-10-25 Sumitomo 3M Ltd Photovoltaic power generating system
WO2011054017A2 (en) * 2009-11-04 2011-05-12 Gasparyan, Karen Concentrating transducer of solar energy (variants)
US20110132434A1 (en) * 2009-12-07 2011-06-09 David Correia Concentrated Photovoltaic and Thermal Solar Energy Collector
US20120180849A1 (en) * 2011-01-13 2012-07-19 Brent Alen Bettencourt Solar concentrator tent system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314112A (en) * 2001-04-16 2002-10-25 Sumitomo 3M Ltd Photovoltaic power generating system
WO2011054017A2 (en) * 2009-11-04 2011-05-12 Gasparyan, Karen Concentrating transducer of solar energy (variants)
US20110132434A1 (en) * 2009-12-07 2011-06-09 David Correia Concentrated Photovoltaic and Thermal Solar Energy Collector
US20120180849A1 (en) * 2011-01-13 2012-07-19 Brent Alen Bettencourt Solar concentrator tent system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393832A (en) * 2014-11-28 2015-03-04 吴加林 Prolonged double-plane mirror reflection photovoltaic intelligent condensation system
CN106160657A (en) * 2015-04-02 2016-11-23 中海阳能源集团股份有限公司 A kind of novel concentrator integrated photovoltaic electricity generation system
CN106160657B (en) * 2015-04-02 2018-12-14 中海阳能源集团股份有限公司 A kind of condensation photovoltaic integrated power generation system
CN105186993A (en) * 2015-09-24 2015-12-23 陕西苏普电能设备有限公司 High-efficiency spotlight tracking solar power generation device
CN106330086A (en) * 2016-11-11 2017-01-11 杭州品联科技有限公司 Two-sided photovoltaic power generator
CN106330086B (en) * 2016-11-11 2018-03-16 杭州品联科技有限公司 Two-sided photovoltaic power generation apparatus
CN107070381A (en) * 2017-05-16 2017-08-18 南通欧贝黎新能源电力股份有限公司 A kind of photovoltaic power generation apparatus
CN112782380A (en) * 2020-12-24 2021-05-11 河海大学 Mechanical shell structure of environment-friendly water chemistry monitoring device with self-supplied energy

Similar Documents

Publication Publication Date Title
WO2014163066A1 (en) Trough-type solar energy power generation device
Ju et al. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)
KR101032515B1 (en) Photovoltaic apparatus comprising angle-adjustable reflecting plate
CN101997454B (en) Reduce the solar photovoltaic device of solar photocell every watt cost
AU706605B2 (en) Solar concentrator for heat and electricity
US7665459B2 (en) Enclosed solar collector
AU2002362938B8 (en) Solar electricity generator
US20070227574A1 (en) Tracking solar power system
JP2008523593A5 (en)
JP2000243983A (en) Solar-cell power generation system
CN103219409A (en) Use of rotating photovoltaic cells and assemblies for concentrated and non-concentrated solar systems
US20130269755A1 (en) Solar glass thermoelectric integrated device
KR101997761B1 (en) Combined solar thermal and photovoltaics system using hybird solar cell based on concentrated type and planar type
CN103888050A (en) Power generation and heat supply joint device for concentrator reflection type photovoltaic module
JP2016114252A (en) Trough-type reflection mirror
MX2014006740A (en) Hybrid solar energy recovery system.
JP2012069720A (en) Solar module system utilizing reflection light for cooling
JP2016115687A (en) Condensing trough solar power generation device
CN207320145U (en) A kind of concentrating photovoltaic photo-thermal component and array for being disposed with double side photovoltaic battery piece
JP2016114616A (en) Trough-type reflector
CN111464131B (en) Wind-resistant anti-freezing high-concentration photovoltaic-photo-thermal solar comprehensive utilization system
CN202996871U (en) Power generation and heat supply combined production apparatus of condensation and reflection type photovoltaic module group
CN103808029B (en) A kind of solar concentrating system
KR101847632B1 (en) Photovoltaic thermal hybrid system using cone shape reflector
JP2013113496A (en) Trough-type solar light collector and solar heat generator using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14779419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14779419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP